1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/blkdev.h> 9 #include <linux/list_sort.h> 10 #include <linux/iversion.h> 11 #include "ctree.h" 12 #include "tree-log.h" 13 #include "disk-io.h" 14 #include "locking.h" 15 #include "print-tree.h" 16 #include "backref.h" 17 #include "compression.h" 18 #include "qgroup.h" 19 #include "inode-map.h" 20 21 /* magic values for the inode_only field in btrfs_log_inode: 22 * 23 * LOG_INODE_ALL means to log everything 24 * LOG_INODE_EXISTS means to log just enough to recreate the inode 25 * during log replay 26 */ 27 #define LOG_INODE_ALL 0 28 #define LOG_INODE_EXISTS 1 29 #define LOG_OTHER_INODE 2 30 #define LOG_OTHER_INODE_ALL 3 31 32 /* 33 * directory trouble cases 34 * 35 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync 36 * log, we must force a full commit before doing an fsync of the directory 37 * where the unlink was done. 38 * ---> record transid of last unlink/rename per directory 39 * 40 * mkdir foo/some_dir 41 * normal commit 42 * rename foo/some_dir foo2/some_dir 43 * mkdir foo/some_dir 44 * fsync foo/some_dir/some_file 45 * 46 * The fsync above will unlink the original some_dir without recording 47 * it in its new location (foo2). After a crash, some_dir will be gone 48 * unless the fsync of some_file forces a full commit 49 * 50 * 2) we must log any new names for any file or dir that is in the fsync 51 * log. ---> check inode while renaming/linking. 52 * 53 * 2a) we must log any new names for any file or dir during rename 54 * when the directory they are being removed from was logged. 55 * ---> check inode and old parent dir during rename 56 * 57 * 2a is actually the more important variant. With the extra logging 58 * a crash might unlink the old name without recreating the new one 59 * 60 * 3) after a crash, we must go through any directories with a link count 61 * of zero and redo the rm -rf 62 * 63 * mkdir f1/foo 64 * normal commit 65 * rm -rf f1/foo 66 * fsync(f1) 67 * 68 * The directory f1 was fully removed from the FS, but fsync was never 69 * called on f1, only its parent dir. After a crash the rm -rf must 70 * be replayed. This must be able to recurse down the entire 71 * directory tree. The inode link count fixup code takes care of the 72 * ugly details. 73 */ 74 75 /* 76 * stages for the tree walking. The first 77 * stage (0) is to only pin down the blocks we find 78 * the second stage (1) is to make sure that all the inodes 79 * we find in the log are created in the subvolume. 80 * 81 * The last stage is to deal with directories and links and extents 82 * and all the other fun semantics 83 */ 84 #define LOG_WALK_PIN_ONLY 0 85 #define LOG_WALK_REPLAY_INODES 1 86 #define LOG_WALK_REPLAY_DIR_INDEX 2 87 #define LOG_WALK_REPLAY_ALL 3 88 89 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 90 struct btrfs_root *root, struct btrfs_inode *inode, 91 int inode_only, 92 const loff_t start, 93 const loff_t end, 94 struct btrfs_log_ctx *ctx); 95 static int link_to_fixup_dir(struct btrfs_trans_handle *trans, 96 struct btrfs_root *root, 97 struct btrfs_path *path, u64 objectid); 98 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 99 struct btrfs_root *root, 100 struct btrfs_root *log, 101 struct btrfs_path *path, 102 u64 dirid, int del_all); 103 104 /* 105 * tree logging is a special write ahead log used to make sure that 106 * fsyncs and O_SYNCs can happen without doing full tree commits. 107 * 108 * Full tree commits are expensive because they require commonly 109 * modified blocks to be recowed, creating many dirty pages in the 110 * extent tree an 4x-6x higher write load than ext3. 111 * 112 * Instead of doing a tree commit on every fsync, we use the 113 * key ranges and transaction ids to find items for a given file or directory 114 * that have changed in this transaction. Those items are copied into 115 * a special tree (one per subvolume root), that tree is written to disk 116 * and then the fsync is considered complete. 117 * 118 * After a crash, items are copied out of the log-tree back into the 119 * subvolume tree. Any file data extents found are recorded in the extent 120 * allocation tree, and the log-tree freed. 121 * 122 * The log tree is read three times, once to pin down all the extents it is 123 * using in ram and once, once to create all the inodes logged in the tree 124 * and once to do all the other items. 125 */ 126 127 /* 128 * start a sub transaction and setup the log tree 129 * this increments the log tree writer count to make the people 130 * syncing the tree wait for us to finish 131 */ 132 static int start_log_trans(struct btrfs_trans_handle *trans, 133 struct btrfs_root *root, 134 struct btrfs_log_ctx *ctx) 135 { 136 struct btrfs_fs_info *fs_info = root->fs_info; 137 int ret = 0; 138 139 mutex_lock(&root->log_mutex); 140 141 if (root->log_root) { 142 if (btrfs_need_log_full_commit(trans)) { 143 ret = -EAGAIN; 144 goto out; 145 } 146 147 if (!root->log_start_pid) { 148 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 149 root->log_start_pid = current->pid; 150 } else if (root->log_start_pid != current->pid) { 151 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 152 } 153 } else { 154 mutex_lock(&fs_info->tree_log_mutex); 155 if (!fs_info->log_root_tree) 156 ret = btrfs_init_log_root_tree(trans, fs_info); 157 mutex_unlock(&fs_info->tree_log_mutex); 158 if (ret) 159 goto out; 160 161 ret = btrfs_add_log_tree(trans, root); 162 if (ret) 163 goto out; 164 165 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 166 root->log_start_pid = current->pid; 167 } 168 169 atomic_inc(&root->log_batch); 170 atomic_inc(&root->log_writers); 171 if (ctx) { 172 int index = root->log_transid % 2; 173 list_add_tail(&ctx->list, &root->log_ctxs[index]); 174 ctx->log_transid = root->log_transid; 175 } 176 177 out: 178 mutex_unlock(&root->log_mutex); 179 return ret; 180 } 181 182 /* 183 * returns 0 if there was a log transaction running and we were able 184 * to join, or returns -ENOENT if there were not transactions 185 * in progress 186 */ 187 static int join_running_log_trans(struct btrfs_root *root) 188 { 189 int ret = -ENOENT; 190 191 smp_mb(); 192 if (!root->log_root) 193 return -ENOENT; 194 195 mutex_lock(&root->log_mutex); 196 if (root->log_root) { 197 ret = 0; 198 atomic_inc(&root->log_writers); 199 } 200 mutex_unlock(&root->log_mutex); 201 return ret; 202 } 203 204 /* 205 * This either makes the current running log transaction wait 206 * until you call btrfs_end_log_trans() or it makes any future 207 * log transactions wait until you call btrfs_end_log_trans() 208 */ 209 void btrfs_pin_log_trans(struct btrfs_root *root) 210 { 211 mutex_lock(&root->log_mutex); 212 atomic_inc(&root->log_writers); 213 mutex_unlock(&root->log_mutex); 214 } 215 216 /* 217 * indicate we're done making changes to the log tree 218 * and wake up anyone waiting to do a sync 219 */ 220 void btrfs_end_log_trans(struct btrfs_root *root) 221 { 222 if (atomic_dec_and_test(&root->log_writers)) { 223 /* atomic_dec_and_test implies a barrier */ 224 cond_wake_up_nomb(&root->log_writer_wait); 225 } 226 } 227 228 static int btrfs_write_tree_block(struct extent_buffer *buf) 229 { 230 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 231 buf->start + buf->len - 1); 232 } 233 234 static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 235 { 236 filemap_fdatawait_range(buf->pages[0]->mapping, 237 buf->start, buf->start + buf->len - 1); 238 } 239 240 /* 241 * the walk control struct is used to pass state down the chain when 242 * processing the log tree. The stage field tells us which part 243 * of the log tree processing we are currently doing. The others 244 * are state fields used for that specific part 245 */ 246 struct walk_control { 247 /* should we free the extent on disk when done? This is used 248 * at transaction commit time while freeing a log tree 249 */ 250 int free; 251 252 /* should we write out the extent buffer? This is used 253 * while flushing the log tree to disk during a sync 254 */ 255 int write; 256 257 /* should we wait for the extent buffer io to finish? Also used 258 * while flushing the log tree to disk for a sync 259 */ 260 int wait; 261 262 /* pin only walk, we record which extents on disk belong to the 263 * log trees 264 */ 265 int pin; 266 267 /* what stage of the replay code we're currently in */ 268 int stage; 269 270 /* 271 * Ignore any items from the inode currently being processed. Needs 272 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in 273 * the LOG_WALK_REPLAY_INODES stage. 274 */ 275 bool ignore_cur_inode; 276 277 /* the root we are currently replaying */ 278 struct btrfs_root *replay_dest; 279 280 /* the trans handle for the current replay */ 281 struct btrfs_trans_handle *trans; 282 283 /* the function that gets used to process blocks we find in the 284 * tree. Note the extent_buffer might not be up to date when it is 285 * passed in, and it must be checked or read if you need the data 286 * inside it 287 */ 288 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb, 289 struct walk_control *wc, u64 gen, int level); 290 }; 291 292 /* 293 * process_func used to pin down extents, write them or wait on them 294 */ 295 static int process_one_buffer(struct btrfs_root *log, 296 struct extent_buffer *eb, 297 struct walk_control *wc, u64 gen, int level) 298 { 299 struct btrfs_fs_info *fs_info = log->fs_info; 300 int ret = 0; 301 302 /* 303 * If this fs is mixed then we need to be able to process the leaves to 304 * pin down any logged extents, so we have to read the block. 305 */ 306 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 307 ret = btrfs_read_buffer(eb, gen, level, NULL); 308 if (ret) 309 return ret; 310 } 311 312 if (wc->pin) 313 ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start, 314 eb->len); 315 316 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) { 317 if (wc->pin && btrfs_header_level(eb) == 0) 318 ret = btrfs_exclude_logged_extents(eb); 319 if (wc->write) 320 btrfs_write_tree_block(eb); 321 if (wc->wait) 322 btrfs_wait_tree_block_writeback(eb); 323 } 324 return ret; 325 } 326 327 /* 328 * Item overwrite used by replay and tree logging. eb, slot and key all refer 329 * to the src data we are copying out. 330 * 331 * root is the tree we are copying into, and path is a scratch 332 * path for use in this function (it should be released on entry and 333 * will be released on exit). 334 * 335 * If the key is already in the destination tree the existing item is 336 * overwritten. If the existing item isn't big enough, it is extended. 337 * If it is too large, it is truncated. 338 * 339 * If the key isn't in the destination yet, a new item is inserted. 340 */ 341 static noinline int overwrite_item(struct btrfs_trans_handle *trans, 342 struct btrfs_root *root, 343 struct btrfs_path *path, 344 struct extent_buffer *eb, int slot, 345 struct btrfs_key *key) 346 { 347 int ret; 348 u32 item_size; 349 u64 saved_i_size = 0; 350 int save_old_i_size = 0; 351 unsigned long src_ptr; 352 unsigned long dst_ptr; 353 int overwrite_root = 0; 354 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY; 355 356 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) 357 overwrite_root = 1; 358 359 item_size = btrfs_item_size_nr(eb, slot); 360 src_ptr = btrfs_item_ptr_offset(eb, slot); 361 362 /* look for the key in the destination tree */ 363 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 364 if (ret < 0) 365 return ret; 366 367 if (ret == 0) { 368 char *src_copy; 369 char *dst_copy; 370 u32 dst_size = btrfs_item_size_nr(path->nodes[0], 371 path->slots[0]); 372 if (dst_size != item_size) 373 goto insert; 374 375 if (item_size == 0) { 376 btrfs_release_path(path); 377 return 0; 378 } 379 dst_copy = kmalloc(item_size, GFP_NOFS); 380 src_copy = kmalloc(item_size, GFP_NOFS); 381 if (!dst_copy || !src_copy) { 382 btrfs_release_path(path); 383 kfree(dst_copy); 384 kfree(src_copy); 385 return -ENOMEM; 386 } 387 388 read_extent_buffer(eb, src_copy, src_ptr, item_size); 389 390 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 391 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr, 392 item_size); 393 ret = memcmp(dst_copy, src_copy, item_size); 394 395 kfree(dst_copy); 396 kfree(src_copy); 397 /* 398 * they have the same contents, just return, this saves 399 * us from cowing blocks in the destination tree and doing 400 * extra writes that may not have been done by a previous 401 * sync 402 */ 403 if (ret == 0) { 404 btrfs_release_path(path); 405 return 0; 406 } 407 408 /* 409 * We need to load the old nbytes into the inode so when we 410 * replay the extents we've logged we get the right nbytes. 411 */ 412 if (inode_item) { 413 struct btrfs_inode_item *item; 414 u64 nbytes; 415 u32 mode; 416 417 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 418 struct btrfs_inode_item); 419 nbytes = btrfs_inode_nbytes(path->nodes[0], item); 420 item = btrfs_item_ptr(eb, slot, 421 struct btrfs_inode_item); 422 btrfs_set_inode_nbytes(eb, item, nbytes); 423 424 /* 425 * If this is a directory we need to reset the i_size to 426 * 0 so that we can set it up properly when replaying 427 * the rest of the items in this log. 428 */ 429 mode = btrfs_inode_mode(eb, item); 430 if (S_ISDIR(mode)) 431 btrfs_set_inode_size(eb, item, 0); 432 } 433 } else if (inode_item) { 434 struct btrfs_inode_item *item; 435 u32 mode; 436 437 /* 438 * New inode, set nbytes to 0 so that the nbytes comes out 439 * properly when we replay the extents. 440 */ 441 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 442 btrfs_set_inode_nbytes(eb, item, 0); 443 444 /* 445 * If this is a directory we need to reset the i_size to 0 so 446 * that we can set it up properly when replaying the rest of 447 * the items in this log. 448 */ 449 mode = btrfs_inode_mode(eb, item); 450 if (S_ISDIR(mode)) 451 btrfs_set_inode_size(eb, item, 0); 452 } 453 insert: 454 btrfs_release_path(path); 455 /* try to insert the key into the destination tree */ 456 path->skip_release_on_error = 1; 457 ret = btrfs_insert_empty_item(trans, root, path, 458 key, item_size); 459 path->skip_release_on_error = 0; 460 461 /* make sure any existing item is the correct size */ 462 if (ret == -EEXIST || ret == -EOVERFLOW) { 463 u32 found_size; 464 found_size = btrfs_item_size_nr(path->nodes[0], 465 path->slots[0]); 466 if (found_size > item_size) 467 btrfs_truncate_item(path, item_size, 1); 468 else if (found_size < item_size) 469 btrfs_extend_item(path, item_size - found_size); 470 } else if (ret) { 471 return ret; 472 } 473 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], 474 path->slots[0]); 475 476 /* don't overwrite an existing inode if the generation number 477 * was logged as zero. This is done when the tree logging code 478 * is just logging an inode to make sure it exists after recovery. 479 * 480 * Also, don't overwrite i_size on directories during replay. 