xref: /linux/fs/btrfs/tree-log.c (revision be3de80dc2e671d9ee15e69fe9cd84d2b71e2225)
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include "ctree.h"
22 #include "transaction.h"
23 #include "disk-io.h"
24 #include "locking.h"
25 #include "print-tree.h"
26 #include "compat.h"
27 #include "tree-log.h"
28 
29 /* magic values for the inode_only field in btrfs_log_inode:
30  *
31  * LOG_INODE_ALL means to log everything
32  * LOG_INODE_EXISTS means to log just enough to recreate the inode
33  * during log replay
34  */
35 #define LOG_INODE_ALL 0
36 #define LOG_INODE_EXISTS 1
37 
38 /*
39  * directory trouble cases
40  *
41  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
42  * log, we must force a full commit before doing an fsync of the directory
43  * where the unlink was done.
44  * ---> record transid of last unlink/rename per directory
45  *
46  * mkdir foo/some_dir
47  * normal commit
48  * rename foo/some_dir foo2/some_dir
49  * mkdir foo/some_dir
50  * fsync foo/some_dir/some_file
51  *
52  * The fsync above will unlink the original some_dir without recording
53  * it in its new location (foo2).  After a crash, some_dir will be gone
54  * unless the fsync of some_file forces a full commit
55  *
56  * 2) we must log any new names for any file or dir that is in the fsync
57  * log. ---> check inode while renaming/linking.
58  *
59  * 2a) we must log any new names for any file or dir during rename
60  * when the directory they are being removed from was logged.
61  * ---> check inode and old parent dir during rename
62  *
63  *  2a is actually the more important variant.  With the extra logging
64  *  a crash might unlink the old name without recreating the new one
65  *
66  * 3) after a crash, we must go through any directories with a link count
67  * of zero and redo the rm -rf
68  *
69  * mkdir f1/foo
70  * normal commit
71  * rm -rf f1/foo
72  * fsync(f1)
73  *
74  * The directory f1 was fully removed from the FS, but fsync was never
75  * called on f1, only its parent dir.  After a crash the rm -rf must
76  * be replayed.  This must be able to recurse down the entire
77  * directory tree.  The inode link count fixup code takes care of the
78  * ugly details.
79  */
80 
81 /*
82  * stages for the tree walking.  The first
83  * stage (0) is to only pin down the blocks we find
84  * the second stage (1) is to make sure that all the inodes
85  * we find in the log are created in the subvolume.
86  *
87  * The last stage is to deal with directories and links and extents
88  * and all the other fun semantics
89  */
90 #define LOG_WALK_PIN_ONLY 0
91 #define LOG_WALK_REPLAY_INODES 1
92 #define LOG_WALK_REPLAY_ALL 2
93 
94 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
95 			     struct btrfs_root *root, struct inode *inode,
96 			     int inode_only);
97 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
98 			     struct btrfs_root *root,
99 			     struct btrfs_path *path, u64 objectid);
100 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
101 				       struct btrfs_root *root,
102 				       struct btrfs_root *log,
103 				       struct btrfs_path *path,
104 				       u64 dirid, int del_all);
105 
106 /*
107  * tree logging is a special write ahead log used to make sure that
108  * fsyncs and O_SYNCs can happen without doing full tree commits.
109  *
110  * Full tree commits are expensive because they require commonly
111  * modified blocks to be recowed, creating many dirty pages in the
112  * extent tree an 4x-6x higher write load than ext3.
113  *
114  * Instead of doing a tree commit on every fsync, we use the
115  * key ranges and transaction ids to find items for a given file or directory
116  * that have changed in this transaction.  Those items are copied into
117  * a special tree (one per subvolume root), that tree is written to disk
118  * and then the fsync is considered complete.
119  *
120  * After a crash, items are copied out of the log-tree back into the
121  * subvolume tree.  Any file data extents found are recorded in the extent
122  * allocation tree, and the log-tree freed.
123  *
124  * The log tree is read three times, once to pin down all the extents it is
125  * using in ram and once, once to create all the inodes logged in the tree
126  * and once to do all the other items.
127  */
128 
129 /*
130  * start a sub transaction and setup the log tree
131  * this increments the log tree writer count to make the people
132  * syncing the tree wait for us to finish
133  */
134 static int start_log_trans(struct btrfs_trans_handle *trans,
135 			   struct btrfs_root *root)
136 {
137 	int ret;
138 	int err = 0;
139 
140 	mutex_lock(&root->log_mutex);
141 	if (root->log_root) {
142 		if (!root->log_start_pid) {
143 			root->log_start_pid = current->pid;
144 			root->log_multiple_pids = false;
145 		} else if (root->log_start_pid != current->pid) {
146 			root->log_multiple_pids = true;
147 		}
148 
149 		root->log_batch++;
150 		atomic_inc(&root->log_writers);
151 		mutex_unlock(&root->log_mutex);
152 		return 0;
153 	}
154 	root->log_multiple_pids = false;
155 	root->log_start_pid = current->pid;
156 	mutex_lock(&root->fs_info->tree_log_mutex);
157 	if (!root->fs_info->log_root_tree) {
158 		ret = btrfs_init_log_root_tree(trans, root->fs_info);
159 		if (ret)
160 			err = ret;
161 	}
162 	if (err == 0 && !root->log_root) {
163 		ret = btrfs_add_log_tree(trans, root);
164 		if (ret)
165 			err = ret;
166 	}
167 	mutex_unlock(&root->fs_info->tree_log_mutex);
168 	root->log_batch++;
169 	atomic_inc(&root->log_writers);
170 	mutex_unlock(&root->log_mutex);
171 	return err;
172 }
173 
174 /*
175  * returns 0 if there was a log transaction running and we were able
176  * to join, or returns -ENOENT if there were not transactions
177  * in progress
178  */
179 static int join_running_log_trans(struct btrfs_root *root)
180 {
181 	int ret = -ENOENT;
182 
183 	smp_mb();
184 	if (!root->log_root)
185 		return -ENOENT;
186 
187 	mutex_lock(&root->log_mutex);
188 	if (root->log_root) {
189 		ret = 0;
190 		atomic_inc(&root->log_writers);
191 	}
192 	mutex_unlock(&root->log_mutex);
193 	return ret;
194 }
195 
196 /*
197  * This either makes the current running log transaction wait
198  * until you call btrfs_end_log_trans() or it makes any future
199  * log transactions wait until you call btrfs_end_log_trans()
200  */
201 int btrfs_pin_log_trans(struct btrfs_root *root)
202 {
203 	int ret = -ENOENT;
204 
205 	mutex_lock(&root->log_mutex);
206 	atomic_inc(&root->log_writers);
207 	mutex_unlock(&root->log_mutex);
208 	return ret;
209 }
210 
211 /*
212  * indicate we're done making changes to the log tree
213  * and wake up anyone waiting to do a sync
214  */
215 int btrfs_end_log_trans(struct btrfs_root *root)
216 {
217 	if (atomic_dec_and_test(&root->log_writers)) {
218 		smp_mb();
219 		if (waitqueue_active(&root->log_writer_wait))
220 			wake_up(&root->log_writer_wait);
221 	}
222 	return 0;
223 }
224 
225 
226 /*
227  * the walk control struct is used to pass state down the chain when
228  * processing the log tree.  The stage field tells us which part
229  * of the log tree processing we are currently doing.  The others
230  * are state fields used for that specific part
231  */
232 struct walk_control {
233 	/* should we free the extent on disk when done?  This is used
234 	 * at transaction commit time while freeing a log tree
235 	 */
236 	int free;
237 
238 	/* should we write out the extent buffer?  This is used
239 	 * while flushing the log tree to disk during a sync
240 	 */
241 	int write;
242 
243 	/* should we wait for the extent buffer io to finish?  Also used
244 	 * while flushing the log tree to disk for a sync
245 	 */
246 	int wait;
247 
248 	/* pin only walk, we record which extents on disk belong to the
249 	 * log trees
250 	 */
251 	int pin;
252 
253 	/* what stage of the replay code we're currently in */
254 	int stage;
255 
256 	/* the root we are currently replaying */
257 	struct btrfs_root *replay_dest;
258 
259 	/* the trans handle for the current replay */
260 	struct btrfs_trans_handle *trans;
261 
262 	/* the function that gets used to process blocks we find in the
263 	 * tree.  Note the extent_buffer might not be up to date when it is
264 	 * passed in, and it must be checked or read if you need the data
265 	 * inside it
266 	 */
267 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
268 			    struct walk_control *wc, u64 gen);
269 };
270 
271 /*
272  * process_func used to pin down extents, write them or wait on them
273  */
274 static int process_one_buffer(struct btrfs_root *log,
275 			      struct extent_buffer *eb,
276 			      struct walk_control *wc, u64 gen)
277 {
278 	if (wc->pin)
279 		btrfs_pin_extent_for_log_replay(wc->trans,
280 						log->fs_info->extent_root,
281 						eb->start, eb->len);
282 
283 	if (btrfs_buffer_uptodate(eb, gen)) {
284 		if (wc->write)
285 			btrfs_write_tree_block(eb);
286 		if (wc->wait)
287 			btrfs_wait_tree_block_writeback(eb);
288 	}
289 	return 0;
290 }
291 
292 /*
293  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
294  * to the src data we are copying out.
295  *
296  * root is the tree we are copying into, and path is a scratch
297  * path for use in this function (it should be released on entry and
298  * will be released on exit).
299  *
300  * If the key is already in the destination tree the existing item is
301  * overwritten.  If the existing item isn't big enough, it is extended.
302  * If it is too large, it is truncated.
303  *
304  * If the key isn't in the destination yet, a new item is inserted.
305  */
306 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
307 				   struct btrfs_root *root,
308 				   struct btrfs_path *path,
309 				   struct extent_buffer *eb, int slot,
310 				   struct btrfs_key *key)
311 {
312 	int ret;
313 	u32 item_size;
314 	u64 saved_i_size = 0;
315 	int save_old_i_size = 0;
316 	unsigned long src_ptr;
317 	unsigned long dst_ptr;
318 	int overwrite_root = 0;
319 
320 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
321 		overwrite_root = 1;
322 
323 	item_size = btrfs_item_size_nr(eb, slot);
324 	src_ptr = btrfs_item_ptr_offset(eb, slot);
325 
326 	/* look for the key in the destination tree */
327 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
328 	if (ret == 0) {
329 		char *src_copy;
330 		char *dst_copy;
331 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
332 						  path->slots[0]);
333 		if (dst_size != item_size)
334 			goto insert;
335 
336 		if (item_size == 0) {
337 			btrfs_release_path(path);
338 			return 0;
339 		}
340 		dst_copy = kmalloc(item_size, GFP_NOFS);
341 		src_copy = kmalloc(item_size, GFP_NOFS);
342 		if (!dst_copy || !src_copy) {
343 			btrfs_release_path(path);
344 			kfree(dst_copy);
345 			kfree(src_copy);
346 			return -ENOMEM;
347 		}
348 
349 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
350 
351 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
352 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
353 				   item_size);
354 		ret = memcmp(dst_copy, src_copy, item_size);
355 
356 		kfree(dst_copy);
357 		kfree(src_copy);
358 		/*
359 		 * they have the same contents, just return, this saves
360 		 * us from cowing blocks in the destination tree and doing
361 		 * extra writes that may not have been done by a previous
362 		 * sync
363 		 */
364 		if (ret == 0) {
365 			btrfs_release_path(path);
366 			return 0;
367 		}
368 
369 	}
370 insert:
371 	btrfs_release_path(path);
372 	/* try to insert the key into the destination tree */
373 	ret = btrfs_insert_empty_item(trans, root, path,
374 				      key, item_size);
375 
376 	/* make sure any existing item is the correct size */
377 	if (ret == -EEXIST) {
378 		u32 found_size;
379 		found_size = btrfs_item_size_nr(path->nodes[0],
380 						path->slots[0]);
381 		if (found_size > item_size) {
382 			btrfs_truncate_item(trans, root, path, item_size, 1);
383 		} else if (found_size < item_size) {
384 			ret = btrfs_extend_item(trans, root, path,
385 						item_size - found_size);
386 		}
387 	} else if (ret) {
388 		return ret;
389 	}
390 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
391 					path->slots[0]);
392 
393 	/* don't overwrite an existing inode if the generation number
394 	 * was logged as zero.  This is done when the tree logging code
395 	 * is just logging an inode to make sure it exists after recovery.
396 	 *
397 	 * Also, don't overwrite i_size on directories during replay.
