xref: /linux/fs/btrfs/tree-log.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include "ctree.h"
22 #include "transaction.h"
23 #include "disk-io.h"
24 #include "locking.h"
25 #include "print-tree.h"
26 #include "compat.h"
27 #include "tree-log.h"
28 
29 /* magic values for the inode_only field in btrfs_log_inode:
30  *
31  * LOG_INODE_ALL means to log everything
32  * LOG_INODE_EXISTS means to log just enough to recreate the inode
33  * during log replay
34  */
35 #define LOG_INODE_ALL 0
36 #define LOG_INODE_EXISTS 1
37 
38 /*
39  * directory trouble cases
40  *
41  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
42  * log, we must force a full commit before doing an fsync of the directory
43  * where the unlink was done.
44  * ---> record transid of last unlink/rename per directory
45  *
46  * mkdir foo/some_dir
47  * normal commit
48  * rename foo/some_dir foo2/some_dir
49  * mkdir foo/some_dir
50  * fsync foo/some_dir/some_file
51  *
52  * The fsync above will unlink the original some_dir without recording
53  * it in its new location (foo2).  After a crash, some_dir will be gone
54  * unless the fsync of some_file forces a full commit
55  *
56  * 2) we must log any new names for any file or dir that is in the fsync
57  * log. ---> check inode while renaming/linking.
58  *
59  * 2a) we must log any new names for any file or dir during rename
60  * when the directory they are being removed from was logged.
61  * ---> check inode and old parent dir during rename
62  *
63  *  2a is actually the more important variant.  With the extra logging
64  *  a crash might unlink the old name without recreating the new one
65  *
66  * 3) after a crash, we must go through any directories with a link count
67  * of zero and redo the rm -rf
68  *
69  * mkdir f1/foo
70  * normal commit
71  * rm -rf f1/foo
72  * fsync(f1)
73  *
74  * The directory f1 was fully removed from the FS, but fsync was never
75  * called on f1, only its parent dir.  After a crash the rm -rf must
76  * be replayed.  This must be able to recurse down the entire
77  * directory tree.  The inode link count fixup code takes care of the
78  * ugly details.
79  */
80 
81 /*
82  * stages for the tree walking.  The first
83  * stage (0) is to only pin down the blocks we find
84  * the second stage (1) is to make sure that all the inodes
85  * we find in the log are created in the subvolume.
86  *
87  * The last stage is to deal with directories and links and extents
88  * and all the other fun semantics
89  */
90 #define LOG_WALK_PIN_ONLY 0
91 #define LOG_WALK_REPLAY_INODES 1
92 #define LOG_WALK_REPLAY_ALL 2
93 
94 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
95 			     struct btrfs_root *root, struct inode *inode,
96 			     int inode_only);
97 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
98 			     struct btrfs_root *root,
99 			     struct btrfs_path *path, u64 objectid);
100 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
101 				       struct btrfs_root *root,
102 				       struct btrfs_root *log,
103 				       struct btrfs_path *path,
104 				       u64 dirid, int del_all);
105 
106 /*
107  * tree logging is a special write ahead log used to make sure that
108  * fsyncs and O_SYNCs can happen without doing full tree commits.
109  *
110  * Full tree commits are expensive because they require commonly
111  * modified blocks to be recowed, creating many dirty pages in the
112  * extent tree an 4x-6x higher write load than ext3.
113  *
114  * Instead of doing a tree commit on every fsync, we use the
115  * key ranges and transaction ids to find items for a given file or directory
116  * that have changed in this transaction.  Those items are copied into
117  * a special tree (one per subvolume root), that tree is written to disk
118  * and then the fsync is considered complete.
119  *
120  * After a crash, items are copied out of the log-tree back into the
121  * subvolume tree.  Any file data extents found are recorded in the extent
122  * allocation tree, and the log-tree freed.
123  *
124  * The log tree is read three times, once to pin down all the extents it is
125  * using in ram and once, once to create all the inodes logged in the tree
126  * and once to do all the other items.
127  */
128 
129 /*
130  * start a sub transaction and setup the log tree
131  * this increments the log tree writer count to make the people
132  * syncing the tree wait for us to finish
133  */
134 static int start_log_trans(struct btrfs_trans_handle *trans,
135 			   struct btrfs_root *root)
136 {
137 	int ret;
138 	int err = 0;
139 
140 	mutex_lock(&root->log_mutex);
141 	if (root->log_root) {
142 		if (!root->log_start_pid) {
143 			root->log_start_pid = current->pid;
144 			root->log_multiple_pids = false;
145 		} else if (root->log_start_pid != current->pid) {
146 			root->log_multiple_pids = true;
147 		}
148 
149 		root->log_batch++;
150 		atomic_inc(&root->log_writers);
151 		mutex_unlock(&root->log_mutex);
152 		return 0;
153 	}
154 	root->log_multiple_pids = false;
155 	root->log_start_pid = current->pid;
156 	mutex_lock(&root->fs_info->tree_log_mutex);
157 	if (!root->fs_info->log_root_tree) {
158 		ret = btrfs_init_log_root_tree(trans, root->fs_info);
159 		if (ret)
160 			err = ret;
161 	}
162 	if (err == 0 && !root->log_root) {
163 		ret = btrfs_add_log_tree(trans, root);
164 		if (ret)
165 			err = ret;
166 	}
167 	mutex_unlock(&root->fs_info->tree_log_mutex);
168 	root->log_batch++;
169 	atomic_inc(&root->log_writers);
170 	mutex_unlock(&root->log_mutex);
171 	return err;
172 }
173 
174 /*
175  * returns 0 if there was a log transaction running and we were able
176  * to join, or returns -ENOENT if there were not transactions
177  * in progress
178  */
179 static int join_running_log_trans(struct btrfs_root *root)
180 {
181 	int ret = -ENOENT;
182 
183 	smp_mb();
184 	if (!root->log_root)
185 		return -ENOENT;
186 
187 	mutex_lock(&root->log_mutex);
188 	if (root->log_root) {
189 		ret = 0;
190 		atomic_inc(&root->log_writers);
191 	}
192 	mutex_unlock(&root->log_mutex);
193 	return ret;
194 }
195 
196 /*
197  * This either makes the current running log transaction wait
198  * until you call btrfs_end_log_trans() or it makes any future
199  * log transactions wait until you call btrfs_end_log_trans()
200  */
201 int btrfs_pin_log_trans(struct btrfs_root *root)
202 {
203 	int ret = -ENOENT;
204 
205 	mutex_lock(&root->log_mutex);
206 	atomic_inc(&root->log_writers);
207 	mutex_unlock(&root->log_mutex);
208 	return ret;
209 }
210 
211 /*
212  * indicate we're done making changes to the log tree
213  * and wake up anyone waiting to do a sync
214  */
215 int btrfs_end_log_trans(struct btrfs_root *root)
216 {
217 	if (atomic_dec_and_test(&root->log_writers)) {
218 		smp_mb();
219 		if (waitqueue_active(&root->log_writer_wait))
220 			wake_up(&root->log_writer_wait);
221 	}
222 	return 0;
223 }
224 
225 
226 /*
227  * the walk control struct is used to pass state down the chain when
228  * processing the log tree.  The stage field tells us which part
229  * of the log tree processing we are currently doing.  The others
230  * are state fields used for that specific part
231  */
232 struct walk_control {
233 	/* should we free the extent on disk when done?  This is used
234 	 * at transaction commit time while freeing a log tree
235 	 */
236 	int free;
237 
238 	/* should we write out the extent buffer?  This is used
239 	 * while flushing the log tree to disk during a sync
240 	 */
241 	int write;
242 
243 	/* should we wait for the extent buffer io to finish?  Also used
244 	 * while flushing the log tree to disk for a sync
245 	 */
246 	int wait;
247 
248 	/* pin only walk, we record which extents on disk belong to the
249 	 * log trees
250 	 */
251 	int pin;
252 
253 	/* what stage of the replay code we're currently in */
254 	int stage;
255 
256 	/* the root we are currently replaying */
257 	struct btrfs_root *replay_dest;
258 
259 	/* the trans handle for the current replay */
260 	struct btrfs_trans_handle *trans;
261 
262 	/* the function that gets used to process blocks we find in the
263 	 * tree.  Note the extent_buffer might not be up to date when it is
264 	 * passed in, and it must be checked or read if you need the data
265 	 * inside it
266 	 */
267 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
268 			    struct walk_control *wc, u64 gen);
269 };
270 
271 /*
272  * process_func used to pin down extents, write them or wait on them
273  */
274 static int process_one_buffer(struct btrfs_root *log,
275 			      struct extent_buffer *eb,
276 			      struct walk_control *wc, u64 gen)
277 {
278 	if (wc->pin)
279 		btrfs_pin_extent(log->fs_info->extent_root,
280 				 eb->start, eb->len, 0);
281 
282 	if (btrfs_buffer_uptodate(eb, gen)) {
283 		if (wc->write)
284 			btrfs_write_tree_block(eb);
285 		if (wc->wait)
286 			btrfs_wait_tree_block_writeback(eb);
287 	}
288 	return 0;
289 }
290 
291 /*
292  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
293  * to the src data we are copying out.
294  *
295  * root is the tree we are copying into, and path is a scratch
296  * path for use in this function (it should be released on entry and
297  * will be released on exit).
298  *
299  * If the key is already in the destination tree the existing item is
300  * overwritten.  If the existing item isn't big enough, it is extended.
301  * If it is too large, it is truncated.
302  *
303  * If the key isn't in the destination yet, a new item is inserted.
304  */
305 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
306 				   struct btrfs_root *root,
307 				   struct btrfs_path *path,
308 				   struct extent_buffer *eb, int slot,
309 				   struct btrfs_key *key)
310 {
311 	int ret;
312 	u32 item_size;
313 	u64 saved_i_size = 0;
314 	int save_old_i_size = 0;
315 	unsigned long src_ptr;
316 	unsigned long dst_ptr;
317 	int overwrite_root = 0;
318 
319 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
320 		overwrite_root = 1;
321 
322 	item_size = btrfs_item_size_nr(eb, slot);
323 	src_ptr = btrfs_item_ptr_offset(eb, slot);
324 
325 	/* look for the key in the destination tree */
326 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
327 	if (ret == 0) {
328 		char *src_copy;
329 		char *dst_copy;
330 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
331 						  path->slots[0]);
332 		if (dst_size != item_size)
333 			goto insert;
334 
335 		if (item_size == 0) {
336 			btrfs_release_path(root, path);
337 			return 0;
338 		}
339 		dst_copy = kmalloc(item_size, GFP_NOFS);
340 		src_copy = kmalloc(item_size, GFP_NOFS);
341 
342 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
343 
344 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
345 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
346 				   item_size);
347 		ret = memcmp(dst_copy, src_copy, item_size);
348 
349 		kfree(dst_copy);
350 		kfree(src_copy);
351 		/*
352 		 * they have the same contents, just return, this saves
353 		 * us from cowing blocks in the destination tree and doing
354 		 * extra writes that may not have been done by a previous
355 		 * sync
356 		 */
357 		if (ret == 0) {
358 			btrfs_release_path(root, path);
359 			return 0;
360 		}
361 
362 	}
363 insert:
364 	btrfs_release_path(root, path);
365 	/* try to insert the key into the destination tree */
366 	ret = btrfs_insert_empty_item(trans, root, path,
367 				      key, item_size);
368 
369 	/* make sure any existing item is the correct size */
370 	if (ret == -EEXIST) {
371 		u32 found_size;
372 		found_size = btrfs_item_size_nr(path->nodes[0],
373 						path->slots[0]);
374 		if (found_size > item_size) {
375 			btrfs_truncate_item(trans, root, path, item_size, 1);
376 		} else if (found_size < item_size) {
377 			ret = btrfs_extend_item(trans, root, path,
378 						item_size - found_size);
379 			BUG_ON(ret);
380 		}
381 	} else if (ret) {
382 		return ret;
383 	}
384 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
385 					path->slots[0]);
386 
387 	/* don't overwrite an existing inode if the generation number
388 	 * was logged as zero.  This is done when the tree logging code
389 	 * is just logging an inode to make sure it exists after recovery.
390 	 *
391 	 * Also, don't overwrite i_size on directories during replay.