481 * log replay inserts and removes directory items based on the 482 * state of the tree found in the subvolume, and i_size is modified 483 * as it goes 484 */ 485 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) { 486 struct btrfs_inode_item *src_item; 487 struct btrfs_inode_item *dst_item; 488 489 src_item = (struct btrfs_inode_item *)src_ptr; 490 dst_item = (struct btrfs_inode_item *)dst_ptr; 491 492 if (btrfs_inode_generation(eb, src_item) == 0) { 493 struct extent_buffer *dst_eb = path->nodes[0]; 494 const u64 ino_size = btrfs_inode_size(eb, src_item); 495 496 /* 497 * For regular files an ino_size == 0 is used only when 498 * logging that an inode exists, as part of a directory 499 * fsync, and the inode wasn't fsynced before. In this 500 * case don't set the size of the inode in the fs/subvol 501 * tree, otherwise we would be throwing valid data away. 502 */ 503 if (S_ISREG(btrfs_inode_mode(eb, src_item)) && 504 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) && 505 ino_size != 0) { 506 struct btrfs_map_token token; 507 508 btrfs_init_map_token(&token); 509 btrfs_set_token_inode_size(dst_eb, dst_item, 510 ino_size, &token); 511 } 512 goto no_copy; 513 } 514 515 if (overwrite_root && 516 S_ISDIR(btrfs_inode_mode(eb, src_item)) && 517 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) { 518 save_old_i_size = 1; 519 saved_i_size = btrfs_inode_size(path->nodes[0], 520 dst_item); 521 } 522 } 523 524 copy_extent_buffer(path->nodes[0], eb, dst_ptr, 525 src_ptr, item_size); 526 527 if (save_old_i_size) { 528 struct btrfs_inode_item *dst_item; 529 dst_item = (struct btrfs_inode_item *)dst_ptr; 530 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size); 531 } 532 533 /* make sure the generation is filled in */ 534 if (key->type == BTRFS_INODE_ITEM_KEY) { 535 struct btrfs_inode_item *dst_item; 536 dst_item = (struct btrfs_inode_item *)dst_ptr; 537 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) { 538 btrfs_set_inode_generation(path->nodes[0], dst_item, 539 trans->transid); 540 } 541 } 542 no_copy: 543 btrfs_mark_buffer_dirty(path->nodes[0]); 544 btrfs_release_path(path); 545 return 0; 546 } 547 548 /* 549 * simple helper to read an inode off the disk from a given root 550 * This can only be called for subvolume roots and not for the log 551 */ 552 static noinline struct inode *read_one_inode(struct btrfs_root *root, 553 u64 objectid) 554 { 555 struct btrfs_key key; 556 struct inode *inode; 557 558 key.objectid = objectid; 559 key.type = BTRFS_INODE_ITEM_KEY; 560 key.offset = 0; 561 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL); 562 if (IS_ERR(inode)) 563 inode = NULL; 564 return inode; 565 } 566 567 /* replays a single extent in 'eb' at 'slot' with 'key' into the 568 * subvolume 'root'. path is released on entry and should be released 569 * on exit. 570 * 571 * extents in the log tree have not been allocated out of the extent 572 * tree yet. So, this completes the allocation, taking a reference 573 * as required if the extent already exists or creating a new extent 574 * if it isn't in the extent allocation tree yet. 575 * 576 * The extent is inserted into the file, dropping any existing extents 577 * from the file that overlap the new one. 578 */ 579 static noinline int replay_one_extent(struct btrfs_trans_handle *trans, 580 struct btrfs_root *root, 581 struct btrfs_path *path, 582 struct extent_buffer *eb, int slot, 583 struct btrfs_key *key) 584 { 585 struct btrfs_fs_info *fs_info = root->fs_info; 586 int found_type; 587 u64 extent_end; 588 u64 start = key->offset; 589 u64 nbytes = 0; 590 struct btrfs_file_extent_item *item; 591 struct inode *inode = NULL; 592 unsigned long size; 593 int ret = 0; 594 595 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 596 found_type = btrfs_file_extent_type(eb, item); 597 598 if (found_type == BTRFS_FILE_EXTENT_REG || 599 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 600 nbytes = btrfs_file_extent_num_bytes(eb, item); 601 extent_end = start + nbytes; 602 603 /* 604 * We don't add to the inodes nbytes if we are prealloc or a 605 * hole. 606 */ 607 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 608 nbytes = 0; 609 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 610 size = btrfs_file_extent_ram_bytes(eb, item); 611 nbytes = btrfs_file_extent_ram_bytes(eb, item); 612 extent_end = ALIGN(start + size, 613 fs_info->sectorsize); 614 } else { 615 ret = 0; 616 goto out; 617 } 618 619 inode = read_one_inode(root, key->objectid); 620 if (!inode) { 621 ret = -EIO; 622 goto out; 623 } 624 625 /* 626 * first check to see if we already have this extent in the 627 * file. This must be done before the btrfs_drop_extents run 628 * so we don't try to drop this extent. 629 */ 630 ret = btrfs_lookup_file_extent(trans, root, path, 631 btrfs_ino(BTRFS_I(inode)), start, 0); 632 633 if (ret == 0 && 634 (found_type == BTRFS_FILE_EXTENT_REG || 635 found_type == BTRFS_FILE_EXTENT_PREALLOC)) { 636 struct btrfs_file_extent_item cmp1; 637 struct btrfs_file_extent_item cmp2; 638 struct btrfs_file_extent_item *existing; 639 struct extent_buffer *leaf; 640 641 leaf = path->nodes[0]; 642 existing = btrfs_item_ptr(leaf, path->slots[0], 643 struct btrfs_file_extent_item); 644 645 read_extent_buffer(eb, &cmp1, (unsigned long)item, 646 sizeof(cmp1)); 647 read_extent_buffer(leaf, &cmp2, (unsigned long)existing, 648 sizeof(cmp2)); 649 650 /* 651 * we already have a pointer to this exact extent, 652 * we don't have to do anything 653 */ 654 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) { 655 btrfs_release_path(path); 656 goto out; 657 } 658 } 659 btrfs_release_path(path); 660 661 /* drop any overlapping extents */ 662 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1); 663 if (ret) 664 goto out; 665 666 if (found_type == BTRFS_FILE_EXTENT_REG || 667 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 668 u64 offset; 669 unsigned long dest_offset; 670 struct btrfs_key ins; 671 672 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 && 673 btrfs_fs_incompat(fs_info, NO_HOLES)) 674 goto update_inode; 675 676 ret = btrfs_insert_empty_item(trans, root, path, key, 677 sizeof(*item)); 678 if (ret) 679 goto out; 680 dest_offset = btrfs_item_ptr_offset(path->nodes[0], 681 path->slots[0]); 682 copy_extent_buffer(path->nodes[0], eb, dest_offset, 683 (unsigned long)item, sizeof(*item)); 684 685 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item); 686 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item); 687 ins.type = BTRFS_EXTENT_ITEM_KEY; 688 offset = key->offset - btrfs_file_extent_offset(eb, item); 689 690 /* 691 * Manually record dirty extent, as here we did a shallow 692 * file extent item copy and skip normal backref update, 693 * but modifying extent tree all by ourselves. 694 * So need to manually record dirty extent for qgroup, 695 * as the owner of the file extent changed from log tree 696 * (doesn't affect qgroup) to fs/file tree(affects qgroup) 697 */ 698 ret = btrfs_qgroup_trace_extent(trans, 699 btrfs_file_extent_disk_bytenr(eb, item), 700 btrfs_file_extent_disk_num_bytes(eb, item), 701 GFP_NOFS); 702 if (ret < 0) 703 goto out; 704 705 if (ins.objectid > 0) { 706 struct btrfs_ref ref = { 0 }; 707 u64 csum_start; 708 u64 csum_end; 709 LIST_HEAD(ordered_sums); 710 711 /* 712 * is this extent already allocated in the extent 713 * allocation tree? If so, just add a reference 714 */ 715 ret = btrfs_lookup_data_extent(fs_info, ins.objectid, 716 ins.offset); 717 if (ret == 0) { 718 btrfs_init_generic_ref(&ref, 719 BTRFS_ADD_DELAYED_REF, 720 ins.objectid, ins.offset, 0); 721 btrfs_init_data_ref(&ref, 722 root->root_key.objectid, 723 key->objectid, offset); 724 ret = btrfs_inc_extent_ref(trans, &ref); 725 if (ret) 726 goto out; 727 } else { 728 /* 729 * insert the extent pointer in the extent 730 * allocation tree 731 */ 732 ret = btrfs_alloc_logged_file_extent(trans, 733 root->root_key.objectid, 734 key->objectid, offset, &ins); 735 if (ret) 736 goto out; 737 } 738 btrfs_release_path(path); 739 740 if (btrfs_file_extent_compression(eb, item)) { 741 csum_start = ins.objectid; 742 csum_end = csum_start + ins.offset; 743 } else { 744 csum_start = ins.objectid + 745 btrfs_file_extent_offset(eb, item); 746 csum_end = csum_start + 747 btrfs_file_extent_num_bytes(eb, item); 748 } 749 750 ret = btrfs_lookup_csums_range(root->log_root, 751 csum_start, csum_end - 1, 752 &ordered_sums, 0); 753 if (ret) 754 goto out; 755 /* 756 * Now delete all existing cums in the csum root that 757 * cover our range. We do this because we can have an 758 * extent that is completely referenced by one file 759 * extent item and partially referenced by another 760 * file extent item (like after using the clone or 761 * extent_same ioctls). In this case if we end up doing 762 * the replay of the one that partially references the 763 * extent first, and we do not do the csum deletion 764 * below, we can get 2 csum items in the csum tree that 765 * overlap each other. For example, imagine our log has 766 * the two following file extent items: 767 * 768 * key (257 EXTENT_DATA 409600) 769 * extent data disk byte 12845056 nr 102400 770 * extent data offset 20480 nr 20480 ram 102400 771 * 772 * key (257 EXTENT_DATA 819200) 773 * extent data disk byte 12845056 nr 102400 774 * extent data offset 0 nr 102400 ram 102400 775 * 776 * Where the second one fully references the 100K extent 777 * that starts at disk byte 12845056, and the log tree 778 * has a single csum item that covers the entire range 779 * of the extent: 780 * 781 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 782 * 783 * After the first file extent item is replayed, the 784 * csum tree gets the following csum item: 785 * 786 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 787 * 788 * Which covers the 20K sub-range starting at offset 20K 789 * of our extent. Now when we replay the second file 790 * extent item, if we do not delete existing csum items 791 * that cover any of its blocks, we end up getting two 792 * csum items in our csum tree that overlap each other: 793 * 794 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 795 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 796 * 797 * Which is a problem, because after this anyone trying 798 * to lookup up for the checksum of any block of our 799 * extent starting at an offset of 40K or higher, will 800 * end up looking at the second csum item only, which 801 * does not contain the checksum for any block starting 802 * at offset 40K or higher of our extent. 803 */ 804 while (!list_empty(&ordered_sums)) { 805 struct btrfs_ordered_sum *sums; 806 sums = list_entry(ordered_sums.next, 807 struct btrfs_ordered_sum, 808 list); 809 if (!ret) 810 ret = btrfs_del_csums(trans, fs_info, 811 sums->bytenr, 812 sums->len); 813 if (!ret) 814 ret = btrfs_csum_file_blocks(trans, 815 fs_info->csum_root, sums); 816 list_del(&sums->list); 817 kfree(sums); 818 } 819 if (ret) 820 goto out; 821 } else { 822 btrfs_release_path(path); 823 } 824 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 825 /* inline extents are easy, we just overwrite them */ 826 ret = overwrite_item(trans, root, path, eb, slot, key); 827 if (ret) 828 goto out; 829 } 830 831 inode_add_bytes(inode, nbytes); 832 update_inode: 833 ret = btrfs_update_inode(trans, root, inode); 834 out: 835 if (inode) 836 iput(inode); 837 return ret; 838 } 839 840 /* 841 * when cleaning up conflicts between the directory names in the 842 * subvolume, directory names in the log and directory names in the 843 * inode back references, we may have to unlink inodes from directories. 844 * 845 * This is a helper function to do the unlink of a specific directory 846 * item 847 */ 848 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans, 849 struct btrfs_root *root, 850 struct btrfs_path *path, 851 struct btrfs_inode *dir, 852 struct btrfs_dir_item *di) 853 { 854 struct inode *inode; 855 char *name; 856 int name_len; 857 struct extent_buffer *leaf; 858 struct btrfs_key location; 859 int ret; 860 861 leaf = path->nodes[0]; 862 863 btrfs_dir_item_key_to_cpu(leaf, di, &location); 864 name_len = btrfs_dir_name_len(leaf, di); 865 name = kmalloc(name_len, GFP_NOFS); 866 if (!name) 867 return -ENOMEM; 868 869 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len); 870 btrfs_release_path(path); 871 872 inode = read_one_inode(root, location.objectid); 873 if (!inode) { 874 ret = -EIO; 875 goto out; 876 } 877 878 ret = link_to_fixup_dir(trans, root, path, location.objectid); 879 if (ret) 880 goto out; 881 882 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name, 883 name_len); 884 if (ret) 885 goto out; 886 else 887 ret = btrfs_run_delayed_items(trans); 888 out: 889 kfree(name); 890 iput(inode); 891 return ret; 892 } 893 894 /* 895 * helper function to see if a given name and sequence number found 896 * in an inode back reference are already in a directory and correctly 897 * point to this inode 898 */ 899 static noinline int inode_in_dir(struct btrfs_root *root, 900 struct btrfs_path *path, 901 u64 dirid, u64 objectid, u64 index, 902 const char *name, int name_len) 903 { 904 struct btrfs_dir_item *di; 905 struct btrfs_key location; 906 int match = 0; 907 908 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid, 909 index, name, name_len, 0); 910 if (di && !IS_ERR(di)) { 911 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 912 if (location.objectid != objectid) 913 goto out; 914 } else 915 goto out; 916 btrfs_release_path(path); 917 918 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0); 919 if (di && !IS_ERR(di)) { 920 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 921 if (location.objectid != objectid) 922 goto out; 923 } else 924 goto out; 925 match = 1; 926 out: 927 btrfs_release_path(path); 928 return match; 929 } 930 931 /* 932 * helper function to check a log tree for a named back reference in 933 * an inode. This is used to decide if a back reference that is 934 * found in the subvolume conflicts with what we find in the log. 935 * 936 * inode backreferences may have multiple refs in a single item, 937 * during replay we process one reference at a time, and we don't 938 * want to delete valid links to a file from the subvolume if that 939 * link is also in the log. 940 */ 941 static noinline int backref_in_log(struct btrfs_root *log, 942 struct btrfs_key *key, 943 u64 ref_objectid, 944 const char *name, int namelen) 945 { 946 struct btrfs_path *path; 947 struct btrfs_inode_ref *ref; 948 unsigned long ptr; 949 unsigned long ptr_end; 950 unsigned long name_ptr; 951 int found_name_len; 952 int item_size; 953 int ret; 954 int match = 0; 955 956 path = btrfs_alloc_path(); 957 if (!path) 958 return -ENOMEM; 959 960 ret = btrfs_search_slot(NULL, log, key, path, 0, 0); 961 if (ret != 0) 962 goto out; 963 964 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 965 966 if (key->type == BTRFS_INODE_EXTREF_KEY) { 967 if (btrfs_find_name_in_ext_backref(path->nodes[0], 968 path->slots[0], 969 ref_objectid, 970 name, namelen, NULL)) 971 match = 1; 972 973 goto out; 974 } 975 976 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 977 ptr_end = ptr + item_size; 978 while (ptr < ptr_end) { 979 ref = (struct btrfs_inode_ref *)ptr; 980 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref); 981 if (found_name_len == namelen) { 982 name_ptr = (unsigned long)(ref + 1); 983 ret = memcmp_extent_buffer(path->nodes[0], name, 