1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/blkdev.h> 9 #include <linux/list_sort.h> 10 #include <linux/iversion.h> 11 #include "misc.h" 12 #include "ctree.h" 13 #include "tree-log.h" 14 #include "disk-io.h" 15 #include "locking.h" 16 #include "print-tree.h" 17 #include "backref.h" 18 #include "compression.h" 19 #include "qgroup.h" 20 #include "block-group.h" 21 #include "space-info.h" 22 #include "zoned.h" 23 #include "inode-item.h" 24 #include "fs.h" 25 #include "accessors.h" 26 #include "extent-tree.h" 27 #include "root-tree.h" 28 #include "dir-item.h" 29 #include "file-item.h" 30 #include "file.h" 31 #include "orphan.h" 32 #include "tree-checker.h" 33 34 #define MAX_CONFLICT_INODES 10 35 36 /* magic values for the inode_only field in btrfs_log_inode: 37 * 38 * LOG_INODE_ALL means to log everything 39 * LOG_INODE_EXISTS means to log just enough to recreate the inode 40 * during log replay 41 */ 42 enum { 43 LOG_INODE_ALL, 44 LOG_INODE_EXISTS, 45 }; 46 47 /* 48 * directory trouble cases 49 * 50 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync 51 * log, we must force a full commit before doing an fsync of the directory 52 * where the unlink was done. 53 * ---> record transid of last unlink/rename per directory 54 * 55 * mkdir foo/some_dir 56 * normal commit 57 * rename foo/some_dir foo2/some_dir 58 * mkdir foo/some_dir 59 * fsync foo/some_dir/some_file 60 * 61 * The fsync above will unlink the original some_dir without recording 62 * it in its new location (foo2). After a crash, some_dir will be gone 63 * unless the fsync of some_file forces a full commit 64 * 65 * 2) we must log any new names for any file or dir that is in the fsync 66 * log. ---> check inode while renaming/linking. 67 * 68 * 2a) we must log any new names for any file or dir during rename 69 * when the directory they are being removed from was logged. 70 * ---> check inode and old parent dir during rename 71 * 72 * 2a is actually the more important variant. With the extra logging 73 * a crash might unlink the old name without recreating the new one 74 * 75 * 3) after a crash, we must go through any directories with a link count 76 * of zero and redo the rm -rf 77 * 78 * mkdir f1/foo 79 * normal commit 80 * rm -rf f1/foo 81 * fsync(f1) 82 * 83 * The directory f1 was fully removed from the FS, but fsync was never 84 * called on f1, only its parent dir. After a crash the rm -rf must 85 * be replayed. This must be able to recurse down the entire 86 * directory tree. The inode link count fixup code takes care of the 87 * ugly details. 88 */ 89 90 /* 91 * stages for the tree walking. The first 92 * stage (0) is to only pin down the blocks we find 93 * the second stage (1) is to make sure that all the inodes 94 * we find in the log are created in the subvolume. 95 * 96 * The last stage is to deal with directories and links and extents 97 * and all the other fun semantics 98 */ 99 enum { 100 LOG_WALK_PIN_ONLY, 101 LOG_WALK_REPLAY_INODES, 102 LOG_WALK_REPLAY_DIR_INDEX, 103 LOG_WALK_REPLAY_ALL, 104 }; 105 106 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 107 struct btrfs_inode *inode, 108 int inode_only, 109 struct btrfs_log_ctx *ctx); 110 static int link_to_fixup_dir(struct btrfs_trans_handle *trans, 111 struct btrfs_root *root, 112 struct btrfs_path *path, u64 objectid); 113 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 114 struct btrfs_root *root, 115 struct btrfs_root *log, 116 struct btrfs_path *path, 117 u64 dirid, int del_all); 118 static void wait_log_commit(struct btrfs_root *root, int transid); 119 120 /* 121 * tree logging is a special write ahead log used to make sure that 122 * fsyncs and O_SYNCs can happen without doing full tree commits. 123 * 124 * Full tree commits are expensive because they require commonly 125 * modified blocks to be recowed, creating many dirty pages in the 126 * extent tree an 4x-6x higher write load than ext3. 127 * 128 * Instead of doing a tree commit on every fsync, we use the 129 * key ranges and transaction ids to find items for a given file or directory 130 * that have changed in this transaction. Those items are copied into 131 * a special tree (one per subvolume root), that tree is written to disk 132 * and then the fsync is considered complete. 133 * 134 * After a crash, items are copied out of the log-tree back into the 135 * subvolume tree. Any file data extents found are recorded in the extent 136 * allocation tree, and the log-tree freed. 137 * 138 * The log tree is read three times, once to pin down all the extents it is 139 * using in ram and once, once to create all the inodes logged in the tree 140 * and once to do all the other items. 141 */ 142 143 /* 144 * start a sub transaction and setup the log tree 145 * this increments the log tree writer count to make the people 146 * syncing the tree wait for us to finish 147 */ 148 static int start_log_trans(struct btrfs_trans_handle *trans, 149 struct btrfs_root *root, 150 struct btrfs_log_ctx *ctx) 151 { 152 struct btrfs_fs_info *fs_info = root->fs_info; 153 struct btrfs_root *tree_root = fs_info->tree_root; 154 const bool zoned = btrfs_is_zoned(fs_info); 155 int ret = 0; 156 bool created = false; 157 158 /* 159 * First check if the log root tree was already created. If not, create 160 * it before locking the root's log_mutex, just to keep lockdep happy. 161 */ 162 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) { 163 mutex_lock(&tree_root->log_mutex); 164 if (!fs_info->log_root_tree) { 165 ret = btrfs_init_log_root_tree(trans, fs_info); 166 if (!ret) { 167 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state); 168 created = true; 169 } 170 } 171 mutex_unlock(&tree_root->log_mutex); 172 if (ret) 173 return ret; 174 } 175 176 mutex_lock(&root->log_mutex); 177 178 again: 179 if (root->log_root) { 180 int index = (root->log_transid + 1) % 2; 181 182 if (btrfs_need_log_full_commit(trans)) { 183 ret = BTRFS_LOG_FORCE_COMMIT; 184 goto out; 185 } 186 187 if (zoned && atomic_read(&root->log_commit[index])) { 188 wait_log_commit(root, root->log_transid - 1); 189 goto again; 190 } 191 192 if (!root->log_start_pid) { 193 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 194 root->log_start_pid = current->pid; 195 } else if (root->log_start_pid != current->pid) { 196 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 197 } 198 } else { 199 /* 200 * This means fs_info->log_root_tree was already created 201 * for some other FS trees. Do the full commit not to mix 202 * nodes from multiple log transactions to do sequential 203 * writing. 204 */ 205 if (zoned && !created) { 206 ret = BTRFS_LOG_FORCE_COMMIT; 207 goto out; 208 } 209 210 ret = btrfs_add_log_tree(trans, root); 211 if (ret) 212 goto out; 213 214 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state); 215 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 216 root->log_start_pid = current->pid; 217 } 218 219 atomic_inc(&root->log_writers); 220 if (!ctx->logging_new_name) { 221 int index = root->log_transid % 2; 222 list_add_tail(&ctx->list, &root->log_ctxs[index]); 223 ctx->log_transid = root->log_transid; 224 } 225 226 out: 227 mutex_unlock(&root->log_mutex); 228 return ret; 229 } 230 231 /* 232 * returns 0 if there was a log transaction running and we were able 233 * to join, or returns -ENOENT if there were not transactions 234 * in progress 235 */ 236 static int join_running_log_trans(struct btrfs_root *root) 237 { 238 const bool zoned = btrfs_is_zoned(root->fs_info); 239 int ret = -ENOENT; 240 241 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state)) 242 return ret; 243 244 mutex_lock(&root->log_mutex); 245 again: 246 if (root->log_root) { 247 int index = (root->log_transid + 1) % 2; 248 249 ret = 0; 250 if (zoned && atomic_read(&root->log_commit[index])) { 251 wait_log_commit(root, root->log_transid - 1); 252 goto again; 253 } 254 atomic_inc(&root->log_writers); 255 } 256 mutex_unlock(&root->log_mutex); 257 return ret; 258 } 259 260 /* 261 * This either makes the current running log transaction wait 262 * until you call btrfs_end_log_trans() or it makes any future 263 * log transactions wait until you call btrfs_end_log_trans() 264 */ 265 void btrfs_pin_log_trans(struct btrfs_root *root) 266 { 267 atomic_inc(&root->log_writers); 268 } 269 270 /* 271 * indicate we're done making changes to the log tree 272 * and wake up anyone waiting to do a sync 273 */ 274 void btrfs_end_log_trans(struct btrfs_root *root) 275 { 276 if (atomic_dec_and_test(&root->log_writers)) { 277 /* atomic_dec_and_test implies a barrier */ 278 cond_wake_up_nomb(&root->log_writer_wait); 279 } 280 } 281 282 /* 283 * the walk control struct is used to pass state down the chain when 284 * processing the log tree. The stage field tells us which part 285 * of the log tree processing we are currently doing. The others 286 * are state fields used for that specific part 287 */ 288 struct walk_control { 289 /* should we free the extent on disk when done? This is used 290 * at transaction commit time while freeing a log tree 291 */ 292 int free; 293 294 /* pin only walk, we record which extents on disk belong to the 295 * log trees 296 */ 297 int pin; 298 299 /* what stage of the replay code we're currently in */ 300 int stage; 301 302 /* 303 * Ignore any items from the inode currently being processed. Needs 304 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in 305 * the LOG_WALK_REPLAY_INODES stage. 306 */ 307 bool ignore_cur_inode; 308 309 /* the root we are currently replaying */ 310 struct btrfs_root *replay_dest; 311 312 /* the trans handle for the current replay */ 313 struct btrfs_trans_handle *trans; 314 315 /* the function that gets used to process blocks we find in the 316 * tree. Note the extent_buffer might not be up to date when it is 317 * passed in, and it must be checked or read if you need the data 318 * inside it 319 */ 320 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb, 321 struct walk_control *wc, u64 gen, int level); 322 }; 323 324 /* 325 * process_func used to pin down extents, write them or wait on them 326 */ 327 static int process_one_buffer(struct btrfs_root *log, 328 struct extent_buffer *eb, 329 struct walk_control *wc, u64 gen, int level) 330 { 331 struct btrfs_fs_info *fs_info = log->fs_info; 332 int ret = 0; 333 334 /* 335 * If this fs is mixed then we need to be able to process the leaves to 336 * pin down any logged extents, so we have to read the block. 337 */ 338 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 339 struct btrfs_tree_parent_check check = { 340 .level = level, 341 .transid = gen 342 }; 343 344 ret = btrfs_read_extent_buffer(eb, &check); 345 if (ret) 346 return ret; 347 } 348 349 if (wc->pin) { 350 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start, 351 eb->len); 352 if (ret) 353 return ret; 354 355 if (btrfs_buffer_uptodate(eb, gen, 0) && 356 btrfs_header_level(eb) == 0) 357 ret = btrfs_exclude_logged_extents(eb); 358 } 359 return ret; 360 } 361 362 /* 363 * Item overwrite used by replay and tree logging. eb, slot and key all refer 364 * to the src data we are copying out. 365 * 366 * root is the tree we are copying into, and path is a scratch 367 * path for use in this function (it should be released on entry and 368 * will be released on exit). 369 * 370 * If the key is already in the destination tree the existing item is 371 * overwritten. If the existing item isn't big enough, it is extended. 372 * If it is too large, it is truncated. 373 * 374 * If the key isn't in the destination yet, a new item is inserted. 375 */ 376 static int overwrite_item(struct btrfs_trans_handle *trans, 377 struct btrfs_root *root, 378 struct btrfs_path *path, 379 struct extent_buffer *eb, int slot, 380 struct btrfs_key *key) 381 { 382 int ret; 383 u32 item_size; 384 u64 saved_i_size = 0; 385 int save_old_i_size = 0; 386 unsigned long src_ptr; 387 unsigned long dst_ptr; 388 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY; 389 390 /* 391 * This is only used during log replay, so the root is always from a 392 * fs/subvolume tree. In case we ever need to support a log root, then 393 * we'll have to clone the leaf in the path, release the path and use 394 * the leaf before writing into the log tree. See the comments at 395 * copy_items() for more details. 396 */ 397 ASSERT(root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID); 398 399 item_size = btrfs_item_size(eb, slot); 400 src_ptr = btrfs_item_ptr_offset(eb, slot); 401 402 /* Look for the key in the destination tree. */ 403 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 404 if (ret < 0) 405 return ret; 406 407 if (ret == 0) { 408 char *src_copy; 409 char *dst_copy; 410 u32 dst_size = btrfs_item_size(path->nodes[0], 411 path->slots[0]); 412 if (dst_size != item_size) 413 goto insert; 414 415 if (item_size == 0) { 416 btrfs_release_path(path); 417 return 0; 418 } 419 dst_copy = kmalloc(item_size, GFP_NOFS); 420 src_copy = kmalloc(item_size, GFP_NOFS); 421 if (!dst_copy || !src_copy) { 422 btrfs_release_path(path); 423 kfree(dst_copy); 424 kfree(src_copy); 425 return -ENOMEM; 426 } 427 428 read_extent_buffer(eb, src_copy, src_ptr, item_size); 429 430 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 431 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr, 432 item_size); 433 ret = memcmp(dst_copy, src_copy, item_size); 434 435 kfree(dst_copy); 436 kfree(src_copy); 437 /* 438 * they have the same contents, just return, this saves 439 * us from cowing blocks in the destination tree and doing 440 * extra writes that may not have been done by a previous 441 * sync 442 */ 443 if (ret == 0) { 444 btrfs_release_path(path); 445 return 0; 446 } 447 448 /* 449 * We need to load the old nbytes into the inode so when we 450 * replay the extents we've logged we get the right nbytes. 451 */ 452 if (inode_item) { 453 struct btrfs_inode_item *item; 454 u64 nbytes; 455 u32 mode; 456 457 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 458 struct btrfs_inode_item); 459 nbytes = btrfs_inode_nbytes(path->nodes[0], item); 460 item = btrfs_item_ptr(eb, slot, 461 struct btrfs_inode_item); 462 btrfs_set_inode_nbytes(eb, item, nbytes); 463 464 /* 465 * If this is a directory we need to reset the i_size to 466 * 0 so that we can set it up properly when replaying 467 * the rest of the items in this log. 468 */ 469 mode = btrfs_inode_mode(eb, item); 470 if (S_ISDIR(mode)) 471 btrfs_set_inode_size(eb, item, 0); 472 } 473 } else if (inode_item) { 474 struct btrfs_inode_item *item; 475 u32 mode; 476 477 /* 478 * New inode, set nbytes to 0 so that the nbytes comes out 479 * properly when we replay the extents. 480 */ 481 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 482 btrfs_set_inode_nbytes(eb, item, 0); 483 484 /* 485 * If this is a directory we need to reset the i_size to 0 so 486 * that we can set it up properly when replaying the rest of 487 * the items in this log. 488 */ 489 mode = btrfs_inode_mode(eb, item); 490 if (S_ISDIR(mode)) 491 btrfs_set_inode_size(eb, item, 0); 492 } 493 insert: 494 btrfs_release_path(path); 495 /* try to insert the key into the destination tree */ 496 path->skip_release_on_error = 1; 497 ret = btrfs_insert_empty_item(trans, root, path, 498 key, item_size); 499 path->skip_release_on_error = 0; 500 501 /* make sure any existing item is the correct size */ 502 if (ret == -EEXIST || ret == -EOVERFLOW) { 503 u32 found_size; 504 found_size = btrfs_item_size(path->nodes[0], 505 path->slots[0]); 506 if (found_size > item_size) 507 btrfs_truncate_item(path, item_size, 1); 508 else if (found_size < item_size) 509 btrfs_extend_item(path, item_size - found_size); 510 } else if (ret) { 511 return ret; 512 } 513 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], 514 path->slots[0]); 515 516 /* don't overwrite an existing inode if the generation number 517 * was logged as zero. This is done when the tree logging code 518 * is just logging an inode to make sure it exists after recovery. 519 * 520 * Also, don't overwrite i_size on directories during replay. 521 * log replay inserts and removes directory items based on the 522 * state of the tree found in the subvolume, and i_size is modified 523 * as it goes 524 */ 525 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) { 526 struct btrfs_inode_item *src_item; 527 struct btrfs_inode_item *dst_item; 528 529 src_item = (struct btrfs_inode_item *)src_ptr; 530 dst_item = (struct btrfs_inode_item *)dst_ptr; 531 532 if (btrfs_inode_generation(eb, src_item) == 0) { 533 struct extent_buffer *dst_eb = path->nodes[0]; 534 const u64 ino_size = btrfs_inode_size(eb, src_item); 535 536 /* 537 * For regular files an ino_size == 0 is used only when 538 * logging that an inode exists, as part of a directory 539 * fsync, and the inode wasn't fsynced before. In this 540 * case don't set the size of the inode in the fs/subvol 541 * tree, otherwise we would be throwing valid data away. 542 */ 543 if (S_ISREG(btrfs_inode_mode(eb, src_item)) && 544 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) && 545 ino_size != 0) 546 btrfs_set_inode_size(dst_eb, dst_item, ino_size); 547 goto no_copy; 548 } 549 550 if (S_ISDIR(btrfs_inode_mode(eb, src_item)) && 551 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) { 552 save_old_i_size = 1; 553 saved_i_size = btrfs_inode_size(path->nodes[0], 554 dst_item); 555 } 556 } 557 558 copy_extent_buffer(path->nodes[0], eb, dst_ptr, 559 src_ptr, item_size); 560 561 if (save_old_i_size) { 562 struct btrfs_inode_item *dst_item; 563 dst_item = (struct btrfs_inode_item *)dst_ptr; 564 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size); 565 } 566 567 /* make sure the generation is filled in */ 568 if (key->type == BTRFS_INODE_ITEM_KEY) { 569 struct btrfs_inode_item *dst_item; 570 dst_item = (struct btrfs_inode_item *)dst_ptr; 571 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) { 572 btrfs_set_inode_generation(path->nodes[0], dst_item, 573 trans->transid); 574 } 575 } 576 no_copy: 577 btrfs_mark_buffer_dirty(path->nodes[0]); 578 btrfs_release_path(path); 579 return 0; 580 } 581 582 static int read_alloc_one_name(struct extent_buffer *eb, void *start, int len, 583 struct fscrypt_str *name) 584 { 585 char *buf; 586 587 buf = kmalloc(len, GFP_NOFS); 588 if (!buf) 589 return -ENOMEM; 590 591 read_extent_buffer(eb, buf, (unsigned long)start, len); 592 name->name = buf; 593 name->len = len; 594 return 0; 595 } 596 597 /* 598 * simple helper to read an inode off the disk from a given root 599 * This can only be called for subvolume roots and not for the log 600 */ 601 static noinline struct inode *read_one_inode(struct btrfs_root *root, 602 u64 objectid) 603 { 604 struct inode *inode; 605 606 inode = btrfs_iget(root->fs_info->sb, objectid, root); 607 if (IS_ERR(inode)) 608 inode = NULL; 609 return inode; 610 } 611 612 /* replays a single extent in 'eb' at 'slot' with 'key' into the 613 * subvolume 'root'. path is released on entry and should be released 614 * on exit. 615 * 616 * extents in the log tree have not been allocated out of the extent 617 * tree yet. So, this completes the allocation, taking a reference 618 * as required if the extent already exists or creating a new extent 619 * if it isn't in the extent allocation tree yet. 620 * 621 * The extent is inserted into the file, dropping any existing extents 622 * from the file that overlap the new one. 623 */ 624 static noinline int replay_one_extent(struct btrfs_trans_handle *trans, 625 struct btrfs_root *root, 626 struct btrfs_path *path, 627 struct extent_buffer *eb, int slot, 628 struct btrfs_key *key) 629 { 630 struct btrfs_drop_extents_args drop_args = { 0 }; 631 struct btrfs_fs_info *fs_info = root->fs_info; 632 int found_type; 633 u64 extent_end; 634 u64 start = key->offset; 635 u64 nbytes = 0; 636 struct btrfs_file_extent_item *item; 637 struct inode *inode = NULL; 638 unsigned long size; 639 int ret = 0; 640 641 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 642 found_type = btrfs_file_extent_type(eb, item); 643 644 if (found_type == BTRFS_FILE_EXTENT_REG || 645 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 646 nbytes = btrfs_file_extent_num_bytes(eb, item); 647 extent_end = start + nbytes; 648 649 /* 650 * We don't add to the inodes nbytes if we are prealloc or a 651 * hole. 652 */ 653 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 654 nbytes = 0; 655 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 656 size = btrfs_file_extent_ram_bytes(eb, item); 657 nbytes = btrfs_file_extent_ram_bytes(eb, item); 658 extent_end = ALIGN(start + size, 659 fs_info->sectorsize); 660 } else { 661 ret = 0; 662 goto out; 663 } 664 665 inode = read_one_inode(root, key->objectid); 666 if (!inode) { 667 ret = -EIO; 668 goto out; 669 } 670 671 /* 672 * first check to see if we already have this extent in the 673 * file. This must be done before the btrfs_drop_extents run 674 * so we don't try to drop this extent. 675 */ 676 ret = btrfs_lookup_file_extent(trans, root, path, 677 btrfs_ino(BTRFS_I(inode)), start, 0); 678 679 if (ret == 0 && 680 (found_type == BTRFS_FILE_EXTENT_REG || 681 found_type == BTRFS_FILE_EXTENT_PREALLOC)) { 682 struct btrfs_file_extent_item cmp1; 683 struct btrfs_file_extent_item cmp2; 684 struct btrfs_file_extent_item *existing; 685 struct extent_buffer *leaf; 686 687 leaf = path->nodes[0]; 688 existing = btrfs_item_ptr(leaf, path->slots[0], 689 struct btrfs_file_extent_item); 690 691 read_extent_buffer(eb, &cmp1, (unsigned long)item, 692 sizeof(cmp1)); 693 read_extent_buffer(leaf, &cmp2, (unsigned long)existing, 694 sizeof(cmp2)); 695 696 /* 697 * we already have a pointer to this exact extent, 698 * we don't have to do anything 699 */ 700 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) { 701 btrfs_release_path(path); 702 goto out; 703 } 704 } 705 btrfs_release_path(path); 706 707 /* drop any overlapping extents */ 708 drop_args.start = start; 709 drop_args.end = extent_end; 710 drop_args.drop_cache = true; 711 ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args); 712 if (ret) 713 goto out; 714 715 if (found_type == BTRFS_FILE_EXTENT_REG || 716 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 717 u64 offset; 718 unsigned long dest_offset; 719 struct btrfs_key ins; 720 721 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 && 722 btrfs_fs_incompat(fs_info, NO_HOLES)) 723 goto update_inode; 724 725 ret = btrfs_insert_empty_item(trans, root, path, key, 726 sizeof(*item)); 727 if (ret) 728 goto out; 729 dest_offset = btrfs_item_ptr_offset(path->nodes[0], 730 path->slots[0]); 731 copy_extent_buffer(path->nodes[0], eb, dest_offset, 732 (unsigned long)item, sizeof(*item)); 733 734 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item); 735 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item); 736 ins.type = BTRFS_EXTENT_ITEM_KEY; 737 offset = key->offset - btrfs_file_extent_offset(eb, item); 738 739 /* 740 * Manually record dirty extent, as here we did a shallow 741 * file extent item copy and skip normal backref update, 742 * but modifying extent tree all by ourselves. 743 * So need to manually record dirty extent for qgroup, 744 * as the owner of the file extent changed from log tree 745 * (doesn't affect qgroup) to fs/file tree(affects qgroup) 746 */ 747 ret = btrfs_qgroup_trace_extent(trans, 748 btrfs_file_extent_disk_bytenr(eb, item), 749 btrfs_file_extent_disk_num_bytes(eb, item)); 750 if (ret < 0) 751 goto out; 752 753 if (ins.objectid > 0) { 754 struct btrfs_ref ref = { 0 }; 755 u64 csum_start; 756 u64 csum_end; 757 LIST_HEAD(ordered_sums); 758 759 /* 760 * is this extent already allocated in the extent 761 * allocation tree? If so, just add a reference 762 */ 763 ret = btrfs_lookup_data_extent(fs_info, ins.objectid, 764 ins.offset); 765 if (ret < 0) { 766 goto out; 767 } else if (ret == 0) { 768 btrfs_init_generic_ref(&ref, 769 BTRFS_ADD_DELAYED_REF, 770 ins.objectid, ins.offset, 0); 771 btrfs_init_data_ref(&ref, 772 root->root_key.objectid, 773 key->objectid, offset, 0, false); 774 ret = btrfs_inc_extent_ref(trans, &ref); 775 if (ret) 776 goto out; 777 } else { 778 /* 779 * insert the extent pointer in the extent 780 * allocation tree 781 */ 782 ret = btrfs_alloc_logged_file_extent(trans, 783 root->root_key.objectid, 784 key->objectid, offset, &ins); 785 if (ret) 786 goto out; 787 } 788 btrfs_release_path(path); 789 790 if (btrfs_file_extent_compression(eb, item)) { 791 csum_start = ins.objectid; 792 csum_end = csum_start + ins.offset; 793 } else { 794 csum_start = ins.objectid + 795 btrfs_file_extent_offset(eb, item); 796 csum_end = csum_start + 797 btrfs_file_extent_num_bytes(eb, item); 798 } 799 800 ret = btrfs_lookup_csums_list(root->log_root, 801 csum_start, csum_end - 1, 802 &ordered_sums, 0, false); 803 if (ret) 804 goto out; 805 /* 806 * Now delete all existing cums in the csum root that 807 * cover our range. We do this because we can have an 808 * extent that is completely referenced by one file 809 * extent item and partially referenced by another 810 * file extent item (like after using the clone or 811 * extent_same ioctls). In this case if we end up doing 812 * the replay of the one that partially references the 813 * extent first, and we do not do the csum deletion 814 * below, we can get 2 csum items in the csum tree that 815 * overlap each other. For example, imagine our log has 816 * the two following file extent items: 817 * 818 * key (257 EXTENT_DATA 409600) 819 * extent data disk byte 12845056 nr 102400 820 * extent data offset 20480 nr 20480 ram 102400 821 * 822 * key (257 EXTENT_DATA 819200) 823 * extent data disk byte 12845056 nr 102400 824 * extent data offset 0 nr 102400 ram 102400 825 * 826 * Where the second one fully references the 100K extent 827 * that starts at disk byte 12845056, and the log tree 828 * has a single csum item that covers the entire range 829 * of the extent: 830 * 831 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 832 * 833 * After the first file extent item is replayed, the 834 * csum tree gets the following csum item: 835 * 836 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 837 * 838 * Which covers the 20K sub-range starting at offset 20K 839 * of our extent. Now when we replay the second file 840 * extent item, if we do not delete existing csum items 841 * that cover any of its blocks, we end up getting two 842 * csum items in our csum tree that overlap each other: 843 * 844 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 845 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 846 * 847 * Which is a problem, because after this anyone trying 848 * to lookup up for the checksum of any block of our 849 * extent starting at an offset of 40K or higher, will 850 * end up looking at the second csum item only, which 851 * does not contain the checksum for any block starting 852 * at offset 40K or higher of our extent. 853 */ 854 while (!list_empty(&ordered_sums)) { 855 struct btrfs_ordered_sum *sums; 856 struct btrfs_root *csum_root; 857 858 sums = list_entry(ordered_sums.next, 859 struct btrfs_ordered_sum, 860 list); 861 csum_root = btrfs_csum_root(fs_info, 862 sums->bytenr); 863 if (!ret) 864 ret = btrfs_del_csums(trans, csum_root, 865 sums->bytenr, 866 sums->len); 867 if (!ret) 868 ret = btrfs_csum_file_blocks(trans, 869 csum_root, 870 sums); 871 list_del(&sums->list); 872 kfree(sums); 873 } 874 if (ret) 875 goto out; 876 } else { 877 btrfs_release_path(path); 878 } 879 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 880 /* inline extents are easy, we just overwrite them */ 881 ret = overwrite_item(trans, root, path, eb, slot, key); 882 if (ret) 883 goto out; 884 } 885 886 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, 887 extent_end - start); 888 if (ret) 889 goto out; 890 891 update_inode: 892 btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found); 893 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 894 out: 895 iput(inode); 896 return ret; 897 } 898 899 static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans, 900 struct btrfs_inode *dir, 901 struct btrfs_inode *inode, 902 const struct fscrypt_str *name) 903 { 904 int ret; 905 906 ret = btrfs_unlink_inode(trans, dir, inode, name); 907 if (ret) 908 return ret; 909 /* 910 * Whenever we need to check if a name exists or not, we check the 911 * fs/subvolume tree. So after an unlink we must run delayed items, so 912 * that future checks for a name during log replay see that the name 913 * does not exists anymore. 914 */ 915 return btrfs_run_delayed_items(trans); 916 } 917 918 /* 919 * when cleaning up conflicts between the directory names in the 920 * subvolume, directory names in the log and directory names in the 921 * inode back references, we may have to unlink inodes from directories. 