392 	 * log replay inserts and removes directory items based on the
393 	 * state of the tree found in the subvolume, and i_size is modified
394 	 * as it goes
395 	 */
396 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
397 		struct btrfs_inode_item *src_item;
398 		struct btrfs_inode_item *dst_item;
399 
400 		src_item = (struct btrfs_inode_item *)src_ptr;
401 		dst_item = (struct btrfs_inode_item *)dst_ptr;
402 
403 		if (btrfs_inode_generation(eb, src_item) == 0)
404 			goto no_copy;
405 
406 		if (overwrite_root &&
407 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
408 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
409 			save_old_i_size = 1;
410 			saved_i_size = btrfs_inode_size(path->nodes[0],
411 							dst_item);
412 		}
413 	}
414 
415 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
416 			   src_ptr, item_size);
417 
418 	if (save_old_i_size) {
419 		struct btrfs_inode_item *dst_item;
420 		dst_item = (struct btrfs_inode_item *)dst_ptr;
421 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
422 	}
423 
424 	/* make sure the generation is filled in */
425 	if (key->type == BTRFS_INODE_ITEM_KEY) {
426 		struct btrfs_inode_item *dst_item;
427 		dst_item = (struct btrfs_inode_item *)dst_ptr;
428 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
429 			btrfs_set_inode_generation(path->nodes[0], dst_item,
430 						   trans->transid);
431 		}
432 	}
433 no_copy:
434 	btrfs_mark_buffer_dirty(path->nodes[0]);
435 	btrfs_release_path(root, path);
436 	return 0;
437 }
438 
439 /*
440  * simple helper to read an inode off the disk from a given root
441  * This can only be called for subvolume roots and not for the log
442  */
443 static noinline struct inode *read_one_inode(struct btrfs_root *root,
444 					     u64 objectid)
445 {
446 	struct btrfs_key key;
447 	struct inode *inode;
448 
449 	key.objectid = objectid;
450 	key.type = BTRFS_INODE_ITEM_KEY;
451 	key.offset = 0;
452 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
453 	if (IS_ERR(inode)) {
454 		inode = NULL;
455 	} else if (is_bad_inode(inode)) {
456 		iput(inode);
457 		inode = NULL;
458 	}
459 	return inode;
460 }
461 
462 /* replays a single extent in 'eb' at 'slot' with 'key' into the
463  * subvolume 'root'.  path is released on entry and should be released
464  * on exit.
465  *
466  * extents in the log tree have not been allocated out of the extent
467  * tree yet.  So, this completes the allocation, taking a reference
468  * as required if the extent already exists or creating a new extent
469  * if it isn't in the extent allocation tree yet.
470  *
471  * The extent is inserted into the file, dropping any existing extents
472  * from the file that overlap the new one.
473  */
474 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
475 				      struct btrfs_root *root,
476 				      struct btrfs_path *path,
477 				      struct extent_buffer *eb, int slot,
478 				      struct btrfs_key *key)
479 {
480 	int found_type;
481 	u64 mask = root->sectorsize - 1;
482 	u64 extent_end;
483 	u64 alloc_hint;
484 	u64 start = key->offset;
485 	u64 saved_nbytes;
486 	struct btrfs_file_extent_item *item;
487 	struct inode *inode = NULL;
488 	unsigned long size;
489 	int ret = 0;
490 
491 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
492 	found_type = btrfs_file_extent_type(eb, item);
493 
494 	if (found_type == BTRFS_FILE_EXTENT_REG ||
495 	    found_type == BTRFS_FILE_EXTENT_PREALLOC)
496 		extent_end = start + btrfs_file_extent_num_bytes(eb, item);
497 	else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
498 		size = btrfs_file_extent_inline_len(eb, item);
499 		extent_end = (start + size + mask) & ~mask;
500 	} else {
501 		ret = 0;
502 		goto out;
503 	}
504 
505 	inode = read_one_inode(root, key->objectid);
506 	if (!inode) {
507 		ret = -EIO;
508 		goto out;
509 	}
510 
511 	/*
512 	 * first check to see if we already have this extent in the
513 	 * file.  This must be done before the btrfs_drop_extents run
514 	 * so we don't try to drop this extent.
515 	 */
516 	ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
517 				       start, 0);
518 
519 	if (ret == 0 &&
520 	    (found_type == BTRFS_FILE_EXTENT_REG ||
521 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
522 		struct btrfs_file_extent_item cmp1;
523 		struct btrfs_file_extent_item cmp2;
524 		struct btrfs_file_extent_item *existing;
525 		struct extent_buffer *leaf;
526 
527 		leaf = path->nodes[0];
528 		existing = btrfs_item_ptr(leaf, path->slots[0],
529 					  struct btrfs_file_extent_item);
530 
531 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
532 				   sizeof(cmp1));
533 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
534 				   sizeof(cmp2));
535 
536 		/*
537 		 * we already have a pointer to this exact extent,
538 		 * we don't have to do anything
539 		 */
540 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
541 			btrfs_release_path(root, path);
542 			goto out;
543 		}
544 	}
545 	btrfs_release_path(root, path);
546 
547 	saved_nbytes = inode_get_bytes(inode);
548 	/* drop any overlapping extents */
549 	ret = btrfs_drop_extents(trans, inode, start, extent_end,
550 				 &alloc_hint, 1);
551 	BUG_ON(ret);
552 
553 	if (found_type == BTRFS_FILE_EXTENT_REG ||
554 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
555 		u64 offset;
556 		unsigned long dest_offset;
557 		struct btrfs_key ins;
558 
559 		ret = btrfs_insert_empty_item(trans, root, path, key,
560 					      sizeof(*item));
561 		BUG_ON(ret);
562 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
563 						    path->slots[0]);
564 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
565 				(unsigned long)item,  sizeof(*item));
566 
567 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
568 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
569 		ins.type = BTRFS_EXTENT_ITEM_KEY;
570 		offset = key->offset - btrfs_file_extent_offset(eb, item);
571 
572 		if (ins.objectid > 0) {
573 			u64 csum_start;
574 			u64 csum_end;
575 			LIST_HEAD(ordered_sums);
576 			/*
577 			 * is this extent already allocated in the extent
578 			 * allocation tree?  If so, just add a reference
579 			 */
580 			ret = btrfs_lookup_extent(root, ins.objectid,
581 						ins.offset);
582 			if (ret == 0) {
583 				ret = btrfs_inc_extent_ref(trans, root,
584 						ins.objectid, ins.offset,
585 						0, root->root_key.objectid,
586 						key->objectid, offset);
587 			} else {
588 				/*
589 				 * insert the extent pointer in the extent
590 				 * allocation tree
591 				 */
592 				ret = btrfs_alloc_logged_file_extent(trans,
593 						root, root->root_key.objectid,
594 						key->objectid, offset, &ins);
595 				BUG_ON(ret);
596 			}
597 			btrfs_release_path(root, path);
598 
599 			if (btrfs_file_extent_compression(eb, item)) {
600 				csum_start = ins.objectid;
601 				csum_end = csum_start + ins.offset;
602 			} else {
603 				csum_start = ins.objectid +
604 					btrfs_file_extent_offset(eb, item);
605 				csum_end = csum_start +
606 					btrfs_file_extent_num_bytes(eb, item);
607 			}
608 
609 			ret = btrfs_lookup_csums_range(root->log_root,
610 						csum_start, csum_end - 1,
611 						&ordered_sums);
612 			BUG_ON(ret);
613 			while (!list_empty(&ordered_sums)) {
614 				struct btrfs_ordered_sum *sums;
615 				sums = list_entry(ordered_sums.next,
616 						struct btrfs_ordered_sum,
617 						list);
618 				ret = btrfs_csum_file_blocks(trans,
619 						root->fs_info->csum_root,
620 						sums);
621 				BUG_ON(ret);
622 				list_del(&sums->list);
623 				kfree(sums);
624 			}
625 		} else {
626 			btrfs_release_path(root, path);
627 		}
628 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
629 		/* inline extents are easy, we just overwrite them */
630 		ret = overwrite_item(trans, root, path, eb, slot, key);
631 		BUG_ON(ret);
632 	}
633 
634 	inode_set_bytes(inode, saved_nbytes);
635 	btrfs_update_inode(trans, root, inode);
636 out:
637 	if (inode)
638 		iput(inode);
639 	return ret;
640 }
641 
642 /*
643  * when cleaning up conflicts between the directory names in the
644  * subvolume, directory names in the log and directory names in the
645  * inode back references, we may have to unlink inodes from directories.
646  *
647  * This is a helper function to do the unlink of a specific directory
648  * item
649  */
650 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
651 				      struct btrfs_root *root,
652 				      struct btrfs_path *path,
653 				      struct inode *dir,
654 				      struct btrfs_dir_item *di)
655 {
656 	struct inode *inode;
657 	char *name;
658 	int name_len;
659 	struct extent_buffer *leaf;
660 	struct btrfs_key location;
661 	int ret;
662 
663 	leaf = path->nodes[0];
664 
665 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
666 	name_len = btrfs_dir_name_len(leaf, di);
667 	name = kmalloc(name_len, GFP_NOFS);
668 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
669 	btrfs_release_path(root, path);
670 
671 	inode = read_one_inode(root, location.objectid);
672 	BUG_ON(!inode);
673 
674 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
675 	BUG_ON(ret);
676 
677 	ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
678 	BUG_ON(ret);
679 	kfree(name);
680 
681 	iput(inode);
682 	return ret;
683 }
684 
685 /*
686  * helper function to see if a given name and sequence number found
687  * in an inode back reference are already in a directory and correctly
688  * point to this inode
689  */
690 static noinline int inode_in_dir(struct btrfs_root *root,
691 				 struct btrfs_path *path,
692 				 u64 dirid, u64 objectid, u64 index,
693 				 const char *name, int name_len)
694 {
695 	struct btrfs_dir_item *di;
696 	struct btrfs_key location;
697 	int match = 0;
698 
699 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
700 					 index, name, name_len, 0);
701 	if (di && !IS_ERR(di)) {
702 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
703 		if (location.objectid != objectid)
704 			goto out;
705 	} else
706 		goto out;
707 	btrfs_release_path(root, path);
708 
709 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
710 	if (di && !IS_ERR(di)) {
711 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
712 		if (location.objectid != objectid)
713 			goto out;
714 	} else
715 		goto out;
716 	match = 1;
717 out:
718 	btrfs_release_path(root, path);
719 	return match;
720 }
721 
722 /*
723  * helper function to check a log tree for a named back reference in
724  * an inode.  This is used to decide if a back reference that is
725  * found in the subvolume conflicts with what we find in the log.
726  *
727  * inode backreferences may have multiple refs in a single item,
728  * during replay we process one reference at a time, and we don't
729  * want to delete valid links to a file from the subvolume if that
730  * link is also in the log.
731  */
732 static noinline int backref_in_log(struct btrfs_root *log,
733 				   struct btrfs_key *key,
734 				   char *name, int namelen)
735 {
736 	struct btrfs_path *path;
737 	struct btrfs_inode_ref *ref;
738 	unsigned long ptr;
739 	unsigned long ptr_end;
740 	unsigned long name_ptr;
741 	int found_name_len;
742 	int item_size;
743 	int ret;
744 	int match = 0;
745 
746 	path = btrfs_alloc_path();
747 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
748 	if (ret != 0)
749 		goto out;
750 
751 	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
752 	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
753 	ptr_end = ptr + item_size;
754 	while (ptr < ptr_end) {
755 		ref = (struct btrfs_inode_ref *)ptr;
756 		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
757 		if (found_name_len == namelen) {
758 			name_ptr = (unsigned long)(ref + 1);
759 			ret = memcmp_extent_buffer(path->nodes[0], name,
760 						   name_ptr, namelen);
761 			if (ret == 0) {
762 				match = 1;
763 				goto out;
764 			}
765 		}
766 		ptr = (unsigned long)(ref + 1) + found_name_len;
767 	}
768 out:
769 	btrfs_free_path(path);
770 	return match;
771 }
772 
773 
774 /*
775  * replay one inode back reference item found in the log tree.
776  * eb, slot and key refer to the buffer and key found in the log tree.
777  * root is the destination we are replaying into, and path is for temp
778  * use by this function.  (it should be released on return).
779  */
780 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
781 				  struct btrfs_root *root,
782 				  struct btrfs_root *log,
783 				  struct btrfs_path *path,
784 				  struct extent_buffer *eb, int slot,
785 				  struct btrfs_key *key)
786 {
787 	struct inode *dir;
788 	int ret;
789 	struct btrfs_key location;
790 	struct btrfs_inode_ref *ref;
791 	struct btrfs_dir_item *di;
792 	struct inode *inode;
793 	char *name;
794 	int namelen;
795 	unsigned long ref_ptr;
796 	unsigned long ref_end;
797 
798 	location.objectid = key->objectid;
799 	location.type = BTRFS_INODE_ITEM_KEY;
800 	location.offset = 0;
801 
802 	/*
803 	 * it is possible that we didn't log all the parent directories
804 	 * for a given inode.  If we don't find the dir, just don't
805 	 * copy the back ref in.  The link count fixup code will take
806 	 * care of the rest
807 	 */
808 	dir = read_one_inode(root, key->offset);
809 	if (!dir)
810 		return -ENOENT;
811 
812 	inode = read_one_inode(root, key->objectid);
813 	BUG_ON(!inode);
814 
815 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
816 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
817 
818 again:
819 	ref = (struct btrfs_inode_ref *)ref_ptr;
820 
821 	namelen = btrfs_inode_ref_name_len(eb, ref);
822 	name = kmalloc(namelen, GFP_NOFS);
823 	BUG_ON(!name);
824 
825 	read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
826 
827 	/* if we already have a perfect match, we're done */
828 	if (inode_in_dir(root, path, dir->i_ino, inode->i_ino,
829 			 btrfs_inode_ref_index(eb, ref),
830 			 name, namelen)) {
831 		goto out;
832 	}
833 
834 	/*
835 	 * look for a conflicting back reference in the metadata.
836 	 * if we find one we have to unlink that name of the file
837 	 * before we add our new link.  Later on, we overwrite any
838 	 * existing back reference, and we don't want to create
839 	 * dangling pointers in the directory.