984 name_ptr, namelen); 985 if (ret == 0) { 986 match = 1; 987 goto out; 988 } 989 } 990 ptr = (unsigned long)(ref + 1) + found_name_len; 991 } 992 out: 993 btrfs_free_path(path); 994 return match; 995 } 996 997 static inline int __add_inode_ref(struct btrfs_trans_handle *trans, 998 struct btrfs_root *root, 999 struct btrfs_path *path, 1000 struct btrfs_root *log_root, 1001 struct btrfs_inode *dir, 1002 struct btrfs_inode *inode, 1003 u64 inode_objectid, u64 parent_objectid, 1004 u64 ref_index, char *name, int namelen, 1005 int *search_done) 1006 { 1007 int ret; 1008 char *victim_name; 1009 int victim_name_len; 1010 struct extent_buffer *leaf; 1011 struct btrfs_dir_item *di; 1012 struct btrfs_key search_key; 1013 struct btrfs_inode_extref *extref; 1014 1015 again: 1016 /* Search old style refs */ 1017 search_key.objectid = inode_objectid; 1018 search_key.type = BTRFS_INODE_REF_KEY; 1019 search_key.offset = parent_objectid; 1020 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 1021 if (ret == 0) { 1022 struct btrfs_inode_ref *victim_ref; 1023 unsigned long ptr; 1024 unsigned long ptr_end; 1025 1026 leaf = path->nodes[0]; 1027 1028 /* are we trying to overwrite a back ref for the root directory 1029 * if so, just jump out, we're done 1030 */ 1031 if (search_key.objectid == search_key.offset) 1032 return 1; 1033 1034 /* check all the names in this back reference to see 1035 * if they are in the log. if so, we allow them to stay 1036 * otherwise they must be unlinked as a conflict 1037 */ 1038 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1039 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]); 1040 while (ptr < ptr_end) { 1041 victim_ref = (struct btrfs_inode_ref *)ptr; 1042 victim_name_len = btrfs_inode_ref_name_len(leaf, 1043 victim_ref); 1044 victim_name = kmalloc(victim_name_len, GFP_NOFS); 1045 if (!victim_name) 1046 return -ENOMEM; 1047 1048 read_extent_buffer(leaf, victim_name, 1049 (unsigned long)(victim_ref + 1), 1050 victim_name_len); 1051 1052 if (!backref_in_log(log_root, &search_key, 1053 parent_objectid, 1054 victim_name, 1055 victim_name_len)) { 1056 inc_nlink(&inode->vfs_inode); 1057 btrfs_release_path(path); 1058 1059 ret = btrfs_unlink_inode(trans, root, dir, inode, 1060 victim_name, victim_name_len); 1061 kfree(victim_name); 1062 if (ret) 1063 return ret; 1064 ret = btrfs_run_delayed_items(trans); 1065 if (ret) 1066 return ret; 1067 *search_done = 1; 1068 goto again; 1069 } 1070 kfree(victim_name); 1071 1072 ptr = (unsigned long)(victim_ref + 1) + victim_name_len; 1073 } 1074 1075 /* 1076 * NOTE: we have searched root tree and checked the 1077 * corresponding ref, it does not need to check again. 1078 */ 1079 *search_done = 1; 1080 } 1081 btrfs_release_path(path); 1082 1083 /* Same search but for extended refs */ 1084 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen, 1085 inode_objectid, parent_objectid, 0, 1086 0); 1087 if (!IS_ERR_OR_NULL(extref)) { 1088 u32 item_size; 1089 u32 cur_offset = 0; 1090 unsigned long base; 1091 struct inode *victim_parent; 1092 1093 leaf = path->nodes[0]; 1094 1095 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1096 base = btrfs_item_ptr_offset(leaf, path->slots[0]); 1097 1098 while (cur_offset < item_size) { 1099 extref = (struct btrfs_inode_extref *)(base + cur_offset); 1100 1101 victim_name_len = btrfs_inode_extref_name_len(leaf, extref); 1102 1103 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid) 1104 goto next; 1105 1106 victim_name = kmalloc(victim_name_len, GFP_NOFS); 1107 if (!victim_name) 1108 return -ENOMEM; 1109 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name, 1110 victim_name_len); 1111 1112 search_key.objectid = inode_objectid; 1113 search_key.type = BTRFS_INODE_EXTREF_KEY; 1114 search_key.offset = btrfs_extref_hash(parent_objectid, 1115 victim_name, 1116 victim_name_len); 1117 ret = 0; 1118 if (!backref_in_log(log_root, &search_key, 1119 parent_objectid, victim_name, 1120 victim_name_len)) { 1121 ret = -ENOENT; 1122 victim_parent = read_one_inode(root, 1123 parent_objectid); 1124 if (victim_parent) { 1125 inc_nlink(&inode->vfs_inode); 1126 btrfs_release_path(path); 1127 1128 ret = btrfs_unlink_inode(trans, root, 1129 BTRFS_I(victim_parent), 1130 inode, 1131 victim_name, 1132 victim_name_len); 1133 if (!ret) 1134 ret = btrfs_run_delayed_items( 1135 trans); 1136 } 1137 iput(victim_parent); 1138 kfree(victim_name); 1139 if (ret) 1140 return ret; 1141 *search_done = 1; 1142 goto again; 1143 } 1144 kfree(victim_name); 1145 next: 1146 cur_offset += victim_name_len + sizeof(*extref); 1147 } 1148 *search_done = 1; 1149 } 1150 btrfs_release_path(path); 1151 1152 /* look for a conflicting sequence number */ 1153 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir), 1154 ref_index, name, namelen, 0); 1155 if (di && !IS_ERR(di)) { 1156 ret = drop_one_dir_item(trans, root, path, dir, di); 1157 if (ret) 1158 return ret; 1159 } 1160 btrfs_release_path(path); 1161 1162 /* look for a conflicting name */ 1163 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), 1164 name, namelen, 0); 1165 if (di && !IS_ERR(di)) { 1166 ret = drop_one_dir_item(trans, root, path, dir, di); 1167 if (ret) 1168 return ret; 1169 } 1170 btrfs_release_path(path); 1171 1172 return 0; 1173 } 1174 1175 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1176 u32 *namelen, char **name, u64 *index, 1177 u64 *parent_objectid) 1178 { 1179 struct btrfs_inode_extref *extref; 1180 1181 extref = (struct btrfs_inode_extref *)ref_ptr; 1182 1183 *namelen = btrfs_inode_extref_name_len(eb, extref); 1184 *name = kmalloc(*namelen, GFP_NOFS); 1185 if (*name == NULL) 1186 return -ENOMEM; 1187 1188 read_extent_buffer(eb, *name, (unsigned long)&extref->name, 1189 *namelen); 1190 1191 if (index) 1192 *index = btrfs_inode_extref_index(eb, extref); 1193 if (parent_objectid) 1194 *parent_objectid = btrfs_inode_extref_parent(eb, extref); 1195 1196 return 0; 1197 } 1198 1199 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1200 u32 *namelen, char **name, u64 *index) 1201 { 1202 struct btrfs_inode_ref *ref; 1203 1204 ref = (struct btrfs_inode_ref *)ref_ptr; 1205 1206 *namelen = btrfs_inode_ref_name_len(eb, ref); 1207 *name = kmalloc(*namelen, GFP_NOFS); 1208 if (*name == NULL) 1209 return -ENOMEM; 1210 1211 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen); 1212 1213 if (index) 1214 *index = btrfs_inode_ref_index(eb, ref); 1215 1216 return 0; 1217 } 1218 1219 /* 1220 * Take an inode reference item from the log tree and iterate all names from the 1221 * inode reference item in the subvolume tree with the same key (if it exists). 1222 * For any name that is not in the inode reference item from the log tree, do a 1223 * proper unlink of that name (that is, remove its entry from the inode 1224 * reference item and both dir index keys). 1225 */ 1226 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans, 1227 struct btrfs_root *root, 1228 struct btrfs_path *path, 1229 struct btrfs_inode *inode, 1230 struct extent_buffer *log_eb, 1231 int log_slot, 1232 struct btrfs_key *key) 1233 { 1234 int ret; 1235 unsigned long ref_ptr; 1236 unsigned long ref_end; 1237 struct extent_buffer *eb; 1238 1239 again: 1240 btrfs_release_path(path); 1241 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 1242 if (ret > 0) { 1243 ret = 0; 1244 goto out; 1245 } 1246 if (ret < 0) 1247 goto out; 1248 1249 eb = path->nodes[0]; 1250 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]); 1251 ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]); 1252 while (ref_ptr < ref_end) { 1253 char *name = NULL; 1254 int namelen; 1255 u64 parent_id; 1256 1257 if (key->type == BTRFS_INODE_EXTREF_KEY) { 1258 ret = extref_get_fields(eb, ref_ptr, &namelen, &name, 1259 NULL, &parent_id); 1260 } else { 1261 parent_id = key->offset; 1262 ret = ref_get_fields(eb, ref_ptr, &namelen, &name, 1263 NULL); 1264 } 1265 if (ret) 1266 goto out; 1267 1268 if (key->type == BTRFS_INODE_EXTREF_KEY) 1269 ret = btrfs_find_name_in_ext_backref(log_eb, log_slot, 1270 parent_id, name, 1271 namelen, NULL); 1272 else 1273 ret = btrfs_find_name_in_backref(log_eb, log_slot, name, 1274 namelen, NULL); 1275 1276 if (!ret) { 1277 struct inode *dir; 1278 1279 btrfs_release_path(path); 1280 dir = read_one_inode(root, parent_id); 1281 if (!dir) { 1282 ret = -ENOENT; 1283 kfree(name); 1284 goto out; 1285 } 1286 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 1287 inode, name, namelen); 1288 kfree(name); 1289 iput(dir); 1290 if (ret) 1291 goto out; 1292 goto again; 1293 } 1294 1295 kfree(name); 1296 ref_ptr += namelen; 1297 if (key->type == BTRFS_INODE_EXTREF_KEY) 1298 ref_ptr += sizeof(struct btrfs_inode_extref); 1299 else 1300 ref_ptr += sizeof(struct btrfs_inode_ref); 1301 } 1302 ret = 0; 1303 out: 1304 btrfs_release_path(path); 1305 return ret; 1306 } 1307 1308 static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir, 1309 const u8 ref_type, const char *name, 1310 const int namelen) 1311 { 1312 struct btrfs_key key; 1313 struct btrfs_path *path; 1314 const u64 parent_id = btrfs_ino(BTRFS_I(dir)); 1315 int ret; 1316 1317 path = btrfs_alloc_path(); 1318 if (!path) 1319 return -ENOMEM; 1320 1321 key.objectid = btrfs_ino(BTRFS_I(inode)); 1322 key.type = ref_type; 1323 if (key.type == BTRFS_INODE_REF_KEY) 1324 key.offset = parent_id; 1325 else 1326 key.offset = btrfs_extref_hash(parent_id, name, namelen); 1327 1328 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0); 1329 if (ret < 0) 1330 goto out; 1331 if (ret > 0) { 1332 ret = 0; 1333 goto out; 1334 } 1335 if (key.type == BTRFS_INODE_EXTREF_KEY) 1336 ret = btrfs_find_name_in_ext_backref(path->nodes[0], 1337 path->slots[0], parent_id, 1338 name, namelen, NULL); 1339 else 1340 ret = btrfs_find_name_in_backref(path->nodes[0], path->slots[0], 1341 name, namelen, NULL); 1342 1343 out: 1344 btrfs_free_path(path); 1345 return ret; 1346 } 1347 1348 static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root, 1349 struct inode *dir, struct inode *inode, const char *name, 1350 int namelen, u64 ref_index) 1351 { 1352 struct btrfs_dir_item *dir_item; 1353 struct btrfs_key key; 1354 struct btrfs_path *path; 1355 struct inode *other_inode = NULL; 1356 int ret; 1357 1358 path = btrfs_alloc_path(); 1359 if (!path) 1360 return -ENOMEM; 1361 1362 dir_item = btrfs_lookup_dir_item(NULL, root, path, 1363 btrfs_ino(BTRFS_I(dir)), 1364 name, namelen, 0); 1365 if (!dir_item) { 1366 btrfs_release_path(path); 1367 goto add_link; 1368 } else if (IS_ERR(dir_item)) { 1369 ret = PTR_ERR(dir_item); 1370 goto out; 1371 } 1372 1373 /* 1374 * Our inode's dentry collides with the dentry of another inode which is 1375 * in the log but not yet processed since it has a higher inode number. 1376 * So delete that other dentry. 1377 */ 1378 btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key); 1379 btrfs_release_path(path); 1380 other_inode = read_one_inode(root, key.objectid); 1381 if (!other_inode) { 1382 ret = -ENOENT; 1383 goto out; 1384 } 1385 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode), 1386 name, namelen); 1387 if (ret) 1388 goto out; 1389 /* 1390 * If we dropped the link count to 0, bump it so that later the iput() 1391 * on the inode will not free it. We will fixup the link count later. 1392 */ 1393 if (other_inode->i_nlink == 0) 1394 inc_nlink(other_inode); 1395 1396 ret = btrfs_run_delayed_items(trans); 1397 if (ret) 1398 goto out; 1399 add_link: 1400 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 1401 name, namelen, 0, ref_index); 1402 out: 1403 iput(other_inode); 1404 btrfs_free_path(path); 1405 1406 return ret; 1407 } 1408 1409 /* 1410 * replay one inode back reference item found in the log tree. 1411 * eb, slot and key refer to the buffer and key found in the log tree. 1412 * root is the destination we are replaying into, and path is for temp 1413 * use by this function. (it should be released on return). 1414 */ 1415 static noinline int add_inode_ref(struct btrfs_trans_handle *trans, 1416 struct btrfs_root *root, 1417 struct btrfs_root *log, 1418 struct btrfs_path *path, 1419 struct extent_buffer *eb, int slot, 1420 struct btrfs_key *key) 1421 { 1422 struct inode *dir = NULL; 1423 struct inode *inode = NULL; 1424 unsigned long ref_ptr; 1425 unsigned long ref_end; 1426 char *name = NULL; 1427 int namelen; 1428 int ret; 1429 int search_done = 0; 1430 int log_ref_ver = 0; 1431 u64 parent_objectid; 1432 u64 inode_objectid; 1433 u64 ref_index = 0; 1434 int ref_struct_size; 1435 1436 ref_ptr = btrfs_item_ptr_offset(eb, slot); 1437 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot); 1438 1439 if (key->type == BTRFS_INODE_EXTREF_KEY) { 1440 struct btrfs_inode_extref *r; 1441 1442 ref_struct_size = sizeof(struct btrfs_inode_extref); 1443 log_ref_ver = 1; 1444 r = (struct btrfs_inode_extref *)ref_ptr; 1445 parent_objectid = btrfs_inode_extref_parent(eb, r); 1446 } else { 1447 ref_struct_size = sizeof(struct btrfs_inode_ref); 1448 parent_objectid = key->offset; 1449 } 1450 inode_objectid = key->objectid; 1451 1452 /* 1453 * it is possible that we didn't log all the parent directories 1454 * for a given inode. If we don't find the dir, just don't 1455 * copy the back ref in. The link count fixup code will take 1456 * care of the rest 1457 */ 1458 dir = read_one_inode(root, parent_objectid); 1459 if (!dir) { 1460 ret = -ENOENT; 1461 goto out; 1462 } 1463 1464 inode = read_one_inode(root, inode_objectid); 1465 if (!inode) { 1466 ret = -EIO; 1467 goto out; 1468 } 1469 1470 while (ref_ptr < ref_end) { 1471 if (log_ref_ver) { 1472 ret = extref_get_fields(eb, ref_ptr, &namelen, &name, 1473 &ref_index, &parent_objectid); 1474 /* 1475 * parent object can change from one array 1476 * item to another. 1477 */ 1478 if (!dir) 1479 dir = read_one_inode(root, parent_objectid); 1480 if (!dir) { 1481 ret = -ENOENT; 1482 goto out; 1483 } 1484 } else { 1485 ret = ref_get_fields(eb, ref_ptr, &namelen, &name, 1486 &ref_index); 1487 } 1488 if (ret) 1489 goto out; 1490 1491 /* if we already have a perfect match, we're done */ 1492 if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)), 1493 btrfs_ino(BTRFS_I(inode)), ref_index, 1494 name, namelen)) { 1495 /* 1496 * look for a conflicting back reference in the 1497 * metadata. if we find one we have to unlink that name 1498 * of the file before we add our new link. Later on, we 1499 * overwrite any existing back reference, and we don't 1500 * want to create dangling pointers in the directory. 1501 */ 1502 1503 if (!search_done) { 1504 ret = __add_inode_ref(trans, root, path, log, 1505 BTRFS_I(dir), 1506 BTRFS_I(inode), 1507 inode_objectid, 1508 parent_objectid, 1509 ref_index, name, namelen, 1510 &search_done); 1511 if (ret) { 1512 if (ret == 1) 1513 ret = 0; 1514 goto out; 1515 } 1516 } 1517 1518 /* 1519 * If a reference item already exists for this inode 1520 * with the same parent and name, but different index, 1521 * drop it and the corresponding directory index entries 1522 * from the parent before adding the new reference item 1523 * and dir index entries, otherwise we would fail with 1524 * -EEXIST returned from btrfs_add_link() below. 