398 	 * log replay inserts and removes directory items based on the
399 	 * state of the tree found in the subvolume, and i_size is modified
400 	 * as it goes
401 	 */
402 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
403 		struct btrfs_inode_item *src_item;
404 		struct btrfs_inode_item *dst_item;
405 
406 		src_item = (struct btrfs_inode_item *)src_ptr;
407 		dst_item = (struct btrfs_inode_item *)dst_ptr;
408 
409 		if (btrfs_inode_generation(eb, src_item) == 0)
410 			goto no_copy;
411 
412 		if (overwrite_root &&
413 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
414 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
415 			save_old_i_size = 1;
416 			saved_i_size = btrfs_inode_size(path->nodes[0],
417 							dst_item);
418 		}
419 	}
420 
421 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
422 			   src_ptr, item_size);
423 
424 	if (save_old_i_size) {
425 		struct btrfs_inode_item *dst_item;
426 		dst_item = (struct btrfs_inode_item *)dst_ptr;
427 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
428 	}
429 
430 	/* make sure the generation is filled in */
431 	if (key->type == BTRFS_INODE_ITEM_KEY) {
432 		struct btrfs_inode_item *dst_item;
433 		dst_item = (struct btrfs_inode_item *)dst_ptr;
434 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
435 			btrfs_set_inode_generation(path->nodes[0], dst_item,
436 						   trans->transid);
437 		}
438 	}
439 no_copy:
440 	btrfs_mark_buffer_dirty(path->nodes[0]);
441 	btrfs_release_path(path);
442 	return 0;
443 }
444 
445 /*
446  * simple helper to read an inode off the disk from a given root
447  * This can only be called for subvolume roots and not for the log
448  */
449 static noinline struct inode *read_one_inode(struct btrfs_root *root,
450 					     u64 objectid)
451 {
452 	struct btrfs_key key;
453 	struct inode *inode;
454 
455 	key.objectid = objectid;
456 	key.type = BTRFS_INODE_ITEM_KEY;
457 	key.offset = 0;
458 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
459 	if (IS_ERR(inode)) {
460 		inode = NULL;
461 	} else if (is_bad_inode(inode)) {
462 		iput(inode);
463 		inode = NULL;
464 	}
465 	return inode;
466 }
467 
468 /* replays a single extent in 'eb' at 'slot' with 'key' into the
469  * subvolume 'root'.  path is released on entry and should be released
470  * on exit.
471  *
472  * extents in the log tree have not been allocated out of the extent
473  * tree yet.  So, this completes the allocation, taking a reference
474  * as required if the extent already exists or creating a new extent
475  * if it isn't in the extent allocation tree yet.
476  *
477  * The extent is inserted into the file, dropping any existing extents
478  * from the file that overlap the new one.
479  */
480 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
481 				      struct btrfs_root *root,
482 				      struct btrfs_path *path,
483 				      struct extent_buffer *eb, int slot,
484 				      struct btrfs_key *key)
485 {
486 	int found_type;
487 	u64 mask = root->sectorsize - 1;
488 	u64 extent_end;
489 	u64 alloc_hint;
490 	u64 start = key->offset;
491 	u64 saved_nbytes;
492 	struct btrfs_file_extent_item *item;
493 	struct inode *inode = NULL;
494 	unsigned long size;
495 	int ret = 0;
496 
497 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
498 	found_type = btrfs_file_extent_type(eb, item);
499 
500 	if (found_type == BTRFS_FILE_EXTENT_REG ||
501 	    found_type == BTRFS_FILE_EXTENT_PREALLOC)
502 		extent_end = start + btrfs_file_extent_num_bytes(eb, item);
503 	else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
504 		size = btrfs_file_extent_inline_len(eb, item);
505 		extent_end = (start + size + mask) & ~mask;
506 	} else {
507 		ret = 0;
508 		goto out;
509 	}
510 
511 	inode = read_one_inode(root, key->objectid);
512 	if (!inode) {
513 		ret = -EIO;
514 		goto out;
515 	}
516 
517 	/*
518 	 * first check to see if we already have this extent in the
519 	 * file.  This must be done before the btrfs_drop_extents run
520 	 * so we don't try to drop this extent.
521 	 */
522 	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
523 				       start, 0);
524 
525 	if (ret == 0 &&
526 	    (found_type == BTRFS_FILE_EXTENT_REG ||
527 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
528 		struct btrfs_file_extent_item cmp1;
529 		struct btrfs_file_extent_item cmp2;
530 		struct btrfs_file_extent_item *existing;
531 		struct extent_buffer *leaf;
532 
533 		leaf = path->nodes[0];
534 		existing = btrfs_item_ptr(leaf, path->slots[0],
535 					  struct btrfs_file_extent_item);
536 
537 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
538 				   sizeof(cmp1));
539 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
540 				   sizeof(cmp2));
541 
542 		/*
543 		 * we already have a pointer to this exact extent,
544 		 * we don't have to do anything
545 		 */
546 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
547 			btrfs_release_path(path);
548 			goto out;
549 		}
550 	}
551 	btrfs_release_path(path);
552 
553 	saved_nbytes = inode_get_bytes(inode);
554 	/* drop any overlapping extents */
555 	ret = btrfs_drop_extents(trans, inode, start, extent_end,
556 				 &alloc_hint, 1);
557 	BUG_ON(ret);
558 
559 	if (found_type == BTRFS_FILE_EXTENT_REG ||
560 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
561 		u64 offset;
562 		unsigned long dest_offset;
563 		struct btrfs_key ins;
564 
565 		ret = btrfs_insert_empty_item(trans, root, path, key,
566 					      sizeof(*item));
567 		BUG_ON(ret);
568 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
569 						    path->slots[0]);
570 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
571 				(unsigned long)item,  sizeof(*item));
572 
573 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
574 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
575 		ins.type = BTRFS_EXTENT_ITEM_KEY;
576 		offset = key->offset - btrfs_file_extent_offset(eb, item);
577 
578 		if (ins.objectid > 0) {
579 			u64 csum_start;
580 			u64 csum_end;
581 			LIST_HEAD(ordered_sums);
582 			/*
583 			 * is this extent already allocated in the extent
584 			 * allocation tree?  If so, just add a reference
585 			 */
586 			ret = btrfs_lookup_extent(root, ins.objectid,
587 						ins.offset);
588 			if (ret == 0) {
589 				ret = btrfs_inc_extent_ref(trans, root,
590 						ins.objectid, ins.offset,
591 						0, root->root_key.objectid,
592 						key->objectid, offset);
593 				BUG_ON(ret);
594 			} else {
595 				/*
596 				 * insert the extent pointer in the extent
597 				 * allocation tree
598 				 */
599 				ret = btrfs_alloc_logged_file_extent(trans,
600 						root, root->root_key.objectid,
601 						key->objectid, offset, &ins);
602 				BUG_ON(ret);
603 			}
604 			btrfs_release_path(path);
605 
606 			if (btrfs_file_extent_compression(eb, item)) {
607 				csum_start = ins.objectid;
608 				csum_end = csum_start + ins.offset;
609 			} else {
610 				csum_start = ins.objectid +
611 					btrfs_file_extent_offset(eb, item);
612 				csum_end = csum_start +
613 					btrfs_file_extent_num_bytes(eb, item);
614 			}
615 
616 			ret = btrfs_lookup_csums_range(root->log_root,
617 						csum_start, csum_end - 1,
618 						&ordered_sums, 0);
619 			BUG_ON(ret);
620 			while (!list_empty(&ordered_sums)) {
621 				struct btrfs_ordered_sum *sums;
622 				sums = list_entry(ordered_sums.next,
623 						struct btrfs_ordered_sum,
624 						list);
625 				ret = btrfs_csum_file_blocks(trans,
626 						root->fs_info->csum_root,
627 						sums);
628 				BUG_ON(ret);
629 				list_del(&sums->list);
630 				kfree(sums);
631 			}
632 		} else {
633 			btrfs_release_path(path);
634 		}
635 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
636 		/* inline extents are easy, we just overwrite them */
637 		ret = overwrite_item(trans, root, path, eb, slot, key);
638 		BUG_ON(ret);
639 	}
640 
641 	inode_set_bytes(inode, saved_nbytes);
642 	btrfs_update_inode(trans, root, inode);
643 out:
644 	if (inode)
645 		iput(inode);
646 	return ret;
647 }
648 
649 /*
650  * when cleaning up conflicts between the directory names in the
651  * subvolume, directory names in the log and directory names in the
652  * inode back references, we may have to unlink inodes from directories.
653  *
654  * This is a helper function to do the unlink of a specific directory
655  * item
656  */
657 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
658 				      struct btrfs_root *root,
659 				      struct btrfs_path *path,
660 				      struct inode *dir,
661 				      struct btrfs_dir_item *di)
662 {
663 	struct inode *inode;
664 	char *name;
665 	int name_len;
666 	struct extent_buffer *leaf;
667 	struct btrfs_key location;
668 	int ret;
669 
670 	leaf = path->nodes[0];
671 
672 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
673 	name_len = btrfs_dir_name_len(leaf, di);
674 	name = kmalloc(name_len, GFP_NOFS);
675 	if (!name)
676 		return -ENOMEM;
677 
678 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
679 	btrfs_release_path(path);
680 
681 	inode = read_one_inode(root, location.objectid);
682 	if (!inode) {
683 		kfree(name);
684 		return -EIO;
685 	}
686 
687 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
688 	BUG_ON(ret);
689 
690 	ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
691 	BUG_ON(ret);
692 	kfree(name);
693 
694 	iput(inode);
695 	return ret;
696 }
697 
698 /*
699  * helper function to see if a given name and sequence number found
700  * in an inode back reference are already in a directory and correctly
701  * point to this inode
702  */
703 static noinline int inode_in_dir(struct btrfs_root *root,
704 				 struct btrfs_path *path,
705 				 u64 dirid, u64 objectid, u64 index,
706 				 const char *name, int name_len)
707 {
708 	struct btrfs_dir_item *di;
709 	struct btrfs_key location;
710 	int match = 0;
711 
712 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
713 					 index, name, name_len, 0);
714 	if (di && !IS_ERR(di)) {
715 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
716 		if (location.objectid != objectid)
717 			goto out;
718 	} else
719 		goto out;
720 	btrfs_release_path(path);
721 
722 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
723 	if (di && !IS_ERR(di)) {
724 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
725 		if (location.objectid != objectid)
726 			goto out;
727 	} else
728 		goto out;
729 	match = 1;
730 out:
731 	btrfs_release_path(path);
732 	return match;
733 }
734 
735 /*
736  * helper function to check a log tree for a named back reference in
737  * an inode.  This is used to decide if a back reference that is
738  * found in the subvolume conflicts with what we find in the log.
739  *
740  * inode backreferences may have multiple refs in a single item,
741  * during replay we process one reference at a time, and we don't
742  * want to delete valid links to a file from the subvolume if that
743  * link is also in the log.
744  */
745 static noinline int backref_in_log(struct btrfs_root *log,
746 				   struct btrfs_key *key,
747 				   char *name, int namelen)
748 {
749 	struct btrfs_path *path;
750 	struct btrfs_inode_ref *ref;
751 	unsigned long ptr;
752 	unsigned long ptr_end;
753 	unsigned long name_ptr;
754 	int found_name_len;
755 	int item_size;
756 	int ret;
757 	int match = 0;
758 
759 	path = btrfs_alloc_path();
760 	if (!path)
761 		return -ENOMEM;
762 
763 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
764 	if (ret != 0)
765 		goto out;
766 
767 	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
768 	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
769 	ptr_end = ptr + item_size;
770 	while (ptr < ptr_end) {
771 		ref = (struct btrfs_inode_ref *)ptr;
772 		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
773 		if (found_name_len == namelen) {
774 			name_ptr = (unsigned long)(ref + 1);
775 			ret = memcmp_extent_buffer(path->nodes[0], name,
776 						   name_ptr, namelen);
777 			if (ret == 0) {
778 				match = 1;
779 				goto out;
780 			}
781 		}
782 		ptr = (unsigned long)(ref + 1) + found_name_len;
783 	}
784 out:
785 	btrfs_free_path(path);
786 	return match;
787 }
788 
789 
790 /*
791  * replay one inode back reference item found in the log tree.
792  * eb, slot and key refer to the buffer and key found in the log tree.
793  * root is the destination we are replaying into, and path is for temp
794  * use by this function.  (it should be released on return).
795  */
796 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
797 				  struct btrfs_root *root,
798 				  struct btrfs_root *log,
799 				  struct btrfs_path *path,
800 				  struct extent_buffer *eb, int slot,
801 				  struct btrfs_key *key)
802 {
803 	struct btrfs_inode_ref *ref;
804 	struct btrfs_dir_item *di;
805 	struct inode *dir;
806 	struct inode *inode;
807 	unsigned long ref_ptr;
808 	unsigned long ref_end;
809 	char *name;
810 	int namelen;
811 	int ret;
812 	int search_done = 0;
813 
814 	/*
815 	 * it is possible that we didn't log all the parent directories
816 	 * for a given inode.  If we don't find the dir, just don't
817 	 * copy the back ref in.  The link count fixup code will take
818 	 * care of the rest
819 	 */
820 	dir = read_one_inode(root, key->offset);
821 	if (!dir)
822 		return -ENOENT;
823 
824 	inode = read_one_inode(root, key->objectid);
825 	if (!inode) {
826 		iput(dir);
827 		return -EIO;
828 	}
829 
830 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
831 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
832 
833 again:
834 	ref = (struct btrfs_inode_ref *)ref_ptr;
835 
836 	namelen = btrfs_inode_ref_name_len(eb, ref);
837 	name = kmalloc(namelen, GFP_NOFS);
838 	BUG_ON(!name);
839 
840 	read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
841 
842 	/* if we already have a perfect match, we're done */
843 	if (inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
844 			 btrfs_inode_ref_index(eb, ref),
845 			 name, namelen)) {
846 		goto out;
847 	}
848 
849 	/*
850 	 * look for a conflicting back reference in the metadata.
851 	 * if we find one we have to unlink that name of the file
852 	 * before we add our new link.  Later on, we overwrite any
853 	 * existing back reference, and we don't want to create
854 	 * dangling pointers in the directory.