840 	 */
841 conflict_again:
842 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
843 	if (ret == 0) {
844 		char *victim_name;
845 		int victim_name_len;
846 		struct btrfs_inode_ref *victim_ref;
847 		unsigned long ptr;
848 		unsigned long ptr_end;
849 		struct extent_buffer *leaf = path->nodes[0];
850 
851 		/* are we trying to overwrite a back ref for the root directory
852 		 * if so, just jump out, we're done
853 		 */
854 		if (key->objectid == key->offset)
855 			goto out_nowrite;
856 
857 		/* check all the names in this back reference to see
858 		 * if they are in the log.  if so, we allow them to stay
859 		 * otherwise they must be unlinked as a conflict
860 		 */
861 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
862 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
863 		while (ptr < ptr_end) {
864 			victim_ref = (struct btrfs_inode_ref *)ptr;
865 			victim_name_len = btrfs_inode_ref_name_len(leaf,
866 								   victim_ref);
867 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
868 			BUG_ON(!victim_name);
869 
870 			read_extent_buffer(leaf, victim_name,
871 					   (unsigned long)(victim_ref + 1),
872 					   victim_name_len);
873 
874 			if (!backref_in_log(log, key, victim_name,
875 					    victim_name_len)) {
876 				btrfs_inc_nlink(inode);
877 				btrfs_release_path(root, path);
878 
879 				ret = btrfs_unlink_inode(trans, root, dir,
880 							 inode, victim_name,
881 							 victim_name_len);
882 				kfree(victim_name);
883 				btrfs_release_path(root, path);
884 				goto conflict_again;
885 			}
886 			kfree(victim_name);
887 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
888 		}
889 		BUG_ON(ret);
890 	}
891 	btrfs_release_path(root, path);
892 
893 	/* look for a conflicting sequence number */
894 	di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
895 					 btrfs_inode_ref_index(eb, ref),
896 					 name, namelen, 0);
897 	if (di && !IS_ERR(di)) {
898 		ret = drop_one_dir_item(trans, root, path, dir, di);
899 		BUG_ON(ret);
900 	}
901 	btrfs_release_path(root, path);
902 
903 
904 	/* look for a conflicting name */
905 	di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
906 				   name, namelen, 0);
907 	if (di && !IS_ERR(di)) {
908 		ret = drop_one_dir_item(trans, root, path, dir, di);
909 		BUG_ON(ret);
910 	}
911 	btrfs_release_path(root, path);
912 
913 	/* insert our name */
914 	ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
915 			     btrfs_inode_ref_index(eb, ref));
916 	BUG_ON(ret);
917 
918 	btrfs_update_inode(trans, root, inode);
919 
920 out:
921 	ref_ptr = (unsigned long)(ref + 1) + namelen;
922 	kfree(name);
923 	if (ref_ptr < ref_end)
924 		goto again;
925 
926 	/* finally write the back reference in the inode */
927 	ret = overwrite_item(trans, root, path, eb, slot, key);
928 	BUG_ON(ret);
929 
930 out_nowrite:
931 	btrfs_release_path(root, path);
932 	iput(dir);
933 	iput(inode);
934 	return 0;
935 }
936 
937 static int insert_orphan_item(struct btrfs_trans_handle *trans,
938 			      struct btrfs_root *root, u64 offset)
939 {
940 	int ret;
941 	ret = btrfs_find_orphan_item(root, offset);
942 	if (ret > 0)
943 		ret = btrfs_insert_orphan_item(trans, root, offset);
944 	return ret;
945 }
946 
947 
948 /*
949  * There are a few corners where the link count of the file can't
950  * be properly maintained during replay.  So, instead of adding
951  * lots of complexity to the log code, we just scan the backrefs
952  * for any file that has been through replay.
953  *
954  * The scan will update the link count on the inode to reflect the
955  * number of back refs found.  If it goes down to zero, the iput
956  * will free the inode.
957  */
958 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
959 					   struct btrfs_root *root,
960 					   struct inode *inode)
961 {
962 	struct btrfs_path *path;
963 	int ret;
964 	struct btrfs_key key;
965 	u64 nlink = 0;
966 	unsigned long ptr;
967 	unsigned long ptr_end;
968 	int name_len;
969 
970 	key.objectid = inode->i_ino;
971 	key.type = BTRFS_INODE_REF_KEY;
972 	key.offset = (u64)-1;
973 
974 	path = btrfs_alloc_path();
975 
976 	while (1) {
977 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
978 		if (ret < 0)
979 			break;
980 		if (ret > 0) {
981 			if (path->slots[0] == 0)
982 				break;
983 			path->slots[0]--;
984 		}
985 		btrfs_item_key_to_cpu(path->nodes[0], &key,
986 				      path->slots[0]);
987 		if (key.objectid != inode->i_ino ||
988 		    key.type != BTRFS_INODE_REF_KEY)
989 			break;
990 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
991 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
992 						   path->slots[0]);
993 		while (ptr < ptr_end) {
994 			struct btrfs_inode_ref *ref;
995 
996 			ref = (struct btrfs_inode_ref *)ptr;
997 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
998 							    ref);
999 			ptr = (unsigned long)(ref + 1) + name_len;
1000 			nlink++;
1001 		}
1002 
1003 		if (key.offset == 0)
1004 			break;
1005 		key.offset--;
1006 		btrfs_release_path(root, path);
1007 	}
1008 	btrfs_release_path(root, path);
1009 	if (nlink != inode->i_nlink) {
1010 		inode->i_nlink = nlink;
1011 		btrfs_update_inode(trans, root, inode);
1012 	}
1013 	BTRFS_I(inode)->index_cnt = (u64)-1;
1014 
1015 	if (inode->i_nlink == 0) {
1016 		if (S_ISDIR(inode->i_mode)) {
1017 			ret = replay_dir_deletes(trans, root, NULL, path,
1018 						 inode->i_ino, 1);
1019 			BUG_ON(ret);
1020 		}
1021 		ret = insert_orphan_item(trans, root, inode->i_ino);
1022 		BUG_ON(ret);
1023 	}
1024 	btrfs_free_path(path);
1025 
1026 	return 0;
1027 }
1028 
1029 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1030 					    struct btrfs_root *root,
1031 					    struct btrfs_path *path)
1032 {
1033 	int ret;
1034 	struct btrfs_key key;
1035 	struct inode *inode;
1036 
1037 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1038 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1039 	key.offset = (u64)-1;
1040 	while (1) {
1041 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1042 		if (ret < 0)
1043 			break;
1044 
1045 		if (ret == 1) {
1046 			if (path->slots[0] == 0)
1047 				break;
1048 			path->slots[0]--;
1049 		}
1050 
1051 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1052 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1053 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1054 			break;
1055 
1056 		ret = btrfs_del_item(trans, root, path);
1057 		BUG_ON(ret);
1058 
1059 		btrfs_release_path(root, path);
1060 		inode = read_one_inode(root, key.offset);
1061 		BUG_ON(!inode);
1062 
1063 		ret = fixup_inode_link_count(trans, root, inode);
1064 		BUG_ON(ret);
1065 
1066 		iput(inode);
1067 
1068 		/*
1069 		 * fixup on a directory may create new entries,
1070 		 * make sure we always look for the highset possible
1071 		 * offset
1072 		 */
1073 		key.offset = (u64)-1;
1074 	}
1075 	btrfs_release_path(root, path);
1076 	return 0;
1077 }
1078 
1079 
1080 /*
1081  * record a given inode in the fixup dir so we can check its link
1082  * count when replay is done.  The link count is incremented here
1083  * so the inode won't go away until we check it
1084  */
1085 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1086 				      struct btrfs_root *root,
1087 				      struct btrfs_path *path,
1088 				      u64 objectid)
1089 {
1090 	struct btrfs_key key;
1091 	int ret = 0;
1092 	struct inode *inode;
1093 
1094 	inode = read_one_inode(root, objectid);
1095 	BUG_ON(!inode);
1096 
1097 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1098 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1099 	key.offset = objectid;
1100 
1101 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1102 
1103 	btrfs_release_path(root, path);
1104 	if (ret == 0) {
1105 		btrfs_inc_nlink(inode);
1106 		btrfs_update_inode(trans, root, inode);
1107 	} else if (ret == -EEXIST) {
1108 		ret = 0;
1109 	} else {
1110 		BUG();
1111 	}
1112 	iput(inode);
1113 
1114 	return ret;
1115 }
1116 
1117 /*
1118  * when replaying the log for a directory, we only insert names
1119  * for inodes that actually exist.  This means an fsync on a directory
1120  * does not implicitly fsync all the new files in it
1121  */
1122 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1123 				    struct btrfs_root *root,
1124 				    struct btrfs_path *path,
1125 				    u64 dirid, u64 index,
1126 				    char *name, int name_len, u8 type,
1127 				    struct btrfs_key *location)
1128 {
1129 	struct inode *inode;
1130 	struct inode *dir;
1131 	int ret;
1132 
1133 	inode = read_one_inode(root, location->objectid);
1134 	if (!inode)
1135 		return -ENOENT;
1136 
1137 	dir = read_one_inode(root, dirid);
1138 	if (!dir) {
1139 		iput(inode);
1140 		return -EIO;
1141 	}
1142 	ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1143 
1144 	/* FIXME, put inode into FIXUP list */
1145 
1146 	iput(inode);
1147 	iput(dir);
1148 	return ret;
1149 }
1150 
1151 /*
1152  * take a single entry in a log directory item and replay it into
1153  * the subvolume.
1154  *
1155  * if a conflicting item exists in the subdirectory already,
1156  * the inode it points to is unlinked and put into the link count
1157  * fix up tree.
1158  *
1159  * If a name from the log points to a file or directory that does
1160  * not exist in the FS, it is skipped.  fsyncs on directories
1161  * do not force down inodes inside that directory, just changes to the
1162  * names or unlinks in a directory.
1163  */
1164 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1165 				    struct btrfs_root *root,
1166 				    struct btrfs_path *path,
1167 				    struct extent_buffer *eb,
1168 				    struct btrfs_dir_item *di,
1169 				    struct btrfs_key *key)
1170 {
1171 	char *name;
1172 	int name_len;
1173 	struct btrfs_dir_item *dst_di;
1174 	struct btrfs_key found_key;
1175 	struct btrfs_key log_key;
1176 	struct inode *dir;
1177 	u8 log_type;
1178 	int exists;
1179 	int ret;
1180 
1181 	dir = read_one_inode(root, key->objectid);
1182 	BUG_ON(!dir);
1183 
1184 	name_len = btrfs_dir_name_len(eb, di);
1185 	name = kmalloc(name_len, GFP_NOFS);
1186 	log_type = btrfs_dir_type(eb, di);
1187 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1188 		   name_len);
1189 
1190 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1191 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1192 	if (exists == 0)
1193 		exists = 1;
1194 	else
1195 		exists = 0;
1196 	btrfs_release_path(root, path);
1197 
1198 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1199 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1200 				       name, name_len, 1);
1201 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1202 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1203 						     key->objectid,
1204 						     key->offset, name,
1205 						     name_len, 1);
1206 	} else {
1207 		BUG();
1208 	}
1209 	if (!dst_di || IS_ERR(dst_di)) {
1210 		/* we need a sequence number to insert, so we only
1211 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1212 		 */
1213 		if (key->type != BTRFS_DIR_INDEX_KEY)
1214 			goto out;
1215 		goto insert;
1216 	}
1217 
1218 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1219 	/* the existing item matches the logged item */
1220 	if (found_key.objectid == log_key.objectid &&
1221 	    found_key.type == log_key.type &&
1222 	    found_key.offset == log_key.offset &&
1223 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1224 		goto out;
1225 	}
1226 
1227 	/*
1228 	 * don't drop the conflicting directory entry if the inode
1229 	 * for the new entry doesn't exist
1230 	 */
1231 	if (!exists)
1232 		goto out;
1233 
1234 	ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1235 	BUG_ON(ret);
1236 
1237 	if (key->type == BTRFS_DIR_INDEX_KEY)
1238 		goto insert;
1239 out:
1240 	btrfs_release_path(root, path);
1241 	kfree(name);
1242 	iput(dir);
1243 	return 0;
1244 
1245 insert:
1246 	btrfs_release_path(root, path);
1247 	ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1248 			      name, name_len, log_type, &log_key);
1249 
1250 	BUG_ON(ret && ret != -ENOENT);
1251 	goto out;
1252 }
1253 
1254 /*
1255  * find all the names in a directory item and reconcile them into
1256  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1257  * one name in a directory item, but the same code gets used for
1258  * both directory index types
1259  */
1260 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1261 					struct btrfs_root *root,
1262 					struct btrfs_path *path,
1263 					struct extent_buffer *eb, int slot,
1264 					struct btrfs_key *key)
1265 {
1266 	int ret;
1267 	u32 item_size = btrfs_item_size_nr(eb, slot);
1268 	struct btrfs_dir_item *di;
1269 	int name_len;
1270 	unsigned long ptr;
1271 	unsigned long ptr_end;
1272 
1273 	ptr = btrfs_item_ptr_offset(eb, slot);
1274 	ptr_end = ptr + item_size;
1275 	while (ptr < ptr_end) {
1276 		di = (struct btrfs_dir_item *)ptr;
1277 		name_len = btrfs_dir_name_len(eb, di);
1278 		ret = replay_one_name(trans, root, path, eb, di, key);
1279 		BUG_ON(ret);
1280 		ptr = (unsigned long)(di + 1);
1281 		ptr += name_len;
1282 	}
1283 	return 0;
1284 }
1285 
1286 /*
1287  * directory replay has two parts.  There are the standard directory
1288  * items in the log copied from the subvolume, and range items
1289  * created in the log while the subvolume was logged.