1525 */ 1526 ret = btrfs_inode_ref_exists(inode, dir, key->type, 1527 name, namelen); 1528 if (ret > 0) { 1529 ret = btrfs_unlink_inode(trans, root, 1530 BTRFS_I(dir), 1531 BTRFS_I(inode), 1532 name, namelen); 1533 /* 1534 * If we dropped the link count to 0, bump it so 1535 * that later the iput() on the inode will not 1536 * free it. We will fixup the link count later. 1537 */ 1538 if (!ret && inode->i_nlink == 0) 1539 inc_nlink(inode); 1540 } 1541 if (ret < 0) 1542 goto out; 1543 1544 /* insert our name */ 1545 ret = add_link(trans, root, dir, inode, name, namelen, 1546 ref_index); 1547 if (ret) 1548 goto out; 1549 1550 btrfs_update_inode(trans, root, inode); 1551 } 1552 1553 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen; 1554 kfree(name); 1555 name = NULL; 1556 if (log_ref_ver) { 1557 iput(dir); 1558 dir = NULL; 1559 } 1560 } 1561 1562 /* 1563 * Before we overwrite the inode reference item in the subvolume tree 1564 * with the item from the log tree, we must unlink all names from the 1565 * parent directory that are in the subvolume's tree inode reference 1566 * item, otherwise we end up with an inconsistent subvolume tree where 1567 * dir index entries exist for a name but there is no inode reference 1568 * item with the same name. 1569 */ 1570 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot, 1571 key); 1572 if (ret) 1573 goto out; 1574 1575 /* finally write the back reference in the inode */ 1576 ret = overwrite_item(trans, root, path, eb, slot, key); 1577 out: 1578 btrfs_release_path(path); 1579 kfree(name); 1580 iput(dir); 1581 iput(inode); 1582 return ret; 1583 } 1584 1585 static int insert_orphan_item(struct btrfs_trans_handle *trans, 1586 struct btrfs_root *root, u64 ino) 1587 { 1588 int ret; 1589 1590 ret = btrfs_insert_orphan_item(trans, root, ino); 1591 if (ret == -EEXIST) 1592 ret = 0; 1593 1594 return ret; 1595 } 1596 1597 static int count_inode_extrefs(struct btrfs_root *root, 1598 struct btrfs_inode *inode, struct btrfs_path *path) 1599 { 1600 int ret = 0; 1601 int name_len; 1602 unsigned int nlink = 0; 1603 u32 item_size; 1604 u32 cur_offset = 0; 1605 u64 inode_objectid = btrfs_ino(inode); 1606 u64 offset = 0; 1607 unsigned long ptr; 1608 struct btrfs_inode_extref *extref; 1609 struct extent_buffer *leaf; 1610 1611 while (1) { 1612 ret = btrfs_find_one_extref(root, inode_objectid, offset, path, 1613 &extref, &offset); 1614 if (ret) 1615 break; 1616 1617 leaf = path->nodes[0]; 1618 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1619 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1620 cur_offset = 0; 1621 1622 while (cur_offset < item_size) { 1623 extref = (struct btrfs_inode_extref *) (ptr + cur_offset); 1624 name_len = btrfs_inode_extref_name_len(leaf, extref); 1625 1626 nlink++; 1627 1628 cur_offset += name_len + sizeof(*extref); 1629 } 1630 1631 offset++; 1632 btrfs_release_path(path); 1633 } 1634 btrfs_release_path(path); 1635 1636 if (ret < 0 && ret != -ENOENT) 1637 return ret; 1638 return nlink; 1639 } 1640 1641 static int count_inode_refs(struct btrfs_root *root, 1642 struct btrfs_inode *inode, struct btrfs_path *path) 1643 { 1644 int ret; 1645 struct btrfs_key key; 1646 unsigned int nlink = 0; 1647 unsigned long ptr; 1648 unsigned long ptr_end; 1649 int name_len; 1650 u64 ino = btrfs_ino(inode); 1651 1652 key.objectid = ino; 1653 key.type = BTRFS_INODE_REF_KEY; 1654 key.offset = (u64)-1; 1655 1656 while (1) { 1657 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1658 if (ret < 0) 1659 break; 1660 if (ret > 0) { 1661 if (path->slots[0] == 0) 1662 break; 1663 path->slots[0]--; 1664 } 1665 process_slot: 1666 btrfs_item_key_to_cpu(path->nodes[0], &key, 1667 path->slots[0]); 1668 if (key.objectid != ino || 1669 key.type != BTRFS_INODE_REF_KEY) 1670 break; 1671 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 1672 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0], 1673 path->slots[0]); 1674 while (ptr < ptr_end) { 1675 struct btrfs_inode_ref *ref; 1676 1677 ref = (struct btrfs_inode_ref *)ptr; 1678 name_len = btrfs_inode_ref_name_len(path->nodes[0], 1679 ref); 1680 ptr = (unsigned long)(ref + 1) + name_len; 1681 nlink++; 1682 } 1683 1684 if (key.offset == 0) 1685 break; 1686 if (path->slots[0] > 0) { 1687 path->slots[0]--; 1688 goto process_slot; 1689 } 1690 key.offset--; 1691 btrfs_release_path(path); 1692 } 1693 btrfs_release_path(path); 1694 1695 return nlink; 1696 } 1697 1698 /* 1699 * There are a few corners where the link count of the file can't 1700 * be properly maintained during replay. So, instead of adding 1701 * lots of complexity to the log code, we just scan the backrefs 1702 * for any file that has been through replay. 1703 * 1704 * The scan will update the link count on the inode to reflect the 1705 * number of back refs found. If it goes down to zero, the iput 1706 * will free the inode. 1707 */ 1708 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans, 1709 struct btrfs_root *root, 1710 struct inode *inode) 1711 { 1712 struct btrfs_path *path; 1713 int ret; 1714 u64 nlink = 0; 1715 u64 ino = btrfs_ino(BTRFS_I(inode)); 1716 1717 path = btrfs_alloc_path(); 1718 if (!path) 1719 return -ENOMEM; 1720 1721 ret = count_inode_refs(root, BTRFS_I(inode), path); 1722 if (ret < 0) 1723 goto out; 1724 1725 nlink = ret; 1726 1727 ret = count_inode_extrefs(root, BTRFS_I(inode), path); 1728 if (ret < 0) 1729 goto out; 1730 1731 nlink += ret; 1732 1733 ret = 0; 1734 1735 if (nlink != inode->i_nlink) { 1736 set_nlink(inode, nlink); 1737 btrfs_update_inode(trans, root, inode); 1738 } 1739 BTRFS_I(inode)->index_cnt = (u64)-1; 1740 1741 if (inode->i_nlink == 0) { 1742 if (S_ISDIR(inode->i_mode)) { 1743 ret = replay_dir_deletes(trans, root, NULL, path, 1744 ino, 1); 1745 if (ret) 1746 goto out; 1747 } 1748 ret = insert_orphan_item(trans, root, ino); 1749 } 1750 1751 out: 1752 btrfs_free_path(path); 1753 return ret; 1754 } 1755 1756 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans, 1757 struct btrfs_root *root, 1758 struct btrfs_path *path) 1759 { 1760 int ret; 1761 struct btrfs_key key; 1762 struct inode *inode; 1763 1764 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1765 key.type = BTRFS_ORPHAN_ITEM_KEY; 1766 key.offset = (u64)-1; 1767 while (1) { 1768 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1769 if (ret < 0) 1770 break; 1771 1772 if (ret == 1) { 1773 if (path->slots[0] == 0) 1774 break; 1775 path->slots[0]--; 1776 } 1777 1778 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1779 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID || 1780 key.type != BTRFS_ORPHAN_ITEM_KEY) 1781 break; 1782 1783 ret = btrfs_del_item(trans, root, path); 1784 if (ret) 1785 goto out; 1786 1787 btrfs_release_path(path); 1788 inode = read_one_inode(root, key.offset); 1789 if (!inode) 1790 return -EIO; 1791 1792 ret = fixup_inode_link_count(trans, root, inode); 1793 iput(inode); 1794 if (ret) 1795 goto out; 1796 1797 /* 1798 * fixup on a directory may create new entries, 1799 * make sure we always look for the highset possible 1800 * offset 1801 */ 1802 key.offset = (u64)-1; 1803 } 1804 ret = 0; 1805 out: 1806 btrfs_release_path(path); 1807 return ret; 1808 } 1809 1810 1811 /* 1812 * record a given inode in the fixup dir so we can check its link 1813 * count when replay is done. The link count is incremented here 1814 * so the inode won't go away until we check it 1815 */ 1816 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans, 1817 struct btrfs_root *root, 1818 struct btrfs_path *path, 1819 u64 objectid) 1820 { 1821 struct btrfs_key key; 1822 int ret = 0; 1823 struct inode *inode; 1824 1825 inode = read_one_inode(root, objectid); 1826 if (!inode) 1827 return -EIO; 1828 1829 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1830 key.type = BTRFS_ORPHAN_ITEM_KEY; 1831 key.offset = objectid; 1832 1833 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1834 1835 btrfs_release_path(path); 1836 if (ret == 0) { 1837 if (!inode->i_nlink) 1838 set_nlink(inode, 1); 1839 else 1840 inc_nlink(inode); 1841 ret = btrfs_update_inode(trans, root, inode); 1842 } else if (ret == -EEXIST) { 1843 ret = 0; 1844 } else { 1845 BUG(); /* Logic Error */ 1846 } 1847 iput(inode); 1848 1849 return ret; 1850 } 1851 1852 /* 1853 * when replaying the log for a directory, we only insert names 1854 * for inodes that actually exist. This means an fsync on a directory 1855 * does not implicitly fsync all the new files in it 1856 */ 1857 static noinline int insert_one_name(struct btrfs_trans_handle *trans, 1858 struct btrfs_root *root, 1859 u64 dirid, u64 index, 1860 char *name, int name_len, 1861 struct btrfs_key *location) 1862 { 1863 struct inode *inode; 1864 struct inode *dir; 1865 int ret; 1866 1867 inode = read_one_inode(root, location->objectid); 1868 if (!inode) 1869 return -ENOENT; 1870 1871 dir = read_one_inode(root, dirid); 1872 if (!dir) { 1873 iput(inode); 1874 return -EIO; 1875 } 1876 1877 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, 1878 name_len, 1, index); 1879 1880 /* FIXME, put inode into FIXUP list */ 1881 1882 iput(inode); 1883 iput(dir); 1884 return ret; 1885 } 1886 1887 /* 1888 * Return true if an inode reference exists in the log for the given name, 1889 * inode and parent inode. 1890 */ 1891 static bool name_in_log_ref(struct btrfs_root *log_root, 1892 const char *name, const int name_len, 1893 const u64 dirid, const u64 ino) 1894 { 1895 struct btrfs_key search_key; 1896 1897 search_key.objectid = ino; 1898 search_key.type = BTRFS_INODE_REF_KEY; 1899 search_key.offset = dirid; 1900 if (backref_in_log(log_root, &search_key, dirid, name, name_len)) 1901 return true; 1902 1903 search_key.type = BTRFS_INODE_EXTREF_KEY; 1904 search_key.offset = btrfs_extref_hash(dirid, name, name_len); 1905 if (backref_in_log(log_root, &search_key, dirid, name, name_len)) 1906 return true; 1907 1908 return false; 1909 } 1910 1911 /* 1912 * take a single entry in a log directory item and replay it into 1913 * the subvolume. 1914 * 1915 * if a conflicting item exists in the subdirectory already, 1916 * the inode it points to is unlinked and put into the link count 1917 * fix up tree. 1918 * 1919 * If a name from the log points to a file or directory that does 1920 * not exist in the FS, it is skipped. fsyncs on directories 1921 * do not force down inodes inside that directory, just changes to the 1922 * names or unlinks in a directory. 1923 * 1924 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a 1925 * non-existing inode) and 1 if the name was replayed. 1926 */ 1927 static noinline int replay_one_name(struct btrfs_trans_handle *trans, 1928 struct btrfs_root *root, 1929 struct btrfs_path *path, 1930 struct extent_buffer *eb, 1931 struct btrfs_dir_item *di, 1932 struct btrfs_key *key) 1933 { 1934 char *name; 1935 int name_len; 1936 struct btrfs_dir_item *dst_di; 1937 struct btrfs_key found_key; 1938 struct btrfs_key log_key; 1939 struct inode *dir; 1940 u8 log_type; 1941 int exists; 1942 int ret = 0; 1943 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY); 1944 bool name_added = false; 1945 1946 dir = read_one_inode(root, key->objectid); 1947 if (!dir) 1948 return -EIO; 1949 1950 name_len = btrfs_dir_name_len(eb, di); 1951 name = kmalloc(name_len, GFP_NOFS); 1952 if (!name) { 1953 ret = -ENOMEM; 1954 goto out; 1955 } 1956 1957 log_type = btrfs_dir_type(eb, di); 1958 read_extent_buffer(eb, name, (unsigned long)(di + 1), 1959 name_len); 1960 1961 btrfs_dir_item_key_to_cpu(eb, di, &log_key); 1962 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0); 1963 if (exists == 0) 1964 exists = 1; 1965 else 1966 exists = 0; 1967 btrfs_release_path(path); 1968 1969 if (key->type == BTRFS_DIR_ITEM_KEY) { 1970 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid, 1971 name, name_len, 1); 1972 } else if (key->type == BTRFS_DIR_INDEX_KEY) { 1973 dst_di = btrfs_lookup_dir_index_item(trans, root, path, 1974 key->objectid, 1975 key->offset, name, 1976 name_len, 1); 1977 } else { 1978 /* Corruption */ 1979 ret = -EINVAL; 1980 goto out; 1981 } 1982 if (IS_ERR_OR_NULL(dst_di)) { 1983 /* we need a sequence number to insert, so we only 1984 * do inserts for the BTRFS_DIR_INDEX_KEY types 1985 */ 1986 if (key->type != BTRFS_DIR_INDEX_KEY) 1987 goto out; 1988 goto insert; 1989 } 1990 1991 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key); 1992 /* the existing item matches the logged item */ 1993 if (found_key.objectid == log_key.objectid && 1994 found_key.type == log_key.type && 1995 found_key.offset == log_key.offset && 1996 btrfs_dir_type(path->nodes[0], dst_di) == log_type) { 1997 update_size = false; 1998 goto out; 1999 } 2000 2001 /* 2002 * don't drop the conflicting directory entry if the inode 2003 * for the new entry doesn't exist 2004 */ 2005 if (!exists) 2006 goto out; 2007 2008 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di); 2009 if (ret) 2010 goto out; 2011 2012 if (key->type == BTRFS_DIR_INDEX_KEY) 2013 goto insert; 2014 out: 2015 btrfs_release_path(path); 2016 if (!ret && update_size) { 2017 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2); 2018 ret = btrfs_update_inode(trans, root, dir); 2019 } 2020 kfree(name); 2021 iput(dir); 2022 if (!ret && name_added) 2023 ret = 1; 2024 return ret; 2025 2026 insert: 2027 if (name_in_log_ref(root->log_root, name, name_len, 2028 key->objectid, log_key.objectid)) { 2029 /* The dentry will be added later. */ 2030 ret = 0; 2031 update_size = false; 2032 goto out; 2033 } 2034 btrfs_release_path(path); 2035 ret = insert_one_name(trans, root, key->objectid, key->offset, 2036 name, name_len, &log_key); 2037 if (ret && ret != -ENOENT && ret != -EEXIST) 2038 goto out; 2039 if (!ret) 2040 name_added = true; 2041 update_size = false; 2042 ret = 0; 2043 goto out; 2044 } 2045 2046 /* 2047 * find all the names in a directory item and reconcile them into 2048 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than 2049 * one name in a directory item, but the same code gets used for 2050 * both directory index types 2051 */ 2052 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans, 2053 struct btrfs_root *root, 2054 struct btrfs_path *path, 2055 struct extent_buffer *eb, int slot, 2056 struct btrfs_key *key) 2057 { 2058 int ret = 0; 2059 u32 item_size = btrfs_item_size_nr(eb, slot); 2060 struct btrfs_dir_item *di; 2061 int name_len; 2062 unsigned long ptr; 2063 unsigned long ptr_end; 2064 struct btrfs_path *fixup_path = NULL; 2065 2066 ptr = btrfs_item_ptr_offset(eb, slot); 2067 ptr_end = ptr + item_size; 2068 while (ptr < ptr_end) { 2069 di = (struct btrfs_dir_item *)ptr; 2070 name_len = btrfs_dir_name_len(eb, di); 2071 ret = replay_one_name(trans, root, path, eb, di, key); 2072 if (ret < 0) 2073 break; 2074 ptr = (unsigned long)(di + 1); 2075 ptr += name_len; 2076 2077 /* 2078 * If this entry refers to a non-directory (directories can not 2079 * have a link count > 1) and it was added in the transaction 2080 * that was not committed, make sure we fixup the link count of 2081 * the inode it the entry points to. Otherwise something like 2082 * the following would result in a directory pointing to an 2083 * inode with a wrong link that does not account for this dir 2084 * entry: 2085 * 2086 * mkdir testdir 2087 * touch testdir/foo 2088 * touch testdir/bar 2089 * sync 2090 * 2091 * ln testdir/bar testdir/bar_link 2092 * ln testdir/foo testdir/foo_link 2093 * xfs_io -c "fsync" testdir/bar 2094 * 2095 * <power failure> 2096 * 2097 * mount fs, log replay happens 2098 * 2099 * File foo would remain with a link count of 1 when it has two 2100 * entries pointing to it in the directory testdir. This would 2101 * make it impossible to ever delete the parent directory has 2102 * it would result in stale dentries that can never be deleted. 