855 	 */
856 
857 	if (search_done)
858 		goto insert;
859 
860 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
861 	if (ret == 0) {
862 		char *victim_name;
863 		int victim_name_len;
864 		struct btrfs_inode_ref *victim_ref;
865 		unsigned long ptr;
866 		unsigned long ptr_end;
867 		struct extent_buffer *leaf = path->nodes[0];
868 
869 		/* are we trying to overwrite a back ref for the root directory
870 		 * if so, just jump out, we're done
871 		 */
872 		if (key->objectid == key->offset)
873 			goto out_nowrite;
874 
875 		/* check all the names in this back reference to see
876 		 * if they are in the log.  if so, we allow them to stay
877 		 * otherwise they must be unlinked as a conflict
878 		 */
879 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
880 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
881 		while (ptr < ptr_end) {
882 			victim_ref = (struct btrfs_inode_ref *)ptr;
883 			victim_name_len = btrfs_inode_ref_name_len(leaf,
884 								   victim_ref);
885 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
886 			BUG_ON(!victim_name);
887 
888 			read_extent_buffer(leaf, victim_name,
889 					   (unsigned long)(victim_ref + 1),
890 					   victim_name_len);
891 
892 			if (!backref_in_log(log, key, victim_name,
893 					    victim_name_len)) {
894 				btrfs_inc_nlink(inode);
895 				btrfs_release_path(path);
896 
897 				ret = btrfs_unlink_inode(trans, root, dir,
898 							 inode, victim_name,
899 							 victim_name_len);
900 			}
901 			kfree(victim_name);
902 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
903 		}
904 		BUG_ON(ret);
905 
906 		/*
907 		 * NOTE: we have searched root tree and checked the
908 		 * coresponding ref, it does not need to check again.
909 		 */
910 		search_done = 1;
911 	}
912 	btrfs_release_path(path);
913 
914 	/* look for a conflicting sequence number */
915 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
916 					 btrfs_inode_ref_index(eb, ref),
917 					 name, namelen, 0);
918 	if (di && !IS_ERR(di)) {
919 		ret = drop_one_dir_item(trans, root, path, dir, di);
920 		BUG_ON(ret);
921 	}
922 	btrfs_release_path(path);
923 
924 	/* look for a conflicing name */
925 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
926 				   name, namelen, 0);
927 	if (di && !IS_ERR(di)) {
928 		ret = drop_one_dir_item(trans, root, path, dir, di);
929 		BUG_ON(ret);
930 	}
931 	btrfs_release_path(path);
932 
933 insert:
934 	/* insert our name */
935 	ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
936 			     btrfs_inode_ref_index(eb, ref));
937 	BUG_ON(ret);
938 
939 	btrfs_update_inode(trans, root, inode);
940 
941 out:
942 	ref_ptr = (unsigned long)(ref + 1) + namelen;
943 	kfree(name);
944 	if (ref_ptr < ref_end)
945 		goto again;
946 
947 	/* finally write the back reference in the inode */
948 	ret = overwrite_item(trans, root, path, eb, slot, key);
949 	BUG_ON(ret);
950 
951 out_nowrite:
952 	btrfs_release_path(path);
953 	iput(dir);
954 	iput(inode);
955 	return 0;
956 }
957 
958 static int insert_orphan_item(struct btrfs_trans_handle *trans,
959 			      struct btrfs_root *root, u64 offset)
960 {
961 	int ret;
962 	ret = btrfs_find_orphan_item(root, offset);
963 	if (ret > 0)
964 		ret = btrfs_insert_orphan_item(trans, root, offset);
965 	return ret;
966 }
967 
968 
969 /*
970  * There are a few corners where the link count of the file can't
971  * be properly maintained during replay.  So, instead of adding
972  * lots of complexity to the log code, we just scan the backrefs
973  * for any file that has been through replay.
974  *
975  * The scan will update the link count on the inode to reflect the
976  * number of back refs found.  If it goes down to zero, the iput
977  * will free the inode.
978  */
979 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
980 					   struct btrfs_root *root,
981 					   struct inode *inode)
982 {
983 	struct btrfs_path *path;
984 	int ret;
985 	struct btrfs_key key;
986 	u64 nlink = 0;
987 	unsigned long ptr;
988 	unsigned long ptr_end;
989 	int name_len;
990 	u64 ino = btrfs_ino(inode);
991 
992 	key.objectid = ino;
993 	key.type = BTRFS_INODE_REF_KEY;
994 	key.offset = (u64)-1;
995 
996 	path = btrfs_alloc_path();
997 	if (!path)
998 		return -ENOMEM;
999 
1000 	while (1) {
1001 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1002 		if (ret < 0)
1003 			break;
1004 		if (ret > 0) {
1005 			if (path->slots[0] == 0)
1006 				break;
1007 			path->slots[0]--;
1008 		}
1009 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1010 				      path->slots[0]);
1011 		if (key.objectid != ino ||
1012 		    key.type != BTRFS_INODE_REF_KEY)
1013 			break;
1014 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1015 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1016 						   path->slots[0]);
1017 		while (ptr < ptr_end) {
1018 			struct btrfs_inode_ref *ref;
1019 
1020 			ref = (struct btrfs_inode_ref *)ptr;
1021 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1022 							    ref);
1023 			ptr = (unsigned long)(ref + 1) + name_len;
1024 			nlink++;
1025 		}
1026 
1027 		if (key.offset == 0)
1028 			break;
1029 		key.offset--;
1030 		btrfs_release_path(path);
1031 	}
1032 	btrfs_release_path(path);
1033 	if (nlink != inode->i_nlink) {
1034 		set_nlink(inode, nlink);
1035 		btrfs_update_inode(trans, root, inode);
1036 	}
1037 	BTRFS_I(inode)->index_cnt = (u64)-1;
1038 
1039 	if (inode->i_nlink == 0) {
1040 		if (S_ISDIR(inode->i_mode)) {
1041 			ret = replay_dir_deletes(trans, root, NULL, path,
1042 						 ino, 1);
1043 			BUG_ON(ret);
1044 		}
1045 		ret = insert_orphan_item(trans, root, ino);
1046 		BUG_ON(ret);
1047 	}
1048 	btrfs_free_path(path);
1049 
1050 	return 0;
1051 }
1052 
1053 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1054 					    struct btrfs_root *root,
1055 					    struct btrfs_path *path)
1056 {
1057 	int ret;
1058 	struct btrfs_key key;
1059 	struct inode *inode;
1060 
1061 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1062 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1063 	key.offset = (u64)-1;
1064 	while (1) {
1065 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1066 		if (ret < 0)
1067 			break;
1068 
1069 		if (ret == 1) {
1070 			if (path->slots[0] == 0)
1071 				break;
1072 			path->slots[0]--;
1073 		}
1074 
1075 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1076 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1077 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1078 			break;
1079 
1080 		ret = btrfs_del_item(trans, root, path);
1081 		if (ret)
1082 			goto out;
1083 
1084 		btrfs_release_path(path);
1085 		inode = read_one_inode(root, key.offset);
1086 		if (!inode)
1087 			return -EIO;
1088 
1089 		ret = fixup_inode_link_count(trans, root, inode);
1090 		BUG_ON(ret);
1091 
1092 		iput(inode);
1093 
1094 		/*
1095 		 * fixup on a directory may create new entries,
1096 		 * make sure we always look for the highset possible
1097 		 * offset
1098 		 */
1099 		key.offset = (u64)-1;
1100 	}
1101 	ret = 0;
1102 out:
1103 	btrfs_release_path(path);
1104 	return ret;
1105 }
1106 
1107 
1108 /*
1109  * record a given inode in the fixup dir so we can check its link
1110  * count when replay is done.  The link count is incremented here
1111  * so the inode won't go away until we check it
1112  */
1113 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1114 				      struct btrfs_root *root,
1115 				      struct btrfs_path *path,
1116 				      u64 objectid)
1117 {
1118 	struct btrfs_key key;
1119 	int ret = 0;
1120 	struct inode *inode;
1121 
1122 	inode = read_one_inode(root, objectid);
1123 	if (!inode)
1124 		return -EIO;
1125 
1126 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1127 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1128 	key.offset = objectid;
1129 
1130 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1131 
1132 	btrfs_release_path(path);
1133 	if (ret == 0) {
1134 		btrfs_inc_nlink(inode);
1135 		btrfs_update_inode(trans, root, inode);
1136 	} else if (ret == -EEXIST) {
1137 		ret = 0;
1138 	} else {
1139 		BUG();
1140 	}
1141 	iput(inode);
1142 
1143 	return ret;
1144 }
1145 
1146 /*
1147  * when replaying the log for a directory, we only insert names
1148  * for inodes that actually exist.  This means an fsync on a directory
1149  * does not implicitly fsync all the new files in it
1150  */
1151 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1152 				    struct btrfs_root *root,
1153 				    struct btrfs_path *path,
1154 				    u64 dirid, u64 index,
1155 				    char *name, int name_len, u8 type,
1156 				    struct btrfs_key *location)
1157 {
1158 	struct inode *inode;
1159 	struct inode *dir;
1160 	int ret;
1161 
1162 	inode = read_one_inode(root, location->objectid);
1163 	if (!inode)
1164 		return -ENOENT;
1165 
1166 	dir = read_one_inode(root, dirid);
1167 	if (!dir) {
1168 		iput(inode);
1169 		return -EIO;
1170 	}
1171 	ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1172 
1173 	/* FIXME, put inode into FIXUP list */
1174 
1175 	iput(inode);
1176 	iput(dir);
1177 	return ret;
1178 }
1179 
1180 /*
1181  * take a single entry in a log directory item and replay it into
1182  * the subvolume.
1183  *
1184  * if a conflicting item exists in the subdirectory already,
1185  * the inode it points to is unlinked and put into the link count
1186  * fix up tree.
1187  *
1188  * If a name from the log points to a file or directory that does
1189  * not exist in the FS, it is skipped.  fsyncs on directories
1190  * do not force down inodes inside that directory, just changes to the
1191  * names or unlinks in a directory.
1192  */
1193 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1194 				    struct btrfs_root *root,
1195 				    struct btrfs_path *path,
1196 				    struct extent_buffer *eb,
1197 				    struct btrfs_dir_item *di,
1198 				    struct btrfs_key *key)
1199 {
1200 	char *name;
1201 	int name_len;
1202 	struct btrfs_dir_item *dst_di;
1203 	struct btrfs_key found_key;
1204 	struct btrfs_key log_key;
1205 	struct inode *dir;
1206 	u8 log_type;
1207 	int exists;
1208 	int ret;
1209 
1210 	dir = read_one_inode(root, key->objectid);
1211 	if (!dir)
1212 		return -EIO;
1213 
1214 	name_len = btrfs_dir_name_len(eb, di);
1215 	name = kmalloc(name_len, GFP_NOFS);
1216 	if (!name)
1217 		return -ENOMEM;
1218 
1219 	log_type = btrfs_dir_type(eb, di);
1220 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1221 		   name_len);
1222 
1223 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1224 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1225 	if (exists == 0)
1226 		exists = 1;
1227 	else
1228 		exists = 0;
1229 	btrfs_release_path(path);
1230 
1231 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1232 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1233 				       name, name_len, 1);
1234 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1235 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1236 						     key->objectid,
1237 						     key->offset, name,
1238 						     name_len, 1);
1239 	} else {
1240 		BUG();
1241 	}
1242 	if (IS_ERR_OR_NULL(dst_di)) {
1243 		/* we need a sequence number to insert, so we only
1244 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1245 		 */
1246 		if (key->type != BTRFS_DIR_INDEX_KEY)
1247 			goto out;
1248 		goto insert;
1249 	}
1250 
1251 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1252 	/* the existing item matches the logged item */
1253 	if (found_key.objectid == log_key.objectid &&
1254 	    found_key.type == log_key.type &&
1255 	    found_key.offset == log_key.offset &&
1256 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1257 		goto out;
1258 	}
1259 
1260 	/*
1261 	 * don't drop the conflicting directory entry if the inode
1262 	 * for the new entry doesn't exist
1263 	 */
1264 	if (!exists)
1265 		goto out;
1266 
1267 	ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1268 	BUG_ON(ret);
1269 
1270 	if (key->type == BTRFS_DIR_INDEX_KEY)
1271 		goto insert;
1272 out:
1273 	btrfs_release_path(path);
1274 	kfree(name);
1275 	iput(dir);
1276 	return 0;
1277 
1278 insert:
1279 	btrfs_release_path(path);
1280 	ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1281 			      name, name_len, log_type, &log_key);
1282 
1283 	BUG_ON(ret && ret != -ENOENT);
1284 	goto out;
1285 }
1286 
1287 /*
1288  * find all the names in a directory item and reconcile them into
1289  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1290  * one name in a directory item, but the same code gets used for
1291  * both directory index types
1292  */
1293 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1294 					struct btrfs_root *root,
1295 					struct btrfs_path *path,
1296 					struct extent_buffer *eb, int slot,
1297 					struct btrfs_key *key)
1298 {
1299 	int ret;
1300 	u32 item_size = btrfs_item_size_nr(eb, slot);
1301 	struct btrfs_dir_item *di;
1302 	int name_len;
1303 	unsigned long ptr;
1304 	unsigned long ptr_end;
1305 
1306 	ptr = btrfs_item_ptr_offset(eb, slot);
1307 	ptr_end = ptr + item_size;
1308 	while (ptr < ptr_end) {
1309 		di = (struct btrfs_dir_item *)ptr;
1310 		if (verify_dir_item(root, eb, di))
1311 			return -EIO;
1312 		name_len = btrfs_dir_name_len(eb, di);
1313 		ret = replay_one_name(trans, root, path, eb, di, key);
1314 		BUG_ON(ret);
1315 		ptr = (unsigned long)(di + 1);
1316 		ptr += name_len;
1317 	}
1318 	return 0;
1319 }
1320 
1321 /*
1322  * directory replay has two parts.  There are the standard directory
1323  * items in the log copied from the subvolume, and range items
1324  * created in the log while the subvolume was logged.