1290  *
1291  * The range items tell us which parts of the key space the log
1292  * is authoritative for.  During replay, if a key in the subvolume
1293  * directory is in a logged range item, but not actually in the log
1294  * that means it was deleted from the directory before the fsync
1295  * and should be removed.
1296  */
1297 static noinline int find_dir_range(struct btrfs_root *root,
1298 				   struct btrfs_path *path,
1299 				   u64 dirid, int key_type,
1300 				   u64 *start_ret, u64 *end_ret)
1301 {
1302 	struct btrfs_key key;
1303 	u64 found_end;
1304 	struct btrfs_dir_log_item *item;
1305 	int ret;
1306 	int nritems;
1307 
1308 	if (*start_ret == (u64)-1)
1309 		return 1;
1310 
1311 	key.objectid = dirid;
1312 	key.type = key_type;
1313 	key.offset = *start_ret;
1314 
1315 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1316 	if (ret < 0)
1317 		goto out;
1318 	if (ret > 0) {
1319 		if (path->slots[0] == 0)
1320 			goto out;
1321 		path->slots[0]--;
1322 	}
1323 	if (ret != 0)
1324 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1325 
1326 	if (key.type != key_type || key.objectid != dirid) {
1327 		ret = 1;
1328 		goto next;
1329 	}
1330 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1331 			      struct btrfs_dir_log_item);
1332 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1333 
1334 	if (*start_ret >= key.offset && *start_ret <= found_end) {
1335 		ret = 0;
1336 		*start_ret = key.offset;
1337 		*end_ret = found_end;
1338 		goto out;
1339 	}
1340 	ret = 1;
1341 next:
1342 	/* check the next slot in the tree to see if it is a valid item */
1343 	nritems = btrfs_header_nritems(path->nodes[0]);
1344 	if (path->slots[0] >= nritems) {
1345 		ret = btrfs_next_leaf(root, path);
1346 		if (ret)
1347 			goto out;
1348 	} else {
1349 		path->slots[0]++;
1350 	}
1351 
1352 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1353 
1354 	if (key.type != key_type || key.objectid != dirid) {
1355 		ret = 1;
1356 		goto out;
1357 	}
1358 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1359 			      struct btrfs_dir_log_item);
1360 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1361 	*start_ret = key.offset;
1362 	*end_ret = found_end;
1363 	ret = 0;
1364 out:
1365 	btrfs_release_path(root, path);
1366 	return ret;
1367 }
1368 
1369 /*
1370  * this looks for a given directory item in the log.  If the directory
1371  * item is not in the log, the item is removed and the inode it points
1372  * to is unlinked
1373  */
1374 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1375 				      struct btrfs_root *root,
1376 				      struct btrfs_root *log,
1377 				      struct btrfs_path *path,
1378 				      struct btrfs_path *log_path,
1379 				      struct inode *dir,
1380 				      struct btrfs_key *dir_key)
1381 {
1382 	int ret;
1383 	struct extent_buffer *eb;
1384 	int slot;
1385 	u32 item_size;
1386 	struct btrfs_dir_item *di;
1387 	struct btrfs_dir_item *log_di;
1388 	int name_len;
1389 	unsigned long ptr;
1390 	unsigned long ptr_end;
1391 	char *name;
1392 	struct inode *inode;
1393 	struct btrfs_key location;
1394 
1395 again:
1396 	eb = path->nodes[0];
1397 	slot = path->slots[0];
1398 	item_size = btrfs_item_size_nr(eb, slot);
1399 	ptr = btrfs_item_ptr_offset(eb, slot);
1400 	ptr_end = ptr + item_size;
1401 	while (ptr < ptr_end) {
1402 		di = (struct btrfs_dir_item *)ptr;
1403 		name_len = btrfs_dir_name_len(eb, di);
1404 		name = kmalloc(name_len, GFP_NOFS);
1405 		if (!name) {
1406 			ret = -ENOMEM;
1407 			goto out;
1408 		}
1409 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
1410 				  name_len);
1411 		log_di = NULL;
1412 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1413 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
1414 						       dir_key->objectid,
1415 						       name, name_len, 0);
1416 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1417 			log_di = btrfs_lookup_dir_index_item(trans, log,
1418 						     log_path,
1419 						     dir_key->objectid,
1420 						     dir_key->offset,
1421 						     name, name_len, 0);
1422 		}
1423 		if (!log_di || IS_ERR(log_di)) {
1424 			btrfs_dir_item_key_to_cpu(eb, di, &location);
1425 			btrfs_release_path(root, path);
1426 			btrfs_release_path(log, log_path);
1427 			inode = read_one_inode(root, location.objectid);
1428 			BUG_ON(!inode);
1429 
1430 			ret = link_to_fixup_dir(trans, root,
1431 						path, location.objectid);
1432 			BUG_ON(ret);
1433 			btrfs_inc_nlink(inode);
1434 			ret = btrfs_unlink_inode(trans, root, dir, inode,
1435 						 name, name_len);
1436 			BUG_ON(ret);
1437 			kfree(name);
1438 			iput(inode);
1439 
1440 			/* there might still be more names under this key
1441 			 * check and repeat if required
1442 			 */
1443 			ret = btrfs_search_slot(NULL, root, dir_key, path,
1444 						0, 0);
1445 			if (ret == 0)
1446 				goto again;
1447 			ret = 0;
1448 			goto out;
1449 		}
1450 		btrfs_release_path(log, log_path);
1451 		kfree(name);
1452 
1453 		ptr = (unsigned long)(di + 1);
1454 		ptr += name_len;
1455 	}
1456 	ret = 0;
1457 out:
1458 	btrfs_release_path(root, path);
1459 	btrfs_release_path(log, log_path);
1460 	return ret;
1461 }
1462 
1463 /*
1464  * deletion replay happens before we copy any new directory items
1465  * out of the log or out of backreferences from inodes.  It
1466  * scans the log to find ranges of keys that log is authoritative for,
1467  * and then scans the directory to find items in those ranges that are
1468  * not present in the log.
1469  *
1470  * Anything we don't find in the log is unlinked and removed from the
1471  * directory.
1472  */
1473 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1474 				       struct btrfs_root *root,
1475 				       struct btrfs_root *log,
1476 				       struct btrfs_path *path,
1477 				       u64 dirid, int del_all)
1478 {
1479 	u64 range_start;
1480 	u64 range_end;
1481 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1482 	int ret = 0;
1483 	struct btrfs_key dir_key;
1484 	struct btrfs_key found_key;
1485 	struct btrfs_path *log_path;
1486 	struct inode *dir;
1487 
1488 	dir_key.objectid = dirid;
1489 	dir_key.type = BTRFS_DIR_ITEM_KEY;
1490 	log_path = btrfs_alloc_path();
1491 	if (!log_path)
1492 		return -ENOMEM;
1493 
1494 	dir = read_one_inode(root, dirid);
1495 	/* it isn't an error if the inode isn't there, that can happen
1496 	 * because we replay the deletes before we copy in the inode item
1497 	 * from the log
1498 	 */
1499 	if (!dir) {
1500 		btrfs_free_path(log_path);
1501 		return 0;
1502 	}
1503 again:
1504 	range_start = 0;
1505 	range_end = 0;
1506 	while (1) {
1507 		if (del_all)
1508 			range_end = (u64)-1;
1509 		else {
1510 			ret = find_dir_range(log, path, dirid, key_type,
1511 					     &range_start, &range_end);
1512 			if (ret != 0)
1513 				break;
1514 		}
1515 
1516 		dir_key.offset = range_start;
1517 		while (1) {
1518 			int nritems;
1519 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
1520 						0, 0);
1521 			if (ret < 0)
1522 				goto out;
1523 
1524 			nritems = btrfs_header_nritems(path->nodes[0]);
1525 			if (path->slots[0] >= nritems) {
1526 				ret = btrfs_next_leaf(root, path);
1527 				if (ret)
1528 					break;
1529 			}
1530 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1531 					      path->slots[0]);
1532 			if (found_key.objectid != dirid ||
1533 			    found_key.type != dir_key.type)
1534 				goto next_type;
1535 
1536 			if (found_key.offset > range_end)
1537 				break;
1538 
1539 			ret = check_item_in_log(trans, root, log, path,
1540 						log_path, dir,
1541 						&found_key);
1542 			BUG_ON(ret);
1543 			if (found_key.offset == (u64)-1)
1544 				break;
1545 			dir_key.offset = found_key.offset + 1;
1546 		}
1547 		btrfs_release_path(root, path);
1548 		if (range_end == (u64)-1)
1549 			break;
1550 		range_start = range_end + 1;
1551 	}
1552 
1553 next_type:
1554 	ret = 0;
1555 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1556 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
1557 		dir_key.type = BTRFS_DIR_INDEX_KEY;
1558 		btrfs_release_path(root, path);
1559 		goto again;
1560 	}
1561 out:
1562 	btrfs_release_path(root, path);
1563 	btrfs_free_path(log_path);
1564 	iput(dir);
1565 	return ret;
1566 }
1567 
1568 /*
1569  * the process_func used to replay items from the log tree.  This
1570  * gets called in two different stages.  The first stage just looks
1571  * for inodes and makes sure they are all copied into the subvolume.
1572  *
1573  * The second stage copies all the other item types from the log into
1574  * the subvolume.  The two stage approach is slower, but gets rid of
1575  * lots of complexity around inodes referencing other inodes that exist
1576  * only in the log (references come from either directory items or inode
1577  * back refs).
1578  */
1579 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1580 			     struct walk_control *wc, u64 gen)
1581 {
1582 	int nritems;
1583 	struct btrfs_path *path;
1584 	struct btrfs_root *root = wc->replay_dest;
1585 	struct btrfs_key key;
1586 	u32 item_size;
1587 	int level;
1588 	int i;
1589 	int ret;
1590 
1591 	btrfs_read_buffer(eb, gen);
1592 
1593 	level = btrfs_header_level(eb);
1594 
1595 	if (level != 0)
1596 		return 0;
1597 
1598 	path = btrfs_alloc_path();
1599 	BUG_ON(!path);
1600 
1601 	nritems = btrfs_header_nritems(eb);
1602 	for (i = 0; i < nritems; i++) {
1603 		btrfs_item_key_to_cpu(eb, &key, i);
1604 		item_size = btrfs_item_size_nr(eb, i);
1605 
1606 		/* inode keys are done during the first stage */
1607 		if (key.type == BTRFS_INODE_ITEM_KEY &&
1608 		    wc->stage == LOG_WALK_REPLAY_INODES) {
1609 			struct btrfs_inode_item *inode_item;
1610 			u32 mode;
1611 
1612 			inode_item = btrfs_item_ptr(eb, i,
1613 					    struct btrfs_inode_item);
1614 			mode = btrfs_inode_mode(eb, inode_item);
1615 			if (S_ISDIR(mode)) {
1616 				ret = replay_dir_deletes(wc->trans,
1617 					 root, log, path, key.objectid, 0);
1618 				BUG_ON(ret);
1619 			}
1620 			ret = overwrite_item(wc->trans, root, path,
1621 					     eb, i, &key);
1622 			BUG_ON(ret);
1623 
1624 			/* for regular files, make sure corresponding
1625 			 * orhpan item exist. extents past the new EOF
1626 			 * will be truncated later by orphan cleanup.