922 * 923 * This is a helper function to do the unlink of a specific directory 924 * item 925 */ 926 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans, 927 struct btrfs_path *path, 928 struct btrfs_inode *dir, 929 struct btrfs_dir_item *di) 930 { 931 struct btrfs_root *root = dir->root; 932 struct inode *inode; 933 struct fscrypt_str name; 934 struct extent_buffer *leaf; 935 struct btrfs_key location; 936 int ret; 937 938 leaf = path->nodes[0]; 939 940 btrfs_dir_item_key_to_cpu(leaf, di, &location); 941 ret = read_alloc_one_name(leaf, di + 1, btrfs_dir_name_len(leaf, di), &name); 942 if (ret) 943 return -ENOMEM; 944 945 btrfs_release_path(path); 946 947 inode = read_one_inode(root, location.objectid); 948 if (!inode) { 949 ret = -EIO; 950 goto out; 951 } 952 953 ret = link_to_fixup_dir(trans, root, path, location.objectid); 954 if (ret) 955 goto out; 956 957 ret = unlink_inode_for_log_replay(trans, dir, BTRFS_I(inode), &name); 958 out: 959 kfree(name.name); 960 iput(inode); 961 return ret; 962 } 963 964 /* 965 * See if a given name and sequence number found in an inode back reference are 966 * already in a directory and correctly point to this inode. 967 * 968 * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it 969 * exists. 970 */ 971 static noinline int inode_in_dir(struct btrfs_root *root, 972 struct btrfs_path *path, 973 u64 dirid, u64 objectid, u64 index, 974 struct fscrypt_str *name) 975 { 976 struct btrfs_dir_item *di; 977 struct btrfs_key location; 978 int ret = 0; 979 980 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid, 981 index, name, 0); 982 if (IS_ERR(di)) { 983 ret = PTR_ERR(di); 984 goto out; 985 } else if (di) { 986 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 987 if (location.objectid != objectid) 988 goto out; 989 } else { 990 goto out; 991 } 992 993 btrfs_release_path(path); 994 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, 0); 995 if (IS_ERR(di)) { 996 ret = PTR_ERR(di); 997 goto out; 998 } else if (di) { 999 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 1000 if (location.objectid == objectid) 1001 ret = 1; 1002 } 1003 out: 1004 btrfs_release_path(path); 1005 return ret; 1006 } 1007 1008 /* 1009 * helper function to check a log tree for a named back reference in 1010 * an inode. This is used to decide if a back reference that is 1011 * found in the subvolume conflicts with what we find in the log. 1012 * 1013 * inode backreferences may have multiple refs in a single item, 1014 * during replay we process one reference at a time, and we don't 1015 * want to delete valid links to a file from the subvolume if that 1016 * link is also in the log. 1017 */ 1018 static noinline int backref_in_log(struct btrfs_root *log, 1019 struct btrfs_key *key, 1020 u64 ref_objectid, 1021 const struct fscrypt_str *name) 1022 { 1023 struct btrfs_path *path; 1024 int ret; 1025 1026 path = btrfs_alloc_path(); 1027 if (!path) 1028 return -ENOMEM; 1029 1030 ret = btrfs_search_slot(NULL, log, key, path, 0, 0); 1031 if (ret < 0) { 1032 goto out; 1033 } else if (ret == 1) { 1034 ret = 0; 1035 goto out; 1036 } 1037 1038 if (key->type == BTRFS_INODE_EXTREF_KEY) 1039 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0], 1040 path->slots[0], 1041 ref_objectid, name); 1042 else 1043 ret = !!btrfs_find_name_in_backref(path->nodes[0], 1044 path->slots[0], name); 1045 out: 1046 btrfs_free_path(path); 1047 return ret; 1048 } 1049 1050 static inline int __add_inode_ref(struct btrfs_trans_handle *trans, 1051 struct btrfs_root *root, 1052 struct btrfs_path *path, 1053 struct btrfs_root *log_root, 1054 struct btrfs_inode *dir, 1055 struct btrfs_inode *inode, 1056 u64 inode_objectid, u64 parent_objectid, 1057 u64 ref_index, struct fscrypt_str *name) 1058 { 1059 int ret; 1060 struct extent_buffer *leaf; 1061 struct btrfs_dir_item *di; 1062 struct btrfs_key search_key; 1063 struct btrfs_inode_extref *extref; 1064 1065 again: 1066 /* Search old style refs */ 1067 search_key.objectid = inode_objectid; 1068 search_key.type = BTRFS_INODE_REF_KEY; 1069 search_key.offset = parent_objectid; 1070 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 1071 if (ret == 0) { 1072 struct btrfs_inode_ref *victim_ref; 1073 unsigned long ptr; 1074 unsigned long ptr_end; 1075 1076 leaf = path->nodes[0]; 1077 1078 /* are we trying to overwrite a back ref for the root directory 1079 * if so, just jump out, we're done 1080 */ 1081 if (search_key.objectid == search_key.offset) 1082 return 1; 1083 1084 /* check all the names in this back reference to see 1085 * if they are in the log. if so, we allow them to stay 1086 * otherwise they must be unlinked as a conflict 1087 */ 1088 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1089 ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]); 1090 while (ptr < ptr_end) { 1091 struct fscrypt_str victim_name; 1092 1093 victim_ref = (struct btrfs_inode_ref *)ptr; 1094 ret = read_alloc_one_name(leaf, (victim_ref + 1), 1095 btrfs_inode_ref_name_len(leaf, victim_ref), 1096 &victim_name); 1097 if (ret) 1098 return ret; 1099 1100 ret = backref_in_log(log_root, &search_key, 1101 parent_objectid, &victim_name); 1102 if (ret < 0) { 1103 kfree(victim_name.name); 1104 return ret; 1105 } else if (!ret) { 1106 inc_nlink(&inode->vfs_inode); 1107 btrfs_release_path(path); 1108 1109 ret = unlink_inode_for_log_replay(trans, dir, inode, 1110 &victim_name); 1111 kfree(victim_name.name); 1112 if (ret) 1113 return ret; 1114 goto again; 1115 } 1116 kfree(victim_name.name); 1117 1118 ptr = (unsigned long)(victim_ref + 1) + victim_name.len; 1119 } 1120 } 1121 btrfs_release_path(path); 1122 1123 /* Same search but for extended refs */ 1124 extref = btrfs_lookup_inode_extref(NULL, root, path, name, 1125 inode_objectid, parent_objectid, 0, 1126 0); 1127 if (IS_ERR(extref)) { 1128 return PTR_ERR(extref); 1129 } else if (extref) { 1130 u32 item_size; 1131 u32 cur_offset = 0; 1132 unsigned long base; 1133 struct inode *victim_parent; 1134 1135 leaf = path->nodes[0]; 1136 1137 item_size = btrfs_item_size(leaf, path->slots[0]); 1138 base = btrfs_item_ptr_offset(leaf, path->slots[0]); 1139 1140 while (cur_offset < item_size) { 1141 struct fscrypt_str victim_name; 1142 1143 extref = (struct btrfs_inode_extref *)(base + cur_offset); 1144 1145 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid) 1146 goto next; 1147 1148 ret = read_alloc_one_name(leaf, &extref->name, 1149 btrfs_inode_extref_name_len(leaf, extref), 1150 &victim_name); 1151 if (ret) 1152 return ret; 1153 1154 search_key.objectid = inode_objectid; 1155 search_key.type = BTRFS_INODE_EXTREF_KEY; 1156 search_key.offset = btrfs_extref_hash(parent_objectid, 1157 victim_name.name, 1158 victim_name.len); 1159 ret = backref_in_log(log_root, &search_key, 1160 parent_objectid, &victim_name); 1161 if (ret < 0) { 1162 kfree(victim_name.name); 1163 return ret; 1164 } else if (!ret) { 1165 ret = -ENOENT; 1166 victim_parent = read_one_inode(root, 1167 parent_objectid); 1168 if (victim_parent) { 1169 inc_nlink(&inode->vfs_inode); 1170 btrfs_release_path(path); 1171 1172 ret = unlink_inode_for_log_replay(trans, 1173 BTRFS_I(victim_parent), 1174 inode, &victim_name); 1175 } 1176 iput(victim_parent); 1177 kfree(victim_name.name); 1178 if (ret) 1179 return ret; 1180 goto again; 1181 } 1182 kfree(victim_name.name); 1183 next: 1184 cur_offset += victim_name.len + sizeof(*extref); 1185 } 1186 } 1187 btrfs_release_path(path); 1188 1189 /* look for a conflicting sequence number */ 1190 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir), 1191 ref_index, name, 0); 1192 if (IS_ERR(di)) { 1193 return PTR_ERR(di); 1194 } else if (di) { 1195 ret = drop_one_dir_item(trans, path, dir, di); 1196 if (ret) 1197 return ret; 1198 } 1199 btrfs_release_path(path); 1200 1201 /* look for a conflicting name */ 1202 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), name, 0); 1203 if (IS_ERR(di)) { 1204 return PTR_ERR(di); 1205 } else if (di) { 1206 ret = drop_one_dir_item(trans, path, dir, di); 1207 if (ret) 1208 return ret; 1209 } 1210 btrfs_release_path(path); 1211 1212 return 0; 1213 } 1214 1215 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1216 struct fscrypt_str *name, u64 *index, 1217 u64 *parent_objectid) 1218 { 1219 struct btrfs_inode_extref *extref; 1220 int ret; 1221 1222 extref = (struct btrfs_inode_extref *)ref_ptr; 1223 1224 ret = read_alloc_one_name(eb, &extref->name, 1225 btrfs_inode_extref_name_len(eb, extref), name); 1226 if (ret) 1227 return ret; 1228 1229 if (index) 1230 *index = btrfs_inode_extref_index(eb, extref); 1231 if (parent_objectid) 1232 *parent_objectid = btrfs_inode_extref_parent(eb, extref); 1233 1234 return 0; 1235 } 1236 1237 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1238 struct fscrypt_str *name, u64 *index) 1239 { 1240 struct btrfs_inode_ref *ref; 1241 int ret; 1242 1243 ref = (struct btrfs_inode_ref *)ref_ptr; 1244 1245 ret = read_alloc_one_name(eb, ref + 1, btrfs_inode_ref_name_len(eb, ref), 1246 name); 1247 if (ret) 1248 return ret; 1249 1250 if (index) 1251 *index = btrfs_inode_ref_index(eb, ref); 1252 1253 return 0; 1254 } 1255 1256 /* 1257 * Take an inode reference item from the log tree and iterate all names from the 1258 * inode reference item in the subvolume tree with the same key (if it exists). 1259 * For any name that is not in the inode reference item from the log tree, do a 1260 * proper unlink of that name (that is, remove its entry from the inode 1261 * reference item and both dir index keys). 1262 */ 1263 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans, 1264 struct btrfs_root *root, 1265 struct btrfs_path *path, 1266 struct btrfs_inode *inode, 1267 struct extent_buffer *log_eb, 1268 int log_slot, 1269 struct btrfs_key *key) 1270 { 1271 int ret; 1272 unsigned long ref_ptr; 1273 unsigned long ref_end; 1274 struct extent_buffer *eb; 1275 1276 again: 1277 btrfs_release_path(path); 1278 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 1279 if (ret > 0) { 1280 ret = 0; 1281 goto out; 1282 } 1283 if (ret < 0) 1284 goto out; 1285 1286 eb = path->nodes[0]; 1287 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]); 1288 ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]); 1289 while (ref_ptr < ref_end) { 1290 struct fscrypt_str name; 1291 u64 parent_id; 1292 1293 if (key->type == BTRFS_INODE_EXTREF_KEY) { 1294 ret = extref_get_fields(eb, ref_ptr, &name, 1295 NULL, &parent_id); 1296 } else { 1297 parent_id = key->offset; 1298 ret = ref_get_fields(eb, ref_ptr, &name, NULL); 1299 } 1300 if (ret) 1301 goto out; 1302 1303 if (key->type == BTRFS_INODE_EXTREF_KEY) 1304 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot, 1305 parent_id, &name); 1306 else 1307 ret = !!btrfs_find_name_in_backref(log_eb, log_slot, &name); 1308 1309 if (!ret) { 1310 struct inode *dir; 1311 1312 btrfs_release_path(path); 1313 dir = read_one_inode(root, parent_id); 1314 if (!dir) { 1315 ret = -ENOENT; 1316 kfree(name.name); 1317 goto out; 1318 } 1319 ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), 1320 inode, &name); 1321 kfree(name.name); 1322 iput(dir); 1323 if (ret) 1324 goto out; 1325 goto again; 1326 } 1327 1328 kfree(name.name); 1329 ref_ptr += name.len; 1330 if (key->type == BTRFS_INODE_EXTREF_KEY) 1331 ref_ptr += sizeof(struct btrfs_inode_extref); 1332 else 1333 ref_ptr += sizeof(struct btrfs_inode_ref); 1334 } 1335 ret = 0; 1336 out: 1337 btrfs_release_path(path); 1338 return ret; 1339 } 1340 1341 /* 1342 * replay one inode back reference item found in the log tree. 1343 * eb, slot and key refer to the buffer and key found in the log tree. 1344 * root is the destination we are replaying into, and path is for temp 1345 * use by this function. (it should be released on return). 1346 */ 1347 static noinline int add_inode_ref(struct btrfs_trans_handle *trans, 1348 struct btrfs_root *root, 1349 struct btrfs_root *log, 1350 struct btrfs_path *path, 1351 struct extent_buffer *eb, int slot, 1352 struct btrfs_key *key) 1353 { 1354 struct inode *dir = NULL; 1355 struct inode *inode = NULL; 1356 unsigned long ref_ptr; 1357 unsigned long ref_end; 1358 struct fscrypt_str name; 1359 int ret; 1360 int log_ref_ver = 0; 1361 u64 parent_objectid; 1362 u64 inode_objectid; 1363 u64 ref_index = 0; 1364 int ref_struct_size; 1365 1366 ref_ptr = btrfs_item_ptr_offset(eb, slot); 1367 ref_end = ref_ptr + btrfs_item_size(eb, slot); 1368 1369 if (key->type == BTRFS_INODE_EXTREF_KEY) { 1370 struct btrfs_inode_extref *r; 1371 1372 ref_struct_size = sizeof(struct btrfs_inode_extref); 1373 log_ref_ver = 1; 1374 r = (struct btrfs_inode_extref *)ref_ptr; 1375 parent_objectid = btrfs_inode_extref_parent(eb, r); 1376 } else { 1377 ref_struct_size = sizeof(struct btrfs_inode_ref); 1378 parent_objectid = key->offset; 1379 } 1380 inode_objectid = key->objectid; 1381 1382 /* 1383 * it is possible that we didn't log all the parent directories 1384 * for a given inode. If we don't find the dir, just don't 1385 * copy the back ref in. The link count fixup code will take 1386 * care of the rest 1387 */ 1388 dir = read_one_inode(root, parent_objectid); 1389 if (!dir) { 1390 ret = -ENOENT; 1391 goto out; 1392 } 1393 1394 inode = read_one_inode(root, inode_objectid); 1395 if (!inode) { 1396 ret = -EIO; 1397 goto out; 1398 } 1399 1400 while (ref_ptr < ref_end) { 1401 if (log_ref_ver) { 1402 ret = extref_get_fields(eb, ref_ptr, &name, 1403 &ref_index, &parent_objectid); 1404 /* 1405 * parent object can change from one array 1406 * item to another. 1407 */ 1408 if (!dir) 1409 dir = read_one_inode(root, parent_objectid); 1410 if (!dir) { 1411 ret = -ENOENT; 1412 goto out; 1413 } 1414 } else { 1415 ret = ref_get_fields(eb, ref_ptr, &name, &ref_index); 1416 } 1417 if (ret) 1418 goto out; 1419 1420 ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)), 1421 btrfs_ino(BTRFS_I(inode)), ref_index, &name); 1422 if (ret < 0) { 1423 goto out; 1424 } else if (ret == 0) { 1425 /* 1426 * look for a conflicting back reference in the 1427 * metadata. if we find one we have to unlink that name 1428 * of the file before we add our new link. Later on, we 1429 * overwrite any existing back reference, and we don't 1430 * want to create dangling pointers in the directory. 1431 */ 1432 ret = __add_inode_ref(trans, root, path, log, 1433 BTRFS_I(dir), BTRFS_I(inode), 1434 inode_objectid, parent_objectid, 1435 ref_index, &name); 1436 if (ret) { 1437 if (ret == 1) 1438 ret = 0; 1439 goto out; 1440 } 1441 1442 /* insert our name */ 1443 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 1444 &name, 0, ref_index); 1445 if (ret) 1446 goto out; 1447 1448 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 1449 if (ret) 1450 goto out; 1451 } 1452 /* Else, ret == 1, we already have a perfect match, we're done. */ 1453 1454 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + name.len; 1455 kfree(name.name); 1456 name.name = NULL; 1457 if (log_ref_ver) { 1458 iput(dir); 1459 dir = NULL; 1460 } 1461 } 1462 1463 /* 1464 * Before we overwrite the inode reference item in the subvolume tree 1465 * with the item from the log tree, we must unlink all names from the 1466 * parent directory that are in the subvolume's tree inode reference 1467 * item, otherwise we end up with an inconsistent subvolume tree where 1468 * dir index entries exist for a name but there is no inode reference 1469 * item with the same name. 1470 */ 1471 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot, 1472 key); 1473 if (ret) 1474 goto out; 1475 1476 /* finally write the back reference in the inode */ 1477 ret = overwrite_item(trans, root, path, eb, slot, key); 1478 out: 1479 btrfs_release_path(path); 1480 kfree(name.name); 1481 iput(dir); 1482 iput(inode); 1483 return ret; 1484 } 1485 1486 static int count_inode_extrefs(struct btrfs_root *root, 1487 struct btrfs_inode *inode, struct btrfs_path *path) 1488 { 1489 int ret = 0; 1490 int name_len; 1491 unsigned int nlink = 0; 1492 u32 item_size; 1493 u32 cur_offset = 0; 1494 u64 inode_objectid = btrfs_ino(inode); 1495 u64 offset = 0; 1496 unsigned long ptr; 1497 struct btrfs_inode_extref *extref; 1498 struct extent_buffer *leaf; 1499 1500 while (1) { 1501 ret = btrfs_find_one_extref(root, inode_objectid, offset, path, 1502 &extref, &offset); 1503 if (ret) 1504 break; 1505 1506 leaf = path->nodes[0]; 1507 item_size = btrfs_item_size(leaf, path->slots[0]); 1508 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1509 cur_offset = 0; 1510 1511 while (cur_offset < item_size) { 1512 extref = (struct btrfs_inode_extref *) (ptr + cur_offset); 1513 name_len = btrfs_inode_extref_name_len(leaf, extref); 1514 1515 nlink++; 1516 1517 cur_offset += name_len + sizeof(*extref); 1518 } 1519 1520 offset++; 1521 btrfs_release_path(path); 1522 } 1523 btrfs_release_path(path); 1524 1525 if (ret < 0 && ret != -ENOENT) 1526 return ret; 1527 return nlink; 1528 } 1529 1530 static int count_inode_refs(struct btrfs_root *root, 1531 struct btrfs_inode *inode, struct btrfs_path *path) 1532 { 1533 int ret; 1534 struct btrfs_key key; 1535 unsigned int nlink = 0; 1536 unsigned long ptr; 1537 unsigned long ptr_end; 1538 int name_len; 1539 u64 ino = btrfs_ino(inode); 1540 1541 key.objectid = ino; 1542 key.type = BTRFS_INODE_REF_KEY; 1543 key.offset = (u64)-1; 1544 1545 while (1) { 1546 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1547 if (ret < 0) 1548 break; 1549 if (ret > 0) { 1550 if (path->slots[0] == 0) 1551 break; 1552 path->slots[0]--; 1553 } 1554 process_slot: 1555 btrfs_item_key_to_cpu(path->nodes[0], &key, 1556 path->slots[0]); 1557 if (key.objectid != ino || 1558 key.type != BTRFS_INODE_REF_KEY) 1559 break; 1560 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 1561 ptr_end = ptr + btrfs_item_size(path->nodes[0], 1562 path->slots[0]); 1563 while (ptr < ptr_end) { 1564 struct btrfs_inode_ref *ref; 1565 1566 ref = (struct btrfs_inode_ref *)ptr; 1567 name_len = btrfs_inode_ref_name_len(path->nodes[0], 1568 ref); 1569 ptr = (unsigned long)(ref + 1) + name_len; 1570 nlink++; 1571 } 1572 1573 if (key.offset == 0) 1574 break; 1575 if (path->slots[0] > 0) { 1576 path->slots[0]--; 1577 goto process_slot; 1578 } 1579 key.offset--; 1580 btrfs_release_path(path); 1581 } 1582 btrfs_release_path(path); 1583 1584 return nlink; 1585 } 1586 1587 /* 1588 * There are a few corners where the link count of the file can't 1589 * be properly maintained during replay. So, instead of adding 1590 * lots of complexity to the log code, we just scan the backrefs 1591 * for any file that has been through replay. 1592 * 1593 * The scan will update the link count on the inode to reflect the 1594 * number of back refs found. If it goes down to zero, the iput 1595 * will free the inode. 1596 */ 1597 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans, 1598 struct btrfs_root *root, 1599 struct inode *inode) 1600 { 1601 struct btrfs_path *path; 1602 int ret; 1603 u64 nlink = 0; 1604 u64 ino = btrfs_ino(BTRFS_I(inode)); 1605 1606 path = btrfs_alloc_path(); 1607 if (!path) 1608 return -ENOMEM; 1609 1610 ret = count_inode_refs(root, BTRFS_I(inode), path); 1611 if (ret < 0) 1612 goto out; 1613 1614 nlink = ret; 1615 1616 ret = count_inode_extrefs(root, BTRFS_I(inode), path); 1617 if (ret < 0) 1618 goto out; 1619 1620 nlink += ret; 1621 1622 ret = 0; 1623 1624 if (nlink != inode->i_nlink) { 1625 set_nlink(inode, nlink); 1626 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 1627 if (ret) 1628 goto out; 1629 } 1630 BTRFS_I(inode)->index_cnt = (u64)-1; 1631 1632 if (inode->i_nlink == 0) { 1633 if (S_ISDIR(inode->i_mode)) { 1634 ret = replay_dir_deletes(trans, root, NULL, path, 1635 ino, 1); 1636 if (ret) 1637 goto out; 1638 } 1639 ret = btrfs_insert_orphan_item(trans, root, ino); 1640 if (ret == -EEXIST) 1641 ret = 0; 1642 } 1643 1644 out: 1645 btrfs_free_path(path); 1646 return ret; 1647 } 1648 1649 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans, 1650 struct btrfs_root *root, 1651 struct btrfs_path *path) 1652 { 1653 int ret; 1654 struct btrfs_key key; 1655 struct inode *inode; 1656 1657 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1658 key.type = BTRFS_ORPHAN_ITEM_KEY; 1659 key.offset = (u64)-1; 1660 while (1) { 1661 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1662 if (ret < 0) 1663 break; 1664 1665 if (ret == 1) { 1666 ret = 0; 1667 if (path->slots[0] == 0) 1668 break; 1669 path->slots[0]--; 1670 } 1671 1672 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1673 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID || 1674 key.type != BTRFS_ORPHAN_ITEM_KEY) 1675 break; 1676 1677 ret = btrfs_del_item(trans, root, path); 1678 if (ret) 1679 break; 1680 1681 btrfs_release_path(path); 1682 inode = read_one_inode(root, key.offset); 1683 if (!inode) { 1684 ret = -EIO; 1685 break; 1686 } 1687 1688 ret = fixup_inode_link_count(trans, root, inode); 1689 iput(inode); 1690 if (ret) 1691 break; 1692 1693 /* 1694 * fixup on a directory may create new entries, 1695 * make sure we always look for the highset possible 1696 * offset 1697 */ 1698 key.offset = (u64)-1; 1699 } 1700 btrfs_release_path(path); 1701 return ret; 1702 } 1703 1704 1705 /* 1706 * record a given inode in the fixup dir so we can check its link 1707 * count when replay is done. The link count is incremented here 1708 * so the inode won't go away until we check it 1709 */ 1710 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans, 1711 struct btrfs_root *root, 1712 struct btrfs_path *path, 1713 u64 objectid) 1714 { 1715 struct btrfs_key key; 1716 int ret = 0; 1717 struct inode *inode; 1718 1719 inode = read_one_inode(root, objectid); 1720 if (!inode) 1721 return -EIO; 1722 1723 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1724 key.type = BTRFS_ORPHAN_ITEM_KEY; 1725 key.offset = objectid; 1726 1727 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1728 1729 btrfs_release_path(path); 1730 if (ret == 0) { 1731 if (!inode->i_nlink) 1732 set_nlink(inode, 1); 1733 else 1734 inc_nlink(inode); 1735 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 1736 } else if (ret == -EEXIST) { 1737 ret = 0; 1738 } 1739 iput(inode); 1740 1741 return ret; 1742 } 1743 1744 /* 1745 * when replaying the log for a directory, we only insert names 1746 * for inodes that actually exist. This means an fsync on a directory 1747 * does not implicitly fsync all the new files in it 1748 */ 1749 static noinline int insert_one_name(struct btrfs_trans_handle *trans, 1750 struct btrfs_root *root, 1751 u64 dirid, u64 index, 1752 const struct fscrypt_str *name, 1753 struct btrfs_key *location) 1754 { 1755 struct inode *inode; 1756 struct inode *dir; 1757 int ret; 1758 1759 inode = read_one_inode(root, location->objectid); 1760 if (!inode) 1761 return -ENOENT; 1762 1763 dir = read_one_inode(root, dirid); 1764 if (!dir) { 1765 iput(inode); 1766 return -EIO; 1767 } 1768 1769 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, 1770 1, index); 1771 1772 /* FIXME, put inode into FIXUP list */ 1773 1774 iput(inode); 1775 iput(dir); 1776 return ret; 1777 } 1778 1779 static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans, 1780 struct btrfs_inode *dir, 1781 struct btrfs_path *path, 1782 struct btrfs_dir_item *dst_di, 1783 const struct btrfs_key *log_key, 1784 u8 log_flags, 1785 bool exists) 1786 { 1787 struct btrfs_key found_key; 1788 1789 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key); 1790 /* The existing dentry points to the same inode, don't delete it. */ 1791 if (found_key.objectid == log_key->objectid && 1792 found_key.type == log_key->type && 1793 found_key.offset == log_key->offset && 1794 btrfs_dir_flags(path->nodes[0], dst_di) == log_flags) 1795 return 1; 1796 1797 /* 1798 * Don't drop the conflicting directory entry if the inode for the new 1799 * entry doesn't exist. 1800 */ 1801 if (!exists) 1802 return 0; 1803 1804 return drop_one_dir_item(trans, path, dir, dst_di); 1805 } 1806 1807 /* 1808 * take a single entry in a log directory item and replay it into 1809 * the subvolume. 1810 * 1811 * if a conflicting item exists in the subdirectory already, 1812 * the inode it points to is unlinked and put into the link count 1813 * fix up tree. 1814 * 1815 * If a name from the log points to a file or directory that does 1816 * not exist in the FS, it is skipped. fsyncs on directories 1817 * do not force down inodes inside that directory, just changes to the 1818 * names or unlinks in a directory. 1819 * 1820 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a 1821 * non-existing inode) and 1 if the name was replayed. 1822 */ 1823 static noinline int replay_one_name(struct btrfs_trans_handle *trans, 1824 struct btrfs_root *root, 1825 struct btrfs_path *path, 1826 struct extent_buffer *eb, 1827 struct btrfs_dir_item *di, 1828 struct btrfs_key *key) 1829 { 1830 struct fscrypt_str name; 1831 struct btrfs_dir_item *dir_dst_di; 1832 struct btrfs_dir_item *index_dst_di; 1833 bool dir_dst_matches = false; 1834 bool index_dst_matches = false; 1835 struct btrfs_key log_key; 1836 struct btrfs_key search_key; 1837 struct inode *dir; 1838 u8 log_flags; 1839 bool exists; 1840 int ret; 1841 bool update_size = true; 1842 bool name_added = false; 1843 1844 dir = read_one_inode(root, key->objectid); 1845 if (!dir) 1846 return -EIO; 1847 1848 ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name); 1849 if (ret) 1850 goto out; 1851 1852 log_flags = btrfs_dir_flags(eb, di); 1853 btrfs_dir_item_key_to_cpu(eb, di, &log_key); 1854 ret = btrfs_lookup_inode(trans, root, path, &log_key, 0); 1855 btrfs_release_path(path); 1856 if (ret < 0) 1857 goto out; 1858 exists = (ret == 0); 1859 ret = 0; 1860 1861 dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid, 1862 &name, 1); 1863 if (IS_ERR(dir_dst_di)) { 1864 ret = PTR_ERR(dir_dst_di); 1865 goto out; 1866 } else if (dir_dst_di) { 1867 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path, 1868 dir_dst_di, &log_key, 1869 log_flags, exists); 1870 if (ret < 0) 1871 goto out; 1872 dir_dst_matches = (ret == 1); 1873 } 1874 1875 btrfs_release_path(path); 1876 1877 index_dst_di = btrfs_lookup_dir_index_item(trans, root, path, 1878 key->objectid, key->offset, 1879 &name, 1); 1880 if (IS_ERR(index_dst_di)) { 1881 ret = PTR_ERR(index_dst_di); 1882 goto out; 1883 } else if (index_dst_di) { 1884 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path, 1885 index_dst_di, &log_key, 1886 log_flags, exists); 1887 if (ret < 0) 1888 goto out; 1889 index_dst_matches = (ret == 1); 1890 } 1891 1892 btrfs_release_path(path); 1893 1894 if (dir_dst_matches && index_dst_matches) { 1895 ret = 0; 1896 update_size = false; 1897 goto out; 1898 } 1899 1900 /* 1901 * Check if the inode reference exists in the log for the given name, 1902 * inode and parent inode 1903 */ 1904 search_key.objectid = log_key.objectid; 1905 search_key.type = BTRFS_INODE_REF_KEY; 1906 search_key.offset = key->objectid; 1907 ret = backref_in_log(root->log_root, &search_key, 0, &name); 1908 if (ret < 0) { 1909 goto out; 1910 } else if (ret) { 1911 /* The dentry will be added later. */ 1912 ret = 0; 1913 update_size = false; 1914 goto out; 1915 } 1916 1917 search_key.objectid = log_key.objectid; 1918 search_key.type = BTRFS_INODE_EXTREF_KEY; 1919 search_key.offset = key->objectid; 1920 ret = backref_in_log(root->log_root, &search_key, key->objectid, &name); 1921 if (ret < 0) { 1922 goto out; 1923 } else if (ret) { 1924 /* The dentry will be added later. */ 1925 ret = 0; 1926 update_size = false; 1927 goto out; 1928 } 1929 btrfs_release_path(path); 1930 ret = insert_one_name(trans, root, key->objectid, key->offset, 1931 &name, &log_key); 1932 if (ret && ret != -ENOENT && ret != -EEXIST) 1933 goto out; 1934 if (!ret) 1935 name_added = true; 1936 update_size = false; 1937 ret = 0; 1938 1939 out: 1940 if (!ret && update_size) { 1941 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name.len * 2); 1942 ret = btrfs_update_inode(trans, root, BTRFS_I(dir)); 1943 } 1944 kfree(name.name); 1945 iput(dir); 1946 if (!ret && name_added) 1947 ret = 1; 1948 return ret; 1949 } 1950 1951 /* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */ 1952 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans, 1953 struct btrfs_root *root, 1954 struct btrfs_path *path, 1955 struct extent_buffer *eb, int slot, 1956 struct btrfs_key *key) 1957 { 1958 int ret; 1959 struct btrfs_dir_item *di; 1960 1961 /* We only log dir index keys, which only contain a single dir item. */ 1962 ASSERT(key->type == BTRFS_DIR_INDEX_KEY); 1963 1964 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 1965 ret = replay_one_name(trans, root, path, eb, di, key); 1966 if (ret < 0) 1967 return ret; 1968 1969 /* 1970 * If this entry refers to a non-directory (directories can not have a 1971 * link count > 1) and it was added in the transaction that was not 1972 * committed, make sure we fixup the link count of the inode the entry 1973 * points to. Otherwise something like the following would result in a 1974 * directory pointing to an inode with a wrong link that does not account 1975 * for this dir entry: 1976 * 1977 * mkdir testdir 1978 * touch testdir/foo 1979 * touch testdir/bar 1980 * sync 1981 * 1982 * ln testdir/bar testdir/bar_link 1983 * ln testdir/foo testdir/foo_link 1984 * xfs_io -c "fsync" testdir/bar 1985 * 1986 * <power failure> 1987 * 1988 * mount fs, log replay happens 1989 * 1990 * File foo would remain with a link count of 1 when it has two entries 1991 * pointing to it in the directory testdir. This would make it impossible 1992 * to ever delete the parent directory has it would result in stale 1993 * dentries that can never be deleted. 