1325  *
1326  * The range items tell us which parts of the key space the log
1327  * is authoritative for.  During replay, if a key in the subvolume
1328  * directory is in a logged range item, but not actually in the log
1329  * that means it was deleted from the directory before the fsync
1330  * and should be removed.
1331  */
1332 static noinline int find_dir_range(struct btrfs_root *root,
1333 				   struct btrfs_path *path,
1334 				   u64 dirid, int key_type,
1335 				   u64 *start_ret, u64 *end_ret)
1336 {
1337 	struct btrfs_key key;
1338 	u64 found_end;
1339 	struct btrfs_dir_log_item *item;
1340 	int ret;
1341 	int nritems;
1342 
1343 	if (*start_ret == (u64)-1)
1344 		return 1;
1345 
1346 	key.objectid = dirid;
1347 	key.type = key_type;
1348 	key.offset = *start_ret;
1349 
1350 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1351 	if (ret < 0)
1352 		goto out;
1353 	if (ret > 0) {
1354 		if (path->slots[0] == 0)
1355 			goto out;
1356 		path->slots[0]--;
1357 	}
1358 	if (ret != 0)
1359 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1360 
1361 	if (key.type != key_type || key.objectid != dirid) {
1362 		ret = 1;
1363 		goto next;
1364 	}
1365 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1366 			      struct btrfs_dir_log_item);
1367 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1368 
1369 	if (*start_ret >= key.offset && *start_ret <= found_end) {
1370 		ret = 0;
1371 		*start_ret = key.offset;
1372 		*end_ret = found_end;
1373 		goto out;
1374 	}
1375 	ret = 1;
1376 next:
1377 	/* check the next slot in the tree to see if it is a valid item */
1378 	nritems = btrfs_header_nritems(path->nodes[0]);
1379 	if (path->slots[0] >= nritems) {
1380 		ret = btrfs_next_leaf(root, path);
1381 		if (ret)
1382 			goto out;
1383 	} else {
1384 		path->slots[0]++;
1385 	}
1386 
1387 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1388 
1389 	if (key.type != key_type || key.objectid != dirid) {
1390 		ret = 1;
1391 		goto out;
1392 	}
1393 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1394 			      struct btrfs_dir_log_item);
1395 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1396 	*start_ret = key.offset;
1397 	*end_ret = found_end;
1398 	ret = 0;
1399 out:
1400 	btrfs_release_path(path);
1401 	return ret;
1402 }
1403 
1404 /*
1405  * this looks for a given directory item in the log.  If the directory
1406  * item is not in the log, the item is removed and the inode it points
1407  * to is unlinked
1408  */
1409 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1410 				      struct btrfs_root *root,
1411 				      struct btrfs_root *log,
1412 				      struct btrfs_path *path,
1413 				      struct btrfs_path *log_path,
1414 				      struct inode *dir,
1415 				      struct btrfs_key *dir_key)
1416 {
1417 	int ret;
1418 	struct extent_buffer *eb;
1419 	int slot;
1420 	u32 item_size;
1421 	struct btrfs_dir_item *di;
1422 	struct btrfs_dir_item *log_di;
1423 	int name_len;
1424 	unsigned long ptr;
1425 	unsigned long ptr_end;
1426 	char *name;
1427 	struct inode *inode;
1428 	struct btrfs_key location;
1429 
1430 again:
1431 	eb = path->nodes[0];
1432 	slot = path->slots[0];
1433 	item_size = btrfs_item_size_nr(eb, slot);
1434 	ptr = btrfs_item_ptr_offset(eb, slot);
1435 	ptr_end = ptr + item_size;
1436 	while (ptr < ptr_end) {
1437 		di = (struct btrfs_dir_item *)ptr;
1438 		if (verify_dir_item(root, eb, di)) {
1439 			ret = -EIO;
1440 			goto out;
1441 		}
1442 
1443 		name_len = btrfs_dir_name_len(eb, di);
1444 		name = kmalloc(name_len, GFP_NOFS);
1445 		if (!name) {
1446 			ret = -ENOMEM;
1447 			goto out;
1448 		}
1449 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
1450 				  name_len);
1451 		log_di = NULL;
1452 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1453 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
1454 						       dir_key->objectid,
1455 						       name, name_len, 0);
1456 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1457 			log_di = btrfs_lookup_dir_index_item(trans, log,
1458 						     log_path,
1459 						     dir_key->objectid,
1460 						     dir_key->offset,
1461 						     name, name_len, 0);
1462 		}
1463 		if (IS_ERR_OR_NULL(log_di)) {
1464 			btrfs_dir_item_key_to_cpu(eb, di, &location);
1465 			btrfs_release_path(path);
1466 			btrfs_release_path(log_path);
1467 			inode = read_one_inode(root, location.objectid);
1468 			if (!inode) {
1469 				kfree(name);
1470 				return -EIO;
1471 			}
1472 
1473 			ret = link_to_fixup_dir(trans, root,
1474 						path, location.objectid);
1475 			BUG_ON(ret);
1476 			btrfs_inc_nlink(inode);
1477 			ret = btrfs_unlink_inode(trans, root, dir, inode,
1478 						 name, name_len);
1479 			BUG_ON(ret);
1480 			kfree(name);
1481 			iput(inode);
1482 
1483 			/* there might still be more names under this key
1484 			 * check and repeat if required
1485 			 */
1486 			ret = btrfs_search_slot(NULL, root, dir_key, path,
1487 						0, 0);
1488 			if (ret == 0)
1489 				goto again;
1490 			ret = 0;
1491 			goto out;
1492 		}
1493 		btrfs_release_path(log_path);
1494 		kfree(name);
1495 
1496 		ptr = (unsigned long)(di + 1);
1497 		ptr += name_len;
1498 	}
1499 	ret = 0;
1500 out:
1501 	btrfs_release_path(path);
1502 	btrfs_release_path(log_path);
1503 	return ret;
1504 }
1505 
1506 /*
1507  * deletion replay happens before we copy any new directory items
1508  * out of the log or out of backreferences from inodes.  It
1509  * scans the log to find ranges of keys that log is authoritative for,
1510  * and then scans the directory to find items in those ranges that are
1511  * not present in the log.
1512  *
1513  * Anything we don't find in the log is unlinked and removed from the
1514  * directory.
1515  */
1516 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1517 				       struct btrfs_root *root,
1518 				       struct btrfs_root *log,
1519 				       struct btrfs_path *path,
1520 				       u64 dirid, int del_all)
1521 {
1522 	u64 range_start;
1523 	u64 range_end;
1524 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1525 	int ret = 0;
1526 	struct btrfs_key dir_key;
1527 	struct btrfs_key found_key;
1528 	struct btrfs_path *log_path;
1529 	struct inode *dir;
1530 
1531 	dir_key.objectid = dirid;
1532 	dir_key.type = BTRFS_DIR_ITEM_KEY;
1533 	log_path = btrfs_alloc_path();
1534 	if (!log_path)
1535 		return -ENOMEM;
1536 
1537 	dir = read_one_inode(root, dirid);
1538 	/* it isn't an error if the inode isn't there, that can happen
1539 	 * because we replay the deletes before we copy in the inode item
1540 	 * from the log
1541 	 */
1542 	if (!dir) {
1543 		btrfs_free_path(log_path);
1544 		return 0;
1545 	}
1546 again:
1547 	range_start = 0;
1548 	range_end = 0;
1549 	while (1) {
1550 		if (del_all)
1551 			range_end = (u64)-1;
1552 		else {
1553 			ret = find_dir_range(log, path, dirid, key_type,
1554 					     &range_start, &range_end);
1555 			if (ret != 0)
1556 				break;
1557 		}
1558 
1559 		dir_key.offset = range_start;
1560 		while (1) {
1561 			int nritems;
1562 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
1563 						0, 0);
1564 			if (ret < 0)
1565 				goto out;
1566 
1567 			nritems = btrfs_header_nritems(path->nodes[0]);
1568 			if (path->slots[0] >= nritems) {
1569 				ret = btrfs_next_leaf(root, path);
1570 				if (ret)
1571 					break;
1572 			}
1573 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1574 					      path->slots[0]);
1575 			if (found_key.objectid != dirid ||
1576 			    found_key.type != dir_key.type)
1577 				goto next_type;
1578 
1579 			if (found_key.offset > range_end)
1580 				break;
1581 
1582 			ret = check_item_in_log(trans, root, log, path,
1583 						log_path, dir,
1584 						&found_key);
1585 			BUG_ON(ret);
1586 			if (found_key.offset == (u64)-1)
1587 				break;
1588 			dir_key.offset = found_key.offset + 1;
1589 		}
1590 		btrfs_release_path(path);
1591 		if (range_end == (u64)-1)
1592 			break;
1593 		range_start = range_end + 1;
1594 	}
1595 
1596 next_type:
1597 	ret = 0;
1598 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1599 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
1600 		dir_key.type = BTRFS_DIR_INDEX_KEY;
1601 		btrfs_release_path(path);
1602 		goto again;
1603 	}
1604 out:
1605 	btrfs_release_path(path);
1606 	btrfs_free_path(log_path);
1607 	iput(dir);
1608 	return ret;
1609 }
1610 
1611 /*
1612  * the process_func used to replay items from the log tree.  This
1613  * gets called in two different stages.  The first stage just looks
1614  * for inodes and makes sure they are all copied into the subvolume.
1615  *
1616  * The second stage copies all the other item types from the log into
1617  * the subvolume.  The two stage approach is slower, but gets rid of
1618  * lots of complexity around inodes referencing other inodes that exist
1619  * only in the log (references come from either directory items or inode
1620  * back refs).
1621  */
1622 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1623 			     struct walk_control *wc, u64 gen)
1624 {
1625 	int nritems;
1626 	struct btrfs_path *path;
1627 	struct btrfs_root *root = wc->replay_dest;
1628 	struct btrfs_key key;
1629 	int level;
1630 	int i;
1631 	int ret;
1632 
1633 	btrfs_read_buffer(eb, gen);
1634 
1635 	level = btrfs_header_level(eb);
1636 
1637 	if (level != 0)
1638 		return 0;
1639 
1640 	path = btrfs_alloc_path();
1641 	if (!path)
1642 		return -ENOMEM;
1643 
1644 	nritems = btrfs_header_nritems(eb);
1645 	for (i = 0; i < nritems; i++) {
1646 		btrfs_item_key_to_cpu(eb, &key, i);
1647 
1648 		/* inode keys are done during the first stage */
1649 		if (key.type == BTRFS_INODE_ITEM_KEY &&
1650 		    wc->stage == LOG_WALK_REPLAY_INODES) {
1651 			struct btrfs_inode_item *inode_item;
1652 			u32 mode;
1653 
1654 			inode_item = btrfs_item_ptr(eb, i,
1655 					    struct btrfs_inode_item);
1656 			mode = btrfs_inode_mode(eb, inode_item);
1657 			if (S_ISDIR(mode)) {
1658 				ret = replay_dir_deletes(wc->trans,
1659 					 root, log, path, key.objectid, 0);
1660 				BUG_ON(ret);
1661 			}
1662 			ret = overwrite_item(wc->trans, root, path,
1663 					     eb, i, &key);
1664 			BUG_ON(ret);
1665 
1666 			/* for regular files, make sure corresponding
1667 			 * orhpan item exist. extents past the new EOF
1668 			 * will be truncated later by orphan cleanup.