1627 			 */
1628 			if (S_ISREG(mode)) {
1629 				ret = insert_orphan_item(wc->trans, root,
1630 							 key.objectid);
1631 				BUG_ON(ret);
1632 			}
1633 
1634 			ret = link_to_fixup_dir(wc->trans, root,
1635 						path, key.objectid);
1636 			BUG_ON(ret);
1637 		}
1638 		if (wc->stage < LOG_WALK_REPLAY_ALL)
1639 			continue;
1640 
1641 		/* these keys are simply copied */
1642 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
1643 			ret = overwrite_item(wc->trans, root, path,
1644 					     eb, i, &key);
1645 			BUG_ON(ret);
1646 		} else if (key.type == BTRFS_INODE_REF_KEY) {
1647 			ret = add_inode_ref(wc->trans, root, log, path,
1648 					    eb, i, &key);
1649 			BUG_ON(ret && ret != -ENOENT);
1650 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1651 			ret = replay_one_extent(wc->trans, root, path,
1652 						eb, i, &key);
1653 			BUG_ON(ret);
1654 		} else if (key.type == BTRFS_DIR_ITEM_KEY ||
1655 			   key.type == BTRFS_DIR_INDEX_KEY) {
1656 			ret = replay_one_dir_item(wc->trans, root, path,
1657 						  eb, i, &key);
1658 			BUG_ON(ret);
1659 		}
1660 	}
1661 	btrfs_free_path(path);
1662 	return 0;
1663 }
1664 
1665 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
1666 				   struct btrfs_root *root,
1667 				   struct btrfs_path *path, int *level,
1668 				   struct walk_control *wc)
1669 {
1670 	u64 root_owner;
1671 	u64 root_gen;
1672 	u64 bytenr;
1673 	u64 ptr_gen;
1674 	struct extent_buffer *next;
1675 	struct extent_buffer *cur;
1676 	struct extent_buffer *parent;
1677 	u32 blocksize;
1678 	int ret = 0;
1679 
1680 	WARN_ON(*level < 0);
1681 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
1682 
1683 	while (*level > 0) {
1684 		WARN_ON(*level < 0);
1685 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
1686 		cur = path->nodes[*level];
1687 
1688 		if (btrfs_header_level(cur) != *level)
1689 			WARN_ON(1);
1690 
1691 		if (path->slots[*level] >=
1692 		    btrfs_header_nritems(cur))
1693 			break;
1694 
1695 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1696 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1697 		blocksize = btrfs_level_size(root, *level - 1);
1698 
1699 		parent = path->nodes[*level];
1700 		root_owner = btrfs_header_owner(parent);
1701 		root_gen = btrfs_header_generation(parent);
1702 
1703 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
1704 
1705 		if (*level == 1) {
1706 			wc->process_func(root, next, wc, ptr_gen);
1707 
1708 			path->slots[*level]++;
1709 			if (wc->free) {
1710 				btrfs_read_buffer(next, ptr_gen);
1711 
1712 				btrfs_tree_lock(next);
1713 				clean_tree_block(trans, root, next);
1714 				btrfs_set_lock_blocking(next);
1715 				btrfs_wait_tree_block_writeback(next);
1716 				btrfs_tree_unlock(next);
1717 
1718 				WARN_ON(root_owner !=
1719 					BTRFS_TREE_LOG_OBJECTID);
1720 				ret = btrfs_free_reserved_extent(root,
1721 							 bytenr, blocksize);
1722 				BUG_ON(ret);
1723 			}
1724 			free_extent_buffer(next);
1725 			continue;
1726 		}
1727 		btrfs_read_buffer(next, ptr_gen);
1728 
1729 		WARN_ON(*level <= 0);
1730 		if (path->nodes[*level-1])
1731 			free_extent_buffer(path->nodes[*level-1]);
1732 		path->nodes[*level-1] = next;
1733 		*level = btrfs_header_level(next);
1734 		path->slots[*level] = 0;
1735 		cond_resched();
1736 	}
1737 	WARN_ON(*level < 0);
1738 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
1739 
1740 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
1741 
1742 	cond_resched();
1743 	return 0;
1744 }
1745 
1746 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
1747 				 struct btrfs_root *root,
1748 				 struct btrfs_path *path, int *level,
1749 				 struct walk_control *wc)
1750 {
1751 	u64 root_owner;
1752 	u64 root_gen;
1753 	int i;
1754 	int slot;
1755 	int ret;
1756 
1757 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
1758 		slot = path->slots[i];
1759 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
1760 			struct extent_buffer *node;
1761 			node = path->nodes[i];
1762 			path->slots[i]++;
1763 			*level = i;
1764 			WARN_ON(*level == 0);
1765 			return 0;
1766 		} else {
1767 			struct extent_buffer *parent;
1768 			if (path->nodes[*level] == root->node)
1769 				parent = path->nodes[*level];
1770 			else
1771 				parent = path->nodes[*level + 1];
1772 
1773 			root_owner = btrfs_header_owner(parent);
1774 			root_gen = btrfs_header_generation(parent);
1775 			wc->process_func(root, path->nodes[*level], wc,
1776 				 btrfs_header_generation(path->nodes[*level]));
1777 			if (wc->free) {
1778 				struct extent_buffer *next;
1779 
1780 				next = path->nodes[*level];
1781 
1782 				btrfs_tree_lock(next);
1783 				clean_tree_block(trans, root, next);
1784 				btrfs_set_lock_blocking(next);
1785 				btrfs_wait_tree_block_writeback(next);
1786 				btrfs_tree_unlock(next);
1787 
1788 				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1789 				ret = btrfs_free_reserved_extent(root,
1790 						path->nodes[*level]->start,
1791 						path->nodes[*level]->len);
1792 				BUG_ON(ret);
1793 			}
1794 			free_extent_buffer(path->nodes[*level]);
1795 			path->nodes[*level] = NULL;
1796 			*level = i + 1;
1797 		}
1798 	}
1799 	return 1;
1800 }
1801 
1802 /*
1803  * drop the reference count on the tree rooted at 'snap'.  This traverses
1804  * the tree freeing any blocks that have a ref count of zero after being
1805  * decremented.
1806  */
1807 static int walk_log_tree(struct btrfs_trans_handle *trans,
1808 			 struct btrfs_root *log, struct walk_control *wc)
1809 {
1810 	int ret = 0;
1811 	int wret;
1812 	int level;
1813 	struct btrfs_path *path;
1814 	int i;
1815 	int orig_level;
1816 
1817 	path = btrfs_alloc_path();
1818 	BUG_ON(!path);
1819 
1820 	level = btrfs_header_level(log->node);
1821 	orig_level = level;
1822 	path->nodes[level] = log->node;
1823 	extent_buffer_get(log->node);
1824 	path->slots[level] = 0;
1825 
1826 	while (1) {
1827 		wret = walk_down_log_tree(trans, log, path, &level, wc);
1828 		if (wret > 0)
1829 			break;
1830 		if (wret < 0)
1831 			ret = wret;
1832 
1833 		wret = walk_up_log_tree(trans, log, path, &level, wc);
1834 		if (wret > 0)
1835 			break;
1836 		if (wret < 0)
1837 			ret = wret;
1838 	}
1839 
1840 	/* was the root node processed? if not, catch it here */
1841 	if (path->nodes[orig_level]) {
1842 		wc->process_func(log, path->nodes[orig_level], wc,
1843 			 btrfs_header_generation(path->nodes[orig_level]));
1844 		if (wc->free) {
1845 			struct extent_buffer *next;
1846 
1847 			next = path->nodes[orig_level];
1848 
1849 			btrfs_tree_lock(next);
1850 			clean_tree_block(trans, log, next);
1851 			btrfs_set_lock_blocking(next);
1852 			btrfs_wait_tree_block_writeback(next);
1853 			btrfs_tree_unlock(next);
1854 
1855 			WARN_ON(log->root_key.objectid !=
1856 				BTRFS_TREE_LOG_OBJECTID);
1857 			ret = btrfs_free_reserved_extent(log, next->start,
1858 							 next->len);
1859 			BUG_ON(ret);
1860 		}
1861 	}
1862 
1863 	for (i = 0; i <= orig_level; i++) {
1864 		if (path->nodes[i]) {
1865 			free_extent_buffer(path->nodes[i]);
1866 			path->nodes[i] = NULL;
1867 		}
1868 	}
1869 	btrfs_free_path(path);
1870 	return ret;
1871 }
1872 
1873 /*
1874  * helper function to update the item for a given subvolumes log root
1875  * in the tree of log roots
1876  */
1877 static int update_log_root(struct btrfs_trans_handle *trans,
1878 			   struct btrfs_root *log)
1879 {
1880 	int ret;
1881 
1882 	if (log->log_transid == 1) {
1883 		/* insert root item on the first sync */
1884 		ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
1885 				&log->root_key, &log->root_item);
1886 	} else {
1887 		ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
1888 				&log->root_key, &log->root_item);
1889 	}
1890 	return ret;
1891 }
1892 
1893 static int wait_log_commit(struct btrfs_trans_handle *trans,
1894 			   struct btrfs_root *root, unsigned long transid)
1895 {
1896 	DEFINE_WAIT(wait);
1897 	int index = transid % 2;
1898 
1899 	/*
1900 	 * we only allow two pending log transactions at a time,
1901 	 * so we know that if ours is more than 2 older than the
1902 	 * current transaction, we're done
1903 	 */
1904 	do {
1905 		prepare_to_wait(&root->log_commit_wait[index],
1906 				&wait, TASK_UNINTERRUPTIBLE);
1907 		mutex_unlock(&root->log_mutex);
1908 
1909 		if (root->fs_info->last_trans_log_full_commit !=
1910 		    trans->transid && root->log_transid < transid + 2 &&
1911 		    atomic_read(&root->log_commit[index]))
1912 			schedule();
1913 
1914 		finish_wait(&root->log_commit_wait[index], &wait);
1915 		mutex_lock(&root->log_mutex);
1916 	} while (root->log_transid < transid + 2 &&
1917 		 atomic_read(&root->log_commit[index]));
1918 	return 0;
1919 }
1920 
1921 static int wait_for_writer(struct btrfs_trans_handle *trans,
1922 			   struct btrfs_root *root)
1923 {
1924 	DEFINE_WAIT(wait);
1925 	while (atomic_read(&root->log_writers)) {
1926 		prepare_to_wait(&root->log_writer_wait,
1927 				&wait, TASK_UNINTERRUPTIBLE);
1928 		mutex_unlock(&root->log_mutex);
1929 		if (root->fs_info->last_trans_log_full_commit !=
1930 		    trans->transid && atomic_read(&root->log_writers))
1931 			schedule();
1932 		mutex_lock(&root->log_mutex);
1933 		finish_wait(&root->log_writer_wait, &wait);
1934 	}
1935 	return 0;
1936 }
1937 
1938 /*
1939  * btrfs_sync_log does sends a given tree log down to the disk and
1940  * updates the super blocks to record it.  When this call is done,
1941  * you know that any inodes previously logged are safely on disk only
1942  * if it returns 0.
1943  *
1944  * Any other return value means you need to call btrfs_commit_transaction.
1945  * Some of the edge cases for fsyncing directories that have had unlinks
1946  * or renames done in the past mean that sometimes the only safe
1947  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
1948  * that has happened.
1949  */
1950 int btrfs_sync_log(struct btrfs_trans_handle *trans,
1951 		   struct btrfs_root *root)
1952 {
1953 	int index1;
1954 	int index2;
1955 	int mark;
1956 	int ret;
1957 	struct btrfs_root *log = root->log_root;
1958 	struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
1959 	unsigned long log_transid = 0;
1960 
1961 	mutex_lock(&root->log_mutex);
1962 	index1 = root->log_transid % 2;
1963 	if (atomic_read(&root->log_commit[index1])) {
1964 		wait_log_commit(trans, root, root->log_transid);
1965 		mutex_unlock(&root->log_mutex);
1966 		return 0;
1967 	}
1968 	atomic_set(&root->log_commit[index1], 1);
1969 
1970 	/* wait for previous tree log sync to complete */
1971 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
1972 		wait_log_commit(trans, root, root->log_transid - 1);
1973 
1974 	while (1) {
1975 		unsigned long batch = root->log_batch;
1976 		if (root->log_multiple_pids) {
1977 			mutex_unlock(&root->log_mutex);
1978 			schedule_timeout_uninterruptible(1);
1979 			mutex_lock(&root->log_mutex);
1980 		}
1981 		wait_for_writer(trans, root);
1982 		if (batch == root->log_batch)
1983 			break;
1984 	}
1985 
1986 	/* bail out if we need to do a full commit */
1987 	if (root->fs_info->last_trans_log_full_commit == trans->transid) {
1988 		ret = -EAGAIN;
1989 		mutex_unlock(&root->log_mutex);
1990 		goto out;
1991 	}
1992 
1993 	log_transid = root->log_transid;
1994 	if (log_transid % 2 == 0)
1995 		mark = EXTENT_DIRTY;
1996 	else
1997 		mark = EXTENT_NEW;
1998 
1999 	/* we start IO on  all the marked extents here, but we don't actually
2000 	 * wait for them until later.
2001 	 */
2002 	ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2003 	BUG_ON(ret);
2004 
2005 	btrfs_set_root_node(&log->root_item, log->node);
2006 
2007 	root->log_batch = 0;
2008 	root->log_transid++;
2009 	log->log_transid = root->log_transid;
2010 	root->log_start_pid = 0;
2011 	smp_mb();
2012 	/*
2013 	 * IO has been started, blocks of the log tree have WRITTEN flag set
2014 	 * in their headers. new modifications of the log will be written to
2015 	 * new positions. so it's safe to allow log writers to go in.