1994 */ 1995 if (ret == 1 && btrfs_dir_ftype(eb, di) != BTRFS_FT_DIR) { 1996 struct btrfs_path *fixup_path; 1997 struct btrfs_key di_key; 1998 1999 fixup_path = btrfs_alloc_path(); 2000 if (!fixup_path) 2001 return -ENOMEM; 2002 2003 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2004 ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid); 2005 btrfs_free_path(fixup_path); 2006 } 2007 2008 return ret; 2009 } 2010 2011 /* 2012 * directory replay has two parts. There are the standard directory 2013 * items in the log copied from the subvolume, and range items 2014 * created in the log while the subvolume was logged. 2015 * 2016 * The range items tell us which parts of the key space the log 2017 * is authoritative for. During replay, if a key in the subvolume 2018 * directory is in a logged range item, but not actually in the log 2019 * that means it was deleted from the directory before the fsync 2020 * and should be removed. 2021 */ 2022 static noinline int find_dir_range(struct btrfs_root *root, 2023 struct btrfs_path *path, 2024 u64 dirid, 2025 u64 *start_ret, u64 *end_ret) 2026 { 2027 struct btrfs_key key; 2028 u64 found_end; 2029 struct btrfs_dir_log_item *item; 2030 int ret; 2031 int nritems; 2032 2033 if (*start_ret == (u64)-1) 2034 return 1; 2035 2036 key.objectid = dirid; 2037 key.type = BTRFS_DIR_LOG_INDEX_KEY; 2038 key.offset = *start_ret; 2039 2040 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2041 if (ret < 0) 2042 goto out; 2043 if (ret > 0) { 2044 if (path->slots[0] == 0) 2045 goto out; 2046 path->slots[0]--; 2047 } 2048 if (ret != 0) 2049 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2050 2051 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) { 2052 ret = 1; 2053 goto next; 2054 } 2055 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2056 struct btrfs_dir_log_item); 2057 found_end = btrfs_dir_log_end(path->nodes[0], item); 2058 2059 if (*start_ret >= key.offset && *start_ret <= found_end) { 2060 ret = 0; 2061 *start_ret = key.offset; 2062 *end_ret = found_end; 2063 goto out; 2064 } 2065 ret = 1; 2066 next: 2067 /* check the next slot in the tree to see if it is a valid item */ 2068 nritems = btrfs_header_nritems(path->nodes[0]); 2069 path->slots[0]++; 2070 if (path->slots[0] >= nritems) { 2071 ret = btrfs_next_leaf(root, path); 2072 if (ret) 2073 goto out; 2074 } 2075 2076 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2077 2078 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) { 2079 ret = 1; 2080 goto out; 2081 } 2082 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2083 struct btrfs_dir_log_item); 2084 found_end = btrfs_dir_log_end(path->nodes[0], item); 2085 *start_ret = key.offset; 2086 *end_ret = found_end; 2087 ret = 0; 2088 out: 2089 btrfs_release_path(path); 2090 return ret; 2091 } 2092 2093 /* 2094 * this looks for a given directory item in the log. If the directory 2095 * item is not in the log, the item is removed and the inode it points 2096 * to is unlinked 2097 */ 2098 static noinline int check_item_in_log(struct btrfs_trans_handle *trans, 2099 struct btrfs_root *log, 2100 struct btrfs_path *path, 2101 struct btrfs_path *log_path, 2102 struct inode *dir, 2103 struct btrfs_key *dir_key) 2104 { 2105 struct btrfs_root *root = BTRFS_I(dir)->root; 2106 int ret; 2107 struct extent_buffer *eb; 2108 int slot; 2109 struct btrfs_dir_item *di; 2110 struct fscrypt_str name; 2111 struct inode *inode = NULL; 2112 struct btrfs_key location; 2113 2114 /* 2115 * Currently we only log dir index keys. Even if we replay a log created 2116 * by an older kernel that logged both dir index and dir item keys, all 2117 * we need to do is process the dir index keys, we (and our caller) can 2118 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY). 2119 */ 2120 ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY); 2121 2122 eb = path->nodes[0]; 2123 slot = path->slots[0]; 2124 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 2125 ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name); 2126 if (ret) 2127 goto out; 2128 2129 if (log) { 2130 struct btrfs_dir_item *log_di; 2131 2132 log_di = btrfs_lookup_dir_index_item(trans, log, log_path, 2133 dir_key->objectid, 2134 dir_key->offset, &name, 0); 2135 if (IS_ERR(log_di)) { 2136 ret = PTR_ERR(log_di); 2137 goto out; 2138 } else if (log_di) { 2139 /* The dentry exists in the log, we have nothing to do. */ 2140 ret = 0; 2141 goto out; 2142 } 2143 } 2144 2145 btrfs_dir_item_key_to_cpu(eb, di, &location); 2146 btrfs_release_path(path); 2147 btrfs_release_path(log_path); 2148 inode = read_one_inode(root, location.objectid); 2149 if (!inode) { 2150 ret = -EIO; 2151 goto out; 2152 } 2153 2154 ret = link_to_fixup_dir(trans, root, path, location.objectid); 2155 if (ret) 2156 goto out; 2157 2158 inc_nlink(inode); 2159 ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), BTRFS_I(inode), 2160 &name); 2161 /* 2162 * Unlike dir item keys, dir index keys can only have one name (entry) in 2163 * them, as there are no key collisions since each key has a unique offset 2164 * (an index number), so we're done. 2165 */ 2166 out: 2167 btrfs_release_path(path); 2168 btrfs_release_path(log_path); 2169 kfree(name.name); 2170 iput(inode); 2171 return ret; 2172 } 2173 2174 static int replay_xattr_deletes(struct btrfs_trans_handle *trans, 2175 struct btrfs_root *root, 2176 struct btrfs_root *log, 2177 struct btrfs_path *path, 2178 const u64 ino) 2179 { 2180 struct btrfs_key search_key; 2181 struct btrfs_path *log_path; 2182 int i; 2183 int nritems; 2184 int ret; 2185 2186 log_path = btrfs_alloc_path(); 2187 if (!log_path) 2188 return -ENOMEM; 2189 2190 search_key.objectid = ino; 2191 search_key.type = BTRFS_XATTR_ITEM_KEY; 2192 search_key.offset = 0; 2193 again: 2194 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 2195 if (ret < 0) 2196 goto out; 2197 process_leaf: 2198 nritems = btrfs_header_nritems(path->nodes[0]); 2199 for (i = path->slots[0]; i < nritems; i++) { 2200 struct btrfs_key key; 2201 struct btrfs_dir_item *di; 2202 struct btrfs_dir_item *log_di; 2203 u32 total_size; 2204 u32 cur; 2205 2206 btrfs_item_key_to_cpu(path->nodes[0], &key, i); 2207 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) { 2208 ret = 0; 2209 goto out; 2210 } 2211 2212 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item); 2213 total_size = btrfs_item_size(path->nodes[0], i); 2214 cur = 0; 2215 while (cur < total_size) { 2216 u16 name_len = btrfs_dir_name_len(path->nodes[0], di); 2217 u16 data_len = btrfs_dir_data_len(path->nodes[0], di); 2218 u32 this_len = sizeof(*di) + name_len + data_len; 2219 char *name; 2220 2221 name = kmalloc(name_len, GFP_NOFS); 2222 if (!name) { 2223 ret = -ENOMEM; 2224 goto out; 2225 } 2226 read_extent_buffer(path->nodes[0], name, 2227 (unsigned long)(di + 1), name_len); 2228 2229 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino, 2230 name, name_len, 0); 2231 btrfs_release_path(log_path); 2232 if (!log_di) { 2233 /* Doesn't exist in log tree, so delete it. */ 2234 btrfs_release_path(path); 2235 di = btrfs_lookup_xattr(trans, root, path, ino, 2236 name, name_len, -1); 2237 kfree(name); 2238 if (IS_ERR(di)) { 2239 ret = PTR_ERR(di); 2240 goto out; 2241 } 2242 ASSERT(di); 2243 ret = btrfs_delete_one_dir_name(trans, root, 2244 path, di); 2245 if (ret) 2246 goto out; 2247 btrfs_release_path(path); 2248 search_key = key; 2249 goto again; 2250 } 2251 kfree(name); 2252 if (IS_ERR(log_di)) { 2253 ret = PTR_ERR(log_di); 2254 goto out; 2255 } 2256 cur += this_len; 2257 di = (struct btrfs_dir_item *)((char *)di + this_len); 2258 } 2259 } 2260 ret = btrfs_next_leaf(root, path); 2261 if (ret > 0) 2262 ret = 0; 2263 else if (ret == 0) 2264 goto process_leaf; 2265 out: 2266 btrfs_free_path(log_path); 2267 btrfs_release_path(path); 2268 return ret; 2269 } 2270 2271 2272 /* 2273 * deletion replay happens before we copy any new directory items 2274 * out of the log or out of backreferences from inodes. It 2275 * scans the log to find ranges of keys that log is authoritative for, 2276 * and then scans the directory to find items in those ranges that are 2277 * not present in the log. 2278 * 2279 * Anything we don't find in the log is unlinked and removed from the 2280 * directory. 2281 */ 2282 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 2283 struct btrfs_root *root, 2284 struct btrfs_root *log, 2285 struct btrfs_path *path, 2286 u64 dirid, int del_all) 2287 { 2288 u64 range_start; 2289 u64 range_end; 2290 int ret = 0; 2291 struct btrfs_key dir_key; 2292 struct btrfs_key found_key; 2293 struct btrfs_path *log_path; 2294 struct inode *dir; 2295 2296 dir_key.objectid = dirid; 2297 dir_key.type = BTRFS_DIR_INDEX_KEY; 2298 log_path = btrfs_alloc_path(); 2299 if (!log_path) 2300 return -ENOMEM; 2301 2302 dir = read_one_inode(root, dirid); 2303 /* it isn't an error if the inode isn't there, that can happen 2304 * because we replay the deletes before we copy in the inode item 2305 * from the log 2306 */ 2307 if (!dir) { 2308 btrfs_free_path(log_path); 2309 return 0; 2310 } 2311 2312 range_start = 0; 2313 range_end = 0; 2314 while (1) { 2315 if (del_all) 2316 range_end = (u64)-1; 2317 else { 2318 ret = find_dir_range(log, path, dirid, 2319 &range_start, &range_end); 2320 if (ret < 0) 2321 goto out; 2322 else if (ret > 0) 2323 break; 2324 } 2325 2326 dir_key.offset = range_start; 2327 while (1) { 2328 int nritems; 2329 ret = btrfs_search_slot(NULL, root, &dir_key, path, 2330 0, 0); 2331 if (ret < 0) 2332 goto out; 2333 2334 nritems = btrfs_header_nritems(path->nodes[0]); 2335 if (path->slots[0] >= nritems) { 2336 ret = btrfs_next_leaf(root, path); 2337 if (ret == 1) 2338 break; 2339 else if (ret < 0) 2340 goto out; 2341 } 2342 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2343 path->slots[0]); 2344 if (found_key.objectid != dirid || 2345 found_key.type != dir_key.type) { 2346 ret = 0; 2347 goto out; 2348 } 2349 2350 if (found_key.offset > range_end) 2351 break; 2352 2353 ret = check_item_in_log(trans, log, path, 2354 log_path, dir, 2355 &found_key); 2356 if (ret) 2357 goto out; 2358 if (found_key.offset == (u64)-1) 2359 break; 2360 dir_key.offset = found_key.offset + 1; 2361 } 2362 btrfs_release_path(path); 2363 if (range_end == (u64)-1) 2364 break; 2365 range_start = range_end + 1; 2366 } 2367 ret = 0; 2368 out: 2369 btrfs_release_path(path); 2370 btrfs_free_path(log_path); 2371 iput(dir); 2372 return ret; 2373 } 2374 2375 /* 2376 * the process_func used to replay items from the log tree. This 2377 * gets called in two different stages. The first stage just looks 2378 * for inodes and makes sure they are all copied into the subvolume. 2379 * 2380 * The second stage copies all the other item types from the log into 2381 * the subvolume. The two stage approach is slower, but gets rid of 2382 * lots of complexity around inodes referencing other inodes that exist 2383 * only in the log (references come from either directory items or inode 2384 * back refs). 2385 */ 2386 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb, 2387 struct walk_control *wc, u64 gen, int level) 2388 { 2389 int nritems; 2390 struct btrfs_tree_parent_check check = { 2391 .transid = gen, 2392 .level = level 2393 }; 2394 struct btrfs_path *path; 2395 struct btrfs_root *root = wc->replay_dest; 2396 struct btrfs_key key; 2397 int i; 2398 int ret; 2399 2400 ret = btrfs_read_extent_buffer(eb, &check); 2401 if (ret) 2402 return ret; 2403 2404 level = btrfs_header_level(eb); 2405 2406 if (level != 0) 2407 return 0; 2408 2409 path = btrfs_alloc_path(); 2410 if (!path) 2411 return -ENOMEM; 2412 2413 nritems = btrfs_header_nritems(eb); 2414 for (i = 0; i < nritems; i++) { 2415 btrfs_item_key_to_cpu(eb, &key, i); 2416 2417 /* inode keys are done during the first stage */ 2418 if (key.type == BTRFS_INODE_ITEM_KEY && 2419 wc->stage == LOG_WALK_REPLAY_INODES) { 2420 struct btrfs_inode_item *inode_item; 2421 u32 mode; 2422 2423 inode_item = btrfs_item_ptr(eb, i, 2424 struct btrfs_inode_item); 2425 /* 2426 * If we have a tmpfile (O_TMPFILE) that got fsync'ed 2427 * and never got linked before the fsync, skip it, as 2428 * replaying it is pointless since it would be deleted 2429 * later. We skip logging tmpfiles, but it's always 2430 * possible we are replaying a log created with a kernel 2431 * that used to log tmpfiles. 2432 */ 2433 if (btrfs_inode_nlink(eb, inode_item) == 0) { 2434 wc->ignore_cur_inode = true; 2435 continue; 2436 } else { 2437 wc->ignore_cur_inode = false; 2438 } 2439 ret = replay_xattr_deletes(wc->trans, root, log, 2440 path, key.objectid); 2441 if (ret) 2442 break; 2443 mode = btrfs_inode_mode(eb, inode_item); 2444 if (S_ISDIR(mode)) { 2445 ret = replay_dir_deletes(wc->trans, 2446 root, log, path, key.objectid, 0); 2447 if (ret) 2448 break; 2449 } 2450 ret = overwrite_item(wc->trans, root, path, 2451 eb, i, &key); 2452 if (ret) 2453 break; 2454 2455 /* 2456 * Before replaying extents, truncate the inode to its 2457 * size. We need to do it now and not after log replay 2458 * because before an fsync we can have prealloc extents 2459 * added beyond the inode's i_size. If we did it after, 2460 * through orphan cleanup for example, we would drop 2461 * those prealloc extents just after replaying them. 2462 */ 2463 if (S_ISREG(mode)) { 2464 struct btrfs_drop_extents_args drop_args = { 0 }; 2465 struct inode *inode; 2466 u64 from; 2467 2468 inode = read_one_inode(root, key.objectid); 2469 if (!inode) { 2470 ret = -EIO; 2471 break; 2472 } 2473 from = ALIGN(i_size_read(inode), 2474 root->fs_info->sectorsize); 2475 drop_args.start = from; 2476 drop_args.end = (u64)-1; 2477 drop_args.drop_cache = true; 2478 ret = btrfs_drop_extents(wc->trans, root, 2479 BTRFS_I(inode), 2480 &drop_args); 2481 if (!ret) { 2482 inode_sub_bytes(inode, 2483 drop_args.bytes_found); 2484 /* Update the inode's nbytes. */ 2485 ret = btrfs_update_inode(wc->trans, 2486 root, BTRFS_I(inode)); 2487 } 2488 iput(inode); 2489 if (ret) 2490 break; 2491 } 2492 2493 ret = link_to_fixup_dir(wc->trans, root, 2494 path, key.objectid); 2495 if (ret) 2496 break; 2497 } 2498 2499 if (wc->ignore_cur_inode) 2500 continue; 2501 2502 if (key.type == BTRFS_DIR_INDEX_KEY && 2503 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) { 2504 ret = replay_one_dir_item(wc->trans, root, path, 2505 eb, i, &key); 2506 if (ret) 2507 break; 2508 } 2509 2510 if (wc->stage < LOG_WALK_REPLAY_ALL) 2511 continue; 2512 2513 /* these keys are simply copied */ 2514 if (key.type == BTRFS_XATTR_ITEM_KEY) { 2515 ret = overwrite_item(wc->trans, root, path, 2516 eb, i, &key); 2517 if (ret) 2518 break; 2519 } else if (key.type == BTRFS_INODE_REF_KEY || 2520 key.type == BTRFS_INODE_EXTREF_KEY) { 2521 ret = add_inode_ref(wc->trans, root, log, path, 2522 eb, i, &key); 2523 if (ret && ret != -ENOENT) 2524 break; 2525 ret = 0; 2526 } else if (key.type == BTRFS_EXTENT_DATA_KEY) { 2527 ret = replay_one_extent(wc->trans, root, path, 2528 eb, i, &key); 2529 if (ret) 2530 break; 2531 } 2532 /* 2533 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the 2534 * BTRFS_DIR_INDEX_KEY items which we use to derive the 2535 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an 2536 * older kernel with such keys, ignore them. 2537 */ 2538 } 2539 btrfs_free_path(path); 2540 return ret; 2541 } 2542 2543 /* 2544 * Correctly adjust the reserved bytes occupied by a log tree extent buffer 2545 */ 2546 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start) 2547 { 2548 struct btrfs_block_group *cache; 2549 2550 cache = btrfs_lookup_block_group(fs_info, start); 2551 if (!cache) { 2552 btrfs_err(fs_info, "unable to find block group for %llu", start); 2553 return; 2554 } 2555 2556 spin_lock(&cache->space_info->lock); 2557 spin_lock(&cache->lock); 2558 cache->reserved -= fs_info->nodesize; 2559 cache->space_info->bytes_reserved -= fs_info->nodesize; 2560 spin_unlock(&cache->lock); 2561 spin_unlock(&cache->space_info->lock); 2562 2563 btrfs_put_block_group(cache); 2564 } 2565 2566 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans, 2567 struct btrfs_root *root, 2568 struct btrfs_path *path, int *level, 2569 struct walk_control *wc) 2570 { 2571 struct btrfs_fs_info *fs_info = root->fs_info; 2572 u64 bytenr; 2573 u64 ptr_gen; 2574 struct extent_buffer *next; 2575 struct extent_buffer *cur; 2576 u32 blocksize; 2577 int ret = 0; 2578 2579 while (*level > 0) { 2580 struct btrfs_tree_parent_check check = { 0 }; 2581 2582 cur = path->nodes[*level]; 2583 2584 WARN_ON(btrfs_header_level(cur) != *level); 2585 2586 if (path->slots[*level] >= 2587 btrfs_header_nritems(cur)) 2588 break; 2589 2590 bytenr = btrfs_node_blockptr(cur, path->slots[*level]); 2591 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); 2592 check.transid = ptr_gen; 2593 check.level = *level - 1; 2594 check.has_first_key = true; 2595 btrfs_node_key_to_cpu(cur, &check.first_key, path->slots[*level]); 2596 blocksize = fs_info->nodesize; 2597 2598 next = btrfs_find_create_tree_block(fs_info, bytenr, 2599 btrfs_header_owner(cur), 2600 *level - 1); 2601 if (IS_ERR(next)) 2602 return PTR_ERR(next); 2603 2604 if (*level == 1) { 2605 ret = wc->process_func(root, next, wc, ptr_gen, 2606 *level - 1); 2607 if (ret) { 2608 free_extent_buffer(next); 2609 return ret; 2610 } 2611 2612 path->slots[*level]++; 2613 if (wc->free) { 2614 ret = btrfs_read_extent_buffer(next, &check); 2615 if (ret) { 2616 free_extent_buffer(next); 2617 return ret; 2618 } 2619 2620 btrfs_tree_lock(next); 2621 btrfs_clear_buffer_dirty(trans, next); 2622 wait_on_extent_buffer_writeback(next); 2623 btrfs_tree_unlock(next); 2624 2625 if (trans) { 2626 ret = btrfs_pin_reserved_extent(trans, 2627 bytenr, blocksize); 2628 if (ret) { 2629 free_extent_buffer(next); 2630 return ret; 2631 } 2632 btrfs_redirty_list_add( 2633 trans->transaction, next); 2634 } else { 2635 unaccount_log_buffer(fs_info, bytenr); 2636 } 2637 } 2638 free_extent_buffer(next); 2639 continue; 2640 } 2641 ret = btrfs_read_extent_buffer(next, &check); 2642 if (ret) { 2643 free_extent_buffer(next); 2644 return ret; 2645 } 2646 2647 if (path->nodes[*level-1]) 2648 free_extent_buffer(path->nodes[*level-1]); 2649 path->nodes[*level-1] = next; 2650 *level = btrfs_header_level(next); 2651 path->slots[*level] = 0; 2652 cond_resched(); 2653 } 2654 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]); 2655 2656 cond_resched(); 2657 return 0; 2658 } 2659 2660 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans, 2661 struct btrfs_root *root, 2662 struct btrfs_path *path, int *level, 2663 struct walk_control *wc) 2664 { 2665 struct btrfs_fs_info *fs_info = root->fs_info; 2666 int i; 2667 int slot; 2668 int ret; 2669 2670 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { 2671 slot = path->slots[i]; 2672 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) { 2673 path->slots[i]++; 2674 *level = i; 2675 WARN_ON(*level == 0); 2676 return 0; 2677 } else { 2678 ret = wc->process_func(root, path->nodes[*level], wc, 2679 btrfs_header_generation(path->nodes[*level]), 2680 *level); 2681 if (ret) 2682 return ret; 2683 2684 if (wc->free) { 2685 struct extent_buffer *next; 2686 2687 next = path->nodes[*level]; 2688 2689 btrfs_tree_lock(next); 2690 btrfs_clear_buffer_dirty(trans, next); 2691 wait_on_extent_buffer_writeback(next); 2692 btrfs_tree_unlock(next); 2693 2694 if (trans) { 2695 ret = btrfs_pin_reserved_extent(trans, 2696 path->nodes[*level]->start, 2697 path->nodes[*level]->len); 2698 if (ret) 2699 return ret; 2700 btrfs_redirty_list_add(trans->transaction, 2701 next); 2702 } else { 2703 unaccount_log_buffer(fs_info, 2704 path->nodes[*level]->start); 2705 } 2706 } 2707 free_extent_buffer(path->nodes[*level]); 2708 path->nodes[*level] = NULL; 2709 *level = i + 1; 2710 } 2711 } 2712 return 1; 2713 } 2714 2715 /* 2716 * drop the reference count on the tree rooted at 'snap'. This traverses 2717 * the tree freeing any blocks that have a ref count of zero after being 2718 * decremented. 2719 */ 2720 static int walk_log_tree(struct btrfs_trans_handle *trans, 2721 struct btrfs_root *log, struct walk_control *wc) 2722 { 2723 struct btrfs_fs_info *fs_info = log->fs_info; 2724 int ret = 0; 2725 int wret; 2726 int level; 2727 struct btrfs_path *path; 2728 int orig_level; 2729 2730 path = btrfs_alloc_path(); 2731 if (!path) 2732 return -ENOMEM; 2733 2734 level = btrfs_header_level(log->node); 2735 orig_level = level; 2736 path->nodes[level] = log->node; 2737 atomic_inc(&log->node->refs); 2738 path->slots[level] = 0; 2739 2740 while (1) { 2741 wret = walk_down_log_tree(trans, log, path, &level, wc); 2742 if (wret > 0) 2743 break; 2744 if (wret < 0) { 2745 ret = wret; 2746 goto out; 2747 } 2748 2749 wret = walk_up_log_tree(trans, log, path, &level, wc); 2750 if (wret > 0) 2751 break; 2752 if (wret < 0) { 2753 ret = wret; 2754 goto out; 2755 } 2756 } 2757 2758 /* was the root node processed? if not, catch it here */ 2759 if (path->nodes[orig_level]) { 2760 ret = wc->process_func(log, path->nodes[orig_level], wc, 2761 btrfs_header_generation(path->nodes[orig_level]), 2762 orig_level); 2763 if (ret) 2764 goto out; 2765 if (wc->free) { 2766 struct extent_buffer *next; 2767 2768 next = path->nodes[orig_level]; 2769 2770 btrfs_tree_lock(next); 2771 btrfs_clear_buffer_dirty(trans, next); 2772 wait_on_extent_buffer_writeback(next); 2773 btrfs_tree_unlock(next); 2774 2775 if (trans) { 2776 ret = btrfs_pin_reserved_extent(trans, 2777 next->start, next->len); 2778 if (ret) 2779 goto out; 2780 btrfs_redirty_list_add(trans->transaction, next); 2781 } else { 2782 unaccount_log_buffer(fs_info, next->start); 2783 } 2784 } 2785 } 2786 2787 out: 2788 btrfs_free_path(path); 2789 return ret; 2790 } 2791 2792 /* 2793 * helper function to update the item for a given subvolumes log root 2794 * in the tree of log roots 2795 */ 2796 static int update_log_root(struct btrfs_trans_handle *trans, 2797 struct btrfs_root *log, 2798 struct btrfs_root_item *root_item) 2799 { 2800 struct btrfs_fs_info *fs_info = log->fs_info; 2801 int ret; 2802 2803 if (log->log_transid == 1) { 2804 /* insert root item on the first sync */ 2805 ret = btrfs_insert_root(trans, fs_info->log_root_tree, 2806 &log->root_key, root_item); 2807 } else { 2808 ret = btrfs_update_root(trans, fs_info->log_root_tree, 2809 &log->root_key, root_item); 2810 } 2811 return ret; 2812 } 2813 2814 static void wait_log_commit(struct btrfs_root *root, int transid) 2815 { 2816 DEFINE_WAIT(wait); 2817 int index = transid % 2; 2818 2819 /* 2820 * we only allow two pending log transactions at a time, 2821 * so we know that if ours is more than 2 older than the 2822 * current transaction, we're done 2823 */ 2824 for (;;) { 2825 prepare_to_wait(&root->log_commit_wait[index], 2826 &wait, TASK_UNINTERRUPTIBLE); 2827 2828 if (!(root->log_transid_committed < transid && 2829 atomic_read(&root->log_commit[index]))) 2830 break; 2831 2832 mutex_unlock(&root->log_mutex); 2833 schedule(); 2834 mutex_lock(&root->log_mutex); 2835 } 2836 finish_wait(&root->log_commit_wait[index], &wait); 2837 } 2838 2839 static void wait_for_writer(struct btrfs_root *root) 2840 { 2841 DEFINE_WAIT(wait); 2842 2843 for (;;) { 2844 prepare_to_wait(&root->log_writer_wait, &wait, 2845 TASK_UNINTERRUPTIBLE); 2846 if (!atomic_read(&root->log_writers)) 2847 break; 2848 2849 mutex_unlock(&root->log_mutex); 2850 schedule(); 2851 mutex_lock(&root->log_mutex); 2852 } 2853 finish_wait(&root->log_writer_wait, &wait); 2854 } 2855 2856 static inline void btrfs_remove_log_ctx(struct btrfs_root *root, 2857 struct btrfs_log_ctx *ctx) 2858 { 2859 mutex_lock(&root->log_mutex); 2860 list_del_init(&ctx->list); 2861 mutex_unlock(&root->log_mutex); 2862 } 2863 2864 /* 2865 * Invoked in log mutex context, or be sure there is no other task which 2866 * can access the list. 2867 */ 2868 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root, 2869 int index, int error) 2870 { 2871 struct btrfs_log_ctx *ctx; 2872 struct btrfs_log_ctx *safe; 2873 2874 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) { 2875 list_del_init(&ctx->list); 2876 ctx->log_ret = error; 2877 } 2878 } 2879 2880 /* 2881 * btrfs_sync_log does sends a given tree log down to the disk and 2882 * updates the super blocks to record it. When this call is done, 2883 * you know that any inodes previously logged are safely on disk only 2884 * if it returns 0. 2885 * 2886 * Any other return value means you need to call btrfs_commit_transaction. 2887 * Some of the edge cases for fsyncing directories that have had unlinks 2888 * or renames done in the past mean that sometimes the only safe 2889 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN, 2890 * that has happened. 2891 */ 2892 int btrfs_sync_log(struct btrfs_trans_handle *trans, 2893 struct btrfs_root *root, struct btrfs_log_ctx *ctx) 2894 { 2895 int index1; 2896 int index2; 2897 int mark; 2898 int ret; 2899 struct btrfs_fs_info *fs_info = root->fs_info; 2900 struct btrfs_root *log = root->log_root; 2901 struct btrfs_root *log_root_tree = fs_info->log_root_tree; 2902 struct btrfs_root_item new_root_item; 2903 int log_transid = 0; 2904 struct btrfs_log_ctx root_log_ctx; 2905 struct blk_plug plug; 2906 u64 log_root_start; 2907 u64 log_root_level; 2908 2909 mutex_lock(&root->log_mutex); 2910 log_transid = ctx->log_transid; 2911 if (root->log_transid_committed >= log_transid) { 2912 mutex_unlock(&root->log_mutex); 2913 return ctx->log_ret; 2914 } 2915 2916 index1 = log_transid % 2; 2917 if (atomic_read(&root->log_commit[index1])) { 2918 wait_log_commit(root, log_transid); 2919 mutex_unlock(&root->log_mutex); 2920 return ctx->log_ret; 2921 } 2922 ASSERT(log_transid == root->log_transid); 2923 atomic_set(&root->log_commit[index1], 1); 2924 2925 /* wait for previous tree log sync to complete */ 2926 if (atomic_read(&root->log_commit[(index1 + 1) % 2])) 2927 wait_log_commit(root, log_transid - 1); 2928 2929 while (1) { 2930 int batch = atomic_read(&root->log_batch); 2931 /* when we're on an ssd, just kick the log commit out */ 2932 if (!btrfs_test_opt(fs_info, SSD) && 2933 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) { 2934 mutex_unlock(&root->log_mutex); 2935 schedule_timeout_uninterruptible(1); 2936 mutex_lock(&root->log_mutex); 2937 } 2938 wait_for_writer(root); 2939 if (batch == atomic_read(&root->log_batch)) 2940 break; 2941 } 2942 2943 /* bail out if we need to do a full commit */ 2944 if (btrfs_need_log_full_commit(trans)) { 2945 ret = BTRFS_LOG_FORCE_COMMIT; 2946 mutex_unlock(&root->log_mutex); 2947 goto out; 2948 } 2949 2950 if (log_transid % 2 == 0) 2951 mark = EXTENT_DIRTY; 2952 else 2953 mark = EXTENT_NEW; 2954 2955 /* we start IO on all the marked extents here, but we don't actually 2956 * wait for them until later. 2957 */ 2958 blk_start_plug(&plug); 2959 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark); 2960 /* 2961 * -EAGAIN happens when someone, e.g., a concurrent transaction 2962 * commit, writes a dirty extent in this tree-log commit. This 2963 * concurrent write will create a hole writing out the extents, 2964 * and we cannot proceed on a zoned filesystem, requiring 2965 * sequential writing. While we can bail out to a full commit 2966 * here, but we can continue hoping the concurrent writing fills 2967 * the hole. 2968 */ 2969 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) 2970 ret = 0; 2971 if (ret) { 2972 blk_finish_plug(&plug); 2973 btrfs_set_log_full_commit(trans); 2974 mutex_unlock(&root->log_mutex); 2975 goto out; 2976 } 2977 2978 /* 2979 * We _must_ update under the root->log_mutex in order to make sure we 2980 * have a consistent view of the log root we are trying to commit at 2981 * this moment. 2982 * 2983 * We _must_ copy this into a local copy, because we are not holding the 2984 * log_root_tree->log_mutex yet. This is important because when we 2985 * commit the log_root_tree we must have a consistent view of the 2986 * log_root_tree when we update the super block to point at the 2987 * log_root_tree bytenr. If we update the log_root_tree here we'll race 2988 * with the commit and possibly point at the new block which we may not 2989 * have written out. 2990 */ 2991 btrfs_set_root_node(&log->root_item, log->node); 2992 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item)); 2993 2994 root->log_transid++; 2995 log->log_transid = root->log_transid; 2996 root->log_start_pid = 0; 2997 /* 2998 * IO has been started, blocks of the log tree have WRITTEN flag set 2999 * in their headers. new modifications of the log will be written to 3000 * new positions. so it's safe to allow log writers to go in. 3001 */ 3002 mutex_unlock(&root->log_mutex); 3003 3004 if (btrfs_is_zoned(fs_info)) { 3005 mutex_lock(&fs_info->tree_root->log_mutex); 3006 if (!log_root_tree->node) { 3007 ret = btrfs_alloc_log_tree_node(trans, log_root_tree); 3008 if (ret) { 3009 mutex_unlock(&fs_info->tree_root->log_mutex); 3010 blk_finish_plug(&plug); 3011 goto out; 3012 } 3013 } 3014 mutex_unlock(&fs_info->tree_root->log_mutex); 3015 } 3016 3017 btrfs_init_log_ctx(&root_log_ctx, NULL); 3018 3019 mutex_lock(&log_root_tree->log_mutex); 3020 3021 index2 = log_root_tree->log_transid % 2; 3022 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]); 3023 root_log_ctx.log_transid = log_root_tree->log_transid; 3024 3025 /* 3026 * Now we are safe to update the log_root_tree because we're under the 3027 * log_mutex, and we're a current writer so we're holding the commit 3028 * open until we drop the log_mutex. 