1669 			 */
1670 			if (S_ISREG(mode)) {
1671 				ret = insert_orphan_item(wc->trans, root,
1672 							 key.objectid);
1673 				BUG_ON(ret);
1674 			}
1675 
1676 			ret = link_to_fixup_dir(wc->trans, root,
1677 						path, key.objectid);
1678 			BUG_ON(ret);
1679 		}
1680 		if (wc->stage < LOG_WALK_REPLAY_ALL)
1681 			continue;
1682 
1683 		/* these keys are simply copied */
1684 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
1685 			ret = overwrite_item(wc->trans, root, path,
1686 					     eb, i, &key);
1687 			BUG_ON(ret);
1688 		} else if (key.type == BTRFS_INODE_REF_KEY) {
1689 			ret = add_inode_ref(wc->trans, root, log, path,
1690 					    eb, i, &key);
1691 			BUG_ON(ret && ret != -ENOENT);
1692 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1693 			ret = replay_one_extent(wc->trans, root, path,
1694 						eb, i, &key);
1695 			BUG_ON(ret);
1696 		} else if (key.type == BTRFS_DIR_ITEM_KEY ||
1697 			   key.type == BTRFS_DIR_INDEX_KEY) {
1698 			ret = replay_one_dir_item(wc->trans, root, path,
1699 						  eb, i, &key);
1700 			BUG_ON(ret);
1701 		}
1702 	}
1703 	btrfs_free_path(path);
1704 	return 0;
1705 }
1706 
1707 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
1708 				   struct btrfs_root *root,
1709 				   struct btrfs_path *path, int *level,
1710 				   struct walk_control *wc)
1711 {
1712 	u64 root_owner;
1713 	u64 bytenr;
1714 	u64 ptr_gen;
1715 	struct extent_buffer *next;
1716 	struct extent_buffer *cur;
1717 	struct extent_buffer *parent;
1718 	u32 blocksize;
1719 	int ret = 0;
1720 
1721 	WARN_ON(*level < 0);
1722 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
1723 
1724 	while (*level > 0) {
1725 		WARN_ON(*level < 0);
1726 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
1727 		cur = path->nodes[*level];
1728 
1729 		if (btrfs_header_level(cur) != *level)
1730 			WARN_ON(1);
1731 
1732 		if (path->slots[*level] >=
1733 		    btrfs_header_nritems(cur))
1734 			break;
1735 
1736 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1737 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1738 		blocksize = btrfs_level_size(root, *level - 1);
1739 
1740 		parent = path->nodes[*level];
1741 		root_owner = btrfs_header_owner(parent);
1742 
1743 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
1744 		if (!next)
1745 			return -ENOMEM;
1746 
1747 		if (*level == 1) {
1748 			ret = wc->process_func(root, next, wc, ptr_gen);
1749 			if (ret)
1750 				return ret;
1751 
1752 			path->slots[*level]++;
1753 			if (wc->free) {
1754 				btrfs_read_buffer(next, ptr_gen);
1755 
1756 				btrfs_tree_lock(next);
1757 				btrfs_set_lock_blocking(next);
1758 				clean_tree_block(trans, root, next);
1759 				btrfs_wait_tree_block_writeback(next);
1760 				btrfs_tree_unlock(next);
1761 
1762 				WARN_ON(root_owner !=
1763 					BTRFS_TREE_LOG_OBJECTID);
1764 				ret = btrfs_free_and_pin_reserved_extent(root,
1765 							 bytenr, blocksize);
1766 				BUG_ON(ret);
1767 			}
1768 			free_extent_buffer(next);
1769 			continue;
1770 		}
1771 		btrfs_read_buffer(next, ptr_gen);
1772 
1773 		WARN_ON(*level <= 0);
1774 		if (path->nodes[*level-1])
1775 			free_extent_buffer(path->nodes[*level-1]);
1776 		path->nodes[*level-1] = next;
1777 		*level = btrfs_header_level(next);
1778 		path->slots[*level] = 0;
1779 		cond_resched();
1780 	}
1781 	WARN_ON(*level < 0);
1782 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
1783 
1784 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
1785 
1786 	cond_resched();
1787 	return 0;
1788 }
1789 
1790 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
1791 				 struct btrfs_root *root,
1792 				 struct btrfs_path *path, int *level,
1793 				 struct walk_control *wc)
1794 {
1795 	u64 root_owner;
1796 	int i;
1797 	int slot;
1798 	int ret;
1799 
1800 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
1801 		slot = path->slots[i];
1802 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
1803 			path->slots[i]++;
1804 			*level = i;
1805 			WARN_ON(*level == 0);
1806 			return 0;
1807 		} else {
1808 			struct extent_buffer *parent;
1809 			if (path->nodes[*level] == root->node)
1810 				parent = path->nodes[*level];
1811 			else
1812 				parent = path->nodes[*level + 1];
1813 
1814 			root_owner = btrfs_header_owner(parent);
1815 			ret = wc->process_func(root, path->nodes[*level], wc,
1816 				 btrfs_header_generation(path->nodes[*level]));
1817 			if (ret)
1818 				return ret;
1819 
1820 			if (wc->free) {
1821 				struct extent_buffer *next;
1822 
1823 				next = path->nodes[*level];
1824 
1825 				btrfs_tree_lock(next);
1826 				btrfs_set_lock_blocking(next);
1827 				clean_tree_block(trans, root, next);
1828 				btrfs_wait_tree_block_writeback(next);
1829 				btrfs_tree_unlock(next);
1830 
1831 				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1832 				ret = btrfs_free_and_pin_reserved_extent(root,
1833 						path->nodes[*level]->start,
1834 						path->nodes[*level]->len);
1835 				BUG_ON(ret);
1836 			}
1837 			free_extent_buffer(path->nodes[*level]);
1838 			path->nodes[*level] = NULL;
1839 			*level = i + 1;
1840 		}
1841 	}
1842 	return 1;
1843 }
1844 
1845 /*
1846  * drop the reference count on the tree rooted at 'snap'.  This traverses
1847  * the tree freeing any blocks that have a ref count of zero after being
1848  * decremented.
1849  */
1850 static int walk_log_tree(struct btrfs_trans_handle *trans,
1851 			 struct btrfs_root *log, struct walk_control *wc)
1852 {
1853 	int ret = 0;
1854 	int wret;
1855 	int level;
1856 	struct btrfs_path *path;
1857 	int i;
1858 	int orig_level;
1859 
1860 	path = btrfs_alloc_path();
1861 	if (!path)
1862 		return -ENOMEM;
1863 
1864 	level = btrfs_header_level(log->node);
1865 	orig_level = level;
1866 	path->nodes[level] = log->node;
1867 	extent_buffer_get(log->node);
1868 	path->slots[level] = 0;
1869 
1870 	while (1) {
1871 		wret = walk_down_log_tree(trans, log, path, &level, wc);
1872 		if (wret > 0)
1873 			break;
1874 		if (wret < 0)
1875 			ret = wret;
1876 
1877 		wret = walk_up_log_tree(trans, log, path, &level, wc);
1878 		if (wret > 0)
1879 			break;
1880 		if (wret < 0)
1881 			ret = wret;
1882 	}
1883 
1884 	/* was the root node processed? if not, catch it here */
1885 	if (path->nodes[orig_level]) {
1886 		wc->process_func(log, path->nodes[orig_level], wc,
1887 			 btrfs_header_generation(path->nodes[orig_level]));
1888 		if (wc->free) {
1889 			struct extent_buffer *next;
1890 
1891 			next = path->nodes[orig_level];
1892 
1893 			btrfs_tree_lock(next);
1894 			btrfs_set_lock_blocking(next);
1895 			clean_tree_block(trans, log, next);
1896 			btrfs_wait_tree_block_writeback(next);
1897 			btrfs_tree_unlock(next);
1898 
1899 			WARN_ON(log->root_key.objectid !=
1900 				BTRFS_TREE_LOG_OBJECTID);
1901 			ret = btrfs_free_and_pin_reserved_extent(log, next->start,
1902 							 next->len);
1903 			BUG_ON(ret);
1904 		}
1905 	}
1906 
1907 	for (i = 0; i <= orig_level; i++) {
1908 		if (path->nodes[i]) {
1909 			free_extent_buffer(path->nodes[i]);
1910 			path->nodes[i] = NULL;
1911 		}
1912 	}
1913 	btrfs_free_path(path);
1914 	return ret;
1915 }
1916 
1917 /*
1918  * helper function to update the item for a given subvolumes log root
1919  * in the tree of log roots
1920  */
1921 static int update_log_root(struct btrfs_trans_handle *trans,
1922 			   struct btrfs_root *log)
1923 {
1924 	int ret;
1925 
1926 	if (log->log_transid == 1) {
1927 		/* insert root item on the first sync */
1928 		ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
1929 				&log->root_key, &log->root_item);
1930 	} else {
1931 		ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
1932 				&log->root_key, &log->root_item);
1933 	}
1934 	return ret;
1935 }
1936 
1937 static int wait_log_commit(struct btrfs_trans_handle *trans,
1938 			   struct btrfs_root *root, unsigned long transid)
1939 {
1940 	DEFINE_WAIT(wait);
1941 	int index = transid % 2;
1942 
1943 	/*
1944 	 * we only allow two pending log transactions at a time,
1945 	 * so we know that if ours is more than 2 older than the
1946 	 * current transaction, we're done
1947 	 */
1948 	do {
1949 		prepare_to_wait(&root->log_commit_wait[index],
1950 				&wait, TASK_UNINTERRUPTIBLE);
1951 		mutex_unlock(&root->log_mutex);
1952 
1953 		if (root->fs_info->last_trans_log_full_commit !=
1954 		    trans->transid && root->log_transid < transid + 2 &&
1955 		    atomic_read(&root->log_commit[index]))
1956 			schedule();
1957 
1958 		finish_wait(&root->log_commit_wait[index], &wait);
1959 		mutex_lock(&root->log_mutex);
1960 	} while (root->log_transid < transid + 2 &&
1961 		 atomic_read(&root->log_commit[index]));
1962 	return 0;
1963 }
1964 
1965 static int wait_for_writer(struct btrfs_trans_handle *trans,
1966 			   struct btrfs_root *root)
1967 {
1968 	DEFINE_WAIT(wait);
1969 	while (atomic_read(&root->log_writers)) {
1970 		prepare_to_wait(&root->log_writer_wait,
1971 				&wait, TASK_UNINTERRUPTIBLE);
1972 		mutex_unlock(&root->log_mutex);
1973 		if (root->fs_info->last_trans_log_full_commit !=
1974 		    trans->transid && atomic_read(&root->log_writers))
1975 			schedule();
1976 		mutex_lock(&root->log_mutex);
1977 		finish_wait(&root->log_writer_wait, &wait);
1978 	}
1979 	return 0;
1980 }
1981 
1982 /*
1983  * btrfs_sync_log does sends a given tree log down to the disk and
1984  * updates the super blocks to record it.  When this call is done,
1985  * you know that any inodes previously logged are safely on disk only
1986  * if it returns 0.
1987  *
1988  * Any other return value means you need to call btrfs_commit_transaction.
1989  * Some of the edge cases for fsyncing directories that have had unlinks
1990  * or renames done in the past mean that sometimes the only safe
1991  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
1992  * that has happened.
1993  */
1994 int btrfs_sync_log(struct btrfs_trans_handle *trans,
1995 		   struct btrfs_root *root)
1996 {
1997 	int index1;
1998 	int index2;
1999 	int mark;
2000 	int ret;
2001 	struct btrfs_root *log = root->log_root;
2002 	struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2003 	unsigned long log_transid = 0;
2004 
2005 	mutex_lock(&root->log_mutex);
2006 	index1 = root->log_transid % 2;
2007 	if (atomic_read(&root->log_commit[index1])) {
2008 		wait_log_commit(trans, root, root->log_transid);
2009 		mutex_unlock(&root->log_mutex);
2010 		return 0;
2011 	}
2012 	atomic_set(&root->log_commit[index1], 1);
2013 
2014 	/* wait for previous tree log sync to complete */
2015 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2016 		wait_log_commit(trans, root, root->log_transid - 1);
2017 	while (1) {
2018 		unsigned long batch = root->log_batch;
2019 		/* when we're on an ssd, just kick the log commit out */
2020 		if (!btrfs_test_opt(root, SSD) && root->log_multiple_pids) {
2021 			mutex_unlock(&root->log_mutex);
2022 			schedule_timeout_uninterruptible(1);
2023 			mutex_lock(&root->log_mutex);
2024 		}
2025 		wait_for_writer(trans, root);
2026 		if (batch == root->log_batch)
2027 			break;
2028 	}
2029 
2030 	/* bail out if we need to do a full commit */
2031 	if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2032 		ret = -EAGAIN;
2033 		mutex_unlock(&root->log_mutex);
2034 		goto out;
2035 	}
2036 
2037 	log_transid = root->log_transid;
2038 	if (log_transid % 2 == 0)
2039 		mark = EXTENT_DIRTY;
2040 	else
2041 		mark = EXTENT_NEW;
2042 
2043 	/* we start IO on  all the marked extents here, but we don't actually
2044 	 * wait for them until later.
2045 	 */
2046 	ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2047 	BUG_ON(ret);
2048 
2049 	btrfs_set_root_node(&log->root_item, log->node);
2050 
2051 	root->log_batch = 0;
2052 	root->log_transid++;
2053 	log->log_transid = root->log_transid;
2054 	root->log_start_pid = 0;
2055 	smp_mb();
2056 	/*
2057 	 * IO has been started, blocks of the log tree have WRITTEN flag set
2058 	 * in their headers. new modifications of the log will be written to
2059 	 * new positions. so it's safe to allow log writers to go in.
2060 	 */
2061 	mutex_unlock(&root->log_mutex);
2062 
2063 	mutex_lock(&log_root_tree->log_mutex);
2064 	log_root_tree->log_batch++;
2065 	atomic_inc(&log_root_tree->log_writers);
2066 	mutex_unlock(&log_root_tree->log_mutex);
2067 
2068 	ret = update_log_root(trans, log);
2069 
2070 	mutex_lock(&log_root_tree->log_mutex);
2071 	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2072 		smp_mb();
2073 		if (waitqueue_active(&log_root_tree->log_writer_wait))
2074 			wake_up(&log_root_tree->log_writer_wait);
2075 	}
2076 
2077 	if (ret) {
2078 		BUG_ON(ret != -ENOSPC);
2079 		root->fs_info->last_trans_log_full_commit = trans->transid;
2080 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2081 		mutex_unlock(&log_root_tree->log_mutex);
2082 		ret = -EAGAIN;
2083 		goto out;
2084 	}
2085 
2086 	index2 = log_root_tree->log_transid % 2;
2087 	if (atomic_read(&log_root_tree->log_commit[index2])) {
2088 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2089 		wait_log_commit(trans, log_root_tree,
2090 				log_root_tree->log_transid);
2091 		mutex_unlock(&log_root_tree->log_mutex);
2092 		ret = 0;
2093 		goto out;
2094 	}
2095 	atomic_set(&log_root_tree->log_commit[index2], 1);
2096 
2097 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2098 		wait_log_commit(trans, log_root_tree,
2099 				log_root_tree->log_transid - 1);
2100 	}
2101 
2102 	wait_for_writer(trans, log_root_tree);
2103 
2104 	/*
2105 	 * now that we've moved on to the tree of log tree roots,
2106 	 * check the full commit flag again
2107 	 */
2108 	if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2109 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2110 		mutex_unlock(&log_root_tree->log_mutex);
2111 		ret = -EAGAIN;
2112 		goto out_wake_log_root;
2113 	}
2114 
2115 	ret = btrfs_write_and_wait_marked_extents(log_root_tree,
2116 				&log_root_tree->dirty_log_pages,
2117 				EXTENT_DIRTY | EXTENT_NEW);
2118 	BUG_ON(ret);
2119 	btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2120 
2121 	btrfs_set_super_log_root(root->fs_info->super_for_commit,
2122 				log_root_tree->node->start);
2123 	btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2124 				btrfs_header_level(log_root_tree->node));
2125 
2126 	log_root_tree->log_batch = 0;
2127 	log_root_tree->log_transid++;
2128 	smp_mb();
2129 
2130 	mutex_unlock(&log_root_tree->log_mutex);
2131 
2132 	/*
2133 	 * nobody else is going to jump in and write the the ctree
2134 	 * super here because the log_commit atomic below is protecting
2135 	 * us.  We must be called with a transaction handle pinning
2136 	 * the running transaction open, so a full commit can't hop
2137 	 * in and cause problems either.