2103 */ 2104 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) { 2105 struct btrfs_key di_key; 2106 2107 if (!fixup_path) { 2108 fixup_path = btrfs_alloc_path(); 2109 if (!fixup_path) { 2110 ret = -ENOMEM; 2111 break; 2112 } 2113 } 2114 2115 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2116 ret = link_to_fixup_dir(trans, root, fixup_path, 2117 di_key.objectid); 2118 if (ret) 2119 break; 2120 } 2121 ret = 0; 2122 } 2123 btrfs_free_path(fixup_path); 2124 return ret; 2125 } 2126 2127 /* 2128 * directory replay has two parts. There are the standard directory 2129 * items in the log copied from the subvolume, and range items 2130 * created in the log while the subvolume was logged. 2131 * 2132 * The range items tell us which parts of the key space the log 2133 * is authoritative for. During replay, if a key in the subvolume 2134 * directory is in a logged range item, but not actually in the log 2135 * that means it was deleted from the directory before the fsync 2136 * and should be removed. 2137 */ 2138 static noinline int find_dir_range(struct btrfs_root *root, 2139 struct btrfs_path *path, 2140 u64 dirid, int key_type, 2141 u64 *start_ret, u64 *end_ret) 2142 { 2143 struct btrfs_key key; 2144 u64 found_end; 2145 struct btrfs_dir_log_item *item; 2146 int ret; 2147 int nritems; 2148 2149 if (*start_ret == (u64)-1) 2150 return 1; 2151 2152 key.objectid = dirid; 2153 key.type = key_type; 2154 key.offset = *start_ret; 2155 2156 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2157 if (ret < 0) 2158 goto out; 2159 if (ret > 0) { 2160 if (path->slots[0] == 0) 2161 goto out; 2162 path->slots[0]--; 2163 } 2164 if (ret != 0) 2165 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2166 2167 if (key.type != key_type || key.objectid != dirid) { 2168 ret = 1; 2169 goto next; 2170 } 2171 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2172 struct btrfs_dir_log_item); 2173 found_end = btrfs_dir_log_end(path->nodes[0], item); 2174 2175 if (*start_ret >= key.offset && *start_ret <= found_end) { 2176 ret = 0; 2177 *start_ret = key.offset; 2178 *end_ret = found_end; 2179 goto out; 2180 } 2181 ret = 1; 2182 next: 2183 /* check the next slot in the tree to see if it is a valid item */ 2184 nritems = btrfs_header_nritems(path->nodes[0]); 2185 path->slots[0]++; 2186 if (path->slots[0] >= nritems) { 2187 ret = btrfs_next_leaf(root, path); 2188 if (ret) 2189 goto out; 2190 } 2191 2192 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2193 2194 if (key.type != key_type || key.objectid != dirid) { 2195 ret = 1; 2196 goto out; 2197 } 2198 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2199 struct btrfs_dir_log_item); 2200 found_end = btrfs_dir_log_end(path->nodes[0], item); 2201 *start_ret = key.offset; 2202 *end_ret = found_end; 2203 ret = 0; 2204 out: 2205 btrfs_release_path(path); 2206 return ret; 2207 } 2208 2209 /* 2210 * this looks for a given directory item in the log. If the directory 2211 * item is not in the log, the item is removed and the inode it points 2212 * to is unlinked 2213 */ 2214 static noinline int check_item_in_log(struct btrfs_trans_handle *trans, 2215 struct btrfs_root *root, 2216 struct btrfs_root *log, 2217 struct btrfs_path *path, 2218 struct btrfs_path *log_path, 2219 struct inode *dir, 2220 struct btrfs_key *dir_key) 2221 { 2222 int ret; 2223 struct extent_buffer *eb; 2224 int slot; 2225 u32 item_size; 2226 struct btrfs_dir_item *di; 2227 struct btrfs_dir_item *log_di; 2228 int name_len; 2229 unsigned long ptr; 2230 unsigned long ptr_end; 2231 char *name; 2232 struct inode *inode; 2233 struct btrfs_key location; 2234 2235 again: 2236 eb = path->nodes[0]; 2237 slot = path->slots[0]; 2238 item_size = btrfs_item_size_nr(eb, slot); 2239 ptr = btrfs_item_ptr_offset(eb, slot); 2240 ptr_end = ptr + item_size; 2241 while (ptr < ptr_end) { 2242 di = (struct btrfs_dir_item *)ptr; 2243 name_len = btrfs_dir_name_len(eb, di); 2244 name = kmalloc(name_len, GFP_NOFS); 2245 if (!name) { 2246 ret = -ENOMEM; 2247 goto out; 2248 } 2249 read_extent_buffer(eb, name, (unsigned long)(di + 1), 2250 name_len); 2251 log_di = NULL; 2252 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) { 2253 log_di = btrfs_lookup_dir_item(trans, log, log_path, 2254 dir_key->objectid, 2255 name, name_len, 0); 2256 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) { 2257 log_di = btrfs_lookup_dir_index_item(trans, log, 2258 log_path, 2259 dir_key->objectid, 2260 dir_key->offset, 2261 name, name_len, 0); 2262 } 2263 if (!log_di || log_di == ERR_PTR(-ENOENT)) { 2264 btrfs_dir_item_key_to_cpu(eb, di, &location); 2265 btrfs_release_path(path); 2266 btrfs_release_path(log_path); 2267 inode = read_one_inode(root, location.objectid); 2268 if (!inode) { 2269 kfree(name); 2270 return -EIO; 2271 } 2272 2273 ret = link_to_fixup_dir(trans, root, 2274 path, location.objectid); 2275 if (ret) { 2276 kfree(name); 2277 iput(inode); 2278 goto out; 2279 } 2280 2281 inc_nlink(inode); 2282 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 2283 BTRFS_I(inode), name, name_len); 2284 if (!ret) 2285 ret = btrfs_run_delayed_items(trans); 2286 kfree(name); 2287 iput(inode); 2288 if (ret) 2289 goto out; 2290 2291 /* there might still be more names under this key 2292 * check and repeat if required 2293 */ 2294 ret = btrfs_search_slot(NULL, root, dir_key, path, 2295 0, 0); 2296 if (ret == 0) 2297 goto again; 2298 ret = 0; 2299 goto out; 2300 } else if (IS_ERR(log_di)) { 2301 kfree(name); 2302 return PTR_ERR(log_di); 2303 } 2304 btrfs_release_path(log_path); 2305 kfree(name); 2306 2307 ptr = (unsigned long)(di + 1); 2308 ptr += name_len; 2309 } 2310 ret = 0; 2311 out: 2312 btrfs_release_path(path); 2313 btrfs_release_path(log_path); 2314 return ret; 2315 } 2316 2317 static int replay_xattr_deletes(struct btrfs_trans_handle *trans, 2318 struct btrfs_root *root, 2319 struct btrfs_root *log, 2320 struct btrfs_path *path, 2321 const u64 ino) 2322 { 2323 struct btrfs_key search_key; 2324 struct btrfs_path *log_path; 2325 int i; 2326 int nritems; 2327 int ret; 2328 2329 log_path = btrfs_alloc_path(); 2330 if (!log_path) 2331 return -ENOMEM; 2332 2333 search_key.objectid = ino; 2334 search_key.type = BTRFS_XATTR_ITEM_KEY; 2335 search_key.offset = 0; 2336 again: 2337 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 2338 if (ret < 0) 2339 goto out; 2340 process_leaf: 2341 nritems = btrfs_header_nritems(path->nodes[0]); 2342 for (i = path->slots[0]; i < nritems; i++) { 2343 struct btrfs_key key; 2344 struct btrfs_dir_item *di; 2345 struct btrfs_dir_item *log_di; 2346 u32 total_size; 2347 u32 cur; 2348 2349 btrfs_item_key_to_cpu(path->nodes[0], &key, i); 2350 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) { 2351 ret = 0; 2352 goto out; 2353 } 2354 2355 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item); 2356 total_size = btrfs_item_size_nr(path->nodes[0], i); 2357 cur = 0; 2358 while (cur < total_size) { 2359 u16 name_len = btrfs_dir_name_len(path->nodes[0], di); 2360 u16 data_len = btrfs_dir_data_len(path->nodes[0], di); 2361 u32 this_len = sizeof(*di) + name_len + data_len; 2362 char *name; 2363 2364 name = kmalloc(name_len, GFP_NOFS); 2365 if (!name) { 2366 ret = -ENOMEM; 2367 goto out; 2368 } 2369 read_extent_buffer(path->nodes[0], name, 2370 (unsigned long)(di + 1), name_len); 2371 2372 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino, 2373 name, name_len, 0); 2374 btrfs_release_path(log_path); 2375 if (!log_di) { 2376 /* Doesn't exist in log tree, so delete it. */ 2377 btrfs_release_path(path); 2378 di = btrfs_lookup_xattr(trans, root, path, ino, 2379 name, name_len, -1); 2380 kfree(name); 2381 if (IS_ERR(di)) { 2382 ret = PTR_ERR(di); 2383 goto out; 2384 } 2385 ASSERT(di); 2386 ret = btrfs_delete_one_dir_name(trans, root, 2387 path, di); 2388 if (ret) 2389 goto out; 2390 btrfs_release_path(path); 2391 search_key = key; 2392 goto again; 2393 } 2394 kfree(name); 2395 if (IS_ERR(log_di)) { 2396 ret = PTR_ERR(log_di); 2397 goto out; 2398 } 2399 cur += this_len; 2400 di = (struct btrfs_dir_item *)((char *)di + this_len); 2401 } 2402 } 2403 ret = btrfs_next_leaf(root, path); 2404 if (ret > 0) 2405 ret = 0; 2406 else if (ret == 0) 2407 goto process_leaf; 2408 out: 2409 btrfs_free_path(log_path); 2410 btrfs_release_path(path); 2411 return ret; 2412 } 2413 2414 2415 /* 2416 * deletion replay happens before we copy any new directory items 2417 * out of the log or out of backreferences from inodes. It 2418 * scans the log to find ranges of keys that log is authoritative for, 2419 * and then scans the directory to find items in those ranges that are 2420 * not present in the log. 2421 * 2422 * Anything we don't find in the log is unlinked and removed from the 2423 * directory. 2424 */ 2425 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 2426 struct btrfs_root *root, 2427 struct btrfs_root *log, 2428 struct btrfs_path *path, 2429 u64 dirid, int del_all) 2430 { 2431 u64 range_start; 2432 u64 range_end; 2433 int key_type = BTRFS_DIR_LOG_ITEM_KEY; 2434 int ret = 0; 2435 struct btrfs_key dir_key; 2436 struct btrfs_key found_key; 2437 struct btrfs_path *log_path; 2438 struct inode *dir; 2439 2440 dir_key.objectid = dirid; 2441 dir_key.type = BTRFS_DIR_ITEM_KEY; 2442 log_path = btrfs_alloc_path(); 2443 if (!log_path) 2444 return -ENOMEM; 2445 2446 dir = read_one_inode(root, dirid); 2447 /* it isn't an error if the inode isn't there, that can happen 2448 * because we replay the deletes before we copy in the inode item 2449 * from the log 2450 */ 2451 if (!dir) { 2452 btrfs_free_path(log_path); 2453 return 0; 2454 } 2455 again: 2456 range_start = 0; 2457 range_end = 0; 2458 while (1) { 2459 if (del_all) 2460 range_end = (u64)-1; 2461 else { 2462 ret = find_dir_range(log, path, dirid, key_type, 2463 &range_start, &range_end); 2464 if (ret != 0) 2465 break; 2466 } 2467 2468 dir_key.offset = range_start; 2469 while (1) { 2470 int nritems; 2471 ret = btrfs_search_slot(NULL, root, &dir_key, path, 2472 0, 0); 2473 if (ret < 0) 2474 goto out; 2475 2476 nritems = btrfs_header_nritems(path->nodes[0]); 2477 if (path->slots[0] >= nritems) { 2478 ret = btrfs_next_leaf(root, path); 2479 if (ret == 1) 2480 break; 2481 else if (ret < 0) 2482 goto out; 2483 } 2484 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2485 path->slots[0]); 2486 if (found_key.objectid != dirid || 2487 found_key.type != dir_key.type) 2488 goto next_type; 2489 2490 if (found_key.offset > range_end) 2491 break; 2492 2493 ret = check_item_in_log(trans, root, log, path, 2494 log_path, dir, 2495 &found_key); 2496 if (ret) 2497 goto out; 2498 if (found_key.offset == (u64)-1) 2499 break; 2500 dir_key.offset = found_key.offset + 1; 2501 } 2502 btrfs_release_path(path); 2503 if (range_end == (u64)-1) 2504 break; 2505 range_start = range_end + 1; 2506 } 2507 2508 next_type: 2509 ret = 0; 2510 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) { 2511 key_type = BTRFS_DIR_LOG_INDEX_KEY; 2512 dir_key.type = BTRFS_DIR_INDEX_KEY; 2513 btrfs_release_path(path); 2514 goto again; 2515 } 2516 out: 2517 btrfs_release_path(path); 2518 btrfs_free_path(log_path); 2519 iput(dir); 2520 return ret; 2521 } 2522 2523 /* 2524 * the process_func used to replay items from the log tree. This 2525 * gets called in two different stages. The first stage just looks 2526 * for inodes and makes sure they are all copied into the subvolume. 2527 * 2528 * The second stage copies all the other item types from the log into 2529 * the subvolume. The two stage approach is slower, but gets rid of 2530 * lots of complexity around inodes referencing other inodes that exist 2531 * only in the log (references come from either directory items or inode 2532 * back refs). 2533 */ 2534 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb, 2535 struct walk_control *wc, u64 gen, int level) 2536 { 2537 int nritems; 2538 struct btrfs_path *path; 2539 struct btrfs_root *root = wc->replay_dest; 2540 struct btrfs_key key; 2541 int i; 2542 int ret; 2543 2544 ret = btrfs_read_buffer(eb, gen, level, NULL); 2545 if (ret) 2546 return ret; 2547 2548 level = btrfs_header_level(eb); 2549 2550 if (level != 0) 2551 return 0; 2552 2553 path = btrfs_alloc_path(); 2554 if (!path) 2555 return -ENOMEM; 2556 2557 nritems = btrfs_header_nritems(eb); 2558 for (i = 0; i < nritems; i++) { 2559 btrfs_item_key_to_cpu(eb, &key, i); 2560 2561 /* inode keys are done during the first stage */ 2562 if (key.type == BTRFS_INODE_ITEM_KEY && 2563 wc->stage == LOG_WALK_REPLAY_INODES) { 2564 struct btrfs_inode_item *inode_item; 2565 u32 mode; 2566 2567 inode_item = btrfs_item_ptr(eb, i, 2568 struct btrfs_inode_item); 2569 /* 2570 * If we have a tmpfile (O_TMPFILE) that got fsync'ed 2571 * and never got linked before the fsync, skip it, as 2572 * replaying it is pointless since it would be deleted 2573 * later. We skip logging tmpfiles, but it's always 2574 * possible we are replaying a log created with a kernel 2575 * that used to log tmpfiles. 