3029 */ 3030 ret = update_log_root(trans, log, &new_root_item); 3031 if (ret) { 3032 if (!list_empty(&root_log_ctx.list)) 3033 list_del_init(&root_log_ctx.list); 3034 3035 blk_finish_plug(&plug); 3036 btrfs_set_log_full_commit(trans); 3037 if (ret != -ENOSPC) 3038 btrfs_err(fs_info, 3039 "failed to update log for root %llu ret %d", 3040 root->root_key.objectid, ret); 3041 btrfs_wait_tree_log_extents(log, mark); 3042 mutex_unlock(&log_root_tree->log_mutex); 3043 goto out; 3044 } 3045 3046 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) { 3047 blk_finish_plug(&plug); 3048 list_del_init(&root_log_ctx.list); 3049 mutex_unlock(&log_root_tree->log_mutex); 3050 ret = root_log_ctx.log_ret; 3051 goto out; 3052 } 3053 3054 index2 = root_log_ctx.log_transid % 2; 3055 if (atomic_read(&log_root_tree->log_commit[index2])) { 3056 blk_finish_plug(&plug); 3057 ret = btrfs_wait_tree_log_extents(log, mark); 3058 wait_log_commit(log_root_tree, 3059 root_log_ctx.log_transid); 3060 mutex_unlock(&log_root_tree->log_mutex); 3061 if (!ret) 3062 ret = root_log_ctx.log_ret; 3063 goto out; 3064 } 3065 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid); 3066 atomic_set(&log_root_tree->log_commit[index2], 1); 3067 3068 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) { 3069 wait_log_commit(log_root_tree, 3070 root_log_ctx.log_transid - 1); 3071 } 3072 3073 /* 3074 * now that we've moved on to the tree of log tree roots, 3075 * check the full commit flag again 3076 */ 3077 if (btrfs_need_log_full_commit(trans)) { 3078 blk_finish_plug(&plug); 3079 btrfs_wait_tree_log_extents(log, mark); 3080 mutex_unlock(&log_root_tree->log_mutex); 3081 ret = BTRFS_LOG_FORCE_COMMIT; 3082 goto out_wake_log_root; 3083 } 3084 3085 ret = btrfs_write_marked_extents(fs_info, 3086 &log_root_tree->dirty_log_pages, 3087 EXTENT_DIRTY | EXTENT_NEW); 3088 blk_finish_plug(&plug); 3089 /* 3090 * As described above, -EAGAIN indicates a hole in the extents. We 3091 * cannot wait for these write outs since the waiting cause a 3092 * deadlock. Bail out to the full commit instead. 3093 */ 3094 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) { 3095 btrfs_set_log_full_commit(trans); 3096 btrfs_wait_tree_log_extents(log, mark); 3097 mutex_unlock(&log_root_tree->log_mutex); 3098 goto out_wake_log_root; 3099 } else if (ret) { 3100 btrfs_set_log_full_commit(trans); 3101 mutex_unlock(&log_root_tree->log_mutex); 3102 goto out_wake_log_root; 3103 } 3104 ret = btrfs_wait_tree_log_extents(log, mark); 3105 if (!ret) 3106 ret = btrfs_wait_tree_log_extents(log_root_tree, 3107 EXTENT_NEW | EXTENT_DIRTY); 3108 if (ret) { 3109 btrfs_set_log_full_commit(trans); 3110 mutex_unlock(&log_root_tree->log_mutex); 3111 goto out_wake_log_root; 3112 } 3113 3114 log_root_start = log_root_tree->node->start; 3115 log_root_level = btrfs_header_level(log_root_tree->node); 3116 log_root_tree->log_transid++; 3117 mutex_unlock(&log_root_tree->log_mutex); 3118 3119 /* 3120 * Here we are guaranteed that nobody is going to write the superblock 3121 * for the current transaction before us and that neither we do write 3122 * our superblock before the previous transaction finishes its commit 3123 * and writes its superblock, because: 3124 * 3125 * 1) We are holding a handle on the current transaction, so no body 3126 * can commit it until we release the handle; 3127 * 3128 * 2) Before writing our superblock we acquire the tree_log_mutex, so 3129 * if the previous transaction is still committing, and hasn't yet 3130 * written its superblock, we wait for it to do it, because a 3131 * transaction commit acquires the tree_log_mutex when the commit 3132 * begins and releases it only after writing its superblock. 3133 */ 3134 mutex_lock(&fs_info->tree_log_mutex); 3135 3136 /* 3137 * The previous transaction writeout phase could have failed, and thus 3138 * marked the fs in an error state. We must not commit here, as we 3139 * could have updated our generation in the super_for_commit and 3140 * writing the super here would result in transid mismatches. If there 3141 * is an error here just bail. 3142 */ 3143 if (BTRFS_FS_ERROR(fs_info)) { 3144 ret = -EIO; 3145 btrfs_set_log_full_commit(trans); 3146 btrfs_abort_transaction(trans, ret); 3147 mutex_unlock(&fs_info->tree_log_mutex); 3148 goto out_wake_log_root; 3149 } 3150 3151 btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start); 3152 btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level); 3153 ret = write_all_supers(fs_info, 1); 3154 mutex_unlock(&fs_info->tree_log_mutex); 3155 if (ret) { 3156 btrfs_set_log_full_commit(trans); 3157 btrfs_abort_transaction(trans, ret); 3158 goto out_wake_log_root; 3159 } 3160 3161 /* 3162 * We know there can only be one task here, since we have not yet set 3163 * root->log_commit[index1] to 0 and any task attempting to sync the 3164 * log must wait for the previous log transaction to commit if it's 3165 * still in progress or wait for the current log transaction commit if 3166 * someone else already started it. We use <= and not < because the 3167 * first log transaction has an ID of 0. 3168 */ 3169 ASSERT(root->last_log_commit <= log_transid); 3170 root->last_log_commit = log_transid; 3171 3172 out_wake_log_root: 3173 mutex_lock(&log_root_tree->log_mutex); 3174 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret); 3175 3176 log_root_tree->log_transid_committed++; 3177 atomic_set(&log_root_tree->log_commit[index2], 0); 3178 mutex_unlock(&log_root_tree->log_mutex); 3179 3180 /* 3181 * The barrier before waitqueue_active (in cond_wake_up) is needed so 3182 * all the updates above are seen by the woken threads. It might not be 3183 * necessary, but proving that seems to be hard. 3184 */ 3185 cond_wake_up(&log_root_tree->log_commit_wait[index2]); 3186 out: 3187 mutex_lock(&root->log_mutex); 3188 btrfs_remove_all_log_ctxs(root, index1, ret); 3189 root->log_transid_committed++; 3190 atomic_set(&root->log_commit[index1], 0); 3191 mutex_unlock(&root->log_mutex); 3192 3193 /* 3194 * The barrier before waitqueue_active (in cond_wake_up) is needed so 3195 * all the updates above are seen by the woken threads. It might not be 3196 * necessary, but proving that seems to be hard. 3197 */ 3198 cond_wake_up(&root->log_commit_wait[index1]); 3199 return ret; 3200 } 3201 3202 static void free_log_tree(struct btrfs_trans_handle *trans, 3203 struct btrfs_root *log) 3204 { 3205 int ret; 3206 struct walk_control wc = { 3207 .free = 1, 3208 .process_func = process_one_buffer 3209 }; 3210 3211 if (log->node) { 3212 ret = walk_log_tree(trans, log, &wc); 3213 if (ret) { 3214 /* 3215 * We weren't able to traverse the entire log tree, the 3216 * typical scenario is getting an -EIO when reading an 3217 * extent buffer of the tree, due to a previous writeback 3218 * failure of it. 3219 */ 3220 set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR, 3221 &log->fs_info->fs_state); 3222 3223 /* 3224 * Some extent buffers of the log tree may still be dirty 3225 * and not yet written back to storage, because we may 3226 * have updates to a log tree without syncing a log tree, 3227 * such as during rename and link operations. So flush 3228 * them out and wait for their writeback to complete, so 3229 * that we properly cleanup their state and pages. 3230 */ 3231 btrfs_write_marked_extents(log->fs_info, 3232 &log->dirty_log_pages, 3233 EXTENT_DIRTY | EXTENT_NEW); 3234 btrfs_wait_tree_log_extents(log, 3235 EXTENT_DIRTY | EXTENT_NEW); 3236 3237 if (trans) 3238 btrfs_abort_transaction(trans, ret); 3239 else 3240 btrfs_handle_fs_error(log->fs_info, ret, NULL); 3241 } 3242 } 3243 3244 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1, 3245 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT); 3246 extent_io_tree_release(&log->log_csum_range); 3247 3248 btrfs_put_root(log); 3249 } 3250 3251 /* 3252 * free all the extents used by the tree log. This should be called 3253 * at commit time of the full transaction 3254 */ 3255 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root) 3256 { 3257 if (root->log_root) { 3258 free_log_tree(trans, root->log_root); 3259 root->log_root = NULL; 3260 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state); 3261 } 3262 return 0; 3263 } 3264 3265 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans, 3266 struct btrfs_fs_info *fs_info) 3267 { 3268 if (fs_info->log_root_tree) { 3269 free_log_tree(trans, fs_info->log_root_tree); 3270 fs_info->log_root_tree = NULL; 3271 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state); 3272 } 3273 return 0; 3274 } 3275 3276 /* 3277 * Check if an inode was logged in the current transaction. This correctly deals 3278 * with the case where the inode was logged but has a logged_trans of 0, which 3279 * happens if the inode is evicted and loaded again, as logged_trans is an in 3280 * memory only field (not persisted). 3281 * 3282 * Returns 1 if the inode was logged before in the transaction, 0 if it was not, 3283 * and < 0 on error. 3284 */ 3285 static int inode_logged(struct btrfs_trans_handle *trans, 3286 struct btrfs_inode *inode, 3287 struct btrfs_path *path_in) 3288 { 3289 struct btrfs_path *path = path_in; 3290 struct btrfs_key key; 3291 int ret; 3292 3293 if (inode->logged_trans == trans->transid) 3294 return 1; 3295 3296 /* 3297 * If logged_trans is not 0, then we know the inode logged was not logged 3298 * in this transaction, so we can return false right away. 3299 */ 3300 if (inode->logged_trans > 0) 3301 return 0; 3302 3303 /* 3304 * If no log tree was created for this root in this transaction, then 3305 * the inode can not have been logged in this transaction. In that case 3306 * set logged_trans to anything greater than 0 and less than the current 3307 * transaction's ID, to avoid the search below in a future call in case 3308 * a log tree gets created after this. 3309 */ 3310 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) { 3311 inode->logged_trans = trans->transid - 1; 3312 return 0; 3313 } 3314 3315 /* 3316 * We have a log tree and the inode's logged_trans is 0. We can't tell 3317 * for sure if the inode was logged before in this transaction by looking 3318 * only at logged_trans. We could be pessimistic and assume it was, but 3319 * that can lead to unnecessarily logging an inode during rename and link 3320 * operations, and then further updating the log in followup rename and 3321 * link operations, specially if it's a directory, which adds latency 3322 * visible to applications doing a series of rename or link operations. 3323 * 3324 * A logged_trans of 0 here can mean several things: 3325 * 3326 * 1) The inode was never logged since the filesystem was mounted, and may 3327 * or may have not been evicted and loaded again; 3328 * 3329 * 2) The inode was logged in a previous transaction, then evicted and 3330 * then loaded again; 3331 * 3332 * 3) The inode was logged in the current transaction, then evicted and 3333 * then loaded again. 3334 * 3335 * For cases 1) and 2) we don't want to return true, but we need to detect 3336 * case 3) and return true. So we do a search in the log root for the inode 3337 * item. 3338 */ 3339 key.objectid = btrfs_ino(inode); 3340 key.type = BTRFS_INODE_ITEM_KEY; 3341 key.offset = 0; 3342 3343 if (!path) { 3344 path = btrfs_alloc_path(); 3345 if (!path) 3346 return -ENOMEM; 3347 } 3348 3349 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0); 3350 3351 if (path_in) 3352 btrfs_release_path(path); 3353 else 3354 btrfs_free_path(path); 3355 3356 /* 3357 * Logging an inode always results in logging its inode item. So if we 3358 * did not find the item we know the inode was not logged for sure. 3359 */ 3360 if (ret < 0) { 3361 return ret; 3362 } else if (ret > 0) { 3363 /* 3364 * Set logged_trans to a value greater than 0 and less then the 3365 * current transaction to avoid doing the search in future calls. 3366 */ 3367 inode->logged_trans = trans->transid - 1; 3368 return 0; 3369 } 3370 3371 /* 3372 * The inode was previously logged and then evicted, set logged_trans to 3373 * the current transacion's ID, to avoid future tree searches as long as 3374 * the inode is not evicted again. 3375 */ 3376 inode->logged_trans = trans->transid; 3377 3378 /* 3379 * If it's a directory, then we must set last_dir_index_offset to the 3380 * maximum possible value, so that the next attempt to log the inode does 3381 * not skip checking if dir index keys found in modified subvolume tree 3382 * leaves have been logged before, otherwise it would result in attempts 3383 * to insert duplicate dir index keys in the log tree. This must be done 3384 * because last_dir_index_offset is an in-memory only field, not persisted 3385 * in the inode item or any other on-disk structure, so its value is lost 3386 * once the inode is evicted. 3387 */ 3388 if (S_ISDIR(inode->vfs_inode.i_mode)) 3389 inode->last_dir_index_offset = (u64)-1; 3390 3391 return 1; 3392 } 3393 3394 /* 3395 * Delete a directory entry from the log if it exists. 3396 * 3397 * Returns < 0 on error 3398 * 1 if the entry does not exists 3399 * 0 if the entry existed and was successfully deleted 3400 */ 3401 static int del_logged_dentry(struct btrfs_trans_handle *trans, 3402 struct btrfs_root *log, 3403 struct btrfs_path *path, 3404 u64 dir_ino, 3405 const struct fscrypt_str *name, 3406 u64 index) 3407 { 3408 struct btrfs_dir_item *di; 3409 3410 /* 3411 * We only log dir index items of a directory, so we don't need to look 3412 * for dir item keys. 3413 */ 3414 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino, 3415 index, name, -1); 3416 if (IS_ERR(di)) 3417 return PTR_ERR(di); 3418 else if (!di) 3419 return 1; 3420 3421 /* 3422 * We do not need to update the size field of the directory's 3423 * inode item because on log replay we update the field to reflect 3424 * all existing entries in the directory (see overwrite_item()). 3425 */ 3426 return btrfs_delete_one_dir_name(trans, log, path, di); 3427 } 3428 3429 /* 3430 * If both a file and directory are logged, and unlinks or renames are 3431 * mixed in, we have a few interesting corners: 3432 * 3433 * create file X in dir Y 3434 * link file X to X.link in dir Y 3435 * fsync file X 3436 * unlink file X but leave X.link 3437 * fsync dir Y 3438 * 3439 * After a crash we would expect only X.link to exist. But file X 3440 * didn't get fsync'd again so the log has back refs for X and X.link. 3441 * 3442 * We solve this by removing directory entries and inode backrefs from the 3443 * log when a file that was logged in the current transaction is 3444 * unlinked. Any later fsync will include the updated log entries, and 3445 * we'll be able to reconstruct the proper directory items from backrefs. 3446 * 3447 * This optimizations allows us to avoid relogging the entire inode 3448 * or the entire directory. 3449 */ 3450 void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans, 3451 struct btrfs_root *root, 3452 const struct fscrypt_str *name, 3453 struct btrfs_inode *dir, u64 index) 3454 { 3455 struct btrfs_path *path; 3456 int ret; 3457 3458 ret = inode_logged(trans, dir, NULL); 3459 if (ret == 0) 3460 return; 3461 else if (ret < 0) { 3462 btrfs_set_log_full_commit(trans); 3463 return; 3464 } 3465 3466 ret = join_running_log_trans(root); 3467 if (ret) 3468 return; 3469 3470 mutex_lock(&dir->log_mutex); 3471 3472 path = btrfs_alloc_path(); 3473 if (!path) { 3474 ret = -ENOMEM; 3475 goto out_unlock; 3476 } 3477 3478 ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir), 3479 name, index); 3480 btrfs_free_path(path); 3481 out_unlock: 3482 mutex_unlock(&dir->log_mutex); 3483 if (ret < 0) 3484 btrfs_set_log_full_commit(trans); 3485 btrfs_end_log_trans(root); 3486 } 3487 3488 /* see comments for btrfs_del_dir_entries_in_log */ 3489 void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans, 3490 struct btrfs_root *root, 3491 const struct fscrypt_str *name, 3492 struct btrfs_inode *inode, u64 dirid) 3493 { 3494 struct btrfs_root *log; 3495 u64 index; 3496 int ret; 3497 3498 ret = inode_logged(trans, inode, NULL); 3499 if (ret == 0) 3500 return; 3501 else if (ret < 0) { 3502 btrfs_set_log_full_commit(trans); 3503 return; 3504 } 3505 3506 ret = join_running_log_trans(root); 3507 if (ret) 3508 return; 3509 log = root->log_root; 3510 mutex_lock(&inode->log_mutex); 3511 3512 ret = btrfs_del_inode_ref(trans, log, name, btrfs_ino(inode), 3513 dirid, &index); 3514 mutex_unlock(&inode->log_mutex); 3515 if (ret < 0 && ret != -ENOENT) 3516 btrfs_set_log_full_commit(trans); 3517 btrfs_end_log_trans(root); 3518 } 3519 3520 /* 3521 * creates a range item in the log for 'dirid'. first_offset and 3522 * last_offset tell us which parts of the key space the log should 3523 * be considered authoritative for. 3524 */ 3525 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans, 3526 struct btrfs_root *log, 3527 struct btrfs_path *path, 3528 u64 dirid, 3529 u64 first_offset, u64 last_offset) 3530 { 3531 int ret; 3532 struct btrfs_key key; 3533 struct btrfs_dir_log_item *item; 3534 3535 key.objectid = dirid; 3536 key.offset = first_offset; 3537 key.type = BTRFS_DIR_LOG_INDEX_KEY; 3538 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item)); 3539 /* 3540 * -EEXIST is fine and can happen sporadically when we are logging a 3541 * directory and have concurrent insertions in the subvolume's tree for 3542 * items from other inodes and that result in pushing off some dir items 3543 * from one leaf to another in order to accommodate for the new items. 3544 * This results in logging the same dir index range key. 3545 */ 3546 if (ret && ret != -EEXIST) 3547 return ret; 3548 3549 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3550 struct btrfs_dir_log_item); 3551 if (ret == -EEXIST) { 3552 const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item); 3553 3554 /* 3555 * btrfs_del_dir_entries_in_log() might have been called during 3556 * an unlink between the initial insertion of this key and the 3557 * current update, or we might be logging a single entry deletion 3558 * during a rename, so set the new last_offset to the max value. 3559 */ 3560 last_offset = max(last_offset, curr_end); 3561 } 3562 btrfs_set_dir_log_end(path->nodes[0], item, last_offset); 3563 btrfs_mark_buffer_dirty(path->nodes[0]); 3564 btrfs_release_path(path); 3565 return 0; 3566 } 3567 3568 static int flush_dir_items_batch(struct btrfs_trans_handle *trans, 3569 struct btrfs_inode *inode, 3570 struct extent_buffer *src, 3571 struct btrfs_path *dst_path, 3572 int start_slot, 3573 int count) 3574 { 3575 struct btrfs_root *log = inode->root->log_root; 3576 char *ins_data = NULL; 3577 struct btrfs_item_batch batch; 3578 struct extent_buffer *dst; 3579 unsigned long src_offset; 3580 unsigned long dst_offset; 3581 u64 last_index; 3582 struct btrfs_key key; 3583 u32 item_size; 3584 int ret; 3585 int i; 3586 3587 ASSERT(count > 0); 3588 batch.nr = count; 3589 3590 if (count == 1) { 3591 btrfs_item_key_to_cpu(src, &key, start_slot); 3592 item_size = btrfs_item_size(src, start_slot); 3593 batch.keys = &key; 3594 batch.data_sizes = &item_size; 3595 batch.total_data_size = item_size; 3596 } else { 3597 struct btrfs_key *ins_keys; 3598 u32 *ins_sizes; 3599 3600 ins_data = kmalloc(count * sizeof(u32) + 3601 count * sizeof(struct btrfs_key), GFP_NOFS); 3602 if (!ins_data) 3603 return -ENOMEM; 3604 3605 ins_sizes = (u32 *)ins_data; 3606 ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32)); 3607 batch.keys = ins_keys; 3608 batch.data_sizes = ins_sizes; 3609 batch.total_data_size = 0; 3610 3611 for (i = 0; i < count; i++) { 3612 const int slot = start_slot + i; 3613 3614 btrfs_item_key_to_cpu(src, &ins_keys[i], slot); 3615 ins_sizes[i] = btrfs_item_size(src, slot); 3616 batch.total_data_size += ins_sizes[i]; 3617 } 3618 } 3619 3620 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch); 3621 if (ret) 3622 goto out; 3623 3624 dst = dst_path->nodes[0]; 3625 /* 3626 * Copy all the items in bulk, in a single copy operation. Item data is 3627 * organized such that it's placed at the end of a leaf and from right 3628 * to left. For example, the data for the second item ends at an offset 3629 * that matches the offset where the data for the first item starts, the 3630 * data for the third item ends at an offset that matches the offset 3631 * where the data of the second items starts, and so on. 3632 * Therefore our source and destination start offsets for copy match the 3633 * offsets of the last items (highest slots). 3634 */ 3635 dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1); 3636 src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1); 3637 copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size); 3638 btrfs_release_path(dst_path); 3639 3640 last_index = batch.keys[count - 1].offset; 3641 ASSERT(last_index > inode->last_dir_index_offset); 3642 3643 /* 3644 * If for some unexpected reason the last item's index is not greater 3645 * than the last index we logged, warn and force a transaction commit. 3646 */ 3647 if (WARN_ON(last_index <= inode->last_dir_index_offset)) 3648 ret = BTRFS_LOG_FORCE_COMMIT; 3649 else 3650 inode->last_dir_index_offset = last_index; 3651 out: 3652 kfree(ins_data); 3653 3654 return ret; 3655 } 3656 3657 static int process_dir_items_leaf(struct btrfs_trans_handle *trans, 3658 struct btrfs_inode *inode, 3659 struct btrfs_path *path, 3660 struct btrfs_path *dst_path, 3661 struct btrfs_log_ctx *ctx, 3662 u64 *last_old_dentry_offset) 3663 { 3664 struct btrfs_root *log = inode->root->log_root; 3665 struct extent_buffer *src; 3666 const int nritems = btrfs_header_nritems(path->nodes[0]); 3667 const u64 ino = btrfs_ino(inode); 3668 bool last_found = false; 3669 int batch_start = 0; 3670 int batch_size = 0; 3671 int i; 3672 3673 /* 3674 * We need to clone the leaf, release the read lock on it, and use the 3675 * clone before modifying the log tree. See the comment at copy_items() 3676 * about why we need to do this. 3677 */ 3678 src = btrfs_clone_extent_buffer(path->nodes[0]); 3679 if (!src) 3680 return -ENOMEM; 3681 3682 i = path->slots[0]; 3683 btrfs_release_path(path); 3684 path->nodes[0] = src; 3685 path->slots[0] = i; 3686 3687 for (; i < nritems; i++) { 3688 struct btrfs_dir_item *di; 3689 struct btrfs_key key; 3690 int ret; 3691 3692 btrfs_item_key_to_cpu(src, &key, i); 3693 3694 if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) { 3695 last_found = true; 3696 break; 3697 } 3698 3699 di = btrfs_item_ptr(src, i, struct btrfs_dir_item); 3700 3701 /* 3702 * Skip ranges of items that consist only of dir item keys created 3703 * in past transactions. However if we find a gap, we must log a 3704 * dir index range item for that gap, so that index keys in that 3705 * gap are deleted during log replay. 3706 */ 3707 if (btrfs_dir_transid(src, di) < trans->transid) { 3708 if (key.offset > *last_old_dentry_offset + 1) { 3709 ret = insert_dir_log_key(trans, log, dst_path, 3710 ino, *last_old_dentry_offset + 1, 3711 key.offset - 1); 3712 if (ret < 0) 3713 return ret; 3714 } 3715 3716 *last_old_dentry_offset = key.offset; 3717 continue; 3718 } 3719 3720 /* If we logged this dir index item before, we can skip it. */ 3721 if (key.offset <= inode->last_dir_index_offset) 3722 continue; 3723 3724 /* 3725 * We must make sure that when we log a directory entry, the 3726 * corresponding inode, after log replay, has a matching link 3727 * count. For example: 3728 * 3729 * touch foo 3730 * mkdir mydir 3731 * sync 3732 * ln foo mydir/bar 3733 * xfs_io -c "fsync" mydir 3734 * <crash> 3735 * <mount fs and log replay> 3736 * 3737 * Would result in a fsync log that when replayed, our file inode 3738 * would have a link count of 1, but we get two directory entries 3739 * pointing to the same inode. After removing one of the names, 3740 * it would not be possible to remove the other name, which 3741 * resulted always in stale file handle errors, and would not be 3742 * possible to rmdir the parent directory, since its i_size could 3743 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE, 3744 * resulting in -ENOTEMPTY errors. 3745 */ 3746 if (!ctx->log_new_dentries) { 3747 struct btrfs_key di_key; 3748 3749 btrfs_dir_item_key_to_cpu(src, di, &di_key); 3750 if (di_key.type != BTRFS_ROOT_ITEM_KEY) 3751 ctx->log_new_dentries = true; 3752 } 3753 3754 if (batch_size == 0) 3755 batch_start = i; 3756 batch_size++; 3757 } 3758 3759 if (batch_size > 0) { 3760 int ret; 3761 3762 ret = flush_dir_items_batch(trans, inode, src, dst_path, 3763 batch_start, batch_size); 3764 if (ret < 0) 3765 return ret; 3766 } 3767 3768 return last_found ? 1 : 0; 3769 } 3770 3771 /* 3772 * log all the items included in the current transaction for a given 3773 * directory. This also creates the range items in the log tree required 3774 * to replay anything deleted before the fsync 3775 */ 3776 static noinline int log_dir_items(struct btrfs_trans_handle *trans, 3777 struct btrfs_inode *inode, 3778 struct btrfs_path *path, 3779 struct btrfs_path *dst_path, 3780 struct btrfs_log_ctx *ctx, 3781 u64 min_offset, u64 *last_offset_ret) 3782 { 3783 struct btrfs_key min_key; 3784 struct btrfs_root *root = inode->root; 3785 struct btrfs_root *log = root->log_root; 3786 int ret; 3787 u64 last_old_dentry_offset = min_offset - 1; 3788 u64 last_offset = (u64)-1; 3789 u64 ino = btrfs_ino(inode); 3790 3791 min_key.objectid = ino; 3792 min_key.type = BTRFS_DIR_INDEX_KEY; 3793 min_key.offset = min_offset; 3794 3795 ret = btrfs_search_forward(root, &min_key, path, trans->transid); 3796 3797 /* 3798 * we didn't find anything from this transaction, see if there 3799 * is anything at all 3800 */ 3801 if (ret != 0 || min_key.objectid != ino || 3802 min_key.type != BTRFS_DIR_INDEX_KEY) { 3803 min_key.objectid = ino; 3804 min_key.type = BTRFS_DIR_INDEX_KEY; 3805 min_key.offset = (u64)-1; 3806 btrfs_release_path(path); 3807 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 3808 if (ret < 0) { 3809 btrfs_release_path(path); 3810 return ret; 3811 } 3812 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY); 3813 3814 /* if ret == 0 there are items for this type, 3815 * create a range to tell us the last key of this type. 3816 * otherwise, there are no items in this directory after 3817 * *min_offset, and we create a range to indicate that. 3818 */ 3819 if (ret == 0) { 3820 struct btrfs_key tmp; 3821 3822 btrfs_item_key_to_cpu(path->nodes[0], &tmp, 3823 path->slots[0]); 3824 if (tmp.type == BTRFS_DIR_INDEX_KEY) 3825 last_old_dentry_offset = tmp.offset; 3826 } else if (ret > 0) { 3827 ret = 0; 3828 } 3829 3830 goto done; 3831 } 3832 3833 /* go backward to find any previous key */ 3834 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY); 3835 if (ret == 0) { 3836 struct btrfs_key tmp; 3837 3838 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 3839 /* 3840 * The dir index key before the first one we found that needs to 3841 * be logged might be in a previous leaf, and there might be a 3842 * gap between these keys, meaning that we had deletions that 3843 * happened. So the key range item we log (key type 3844 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the 3845 * previous key's offset plus 1, so that those deletes are replayed. 3846 */ 3847 if (tmp.type == BTRFS_DIR_INDEX_KEY) 3848 last_old_dentry_offset = tmp.offset; 3849 } else if (ret < 0) { 3850 goto done; 3851 } 3852 3853 btrfs_release_path(path); 3854 3855 /* 3856 * Find the first key from this transaction again or the one we were at 3857 * in the loop below in case we had to reschedule. We may be logging the 3858 * directory without holding its VFS lock, which happen when logging new 3859 * dentries (through log_new_dir_dentries()) or in some cases when we 3860 * need to log the parent directory of an inode. This means a dir index 3861 * key might be deleted from the inode's root, and therefore we may not 3862 * find it anymore. If we can't find it, just move to the next key. We 3863 * can not bail out and ignore, because if we do that we will simply 3864 * not log dir index keys that come after the one that was just deleted 3865 * and we can end up logging a dir index range that ends at (u64)-1 3866 * (@last_offset is initialized to that), resulting in removing dir 3867 * entries we should not remove at log replay time. 3868 */ 3869 search: 3870 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 3871 if (ret > 0) { 3872 ret = btrfs_next_item(root, path); 3873 if (ret > 0) { 3874 /* There are no more keys in the inode's root. */ 3875 ret = 0; 3876 goto done; 3877 } 3878 } 3879 if (ret < 0) 3880 goto done; 3881 3882 /* 3883 * we have a block from this transaction, log every item in it 3884 * from our directory 3885 */ 3886 while (1) { 3887 ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx, 3888 &last_old_dentry_offset); 3889 if (ret != 0) { 3890 if (ret > 0) 3891 ret = 0; 3892 goto done; 3893 } 3894 path->slots[0] = btrfs_header_nritems(path->nodes[0]); 3895 3896 /* 3897 * look ahead to the next item and see if it is also 3898 * from this directory and from this transaction 3899 */ 3900 ret = btrfs_next_leaf(root, path); 3901 if (ret) { 3902 if (ret == 1) { 3903 last_offset = (u64)-1; 3904 ret = 0; 3905 } 3906 goto done; 3907 } 3908 btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]); 3909 if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) { 3910 last_offset = (u64)-1; 3911 goto done; 3912 } 3913 if (btrfs_header_generation(path->nodes[0]) != trans->transid) { 3914 /* 3915 * The next leaf was not changed in the current transaction 3916 * and has at least one dir index key. 3917 * We check for the next key because there might have been 3918 * one or more deletions between the last key we logged and 3919 * that next key. So the key range item we log (key type 3920 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's 3921 * offset minus 1, so that those deletes are replayed. 