2138 	 */
2139 	btrfs_scrub_pause_super(root);
2140 	write_ctree_super(trans, root->fs_info->tree_root, 1);
2141 	btrfs_scrub_continue_super(root);
2142 	ret = 0;
2143 
2144 	mutex_lock(&root->log_mutex);
2145 	if (root->last_log_commit < log_transid)
2146 		root->last_log_commit = log_transid;
2147 	mutex_unlock(&root->log_mutex);
2148 
2149 out_wake_log_root:
2150 	atomic_set(&log_root_tree->log_commit[index2], 0);
2151 	smp_mb();
2152 	if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2153 		wake_up(&log_root_tree->log_commit_wait[index2]);
2154 out:
2155 	atomic_set(&root->log_commit[index1], 0);
2156 	smp_mb();
2157 	if (waitqueue_active(&root->log_commit_wait[index1]))
2158 		wake_up(&root->log_commit_wait[index1]);
2159 	return ret;
2160 }
2161 
2162 static void free_log_tree(struct btrfs_trans_handle *trans,
2163 			  struct btrfs_root *log)
2164 {
2165 	int ret;
2166 	u64 start;
2167 	u64 end;
2168 	struct walk_control wc = {
2169 		.free = 1,
2170 		.process_func = process_one_buffer
2171 	};
2172 
2173 	ret = walk_log_tree(trans, log, &wc);
2174 	BUG_ON(ret);
2175 
2176 	while (1) {
2177 		ret = find_first_extent_bit(&log->dirty_log_pages,
2178 				0, &start, &end, EXTENT_DIRTY | EXTENT_NEW);
2179 		if (ret)
2180 			break;
2181 
2182 		clear_extent_bits(&log->dirty_log_pages, start, end,
2183 				  EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2184 	}
2185 
2186 	free_extent_buffer(log->node);
2187 	kfree(log);
2188 }
2189 
2190 /*
2191  * free all the extents used by the tree log.  This should be called
2192  * at commit time of the full transaction
2193  */
2194 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2195 {
2196 	if (root->log_root) {
2197 		free_log_tree(trans, root->log_root);
2198 		root->log_root = NULL;
2199 	}
2200 	return 0;
2201 }
2202 
2203 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2204 			     struct btrfs_fs_info *fs_info)
2205 {
2206 	if (fs_info->log_root_tree) {
2207 		free_log_tree(trans, fs_info->log_root_tree);
2208 		fs_info->log_root_tree = NULL;
2209 	}
2210 	return 0;
2211 }
2212 
2213 /*
2214  * If both a file and directory are logged, and unlinks or renames are
2215  * mixed in, we have a few interesting corners:
2216  *
2217  * create file X in dir Y
2218  * link file X to X.link in dir Y
2219  * fsync file X
2220  * unlink file X but leave X.link
2221  * fsync dir Y
2222  *
2223  * After a crash we would expect only X.link to exist.  But file X
2224  * didn't get fsync'd again so the log has back refs for X and X.link.
2225  *
2226  * We solve this by removing directory entries and inode backrefs from the
2227  * log when a file that was logged in the current transaction is
2228  * unlinked.  Any later fsync will include the updated log entries, and
2229  * we'll be able to reconstruct the proper directory items from backrefs.
2230  *
2231  * This optimizations allows us to avoid relogging the entire inode
2232  * or the entire directory.
2233  */
2234 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2235 				 struct btrfs_root *root,
2236 				 const char *name, int name_len,
2237 				 struct inode *dir, u64 index)
2238 {
2239 	struct btrfs_root *log;
2240 	struct btrfs_dir_item *di;
2241 	struct btrfs_path *path;
2242 	int ret;
2243 	int err = 0;
2244 	int bytes_del = 0;
2245 	u64 dir_ino = btrfs_ino(dir);
2246 
2247 	if (BTRFS_I(dir)->logged_trans < trans->transid)
2248 		return 0;
2249 
2250 	ret = join_running_log_trans(root);
2251 	if (ret)
2252 		return 0;
2253 
2254 	mutex_lock(&BTRFS_I(dir)->log_mutex);
2255 
2256 	log = root->log_root;
2257 	path = btrfs_alloc_path();
2258 	if (!path) {
2259 		err = -ENOMEM;
2260 		goto out_unlock;
2261 	}
2262 
2263 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
2264 				   name, name_len, -1);
2265 	if (IS_ERR(di)) {
2266 		err = PTR_ERR(di);
2267 		goto fail;
2268 	}
2269 	if (di) {
2270 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2271 		bytes_del += name_len;
2272 		BUG_ON(ret);
2273 	}
2274 	btrfs_release_path(path);
2275 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
2276 					 index, name, name_len, -1);
2277 	if (IS_ERR(di)) {
2278 		err = PTR_ERR(di);
2279 		goto fail;
2280 	}
2281 	if (di) {
2282 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2283 		bytes_del += name_len;
2284 		BUG_ON(ret);
2285 	}
2286 
2287 	/* update the directory size in the log to reflect the names
2288 	 * we have removed
2289 	 */
2290 	if (bytes_del) {
2291 		struct btrfs_key key;
2292 
2293 		key.objectid = dir_ino;
2294 		key.offset = 0;
2295 		key.type = BTRFS_INODE_ITEM_KEY;
2296 		btrfs_release_path(path);
2297 
2298 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2299 		if (ret < 0) {
2300 			err = ret;
2301 			goto fail;
2302 		}
2303 		if (ret == 0) {
2304 			struct btrfs_inode_item *item;
2305 			u64 i_size;
2306 
2307 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2308 					      struct btrfs_inode_item);
2309 			i_size = btrfs_inode_size(path->nodes[0], item);
2310 			if (i_size > bytes_del)
2311 				i_size -= bytes_del;
2312 			else
2313 				i_size = 0;
2314 			btrfs_set_inode_size(path->nodes[0], item, i_size);
2315 			btrfs_mark_buffer_dirty(path->nodes[0]);
2316 		} else
2317 			ret = 0;
2318 		btrfs_release_path(path);
2319 	}
2320 fail:
2321 	btrfs_free_path(path);
2322 out_unlock:
2323 	mutex_unlock(&BTRFS_I(dir)->log_mutex);
2324 	if (ret == -ENOSPC) {
2325 		root->fs_info->last_trans_log_full_commit = trans->transid;
2326 		ret = 0;
2327 	}
2328 	btrfs_end_log_trans(root);
2329 
2330 	return err;
2331 }
2332 
2333 /* see comments for btrfs_del_dir_entries_in_log */
2334 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2335 			       struct btrfs_root *root,
2336 			       const char *name, int name_len,
2337 			       struct inode *inode, u64 dirid)
2338 {
2339 	struct btrfs_root *log;
2340 	u64 index;
2341 	int ret;
2342 
2343 	if (BTRFS_I(inode)->logged_trans < trans->transid)
2344 		return 0;
2345 
2346 	ret = join_running_log_trans(root);
2347 	if (ret)
2348 		return 0;
2349 	log = root->log_root;
2350 	mutex_lock(&BTRFS_I(inode)->log_mutex);
2351 
2352 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
2353 				  dirid, &index);
2354 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
2355 	if (ret == -ENOSPC) {
2356 		root->fs_info->last_trans_log_full_commit = trans->transid;
2357 		ret = 0;
2358 	}
2359 	btrfs_end_log_trans(root);
2360 
2361 	return ret;
2362 }
2363 
2364 /*
2365  * creates a range item in the log for 'dirid'.  first_offset and
2366  * last_offset tell us which parts of the key space the log should
2367  * be considered authoritative for.
2368  */
2369 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2370 				       struct btrfs_root *log,
2371 				       struct btrfs_path *path,
2372 				       int key_type, u64 dirid,
2373 				       u64 first_offset, u64 last_offset)
2374 {
2375 	int ret;
2376 	struct btrfs_key key;
2377 	struct btrfs_dir_log_item *item;
2378 
2379 	key.objectid = dirid;
2380 	key.offset = first_offset;
2381 	if (key_type == BTRFS_DIR_ITEM_KEY)
2382 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
2383 	else
2384 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
2385 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2386 	if (ret)
2387 		return ret;
2388 
2389 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2390 			      struct btrfs_dir_log_item);
2391 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2392 	btrfs_mark_buffer_dirty(path->nodes[0]);
2393 	btrfs_release_path(path);
2394 	return 0;
2395 }
2396 
2397 /*
2398  * log all the items included in the current transaction for a given
2399  * directory.  This also creates the range items in the log tree required
2400  * to replay anything deleted before the fsync
2401  */
2402 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2403 			  struct btrfs_root *root, struct inode *inode,
2404 			  struct btrfs_path *path,
2405 			  struct btrfs_path *dst_path, int key_type,
2406 			  u64 min_offset, u64 *last_offset_ret)
2407 {
2408 	struct btrfs_key min_key;
2409 	struct btrfs_key max_key;
2410 	struct btrfs_root *log = root->log_root;
2411 	struct extent_buffer *src;
2412 	int err = 0;
2413 	int ret;
2414 	int i;
2415 	int nritems;
2416 	u64 first_offset = min_offset;
2417 	u64 last_offset = (u64)-1;
2418 	u64 ino = btrfs_ino(inode);
2419 
2420 	log = root->log_root;
2421 	max_key.objectid = ino;
2422 	max_key.offset = (u64)-1;
2423 	max_key.type = key_type;
2424 
2425 	min_key.objectid = ino;
2426 	min_key.type = key_type;
2427 	min_key.offset = min_offset;
2428 
2429 	path->keep_locks = 1;
2430 
2431 	ret = btrfs_search_forward(root, &min_key, &max_key,
2432 				   path, 0, trans->transid);
2433 
2434 	/*
2435 	 * we didn't find anything from this transaction, see if there
2436 	 * is anything at all
2437 	 */
2438 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
2439 		min_key.objectid = ino;
2440 		min_key.type = key_type;
2441 		min_key.offset = (u64)-1;
2442 		btrfs_release_path(path);
2443 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2444 		if (ret < 0) {
2445 			btrfs_release_path(path);
2446 			return ret;
2447 		}
2448 		ret = btrfs_previous_item(root, path, ino, key_type);
2449 
2450 		/* if ret == 0 there are items for this type,
2451 		 * create a range to tell us the last key of this type.
2452 		 * otherwise, there are no items in this directory after
2453 		 * *min_offset, and we create a range to indicate that.
2454 		 */
2455 		if (ret == 0) {
2456 			struct btrfs_key tmp;
2457 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2458 					      path->slots[0]);
2459 			if (key_type == tmp.type)
2460 				first_offset = max(min_offset, tmp.offset) + 1;
2461 		}
2462 		goto done;
2463 	}
2464 
2465 	/* go backward to find any previous key */
2466 	ret = btrfs_previous_item(root, path, ino, key_type);
2467 	if (ret == 0) {
2468 		struct btrfs_key tmp;
2469 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2470 		if (key_type == tmp.type) {
2471 			first_offset = tmp.offset;
2472 			ret = overwrite_item(trans, log, dst_path,
2473 					     path->nodes[0], path->slots[0],
2474 					     &tmp);
2475 			if (ret) {
2476 				err = ret;
2477 				goto done;
2478 			}
2479 		}
2480 	}
2481 	btrfs_release_path(path);
2482 
2483 	/* find the first key from this transaction again */
2484 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2485 	if (ret != 0) {
2486 		WARN_ON(1);
2487 		goto done;
2488 	}
2489 
2490 	/*
2491 	 * we have a block from this transaction, log every item in it
2492 	 * from our directory
2493 	 */
2494 	while (1) {
2495 		struct btrfs_key tmp;
2496 		src = path->nodes[0];
2497 		nritems = btrfs_header_nritems(src);
2498 		for (i = path->slots[0]; i < nritems; i++) {
2499 			btrfs_item_key_to_cpu(src, &min_key, i);
2500 
2501 			if (min_key.objectid != ino || min_key.type != key_type)
2502 				goto done;
2503 			ret = overwrite_item(trans, log, dst_path, src, i,
2504 					     &min_key);
2505 			if (ret) {
2506 				err = ret;
2507 				goto done;
2508 			}
2509 		}
2510 		path->slots[0] = nritems;
2511 
2512 		/*
2513 		 * look ahead to the next item and see if it is also
2514 		 * from this directory and from this transaction
2515 		 */
2516 		ret = btrfs_next_leaf(root, path);
2517 		if (ret == 1) {
2518 			last_offset = (u64)-1;
2519 			goto done;
2520 		}
2521 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2522 		if (tmp.objectid != ino || tmp.type != key_type) {
2523 			last_offset = (u64)-1;
2524 			goto done;
2525 		}
2526 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2527 			ret = overwrite_item(trans, log, dst_path,
2528 					     path->nodes[0], path->slots[0],
2529 					     &tmp);
2530 			if (ret)
2531 				err = ret;
2532 			else
2533 				last_offset = tmp.offset;
2534 			goto done;
2535 		}
2536 	}
2537 done:
2538 	btrfs_release_path(path);
2539 	btrfs_release_path(dst_path);
2540 
2541 	if (err == 0) {
2542 		*last_offset_ret = last_offset;
2543 		/*
2544 		 * insert the log range keys to indicate where the log
2545 		 * is valid
2546 		 */
2547 		ret = insert_dir_log_key(trans, log, path, key_type,
2548 					 ino, first_offset, last_offset);
2549 		if (ret)
2550 			err = ret;
2551 	}
2552 	return err;
2553 }
2554 
2555 /*
2556  * logging directories is very similar to logging inodes, We find all the items
2557  * from the current transaction and write them to the log.