2016 	 */
2017 	mutex_unlock(&root->log_mutex);
2018 
2019 	mutex_lock(&log_root_tree->log_mutex);
2020 	log_root_tree->log_batch++;
2021 	atomic_inc(&log_root_tree->log_writers);
2022 	mutex_unlock(&log_root_tree->log_mutex);
2023 
2024 	ret = update_log_root(trans, log);
2025 
2026 	mutex_lock(&log_root_tree->log_mutex);
2027 	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2028 		smp_mb();
2029 		if (waitqueue_active(&log_root_tree->log_writer_wait))
2030 			wake_up(&log_root_tree->log_writer_wait);
2031 	}
2032 
2033 	if (ret) {
2034 		BUG_ON(ret != -ENOSPC);
2035 		root->fs_info->last_trans_log_full_commit = trans->transid;
2036 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2037 		mutex_unlock(&log_root_tree->log_mutex);
2038 		ret = -EAGAIN;
2039 		goto out;
2040 	}
2041 
2042 	index2 = log_root_tree->log_transid % 2;
2043 	if (atomic_read(&log_root_tree->log_commit[index2])) {
2044 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2045 		wait_log_commit(trans, log_root_tree,
2046 				log_root_tree->log_transid);
2047 		mutex_unlock(&log_root_tree->log_mutex);
2048 		goto out;
2049 	}
2050 	atomic_set(&log_root_tree->log_commit[index2], 1);
2051 
2052 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2053 		wait_log_commit(trans, log_root_tree,
2054 				log_root_tree->log_transid - 1);
2055 	}
2056 
2057 	wait_for_writer(trans, log_root_tree);
2058 
2059 	/*
2060 	 * now that we've moved on to the tree of log tree roots,
2061 	 * check the full commit flag again
2062 	 */
2063 	if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2064 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2065 		mutex_unlock(&log_root_tree->log_mutex);
2066 		ret = -EAGAIN;
2067 		goto out_wake_log_root;
2068 	}
2069 
2070 	ret = btrfs_write_and_wait_marked_extents(log_root_tree,
2071 				&log_root_tree->dirty_log_pages,
2072 				EXTENT_DIRTY | EXTENT_NEW);
2073 	BUG_ON(ret);
2074 	btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2075 
2076 	btrfs_set_super_log_root(&root->fs_info->super_for_commit,
2077 				log_root_tree->node->start);
2078 	btrfs_set_super_log_root_level(&root->fs_info->super_for_commit,
2079 				btrfs_header_level(log_root_tree->node));
2080 
2081 	log_root_tree->log_batch = 0;
2082 	log_root_tree->log_transid++;
2083 	smp_mb();
2084 
2085 	mutex_unlock(&log_root_tree->log_mutex);
2086 
2087 	/*
2088 	 * nobody else is going to jump in and write the the ctree
2089 	 * super here because the log_commit atomic below is protecting
2090 	 * us.  We must be called with a transaction handle pinning
2091 	 * the running transaction open, so a full commit can't hop
2092 	 * in and cause problems either.
2093 	 */
2094 	write_ctree_super(trans, root->fs_info->tree_root, 1);
2095 	ret = 0;
2096 
2097 	mutex_lock(&root->log_mutex);
2098 	if (root->last_log_commit < log_transid)
2099 		root->last_log_commit = log_transid;
2100 	mutex_unlock(&root->log_mutex);
2101 
2102 out_wake_log_root:
2103 	atomic_set(&log_root_tree->log_commit[index2], 0);
2104 	smp_mb();
2105 	if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2106 		wake_up(&log_root_tree->log_commit_wait[index2]);
2107 out:
2108 	atomic_set(&root->log_commit[index1], 0);
2109 	smp_mb();
2110 	if (waitqueue_active(&root->log_commit_wait[index1]))
2111 		wake_up(&root->log_commit_wait[index1]);
2112 	return 0;
2113 }
2114 
2115 static void free_log_tree(struct btrfs_trans_handle *trans,
2116 			  struct btrfs_root *log)
2117 {
2118 	int ret;
2119 	u64 start;
2120 	u64 end;
2121 	struct walk_control wc = {
2122 		.free = 1,
2123 		.process_func = process_one_buffer
2124 	};
2125 
2126 	ret = walk_log_tree(trans, log, &wc);
2127 	BUG_ON(ret);
2128 
2129 	while (1) {
2130 		ret = find_first_extent_bit(&log->dirty_log_pages,
2131 				0, &start, &end, EXTENT_DIRTY | EXTENT_NEW);
2132 		if (ret)
2133 			break;
2134 
2135 		clear_extent_bits(&log->dirty_log_pages, start, end,
2136 				  EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2137 	}
2138 
2139 	free_extent_buffer(log->node);
2140 	kfree(log);
2141 }
2142 
2143 /*
2144  * free all the extents used by the tree log.  This should be called
2145  * at commit time of the full transaction
2146  */
2147 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2148 {
2149 	if (root->log_root) {
2150 		free_log_tree(trans, root->log_root);
2151 		root->log_root = NULL;
2152 	}
2153 	return 0;
2154 }
2155 
2156 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2157 			     struct btrfs_fs_info *fs_info)
2158 {
2159 	if (fs_info->log_root_tree) {
2160 		free_log_tree(trans, fs_info->log_root_tree);
2161 		fs_info->log_root_tree = NULL;
2162 	}
2163 	return 0;
2164 }
2165 
2166 /*
2167  * If both a file and directory are logged, and unlinks or renames are
2168  * mixed in, we have a few interesting corners:
2169  *
2170  * create file X in dir Y
2171  * link file X to X.link in dir Y
2172  * fsync file X
2173  * unlink file X but leave X.link
2174  * fsync dir Y
2175  *
2176  * After a crash we would expect only X.link to exist.  But file X
2177  * didn't get fsync'd again so the log has back refs for X and X.link.
2178  *
2179  * We solve this by removing directory entries and inode backrefs from the
2180  * log when a file that was logged in the current transaction is
2181  * unlinked.  Any later fsync will include the updated log entries, and
2182  * we'll be able to reconstruct the proper directory items from backrefs.
2183  *
2184  * This optimizations allows us to avoid relogging the entire inode
2185  * or the entire directory.
2186  */
2187 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2188 				 struct btrfs_root *root,
2189 				 const char *name, int name_len,
2190 				 struct inode *dir, u64 index)
2191 {
2192 	struct btrfs_root *log;
2193 	struct btrfs_dir_item *di;
2194 	struct btrfs_path *path;
2195 	int ret;
2196 	int err = 0;
2197 	int bytes_del = 0;
2198 
2199 	if (BTRFS_I(dir)->logged_trans < trans->transid)
2200 		return 0;
2201 
2202 	ret = join_running_log_trans(root);
2203 	if (ret)
2204 		return 0;
2205 
2206 	mutex_lock(&BTRFS_I(dir)->log_mutex);
2207 
2208 	log = root->log_root;
2209 	path = btrfs_alloc_path();
2210 	di = btrfs_lookup_dir_item(trans, log, path, dir->i_ino,
2211 				   name, name_len, -1);
2212 	if (IS_ERR(di)) {
2213 		err = PTR_ERR(di);
2214 		goto fail;
2215 	}
2216 	if (di) {
2217 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2218 		bytes_del += name_len;
2219 		BUG_ON(ret);
2220 	}
2221 	btrfs_release_path(log, path);
2222 	di = btrfs_lookup_dir_index_item(trans, log, path, dir->i_ino,
2223 					 index, name, name_len, -1);
2224 	if (IS_ERR(di)) {
2225 		err = PTR_ERR(di);
2226 		goto fail;
2227 	}
2228 	if (di) {
2229 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2230 		bytes_del += name_len;
2231 		BUG_ON(ret);
2232 	}
2233 
2234 	/* update the directory size in the log to reflect the names
2235 	 * we have removed
2236 	 */
2237 	if (bytes_del) {
2238 		struct btrfs_key key;
2239 
2240 		key.objectid = dir->i_ino;
2241 		key.offset = 0;
2242 		key.type = BTRFS_INODE_ITEM_KEY;
2243 		btrfs_release_path(log, path);
2244 
2245 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2246 		if (ret < 0) {
2247 			err = ret;
2248 			goto fail;
2249 		}
2250 		if (ret == 0) {
2251 			struct btrfs_inode_item *item;
2252 			u64 i_size;
2253 
2254 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2255 					      struct btrfs_inode_item);
2256 			i_size = btrfs_inode_size(path->nodes[0], item);
2257 			if (i_size > bytes_del)
2258 				i_size -= bytes_del;
2259 			else
2260 				i_size = 0;
2261 			btrfs_set_inode_size(path->nodes[0], item, i_size);
2262 			btrfs_mark_buffer_dirty(path->nodes[0]);
2263 		} else
2264 			ret = 0;
2265 		btrfs_release_path(log, path);
2266 	}
2267 fail:
2268 	btrfs_free_path(path);
2269 	mutex_unlock(&BTRFS_I(dir)->log_mutex);
2270 	if (ret == -ENOSPC) {
2271 		root->fs_info->last_trans_log_full_commit = trans->transid;
2272 		ret = 0;
2273 	}
2274 	btrfs_end_log_trans(root);
2275 
2276 	return 0;
2277 }
2278 
2279 /* see comments for btrfs_del_dir_entries_in_log */
2280 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2281 			       struct btrfs_root *root,
2282 			       const char *name, int name_len,
2283 			       struct inode *inode, u64 dirid)
2284 {
2285 	struct btrfs_root *log;
2286 	u64 index;
2287 	int ret;
2288 
2289 	if (BTRFS_I(inode)->logged_trans < trans->transid)
2290 		return 0;
2291 
2292 	ret = join_running_log_trans(root);
2293 	if (ret)
2294 		return 0;
2295 	log = root->log_root;
2296 	mutex_lock(&BTRFS_I(inode)->log_mutex);
2297 
2298 	ret = btrfs_del_inode_ref(trans, log, name, name_len, inode->i_ino,
2299 				  dirid, &index);
2300 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
2301 	if (ret == -ENOSPC) {
2302 		root->fs_info->last_trans_log_full_commit = trans->transid;
2303 		ret = 0;
2304 	}
2305 	btrfs_end_log_trans(root);
2306 
2307 	return ret;
2308 }
2309 
2310 /*
2311  * creates a range item in the log for 'dirid'.  first_offset and
2312  * last_offset tell us which parts of the key space the log should
2313  * be considered authoritative for.
2314  */
2315 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2316 				       struct btrfs_root *log,
2317 				       struct btrfs_path *path,
2318 				       int key_type, u64 dirid,
2319 				       u64 first_offset, u64 last_offset)
2320 {
2321 	int ret;
2322 	struct btrfs_key key;
2323 	struct btrfs_dir_log_item *item;
2324 
2325 	key.objectid = dirid;
2326 	key.offset = first_offset;
2327 	if (key_type == BTRFS_DIR_ITEM_KEY)
2328 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
2329 	else
2330 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
2331 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2332 	if (ret)
2333 		return ret;
2334 
2335 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2336 			      struct btrfs_dir_log_item);
2337 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2338 	btrfs_mark_buffer_dirty(path->nodes[0]);
2339 	btrfs_release_path(log, path);
2340 	return 0;
2341 }
2342 
2343 /*
2344  * log all the items included in the current transaction for a given
2345  * directory.  This also creates the range items in the log tree required
2346  * to replay anything deleted before the fsync
2347  */
2348 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2349 			  struct btrfs_root *root, struct inode *inode,
2350 			  struct btrfs_path *path,
2351 			  struct btrfs_path *dst_path, int key_type,
2352 			  u64 min_offset, u64 *last_offset_ret)
2353 {
2354 	struct btrfs_key min_key;
2355 	struct btrfs_key max_key;
2356 	struct btrfs_root *log = root->log_root;
2357 	struct extent_buffer *src;
2358 	int err = 0;
2359 	int ret;
2360 	int i;
2361 	int nritems;
2362 	u64 first_offset = min_offset;
2363 	u64 last_offset = (u64)-1;
2364 
2365 	log = root->log_root;
2366 	max_key.objectid = inode->i_ino;
2367 	max_key.offset = (u64)-1;
2368 	max_key.type = key_type;
2369 
2370 	min_key.objectid = inode->i_ino;
2371 	min_key.type = key_type;
2372 	min_key.offset = min_offset;
2373 
2374 	path->keep_locks = 1;
2375 
2376 	ret = btrfs_search_forward(root, &min_key, &max_key,
2377 				   path, 0, trans->transid);
2378 
2379 	/*
2380 	 * we didn't find anything from this transaction, see if there
2381 	 * is anything at all
2382 	 */
2383 	if (ret != 0 || min_key.objectid != inode->i_ino ||
2384 	    min_key.type != key_type) {
2385 		min_key.objectid = inode->i_ino;
2386 		min_key.type = key_type;
2387 		min_key.offset = (u64)-1;
2388 		btrfs_release_path(root, path);
2389 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2390 		if (ret < 0) {
2391 			btrfs_release_path(root, path);
2392 			return ret;
2393 		}
2394 		ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2395 
2396 		/* if ret == 0 there are items for this type,
2397 		 * create a range to tell us the last key of this type.
2398 		 * otherwise, there are no items in this directory after
2399 		 * *min_offset, and we create a range to indicate that.