3922 */ 3923 last_offset = min_key.offset - 1; 3924 goto done; 3925 } 3926 if (need_resched()) { 3927 btrfs_release_path(path); 3928 cond_resched(); 3929 goto search; 3930 } 3931 } 3932 done: 3933 btrfs_release_path(path); 3934 btrfs_release_path(dst_path); 3935 3936 if (ret == 0) { 3937 *last_offset_ret = last_offset; 3938 /* 3939 * In case the leaf was changed in the current transaction but 3940 * all its dir items are from a past transaction, the last item 3941 * in the leaf is a dir item and there's no gap between that last 3942 * dir item and the first one on the next leaf (which did not 3943 * change in the current transaction), then we don't need to log 3944 * a range, last_old_dentry_offset is == to last_offset. 3945 */ 3946 ASSERT(last_old_dentry_offset <= last_offset); 3947 if (last_old_dentry_offset < last_offset) 3948 ret = insert_dir_log_key(trans, log, path, ino, 3949 last_old_dentry_offset + 1, 3950 last_offset); 3951 } 3952 3953 return ret; 3954 } 3955 3956 /* 3957 * If the inode was logged before and it was evicted, then its 3958 * last_dir_index_offset is (u64)-1, so we don't the value of the last index 3959 * key offset. If that's the case, search for it and update the inode. This 3960 * is to avoid lookups in the log tree every time we try to insert a dir index 3961 * key from a leaf changed in the current transaction, and to allow us to always 3962 * do batch insertions of dir index keys. 3963 */ 3964 static int update_last_dir_index_offset(struct btrfs_inode *inode, 3965 struct btrfs_path *path, 3966 const struct btrfs_log_ctx *ctx) 3967 { 3968 const u64 ino = btrfs_ino(inode); 3969 struct btrfs_key key; 3970 int ret; 3971 3972 lockdep_assert_held(&inode->log_mutex); 3973 3974 if (inode->last_dir_index_offset != (u64)-1) 3975 return 0; 3976 3977 if (!ctx->logged_before) { 3978 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1; 3979 return 0; 3980 } 3981 3982 key.objectid = ino; 3983 key.type = BTRFS_DIR_INDEX_KEY; 3984 key.offset = (u64)-1; 3985 3986 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0); 3987 /* 3988 * An error happened or we actually have an index key with an offset 3989 * value of (u64)-1. Bail out, we're done. 3990 */ 3991 if (ret <= 0) 3992 goto out; 3993 3994 ret = 0; 3995 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1; 3996 3997 /* 3998 * No dir index items, bail out and leave last_dir_index_offset with 3999 * the value right before the first valid index value. 4000 */ 4001 if (path->slots[0] == 0) 4002 goto out; 4003 4004 /* 4005 * btrfs_search_slot() left us at one slot beyond the slot with the last 4006 * index key, or beyond the last key of the directory that is not an 4007 * index key. If we have an index key before, set last_dir_index_offset 4008 * to its offset value, otherwise leave it with a value right before the 4009 * first valid index value, as it means we have an empty directory. 4010 */ 4011 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 4012 if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY) 4013 inode->last_dir_index_offset = key.offset; 4014 4015 out: 4016 btrfs_release_path(path); 4017 4018 return ret; 4019 } 4020 4021 /* 4022 * logging directories is very similar to logging inodes, We find all the items 4023 * from the current transaction and write them to the log. 4024 * 4025 * The recovery code scans the directory in the subvolume, and if it finds a 4026 * key in the range logged that is not present in the log tree, then it means 4027 * that dir entry was unlinked during the transaction. 4028 * 4029 * In order for that scan to work, we must include one key smaller than 4030 * the smallest logged by this transaction and one key larger than the largest 4031 * key logged by this transaction. 4032 */ 4033 static noinline int log_directory_changes(struct btrfs_trans_handle *trans, 4034 struct btrfs_inode *inode, 4035 struct btrfs_path *path, 4036 struct btrfs_path *dst_path, 4037 struct btrfs_log_ctx *ctx) 4038 { 4039 u64 min_key; 4040 u64 max_key; 4041 int ret; 4042 4043 ret = update_last_dir_index_offset(inode, path, ctx); 4044 if (ret) 4045 return ret; 4046 4047 min_key = BTRFS_DIR_START_INDEX; 4048 max_key = 0; 4049 4050 while (1) { 4051 ret = log_dir_items(trans, inode, path, dst_path, 4052 ctx, min_key, &max_key); 4053 if (ret) 4054 return ret; 4055 if (max_key == (u64)-1) 4056 break; 4057 min_key = max_key + 1; 4058 } 4059 4060 return 0; 4061 } 4062 4063 /* 4064 * a helper function to drop items from the log before we relog an 4065 * inode. max_key_type indicates the highest item type to remove. 4066 * This cannot be run for file data extents because it does not 4067 * free the extents they point to. 4068 */ 4069 static int drop_inode_items(struct btrfs_trans_handle *trans, 4070 struct btrfs_root *log, 4071 struct btrfs_path *path, 4072 struct btrfs_inode *inode, 4073 int max_key_type) 4074 { 4075 int ret; 4076 struct btrfs_key key; 4077 struct btrfs_key found_key; 4078 int start_slot; 4079 4080 key.objectid = btrfs_ino(inode); 4081 key.type = max_key_type; 4082 key.offset = (u64)-1; 4083 4084 while (1) { 4085 ret = btrfs_search_slot(trans, log, &key, path, -1, 1); 4086 BUG_ON(ret == 0); /* Logic error */ 4087 if (ret < 0) 4088 break; 4089 4090 if (path->slots[0] == 0) 4091 break; 4092 4093 path->slots[0]--; 4094 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 4095 path->slots[0]); 4096 4097 if (found_key.objectid != key.objectid) 4098 break; 4099 4100 found_key.offset = 0; 4101 found_key.type = 0; 4102 ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot); 4103 if (ret < 0) 4104 break; 4105 4106 ret = btrfs_del_items(trans, log, path, start_slot, 4107 path->slots[0] - start_slot + 1); 4108 /* 4109 * If start slot isn't 0 then we don't need to re-search, we've 4110 * found the last guy with the objectid in this tree. 4111 */ 4112 if (ret || start_slot != 0) 4113 break; 4114 btrfs_release_path(path); 4115 } 4116 btrfs_release_path(path); 4117 if (ret > 0) 4118 ret = 0; 4119 return ret; 4120 } 4121 4122 static int truncate_inode_items(struct btrfs_trans_handle *trans, 4123 struct btrfs_root *log_root, 4124 struct btrfs_inode *inode, 4125 u64 new_size, u32 min_type) 4126 { 4127 struct btrfs_truncate_control control = { 4128 .new_size = new_size, 4129 .ino = btrfs_ino(inode), 4130 .min_type = min_type, 4131 .skip_ref_updates = true, 4132 }; 4133 4134 return btrfs_truncate_inode_items(trans, log_root, &control); 4135 } 4136 4137 static void fill_inode_item(struct btrfs_trans_handle *trans, 4138 struct extent_buffer *leaf, 4139 struct btrfs_inode_item *item, 4140 struct inode *inode, int log_inode_only, 4141 u64 logged_isize) 4142 { 4143 struct btrfs_map_token token; 4144 u64 flags; 4145 4146 btrfs_init_map_token(&token, leaf); 4147 4148 if (log_inode_only) { 4149 /* set the generation to zero so the recover code 4150 * can tell the difference between an logging 4151 * just to say 'this inode exists' and a logging 4152 * to say 'update this inode with these values' 4153 */ 4154 btrfs_set_token_inode_generation(&token, item, 0); 4155 btrfs_set_token_inode_size(&token, item, logged_isize); 4156 } else { 4157 btrfs_set_token_inode_generation(&token, item, 4158 BTRFS_I(inode)->generation); 4159 btrfs_set_token_inode_size(&token, item, inode->i_size); 4160 } 4161 4162 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 4163 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 4164 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 4165 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 4166 4167 btrfs_set_token_timespec_sec(&token, &item->atime, 4168 inode->i_atime.tv_sec); 4169 btrfs_set_token_timespec_nsec(&token, &item->atime, 4170 inode->i_atime.tv_nsec); 4171 4172 btrfs_set_token_timespec_sec(&token, &item->mtime, 4173 inode->i_mtime.tv_sec); 4174 btrfs_set_token_timespec_nsec(&token, &item->mtime, 4175 inode->i_mtime.tv_nsec); 4176 4177 btrfs_set_token_timespec_sec(&token, &item->ctime, 4178 inode->i_ctime.tv_sec); 4179 btrfs_set_token_timespec_nsec(&token, &item->ctime, 4180 inode->i_ctime.tv_nsec); 4181 4182 /* 4183 * We do not need to set the nbytes field, in fact during a fast fsync 4184 * its value may not even be correct, since a fast fsync does not wait 4185 * for ordered extent completion, which is where we update nbytes, it 4186 * only waits for writeback to complete. During log replay as we find 4187 * file extent items and replay them, we adjust the nbytes field of the 4188 * inode item in subvolume tree as needed (see overwrite_item()). 4189 */ 4190 4191 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 4192 btrfs_set_token_inode_transid(&token, item, trans->transid); 4193 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 4194 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 4195 BTRFS_I(inode)->ro_flags); 4196 btrfs_set_token_inode_flags(&token, item, flags); 4197 btrfs_set_token_inode_block_group(&token, item, 0); 4198 } 4199 4200 static int log_inode_item(struct btrfs_trans_handle *trans, 4201 struct btrfs_root *log, struct btrfs_path *path, 4202 struct btrfs_inode *inode, bool inode_item_dropped) 4203 { 4204 struct btrfs_inode_item *inode_item; 4205 int ret; 4206 4207 /* 4208 * If we are doing a fast fsync and the inode was logged before in the 4209 * current transaction, then we know the inode was previously logged and 4210 * it exists in the log tree. For performance reasons, in this case use 4211 * btrfs_search_slot() directly with ins_len set to 0 so that we never 4212 * attempt a write lock on the leaf's parent, which adds unnecessary lock 4213 * contention in case there are concurrent fsyncs for other inodes of the 4214 * same subvolume. Using btrfs_insert_empty_item() when the inode item 4215 * already exists can also result in unnecessarily splitting a leaf. 4216 */ 4217 if (!inode_item_dropped && inode->logged_trans == trans->transid) { 4218 ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1); 4219 ASSERT(ret <= 0); 4220 if (ret > 0) 4221 ret = -ENOENT; 4222 } else { 4223 /* 4224 * This means it is the first fsync in the current transaction, 4225 * so the inode item is not in the log and we need to insert it. 4226 * We can never get -EEXIST because we are only called for a fast 4227 * fsync and in case an inode eviction happens after the inode was 4228 * logged before in the current transaction, when we load again 4229 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime 4230 * flags and set ->logged_trans to 0. 4231 */ 4232 ret = btrfs_insert_empty_item(trans, log, path, &inode->location, 4233 sizeof(*inode_item)); 4234 ASSERT(ret != -EEXIST); 4235 } 4236 if (ret) 4237 return ret; 4238 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4239 struct btrfs_inode_item); 4240 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode, 4241 0, 0); 4242 btrfs_release_path(path); 4243 return 0; 4244 } 4245 4246 static int log_csums(struct btrfs_trans_handle *trans, 4247 struct btrfs_inode *inode, 4248 struct btrfs_root *log_root, 4249 struct btrfs_ordered_sum *sums) 4250 { 4251 const u64 lock_end = sums->bytenr + sums->len - 1; 4252 struct extent_state *cached_state = NULL; 4253 int ret; 4254 4255 /* 4256 * If this inode was not used for reflink operations in the current 4257 * transaction with new extents, then do the fast path, no need to 4258 * worry about logging checksum items with overlapping ranges. 4259 */ 4260 if (inode->last_reflink_trans < trans->transid) 4261 return btrfs_csum_file_blocks(trans, log_root, sums); 4262 4263 /* 4264 * Serialize logging for checksums. This is to avoid racing with the 4265 * same checksum being logged by another task that is logging another 4266 * file which happens to refer to the same extent as well. Such races 4267 * can leave checksum items in the log with overlapping ranges. 4268 */ 4269 ret = lock_extent(&log_root->log_csum_range, sums->bytenr, lock_end, 4270 &cached_state); 4271 if (ret) 4272 return ret; 4273 /* 4274 * Due to extent cloning, we might have logged a csum item that covers a 4275 * subrange of a cloned extent, and later we can end up logging a csum 4276 * item for a larger subrange of the same extent or the entire range. 4277 * This would leave csum items in the log tree that cover the same range 4278 * and break the searches for checksums in the log tree, resulting in 4279 * some checksums missing in the fs/subvolume tree. So just delete (or 4280 * trim and adjust) any existing csum items in the log for this range. 4281 */ 4282 ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len); 4283 if (!ret) 4284 ret = btrfs_csum_file_blocks(trans, log_root, sums); 4285 4286 unlock_extent(&log_root->log_csum_range, sums->bytenr, lock_end, 4287 &cached_state); 4288 4289 return ret; 4290 } 4291 4292 static noinline int copy_items(struct btrfs_trans_handle *trans, 4293 struct btrfs_inode *inode, 4294 struct btrfs_path *dst_path, 4295 struct btrfs_path *src_path, 4296 int start_slot, int nr, int inode_only, 4297 u64 logged_isize) 4298 { 4299 struct btrfs_root *log = inode->root->log_root; 4300 struct btrfs_file_extent_item *extent; 4301 struct extent_buffer *src; 4302 int ret = 0; 4303 struct btrfs_key *ins_keys; 4304 u32 *ins_sizes; 4305 struct btrfs_item_batch batch; 4306 char *ins_data; 4307 int i; 4308 int dst_index; 4309 const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM); 4310 const u64 i_size = i_size_read(&inode->vfs_inode); 4311 4312 /* 4313 * To keep lockdep happy and avoid deadlocks, clone the source leaf and 4314 * use the clone. This is because otherwise we would be changing the log 4315 * tree, to insert items from the subvolume tree or insert csum items, 4316 * while holding a read lock on a leaf from the subvolume tree, which 4317 * creates a nasty lock dependency when COWing log tree nodes/leaves: 4318 * 4319 * 1) Modifying the log tree triggers an extent buffer allocation while 4320 * holding a write lock on a parent extent buffer from the log tree. 4321 * Allocating the pages for an extent buffer, or the extent buffer 4322 * struct, can trigger inode eviction and finally the inode eviction 4323 * will trigger a release/remove of a delayed node, which requires 4324 * taking the delayed node's mutex; 4325 * 4326 * 2) Allocating a metadata extent for a log tree can trigger the async 4327 * reclaim thread and make us wait for it to release enough space and 4328 * unblock our reservation ticket. The reclaim thread can start 4329 * flushing delayed items, and that in turn results in the need to 4330 * lock delayed node mutexes and in the need to write lock extent 4331 * buffers of a subvolume tree - all this while holding a write lock 4332 * on the parent extent buffer in the log tree. 4333 * 4334 * So one task in scenario 1) running in parallel with another task in 4335 * scenario 2) could lead to a deadlock, one wanting to lock a delayed 4336 * node mutex while having a read lock on a leaf from the subvolume, 4337 * while the other is holding the delayed node's mutex and wants to 4338 * write lock the same subvolume leaf for flushing delayed items. 4339 */ 4340 src = btrfs_clone_extent_buffer(src_path->nodes[0]); 4341 if (!src) 4342 return -ENOMEM; 4343 4344 i = src_path->slots[0]; 4345 btrfs_release_path(src_path); 4346 src_path->nodes[0] = src; 4347 src_path->slots[0] = i; 4348 4349 ins_data = kmalloc(nr * sizeof(struct btrfs_key) + 4350 nr * sizeof(u32), GFP_NOFS); 4351 if (!ins_data) 4352 return -ENOMEM; 4353 4354 ins_sizes = (u32 *)ins_data; 4355 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32)); 4356 batch.keys = ins_keys; 4357 batch.data_sizes = ins_sizes; 4358 batch.total_data_size = 0; 4359 batch.nr = 0; 4360 4361 dst_index = 0; 4362 for (i = 0; i < nr; i++) { 4363 const int src_slot = start_slot + i; 4364 struct btrfs_root *csum_root; 4365 struct btrfs_ordered_sum *sums; 4366 struct btrfs_ordered_sum *sums_next; 4367 LIST_HEAD(ordered_sums); 4368 u64 disk_bytenr; 4369 u64 disk_num_bytes; 4370 u64 extent_offset; 4371 u64 extent_num_bytes; 4372 bool is_old_extent; 4373 4374 btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot); 4375 4376 if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY) 4377 goto add_to_batch; 4378 4379 extent = btrfs_item_ptr(src, src_slot, 4380 struct btrfs_file_extent_item); 4381 4382 is_old_extent = (btrfs_file_extent_generation(src, extent) < 4383 trans->transid); 4384 4385 /* 4386 * Don't copy extents from past generations. That would make us 4387 * log a lot more metadata for common cases like doing only a 4388 * few random writes into a file and then fsync it for the first 4389 * time or after the full sync flag is set on the inode. We can 4390 * get leaves full of extent items, most of which are from past 4391 * generations, so we can skip them - as long as the inode has 4392 * not been the target of a reflink operation in this transaction, 4393 * as in that case it might have had file extent items with old 4394 * generations copied into it. We also must always log prealloc 4395 * extents that start at or beyond eof, otherwise we would lose 4396 * them on log replay. 4397 */ 4398 if (is_old_extent && 4399 ins_keys[dst_index].offset < i_size && 4400 inode->last_reflink_trans < trans->transid) 4401 continue; 4402 4403 if (skip_csum) 4404 goto add_to_batch; 4405 4406 /* Only regular extents have checksums. */ 4407 if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG) 4408 goto add_to_batch; 4409 4410 /* 4411 * If it's an extent created in a past transaction, then its 4412 * checksums are already accessible from the committed csum tree, 4413 * no need to log them. 4414 */ 4415 if (is_old_extent) 4416 goto add_to_batch; 4417 4418 disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent); 4419 /* If it's an explicit hole, there are no checksums. */ 4420 if (disk_bytenr == 0) 4421 goto add_to_batch; 4422 4423 disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent); 4424 4425 if (btrfs_file_extent_compression(src, extent)) { 4426 extent_offset = 0; 4427 extent_num_bytes = disk_num_bytes; 4428 } else { 4429 extent_offset = btrfs_file_extent_offset(src, extent); 4430 extent_num_bytes = btrfs_file_extent_num_bytes(src, extent); 4431 } 4432 4433 csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr); 4434 disk_bytenr += extent_offset; 4435 ret = btrfs_lookup_csums_list(csum_root, disk_bytenr, 4436 disk_bytenr + extent_num_bytes - 1, 4437 &ordered_sums, 0, false); 4438 if (ret) 4439 goto out; 4440 4441 list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) { 4442 if (!ret) 4443 ret = log_csums(trans, inode, log, sums); 4444 list_del(&sums->list); 4445 kfree(sums); 4446 } 4447 if (ret) 4448 goto out; 4449 4450 add_to_batch: 4451 ins_sizes[dst_index] = btrfs_item_size(src, src_slot); 4452 batch.total_data_size += ins_sizes[dst_index]; 4453 batch.nr++; 4454 dst_index++; 4455 } 4456 4457 /* 4458 * We have a leaf full of old extent items that don't need to be logged, 4459 * so we don't need to do anything. 4460 */ 4461 if (batch.nr == 0) 4462 goto out; 4463 4464 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch); 4465 if (ret) 4466 goto out; 4467 4468 dst_index = 0; 4469 for (i = 0; i < nr; i++) { 4470 const int src_slot = start_slot + i; 4471 const int dst_slot = dst_path->slots[0] + dst_index; 4472 struct btrfs_key key; 4473 unsigned long src_offset; 4474 unsigned long dst_offset; 4475 4476 /* 4477 * We're done, all the remaining items in the source leaf 4478 * correspond to old file extent items. 4479 */ 4480 if (dst_index >= batch.nr) 4481 break; 4482 4483 btrfs_item_key_to_cpu(src, &key, src_slot); 4484 4485 if (key.type != BTRFS_EXTENT_DATA_KEY) 4486 goto copy_item; 4487 4488 extent = btrfs_item_ptr(src, src_slot, 4489 struct btrfs_file_extent_item); 4490 4491 /* See the comment in the previous loop, same logic. */ 4492 if (btrfs_file_extent_generation(src, extent) < trans->transid && 4493 key.offset < i_size && 4494 inode->last_reflink_trans < trans->transid) 4495 continue; 4496 4497 copy_item: 4498 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot); 4499 src_offset = btrfs_item_ptr_offset(src, src_slot); 4500 4501 if (key.type == BTRFS_INODE_ITEM_KEY) { 4502 struct btrfs_inode_item *inode_item; 4503 4504 inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot, 4505 struct btrfs_inode_item); 4506 fill_inode_item(trans, dst_path->nodes[0], inode_item, 4507 &inode->vfs_inode, 4508 inode_only == LOG_INODE_EXISTS, 4509 logged_isize); 4510 } else { 4511 copy_extent_buffer(dst_path->nodes[0], src, dst_offset, 4512 src_offset, ins_sizes[dst_index]); 4513 } 4514 4515 dst_index++; 4516 } 4517 4518 btrfs_mark_buffer_dirty(dst_path->nodes[0]); 4519 btrfs_release_path(dst_path); 4520 out: 4521 kfree(ins_data); 4522 4523 return ret; 4524 } 4525 4526 static int extent_cmp(void *priv, const struct list_head *a, 4527 const struct list_head *b) 4528 { 4529 const struct extent_map *em1, *em2; 4530 4531 em1 = list_entry(a, struct extent_map, list); 4532 em2 = list_entry(b, struct extent_map, list); 4533 4534 if (em1->start < em2->start) 4535 return -1; 4536 else if (em1->start > em2->start) 4537 return 1; 4538 return 0; 4539 } 4540 4541 static int log_extent_csums(struct btrfs_trans_handle *trans, 4542 struct btrfs_inode *inode, 4543 struct btrfs_root *log_root, 4544 const struct extent_map *em, 4545 struct btrfs_log_ctx *ctx) 4546 { 4547 struct btrfs_ordered_extent *ordered; 4548 struct btrfs_root *csum_root; 4549 u64 csum_offset; 4550 u64 csum_len; 4551 u64 mod_start = em->mod_start; 4552 u64 mod_len = em->mod_len; 4553 LIST_HEAD(ordered_sums); 4554 int ret = 0; 4555 4556 if (inode->flags & BTRFS_INODE_NODATASUM || 4557 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 4558 em->block_start == EXTENT_MAP_HOLE) 4559 return 0; 4560 4561 list_for_each_entry(ordered, &ctx->ordered_extents, log_list) { 4562 const u64 ordered_end = ordered->file_offset + ordered->num_bytes; 4563 const u64 mod_end = mod_start + mod_len; 4564 struct btrfs_ordered_sum *sums; 4565 4566 if (mod_len == 0) 4567 break; 4568 4569 if (ordered_end <= mod_start) 4570 continue; 4571 if (mod_end <= ordered->file_offset) 4572 break; 4573 4574 /* 4575 * We are going to copy all the csums on this ordered extent, so 4576 * go ahead and adjust mod_start and mod_len in case this ordered 4577 * extent has already been logged. 4578 */ 4579 if (ordered->file_offset > mod_start) { 4580 if (ordered_end >= mod_end) 4581 mod_len = ordered->file_offset - mod_start; 4582 /* 4583 * If we have this case 4584 * 4585 * |--------- logged extent ---------| 4586 * |----- ordered extent ----| 4587 * 4588 * Just don't mess with mod_start and mod_len, we'll 4589 * just end up logging more csums than we need and it 4590 * will be ok. 4591 */ 4592 } else { 4593 if (ordered_end < mod_end) { 4594 mod_len = mod_end - ordered_end; 4595 mod_start = ordered_end; 4596 } else { 4597 mod_len = 0; 4598 } 4599 } 4600 4601 /* 4602 * To keep us from looping for the above case of an ordered 4603 * extent that falls inside of the logged extent. 4604 */ 4605 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags)) 4606 continue; 4607 4608 list_for_each_entry(sums, &ordered->list, list) { 4609 ret = log_csums(trans, inode, log_root, sums); 4610 if (ret) 4611 return ret; 4612 } 4613 } 4614 4615 /* We're done, found all csums in the ordered extents. */ 4616 if (mod_len == 0) 4617 return 0; 4618 4619 /* If we're compressed we have to save the entire range of csums. */ 4620 if (em->compress_type) { 4621 csum_offset = 0; 4622 csum_len = max(em->block_len, em->orig_block_len); 4623 } else { 4624 csum_offset = mod_start - em->start; 4625 csum_len = mod_len; 4626 } 4627 4628 /* block start is already adjusted for the file extent offset. */ 4629 csum_root = btrfs_csum_root(trans->fs_info, em->block_start); 4630 ret = btrfs_lookup_csums_list(csum_root, em->block_start + csum_offset, 4631 em->block_start + csum_offset + 4632 csum_len - 1, &ordered_sums, 0, false); 4633 if (ret) 4634 return ret; 4635 4636 while (!list_empty(&ordered_sums)) { 4637 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, 4638 struct btrfs_ordered_sum, 4639 list); 4640 if (!ret) 4641 ret = log_csums(trans, inode, log_root, sums); 4642 list_del(&sums->list); 4643 kfree(sums); 4644 } 4645 4646 return ret; 4647 } 4648 4649 static int log_one_extent(struct btrfs_trans_handle *trans, 4650 struct btrfs_inode *inode, 4651 const struct extent_map *em, 4652 struct btrfs_path *path, 4653 struct btrfs_log_ctx *ctx) 4654 { 4655 struct btrfs_drop_extents_args drop_args = { 0 }; 4656 struct btrfs_root *log = inode->root->log_root; 4657 struct btrfs_file_extent_item fi = { 0 }; 4658 struct extent_buffer *leaf; 4659 struct btrfs_key key; 4660 u64 extent_offset = em->start - em->orig_start; 4661 u64 block_len; 4662 int ret; 4663 4664 btrfs_set_stack_file_extent_generation(&fi, trans->transid); 4665 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 4666 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC); 4667 else 4668 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG); 4669 4670 block_len = max(em->block_len, em->orig_block_len); 4671 if (em->compress_type != BTRFS_COMPRESS_NONE) { 4672 btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start); 4673 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len); 4674 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) { 4675 btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start - 4676 extent_offset); 4677 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len); 4678 } 4679 4680 btrfs_set_stack_file_extent_offset(&fi, extent_offset); 4681 btrfs_set_stack_file_extent_num_bytes(&fi, em->len); 4682 btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes); 4683 btrfs_set_stack_file_extent_compression(&fi, em->compress_type); 4684 4685 ret = log_extent_csums(trans, inode, log, em, ctx); 4686 if (ret) 4687 return ret; 4688 4689 /* 4690 * If this is the first time we are logging the inode in the current 4691 * transaction, we can avoid btrfs_drop_extents(), which is expensive 4692 * because it does a deletion search, which always acquires write locks 4693 * for extent buffers at levels 2, 1 and 0. This not only wastes time 4694 * but also adds significant contention in a log tree, since log trees 4695 * are small, with a root at level 2 or 3 at most, due to their short 4696 * life span. 4697 */ 4698 if (ctx->logged_before) { 4699 drop_args.path = path; 4700 drop_args.start = em->start; 4701 drop_args.end = em->start + em->len; 4702 drop_args.replace_extent = true; 4703 drop_args.extent_item_size = sizeof(fi); 4704 ret = btrfs_drop_extents(trans, log, inode, &drop_args); 4705 if (ret) 4706 return ret; 4707 } 4708 4709 if (!drop_args.extent_inserted) { 4710 key.objectid = btrfs_ino(inode); 4711 key.type = BTRFS_EXTENT_DATA_KEY; 4712 key.offset = em->start; 4713 4714 ret = btrfs_insert_empty_item(trans, log, path, &key, 4715 sizeof(fi)); 4716 if (ret) 4717 return ret; 4718 } 4719 leaf = path->nodes[0]; 4720 write_extent_buffer(leaf, &fi, 4721 btrfs_item_ptr_offset(leaf, path->slots[0]), 4722 sizeof(fi)); 4723 btrfs_mark_buffer_dirty(leaf); 4724 4725 btrfs_release_path(path); 4726 4727 return ret; 4728 } 4729 4730 /* 4731 * Log all prealloc extents beyond the inode's i_size to make sure we do not 4732 * lose them after doing a full/fast fsync and replaying the log. We scan the 4733 * subvolume's root instead of iterating the inode's extent map tree because 4734 * otherwise we can log incorrect extent items based on extent map conversion. 4735 * That can happen due to the fact that extent maps are merged when they 4736 * are not in the extent map tree's list of modified extents. 4737 */ 4738 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans, 4739 struct btrfs_inode *inode, 4740 struct btrfs_path *path) 4741 { 4742 struct btrfs_root *root = inode->root; 4743 struct btrfs_key key; 4744 const u64 i_size = i_size_read(&inode->vfs_inode); 4745 const u64 ino = btrfs_ino(inode); 4746 struct btrfs_path *dst_path = NULL; 4747 bool dropped_extents = false; 4748 u64 truncate_offset = i_size; 4749 struct extent_buffer *leaf; 4750 int slot; 4751 int ins_nr = 0; 4752 int start_slot; 4753 int ret; 4754 4755 if (!