2558  *
2559  * The recovery code scans the directory in the subvolume, and if it finds a
2560  * key in the range logged that is not present in the log tree, then it means
2561  * that dir entry was unlinked during the transaction.
2562  *
2563  * In order for that scan to work, we must include one key smaller than
2564  * the smallest logged by this transaction and one key larger than the largest
2565  * key logged by this transaction.
2566  */
2567 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2568 			  struct btrfs_root *root, struct inode *inode,
2569 			  struct btrfs_path *path,
2570 			  struct btrfs_path *dst_path)
2571 {
2572 	u64 min_key;
2573 	u64 max_key;
2574 	int ret;
2575 	int key_type = BTRFS_DIR_ITEM_KEY;
2576 
2577 again:
2578 	min_key = 0;
2579 	max_key = 0;
2580 	while (1) {
2581 		ret = log_dir_items(trans, root, inode, path,
2582 				    dst_path, key_type, min_key,
2583 				    &max_key);
2584 		if (ret)
2585 			return ret;
2586 		if (max_key == (u64)-1)
2587 			break;
2588 		min_key = max_key + 1;
2589 	}
2590 
2591 	if (key_type == BTRFS_DIR_ITEM_KEY) {
2592 		key_type = BTRFS_DIR_INDEX_KEY;
2593 		goto again;
2594 	}
2595 	return 0;
2596 }
2597 
2598 /*
2599  * a helper function to drop items from the log before we relog an
2600  * inode.  max_key_type indicates the highest item type to remove.
2601  * This cannot be run for file data extents because it does not
2602  * free the extents they point to.
2603  */
2604 static int drop_objectid_items(struct btrfs_trans_handle *trans,
2605 				  struct btrfs_root *log,
2606 				  struct btrfs_path *path,
2607 				  u64 objectid, int max_key_type)
2608 {
2609 	int ret;
2610 	struct btrfs_key key;
2611 	struct btrfs_key found_key;
2612 
2613 	key.objectid = objectid;
2614 	key.type = max_key_type;
2615 	key.offset = (u64)-1;
2616 
2617 	while (1) {
2618 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2619 		BUG_ON(ret == 0);
2620 		if (ret < 0)
2621 			break;
2622 
2623 		if (path->slots[0] == 0)
2624 			break;
2625 
2626 		path->slots[0]--;
2627 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2628 				      path->slots[0]);
2629 
2630 		if (found_key.objectid != objectid)
2631 			break;
2632 
2633 		ret = btrfs_del_item(trans, log, path);
2634 		if (ret)
2635 			break;
2636 		btrfs_release_path(path);
2637 	}
2638 	btrfs_release_path(path);
2639 	return ret;
2640 }
2641 
2642 static noinline int copy_items(struct btrfs_trans_handle *trans,
2643 			       struct btrfs_root *log,
2644 			       struct btrfs_path *dst_path,
2645 			       struct extent_buffer *src,
2646 			       int start_slot, int nr, int inode_only)
2647 {
2648 	unsigned long src_offset;
2649 	unsigned long dst_offset;
2650 	struct btrfs_file_extent_item *extent;
2651 	struct btrfs_inode_item *inode_item;
2652 	int ret;
2653 	struct btrfs_key *ins_keys;
2654 	u32 *ins_sizes;
2655 	char *ins_data;
2656 	int i;
2657 	struct list_head ordered_sums;
2658 
2659 	INIT_LIST_HEAD(&ordered_sums);
2660 
2661 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2662 			   nr * sizeof(u32), GFP_NOFS);
2663 	if (!ins_data)
2664 		return -ENOMEM;
2665 
2666 	ins_sizes = (u32 *)ins_data;
2667 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2668 
2669 	for (i = 0; i < nr; i++) {
2670 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2671 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2672 	}
2673 	ret = btrfs_insert_empty_items(trans, log, dst_path,
2674 				       ins_keys, ins_sizes, nr);
2675 	if (ret) {
2676 		kfree(ins_data);
2677 		return ret;
2678 	}
2679 
2680 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
2681 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2682 						   dst_path->slots[0]);
2683 
2684 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2685 
2686 		copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2687 				   src_offset, ins_sizes[i]);
2688 
2689 		if (inode_only == LOG_INODE_EXISTS &&
2690 		    ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2691 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
2692 						    dst_path->slots[0],
2693 						    struct btrfs_inode_item);
2694 			btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
2695 
2696 			/* set the generation to zero so the recover code
2697 			 * can tell the difference between an logging
2698 			 * just to say 'this inode exists' and a logging
2699 			 * to say 'update this inode with these values'
2700 			 */
2701 			btrfs_set_inode_generation(dst_path->nodes[0],
2702 						   inode_item, 0);
2703 		}
2704 		/* take a reference on file data extents so that truncates
2705 		 * or deletes of this inode don't have to relog the inode
2706 		 * again
2707 		 */
2708 		if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
2709 			int found_type;
2710 			extent = btrfs_item_ptr(src, start_slot + i,
2711 						struct btrfs_file_extent_item);
2712 
2713 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
2714 				continue;
2715 
2716 			found_type = btrfs_file_extent_type(src, extent);
2717 			if (found_type == BTRFS_FILE_EXTENT_REG ||
2718 			    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
2719 				u64 ds, dl, cs, cl;
2720 				ds = btrfs_file_extent_disk_bytenr(src,
2721 								extent);
2722 				/* ds == 0 is a hole */
2723 				if (ds == 0)
2724 					continue;
2725 
2726 				dl = btrfs_file_extent_disk_num_bytes(src,
2727 								extent);
2728 				cs = btrfs_file_extent_offset(src, extent);
2729 				cl = btrfs_file_extent_num_bytes(src,
2730 								extent);
2731 				if (btrfs_file_extent_compression(src,
2732 								  extent)) {
2733 					cs = 0;
2734 					cl = dl;
2735 				}
2736 
2737 				ret = btrfs_lookup_csums_range(
2738 						log->fs_info->csum_root,
2739 						ds + cs, ds + cs + cl - 1,
2740 						&ordered_sums, 0);
2741 				BUG_ON(ret);
2742 			}
2743 		}
2744 	}
2745 
2746 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2747 	btrfs_release_path(dst_path);
2748 	kfree(ins_data);
2749 
2750 	/*
2751 	 * we have to do this after the loop above to avoid changing the
2752 	 * log tree while trying to change the log tree.
2753 	 */
2754 	ret = 0;
2755 	while (!list_empty(&ordered_sums)) {
2756 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
2757 						   struct btrfs_ordered_sum,
2758 						   list);
2759 		if (!ret)
2760 			ret = btrfs_csum_file_blocks(trans, log, sums);
2761 		list_del(&sums->list);
2762 		kfree(sums);
2763 	}
2764 	return ret;
2765 }
2766 
2767 /* log a single inode in the tree log.
2768  * At least one parent directory for this inode must exist in the tree
2769  * or be logged already.
2770  *
2771  * Any items from this inode changed by the current transaction are copied
2772  * to the log tree.  An extra reference is taken on any extents in this
2773  * file, allowing us to avoid a whole pile of corner cases around logging
2774  * blocks that have been removed from the tree.
2775  *
2776  * See LOG_INODE_ALL and related defines for a description of what inode_only
2777  * does.
2778  *
2779  * This handles both files and directories.
2780  */
2781 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
2782 			     struct btrfs_root *root, struct inode *inode,
2783 			     int inode_only)
2784 {
2785 	struct btrfs_path *path;
2786 	struct btrfs_path *dst_path;
2787 	struct btrfs_key min_key;
2788 	struct btrfs_key max_key;
2789 	struct btrfs_root *log = root->log_root;
2790 	struct extent_buffer *src = NULL;
2791 	int err = 0;
2792 	int ret;
2793 	int nritems;
2794 	int ins_start_slot = 0;
2795 	int ins_nr;
2796 	u64 ino = btrfs_ino(inode);
2797 
2798 	log = root->log_root;
2799 
2800 	path = btrfs_alloc_path();
2801 	if (!path)
2802 		return -ENOMEM;
2803 	dst_path = btrfs_alloc_path();
2804 	if (!dst_path) {
2805 		btrfs_free_path(path);
2806 		return -ENOMEM;
2807 	}
2808 
2809 	min_key.objectid = ino;
2810 	min_key.type = BTRFS_INODE_ITEM_KEY;
2811 	min_key.offset = 0;
2812 
2813 	max_key.objectid = ino;
2814 
2815 	/* today the code can only do partial logging of directories */
2816 	if (!S_ISDIR(inode->i_mode))
2817 	    inode_only = LOG_INODE_ALL;
2818 
2819 	if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
2820 		max_key.type = BTRFS_XATTR_ITEM_KEY;
2821 	else
2822 		max_key.type = (u8)-1;
2823 	max_key.offset = (u64)-1;
2824 
2825 	ret = btrfs_commit_inode_delayed_items(trans, inode);
2826 	if (ret) {
2827 		btrfs_free_path(path);
2828 		btrfs_free_path(dst_path);
2829 		return ret;
2830 	}
2831 
2832 	mutex_lock(&BTRFS_I(inode)->log_mutex);
2833 
2834 	/*
2835 	 * a brute force approach to making sure we get the most uptodate
2836 	 * copies of everything.
2837 	 */
2838 	if (S_ISDIR(inode->i_mode)) {
2839 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2840 
2841 		if (inode_only == LOG_INODE_EXISTS)
2842 			max_key_type = BTRFS_XATTR_ITEM_KEY;
2843 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
2844 	} else {
2845 		ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
2846 	}
2847 	if (ret) {
2848 		err = ret;
2849 		goto out_unlock;
2850 	}
2851 	path->keep_locks = 1;
2852 
2853 	while (1) {
2854 		ins_nr = 0;
2855 		ret = btrfs_search_forward(root, &min_key, &max_key,
2856 					   path, 0, trans->transid);
2857 		if (ret != 0)
2858 			break;
2859 again:
2860 		/* note, ins_nr might be > 0 here, cleanup outside the loop */
2861 		if (min_key.objectid != ino)
2862 			break;
2863 		if (min_key.type > max_key.type)
2864 			break;
2865 
2866 		src = path->nodes[0];
2867 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2868 			ins_nr++;
2869 			goto next_slot;
2870 		} else if (!ins_nr) {
2871 			ins_start_slot = path->slots[0];
2872 			ins_nr = 1;
2873 			goto next_slot;
2874 		}
2875 
2876 		ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2877 				 ins_nr, inode_only);
2878 		if (ret) {
2879 			err = ret;
2880 			goto out_unlock;
2881 		}
2882 		ins_nr = 1;
2883 		ins_start_slot = path->slots[0];
2884 next_slot:
2885 
2886 		nritems = btrfs_header_nritems(path->nodes[0]);
2887 		path->slots[0]++;
2888 		if (path->slots[0] < nritems) {
2889 			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2890 					      path->slots[0]);
2891 			goto again;
2892 		}
2893 		if (ins_nr) {
2894 			ret = copy_items(trans, log, dst_path, src,
2895 					 ins_start_slot,
2896 					 ins_nr, inode_only);
2897 			if (ret) {
2898 				err = ret;
2899 				goto out_unlock;
2900 			}
2901 			ins_nr = 0;
2902 		}
2903 		btrfs_release_path(path);
2904 
2905 		if (min_key.offset < (u64)-1)
2906 			min_key.offset++;
2907 		else if (min_key.type < (u8)-1)
2908 			min_key.type++;
2909 		else if (min_key.objectid < (u64)-1)
2910 			min_key.objectid++;
2911 		else
2912 			break;
2913 	}
2914 	if (ins_nr) {
2915 		ret = copy_items(trans, log, dst_path, src,
2916 				 ins_start_slot,
2917 				 ins_nr, inode_only);
2918 		if (ret) {
2919 			err = ret;
2920 			goto out_unlock;
2921 		}
2922 		ins_nr = 0;
2923 	}
2924 	WARN_ON(ins_nr);
2925 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
2926 		btrfs_release_path(path);
2927 		btrfs_release_path(dst_path);
2928 		ret = log_directory_changes(trans, root, inode, path, dst_path);
2929 		if (ret) {
2930 			err = ret;
2931 			goto out_unlock;
2932 		}
2933 	}
2934 	BTRFS_I(inode)->logged_trans = trans->transid;
2935 out_unlock:
2936 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
2937 
2938 	btrfs_free_path(path);
2939 	btrfs_free_path(dst_path);
2940 	return err;
2941 }
2942 
2943 /*
2944  * follow the dentry parent pointers up the chain and see if any
2945  * of the directories in it require a full commit before they can
2946  * be logged.  Returns zero if nothing special needs to be done or 1 if
2947  * a full commit is required.