2400 		 */
2401 		if (ret == 0) {
2402 			struct btrfs_key tmp;
2403 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2404 					      path->slots[0]);
2405 			if (key_type == tmp.type)
2406 				first_offset = max(min_offset, tmp.offset) + 1;
2407 		}
2408 		goto done;
2409 	}
2410 
2411 	/* go backward to find any previous key */
2412 	ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2413 	if (ret == 0) {
2414 		struct btrfs_key tmp;
2415 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2416 		if (key_type == tmp.type) {
2417 			first_offset = tmp.offset;
2418 			ret = overwrite_item(trans, log, dst_path,
2419 					     path->nodes[0], path->slots[0],
2420 					     &tmp);
2421 			if (ret) {
2422 				err = ret;
2423 				goto done;
2424 			}
2425 		}
2426 	}
2427 	btrfs_release_path(root, path);
2428 
2429 	/* find the first key from this transaction again */
2430 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2431 	if (ret != 0) {
2432 		WARN_ON(1);
2433 		goto done;
2434 	}
2435 
2436 	/*
2437 	 * we have a block from this transaction, log every item in it
2438 	 * from our directory
2439 	 */
2440 	while (1) {
2441 		struct btrfs_key tmp;
2442 		src = path->nodes[0];
2443 		nritems = btrfs_header_nritems(src);
2444 		for (i = path->slots[0]; i < nritems; i++) {
2445 			btrfs_item_key_to_cpu(src, &min_key, i);
2446 
2447 			if (min_key.objectid != inode->i_ino ||
2448 			    min_key.type != key_type)
2449 				goto done;
2450 			ret = overwrite_item(trans, log, dst_path, src, i,
2451 					     &min_key);
2452 			if (ret) {
2453 				err = ret;
2454 				goto done;
2455 			}
2456 		}
2457 		path->slots[0] = nritems;
2458 
2459 		/*
2460 		 * look ahead to the next item and see if it is also
2461 		 * from this directory and from this transaction
2462 		 */
2463 		ret = btrfs_next_leaf(root, path);
2464 		if (ret == 1) {
2465 			last_offset = (u64)-1;
2466 			goto done;
2467 		}
2468 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2469 		if (tmp.objectid != inode->i_ino || tmp.type != key_type) {
2470 			last_offset = (u64)-1;
2471 			goto done;
2472 		}
2473 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2474 			ret = overwrite_item(trans, log, dst_path,
2475 					     path->nodes[0], path->slots[0],
2476 					     &tmp);
2477 			if (ret)
2478 				err = ret;
2479 			else
2480 				last_offset = tmp.offset;
2481 			goto done;
2482 		}
2483 	}
2484 done:
2485 	btrfs_release_path(root, path);
2486 	btrfs_release_path(log, dst_path);
2487 
2488 	if (err == 0) {
2489 		*last_offset_ret = last_offset;
2490 		/*
2491 		 * insert the log range keys to indicate where the log
2492 		 * is valid
2493 		 */
2494 		ret = insert_dir_log_key(trans, log, path, key_type,
2495 					 inode->i_ino, first_offset,
2496 					 last_offset);
2497 		if (ret)
2498 			err = ret;
2499 	}
2500 	return err;
2501 }
2502 
2503 /*
2504  * logging directories is very similar to logging inodes, We find all the items
2505  * from the current transaction and write them to the log.
2506  *
2507  * The recovery code scans the directory in the subvolume, and if it finds a
2508  * key in the range logged that is not present in the log tree, then it means
2509  * that dir entry was unlinked during the transaction.
2510  *
2511  * In order for that scan to work, we must include one key smaller than
2512  * the smallest logged by this transaction and one key larger than the largest
2513  * key logged by this transaction.
2514  */
2515 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2516 			  struct btrfs_root *root, struct inode *inode,
2517 			  struct btrfs_path *path,
2518 			  struct btrfs_path *dst_path)
2519 {
2520 	u64 min_key;
2521 	u64 max_key;
2522 	int ret;
2523 	int key_type = BTRFS_DIR_ITEM_KEY;
2524 
2525 again:
2526 	min_key = 0;
2527 	max_key = 0;
2528 	while (1) {
2529 		ret = log_dir_items(trans, root, inode, path,
2530 				    dst_path, key_type, min_key,
2531 				    &max_key);
2532 		if (ret)
2533 			return ret;
2534 		if (max_key == (u64)-1)
2535 			break;
2536 		min_key = max_key + 1;
2537 	}
2538 
2539 	if (key_type == BTRFS_DIR_ITEM_KEY) {
2540 		key_type = BTRFS_DIR_INDEX_KEY;
2541 		goto again;
2542 	}
2543 	return 0;
2544 }
2545 
2546 /*
2547  * a helper function to drop items from the log before we relog an
2548  * inode.  max_key_type indicates the highest item type to remove.
2549  * This cannot be run for file data extents because it does not
2550  * free the extents they point to.
2551  */
2552 static int drop_objectid_items(struct btrfs_trans_handle *trans,
2553 				  struct btrfs_root *log,
2554 				  struct btrfs_path *path,
2555 				  u64 objectid, int max_key_type)
2556 {
2557 	int ret;
2558 	struct btrfs_key key;
2559 	struct btrfs_key found_key;
2560 
2561 	key.objectid = objectid;
2562 	key.type = max_key_type;
2563 	key.offset = (u64)-1;
2564 
2565 	while (1) {
2566 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2567 		BUG_ON(ret == 0);
2568 		if (ret < 0)
2569 			break;
2570 
2571 		if (path->slots[0] == 0)
2572 			break;
2573 
2574 		path->slots[0]--;
2575 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2576 				      path->slots[0]);
2577 
2578 		if (found_key.objectid != objectid)
2579 			break;
2580 
2581 		ret = btrfs_del_item(trans, log, path);
2582 		BUG_ON(ret);
2583 		btrfs_release_path(log, path);
2584 	}
2585 	btrfs_release_path(log, path);
2586 	return ret;
2587 }
2588 
2589 static noinline int copy_items(struct btrfs_trans_handle *trans,
2590 			       struct btrfs_root *log,
2591 			       struct btrfs_path *dst_path,
2592 			       struct extent_buffer *src,
2593 			       int start_slot, int nr, int inode_only)
2594 {
2595 	unsigned long src_offset;
2596 	unsigned long dst_offset;
2597 	struct btrfs_file_extent_item *extent;
2598 	struct btrfs_inode_item *inode_item;
2599 	int ret;
2600 	struct btrfs_key *ins_keys;
2601 	u32 *ins_sizes;
2602 	char *ins_data;
2603 	int i;
2604 	struct list_head ordered_sums;
2605 
2606 	INIT_LIST_HEAD(&ordered_sums);
2607 
2608 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2609 			   nr * sizeof(u32), GFP_NOFS);
2610 	ins_sizes = (u32 *)ins_data;
2611 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2612 
2613 	for (i = 0; i < nr; i++) {
2614 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2615 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2616 	}
2617 	ret = btrfs_insert_empty_items(trans, log, dst_path,
2618 				       ins_keys, ins_sizes, nr);
2619 	if (ret) {
2620 		kfree(ins_data);
2621 		return ret;
2622 	}
2623 
2624 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
2625 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2626 						   dst_path->slots[0]);
2627 
2628 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2629 
2630 		copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2631 				   src_offset, ins_sizes[i]);
2632 
2633 		if (inode_only == LOG_INODE_EXISTS &&
2634 		    ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2635 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
2636 						    dst_path->slots[0],
2637 						    struct btrfs_inode_item);
2638 			btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
2639 
2640 			/* set the generation to zero so the recover code
2641 			 * can tell the difference between an logging
2642 			 * just to say 'this inode exists' and a logging
2643 			 * to say 'update this inode with these values'
2644 			 */
2645 			btrfs_set_inode_generation(dst_path->nodes[0],
2646 						   inode_item, 0);
2647 		}
2648 		/* take a reference on file data extents so that truncates
2649 		 * or deletes of this inode don't have to relog the inode
2650 		 * again
2651 		 */
2652 		if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
2653 			int found_type;
2654 			extent = btrfs_item_ptr(src, start_slot + i,
2655 						struct btrfs_file_extent_item);
2656 
2657 			found_type = btrfs_file_extent_type(src, extent);
2658 			if (found_type == BTRFS_FILE_EXTENT_REG ||
2659 			    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
2660 				u64 ds, dl, cs, cl;
2661 				ds = btrfs_file_extent_disk_bytenr(src,
2662 								extent);
2663 				/* ds == 0 is a hole */
2664 				if (ds == 0)
2665 					continue;
2666 
2667 				dl = btrfs_file_extent_disk_num_bytes(src,
2668 								extent);
2669 				cs = btrfs_file_extent_offset(src, extent);
2670 				cl = btrfs_file_extent_num_bytes(src,
2671 								extent);
2672 				if (btrfs_file_extent_compression(src,
2673 								  extent)) {
2674 					cs = 0;
2675 					cl = dl;
2676 				}
2677 
2678 				ret = btrfs_lookup_csums_range(
2679 						log->fs_info->csum_root,
2680 						ds + cs, ds + cs + cl - 1,
2681 						&ordered_sums);
2682 				BUG_ON(ret);
2683 			}
2684 		}
2685 	}
2686 
2687 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2688 	btrfs_release_path(log, dst_path);
2689 	kfree(ins_data);
2690 
2691 	/*
2692 	 * we have to do this after the loop above to avoid changing the
2693 	 * log tree while trying to change the log tree.
2694 	 */
2695 	ret = 0;
2696 	while (!list_empty(&ordered_sums)) {
2697 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
2698 						   struct btrfs_ordered_sum,
2699 						   list);
2700 		if (!ret)
2701 			ret = btrfs_csum_file_blocks(trans, log, sums);
2702 		list_del(&sums->list);
2703 		kfree(sums);
2704 	}
2705 	return ret;
2706 }
2707 
2708 /* log a single inode in the tree log.
2709  * At least one parent directory for this inode must exist in the tree
2710  * or be logged already.
2711  *
2712  * Any items from this inode changed by the current transaction are copied
2713  * to the log tree.  An extra reference is taken on any extents in this
2714  * file, allowing us to avoid a whole pile of corner cases around logging
2715  * blocks that have been removed from the tree.
2716  *
2717  * See LOG_INODE_ALL and related defines for a description of what inode_only
2718  * does.
2719  *
2720  * This handles both files and directories.
2721  */
2722 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
2723 			     struct btrfs_root *root, struct inode *inode,
2724 			     int inode_only)
2725 {
2726 	struct btrfs_path *path;
2727 	struct btrfs_path *dst_path;
2728 	struct btrfs_key min_key;
2729 	struct btrfs_key max_key;
2730 	struct btrfs_root *log = root->log_root;
2731 	struct extent_buffer *src = NULL;
2732 	u32 size;
2733 	int err = 0;
2734 	int ret;
2735 	int nritems;
2736 	int ins_start_slot = 0;
2737 	int ins_nr;
2738 
2739 	log = root->log_root;
2740 
2741 	path = btrfs_alloc_path();
2742 	dst_path = btrfs_alloc_path();
2743 
2744 	min_key.objectid = inode->i_ino;
2745 	min_key.type = BTRFS_INODE_ITEM_KEY;
2746 	min_key.offset = 0;
2747 
2748 	max_key.objectid = inode->i_ino;
2749 
2750 	/* today the code can only do partial logging of directories */
2751 	if (!S_ISDIR(inode->i_mode))
2752 	    inode_only = LOG_INODE_ALL;
2753 
2754 	if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
2755 		max_key.type = BTRFS_XATTR_ITEM_KEY;
2756 	else
2757 		max_key.type = (u8)-1;
2758 	max_key.offset = (u64)-1;
2759 
2760 	mutex_lock(&BTRFS_I(inode)->log_mutex);
2761 
2762 	/*
2763 	 * a brute force approach to making sure we get the most uptodate
2764 	 * copies of everything.
2765 	 */
2766 	if (S_ISDIR(inode->i_mode)) {
2767 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2768 
2769 		if (inode_only == LOG_INODE_EXISTS)
2770 			max_key_type = BTRFS_XATTR_ITEM_KEY;
2771 		ret = drop_objectid_items(trans, log, path,
2772 					  inode->i_ino, max_key_type);
2773 	} else {
2774 		ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
2775 	}
2776 	if (ret) {
2777 		err = ret;
2778 		goto out_unlock;
2779 	}
2780 	path->keep_locks = 1;
2781 
2782 	while (1) {
2783 		ins_nr = 0;
2784 		ret = btrfs_search_forward(root, &min_key, &max_key,
2785 					   path, 0, trans->transid);
2786 		if (ret != 0)
2787 			break;
2788 again:
2789 		/* note, ins_nr might be > 0 here, cleanup outside the loop */
2790 		if (min_key.objectid != inode->i_ino)
2791 			break;
2792 		if (min_key.type > max_key.type)
2793 			break;
2794 
2795 		src = path->nodes[0];
2796 		size = btrfs_item_size_nr(src, path->slots[0]);
2797 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2798 			ins_nr++;
2799 			goto next_slot;
2800 		} else if (!ins_nr) {
2801 			ins_start_slot = path->slots[0];
2802 			ins_nr = 1;
2803 			goto next_slot;
2804 		}
2805 
2806 		ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2807 				 ins_nr, inode_only);
2808 		if (ret) {
2809 			err = ret;
2810 			goto out_unlock;
2811 		}
2812 		ins_nr = 1;
2813 		ins_start_slot = path->slots[0];
2814 next_slot:
2815 
2816 		nritems = btrfs_header_nritems(path->nodes[0]);
2817 		path->slots[0]++;
2818 		if (path->slots[0] < nritems) {
2819 			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2820 					      path->slots[0]);
2821 			goto again;
2822 		}
2823 		if (ins_nr) {
2824 			ret = copy_items(trans, log, dst_path, src,
2825 					 ins_start_slot,
2826 					 ins_nr, inode_only);
2827 			if (ret) {
2828 				err = ret;
2829 				goto out_unlock;
2830 			}
2831 			ins_nr = 0;
2832 		}
2833 		btrfs_release_path(root, path);
2834 
2835 		if (min_key.offset < (u64)-1)
2836 			min_key.offset++;
2837 		else if (min_key.type < (u8)-1)
2838 			min_key.type++;
2839 		else if (min_key.objectid < (u64)-1)
2840 			min_key.objectid++;
2841 		else
2842 			break;
2843 	}
2844 	if (ins_nr) {
2845 		ret = copy_items(trans, log, dst_path, src,
2846 				 ins_start_slot,
2847 				 ins_nr, inode_only);
2848 		if (ret) {
2849 			err = ret;
2850 			goto out_unlock;
2851 		}
2852 		ins_nr = 0;
2853 	}
2854 	WARN_ON(ins_nr);
2855 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
2856 		btrfs_release_path(root, path);
2857 		btrfs_release_path(log, dst_path);
2858 		ret = log_directory_changes(trans, root, inode, path, dst_path);
2859 		if (ret) {
2860 			err = ret;
2861 			goto out_unlock;
2862 		}
2863 	}
2864 	BTRFS_I(inode)->logged_trans = trans->transid;
2865 out_unlock:
2866 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
2867 
2868 	btrfs_free_path(path);
2869 	btrfs_free_path(dst_path);
2870 	return err;
2871 }
2872 
2873 /*
2874  * follow the dentry parent pointers up the chain and see if any
2875  * of the directories in it require a full commit before they can
2876  * be logged.  Returns zero if nothing special needs to be done or 1 if
2877  * a full commit is required.