(inode->flags & BTRFS_INODE_PREALLOC)) 4756 return 0; 4757 4758 key.objectid = ino; 4759 key.type = BTRFS_EXTENT_DATA_KEY; 4760 key.offset = i_size; 4761 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4762 if (ret < 0) 4763 goto out; 4764 4765 /* 4766 * We must check if there is a prealloc extent that starts before the 4767 * i_size and crosses the i_size boundary. This is to ensure later we 4768 * truncate down to the end of that extent and not to the i_size, as 4769 * otherwise we end up losing part of the prealloc extent after a log 4770 * replay and with an implicit hole if there is another prealloc extent 4771 * that starts at an offset beyond i_size. 4772 */ 4773 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY); 4774 if (ret < 0) 4775 goto out; 4776 4777 if (ret == 0) { 4778 struct btrfs_file_extent_item *ei; 4779 4780 leaf = path->nodes[0]; 4781 slot = path->slots[0]; 4782 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 4783 4784 if (btrfs_file_extent_type(leaf, ei) == 4785 BTRFS_FILE_EXTENT_PREALLOC) { 4786 u64 extent_end; 4787 4788 btrfs_item_key_to_cpu(leaf, &key, slot); 4789 extent_end = key.offset + 4790 btrfs_file_extent_num_bytes(leaf, ei); 4791 4792 if (extent_end > i_size) 4793 truncate_offset = extent_end; 4794 } 4795 } else { 4796 ret = 0; 4797 } 4798 4799 while (true) { 4800 leaf = path->nodes[0]; 4801 slot = path->slots[0]; 4802 4803 if (slot >= btrfs_header_nritems(leaf)) { 4804 if (ins_nr > 0) { 4805 ret = copy_items(trans, inode, dst_path, path, 4806 start_slot, ins_nr, 1, 0); 4807 if (ret < 0) 4808 goto out; 4809 ins_nr = 0; 4810 } 4811 ret = btrfs_next_leaf(root, path); 4812 if (ret < 0) 4813 goto out; 4814 if (ret > 0) { 4815 ret = 0; 4816 break; 4817 } 4818 continue; 4819 } 4820 4821 btrfs_item_key_to_cpu(leaf, &key, slot); 4822 if (key.objectid > ino) 4823 break; 4824 if (WARN_ON_ONCE(key.objectid < ino) || 4825 key.type < BTRFS_EXTENT_DATA_KEY || 4826 key.offset < i_size) { 4827 path->slots[0]++; 4828 continue; 4829 } 4830 if (!dropped_extents) { 4831 /* 4832 * Avoid logging extent items logged in past fsync calls 4833 * and leading to duplicate keys in the log tree. 4834 */ 4835 ret = truncate_inode_items(trans, root->log_root, inode, 4836 truncate_offset, 4837 BTRFS_EXTENT_DATA_KEY); 4838 if (ret) 4839 goto out; 4840 dropped_extents = true; 4841 } 4842 if (ins_nr == 0) 4843 start_slot = slot; 4844 ins_nr++; 4845 path->slots[0]++; 4846 if (!dst_path) { 4847 dst_path = btrfs_alloc_path(); 4848 if (!dst_path) { 4849 ret = -ENOMEM; 4850 goto out; 4851 } 4852 } 4853 } 4854 if (ins_nr > 0) 4855 ret = copy_items(trans, inode, dst_path, path, 4856 start_slot, ins_nr, 1, 0); 4857 out: 4858 btrfs_release_path(path); 4859 btrfs_free_path(dst_path); 4860 return ret; 4861 } 4862 4863 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans, 4864 struct btrfs_inode *inode, 4865 struct btrfs_path *path, 4866 struct btrfs_log_ctx *ctx) 4867 { 4868 struct btrfs_ordered_extent *ordered; 4869 struct btrfs_ordered_extent *tmp; 4870 struct extent_map *em, *n; 4871 struct list_head extents; 4872 struct extent_map_tree *tree = &inode->extent_tree; 4873 int ret = 0; 4874 int num = 0; 4875 4876 INIT_LIST_HEAD(&extents); 4877 4878 write_lock(&tree->lock); 4879 4880 list_for_each_entry_safe(em, n, &tree->modified_extents, list) { 4881 list_del_init(&em->list); 4882 /* 4883 * Just an arbitrary number, this can be really CPU intensive 4884 * once we start getting a lot of extents, and really once we 4885 * have a bunch of extents we just want to commit since it will 4886 * be faster. 4887 */ 4888 if (++num > 32768) { 4889 list_del_init(&tree->modified_extents); 4890 ret = -EFBIG; 4891 goto process; 4892 } 4893 4894 if (em->generation < trans->transid) 4895 continue; 4896 4897 /* We log prealloc extents beyond eof later. */ 4898 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && 4899 em->start >= i_size_read(&inode->vfs_inode)) 4900 continue; 4901 4902 /* Need a ref to keep it from getting evicted from cache */ 4903 refcount_inc(&em->refs); 4904 set_bit(EXTENT_FLAG_LOGGING, &em->flags); 4905 list_add_tail(&em->list, &extents); 4906 num++; 4907 } 4908 4909 list_sort(NULL, &extents, extent_cmp); 4910 process: 4911 while (!list_empty(&extents)) { 4912 em = list_entry(extents.next, struct extent_map, list); 4913 4914 list_del_init(&em->list); 4915 4916 /* 4917 * If we had an error we just need to delete everybody from our 4918 * private list. 4919 */ 4920 if (ret) { 4921 clear_em_logging(tree, em); 4922 free_extent_map(em); 4923 continue; 4924 } 4925 4926 write_unlock(&tree->lock); 4927 4928 ret = log_one_extent(trans, inode, em, path, ctx); 4929 write_lock(&tree->lock); 4930 clear_em_logging(tree, em); 4931 free_extent_map(em); 4932 } 4933 WARN_ON(!list_empty(&extents)); 4934 write_unlock(&tree->lock); 4935 4936 if (!ret) 4937 ret = btrfs_log_prealloc_extents(trans, inode, path); 4938 if (ret) 4939 return ret; 4940 4941 /* 4942 * We have logged all extents successfully, now make sure the commit of 4943 * the current transaction waits for the ordered extents to complete 4944 * before it commits and wipes out the log trees, otherwise we would 4945 * lose data if an ordered extents completes after the transaction 4946 * commits and a power failure happens after the transaction commit. 4947 */ 4948 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) { 4949 list_del_init(&ordered->log_list); 4950 set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags); 4951 4952 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) { 4953 spin_lock_irq(&inode->ordered_tree.lock); 4954 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) { 4955 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags); 4956 atomic_inc(&trans->transaction->pending_ordered); 4957 } 4958 spin_unlock_irq(&inode->ordered_tree.lock); 4959 } 4960 btrfs_put_ordered_extent(ordered); 4961 } 4962 4963 return 0; 4964 } 4965 4966 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode, 4967 struct btrfs_path *path, u64 *size_ret) 4968 { 4969 struct btrfs_key key; 4970 int ret; 4971 4972 key.objectid = btrfs_ino(inode); 4973 key.type = BTRFS_INODE_ITEM_KEY; 4974 key.offset = 0; 4975 4976 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0); 4977 if (ret < 0) { 4978 return ret; 4979 } else if (ret > 0) { 4980 *size_ret = 0; 4981 } else { 4982 struct btrfs_inode_item *item; 4983 4984 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4985 struct btrfs_inode_item); 4986 *size_ret = btrfs_inode_size(path->nodes[0], item); 4987 /* 4988 * If the in-memory inode's i_size is smaller then the inode 4989 * size stored in the btree, return the inode's i_size, so 4990 * that we get a correct inode size after replaying the log 4991 * when before a power failure we had a shrinking truncate 4992 * followed by addition of a new name (rename / new hard link). 4993 * Otherwise return the inode size from the btree, to avoid 4994 * data loss when replaying a log due to previously doing a 4995 * write that expands the inode's size and logging a new name 4996 * immediately after. 4997 */ 4998 if (*size_ret > inode->vfs_inode.i_size) 4999 *size_ret = inode->vfs_inode.i_size; 5000 } 5001 5002 btrfs_release_path(path); 5003 return 0; 5004 } 5005 5006 /* 5007 * At the moment we always log all xattrs. This is to figure out at log replay 5008 * time which xattrs must have their deletion replayed. If a xattr is missing 5009 * in the log tree and exists in the fs/subvol tree, we delete it. This is 5010 * because if a xattr is deleted, the inode is fsynced and a power failure 5011 * happens, causing the log to be replayed the next time the fs is mounted, 5012 * we want the xattr to not exist anymore (same behaviour as other filesystems 5013 * with a journal, ext3/4, xfs, f2fs, etc). 5014 */ 5015 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans, 5016 struct btrfs_inode *inode, 5017 struct btrfs_path *path, 5018 struct btrfs_path *dst_path) 5019 { 5020 struct btrfs_root *root = inode->root; 5021 int ret; 5022 struct btrfs_key key; 5023 const u64 ino = btrfs_ino(inode); 5024 int ins_nr = 0; 5025 int start_slot = 0; 5026 bool found_xattrs = false; 5027 5028 if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags)) 5029 return 0; 5030 5031 key.objectid = ino; 5032 key.type = BTRFS_XATTR_ITEM_KEY; 5033 key.offset = 0; 5034 5035 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5036 if (ret < 0) 5037 return ret; 5038 5039 while (true) { 5040 int slot = path->slots[0]; 5041 struct extent_buffer *leaf = path->nodes[0]; 5042 int nritems = btrfs_header_nritems(leaf); 5043 5044 if (slot >= nritems) { 5045 if (ins_nr > 0) { 5046 ret = copy_items(trans, inode, dst_path, path, 5047 start_slot, ins_nr, 1, 0); 5048 if (ret < 0) 5049 return ret; 5050 ins_nr = 0; 5051 } 5052 ret = btrfs_next_leaf(root, path); 5053 if (ret < 0) 5054 return ret; 5055 else if (ret > 0) 5056 break; 5057 continue; 5058 } 5059 5060 btrfs_item_key_to_cpu(leaf, &key, slot); 5061 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) 5062 break; 5063 5064 if (ins_nr == 0) 5065 start_slot = slot; 5066 ins_nr++; 5067 path->slots[0]++; 5068 found_xattrs = true; 5069 cond_resched(); 5070 } 5071 if (ins_nr > 0) { 5072 ret = copy_items(trans, inode, dst_path, path, 5073 start_slot, ins_nr, 1, 0); 5074 if (ret < 0) 5075 return ret; 5076 } 5077 5078 if (!found_xattrs) 5079 set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags); 5080 5081 return 0; 5082 } 5083 5084 /* 5085 * When using the NO_HOLES feature if we punched a hole that causes the 5086 * deletion of entire leafs or all the extent items of the first leaf (the one 5087 * that contains the inode item and references) we may end up not processing 5088 * any extents, because there are no leafs with a generation matching the 5089 * current transaction that have extent items for our inode. So we need to find 5090 * if any holes exist and then log them. We also need to log holes after any 5091 * truncate operation that changes the inode's size. 5092 */ 5093 static int btrfs_log_holes(struct btrfs_trans_handle *trans, 5094 struct btrfs_inode *inode, 5095 struct btrfs_path *path) 5096 { 5097 struct btrfs_root *root = inode->root; 5098 struct btrfs_fs_info *fs_info = root->fs_info; 5099 struct btrfs_key key; 5100 const u64 ino = btrfs_ino(inode); 5101 const u64 i_size = i_size_read(&inode->vfs_inode); 5102 u64 prev_extent_end = 0; 5103 int ret; 5104 5105 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0) 5106 return 0; 5107 5108 key.objectid = ino; 5109 key.type = BTRFS_EXTENT_DATA_KEY; 5110 key.offset = 0; 5111 5112 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5113 if (ret < 0) 5114 return ret; 5115 5116 while (true) { 5117 struct extent_buffer *leaf = path->nodes[0]; 5118 5119 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 5120 ret = btrfs_next_leaf(root, path); 5121 if (ret < 0) 5122 return ret; 5123 if (ret > 0) { 5124 ret = 0; 5125 break; 5126 } 5127 leaf = path->nodes[0]; 5128 } 5129 5130 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 5131 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 5132 break; 5133 5134 /* We have a hole, log it. */ 5135 if (prev_extent_end < key.offset) { 5136 const u64 hole_len = key.offset - prev_extent_end; 5137 5138 /* 5139 * Release the path to avoid deadlocks with other code 5140 * paths that search the root while holding locks on 5141 * leafs from the log root. 5142 */ 5143 btrfs_release_path(path); 5144 ret = btrfs_insert_hole_extent(trans, root->log_root, 5145 ino, prev_extent_end, 5146 hole_len); 5147 if (ret < 0) 5148 return ret; 5149 5150 /* 5151 * Search for the same key again in the root. Since it's 5152 * an extent item and we are holding the inode lock, the 5153 * key must still exist. If it doesn't just emit warning 5154 * and return an error to fall back to a transaction 5155 * commit. 5156 */ 5157 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5158 if (ret < 0) 5159 return ret; 5160 if (WARN_ON(ret > 0)) 5161 return -ENOENT; 5162 leaf = path->nodes[0]; 5163 } 5164 5165 prev_extent_end = btrfs_file_extent_end(path); 5166 path->slots[0]++; 5167 cond_resched(); 5168 } 5169 5170 if (prev_extent_end < i_size) { 5171 u64 hole_len; 5172 5173 btrfs_release_path(path); 5174 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize); 5175 ret = btrfs_insert_hole_extent(trans, root->log_root, ino, 5176 prev_extent_end, hole_len); 5177 if (ret < 0) 5178 return ret; 5179 } 5180 5181 return 0; 5182 } 5183 5184 /* 5185 * When we are logging a new inode X, check if it doesn't have a reference that 5186 * matches the reference from some other inode Y created in a past transaction 5187 * and that was renamed in the current transaction. If we don't do this, then at 5188 * log replay time we can lose inode Y (and all its files if it's a directory): 5189 * 5190 * mkdir /mnt/x 5191 * echo "hello world" > /mnt/x/foobar 5192 * sync 5193 * mv /mnt/x /mnt/y 5194 * mkdir /mnt/x # or touch /mnt/x 5195 * xfs_io -c fsync /mnt/x 5196 * <power fail> 5197 * mount fs, trigger log replay 5198 * 5199 * After the log replay procedure, we would lose the first directory and all its 5200 * files (file foobar). 5201 * For the case where inode Y is not a directory we simply end up losing it: 5202 * 5203 * echo "123" > /mnt/foo 5204 * sync 5205 * mv /mnt/foo /mnt/bar 5206 * echo "abc" > /mnt/foo 5207 * xfs_io -c fsync /mnt/foo 5208 * <power fail> 5209 * 5210 * We also need this for cases where a snapshot entry is replaced by some other 5211 * entry (file or directory) otherwise we end up with an unreplayable log due to 5212 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as 5213 * if it were a regular entry: 5214 * 5215 * mkdir /mnt/x 5216 * btrfs subvolume snapshot /mnt /mnt/x/snap 5217 * btrfs subvolume delete /mnt/x/snap 5218 * rmdir /mnt/x 5219 * mkdir /mnt/x 5220 * fsync /mnt/x or fsync some new file inside it 5221 * <power fail> 5222 * 5223 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in 5224 * the same transaction. 5225 */ 5226 static int btrfs_check_ref_name_override(struct extent_buffer *eb, 5227 const int slot, 5228 const struct btrfs_key *key, 5229 struct btrfs_inode *inode, 5230 u64 *other_ino, u64 *other_parent) 5231 { 5232 int ret; 5233 struct btrfs_path *search_path; 5234 char *name = NULL; 5235 u32 name_len = 0; 5236 u32 item_size = btrfs_item_size(eb, slot); 5237 u32 cur_offset = 0; 5238 unsigned long ptr = btrfs_item_ptr_offset(eb, slot); 5239 5240 search_path = btrfs_alloc_path(); 5241 if (!search_path) 5242 return -ENOMEM; 5243 search_path->search_commit_root = 1; 5244 search_path->skip_locking = 1; 5245 5246 while (cur_offset < item_size) { 5247 u64 parent; 5248 u32 this_name_len; 5249 u32 this_len; 5250 unsigned long name_ptr; 5251 struct btrfs_dir_item *di; 5252 struct fscrypt_str name_str; 5253 5254 if (key->type == BTRFS_INODE_REF_KEY) { 5255 struct btrfs_inode_ref *iref; 5256 5257 iref = (struct btrfs_inode_ref *)(ptr + cur_offset); 5258 parent = key->offset; 5259 this_name_len = btrfs_inode_ref_name_len(eb, iref); 5260 name_ptr = (unsigned long)(iref + 1); 5261 this_len = sizeof(*iref) + this_name_len; 5262 } else { 5263 struct btrfs_inode_extref *extref; 5264 5265 extref = (struct btrfs_inode_extref *)(ptr + 5266 cur_offset); 5267 parent = btrfs_inode_extref_parent(eb, extref); 5268 this_name_len = btrfs_inode_extref_name_len(eb, extref); 5269 name_ptr = (unsigned long)&extref->name; 5270 this_len = sizeof(*extref) + this_name_len; 5271 } 5272 5273 if (this_name_len > name_len) { 5274 char *new_name; 5275 5276 new_name = krealloc(name, this_name_len, GFP_NOFS); 5277 if (!new_name) { 5278 ret = -ENOMEM; 5279 goto out; 5280 } 5281 name_len = this_name_len; 5282 name = new_name; 5283 } 5284 5285 read_extent_buffer(eb, name, name_ptr, this_name_len); 5286 5287 name_str.name = name; 5288 name_str.len = this_name_len; 5289 di = btrfs_lookup_dir_item(NULL, inode->root, search_path, 5290 parent, &name_str, 0); 5291 if (di && !IS_ERR(di)) { 5292 struct btrfs_key di_key; 5293 5294 btrfs_dir_item_key_to_cpu(search_path->nodes[0], 5295 di, &di_key); 5296 if (di_key.type == BTRFS_INODE_ITEM_KEY) { 5297 if (di_key.objectid != key->objectid) { 5298 ret = 1; 5299 *other_ino = di_key.objectid; 5300 *other_parent = parent; 5301 } else { 5302 ret = 0; 5303 } 5304 } else { 5305 ret = -EAGAIN; 5306 } 5307 goto out; 5308 } else if (IS_ERR(di)) { 5309 ret = PTR_ERR(di); 5310 goto out; 5311 } 5312 btrfs_release_path(search_path); 5313 5314 cur_offset += this_len; 5315 } 5316 ret = 0; 5317 out: 5318 btrfs_free_path(search_path); 5319 kfree(name); 5320 return ret; 5321 } 5322 5323 /* 5324 * Check if we need to log an inode. This is used in contexts where while 5325 * logging an inode we need to log another inode (either that it exists or in 5326 * full mode). This is used instead of btrfs_inode_in_log() because the later 5327 * requires the inode to be in the log and have the log transaction committed, 5328 * while here we do not care if the log transaction was already committed - our 5329 * caller will commit the log later - and we want to avoid logging an inode 5330 * multiple times when multiple tasks have joined the same log transaction. 5331 */ 5332 static bool need_log_inode(const struct btrfs_trans_handle *trans, 5333 const struct btrfs_inode *inode) 5334 { 5335 /* 5336 * If a directory was not modified, no dentries added or removed, we can 5337 * and should avoid logging it. 5338 */ 5339 if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid) 5340 return false; 5341 5342 /* 5343 * If this inode does not have new/updated/deleted xattrs since the last 5344 * time it was logged and is flagged as logged in the current transaction, 5345 * we can skip logging it. As for new/deleted names, those are updated in 5346 * the log by link/unlink/rename operations. 5347 * In case the inode was logged and then evicted and reloaded, its 5348 * logged_trans will be 0, in which case we have to fully log it since 5349 * logged_trans is a transient field, not persisted. 5350 */ 5351 if (inode->logged_trans == trans->transid && 5352 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags)) 5353 return false; 5354 5355 return true; 5356 } 5357 5358 struct btrfs_dir_list { 5359 u64 ino; 5360 struct list_head list; 5361 }; 5362 5363 /* 5364 * Log the inodes of the new dentries of a directory. 5365 * See process_dir_items_leaf() for details about why it is needed. 5366 * This is a recursive operation - if an existing dentry corresponds to a 5367 * directory, that directory's new entries are logged too (same behaviour as 5368 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes 5369 * the dentries point to we do not acquire their VFS lock, otherwise lockdep 5370 * complains about the following circular lock dependency / possible deadlock: 5371 * 5372 * CPU0 CPU1 5373 * ---- ---- 5374 * lock(&type->i_mutex_dir_key#3/2); 5375 * lock(sb_internal#2); 5376 * lock(&type->i_mutex_dir_key#3/2); 5377 * lock(&sb->s_type->i_mutex_key#14); 5378 * 5379 * Where sb_internal is the lock (a counter that works as a lock) acquired by 5380 * sb_start_intwrite() in btrfs_start_transaction(). 5381 * Not acquiring the VFS lock of the inodes is still safe because: 5382 * 5383 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible 5384 * that while logging the inode new references (names) are added or removed 5385 * from the inode, leaving the logged inode item with a link count that does 5386 * not match the number of logged inode reference items. This is fine because 5387 * at log replay time we compute the real number of links and correct the 5388 * link count in the inode item (see replay_one_buffer() and 5389 * link_to_fixup_dir()); 5390 * 5391 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that 5392 * while logging the inode's items new index items (key type 5393 * BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item 5394 * has a size that doesn't match the sum of the lengths of all the logged 5395 * names - this is ok, not a problem, because at log replay time we set the 5396 * directory's i_size to the correct value (see replay_one_name() and 5397 * overwrite_item()). 5398 */ 5399 static int log_new_dir_dentries(struct btrfs_trans_handle *trans, 5400 struct btrfs_inode *start_inode, 5401 struct btrfs_log_ctx *ctx) 5402 { 5403 struct btrfs_root *root = start_inode->root; 5404 struct btrfs_fs_info *fs_info = root->fs_info; 5405 struct btrfs_path *path; 5406 LIST_HEAD(dir_list); 5407 struct btrfs_dir_list *dir_elem; 5408 u64 ino = btrfs_ino(start_inode); 5409 int ret = 0; 5410 5411 /* 5412 * If we are logging a new name, as part of a link or rename operation, 5413 * don't bother logging new dentries, as we just want to log the names 5414 * of an inode and that any new parents exist. 5415 */ 5416 if (ctx->logging_new_name) 5417 return 0; 5418 5419 path = btrfs_alloc_path(); 5420 if (!path) 5421 return -ENOMEM; 5422 5423 while (true) { 5424 struct extent_buffer *leaf; 5425 struct btrfs_key min_key; 5426 bool continue_curr_inode = true; 5427 int nritems; 5428 int i; 5429 5430 min_key.objectid = ino; 5431 min_key.type = BTRFS_DIR_INDEX_KEY; 5432 min_key.offset = 0; 5433 again: 5434 btrfs_release_path(path); 5435 ret = btrfs_search_forward(root, &min_key, path, trans->transid); 5436 if (ret < 0) { 5437 break; 5438 } else if (ret > 0) { 5439 ret = 0; 5440 goto next; 5441 } 5442 5443 leaf = path->nodes[0]; 5444 nritems = btrfs_header_nritems(leaf); 5445 for (i = path->slots[0]; i < nritems; i++) { 5446 struct btrfs_dir_item *di; 5447 struct btrfs_key di_key; 5448 struct inode *di_inode; 5449 int log_mode = LOG_INODE_EXISTS; 5450 int type; 5451 5452 btrfs_item_key_to_cpu(leaf, &min_key, i); 5453 if (min_key.objectid != ino || 5454 min_key.type != BTRFS_DIR_INDEX_KEY) { 5455 continue_curr_inode = false; 5456 break; 5457 } 5458 5459 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item); 5460 type = btrfs_dir_ftype(leaf, di); 5461 if (btrfs_dir_transid(leaf, di) < trans->transid) 5462 continue; 5463 btrfs_dir_item_key_to_cpu(leaf, di, &di_key); 5464 if (di_key.type == BTRFS_ROOT_ITEM_KEY) 5465 continue; 5466 5467 btrfs_release_path(path); 5468 di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root); 5469 if (IS_ERR(di_inode)) { 5470 ret = PTR_ERR(di_inode); 5471 goto out; 5472 } 5473 5474 if (!need_log_inode(trans, BTRFS_I(di_inode))) { 5475 btrfs_add_delayed_iput(BTRFS_I(di_inode)); 5476 break; 5477 } 5478 5479 ctx->log_new_dentries = false; 5480 if (type == BTRFS_FT_DIR) 5481 log_mode = LOG_INODE_ALL; 5482 ret = btrfs_log_inode(trans, BTRFS_I(di_inode), 5483 log_mode, ctx); 5484 btrfs_add_delayed_iput(BTRFS_I(di_inode)); 5485 if (ret) 5486 goto out; 5487 if (ctx->log_new_dentries) { 5488 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS); 5489 if (!dir_elem) { 5490 ret = -ENOMEM; 5491 goto out; 5492 } 5493 dir_elem->ino = di_key.objectid; 5494 list_add_tail(&dir_elem->list, &dir_list); 5495 } 5496 break; 5497 } 5498 5499 if (continue_curr_inode && min_key.offset < (u64)-1) { 5500 min_key.offset++; 5501 goto again; 5502 } 5503 5504 next: 5505 if (list_empty(&dir_list)) 5506 break; 5507 5508 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list); 5509 ino = dir_elem->ino; 5510 list_del(&dir_elem->list); 5511 kfree(dir_elem); 5512 } 5513 out: 5514 btrfs_free_path(path); 5515 if (ret) { 5516 struct btrfs_dir_list *next; 5517 5518 list_for_each_entry_safe(dir_elem, next, &dir_list, list) 5519 kfree(dir_elem); 5520 } 5521 5522 return ret; 5523 } 5524 5525 struct btrfs_ino_list { 5526 u64 ino; 5527 u64 parent; 5528 struct list_head list; 5529 }; 5530 5531 static void free_conflicting_inodes(struct btrfs_log_ctx *ctx) 5532 { 5533 struct btrfs_ino_list *curr; 5534 struct btrfs_ino_list *next; 5535 5536 list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) { 5537 list_del(&curr->list); 5538 kfree(curr); 5539 } 5540 } 5541 5542 static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino, 5543 struct btrfs_path *path) 5544 { 5545 struct btrfs_key key; 5546 int ret; 5547 5548 key.objectid = ino; 5549 key.type = BTRFS_INODE_ITEM_KEY; 5550 key.offset = 0; 5551 5552 path->search_commit_root = 1; 5553 path->skip_locking = 1; 5554 5555 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5556 if (WARN_ON_ONCE(ret > 0)) { 5557 /* 5558 * We have previously found the inode through the commit root 5559 * so this should not happen. If it does, just error out and 5560 * fallback to a transaction commit. 5561 */ 5562 ret = -ENOENT; 5563 } else if (ret == 0) { 5564 struct btrfs_inode_item *item; 5565 5566 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 5567 struct btrfs_inode_item); 5568 if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item))) 5569 ret = 1; 5570 } 5571 5572 btrfs_release_path(path); 5573 path->search_commit_root = 0; 5574 path->skip_locking = 0; 5575 5576 return ret; 5577 } 5578 5579 static int add_conflicting_inode(struct btrfs_trans_handle *trans, 5580 struct btrfs_root *root, 5581 struct btrfs_path *path, 5582 u64 ino, u64 parent, 5583 struct btrfs_log_ctx *ctx) 5584 { 5585 struct btrfs_ino_list *ino_elem; 5586 struct inode *inode; 5587 5588 /* 5589 * It's rare to have a lot of conflicting inodes, in practice it is not 5590 * common to have more than 1 or 2. We don't want to collect too many, 5591 * as we could end up logging too many inodes (even if only in 5592 * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction 5593 * commits. 5594 */ 5595 if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES) 5596 return BTRFS_LOG_FORCE_COMMIT; 5597 5598 inode = btrfs_iget(root->fs_info->sb, ino, root); 5599 /* 5600 * If the other inode that had a conflicting dir entry was deleted in 5601 * the current transaction then we either: 5602 * 5603 * 1) Log the parent directory (later after adding it to the list) if 5604 * the inode is a directory. This is because it may be a deleted 5605 * subvolume/snapshot or it may be a regular directory that had 5606 * deleted subvolumes/snapshots (or subdirectories that had them), 5607 * and at the moment we can't deal with dropping subvolumes/snapshots 5608 * during log replay. So we just log the parent, which will result in 5609 * a fallback to a transaction commit if we are dealing with those 5610 * cases (last_unlink_trans will match the current transaction); 5611 * 5612 * 2) Do nothing if it's not a directory. During log replay we simply 5613 * unlink the conflicting dentry from the parent directory and then 5614 * add the dentry for our inode. Like this we can avoid logging the 5615 * parent directory (and maybe fallback to a transaction commit in 5616 * case it has a last_unlink_trans == trans->transid, due to moving 5617 * some inode from it to some other directory). 5618 */ 5619 if (IS_ERR(inode)) { 5620 int ret = PTR_ERR(inode); 5621 5622 if (ret != -ENOENT) 5623 return ret; 5624 5625 ret = conflicting_inode_is_dir(root, ino, path); 5626 /* Not a directory or we got an error. */ 5627 if (ret <= 0) 5628 return ret; 5629 5630 /* Conflicting inode is a directory, so we'll log its parent. */ 5631 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS); 5632 if (!ino_elem) 5633 return -ENOMEM; 5634 ino_elem->ino = ino; 5635 ino_elem->parent = parent; 5636 list_add_tail(&ino_elem->list, &ctx->conflict_inodes); 5637 ctx->num_conflict_inodes++; 5638 5639 return 0; 5640 } 5641 5642 /* 5643 * If the inode was already logged skip it - otherwise we can hit an 5644 * infinite loop. Example: 5645 * 5646 * From the commit root (previous transaction) we have the following 5647 * inodes: 5648 * 5649 * inode 257 a directory 5650 * inode 258 with references "zz" and "zz_link" on inode 257 5651 * inode 259 with reference "a" on inode 257 5652 * 5653 * And in the current (uncommitted) transaction we have: 5654 * 5655 * inode 257 a directory, unchanged 5656 * inode 258 with references "a" and "a2" on inode 257 5657 * inode 259 with reference "zz_link" on inode 257 5658 * inode 261 with reference "zz" on inode 257 5659 * 5660 * When logging inode 261 the following infinite loop could 5661 * happen if we don't skip already logged inodes: 5662 * 5663 * - we detect inode 258 as a conflicting inode, with inode 261 5664 * on reference "zz", and log it; 5665 * 5666 * - we detect inode 259 as a conflicting inode, with inode 258 5667 * on reference "a", and log it; 5668 * 5669 * - we detect inode 258 as a conflicting inode, with inode 259 5670 * on reference "zz_link", and log it - again! After this we 5671 * repeat the above steps forever. 