2948  */
2949 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
2950 					       struct inode *inode,
2951 					       struct dentry *parent,
2952 					       struct super_block *sb,
2953 					       u64 last_committed)
2954 {
2955 	int ret = 0;
2956 	struct btrfs_root *root;
2957 	struct dentry *old_parent = NULL;
2958 
2959 	/*
2960 	 * for regular files, if its inode is already on disk, we don't
2961 	 * have to worry about the parents at all.  This is because
2962 	 * we can use the last_unlink_trans field to record renames
2963 	 * and other fun in this file.
2964 	 */
2965 	if (S_ISREG(inode->i_mode) &&
2966 	    BTRFS_I(inode)->generation <= last_committed &&
2967 	    BTRFS_I(inode)->last_unlink_trans <= last_committed)
2968 			goto out;
2969 
2970 	if (!S_ISDIR(inode->i_mode)) {
2971 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2972 			goto out;
2973 		inode = parent->d_inode;
2974 	}
2975 
2976 	while (1) {
2977 		BTRFS_I(inode)->logged_trans = trans->transid;
2978 		smp_mb();
2979 
2980 		if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
2981 			root = BTRFS_I(inode)->root;
2982 
2983 			/*
2984 			 * make sure any commits to the log are forced
2985 			 * to be full commits
2986 			 */
2987 			root->fs_info->last_trans_log_full_commit =
2988 				trans->transid;
2989 			ret = 1;
2990 			break;
2991 		}
2992 
2993 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2994 			break;
2995 
2996 		if (IS_ROOT(parent))
2997 			break;
2998 
2999 		parent = dget_parent(parent);
3000 		dput(old_parent);
3001 		old_parent = parent;
3002 		inode = parent->d_inode;
3003 
3004 	}
3005 	dput(old_parent);
3006 out:
3007 	return ret;
3008 }
3009 
3010 static int inode_in_log(struct btrfs_trans_handle *trans,
3011 		 struct inode *inode)
3012 {
3013 	struct btrfs_root *root = BTRFS_I(inode)->root;
3014 	int ret = 0;
3015 
3016 	mutex_lock(&root->log_mutex);
3017 	if (BTRFS_I(inode)->logged_trans == trans->transid &&
3018 	    BTRFS_I(inode)->last_sub_trans <= root->last_log_commit)
3019 		ret = 1;
3020 	mutex_unlock(&root->log_mutex);
3021 	return ret;
3022 }
3023 
3024 
3025 /*
3026  * helper function around btrfs_log_inode to make sure newly created
3027  * parent directories also end up in the log.  A minimal inode and backref
3028  * only logging is done of any parent directories that are older than
3029  * the last committed transaction
3030  */
3031 int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
3032 		    struct btrfs_root *root, struct inode *inode,
3033 		    struct dentry *parent, int exists_only)
3034 {
3035 	int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
3036 	struct super_block *sb;
3037 	struct dentry *old_parent = NULL;
3038 	int ret = 0;
3039 	u64 last_committed = root->fs_info->last_trans_committed;
3040 
3041 	sb = inode->i_sb;
3042 
3043 	if (btrfs_test_opt(root, NOTREELOG)) {
3044 		ret = 1;
3045 		goto end_no_trans;
3046 	}
3047 
3048 	if (root->fs_info->last_trans_log_full_commit >
3049 	    root->fs_info->last_trans_committed) {
3050 		ret = 1;
3051 		goto end_no_trans;
3052 	}
3053 
3054 	if (root != BTRFS_I(inode)->root ||
3055 	    btrfs_root_refs(&root->root_item) == 0) {
3056 		ret = 1;
3057 		goto end_no_trans;
3058 	}
3059 
3060 	ret = check_parent_dirs_for_sync(trans, inode, parent,
3061 					 sb, last_committed);
3062 	if (ret)
3063 		goto end_no_trans;
3064 
3065 	if (inode_in_log(trans, inode)) {
3066 		ret = BTRFS_NO_LOG_SYNC;
3067 		goto end_no_trans;
3068 	}
3069 
3070 	ret = start_log_trans(trans, root);
3071 	if (ret)
3072 		goto end_trans;
3073 
3074 	ret = btrfs_log_inode(trans, root, inode, inode_only);
3075 	if (ret)
3076 		goto end_trans;
3077 
3078 	/*
3079 	 * for regular files, if its inode is already on disk, we don't
3080 	 * have to worry about the parents at all.  This is because
3081 	 * we can use the last_unlink_trans field to record renames
3082 	 * and other fun in this file.
3083 	 */
3084 	if (S_ISREG(inode->i_mode) &&
3085 	    BTRFS_I(inode)->generation <= last_committed &&
3086 	    BTRFS_I(inode)->last_unlink_trans <= last_committed) {
3087 		ret = 0;
3088 		goto end_trans;
3089 	}
3090 
3091 	inode_only = LOG_INODE_EXISTS;
3092 	while (1) {
3093 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3094 			break;
3095 
3096 		inode = parent->d_inode;
3097 		if (root != BTRFS_I(inode)->root)
3098 			break;
3099 
3100 		if (BTRFS_I(inode)->generation >
3101 		    root->fs_info->last_trans_committed) {
3102 			ret = btrfs_log_inode(trans, root, inode, inode_only);
3103 			if (ret)
3104 				goto end_trans;
3105 		}
3106 		if (IS_ROOT(parent))
3107 			break;
3108 
3109 		parent = dget_parent(parent);
3110 		dput(old_parent);
3111 		old_parent = parent;
3112 	}
3113 	ret = 0;
3114 end_trans:
3115 	dput(old_parent);
3116 	if (ret < 0) {
3117 		BUG_ON(ret != -ENOSPC);
3118 		root->fs_info->last_trans_log_full_commit = trans->transid;
3119 		ret = 1;
3120 	}
3121 	btrfs_end_log_trans(root);
3122 end_no_trans:
3123 	return ret;
3124 }
3125 
3126 /*
3127  * it is not safe to log dentry if the chunk root has added new
3128  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
3129  * If this returns 1, you must commit the transaction to safely get your
3130  * data on disk.
3131  */
3132 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
3133 			  struct btrfs_root *root, struct dentry *dentry)
3134 {
3135 	struct dentry *parent = dget_parent(dentry);
3136 	int ret;
3137 
3138 	ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
3139 	dput(parent);
3140 
3141 	return ret;
3142 }
3143 
3144 /*
3145  * should be called during mount to recover any replay any log trees
3146  * from the FS
3147  */
3148 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
3149 {
3150 	int ret;
3151 	struct btrfs_path *path;
3152 	struct btrfs_trans_handle *trans;
3153 	struct btrfs_key key;
3154 	struct btrfs_key found_key;
3155 	struct btrfs_key tmp_key;
3156 	struct btrfs_root *log;
3157 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
3158 	struct walk_control wc = {
3159 		.process_func = process_one_buffer,
3160 		.stage = 0,
3161 	};
3162 
3163 	path = btrfs_alloc_path();
3164 	if (!path)
3165 		return -ENOMEM;
3166 
3167 	fs_info->log_root_recovering = 1;
3168 
3169 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
3170 	BUG_ON(IS_ERR(trans));
3171 
3172 	wc.trans = trans;
3173 	wc.pin = 1;
3174 
3175 	ret = walk_log_tree(trans, log_root_tree, &wc);
3176 	BUG_ON(ret);
3177 
3178 again:
3179 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
3180 	key.offset = (u64)-1;
3181 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
3182 
3183 	while (1) {
3184 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
3185 		if (ret < 0)
3186 			break;
3187 		if (ret > 0) {
3188 			if (path->slots[0] == 0)
3189 				break;
3190 			path->slots[0]--;
3191 		}
3192 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3193 				      path->slots[0]);
3194 		btrfs_release_path(path);
3195 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
3196 			break;
3197 
3198 		log = btrfs_read_fs_root_no_radix(log_root_tree,
3199 						  &found_key);
3200 		BUG_ON(IS_ERR(log));
3201 
3202 		tmp_key.objectid = found_key.offset;
3203 		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
3204 		tmp_key.offset = (u64)-1;
3205 
3206 		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
3207 		BUG_ON(IS_ERR_OR_NULL(wc.replay_dest));
3208 
3209 		wc.replay_dest->log_root = log;
3210 		btrfs_record_root_in_trans(trans, wc.replay_dest);
3211 		ret = walk_log_tree(trans, log, &wc);
3212 		BUG_ON(ret);
3213 
3214 		if (wc.stage == LOG_WALK_REPLAY_ALL) {
3215 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
3216 						      path);
3217 			BUG_ON(ret);
3218 		}
3219 
3220 		key.offset = found_key.offset - 1;
3221 		wc.replay_dest->log_root = NULL;
3222 		free_extent_buffer(log->node);
3223 		free_extent_buffer(log->commit_root);
3224 		kfree(log);
3225 
3226 		if (found_key.offset == 0)
3227 			break;
3228 	}
3229 	btrfs_release_path(path);
3230 
3231 	/* step one is to pin it all, step two is to replay just inodes */
3232 	if (wc.pin) {
3233 		wc.pin = 0;
3234 		wc.process_func = replay_one_buffer;
3235 		wc.stage = LOG_WALK_REPLAY_INODES;
3236 		goto again;
3237 	}
3238 	/* step three is to replay everything */
3239 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
3240 		wc.stage++;
3241 		goto again;
3242 	}
3243 
3244 	btrfs_free_path(path);
3245 
3246 	free_extent_buffer(log_root_tree->node);
3247 	log_root_tree->log_root = NULL;
3248 	fs_info->log_root_recovering = 0;
3249 
3250 	/* step 4: commit the transaction, which also unpins the blocks */
3251 	btrfs_commit_transaction(trans, fs_info->tree_root);
3252 
3253 	kfree(log_root_tree);
3254 	return 0;
3255 }
3256 
3257 /*
3258  * there are some corner cases where we want to force a full
3259  * commit instead of allowing a directory to be logged.
3260  *
3261  * They revolve around files there were unlinked from the directory, and
3262  * this function updates the parent directory so that a full commit is
3263  * properly done if it is fsync'd later after the unlinks are done.
3264  */
3265 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
3266 			     struct inode *dir, struct inode *inode,
3267 			     int for_rename)
3268 {
3269 	/*
3270 	 * when we're logging a file, if it hasn't been renamed
3271 	 * or unlinked, and its inode is fully committed on disk,
3272 	 * we don't have to worry about walking up the directory chain
3273 	 * to log its parents.
3274 	 *
3275 	 * So, we use the last_unlink_trans field to put this transid
3276 	 * into the file.  When the file is logged we check it and
3277 	 * don't log the parents if the file is fully on disk.
3278 	 */
3279 	if (S_ISREG(inode->i_mode))
3280 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
3281 
3282 	/*
3283 	 * if this directory was already logged any new
3284 	 * names for this file/dir will get recorded
3285 	 */
3286 	smp_mb();
3287 	if (BTRFS_I(dir)->logged_trans == trans->transid)
3288 		return;
3289 
3290 	/*
3291 	 * if the inode we're about to unlink was logged,
3292 	 * the log will be properly updated for any new names
3293 	 */
3294 	if (BTRFS_I(inode)->logged_trans == trans->transid)
3295 		return;
3296 
3297 	/*
3298 	 * when renaming files across directories, if the directory
3299 	 * there we're unlinking from gets fsync'd later on, there's
3300 	 * no way to find the destination directory later and fsync it
3301 	 * properly.  So, we have to be conservative and force commits
3302 	 * so the new name gets discovered.
3303 	 */
3304 	if (for_rename)
3305 		goto record;
3306 
3307 	/* we can safely do the unlink without any special recording */
3308 	return;
3309 
3310 record:
3311 	BTRFS_I(dir)->last_unlink_trans = trans->transid;
3312 }
3313 
3314 /*
3315  * Call this after adding a new name for a file and it will properly
3316  * update the log to reflect the new name.
3317  *
3318  * It will return zero if all goes well, and it will return 1 if a
3319  * full transaction commit is required.
3320  */
3321 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
3322 			struct inode *inode, struct inode *old_dir,
3323 			struct dentry *parent)
3324 {
3325 	struct btrfs_root * root = BTRFS_I(inode)->root;
3326 
3327 	/*
3328 	 * this will force the logging code to walk the dentry chain
3329 	 * up for the file
3330 	 */
3331 	if (S_ISREG(inode->i_mode))
3332 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
3333 
3334 	/*
3335 	 * if this inode hasn't been logged and directory we're renaming it
3336 	 * from hasn't been logged, we don't need to log it
3337 	 */
3338 	if (BTRFS_I(inode)->logged_trans <=
3339 	    root->fs_info->last_trans_committed &&
3340 	    (!old_dir || BTRFS_I(old_dir)->logged_trans <=
3341 		    root->fs_info->last_trans_committed))
3342 		return 0;
3343 
3344 	return btrfs_log_inode_parent(trans, root, inode, parent, 1);
3345 }
3346 
3347