2576 */ 2577 if (btrfs_inode_nlink(eb, inode_item) == 0) { 2578 wc->ignore_cur_inode = true; 2579 continue; 2580 } else { 2581 wc->ignore_cur_inode = false; 2582 } 2583 ret = replay_xattr_deletes(wc->trans, root, log, 2584 path, key.objectid); 2585 if (ret) 2586 break; 2587 mode = btrfs_inode_mode(eb, inode_item); 2588 if (S_ISDIR(mode)) { 2589 ret = replay_dir_deletes(wc->trans, 2590 root, log, path, key.objectid, 0); 2591 if (ret) 2592 break; 2593 } 2594 ret = overwrite_item(wc->trans, root, path, 2595 eb, i, &key); 2596 if (ret) 2597 break; 2598 2599 /* 2600 * Before replaying extents, truncate the inode to its 2601 * size. We need to do it now and not after log replay 2602 * because before an fsync we can have prealloc extents 2603 * added beyond the inode's i_size. If we did it after, 2604 * through orphan cleanup for example, we would drop 2605 * those prealloc extents just after replaying them. 2606 */ 2607 if (S_ISREG(mode)) { 2608 struct inode *inode; 2609 u64 from; 2610 2611 inode = read_one_inode(root, key.objectid); 2612 if (!inode) { 2613 ret = -EIO; 2614 break; 2615 } 2616 from = ALIGN(i_size_read(inode), 2617 root->fs_info->sectorsize); 2618 ret = btrfs_drop_extents(wc->trans, root, inode, 2619 from, (u64)-1, 1); 2620 if (!ret) { 2621 /* Update the inode's nbytes. */ 2622 ret = btrfs_update_inode(wc->trans, 2623 root, inode); 2624 } 2625 iput(inode); 2626 if (ret) 2627 break; 2628 } 2629 2630 ret = link_to_fixup_dir(wc->trans, root, 2631 path, key.objectid); 2632 if (ret) 2633 break; 2634 } 2635 2636 if (wc->ignore_cur_inode) 2637 continue; 2638 2639 if (key.type == BTRFS_DIR_INDEX_KEY && 2640 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) { 2641 ret = replay_one_dir_item(wc->trans, root, path, 2642 eb, i, &key); 2643 if (ret) 2644 break; 2645 } 2646 2647 if (wc->stage < LOG_WALK_REPLAY_ALL) 2648 continue; 2649 2650 /* these keys are simply copied */ 2651 if (key.type == BTRFS_XATTR_ITEM_KEY) { 2652 ret = overwrite_item(wc->trans, root, path, 2653 eb, i, &key); 2654 if (ret) 2655 break; 2656 } else if (key.type == BTRFS_INODE_REF_KEY || 2657 key.type == BTRFS_INODE_EXTREF_KEY) { 2658 ret = add_inode_ref(wc->trans, root, log, path, 2659 eb, i, &key); 2660 if (ret && ret != -ENOENT) 2661 break; 2662 ret = 0; 2663 } else if (key.type == BTRFS_EXTENT_DATA_KEY) { 2664 ret = replay_one_extent(wc->trans, root, path, 2665 eb, i, &key); 2666 if (ret) 2667 break; 2668 } else if (key.type == BTRFS_DIR_ITEM_KEY) { 2669 ret = replay_one_dir_item(wc->trans, root, path, 2670 eb, i, &key); 2671 if (ret) 2672 break; 2673 } 2674 } 2675 btrfs_free_path(path); 2676 return ret; 2677 } 2678 2679 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans, 2680 struct btrfs_root *root, 2681 struct btrfs_path *path, int *level, 2682 struct walk_control *wc) 2683 { 2684 struct btrfs_fs_info *fs_info = root->fs_info; 2685 u64 root_owner; 2686 u64 bytenr; 2687 u64 ptr_gen; 2688 struct extent_buffer *next; 2689 struct extent_buffer *cur; 2690 struct extent_buffer *parent; 2691 u32 blocksize; 2692 int ret = 0; 2693 2694 WARN_ON(*level < 0); 2695 WARN_ON(*level >= BTRFS_MAX_LEVEL); 2696 2697 while (*level > 0) { 2698 struct btrfs_key first_key; 2699 2700 WARN_ON(*level < 0); 2701 WARN_ON(*level >= BTRFS_MAX_LEVEL); 2702 cur = path->nodes[*level]; 2703 2704 WARN_ON(btrfs_header_level(cur) != *level); 2705 2706 if (path->slots[*level] >= 2707 btrfs_header_nritems(cur)) 2708 break; 2709 2710 bytenr = btrfs_node_blockptr(cur, path->slots[*level]); 2711 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); 2712 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]); 2713 blocksize = fs_info->nodesize; 2714 2715 parent = path->nodes[*level]; 2716 root_owner = btrfs_header_owner(parent); 2717 2718 next = btrfs_find_create_tree_block(fs_info, bytenr); 2719 if (IS_ERR(next)) 2720 return PTR_ERR(next); 2721 2722 if (*level == 1) { 2723 ret = wc->process_func(root, next, wc, ptr_gen, 2724 *level - 1); 2725 if (ret) { 2726 free_extent_buffer(next); 2727 return ret; 2728 } 2729 2730 path->slots[*level]++; 2731 if (wc->free) { 2732 ret = btrfs_read_buffer(next, ptr_gen, 2733 *level - 1, &first_key); 2734 if (ret) { 2735 free_extent_buffer(next); 2736 return ret; 2737 } 2738 2739 if (trans) { 2740 btrfs_tree_lock(next); 2741 btrfs_set_lock_blocking_write(next); 2742 btrfs_clean_tree_block(next); 2743 btrfs_wait_tree_block_writeback(next); 2744 btrfs_tree_unlock(next); 2745 } else { 2746 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags)) 2747 clear_extent_buffer_dirty(next); 2748 } 2749 2750 WARN_ON(root_owner != 2751 BTRFS_TREE_LOG_OBJECTID); 2752 ret = btrfs_free_and_pin_reserved_extent( 2753 fs_info, bytenr, 2754 blocksize); 2755 if (ret) { 2756 free_extent_buffer(next); 2757 return ret; 2758 } 2759 } 2760 free_extent_buffer(next); 2761 continue; 2762 } 2763 ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key); 2764 if (ret) { 2765 free_extent_buffer(next); 2766 return ret; 2767 } 2768 2769 WARN_ON(*level <= 0); 2770 if (path->nodes[*level-1]) 2771 free_extent_buffer(path->nodes[*level-1]); 2772 path->nodes[*level-1] = next; 2773 *level = btrfs_header_level(next); 2774 path->slots[*level] = 0; 2775 cond_resched(); 2776 } 2777 WARN_ON(*level < 0); 2778 WARN_ON(*level >= BTRFS_MAX_LEVEL); 2779 2780 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]); 2781 2782 cond_resched(); 2783 return 0; 2784 } 2785 2786 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans, 2787 struct btrfs_root *root, 2788 struct btrfs_path *path, int *level, 2789 struct walk_control *wc) 2790 { 2791 struct btrfs_fs_info *fs_info = root->fs_info; 2792 u64 root_owner; 2793 int i; 2794 int slot; 2795 int ret; 2796 2797 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { 2798 slot = path->slots[i]; 2799 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) { 2800 path->slots[i]++; 2801 *level = i; 2802 WARN_ON(*level == 0); 2803 return 0; 2804 } else { 2805 struct extent_buffer *parent; 2806 if (path->nodes[*level] == root->node) 2807 parent = path->nodes[*level]; 2808 else 2809 parent = path->nodes[*level + 1]; 2810 2811 root_owner = btrfs_header_owner(parent); 2812 ret = wc->process_func(root, path->nodes[*level], wc, 2813 btrfs_header_generation(path->nodes[*level]), 2814 *level); 2815 if (ret) 2816 return ret; 2817 2818 if (wc->free) { 2819 struct extent_buffer *next; 2820 2821 next = path->nodes[*level]; 2822 2823 if (trans) { 2824 btrfs_tree_lock(next); 2825 btrfs_set_lock_blocking_write(next); 2826 btrfs_clean_tree_block(next); 2827 btrfs_wait_tree_block_writeback(next); 2828 btrfs_tree_unlock(next); 2829 } else { 2830 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags)) 2831 clear_extent_buffer_dirty(next); 2832 } 2833 2834 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID); 2835 ret = btrfs_free_and_pin_reserved_extent( 2836 fs_info, 2837 path->nodes[*level]->start, 2838 path->nodes[*level]->len); 2839 if (ret) 2840 return ret; 2841 } 2842 free_extent_buffer(path->nodes[*level]); 2843 path->nodes[*level] = NULL; 2844 *level = i + 1; 2845 } 2846 } 2847 return 1; 2848 } 2849 2850 /* 2851 * drop the reference count on the tree rooted at 'snap'. This traverses 2852 * the tree freeing any blocks that have a ref count of zero after being 2853 * decremented. 2854 */ 2855 static int walk_log_tree(struct btrfs_trans_handle *trans, 2856 struct btrfs_root *log, struct walk_control *wc) 2857 { 2858 struct btrfs_fs_info *fs_info = log->fs_info; 2859 int ret = 0; 2860 int wret; 2861 int level; 2862 struct btrfs_path *path; 2863 int orig_level; 2864 2865 path = btrfs_alloc_path(); 2866 if (!path) 2867 return -ENOMEM; 2868 2869 level = btrfs_header_level(log->node); 2870 orig_level = level; 2871 path->nodes[level] = log->node; 2872 extent_buffer_get(log->node); 2873 path->slots[level] = 0; 2874 2875 while (1) { 2876 wret = walk_down_log_tree(trans, log, path, &level, wc); 2877 if (wret > 0) 2878 break; 2879 if (wret < 0) { 2880 ret = wret; 2881 goto out; 2882 } 2883 2884 wret = walk_up_log_tree(trans, log, path, &level, wc); 2885 if (wret > 0) 2886 break; 2887 if (wret < 0) { 2888 ret = wret; 2889 goto out; 2890 } 2891 } 2892 2893 /* was the root node processed? if not, catch it here */ 2894 if (path->nodes[orig_level]) { 2895 ret = wc->process_func(log, path->nodes[orig_level], wc, 2896 btrfs_header_generation(path->nodes[orig_level]), 2897 orig_level); 2898 if (ret) 2899 goto out; 2900 if (wc->free) { 2901 struct extent_buffer *next; 2902 2903 next = path->nodes[orig_level]; 2904 2905 if (trans) { 2906 btrfs_tree_lock(next); 2907 btrfs_set_lock_blocking_write(next); 2908 btrfs_clean_tree_block(next); 2909 btrfs_wait_tree_block_writeback(next); 2910 btrfs_tree_unlock(next); 2911 } else { 2912 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags)) 2913 clear_extent_buffer_dirty(next); 2914 } 2915 2916 WARN_ON(log->root_key.objectid != 2917 BTRFS_TREE_LOG_OBJECTID); 2918 ret = btrfs_free_and_pin_reserved_extent(fs_info, 2919 next->start, next->len); 2920 if (ret) 2921 goto out; 2922 } 2923 } 2924 2925 out: 2926 btrfs_free_path(path); 2927 return ret; 2928 } 2929 2930 /* 2931 * helper function to update the item for a given subvolumes log root 2932 * in the tree of log roots 2933 */ 2934 static int update_log_root(struct btrfs_trans_handle *trans, 2935 struct btrfs_root *log) 2936 { 2937 struct btrfs_fs_info *fs_info = log->fs_info; 2938 int ret; 2939 2940 if (log->log_transid == 1) { 2941 /* insert root item on the first sync */ 2942 ret = btrfs_insert_root(trans, fs_info->log_root_tree, 2943 &log->root_key, &log->root_item); 2944 } else { 2945 ret = btrfs_update_root(trans, fs_info->log_root_tree, 2946 &log->root_key, &log->root_item); 2947 } 2948 return ret; 2949 } 2950 2951 static void wait_log_commit(struct btrfs_root *root, int transid) 2952 { 2953 DEFINE_WAIT(wait); 2954 int index = transid % 2; 2955 2956 /* 2957 * we only allow two pending log transactions at a time, 2958 * so we know that if ours is more than 2 older than the 2959 * current transaction, we're done 2960 */ 2961 for (;;) { 2962 prepare_to_wait(&root->log_commit_wait[index], 2963 &wait, TASK_UNINTERRUPTIBLE); 2964 2965 if (!(root->log_transid_committed < transid && 2966 atomic_read(&root->log_commit[index]))) 2967 break; 2968 2969 mutex_unlock(&root->log_mutex); 2970 schedule(); 2971 mutex_lock(&root->log_mutex); 2972 } 2973 finish_wait(&root->log_commit_wait[index], &wait); 2974 } 2975 2976 static void wait_for_writer(struct btrfs_root *root) 2977 { 2978 DEFINE_WAIT(wait); 2979 2980 for (;;) { 2981 prepare_to_wait(&root->log_writer_wait, &wait, 2982 TASK_UNINTERRUPTIBLE); 2983 if (!atomic_read(&root->log_writers)) 2984 break; 2985 2986 mutex_unlock(&root->log_mutex); 2987 schedule(); 2988 mutex_lock(&root->log_mutex); 2989 } 2990 finish_wait(&root->log_writer_wait, &wait); 2991 } 2992 2993 static inline void btrfs_remove_log_ctx(struct btrfs_root *root, 2994 struct btrfs_log_ctx *ctx) 2995 { 2996 if (!ctx) 2997 return; 2998 2999 mutex_lock(&root->log_mutex); 3000 list_del_init(&ctx->list); 3001 mutex_unlock(&root->log_mutex); 3002 } 3003 3004 /* 3005 * Invoked in log mutex context, or be sure there is no other task which 3006 * can access the list. 3007 */ 3008 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root, 3009 int index, int error) 3010 { 3011 struct btrfs_log_ctx *ctx; 3012 struct btrfs_log_ctx *safe; 3013 3014 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) { 3015 list_del_init(&ctx->list); 3016 ctx->log_ret = error; 3017 } 3018 3019 INIT_LIST_HEAD(&root->log_ctxs[index]); 3020 } 3021 3022 /* 3023 * btrfs_sync_log does sends a given tree log down to the disk and 3024 * updates the super blocks to record it. When this call is done, 3025 * you know that any inodes previously logged are safely on disk only 3026 * if it returns 0. 3027 * 3028 * Any other return value means you need to call btrfs_commit_transaction. 3029 * Some of the edge cases for fsyncing directories that have had unlinks 3030 * or renames done in the past mean that sometimes the only safe 3031 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN, 3032 * that has happened. 3033 */ 3034 int btrfs_sync_log(struct btrfs_trans_handle *trans, 3035 struct btrfs_root *root, struct btrfs_log_ctx *ctx) 3036 { 3037 int index1; 3038 int index2; 3039 int mark; 3040 int ret; 3041 struct btrfs_fs_info *fs_info = root->fs_info; 3042 struct btrfs_root *log = root->log_root; 3043 struct btrfs_root *log_root_tree = fs_info->log_root_tree; 3044 int log_transid = 0; 3045 struct btrfs_log_ctx root_log_ctx; 3046 struct blk_plug plug; 3047 3048 mutex_lock(&root->log_mutex); 3049 log_transid = ctx->log_transid; 3050 if (root->log_transid_committed >= log_transid) { 3051 mutex_unlock(&root->log_mutex); 3052 return ctx->log_ret; 3053 } 3054 3055 index1 = log_transid % 2; 3056 if (atomic_read(&root->log_commit[index1])) { 3057 wait_log_commit(root, log_transid); 3058 mutex_unlock(&root->log_mutex); 3059 return ctx->log_ret; 3060 } 3061 ASSERT(log_transid == root->log_transid); 3062 atomic_set(&root->log_commit[index1], 1); 3063 3064 /* wait for previous tree log sync to complete */ 3065 if (atomic_read(&root->log_commit[(index1 + 1) % 2])) 3066 wait_log_commit(root, log_transid - 1); 3067 3068 while (1) { 3069 int batch = atomic_read(&root->log_batch); 3070 /* when we're on an ssd, just kick the log commit out */ 3071 if (!btrfs_test_opt(fs_info, SSD) && 3072 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) { 3073 mutex_unlock(&root->log_mutex); 3074 schedule_timeout_uninterruptible(1); 3075 mutex_lock(&root->log_mutex); 3076 } 3077 wait_for_writer(root); 3078 if (batch == atomic_read(&root->log_batch)) 3079 break; 3080 } 3081 3082 /* bail out if we need to do a full commit */ 3083 if (btrfs_need_log_full_commit(trans)) { 3084 ret = -EAGAIN; 3085 mutex_unlock(&root->log_mutex); 3086 goto out; 3087 } 3088 3089 if (log_transid % 2 == 0) 3090 mark = EXTENT_DIRTY; 3091 else 3092 mark = EXTENT_NEW; 3093 3094 /* we start IO on all the marked extents here, but we don't actually 3095 * wait for them until later. 3096 */ 3097 blk_start_plug(&plug); 3098 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark); 3099 if (ret) { 3100 blk_finish_plug(&plug); 3101 btrfs_abort_transaction(trans, ret); 3102 btrfs_set_log_full_commit(trans); 3103 mutex_unlock(&root->log_mutex); 3104 goto out; 3105 } 3106 3107 btrfs_set_root_node(&log->root_item, log->node); 3108 3109 root->log_transid++; 3110 log->log_transid = root->log_transid; 3111 root->log_start_pid = 0; 3112 /* 3113 * Update or create log root item under the root's log_mutex to prevent 3114 * races with concurrent log syncs that can lead to failure to update 3115 * log root item because it was not created yet. 3116 */ 3117 ret = update_log_root(trans, log); 3118 /* 3119 * IO has been started, blocks of the log tree have WRITTEN flag set 3120 * in their headers. new modifications of the log will be written to 3121 * new positions. so it's safe to allow log writers to go in. 3122 */ 3123 mutex_unlock(&root->log_mutex); 3124 3125 btrfs_init_log_ctx(&root_log_ctx, NULL); 3126 3127 mutex_lock(&log_root_tree->log_mutex); 3128 atomic_inc(&log_root_tree->log_batch); 3129 atomic_inc(&log_root_tree->log_writers); 3130 3131 index2 = log_root_tree->log_transid % 2; 3132 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]); 3133 root_log_ctx.log_transid = log_root_tree->log_transid; 3134 3135 mutex_unlock(&log_root_tree->log_mutex); 3136 3137 mutex_lock(&log_root_tree->log_mutex); 3138 if (atomic_dec_and_test(&log_root_tree->log_writers)) { 3139 /* atomic_dec_and_test implies a barrier */ 3140 cond_wake_up_nomb(&log_root_tree->log_writer_wait); 3141 } 3142 3143 if (ret) { 3144 if (!list_empty(&root_log_ctx.list)) 3145 list_del_init(&root_log_ctx.list); 3146 3147 blk_finish_plug(&plug); 3148 btrfs_set_log_full_commit(trans); 3149 3150 if (ret != -ENOSPC) { 3151 btrfs_abort_transaction(trans, ret); 3152 mutex_unlock(&log_root_tree->log_mutex); 3153 goto out; 3154 } 3155 btrfs_wait_tree_log_extents(log, mark); 3156 mutex_unlock(&log_root_tree->log_mutex); 3157 ret = -EAGAIN; 3158 goto out; 3159 } 3160 3161 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) { 3162 blk_finish_plug(&plug); 3163 list_del_init(&root_log_ctx.list); 3164 mutex_unlock(&log_root_tree->log_mutex); 3165 ret = root_log_ctx.log_ret; 3166 goto out; 3167 } 3168 3169 index2 = root_log_ctx.log_transid % 2; 3170 if (atomic_read(&log_root_tree->log_commit[index2])) { 3171 blk_finish_plug(&plug); 3172 ret = btrfs_wait_tree_log_extents(log, mark); 3173 wait_log_commit(log_root_tree, 3174 root_log_ctx.log_transid); 3175 mutex_unlock(&log_root_tree->log_mutex); 3176 if (!ret) 3177 ret = root_log_ctx.log_ret; 3178 goto out; 3179 } 3180 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid); 3181 atomic_set(&log_root_tree->log_commit[index2], 1); 3182 3183 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) { 3184 wait_log_commit(log_root_tree, 3185 root_log_ctx.log_transid - 1); 3186 } 3187 3188 wait_for_writer(log_root_tree); 3189 3190 /* 3191 * now that we've moved on to the tree of log tree roots, 3192 * check the full commit flag again 3193 */ 3194 if (btrfs_need_log_full_commit(trans)) { 3195 blk_finish_plug(&plug); 3196 btrfs_wait_tree_log_extents(log, mark); 3197 mutex_unlock(&log_root_tree->log_mutex); 3198 ret = -EAGAIN; 3199 goto out_wake_log_root; 3200 } 3201 3202 ret = btrfs_write_marked_extents(fs_info, 3203 &log_root_tree->dirty_log_pages, 3204 EXTENT_DIRTY | EXTENT_NEW); 3205 blk_finish_plug(&plug); 3206 if (ret) { 3207 btrfs_set_log_full_commit(trans); 3208 btrfs_abort_transaction(trans, ret); 3209 mutex_unlock(&log_root_tree->log_mutex); 3210 goto out_wake_log_root; 3211 } 3212 ret = btrfs_wait_tree_log_extents(log, mark); 3213 if (!ret) 3214 ret = btrfs_wait_tree_log_extents(log_root_tree, 3215 EXTENT_NEW | EXTENT_DIRTY); 3216 if (ret) { 3217 btrfs_set_log_full_commit(trans); 3218 mutex_unlock(&log_root_tree->log_mutex); 3219 goto out_wake_log_root; 3220 } 3221 3222 btrfs_set_super_log_root(fs_info->super_for_commit, 3223 log_root_tree->node->start); 3224 btrfs_set_super_log_root_level(fs_info->super_for_commit, 3225 btrfs_header_level(log_root_tree->node)); 3226 3227 log_root_tree->log_transid++; 3228 mutex_unlock(&log_root_tree->log_mutex); 3229 3230 /* 3231 * Nobody else is going to jump in and write the ctree 3232 * super here because the log_commit atomic below is protecting 3233 * us. We must be called with a transaction handle pinning 3234 * the running transaction open, so a full commit can't hop 3235 * in and cause problems either. 