5672 * 5673 * Here we can use need_log_inode() because we only need to log the 5674 * inode in LOG_INODE_EXISTS mode and rename operations update the log, 5675 * so that the log ends up with the new name and without the old name. 5676 */ 5677 if (!need_log_inode(trans, BTRFS_I(inode))) { 5678 btrfs_add_delayed_iput(BTRFS_I(inode)); 5679 return 0; 5680 } 5681 5682 btrfs_add_delayed_iput(BTRFS_I(inode)); 5683 5684 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS); 5685 if (!ino_elem) 5686 return -ENOMEM; 5687 ino_elem->ino = ino; 5688 ino_elem->parent = parent; 5689 list_add_tail(&ino_elem->list, &ctx->conflict_inodes); 5690 ctx->num_conflict_inodes++; 5691 5692 return 0; 5693 } 5694 5695 static int log_conflicting_inodes(struct btrfs_trans_handle *trans, 5696 struct btrfs_root *root, 5697 struct btrfs_log_ctx *ctx) 5698 { 5699 struct btrfs_fs_info *fs_info = root->fs_info; 5700 int ret = 0; 5701 5702 /* 5703 * Conflicting inodes are logged by the first call to btrfs_log_inode(), 5704 * otherwise we could have unbounded recursion of btrfs_log_inode() 5705 * calls. This check guarantees we can have only 1 level of recursion. 5706 */ 5707 if (ctx->logging_conflict_inodes) 5708 return 0; 5709 5710 ctx->logging_conflict_inodes = true; 5711 5712 /* 5713 * New conflicting inodes may be found and added to the list while we 5714 * are logging a conflicting inode, so keep iterating while the list is 5715 * not empty. 5716 */ 5717 while (!list_empty(&ctx->conflict_inodes)) { 5718 struct btrfs_ino_list *curr; 5719 struct inode *inode; 5720 u64 ino; 5721 u64 parent; 5722 5723 curr = list_first_entry(&ctx->conflict_inodes, 5724 struct btrfs_ino_list, list); 5725 ino = curr->ino; 5726 parent = curr->parent; 5727 list_del(&curr->list); 5728 kfree(curr); 5729 5730 inode = btrfs_iget(fs_info->sb, ino, root); 5731 /* 5732 * If the other inode that had a conflicting dir entry was 5733 * deleted in the current transaction, we need to log its parent 5734 * directory. See the comment at add_conflicting_inode(). 5735 */ 5736 if (IS_ERR(inode)) { 5737 ret = PTR_ERR(inode); 5738 if (ret != -ENOENT) 5739 break; 5740 5741 inode = btrfs_iget(fs_info->sb, parent, root); 5742 if (IS_ERR(inode)) { 5743 ret = PTR_ERR(inode); 5744 break; 5745 } 5746 5747 /* 5748 * Always log the directory, we cannot make this 5749 * conditional on need_log_inode() because the directory 5750 * might have been logged in LOG_INODE_EXISTS mode or 5751 * the dir index of the conflicting inode is not in a 5752 * dir index key range logged for the directory. So we 5753 * must make sure the deletion is recorded. 5754 */ 5755 ret = btrfs_log_inode(trans, BTRFS_I(inode), 5756 LOG_INODE_ALL, ctx); 5757 btrfs_add_delayed_iput(BTRFS_I(inode)); 5758 if (ret) 5759 break; 5760 continue; 5761 } 5762 5763 /* 5764 * Here we can use need_log_inode() because we only need to log 5765 * the inode in LOG_INODE_EXISTS mode and rename operations 5766 * update the log, so that the log ends up with the new name and 5767 * without the old name. 5768 * 5769 * We did this check at add_conflicting_inode(), but here we do 5770 * it again because if some other task logged the inode after 5771 * that, we can avoid doing it again. 5772 */ 5773 if (!need_log_inode(trans, BTRFS_I(inode))) { 5774 btrfs_add_delayed_iput(BTRFS_I(inode)); 5775 continue; 5776 } 5777 5778 /* 5779 * We are safe logging the other inode without acquiring its 5780 * lock as long as we log with the LOG_INODE_EXISTS mode. We 5781 * are safe against concurrent renames of the other inode as 5782 * well because during a rename we pin the log and update the 5783 * log with the new name before we unpin it. 5784 */ 5785 ret = btrfs_log_inode(trans, BTRFS_I(inode), LOG_INODE_EXISTS, ctx); 5786 btrfs_add_delayed_iput(BTRFS_I(inode)); 5787 if (ret) 5788 break; 5789 } 5790 5791 ctx->logging_conflict_inodes = false; 5792 if (ret) 5793 free_conflicting_inodes(ctx); 5794 5795 return ret; 5796 } 5797 5798 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans, 5799 struct btrfs_inode *inode, 5800 struct btrfs_key *min_key, 5801 const struct btrfs_key *max_key, 5802 struct btrfs_path *path, 5803 struct btrfs_path *dst_path, 5804 const u64 logged_isize, 5805 const int inode_only, 5806 struct btrfs_log_ctx *ctx, 5807 bool *need_log_inode_item) 5808 { 5809 const u64 i_size = i_size_read(&inode->vfs_inode); 5810 struct btrfs_root *root = inode->root; 5811 int ins_start_slot = 0; 5812 int ins_nr = 0; 5813 int ret; 5814 5815 while (1) { 5816 ret = btrfs_search_forward(root, min_key, path, trans->transid); 5817 if (ret < 0) 5818 return ret; 5819 if (ret > 0) { 5820 ret = 0; 5821 break; 5822 } 5823 again: 5824 /* Note, ins_nr might be > 0 here, cleanup outside the loop */ 5825 if (min_key->objectid != max_key->objectid) 5826 break; 5827 if (min_key->type > max_key->type) 5828 break; 5829 5830 if (min_key->type == BTRFS_INODE_ITEM_KEY) { 5831 *need_log_inode_item = false; 5832 } else if (min_key->type == BTRFS_EXTENT_DATA_KEY && 5833 min_key->offset >= i_size) { 5834 /* 5835 * Extents at and beyond eof are logged with 5836 * btrfs_log_prealloc_extents(). 5837 * Only regular files have BTRFS_EXTENT_DATA_KEY keys, 5838 * and no keys greater than that, so bail out. 5839 */ 5840 break; 5841 } else if ((min_key->type == BTRFS_INODE_REF_KEY || 5842 min_key->type == BTRFS_INODE_EXTREF_KEY) && 5843 (inode->generation == trans->transid || 5844 ctx->logging_conflict_inodes)) { 5845 u64 other_ino = 0; 5846 u64 other_parent = 0; 5847 5848 ret = btrfs_check_ref_name_override(path->nodes[0], 5849 path->slots[0], min_key, inode, 5850 &other_ino, &other_parent); 5851 if (ret < 0) { 5852 return ret; 5853 } else if (ret > 0 && 5854 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) { 5855 if (ins_nr > 0) { 5856 ins_nr++; 5857 } else { 5858 ins_nr = 1; 5859 ins_start_slot = path->slots[0]; 5860 } 5861 ret = copy_items(trans, inode, dst_path, path, 5862 ins_start_slot, ins_nr, 5863 inode_only, logged_isize); 5864 if (ret < 0) 5865 return ret; 5866 ins_nr = 0; 5867 5868 btrfs_release_path(path); 5869 ret = add_conflicting_inode(trans, root, path, 5870 other_ino, 5871 other_parent, ctx); 5872 if (ret) 5873 return ret; 5874 goto next_key; 5875 } 5876 } else if (min_key->type == BTRFS_XATTR_ITEM_KEY) { 5877 /* Skip xattrs, logged later with btrfs_log_all_xattrs() */ 5878 if (ins_nr == 0) 5879 goto next_slot; 5880 ret = copy_items(trans, inode, dst_path, path, 5881 ins_start_slot, 5882 ins_nr, inode_only, logged_isize); 5883 if (ret < 0) 5884 return ret; 5885 ins_nr = 0; 5886 goto next_slot; 5887 } 5888 5889 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) { 5890 ins_nr++; 5891 goto next_slot; 5892 } else if (!ins_nr) { 5893 ins_start_slot = path->slots[0]; 5894 ins_nr = 1; 5895 goto next_slot; 5896 } 5897 5898 ret = copy_items(trans, inode, dst_path, path, ins_start_slot, 5899 ins_nr, inode_only, logged_isize); 5900 if (ret < 0) 5901 return ret; 5902 ins_nr = 1; 5903 ins_start_slot = path->slots[0]; 5904 next_slot: 5905 path->slots[0]++; 5906 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) { 5907 btrfs_item_key_to_cpu(path->nodes[0], min_key, 5908 path->slots[0]); 5909 goto again; 5910 } 5911 if (ins_nr) { 5912 ret = copy_items(trans, inode, dst_path, path, 5913 ins_start_slot, ins_nr, inode_only, 5914 logged_isize); 5915 if (ret < 0) 5916 return ret; 5917 ins_nr = 0; 5918 } 5919 btrfs_release_path(path); 5920 next_key: 5921 if (min_key->offset < (u64)-1) { 5922 min_key->offset++; 5923 } else if (min_key->type < max_key->type) { 5924 min_key->type++; 5925 min_key->offset = 0; 5926 } else { 5927 break; 5928 } 5929 5930 /* 5931 * We may process many leaves full of items for our inode, so 5932 * avoid monopolizing a cpu for too long by rescheduling while 5933 * not holding locks on any tree. 5934 */ 5935 cond_resched(); 5936 } 5937 if (ins_nr) { 5938 ret = copy_items(trans, inode, dst_path, path, ins_start_slot, 5939 ins_nr, inode_only, logged_isize); 5940 if (ret) 5941 return ret; 5942 } 5943 5944 if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) { 5945 /* 5946 * Release the path because otherwise we might attempt to double 5947 * lock the same leaf with btrfs_log_prealloc_extents() below. 5948 */ 5949 btrfs_release_path(path); 5950 ret = btrfs_log_prealloc_extents(trans, inode, dst_path); 5951 } 5952 5953 return ret; 5954 } 5955 5956 static int insert_delayed_items_batch(struct btrfs_trans_handle *trans, 5957 struct btrfs_root *log, 5958 struct btrfs_path *path, 5959 const struct btrfs_item_batch *batch, 5960 const struct btrfs_delayed_item *first_item) 5961 { 5962 const struct btrfs_delayed_item *curr = first_item; 5963 int ret; 5964 5965 ret = btrfs_insert_empty_items(trans, log, path, batch); 5966 if (ret) 5967 return ret; 5968 5969 for (int i = 0; i < batch->nr; i++) { 5970 char *data_ptr; 5971 5972 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char); 5973 write_extent_buffer(path->nodes[0], &curr->data, 5974 (unsigned long)data_ptr, curr->data_len); 5975 curr = list_next_entry(curr, log_list); 5976 path->slots[0]++; 5977 } 5978 5979 btrfs_release_path(path); 5980 5981 return 0; 5982 } 5983 5984 static int log_delayed_insertion_items(struct btrfs_trans_handle *trans, 5985 struct btrfs_inode *inode, 5986 struct btrfs_path *path, 5987 const struct list_head *delayed_ins_list, 5988 struct btrfs_log_ctx *ctx) 5989 { 5990 /* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */ 5991 const int max_batch_size = 195; 5992 const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info); 5993 const u64 ino = btrfs_ino(inode); 5994 struct btrfs_root *log = inode->root->log_root; 5995 struct btrfs_item_batch batch = { 5996 .nr = 0, 5997 .total_data_size = 0, 5998 }; 5999 const struct btrfs_delayed_item *first = NULL; 6000 const struct btrfs_delayed_item *curr; 6001 char *ins_data; 6002 struct btrfs_key *ins_keys; 6003 u32 *ins_sizes; 6004 u64 curr_batch_size = 0; 6005 int batch_idx = 0; 6006 int ret; 6007 6008 /* We are adding dir index items to the log tree. */ 6009 lockdep_assert_held(&inode->log_mutex); 6010 6011 /* 6012 * We collect delayed items before copying index keys from the subvolume 6013 * to the log tree. However just after we collected them, they may have 6014 * been flushed (all of them or just some of them), and therefore we 6015 * could have copied them from the subvolume tree to the log tree. 6016 * So find the first delayed item that was not yet logged (they are 6017 * sorted by index number). 6018 */ 6019 list_for_each_entry(curr, delayed_ins_list, log_list) { 6020 if (curr->index > inode->last_dir_index_offset) { 6021 first = curr; 6022 break; 6023 } 6024 } 6025 6026 /* Empty list or all delayed items were already logged. */ 6027 if (!first) 6028 return 0; 6029 6030 ins_data = kmalloc(max_batch_size * sizeof(u32) + 6031 max_batch_size * sizeof(struct btrfs_key), GFP_NOFS); 6032 if (!ins_data) 6033 return -ENOMEM; 6034 ins_sizes = (u32 *)ins_data; 6035 batch.data_sizes = ins_sizes; 6036 ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32)); 6037 batch.keys = ins_keys; 6038 6039 curr = first; 6040 while (!list_entry_is_head(curr, delayed_ins_list, log_list)) { 6041 const u32 curr_size = curr->data_len + sizeof(struct btrfs_item); 6042 6043 if (curr_batch_size + curr_size > leaf_data_size || 6044 batch.nr == max_batch_size) { 6045 ret = insert_delayed_items_batch(trans, log, path, 6046 &batch, first); 6047 if (ret) 6048 goto out; 6049 batch_idx = 0; 6050 batch.nr = 0; 6051 batch.total_data_size = 0; 6052 curr_batch_size = 0; 6053 first = curr; 6054 } 6055 6056 ins_sizes[batch_idx] = curr->data_len; 6057 ins_keys[batch_idx].objectid = ino; 6058 ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY; 6059 ins_keys[batch_idx].offset = curr->index; 6060 curr_batch_size += curr_size; 6061 batch.total_data_size += curr->data_len; 6062 batch.nr++; 6063 batch_idx++; 6064 curr = list_next_entry(curr, log_list); 6065 } 6066 6067 ASSERT(batch.nr >= 1); 6068 ret = insert_delayed_items_batch(trans, log, path, &batch, first); 6069 6070 curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item, 6071 log_list); 6072 inode->last_dir_index_offset = curr->index; 6073 out: 6074 kfree(ins_data); 6075 6076 return ret; 6077 } 6078 6079 static int log_delayed_deletions_full(struct btrfs_trans_handle *trans, 6080 struct btrfs_inode *inode, 6081 struct btrfs_path *path, 6082 const struct list_head *delayed_del_list, 6083 struct btrfs_log_ctx *ctx) 6084 { 6085 const u64 ino = btrfs_ino(inode); 6086 const struct btrfs_delayed_item *curr; 6087 6088 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item, 6089 log_list); 6090 6091 while (!list_entry_is_head(curr, delayed_del_list, log_list)) { 6092 u64 first_dir_index = curr->index; 6093 u64 last_dir_index; 6094 const struct btrfs_delayed_item *next; 6095 int ret; 6096 6097 /* 6098 * Find a range of consecutive dir index items to delete. Like 6099 * this we log a single dir range item spanning several contiguous 6100 * dir items instead of logging one range item per dir index item. 6101 */ 6102 next = list_next_entry(curr, log_list); 6103 while (!list_entry_is_head(next, delayed_del_list, log_list)) { 6104 if (next->index != curr->index + 1) 6105 break; 6106 curr = next; 6107 next = list_next_entry(next, log_list); 6108 } 6109 6110 last_dir_index = curr->index; 6111 ASSERT(last_dir_index >= first_dir_index); 6112 6113 ret = insert_dir_log_key(trans, inode->root->log_root, path, 6114 ino, first_dir_index, last_dir_index); 6115 if (ret) 6116 return ret; 6117 curr = list_next_entry(curr, log_list); 6118 } 6119 6120 return 0; 6121 } 6122 6123 static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans, 6124 struct btrfs_inode *inode, 6125 struct btrfs_path *path, 6126 struct btrfs_log_ctx *ctx, 6127 const struct list_head *delayed_del_list, 6128 const struct btrfs_delayed_item *first, 6129 const struct btrfs_delayed_item **last_ret) 6130 { 6131 const struct btrfs_delayed_item *next; 6132 struct extent_buffer *leaf = path->nodes[0]; 6133 const int last_slot = btrfs_header_nritems(leaf) - 1; 6134 int slot = path->slots[0] + 1; 6135 const u64 ino = btrfs_ino(inode); 6136 6137 next = list_next_entry(first, log_list); 6138 6139 while (slot < last_slot && 6140 !list_entry_is_head(next, delayed_del_list, log_list)) { 6141 struct btrfs_key key; 6142 6143 btrfs_item_key_to_cpu(leaf, &key, slot); 6144 if (key.objectid != ino || 6145 key.type != BTRFS_DIR_INDEX_KEY || 6146 key.offset != next->index) 6147 break; 6148 6149 slot++; 6150 *last_ret = next; 6151 next = list_next_entry(next, log_list); 6152 } 6153 6154 return btrfs_del_items(trans, inode->root->log_root, path, 6155 path->slots[0], slot - path->slots[0]); 6156 } 6157 6158 static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans, 6159 struct btrfs_inode *inode, 6160 struct btrfs_path *path, 6161 const struct list_head *delayed_del_list, 6162 struct btrfs_log_ctx *ctx) 6163 { 6164 struct btrfs_root *log = inode->root->log_root; 6165 const struct btrfs_delayed_item *curr; 6166 u64 last_range_start; 6167 u64 last_range_end = 0; 6168 struct btrfs_key key; 6169 6170 key.objectid = btrfs_ino(inode); 6171 key.type = BTRFS_DIR_INDEX_KEY; 6172 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item, 6173 log_list); 6174 6175 while (!list_entry_is_head(curr, delayed_del_list, log_list)) { 6176 const struct btrfs_delayed_item *last = curr; 6177 u64 first_dir_index = curr->index; 6178 u64 last_dir_index; 6179 bool deleted_items = false; 6180 int ret; 6181 6182 key.offset = curr->index; 6183 ret = btrfs_search_slot(trans, log, &key, path, -1, 1); 6184 if (ret < 0) { 6185 return ret; 6186 } else if (ret == 0) { 6187 ret = batch_delete_dir_index_items(trans, inode, path, ctx, 6188 delayed_del_list, curr, 6189 &last); 6190 if (ret) 6191 return ret; 6192 deleted_items = true; 6193 } 6194 6195 btrfs_release_path(path); 6196 6197 /* 6198 * If we deleted items from the leaf, it means we have a range 6199 * item logging their range, so no need to add one or update an 6200 * existing one. Otherwise we have to log a dir range item. 6201 */ 6202 if (deleted_items) 6203 goto next_batch; 6204 6205 last_dir_index = last->index; 6206 ASSERT(last_dir_index >= first_dir_index); 6207 /* 6208 * If this range starts right after where the previous one ends, 6209 * then we want to reuse the previous range item and change its 6210 * end offset to the end of this range. This is just to minimize 6211 * leaf space usage, by avoiding adding a new range item. 6212 */ 6213 if (last_range_end != 0 && first_dir_index == last_range_end + 1) 6214 first_dir_index = last_range_start; 6215 6216 ret = insert_dir_log_key(trans, log, path, key.objectid, 6217 first_dir_index, last_dir_index); 6218 if (ret) 6219 return ret; 6220 6221 last_range_start = first_dir_index; 6222 last_range_end = last_dir_index; 6223 next_batch: 6224 curr = list_next_entry(last, log_list); 6225 } 6226 6227 return 0; 6228 } 6229 6230 static int log_delayed_deletion_items(struct btrfs_trans_handle *trans, 6231 struct btrfs_inode *inode, 6232 struct btrfs_path *path, 6233 const struct list_head *delayed_del_list, 6234 struct btrfs_log_ctx *ctx) 6235 { 6236 /* 6237 * We are deleting dir index items from the log tree or adding range 6238 * items to it. 6239 */ 6240 lockdep_assert_held(&inode->log_mutex); 6241 6242 if (list_empty(delayed_del_list)) 6243 return 0; 6244 6245 if (ctx->logged_before) 6246 return log_delayed_deletions_incremental(trans, inode, path, 6247 delayed_del_list, ctx); 6248 6249 return log_delayed_deletions_full(trans, inode, path, delayed_del_list, 6250 ctx); 6251 } 6252 6253 /* 6254 * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed 6255 * items instead of the subvolume tree. 6256 */ 6257 static int log_new_delayed_dentries(struct btrfs_trans_handle *trans, 6258 struct btrfs_inode *inode, 6259 const struct list_head *delayed_ins_list, 6260 struct btrfs_log_ctx *ctx) 6261 { 6262 const bool orig_log_new_dentries = ctx->log_new_dentries; 6263 struct btrfs_fs_info *fs_info = trans->fs_info; 6264 struct btrfs_delayed_item *item; 6265 int ret = 0; 6266 6267 /* 6268 * No need for the log mutex, plus to avoid potential deadlocks or 6269 * lockdep annotations due to nesting of delayed inode mutexes and log 6270 * mutexes. 6271 */ 6272 lockdep_assert_not_held(&inode->log_mutex); 6273 6274 ASSERT(!ctx->logging_new_delayed_dentries); 6275 ctx->logging_new_delayed_dentries = true; 6276 6277 list_for_each_entry(item, delayed_ins_list, log_list) { 6278 struct btrfs_dir_item *dir_item; 6279 struct inode *di_inode; 6280 struct btrfs_key key; 6281 int log_mode = LOG_INODE_EXISTS; 6282 6283 dir_item = (struct btrfs_dir_item *)item->data; 6284 btrfs_disk_key_to_cpu(&key, &dir_item->location); 6285 6286 if (key.type == BTRFS_ROOT_ITEM_KEY) 6287 continue; 6288 6289 di_inode = btrfs_iget(fs_info->sb, key.objectid, inode->root); 6290 if (IS_ERR(di_inode)) { 6291 ret = PTR_ERR(di_inode); 6292 break; 6293 } 6294 6295 if (!need_log_inode(trans, BTRFS_I(di_inode))) { 6296 btrfs_add_delayed_iput(BTRFS_I(di_inode)); 6297 continue; 6298 } 6299 6300 if (btrfs_stack_dir_ftype(dir_item) == BTRFS_FT_DIR) 6301 log_mode = LOG_INODE_ALL; 6302 6303 ctx->log_new_dentries = false; 6304 ret = btrfs_log_inode(trans, BTRFS_I(di_inode), log_mode, ctx); 6305 6306 if (!ret && ctx->log_new_dentries) 6307 ret = log_new_dir_dentries(trans, BTRFS_I(di_inode), ctx); 6308 6309 btrfs_add_delayed_iput(BTRFS_I(di_inode)); 6310 6311 if (ret) 6312 break; 6313 } 6314 6315 ctx->log_new_dentries = orig_log_new_dentries; 6316 ctx->logging_new_delayed_dentries = false; 6317 6318 return ret; 6319 } 6320 6321 /* log a single inode in the tree log. 6322 * At least one parent directory for this inode must exist in the tree 6323 * or be logged already. 6324 * 6325 * Any items from this inode changed by the current transaction are copied 6326 * to the log tree. An extra reference is taken on any extents in this 6327 * file, allowing us to avoid a whole pile of corner cases around logging 6328 * blocks that have been removed from the tree. 6329 * 6330 * See LOG_INODE_ALL and related defines for a description of what inode_only 6331 * does. 6332 * 6333 * This handles both files and directories. 6334 */ 6335 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 6336 struct btrfs_inode *inode, 6337 int inode_only, 6338 struct btrfs_log_ctx *ctx) 6339 { 6340 struct btrfs_path *path; 6341 struct btrfs_path *dst_path; 6342 struct btrfs_key min_key; 6343 struct btrfs_key max_key; 6344 struct btrfs_root *log = inode->root->log_root; 6345 int ret; 6346 bool fast_search = false; 6347 u64 ino = btrfs_ino(inode); 6348 struct extent_map_tree *em_tree = &inode->extent_tree; 6349 u64 logged_isize = 0; 6350 bool need_log_inode_item = true; 6351 bool xattrs_logged = false; 6352 bool inode_item_dropped = true; 6353 bool full_dir_logging = false; 6354 LIST_HEAD(delayed_ins_list); 6355 LIST_HEAD(delayed_del_list); 6356 6357 path = btrfs_alloc_path(); 6358 if (!path) 6359 return -ENOMEM; 6360 dst_path = btrfs_alloc_path(); 6361 if (!dst_path) { 6362 btrfs_free_path(path); 6363 return -ENOMEM; 6364 } 6365 6366 min_key.objectid = ino; 6367 min_key.type = BTRFS_INODE_ITEM_KEY; 6368 min_key.offset = 0; 6369 6370 max_key.objectid = ino; 6371 6372 6373 /* today the code can only do partial logging of directories */ 6374 if (S_ISDIR(inode->vfs_inode.i_mode) || 6375 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 6376 &inode->runtime_flags) && 6377 inode_only >= LOG_INODE_EXISTS)) 6378 max_key.type = BTRFS_XATTR_ITEM_KEY; 6379 else 6380 max_key.type = (u8)-1; 6381 max_key.offset = (u64)-1; 6382 6383 if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL) 6384 full_dir_logging = true; 6385 6386 /* 6387 * If we are logging a directory while we are logging dentries of the 6388 * delayed items of some other inode, then we need to flush the delayed 6389 * items of this directory and not log the delayed items directly. This 6390 * is to prevent more than one level of recursion into btrfs_log_inode() 6391 * by having something like this: 6392 * 6393 * $ mkdir -p a/b/c/d/e/f/g/h/... 6394 * $ xfs_io -c "fsync" a 6395 * 6396 * Where all directories in the path did not exist before and are 6397 * created in the current transaction. 6398 * So in such a case we directly log the delayed items of the main 6399 * directory ("a") without flushing them first, while for each of its 6400 * subdirectories we flush their delayed items before logging them. 6401 * This prevents a potential unbounded recursion like this: 6402 * 6403 * btrfs_log_inode() 6404 * log_new_delayed_dentries() 6405 * btrfs_log_inode() 6406 * log_new_delayed_dentries() 6407 * btrfs_log_inode() 6408 * log_new_delayed_dentries() 6409 * (...) 6410 * 6411 * We have thresholds for the maximum number of delayed items to have in 6412 * memory, and once they are hit, the items are flushed asynchronously. 6413 * However the limit is quite high, so lets prevent deep levels of 6414 * recursion to happen by limiting the maximum depth to be 1. 6415 */ 6416 if (full_dir_logging && ctx->logging_new_delayed_dentries) { 6417 ret = btrfs_commit_inode_delayed_items(trans, inode); 6418 if (ret) 6419 goto out; 6420 } 6421 6422 mutex_lock(&inode->log_mutex); 6423 6424 /* 6425 * For symlinks, we must always log their content, which is stored in an 6426 * inline extent, otherwise we could end up with an empty symlink after 6427 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if 6428 * one attempts to create an empty symlink). 6429 * We don't need to worry about flushing delalloc, because when we create 6430 * the inline extent when the symlink is created (we never have delalloc 6431 * for symlinks). 6432 */ 6433 if (S_ISLNK(inode->vfs_inode.i_mode)) 6434 inode_only = LOG_INODE_ALL; 6435 6436 /* 6437 * Before logging the inode item, cache the value returned by 6438 * inode_logged(), because after that we have the need to figure out if 6439 * the inode was previously logged in this transaction. 6440 */ 6441 ret = inode_logged(trans, inode, path); 6442 if (ret < 0) 6443 goto out_unlock; 6444 ctx->logged_before = (ret == 1); 6445 ret = 0; 6446 6447 /* 6448 * This is for cases where logging a directory could result in losing a 6449 * a file after replaying the log. For example, if we move a file from a 6450 * directory A to a directory B, then fsync directory A, we have no way 6451 * to known the file was moved from A to B, so logging just A would 6452 * result in losing the file after a log replay. 6453 */ 6454 if (full_dir_logging && inode->last_unlink_trans >= trans->transid) { 6455 ret = BTRFS_LOG_FORCE_COMMIT; 6456 goto out_unlock; 6457 } 6458 6459 /* 6460 * a brute force approach to making sure we get the most uptodate 6461 * copies of everything. 6462 */ 6463 if (S_ISDIR(inode->vfs_inode.i_mode)) { 6464 clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags); 6465 if (ctx->logged_before) 6466 ret = drop_inode_items(trans, log, path, inode, 6467 BTRFS_XATTR_ITEM_KEY); 6468 } else { 6469 if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) { 6470 /* 6471 * Make sure the new inode item we write to the log has 6472 * the same isize as the current one (if it exists). 6473 * This is necessary to prevent data loss after log 6474 * replay, and also to prevent doing a wrong expanding 6475 * truncate - for e.g. create file, write 4K into offset 6476 * 0, fsync, write 4K into offset 4096, add hard link, 6477 * fsync some other file (to sync log), power fail - if 6478 * we use the inode's current i_size, after log replay 6479 * we get a 8Kb file, with the last 4Kb extent as a hole 6480 * (zeroes), as if an expanding truncate happened, 6481 * instead of getting a file of 4Kb only. 6482 */ 6483 ret = logged_inode_size(log, inode, path, &logged_isize); 6484 if (ret) 6485 goto out_unlock; 6486 } 6487 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 6488 &inode->runtime_flags)) { 6489 if (inode_only == LOG_INODE_EXISTS) { 6490 max_key.type = BTRFS_XATTR_ITEM_KEY; 6491 if (ctx->logged_before) 6492 ret = drop_inode_items(trans, log, path, 6493 inode, max_key.type); 6494 } else { 6495 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 6496 &inode->runtime_flags); 6497 clear_bit(BTRFS_INODE_COPY_EVERYTHING, 6498 &inode->runtime_flags); 6499 if (ctx->logged_before) 6500 ret = truncate_inode_items(trans, log, 6501 inode, 0, 0); 6502 } 6503 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING, 6504 &inode->runtime_flags) || 6505 inode_only == LOG_INODE_EXISTS) { 6506 if (inode_only == LOG_INODE_ALL) 6507 fast_search = true; 6508 max_key.type = BTRFS_XATTR_ITEM_KEY; 6509 if (ctx->logged_before) 6510 ret = drop_inode_items(trans, log, path, inode, 6511 max_key.type); 6512 } else { 6513 if (inode_only == LOG_INODE_ALL) 6514 fast_search = true; 6515 inode_item_dropped = false; 6516 goto log_extents; 6517 } 6518 6519 } 6520 if (ret) 6521 goto out_unlock; 6522 6523 /* 6524 * If we are logging a directory in full mode, collect the delayed items 6525 * before iterating the subvolume tree, so that we don't miss any new 6526 * dir index items in case they get flushed while or right after we are 6527 * iterating the subvolume tree. 6528 */ 6529 if (full_dir_logging && !ctx->logging_new_delayed_dentries) 6530 btrfs_log_get_delayed_items(inode, &delayed_ins_list, 6531 &delayed_del_list); 6532 6533 ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key, 6534 path, dst_path, logged_isize, 6535 inode_only, ctx, 6536 &need_log_inode_item); 6537 if (ret) 6538 goto out_unlock; 6539 6540 btrfs_release_path(path); 6541 btrfs_release_path(dst_path); 6542 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path); 6543 if (ret) 6544 goto out_unlock; 6545 xattrs_logged = true; 6546 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) { 6547 btrfs_release_path(path); 6548 btrfs_release_path(dst_path); 6549 ret = btrfs_log_holes(trans, inode, path); 6550 if (ret) 6551 goto out_unlock; 6552 } 6553 log_extents: 6554 btrfs_release_path(path); 6555 btrfs_release_path(dst_path); 6556 if (need_log_inode_item) { 6557 ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped); 6558 if (ret) 6559 goto out_unlock; 6560 /* 6561 * If we are doing a fast fsync and the inode was logged before 6562 * in this transaction, we don't need to log the xattrs because 6563 * they were logged before. If xattrs were added, changed or 6564 * deleted since the last time we logged the inode, then we have 6565 * already logged them because the inode had the runtime flag 6566 * BTRFS_INODE_COPY_EVERYTHING set. 6567 */ 6568 if (!xattrs_logged && inode->logged_trans < trans->transid) { 6569 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path); 6570 if (ret) 6571 goto out_unlock; 6572 btrfs_release_path(path); 6573 } 6574 } 6575 if (fast_search) { 6576 ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx); 6577 if (ret) 6578 goto out_unlock; 6579 } else if (inode_only == LOG_INODE_ALL) { 6580 struct extent_map *em, *n; 6581 6582 write_lock(&em_tree->lock); 6583 list_for_each_entry_safe(em, n, &em_tree->modified_extents, list) 6584 list_del_init(&em->list); 6585 write_unlock(&em_tree->lock); 6586 } 6587 6588 if (full_dir_logging) { 6589 ret = log_directory_changes(trans, inode, path, dst_path, ctx); 6590 if (ret) 6591 goto out_unlock; 6592 ret = log_delayed_insertion_items(trans, inode, path, 6593 &delayed_ins_list, ctx); 6594 if (ret) 6595 goto out_unlock; 6596 ret = log_delayed_deletion_items(trans, inode, path, 6597 &delayed_del_list, ctx); 6598 if (ret) 6599 goto out_unlock; 6600 } 6601 6602 spin_lock(&inode->lock); 6603 inode->logged_trans = trans->transid; 6604 /* 6605 * Don't update last_log_commit if we logged that an inode exists. 