2878  */
2879 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
2880 					       struct inode *inode,
2881 					       struct dentry *parent,
2882 					       struct super_block *sb,
2883 					       u64 last_committed)
2884 {
2885 	int ret = 0;
2886 	struct btrfs_root *root;
2887 
2888 	/*
2889 	 * for regular files, if its inode is already on disk, we don't
2890 	 * have to worry about the parents at all.  This is because
2891 	 * we can use the last_unlink_trans field to record renames
2892 	 * and other fun in this file.
2893 	 */
2894 	if (S_ISREG(inode->i_mode) &&
2895 	    BTRFS_I(inode)->generation <= last_committed &&
2896 	    BTRFS_I(inode)->last_unlink_trans <= last_committed)
2897 			goto out;
2898 
2899 	if (!S_ISDIR(inode->i_mode)) {
2900 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2901 			goto out;
2902 		inode = parent->d_inode;
2903 	}
2904 
2905 	while (1) {
2906 		BTRFS_I(inode)->logged_trans = trans->transid;
2907 		smp_mb();
2908 
2909 		if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
2910 			root = BTRFS_I(inode)->root;
2911 
2912 			/*
2913 			 * make sure any commits to the log are forced
2914 			 * to be full commits
2915 			 */
2916 			root->fs_info->last_trans_log_full_commit =
2917 				trans->transid;
2918 			ret = 1;
2919 			break;
2920 		}
2921 
2922 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2923 			break;
2924 
2925 		if (IS_ROOT(parent))
2926 			break;
2927 
2928 		parent = parent->d_parent;
2929 		inode = parent->d_inode;
2930 
2931 	}
2932 out:
2933 	return ret;
2934 }
2935 
2936 static int inode_in_log(struct btrfs_trans_handle *trans,
2937 		 struct inode *inode)
2938 {
2939 	struct btrfs_root *root = BTRFS_I(inode)->root;
2940 	int ret = 0;
2941 
2942 	mutex_lock(&root->log_mutex);
2943 	if (BTRFS_I(inode)->logged_trans == trans->transid &&
2944 	    BTRFS_I(inode)->last_sub_trans <= root->last_log_commit)
2945 		ret = 1;
2946 	mutex_unlock(&root->log_mutex);
2947 	return ret;
2948 }
2949 
2950 
2951 /*
2952  * helper function around btrfs_log_inode to make sure newly created
2953  * parent directories also end up in the log.  A minimal inode and backref
2954  * only logging is done of any parent directories that are older than
2955  * the last committed transaction
2956  */
2957 int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
2958 		    struct btrfs_root *root, struct inode *inode,
2959 		    struct dentry *parent, int exists_only)
2960 {
2961 	int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
2962 	struct super_block *sb;
2963 	int ret = 0;
2964 	u64 last_committed = root->fs_info->last_trans_committed;
2965 
2966 	sb = inode->i_sb;
2967 
2968 	if (btrfs_test_opt(root, NOTREELOG)) {
2969 		ret = 1;
2970 		goto end_no_trans;
2971 	}
2972 
2973 	if (root->fs_info->last_trans_log_full_commit >
2974 	    root->fs_info->last_trans_committed) {
2975 		ret = 1;
2976 		goto end_no_trans;
2977 	}
2978 
2979 	if (root != BTRFS_I(inode)->root ||
2980 	    btrfs_root_refs(&root->root_item) == 0) {
2981 		ret = 1;
2982 		goto end_no_trans;
2983 	}
2984 
2985 	ret = check_parent_dirs_for_sync(trans, inode, parent,
2986 					 sb, last_committed);
2987 	if (ret)
2988 		goto end_no_trans;
2989 
2990 	if (inode_in_log(trans, inode)) {
2991 		ret = BTRFS_NO_LOG_SYNC;
2992 		goto end_no_trans;
2993 	}
2994 
2995 	ret = start_log_trans(trans, root);
2996 	if (ret)
2997 		goto end_trans;
2998 
2999 	ret = btrfs_log_inode(trans, root, inode, inode_only);
3000 	if (ret)
3001 		goto end_trans;
3002 
3003 	/*
3004 	 * for regular files, if its inode is already on disk, we don't
3005 	 * have to worry about the parents at all.  This is because
3006 	 * we can use the last_unlink_trans field to record renames
3007 	 * and other fun in this file.
3008 	 */
3009 	if (S_ISREG(inode->i_mode) &&
3010 	    BTRFS_I(inode)->generation <= last_committed &&
3011 	    BTRFS_I(inode)->last_unlink_trans <= last_committed) {
3012 		ret = 0;
3013 		goto end_trans;
3014 	}
3015 
3016 	inode_only = LOG_INODE_EXISTS;
3017 	while (1) {
3018 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3019 			break;
3020 
3021 		inode = parent->d_inode;
3022 		if (root != BTRFS_I(inode)->root)
3023 			break;
3024 
3025 		if (BTRFS_I(inode)->generation >
3026 		    root->fs_info->last_trans_committed) {
3027 			ret = btrfs_log_inode(trans, root, inode, inode_only);
3028 			if (ret)
3029 				goto end_trans;
3030 		}
3031 		if (IS_ROOT(parent))
3032 			break;
3033 
3034 		parent = parent->d_parent;
3035 	}
3036 	ret = 0;
3037 end_trans:
3038 	if (ret < 0) {
3039 		BUG_ON(ret != -ENOSPC);
3040 		root->fs_info->last_trans_log_full_commit = trans->transid;
3041 		ret = 1;
3042 	}
3043 	btrfs_end_log_trans(root);
3044 end_no_trans:
3045 	return ret;
3046 }
3047 
3048 /*
3049  * it is not safe to log dentry if the chunk root has added new
3050  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
3051  * If this returns 1, you must commit the transaction to safely get your
3052  * data on disk.
3053  */
3054 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
3055 			  struct btrfs_root *root, struct dentry *dentry)
3056 {
3057 	return btrfs_log_inode_parent(trans, root, dentry->d_inode,
3058 				      dentry->d_parent, 0);
3059 }
3060 
3061 /*
3062  * should be called during mount to recover any replay any log trees
3063  * from the FS
3064  */
3065 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
3066 {
3067 	int ret;
3068 	struct btrfs_path *path;
3069 	struct btrfs_trans_handle *trans;
3070 	struct btrfs_key key;
3071 	struct btrfs_key found_key;
3072 	struct btrfs_key tmp_key;
3073 	struct btrfs_root *log;
3074 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
3075 	struct walk_control wc = {
3076 		.process_func = process_one_buffer,
3077 		.stage = 0,
3078 	};
3079 
3080 	fs_info->log_root_recovering = 1;
3081 	path = btrfs_alloc_path();
3082 	BUG_ON(!path);
3083 
3084 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
3085 
3086 	wc.trans = trans;
3087 	wc.pin = 1;
3088 
3089 	walk_log_tree(trans, log_root_tree, &wc);
3090 
3091 again:
3092 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
3093 	key.offset = (u64)-1;
3094 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
3095 
3096 	while (1) {
3097 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
3098 		if (ret < 0)
3099 			break;
3100 		if (ret > 0) {
3101 			if (path->slots[0] == 0)
3102 				break;
3103 			path->slots[0]--;
3104 		}
3105 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3106 				      path->slots[0]);
3107 		btrfs_release_path(log_root_tree, path);
3108 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
3109 			break;
3110 
3111 		log = btrfs_read_fs_root_no_radix(log_root_tree,
3112 						  &found_key);
3113 		BUG_ON(!log);
3114 
3115 
3116 		tmp_key.objectid = found_key.offset;
3117 		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
3118 		tmp_key.offset = (u64)-1;
3119 
3120 		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
3121 		BUG_ON(!wc.replay_dest);
3122 
3123 		wc.replay_dest->log_root = log;
3124 		btrfs_record_root_in_trans(trans, wc.replay_dest);
3125 		ret = walk_log_tree(trans, log, &wc);
3126 		BUG_ON(ret);
3127 
3128 		if (wc.stage == LOG_WALK_REPLAY_ALL) {
3129 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
3130 						      path);
3131 			BUG_ON(ret);
3132 		}
3133 
3134 		key.offset = found_key.offset - 1;
3135 		wc.replay_dest->log_root = NULL;
3136 		free_extent_buffer(log->node);
3137 		free_extent_buffer(log->commit_root);
3138 		kfree(log);
3139 
3140 		if (found_key.offset == 0)
3141 			break;
3142 	}
3143 	btrfs_release_path(log_root_tree, path);
3144 
3145 	/* step one is to pin it all, step two is to replay just inodes */
3146 	if (wc.pin) {
3147 		wc.pin = 0;
3148 		wc.process_func = replay_one_buffer;
3149 		wc.stage = LOG_WALK_REPLAY_INODES;
3150 		goto again;
3151 	}
3152 	/* step three is to replay everything */
3153 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
3154 		wc.stage++;
3155 		goto again;
3156 	}
3157 
3158 	btrfs_free_path(path);
3159 
3160 	free_extent_buffer(log_root_tree->node);
3161 	log_root_tree->log_root = NULL;
3162 	fs_info->log_root_recovering = 0;
3163 
3164 	/* step 4: commit the transaction, which also unpins the blocks */
3165 	btrfs_commit_transaction(trans, fs_info->tree_root);
3166 
3167 	kfree(log_root_tree);
3168 	return 0;
3169 }
3170 
3171 /*
3172  * there are some corner cases where we want to force a full
3173  * commit instead of allowing a directory to be logged.
3174  *
3175  * They revolve around files there were unlinked from the directory, and
3176  * this function updates the parent directory so that a full commit is
3177  * properly done if it is fsync'd later after the unlinks are done.
3178  */
3179 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
3180 			     struct inode *dir, struct inode *inode,
3181 			     int for_rename)
3182 {
3183 	/*
3184 	 * when we're logging a file, if it hasn't been renamed
3185 	 * or unlinked, and its inode is fully committed on disk,
3186 	 * we don't have to worry about walking up the directory chain
3187 	 * to log its parents.
3188 	 *
3189 	 * So, we use the last_unlink_trans field to put this transid
3190 	 * into the file.  When the file is logged we check it and
3191 	 * don't log the parents if the file is fully on disk.
3192 	 */
3193 	if (S_ISREG(inode->i_mode))
3194 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
3195 
3196 	/*
3197 	 * if this directory was already logged any new
3198 	 * names for this file/dir will get recorded
3199 	 */
3200 	smp_mb();
3201 	if (BTRFS_I(dir)->logged_trans == trans->transid)
3202 		return;
3203 
3204 	/*
3205 	 * if the inode we're about to unlink was logged,
3206 	 * the log will be properly updated for any new names
3207 	 */
3208 	if (BTRFS_I(inode)->logged_trans == trans->transid)
3209 		return;
3210 
3211 	/*
3212 	 * when renaming files across directories, if the directory
3213 	 * there we're unlinking from gets fsync'd later on, there's
3214 	 * no way to find the destination directory later and fsync it
3215 	 * properly.  So, we have to be conservative and force commits
3216 	 * so the new name gets discovered.
3217 	 */
3218 	if (for_rename)
3219 		goto record;
3220 
3221 	/* we can safely do the unlink without any special recording */
3222 	return;
3223 
3224 record:
3225 	BTRFS_I(dir)->last_unlink_trans = trans->transid;
3226 }
3227 
3228 /*
3229  * Call this after adding a new name for a file and it will properly
3230  * update the log to reflect the new name.
3231  *
3232  * It will return zero if all goes well, and it will return 1 if a
3233  * full transaction commit is required.
3234  */
3235 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
3236 			struct inode *inode, struct inode *old_dir,
3237 			struct dentry *parent)
3238 {
3239 	struct btrfs_root * root = BTRFS_I(inode)->root;
3240 
3241 	/*
3242 	 * this will force the logging code to walk the dentry chain
3243 	 * up for the file
3244 	 */
3245 	if (S_ISREG(inode->i_mode))
3246 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
3247 
3248 	/*
3249 	 * if this inode hasn't been logged and directory we're renaming it
3250 	 * from hasn't been logged, we don't need to log it
3251 	 */
3252 	if (BTRFS_I(inode)->logged_trans <=
3253 	    root->fs_info->last_trans_committed &&
3254 	    (!old_dir || BTRFS_I(old_dir)->logged_trans <=
3255 		    root->fs_info->last_trans_committed))
3256 		return 0;
3257 
3258 	return btrfs_log_inode_parent(trans, root, inode, parent, 1);
3259 }
3260 
3261