3236 */ 3237 ret = write_all_supers(fs_info, 1); 3238 if (ret) { 3239 btrfs_set_log_full_commit(trans); 3240 btrfs_abort_transaction(trans, ret); 3241 goto out_wake_log_root; 3242 } 3243 3244 mutex_lock(&root->log_mutex); 3245 if (root->last_log_commit < log_transid) 3246 root->last_log_commit = log_transid; 3247 mutex_unlock(&root->log_mutex); 3248 3249 out_wake_log_root: 3250 mutex_lock(&log_root_tree->log_mutex); 3251 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret); 3252 3253 log_root_tree->log_transid_committed++; 3254 atomic_set(&log_root_tree->log_commit[index2], 0); 3255 mutex_unlock(&log_root_tree->log_mutex); 3256 3257 /* 3258 * The barrier before waitqueue_active (in cond_wake_up) is needed so 3259 * all the updates above are seen by the woken threads. It might not be 3260 * necessary, but proving that seems to be hard. 3261 */ 3262 cond_wake_up(&log_root_tree->log_commit_wait[index2]); 3263 out: 3264 mutex_lock(&root->log_mutex); 3265 btrfs_remove_all_log_ctxs(root, index1, ret); 3266 root->log_transid_committed++; 3267 atomic_set(&root->log_commit[index1], 0); 3268 mutex_unlock(&root->log_mutex); 3269 3270 /* 3271 * The barrier before waitqueue_active (in cond_wake_up) is needed so 3272 * all the updates above are seen by the woken threads. It might not be 3273 * necessary, but proving that seems to be hard. 3274 */ 3275 cond_wake_up(&root->log_commit_wait[index1]); 3276 return ret; 3277 } 3278 3279 static void free_log_tree(struct btrfs_trans_handle *trans, 3280 struct btrfs_root *log) 3281 { 3282 int ret; 3283 struct walk_control wc = { 3284 .free = 1, 3285 .process_func = process_one_buffer 3286 }; 3287 3288 ret = walk_log_tree(trans, log, &wc); 3289 if (ret) { 3290 if (trans) 3291 btrfs_abort_transaction(trans, ret); 3292 else 3293 btrfs_handle_fs_error(log->fs_info, ret, NULL); 3294 } 3295 3296 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1, 3297 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT); 3298 free_extent_buffer(log->node); 3299 kfree(log); 3300 } 3301 3302 /* 3303 * free all the extents used by the tree log. This should be called 3304 * at commit time of the full transaction 3305 */ 3306 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root) 3307 { 3308 if (root->log_root) { 3309 free_log_tree(trans, root->log_root); 3310 root->log_root = NULL; 3311 } 3312 return 0; 3313 } 3314 3315 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans, 3316 struct btrfs_fs_info *fs_info) 3317 { 3318 if (fs_info->log_root_tree) { 3319 free_log_tree(trans, fs_info->log_root_tree); 3320 fs_info->log_root_tree = NULL; 3321 } 3322 return 0; 3323 } 3324 3325 /* 3326 * If both a file and directory are logged, and unlinks or renames are 3327 * mixed in, we have a few interesting corners: 3328 * 3329 * create file X in dir Y 3330 * link file X to X.link in dir Y 3331 * fsync file X 3332 * unlink file X but leave X.link 3333 * fsync dir Y 3334 * 3335 * After a crash we would expect only X.link to exist. But file X 3336 * didn't get fsync'd again so the log has back refs for X and X.link. 3337 * 3338 * We solve this by removing directory entries and inode backrefs from the 3339 * log when a file that was logged in the current transaction is 3340 * unlinked. Any later fsync will include the updated log entries, and 3341 * we'll be able to reconstruct the proper directory items from backrefs. 3342 * 3343 * This optimizations allows us to avoid relogging the entire inode 3344 * or the entire directory. 3345 */ 3346 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans, 3347 struct btrfs_root *root, 3348 const char *name, int name_len, 3349 struct btrfs_inode *dir, u64 index) 3350 { 3351 struct btrfs_root *log; 3352 struct btrfs_dir_item *di; 3353 struct btrfs_path *path; 3354 int ret; 3355 int err = 0; 3356 int bytes_del = 0; 3357 u64 dir_ino = btrfs_ino(dir); 3358 3359 if (dir->logged_trans < trans->transid) 3360 return 0; 3361 3362 ret = join_running_log_trans(root); 3363 if (ret) 3364 return 0; 3365 3366 mutex_lock(&dir->log_mutex); 3367 3368 log = root->log_root; 3369 path = btrfs_alloc_path(); 3370 if (!path) { 3371 err = -ENOMEM; 3372 goto out_unlock; 3373 } 3374 3375 di = btrfs_lookup_dir_item(trans, log, path, dir_ino, 3376 name, name_len, -1); 3377 if (IS_ERR(di)) { 3378 err = PTR_ERR(di); 3379 goto fail; 3380 } 3381 if (di) { 3382 ret = btrfs_delete_one_dir_name(trans, log, path, di); 3383 bytes_del += name_len; 3384 if (ret) { 3385 err = ret; 3386 goto fail; 3387 } 3388 } 3389 btrfs_release_path(path); 3390 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino, 3391 index, name, name_len, -1); 3392 if (IS_ERR(di)) { 3393 err = PTR_ERR(di); 3394 goto fail; 3395 } 3396 if (di) { 3397 ret = btrfs_delete_one_dir_name(trans, log, path, di); 3398 bytes_del += name_len; 3399 if (ret) { 3400 err = ret; 3401 goto fail; 3402 } 3403 } 3404 3405 /* update the directory size in the log to reflect the names 3406 * we have removed 3407 */ 3408 if (bytes_del) { 3409 struct btrfs_key key; 3410 3411 key.objectid = dir_ino; 3412 key.offset = 0; 3413 key.type = BTRFS_INODE_ITEM_KEY; 3414 btrfs_release_path(path); 3415 3416 ret = btrfs_search_slot(trans, log, &key, path, 0, 1); 3417 if (ret < 0) { 3418 err = ret; 3419 goto fail; 3420 } 3421 if (ret == 0) { 3422 struct btrfs_inode_item *item; 3423 u64 i_size; 3424 3425 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3426 struct btrfs_inode_item); 3427 i_size = btrfs_inode_size(path->nodes[0], item); 3428 if (i_size > bytes_del) 3429 i_size -= bytes_del; 3430 else 3431 i_size = 0; 3432 btrfs_set_inode_size(path->nodes[0], item, i_size); 3433 btrfs_mark_buffer_dirty(path->nodes[0]); 3434 } else 3435 ret = 0; 3436 btrfs_release_path(path); 3437 } 3438 fail: 3439 btrfs_free_path(path); 3440 out_unlock: 3441 mutex_unlock(&dir->log_mutex); 3442 if (ret == -ENOSPC) { 3443 btrfs_set_log_full_commit(trans); 3444 ret = 0; 3445 } else if (ret < 0) 3446 btrfs_abort_transaction(trans, ret); 3447 3448 btrfs_end_log_trans(root); 3449 3450 return err; 3451 } 3452 3453 /* see comments for btrfs_del_dir_entries_in_log */ 3454 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans, 3455 struct btrfs_root *root, 3456 const char *name, int name_len, 3457 struct btrfs_inode *inode, u64 dirid) 3458 { 3459 struct btrfs_root *log; 3460 u64 index; 3461 int ret; 3462 3463 if (inode->logged_trans < trans->transid) 3464 return 0; 3465 3466 ret = join_running_log_trans(root); 3467 if (ret) 3468 return 0; 3469 log = root->log_root; 3470 mutex_lock(&inode->log_mutex); 3471 3472 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode), 3473 dirid, &index); 3474 mutex_unlock(&inode->log_mutex); 3475 if (ret == -ENOSPC) { 3476 btrfs_set_log_full_commit(trans); 3477 ret = 0; 3478 } else if (ret < 0 && ret != -ENOENT) 3479 btrfs_abort_transaction(trans, ret); 3480 btrfs_end_log_trans(root); 3481 3482 return ret; 3483 } 3484 3485 /* 3486 * creates a range item in the log for 'dirid'. first_offset and 3487 * last_offset tell us which parts of the key space the log should 3488 * be considered authoritative for. 3489 */ 3490 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans, 3491 struct btrfs_root *log, 3492 struct btrfs_path *path, 3493 int key_type, u64 dirid, 3494 u64 first_offset, u64 last_offset) 3495 { 3496 int ret; 3497 struct btrfs_key key; 3498 struct btrfs_dir_log_item *item; 3499 3500 key.objectid = dirid; 3501 key.offset = first_offset; 3502 if (key_type == BTRFS_DIR_ITEM_KEY) 3503 key.type = BTRFS_DIR_LOG_ITEM_KEY; 3504 else 3505 key.type = BTRFS_DIR_LOG_INDEX_KEY; 3506 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item)); 3507 if (ret) 3508 return ret; 3509 3510 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3511 struct btrfs_dir_log_item); 3512 btrfs_set_dir_log_end(path->nodes[0], item, last_offset); 3513 btrfs_mark_buffer_dirty(path->nodes[0]); 3514 btrfs_release_path(path); 3515 return 0; 3516 } 3517 3518 /* 3519 * log all the items included in the current transaction for a given 3520 * directory. This also creates the range items in the log tree required 3521 * to replay anything deleted before the fsync 3522 */ 3523 static noinline int log_dir_items(struct btrfs_trans_handle *trans, 3524 struct btrfs_root *root, struct btrfs_inode *inode, 3525 struct btrfs_path *path, 3526 struct btrfs_path *dst_path, int key_type, 3527 struct btrfs_log_ctx *ctx, 3528 u64 min_offset, u64 *last_offset_ret) 3529 { 3530 struct btrfs_key min_key; 3531 struct btrfs_root *log = root->log_root; 3532 struct extent_buffer *src; 3533 int err = 0; 3534 int ret; 3535 int i; 3536 int nritems; 3537 u64 first_offset = min_offset; 3538 u64 last_offset = (u64)-1; 3539 u64 ino = btrfs_ino(inode); 3540 3541 log = root->log_root; 3542 3543 min_key.objectid = ino; 3544 min_key.type = key_type; 3545 min_key.offset = min_offset; 3546 3547 ret = btrfs_search_forward(root, &min_key, path, trans->transid); 3548 3549 /* 3550 * we didn't find anything from this transaction, see if there 3551 * is anything at all 3552 */ 3553 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) { 3554 min_key.objectid = ino; 3555 min_key.type = key_type; 3556 min_key.offset = (u64)-1; 3557 btrfs_release_path(path); 3558 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 3559 if (ret < 0) { 3560 btrfs_release_path(path); 3561 return ret; 3562 } 3563 ret = btrfs_previous_item(root, path, ino, key_type); 3564 3565 /* if ret == 0 there are items for this type, 3566 * create a range to tell us the last key of this type. 3567 * otherwise, there are no items in this directory after 3568 * *min_offset, and we create a range to indicate that. 3569 */ 3570 if (ret == 0) { 3571 struct btrfs_key tmp; 3572 btrfs_item_key_to_cpu(path->nodes[0], &tmp, 3573 path->slots[0]); 3574 if (key_type == tmp.type) 3575 first_offset = max(min_offset, tmp.offset) + 1; 3576 } 3577 goto done; 3578 } 3579 3580 /* go backward to find any previous key */ 3581 ret = btrfs_previous_item(root, path, ino, key_type); 3582 if (ret == 0) { 3583 struct btrfs_key tmp; 3584 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 3585 if (key_type == tmp.type) { 3586 first_offset = tmp.offset; 3587 ret = overwrite_item(trans, log, dst_path, 3588 path->nodes[0], path->slots[0], 3589 &tmp); 3590 if (ret) { 3591 err = ret; 3592 goto done; 3593 } 3594 } 3595 } 3596 btrfs_release_path(path); 3597 3598 /* 3599 * Find the first key from this transaction again. See the note for 3600 * log_new_dir_dentries, if we're logging a directory recursively we 3601 * won't be holding its i_mutex, which means we can modify the directory 3602 * while we're logging it. If we remove an entry between our first 3603 * search and this search we'll not find the key again and can just 3604 * bail. 3605 */ 3606 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 3607 if (ret != 0) 3608 goto done; 3609 3610 /* 3611 * we have a block from this transaction, log every item in it 3612 * from our directory 3613 */ 3614 while (1) { 3615 struct btrfs_key tmp; 3616 src = path->nodes[0]; 3617 nritems = btrfs_header_nritems(src); 3618 for (i = path->slots[0]; i < nritems; i++) { 3619 struct btrfs_dir_item *di; 3620 3621 btrfs_item_key_to_cpu(src, &min_key, i); 3622 3623 if (min_key.objectid != ino || min_key.type != key_type) 3624 goto done; 3625 ret = overwrite_item(trans, log, dst_path, src, i, 3626 &min_key); 3627 if (ret) { 3628 err = ret; 3629 goto done; 3630 } 3631 3632 /* 3633 * We must make sure that when we log a directory entry, 3634 * the corresponding inode, after log replay, has a 3635 * matching link count. For example: 3636 * 3637 * touch foo 3638 * mkdir mydir 3639 * sync 3640 * ln foo mydir/bar 3641 * xfs_io -c "fsync" mydir 3642 * <crash> 3643 * <mount fs and log replay> 3644 * 3645 * Would result in a fsync log that when replayed, our 3646 * file inode would have a link count of 1, but we get 3647 * two directory entries pointing to the same inode. 3648 * After removing one of the names, it would not be 3649 * possible to remove the other name, which resulted 3650 * always in stale file handle errors, and would not 3651 * be possible to rmdir the parent directory, since 3652 * its i_size could never decrement to the value 3653 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors. 3654 */ 3655 di = btrfs_item_ptr(src, i, struct btrfs_dir_item); 3656 btrfs_dir_item_key_to_cpu(src, di, &tmp); 3657 if (ctx && 3658 (btrfs_dir_transid(src, di) == trans->transid || 3659 btrfs_dir_type(src, di) == BTRFS_FT_DIR) && 3660 tmp.type != BTRFS_ROOT_ITEM_KEY) 3661 ctx->log_new_dentries = true; 3662 } 3663 path->slots[0] = nritems; 3664 3665 /* 3666 * look ahead to the next item and see if it is also 3667 * from this directory and from this transaction 3668 */ 3669 ret = btrfs_next_leaf(root, path); 3670 if (ret) { 3671 if (ret == 1) 3672 last_offset = (u64)-1; 3673 else 3674 err = ret; 3675 goto done; 3676 } 3677 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 3678 if (tmp.objectid != ino || tmp.type != key_type) { 3679 last_offset = (u64)-1; 3680 goto done; 3681 } 3682 if (btrfs_header_generation(path->nodes[0]) != trans->transid) { 3683 ret = overwrite_item(trans, log, dst_path, 3684 path->nodes[0], path->slots[0], 3685 &tmp); 3686 if (ret) 3687 err = ret; 3688 else 3689 last_offset = tmp.offset; 3690 goto done; 3691 } 3692 } 3693 done: 3694 btrfs_release_path(path); 3695 btrfs_release_path(dst_path); 3696 3697 if (err == 0) { 3698 *last_offset_ret = last_offset; 3699 /* 3700 * insert the log range keys to indicate where the log 3701 * is valid 3702 */ 3703 ret = insert_dir_log_key(trans, log, path, key_type, 3704 ino, first_offset, last_offset); 3705 if (ret) 3706 err = ret; 3707 } 3708 return err; 3709 } 3710 3711 /* 3712 * logging directories is very similar to logging inodes, We find all the items 3713 * from the current transaction and write them to the log. 3714 * 3715 * The recovery code scans the directory in the subvolume, and if it finds a 3716 * key in the range logged that is not present in the log tree, then it means 3717 * that dir entry was unlinked during the transaction. 