6606 * We do this for three reasons: 6607 * 6608 * 1) We might have had buffered writes to this inode that were 6609 * flushed and had their ordered extents completed in this 6610 * transaction, but we did not previously log the inode with 6611 * LOG_INODE_ALL. Later the inode was evicted and after that 6612 * it was loaded again and this LOG_INODE_EXISTS log operation 6613 * happened. We must make sure that if an explicit fsync against 6614 * the inode is performed later, it logs the new extents, an 6615 * updated inode item, etc, and syncs the log. The same logic 6616 * applies to direct IO writes instead of buffered writes. 6617 * 6618 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item 6619 * is logged with an i_size of 0 or whatever value was logged 6620 * before. If later the i_size of the inode is increased by a 6621 * truncate operation, the log is synced through an fsync of 6622 * some other inode and then finally an explicit fsync against 6623 * this inode is made, we must make sure this fsync logs the 6624 * inode with the new i_size, the hole between old i_size and 6625 * the new i_size, and syncs the log. 6626 * 6627 * 3) If we are logging that an ancestor inode exists as part of 6628 * logging a new name from a link or rename operation, don't update 6629 * its last_log_commit - otherwise if an explicit fsync is made 6630 * against an ancestor, the fsync considers the inode in the log 6631 * and doesn't sync the log, resulting in the ancestor missing after 6632 * a power failure unless the log was synced as part of an fsync 6633 * against any other unrelated inode. 6634 */ 6635 if (inode_only != LOG_INODE_EXISTS) 6636 inode->last_log_commit = inode->last_sub_trans; 6637 spin_unlock(&inode->lock); 6638 6639 /* 6640 * Reset the last_reflink_trans so that the next fsync does not need to 6641 * go through the slower path when logging extents and their checksums. 6642 */ 6643 if (inode_only == LOG_INODE_ALL) 6644 inode->last_reflink_trans = 0; 6645 6646 out_unlock: 6647 mutex_unlock(&inode->log_mutex); 6648 out: 6649 btrfs_free_path(path); 6650 btrfs_free_path(dst_path); 6651 6652 if (ret) 6653 free_conflicting_inodes(ctx); 6654 else 6655 ret = log_conflicting_inodes(trans, inode->root, ctx); 6656 6657 if (full_dir_logging && !ctx->logging_new_delayed_dentries) { 6658 if (!ret) 6659 ret = log_new_delayed_dentries(trans, inode, 6660 &delayed_ins_list, ctx); 6661 6662 btrfs_log_put_delayed_items(inode, &delayed_ins_list, 6663 &delayed_del_list); 6664 } 6665 6666 return ret; 6667 } 6668 6669 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans, 6670 struct btrfs_inode *inode, 6671 struct btrfs_log_ctx *ctx) 6672 { 6673 struct btrfs_fs_info *fs_info = trans->fs_info; 6674 int ret; 6675 struct btrfs_path *path; 6676 struct btrfs_key key; 6677 struct btrfs_root *root = inode->root; 6678 const u64 ino = btrfs_ino(inode); 6679 6680 path = btrfs_alloc_path(); 6681 if (!path) 6682 return -ENOMEM; 6683 path->skip_locking = 1; 6684 path->search_commit_root = 1; 6685 6686 key.objectid = ino; 6687 key.type = BTRFS_INODE_REF_KEY; 6688 key.offset = 0; 6689 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6690 if (ret < 0) 6691 goto out; 6692 6693 while (true) { 6694 struct extent_buffer *leaf = path->nodes[0]; 6695 int slot = path->slots[0]; 6696 u32 cur_offset = 0; 6697 u32 item_size; 6698 unsigned long ptr; 6699 6700 if (slot >= btrfs_header_nritems(leaf)) { 6701 ret = btrfs_next_leaf(root, path); 6702 if (ret < 0) 6703 goto out; 6704 else if (ret > 0) 6705 break; 6706 continue; 6707 } 6708 6709 btrfs_item_key_to_cpu(leaf, &key, slot); 6710 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */ 6711 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY) 6712 break; 6713 6714 item_size = btrfs_item_size(leaf, slot); 6715 ptr = btrfs_item_ptr_offset(leaf, slot); 6716 while (cur_offset < item_size) { 6717 struct btrfs_key inode_key; 6718 struct inode *dir_inode; 6719 6720 inode_key.type = BTRFS_INODE_ITEM_KEY; 6721 inode_key.offset = 0; 6722 6723 if (key.type == BTRFS_INODE_EXTREF_KEY) { 6724 struct btrfs_inode_extref *extref; 6725 6726 extref = (struct btrfs_inode_extref *) 6727 (ptr + cur_offset); 6728 inode_key.objectid = btrfs_inode_extref_parent( 6729 leaf, extref); 6730 cur_offset += sizeof(*extref); 6731 cur_offset += btrfs_inode_extref_name_len(leaf, 6732 extref); 6733 } else { 6734 inode_key.objectid = key.offset; 6735 cur_offset = item_size; 6736 } 6737 6738 dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid, 6739 root); 6740 /* 6741 * If the parent inode was deleted, return an error to 6742 * fallback to a transaction commit. This is to prevent 6743 * getting an inode that was moved from one parent A to 6744 * a parent B, got its former parent A deleted and then 6745 * it got fsync'ed, from existing at both parents after 6746 * a log replay (and the old parent still existing). 6747 * Example: 6748 * 6749 * mkdir /mnt/A 6750 * mkdir /mnt/B 6751 * touch /mnt/B/bar 6752 * sync 6753 * mv /mnt/B/bar /mnt/A/bar 6754 * mv -T /mnt/A /mnt/B 6755 * fsync /mnt/B/bar 6756 * <power fail> 6757 * 6758 * If we ignore the old parent B which got deleted, 6759 * after a log replay we would have file bar linked 6760 * at both parents and the old parent B would still 6761 * exist. 6762 */ 6763 if (IS_ERR(dir_inode)) { 6764 ret = PTR_ERR(dir_inode); 6765 goto out; 6766 } 6767 6768 if (!need_log_inode(trans, BTRFS_I(dir_inode))) { 6769 btrfs_add_delayed_iput(BTRFS_I(dir_inode)); 6770 continue; 6771 } 6772 6773 ctx->log_new_dentries = false; 6774 ret = btrfs_log_inode(trans, BTRFS_I(dir_inode), 6775 LOG_INODE_ALL, ctx); 6776 if (!ret && ctx->log_new_dentries) 6777 ret = log_new_dir_dentries(trans, 6778 BTRFS_I(dir_inode), ctx); 6779 btrfs_add_delayed_iput(BTRFS_I(dir_inode)); 6780 if (ret) 6781 goto out; 6782 } 6783 path->slots[0]++; 6784 } 6785 ret = 0; 6786 out: 6787 btrfs_free_path(path); 6788 return ret; 6789 } 6790 6791 static int log_new_ancestors(struct btrfs_trans_handle *trans, 6792 struct btrfs_root *root, 6793 struct btrfs_path *path, 6794 struct btrfs_log_ctx *ctx) 6795 { 6796 struct btrfs_key found_key; 6797 6798 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 6799 6800 while (true) { 6801 struct btrfs_fs_info *fs_info = root->fs_info; 6802 struct extent_buffer *leaf = path->nodes[0]; 6803 int slot = path->slots[0]; 6804 struct btrfs_key search_key; 6805 struct inode *inode; 6806 u64 ino; 6807 int ret = 0; 6808 6809 btrfs_release_path(path); 6810 6811 ino = found_key.offset; 6812 6813 search_key.objectid = found_key.offset; 6814 search_key.type = BTRFS_INODE_ITEM_KEY; 6815 search_key.offset = 0; 6816 inode = btrfs_iget(fs_info->sb, ino, root); 6817 if (IS_ERR(inode)) 6818 return PTR_ERR(inode); 6819 6820 if (BTRFS_I(inode)->generation >= trans->transid && 6821 need_log_inode(trans, BTRFS_I(inode))) 6822 ret = btrfs_log_inode(trans, BTRFS_I(inode), 6823 LOG_INODE_EXISTS, ctx); 6824 btrfs_add_delayed_iput(BTRFS_I(inode)); 6825 if (ret) 6826 return ret; 6827 6828 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID) 6829 break; 6830 6831 search_key.type = BTRFS_INODE_REF_KEY; 6832 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 6833 if (ret < 0) 6834 return ret; 6835 6836 leaf = path->nodes[0]; 6837 slot = path->slots[0]; 6838 if (slot >= btrfs_header_nritems(leaf)) { 6839 ret = btrfs_next_leaf(root, path); 6840 if (ret < 0) 6841 return ret; 6842 else if (ret > 0) 6843 return -ENOENT; 6844 leaf = path->nodes[0]; 6845 slot = path->slots[0]; 6846 } 6847 6848 btrfs_item_key_to_cpu(leaf, &found_key, slot); 6849 if (found_key.objectid != search_key.objectid || 6850 found_key.type != BTRFS_INODE_REF_KEY) 6851 return -ENOENT; 6852 } 6853 return 0; 6854 } 6855 6856 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans, 6857 struct btrfs_inode *inode, 6858 struct dentry *parent, 6859 struct btrfs_log_ctx *ctx) 6860 { 6861 struct btrfs_root *root = inode->root; 6862 struct dentry *old_parent = NULL; 6863 struct super_block *sb = inode->vfs_inode.i_sb; 6864 int ret = 0; 6865 6866 while (true) { 6867 if (!parent || d_really_is_negative(parent) || 6868 sb != parent->d_sb) 6869 break; 6870 6871 inode = BTRFS_I(d_inode(parent)); 6872 if (root != inode->root) 6873 break; 6874 6875 if (inode->generation >= trans->transid && 6876 need_log_inode(trans, inode)) { 6877 ret = btrfs_log_inode(trans, inode, 6878 LOG_INODE_EXISTS, ctx); 6879 if (ret) 6880 break; 6881 } 6882 if (IS_ROOT(parent)) 6883 break; 6884 6885 parent = dget_parent(parent); 6886 dput(old_parent); 6887 old_parent = parent; 6888 } 6889 dput(old_parent); 6890 6891 return ret; 6892 } 6893 6894 static int log_all_new_ancestors(struct btrfs_trans_handle *trans, 6895 struct btrfs_inode *inode, 6896 struct dentry *parent, 6897 struct btrfs_log_ctx *ctx) 6898 { 6899 struct btrfs_root *root = inode->root; 6900 const u64 ino = btrfs_ino(inode); 6901 struct btrfs_path *path; 6902 struct btrfs_key search_key; 6903 int ret; 6904 6905 /* 6906 * For a single hard link case, go through a fast path that does not 6907 * need to iterate the fs/subvolume tree. 6908 */ 6909 if (inode->vfs_inode.i_nlink < 2) 6910 return log_new_ancestors_fast(trans, inode, parent, ctx); 6911 6912 path = btrfs_alloc_path(); 6913 if (!path) 6914 return -ENOMEM; 6915 6916 search_key.objectid = ino; 6917 search_key.type = BTRFS_INODE_REF_KEY; 6918 search_key.offset = 0; 6919 again: 6920 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 6921 if (ret < 0) 6922 goto out; 6923 if (ret == 0) 6924 path->slots[0]++; 6925 6926 while (true) { 6927 struct extent_buffer *leaf = path->nodes[0]; 6928 int slot = path->slots[0]; 6929 struct btrfs_key found_key; 6930 6931 if (slot >= btrfs_header_nritems(leaf)) { 6932 ret = btrfs_next_leaf(root, path); 6933 if (ret < 0) 6934 goto out; 6935 else if (ret > 0) 6936 break; 6937 continue; 6938 } 6939 6940 btrfs_item_key_to_cpu(leaf, &found_key, slot); 6941 if (found_key.objectid != ino || 6942 found_key.type > BTRFS_INODE_EXTREF_KEY) 6943 break; 6944 6945 /* 6946 * Don't deal with extended references because they are rare 6947 * cases and too complex to deal with (we would need to keep 6948 * track of which subitem we are processing for each item in 6949 * this loop, etc). So just return some error to fallback to 6950 * a transaction commit. 6951 */ 6952 if (found_key.type == BTRFS_INODE_EXTREF_KEY) { 6953 ret = -EMLINK; 6954 goto out; 6955 } 6956 6957 /* 6958 * Logging ancestors needs to do more searches on the fs/subvol 6959 * tree, so it releases the path as needed to avoid deadlocks. 6960 * Keep track of the last inode ref key and resume from that key 6961 * after logging all new ancestors for the current hard link. 6962 */ 6963 memcpy(&search_key, &found_key, sizeof(search_key)); 6964 6965 ret = log_new_ancestors(trans, root, path, ctx); 6966 if (ret) 6967 goto out; 6968 btrfs_release_path(path); 6969 goto again; 6970 } 6971 ret = 0; 6972 out: 6973 btrfs_free_path(path); 6974 return ret; 6975 } 6976 6977 /* 6978 * helper function around btrfs_log_inode to make sure newly created 6979 * parent directories also end up in the log. A minimal inode and backref 6980 * only logging is done of any parent directories that are older than 6981 * the last committed transaction 6982 */ 6983 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans, 6984 struct btrfs_inode *inode, 6985 struct dentry *parent, 6986 int inode_only, 6987 struct btrfs_log_ctx *ctx) 6988 { 6989 struct btrfs_root *root = inode->root; 6990 struct btrfs_fs_info *fs_info = root->fs_info; 6991 int ret = 0; 6992 bool log_dentries = false; 6993 6994 if (btrfs_test_opt(fs_info, NOTREELOG)) { 6995 ret = BTRFS_LOG_FORCE_COMMIT; 6996 goto end_no_trans; 6997 } 6998 6999 if (btrfs_root_refs(&root->root_item) == 0) { 7000 ret = BTRFS_LOG_FORCE_COMMIT; 7001 goto end_no_trans; 7002 } 7003 7004 /* 7005 * Skip already logged inodes or inodes corresponding to tmpfiles 7006 * (since logging them is pointless, a link count of 0 means they 7007 * will never be accessible). 7008 */ 7009 if ((btrfs_inode_in_log(inode, trans->transid) && 7010 list_empty(&ctx->ordered_extents)) || 7011 inode->vfs_inode.i_nlink == 0) { 7012 ret = BTRFS_NO_LOG_SYNC; 7013 goto end_no_trans; 7014 } 7015 7016 ret = start_log_trans(trans, root, ctx); 7017 if (ret) 7018 goto end_no_trans; 7019 7020 ret = btrfs_log_inode(trans, inode, inode_only, ctx); 7021 if (ret) 7022 goto end_trans; 7023 7024 /* 7025 * for regular files, if its inode is already on disk, we don't 7026 * have to worry about the parents at all. This is because 7027 * we can use the last_unlink_trans field to record renames 7028 * and other fun in this file. 7029 */ 7030 if (S_ISREG(inode->vfs_inode.i_mode) && 7031 inode->generation < trans->transid && 7032 inode->last_unlink_trans < trans->transid) { 7033 ret = 0; 7034 goto end_trans; 7035 } 7036 7037 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries) 7038 log_dentries = true; 7039 7040 /* 7041 * On unlink we must make sure all our current and old parent directory 7042 * inodes are fully logged. This is to prevent leaving dangling 7043 * directory index entries in directories that were our parents but are 7044 * not anymore. Not doing this results in old parent directory being 7045 * impossible to delete after log replay (rmdir will always fail with 7046 * error -ENOTEMPTY). 7047 * 7048 * Example 1: 7049 * 7050 * mkdir testdir 7051 * touch testdir/foo 7052 * ln testdir/foo testdir/bar 7053 * sync 7054 * unlink testdir/bar 7055 * xfs_io -c fsync testdir/foo 7056 * <power failure> 7057 * mount fs, triggers log replay 7058 * 7059 * If we don't log the parent directory (testdir), after log replay the 7060 * directory still has an entry pointing to the file inode using the bar 7061 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and 7062 * the file inode has a link count of 1. 7063 * 7064 * Example 2: 7065 * 7066 * mkdir testdir 7067 * touch foo 7068 * ln foo testdir/foo2 7069 * ln foo testdir/foo3 7070 * sync 7071 * unlink testdir/foo3 7072 * xfs_io -c fsync foo 7073 * <power failure> 7074 * mount fs, triggers log replay 7075 * 7076 * Similar as the first example, after log replay the parent directory 7077 * testdir still has an entry pointing to the inode file with name foo3 7078 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item 7079 * and has a link count of 2. 7080 */ 7081 if (inode->last_unlink_trans >= trans->transid) { 7082 ret = btrfs_log_all_parents(trans, inode, ctx); 7083 if (ret) 7084 goto end_trans; 7085 } 7086 7087 ret = log_all_new_ancestors(trans, inode, parent, ctx); 7088 if (ret) 7089 goto end_trans; 7090 7091 if (log_dentries) 7092 ret = log_new_dir_dentries(trans, inode, ctx); 7093 else 7094 ret = 0; 7095 end_trans: 7096 if (ret < 0) { 7097 btrfs_set_log_full_commit(trans); 7098 ret = BTRFS_LOG_FORCE_COMMIT; 7099 } 7100 7101 if (ret) 7102 btrfs_remove_log_ctx(root, ctx); 7103 btrfs_end_log_trans(root); 7104 end_no_trans: 7105 return ret; 7106 } 7107 7108 /* 7109 * it is not safe to log dentry if the chunk root has added new 7110 * chunks. This returns 0 if the dentry was logged, and 1 otherwise. 7111 * If this returns 1, you must commit the transaction to safely get your 7112 * data on disk. 7113 */ 7114 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans, 7115 struct dentry *dentry, 7116 struct btrfs_log_ctx *ctx) 7117 { 7118 struct dentry *parent = dget_parent(dentry); 7119 int ret; 7120 7121 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent, 7122 LOG_INODE_ALL, ctx); 7123 dput(parent); 7124 7125 return ret; 7126 } 7127 7128 /* 7129 * should be called during mount to recover any replay any log trees 7130 * from the FS 7131 */ 7132 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree) 7133 { 7134 int ret; 7135 struct btrfs_path *path; 7136 struct btrfs_trans_handle *trans; 7137 struct btrfs_key key; 7138 struct btrfs_key found_key; 7139 struct btrfs_root *log; 7140 struct btrfs_fs_info *fs_info = log_root_tree->fs_info; 7141 struct walk_control wc = { 7142 .process_func = process_one_buffer, 7143 .stage = LOG_WALK_PIN_ONLY, 7144 }; 7145 7146 path = btrfs_alloc_path(); 7147 if (!path) 7148 return -ENOMEM; 7149 7150 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 7151 7152 trans = btrfs_start_transaction(fs_info->tree_root, 0); 7153 if (IS_ERR(trans)) { 7154 ret = PTR_ERR(trans); 7155 goto error; 7156 } 7157 7158 wc.trans = trans; 7159 wc.pin = 1; 7160 7161 ret = walk_log_tree(trans, log_root_tree, &wc); 7162 if (ret) { 7163 btrfs_abort_transaction(trans, ret); 7164 goto error; 7165 } 7166 7167 again: 7168 key.objectid = BTRFS_TREE_LOG_OBJECTID; 7169 key.offset = (u64)-1; 7170 key.type = BTRFS_ROOT_ITEM_KEY; 7171 7172 while (1) { 7173 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0); 7174 7175 if (ret < 0) { 7176 btrfs_abort_transaction(trans, ret); 7177 goto error; 7178 } 7179 if (ret > 0) { 7180 if (path->slots[0] == 0) 7181 break; 7182 path->slots[0]--; 7183 } 7184 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 7185 path->slots[0]); 7186 btrfs_release_path(path); 7187 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID) 7188 break; 7189 7190 log = btrfs_read_tree_root(log_root_tree, &found_key); 7191 if (IS_ERR(log)) { 7192 ret = PTR_ERR(log); 7193 btrfs_abort_transaction(trans, ret); 7194 goto error; 7195 } 7196 7197 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset, 7198 true); 7199 if (IS_ERR(wc.replay_dest)) { 7200 ret = PTR_ERR(wc.replay_dest); 7201 7202 /* 7203 * We didn't find the subvol, likely because it was 7204 * deleted. This is ok, simply skip this log and go to 7205 * the next one. 7206 * 7207 * We need to exclude the root because we can't have 7208 * other log replays overwriting this log as we'll read 7209 * it back in a few more times. This will keep our 7210 * block from being modified, and we'll just bail for 7211 * each subsequent pass. 7212 */ 7213 if (ret == -ENOENT) 7214 ret = btrfs_pin_extent_for_log_replay(trans, 7215 log->node->start, 7216 log->node->len); 7217 btrfs_put_root(log); 7218 7219 if (!ret) 7220 goto next; 7221 btrfs_abort_transaction(trans, ret); 7222 goto error; 7223 } 7224 7225 wc.replay_dest->log_root = log; 7226 ret = btrfs_record_root_in_trans(trans, wc.replay_dest); 7227 if (ret) 7228 /* The loop needs to continue due to the root refs */ 7229 btrfs_abort_transaction(trans, ret); 7230 else 7231 ret = walk_log_tree(trans, log, &wc); 7232 7233 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) { 7234 ret = fixup_inode_link_counts(trans, wc.replay_dest, 7235 path); 7236 if (ret) 7237 btrfs_abort_transaction(trans, ret); 7238 } 7239 7240 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) { 7241 struct btrfs_root *root = wc.replay_dest; 7242 7243 btrfs_release_path(path); 7244 7245 /* 7246 * We have just replayed everything, and the highest 7247 * objectid of fs roots probably has changed in case 7248 * some inode_item's got replayed. 7249 * 7250 * root->objectid_mutex is not acquired as log replay 7251 * could only happen during mount. 7252 */ 7253 ret = btrfs_init_root_free_objectid(root); 7254 if (ret) 7255 btrfs_abort_transaction(trans, ret); 7256 } 7257 7258 wc.replay_dest->log_root = NULL; 7259 btrfs_put_root(wc.replay_dest); 7260 btrfs_put_root(log); 7261 7262 if (ret) 7263 goto error; 7264 next: 7265 if (found_key.offset == 0) 7266 break; 7267 key.offset = found_key.offset - 1; 7268 } 7269 btrfs_release_path(path); 7270 7271 /* step one is to pin it all, step two is to replay just inodes */ 7272 if (wc.pin) { 7273 wc.pin = 0; 7274 wc.process_func = replay_one_buffer; 7275 wc.stage = LOG_WALK_REPLAY_INODES; 7276 goto again; 7277 } 7278 /* step three is to replay everything */ 7279 if (wc.stage < LOG_WALK_REPLAY_ALL) { 7280 wc.stage++; 7281 goto again; 7282 } 7283 7284 btrfs_free_path(path); 7285 7286 /* step 4: commit the transaction, which also unpins the blocks */ 7287 ret = btrfs_commit_transaction(trans); 7288 if (ret) 7289 return ret; 7290 7291 log_root_tree->log_root = NULL; 7292 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 7293 btrfs_put_root(log_root_tree); 7294 7295 return 0; 7296 error: 7297 if (wc.trans) 7298 btrfs_end_transaction(wc.trans); 7299 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 7300 btrfs_free_path(path); 7301 return ret; 7302 } 7303 7304 /* 7305 * there are some corner cases where we want to force a full 7306 * commit instead of allowing a directory to be logged. 7307 * 7308 * They revolve around files there were unlinked from the directory, and 7309 * this function updates the parent directory so that a full commit is 7310 * properly done if it is fsync'd later after the unlinks are done. 7311 * 7312 * Must be called before the unlink operations (updates to the subvolume tree, 7313 * inodes, etc) are done. 7314 */ 7315 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans, 7316 struct btrfs_inode *dir, struct btrfs_inode *inode, 7317 int for_rename) 7318 { 7319 /* 7320 * when we're logging a file, if it hasn't been renamed 7321 * or unlinked, and its inode is fully committed on disk, 7322 * we don't have to worry about walking up the directory chain 7323 * to log its parents. 7324 * 7325 * So, we use the last_unlink_trans field to put this transid 7326 * into the file. When the file is logged we check it and 7327 * don't log the parents if the file is fully on disk. 7328 */ 7329 mutex_lock(&inode->log_mutex); 7330 inode->last_unlink_trans = trans->transid; 7331 mutex_unlock(&inode->log_mutex); 7332 7333 /* 7334 * if this directory was already logged any new 7335 * names for this file/dir will get recorded 7336 */ 7337 if (dir->logged_trans == trans->transid) 7338 return; 7339 7340 /* 7341 * if the inode we're about to unlink was logged, 7342 * the log will be properly updated for any new names 7343 */ 7344 if (inode->logged_trans == trans->transid) 7345 return; 7346 7347 /* 7348 * when renaming files across directories, if the directory 7349 * there we're unlinking from gets fsync'd later on, there's 7350 * no way to find the destination directory later and fsync it 7351 * properly. So, we have to be conservative and force commits 7352 * so the new name gets discovered. 7353 */ 7354 if (for_rename) 7355 goto record; 7356 7357 /* we can safely do the unlink without any special recording */ 7358 return; 7359 7360 record: 7361 mutex_lock(&dir->log_mutex); 7362 dir->last_unlink_trans = trans->transid; 7363 mutex_unlock(&dir->log_mutex); 7364 } 7365 7366 /* 7367 * Make sure that if someone attempts to fsync the parent directory of a deleted 7368 * snapshot, it ends up triggering a transaction commit. This is to guarantee 7369 * that after replaying the log tree of the parent directory's root we will not 7370 * see the snapshot anymore and at log replay time we will not see any log tree 7371 * corresponding to the deleted snapshot's root, which could lead to replaying 7372 * it after replaying the log tree of the parent directory (which would replay 7373 * the snapshot delete operation). 7374 * 7375 * Must be called before the actual snapshot destroy operation (updates to the 7376 * parent root and tree of tree roots trees, etc) are done. 7377 */ 7378 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans, 7379 struct btrfs_inode *dir) 7380 { 7381 mutex_lock(&dir->log_mutex); 7382 dir->last_unlink_trans = trans->transid; 7383 mutex_unlock(&dir->log_mutex); 7384 } 7385 7386 /* 7387 * Update the log after adding a new name for an inode. 7388 * 7389 * @trans: Transaction handle. 7390 * @old_dentry: The dentry associated with the old name and the old 7391 * parent directory. 7392 * @old_dir: The inode of the previous parent directory for the case 7393 * of a rename. For a link operation, it must be NULL. 7394 * @old_dir_index: The index number associated with the old name, meaningful 7395 * only for rename operations (when @old_dir is not NULL). 7396 * Ignored for link operations. 7397 * @parent: The dentry associated with the directory under which the 7398 * new name is located. 7399 * 7400 * Call this after adding a new name for an inode, as a result of a link or 7401 * rename operation, and it will properly update the log to reflect the new name. 7402 */ 7403 void btrfs_log_new_name(struct btrfs_trans_handle *trans, 7404 struct dentry *old_dentry, struct btrfs_inode *old_dir, 7405 u64 old_dir_index, struct dentry *parent) 7406 { 7407 struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry)); 7408 struct btrfs_root *root = inode->root; 7409 struct btrfs_log_ctx ctx; 7410 bool log_pinned = false; 7411 int ret; 7412 7413 /* 7414 * this will force the logging code to walk the dentry chain 7415 * up for the file 7416 */ 7417 if (!S_ISDIR(inode->vfs_inode.i_mode)) 7418 inode->last_unlink_trans = trans->transid; 7419 7420 /* 7421 * if this inode hasn't been logged and directory we're renaming it 7422 * from hasn't been logged, we don't need to log it 7423 */ 7424 ret = inode_logged(trans, inode, NULL); 7425 if (ret < 0) { 7426 goto out; 7427 } else if (ret == 0) { 7428 if (!old_dir) 7429 return; 7430 /* 7431 * If the inode was not logged and we are doing a rename (old_dir is not 7432 * NULL), check if old_dir was logged - if it was not we can return and 7433 * do nothing. 7434 */ 7435 ret = inode_logged(trans, old_dir, NULL); 7436 if (ret < 0) 7437 goto out; 7438 else if (ret == 0) 7439 return; 7440 } 7441 ret = 0; 7442 7443 /* 7444 * If we are doing a rename (old_dir is not NULL) from a directory that 7445 * was previously logged, make sure that on log replay we get the old 7446 * dir entry deleted. This is needed because we will also log the new 7447 * name of the renamed inode, so we need to make sure that after log 7448 * replay we don't end up with both the new and old dir entries existing. 7449 */ 7450 if (old_dir && old_dir->logged_trans == trans->transid) { 7451 struct btrfs_root *log = old_dir->root->log_root; 7452 struct btrfs_path *path; 7453 struct fscrypt_name fname; 7454 7455 ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX); 7456 7457 ret = fscrypt_setup_filename(&old_dir->vfs_inode, 7458 &old_dentry->d_name, 0, &fname); 7459 if (ret) 7460 goto out; 7461 /* 7462 * We have two inodes to update in the log, the old directory and 7463 * the inode that got renamed, so we must pin the log to prevent 7464 * anyone from syncing the log until we have updated both inodes 7465 * in the log. 7466 */ 7467 ret = join_running_log_trans(root); 7468 /* 7469 * At least one of the inodes was logged before, so this should 7470 * not fail, but if it does, it's not serious, just bail out and 7471 * mark the log for a full commit. 7472 */ 7473 if (WARN_ON_ONCE(ret < 0)) { 7474 fscrypt_free_filename(&fname); 7475 goto out; 7476 } 7477 7478 log_pinned = true; 7479 7480 path = btrfs_alloc_path(); 7481 if (!path) { 7482 ret = -ENOMEM; 7483 fscrypt_free_filename(&fname); 7484 goto out; 7485 } 7486 7487 /* 7488 * Other concurrent task might be logging the old directory, 7489 * as it can be triggered when logging other inode that had or 7490 * still has a dentry in the old directory. We lock the old 7491 * directory's log_mutex to ensure the deletion of the old 7492 * name is persisted, because during directory logging we 7493 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of 7494 * the old name's dir index item is in the delayed items, so 7495 * it could be missed by an in progress directory logging. 7496 */ 7497 mutex_lock(&old_dir->log_mutex); 7498 ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir), 7499 &fname.disk_name, old_dir_index); 7500 if (ret > 0) { 7501 /* 7502 * The dentry does not exist in the log, so record its 7503 * deletion. 7504 */ 7505 btrfs_release_path(path); 7506 ret = insert_dir_log_key(trans, log, path, 7507 btrfs_ino(old_dir), 7508 old_dir_index, old_dir_index); 7509 } 7510 mutex_unlock(&old_dir->log_mutex); 7511 7512 btrfs_free_path(path); 7513 fscrypt_free_filename(&fname); 7514 if (ret < 0) 7515 goto out; 7516 } 7517 7518 btrfs_init_log_ctx(&ctx, &inode->vfs_inode); 7519 ctx.logging_new_name = true; 7520 /* 7521 * We don't care about the return value. If we fail to log the new name 7522 * then we know the next attempt to sync the log will fallback to a full 7523 * transaction commit (due to a call to btrfs_set_log_full_commit()), so 7524 * we don't need to worry about getting a log committed that has an 7525 * inconsistent state after a rename operation. 7526 */ 7527 btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx); 7528 ASSERT(list_empty(&ctx.conflict_inodes)); 7529 out: 7530 /* 7531 * If an error happened mark the log for a full commit because it's not 7532 * consistent and up to date or we couldn't find out if one of the 7533 * inodes was logged before in this transaction. Do it before unpinning 7534 * the log, to avoid any races with someone else trying to commit it. 7535 */ 7536 if (ret < 0) 7537 btrfs_set_log_full_commit(trans); 7538 if (log_pinned) 7539 btrfs_end_log_trans(root); 7540 } 7541 7542