3718 * 3719 * In order for that scan to work, we must include one key smaller than 3720 * the smallest logged by this transaction and one key larger than the largest 3721 * key logged by this transaction. 3722 */ 3723 static noinline int log_directory_changes(struct btrfs_trans_handle *trans, 3724 struct btrfs_root *root, struct btrfs_inode *inode, 3725 struct btrfs_path *path, 3726 struct btrfs_path *dst_path, 3727 struct btrfs_log_ctx *ctx) 3728 { 3729 u64 min_key; 3730 u64 max_key; 3731 int ret; 3732 int key_type = BTRFS_DIR_ITEM_KEY; 3733 3734 again: 3735 min_key = 0; 3736 max_key = 0; 3737 while (1) { 3738 ret = log_dir_items(trans, root, inode, path, dst_path, key_type, 3739 ctx, min_key, &max_key); 3740 if (ret) 3741 return ret; 3742 if (max_key == (u64)-1) 3743 break; 3744 min_key = max_key + 1; 3745 } 3746 3747 if (key_type == BTRFS_DIR_ITEM_KEY) { 3748 key_type = BTRFS_DIR_INDEX_KEY; 3749 goto again; 3750 } 3751 return 0; 3752 } 3753 3754 /* 3755 * a helper function to drop items from the log before we relog an 3756 * inode. max_key_type indicates the highest item type to remove. 3757 * This cannot be run for file data extents because it does not 3758 * free the extents they point to. 3759 */ 3760 static int drop_objectid_items(struct btrfs_trans_handle *trans, 3761 struct btrfs_root *log, 3762 struct btrfs_path *path, 3763 u64 objectid, int max_key_type) 3764 { 3765 int ret; 3766 struct btrfs_key key; 3767 struct btrfs_key found_key; 3768 int start_slot; 3769 3770 key.objectid = objectid; 3771 key.type = max_key_type; 3772 key.offset = (u64)-1; 3773 3774 while (1) { 3775 ret = btrfs_search_slot(trans, log, &key, path, -1, 1); 3776 BUG_ON(ret == 0); /* Logic error */ 3777 if (ret < 0) 3778 break; 3779 3780 if (path->slots[0] == 0) 3781 break; 3782 3783 path->slots[0]--; 3784 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 3785 path->slots[0]); 3786 3787 if (found_key.objectid != objectid) 3788 break; 3789 3790 found_key.offset = 0; 3791 found_key.type = 0; 3792 ret = btrfs_bin_search(path->nodes[0], &found_key, 0, 3793 &start_slot); 3794 if (ret < 0) 3795 break; 3796 3797 ret = btrfs_del_items(trans, log, path, start_slot, 3798 path->slots[0] - start_slot + 1); 3799 /* 3800 * If start slot isn't 0 then we don't need to re-search, we've 3801 * found the last guy with the objectid in this tree. 3802 */ 3803 if (ret || start_slot != 0) 3804 break; 3805 btrfs_release_path(path); 3806 } 3807 btrfs_release_path(path); 3808 if (ret > 0) 3809 ret = 0; 3810 return ret; 3811 } 3812 3813 static void fill_inode_item(struct btrfs_trans_handle *trans, 3814 struct extent_buffer *leaf, 3815 struct btrfs_inode_item *item, 3816 struct inode *inode, int log_inode_only, 3817 u64 logged_isize) 3818 { 3819 struct btrfs_map_token token; 3820 3821 btrfs_init_map_token(&token); 3822 3823 if (log_inode_only) { 3824 /* set the generation to zero so the recover code 3825 * can tell the difference between an logging 3826 * just to say 'this inode exists' and a logging 3827 * to say 'update this inode with these values' 3828 */ 3829 btrfs_set_token_inode_generation(leaf, item, 0, &token); 3830 btrfs_set_token_inode_size(leaf, item, logged_isize, &token); 3831 } else { 3832 btrfs_set_token_inode_generation(leaf, item, 3833 BTRFS_I(inode)->generation, 3834 &token); 3835 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token); 3836 } 3837 3838 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3839 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3840 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3841 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3842 3843 btrfs_set_token_timespec_sec(leaf, &item->atime, 3844 inode->i_atime.tv_sec, &token); 3845 btrfs_set_token_timespec_nsec(leaf, &item->atime, 3846 inode->i_atime.tv_nsec, &token); 3847 3848 btrfs_set_token_timespec_sec(leaf, &item->mtime, 3849 inode->i_mtime.tv_sec, &token); 3850 btrfs_set_token_timespec_nsec(leaf, &item->mtime, 3851 inode->i_mtime.tv_nsec, &token); 3852 3853 btrfs_set_token_timespec_sec(leaf, &item->ctime, 3854 inode->i_ctime.tv_sec, &token); 3855 btrfs_set_token_timespec_nsec(leaf, &item->ctime, 3856 inode->i_ctime.tv_nsec, &token); 3857 3858 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3859 &token); 3860 3861 btrfs_set_token_inode_sequence(leaf, item, 3862 inode_peek_iversion(inode), &token); 3863 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3864 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3865 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3866 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3867 } 3868 3869 static int log_inode_item(struct btrfs_trans_handle *trans, 3870 struct btrfs_root *log, struct btrfs_path *path, 3871 struct btrfs_inode *inode) 3872 { 3873 struct btrfs_inode_item *inode_item; 3874 int ret; 3875 3876 ret = btrfs_insert_empty_item(trans, log, path, 3877 &inode->location, sizeof(*inode_item)); 3878 if (ret && ret != -EEXIST) 3879 return ret; 3880 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3881 struct btrfs_inode_item); 3882 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode, 3883 0, 0); 3884 btrfs_release_path(path); 3885 return 0; 3886 } 3887 3888 static noinline int copy_items(struct btrfs_trans_handle *trans, 3889 struct btrfs_inode *inode, 3890 struct btrfs_path *dst_path, 3891 struct btrfs_path *src_path, u64 *last_extent, 3892 int start_slot, int nr, int inode_only, 3893 u64 logged_isize) 3894 { 3895 struct btrfs_fs_info *fs_info = trans->fs_info; 3896 unsigned long src_offset; 3897 unsigned long dst_offset; 3898 struct btrfs_root *log = inode->root->log_root; 3899 struct btrfs_file_extent_item *extent; 3900 struct btrfs_inode_item *inode_item; 3901 struct extent_buffer *src = src_path->nodes[0]; 3902 struct btrfs_key first_key, last_key, key; 3903 int ret; 3904 struct btrfs_key *ins_keys; 3905 u32 *ins_sizes; 3906 char *ins_data; 3907 int i; 3908 struct list_head ordered_sums; 3909 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM; 3910 bool has_extents = false; 3911 bool need_find_last_extent = true; 3912 bool done = false; 3913 3914 INIT_LIST_HEAD(&ordered_sums); 3915 3916 ins_data = kmalloc(nr * sizeof(struct btrfs_key) + 3917 nr * sizeof(u32), GFP_NOFS); 3918 if (!ins_data) 3919 return -ENOMEM; 3920 3921 first_key.objectid = (u64)-1; 3922 3923 ins_sizes = (u32 *)ins_data; 3924 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32)); 3925 3926 for (i = 0; i < nr; i++) { 3927 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot); 3928 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot); 3929 } 3930 ret = btrfs_insert_empty_items(trans, log, dst_path, 3931 ins_keys, ins_sizes, nr); 3932 if (ret) { 3933 kfree(ins_data); 3934 return ret; 3935 } 3936 3937 for (i = 0; i < nr; i++, dst_path->slots[0]++) { 3938 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], 3939 dst_path->slots[0]); 3940 3941 src_offset = btrfs_item_ptr_offset(src, start_slot + i); 3942 3943 if (i == nr - 1) 3944 last_key = ins_keys[i]; 3945 3946 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) { 3947 inode_item = btrfs_item_ptr(dst_path->nodes[0], 3948 dst_path->slots[0], 3949 struct btrfs_inode_item); 3950 fill_inode_item(trans, dst_path->nodes[0], inode_item, 3951 &inode->vfs_inode, 3952 inode_only == LOG_INODE_EXISTS, 3953 logged_isize); 3954 } else { 3955 copy_extent_buffer(dst_path->nodes[0], src, dst_offset, 3956 src_offset, ins_sizes[i]); 3957 } 3958 3959 /* 3960 * We set need_find_last_extent here in case we know we were 3961 * processing other items and then walk into the first extent in 3962 * the inode. If we don't hit an extent then nothing changes, 3963 * we'll do the last search the next time around. 3964 */ 3965 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) { 3966 has_extents = true; 3967 if (first_key.objectid == (u64)-1) 3968 first_key = ins_keys[i]; 3969 } else { 3970 need_find_last_extent = false; 3971 } 3972 3973 /* take a reference on file data extents so that truncates 3974 * or deletes of this inode don't have to relog the inode 3975 * again 3976 */ 3977 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY && 3978 !skip_csum) { 3979 int found_type; 3980 extent = btrfs_item_ptr(src, start_slot + i, 3981 struct btrfs_file_extent_item); 3982 3983 if (btrfs_file_extent_generation(src, extent) < trans->transid) 3984 continue; 3985 3986 found_type = btrfs_file_extent_type(src, extent); 3987 if (found_type == BTRFS_FILE_EXTENT_REG) { 3988 u64 ds, dl, cs, cl; 3989 ds = btrfs_file_extent_disk_bytenr(src, 3990 extent); 3991 /* ds == 0 is a hole */ 3992 if (ds == 0) 3993 continue; 3994 3995 dl = btrfs_file_extent_disk_num_bytes(src, 3996 extent); 3997 cs = btrfs_file_extent_offset(src, extent); 3998 cl = btrfs_file_extent_num_bytes(src, 3999 extent); 4000 if (btrfs_file_extent_compression(src, 4001 extent)) { 4002 cs = 0; 4003 cl = dl; 4004 } 4005 4006 ret = btrfs_lookup_csums_range( 4007 fs_info->csum_root, 4008 ds + cs, ds + cs + cl - 1, 4009 &ordered_sums, 0); 4010 if (ret) { 4011 btrfs_release_path(dst_path); 4012 kfree(ins_data); 4013 return ret; 4014 } 4015 } 4016 } 4017 } 4018 4019 btrfs_mark_buffer_dirty(dst_path->nodes[0]); 4020 btrfs_release_path(dst_path); 4021 kfree(ins_data); 4022 4023 /* 4024 * we have to do this after the loop above to avoid changing the 4025 * log tree while trying to change the log tree. 4026 */ 4027 ret = 0; 4028 while (!list_empty(&ordered_sums)) { 4029 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, 4030 struct btrfs_ordered_sum, 4031 list); 4032 if (!ret) 4033 ret = btrfs_csum_file_blocks(trans, log, sums); 4034 list_del(&sums->list); 4035 kfree(sums); 4036 } 4037 4038 if (!has_extents) 4039 return ret; 4040 4041 if (need_find_last_extent && *last_extent == first_key.offset) { 4042 /* 4043 * We don't have any leafs between our current one and the one 4044 * we processed before that can have file extent items for our 4045 * inode (and have a generation number smaller than our current 4046 * transaction id). 4047 */ 4048 need_find_last_extent = false; 4049 } 4050 4051 /* 4052 * Because we use btrfs_search_forward we could skip leaves that were 4053 * not modified and then assume *last_extent is valid when it really 4054 * isn't. So back up to the previous leaf and read the end of the last 4055 * extent before we go and fill in holes. 4056 */ 4057 if (need_find_last_extent) { 4058 u64 len; 4059 4060 ret = btrfs_prev_leaf(inode->root, src_path); 4061 if (ret < 0) 4062 return ret; 4063 if (ret) 4064 goto fill_holes; 4065 if (src_path->slots[0]) 4066 src_path->slots[0]--; 4067 src = src_path->nodes[0]; 4068 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]); 4069 if (key.objectid != btrfs_ino(inode) || 4070 key.type != BTRFS_EXTENT_DATA_KEY) 4071 goto fill_holes; 4072 extent = btrfs_item_ptr(src, src_path->slots[0], 4073 struct btrfs_file_extent_item); 4074 if (btrfs_file_extent_type(src, extent) == 4075 BTRFS_FILE_EXTENT_INLINE) { 4076 len = btrfs_file_extent_ram_bytes(src, extent); 4077 *last_extent = ALIGN(key.offset + len, 4078 fs_info->sectorsize); 4079 } else { 4080 len = btrfs_file_extent_num_bytes(src, extent); 4081 *last_extent = key.offset + len; 4082 } 4083 } 4084 fill_holes: 4085 /* So we did prev_leaf, now we need to move to the next leaf, but a few 4086 * things could have happened 4087 * 4088 * 1) A merge could have happened, so we could currently be on a leaf 4089 * that holds what we were copying in the first place. 4090 * 2) A split could have happened, and now not all of the items we want 4091 * are on the same leaf. 4092 * 4093 * So we need to adjust how we search for holes, we need to drop the 4094 * path and re-search for the first extent key we found, and then walk 4095 * forward until we hit the last one we copied. 4096 */ 4097 if (need_find_last_extent) { 4098 /* btrfs_prev_leaf could return 1 without releasing the path */ 4099 btrfs_release_path(src_path); 4100 ret = btrfs_search_slot(NULL, inode->root, &first_key, 4101 src_path, 0, 0); 4102 if (ret < 0) 4103 return ret; 4104 ASSERT(ret == 0); 4105 src = src_path->nodes[0]; 4106 i = src_path->slots[0]; 4107 } else { 4108 i = start_slot; 4109 } 4110 4111 /* 4112 * Ok so here we need to go through and fill in any holes we may have 4113 * to make sure that holes are punched for those areas in case they had 4114 * extents previously. 4115 */ 4116 while (!done) { 4117 u64 offset, len; 4118 u64 extent_end; 4119 4120 if (i >= btrfs_header_nritems(src_path->nodes[0])) { 4121 ret = btrfs_next_leaf(inode->root, src_path); 4122 if (ret < 0) 4123 return ret; 4124 ASSERT(ret == 0); 4125 src = src_path->nodes[0]; 4126 i = 0; 4127 need_find_last_extent = true; 4128 } 4129 4130 btrfs_item_key_to_cpu(src, &key, i); 4131 if (!btrfs_comp_cpu_keys(&key, &last_key)) 4132 done = true; 4133 if (key.objectid != btrfs_ino(inode) || 4134 key.type != BTRFS_EXTENT_DATA_KEY) { 4135 i++; 4136 continue; 4137 } 4138 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item); 4139 if (btrfs_file_extent_type(src, extent) == 4140 BTRFS_FILE_EXTENT_INLINE) { 4141 len = btrfs_file_extent_ram_bytes(src, extent); 4142 extent_end = ALIGN(key.offset + len, 4143 fs_info->sectorsize); 4144 } else { 4145 len = btrfs_file_extent_num_bytes(src, extent); 4146 extent_end = key.offset + len; 4147 } 4148 i++; 4149 4150 if (*last_extent == key.offset) { 4151 *last_extent = extent_end; 4152 continue; 4153 } 4154 offset = *last_extent; 4155 len = key.offset - *last_extent; 4156 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode), 4157 offset, 0, 0, len, 0, len, 0, 0, 0); 4158 if (ret) 4159 break; 4160 *last_extent = extent_end; 4161 } 4162 4163 /* 4164 * Check if there is a hole between the last extent found in our leaf 4165 * and the first extent in the next leaf. If there is one, we need to 4166 * log an explicit hole so that at replay time we can punch the hole. 4167 */ 4168 if (ret == 0 && 4169 key.objectid == btrfs_ino(inode) && 4170 key.type == BTRFS_EXTENT_DATA_KEY && 4171 i == btrfs_header_nritems(src_path->nodes[0])) { 4172 ret = btrfs_next_leaf(inode->root, src_path); 4173 need_find_last_extent = true; 4174 if (ret > 0) { 4175 ret = 0; 4176 } else if (ret == 0) { 4177 btrfs_item_key_to_cpu(src_path->nodes[0], &key, 4178 src_path->slots[0]); 4179 if (key.objectid == btrfs_ino(inode) && 4180 key.type == BTRFS_EXTENT_DATA_KEY && 4181 *last_extent < key.offset) { 4182 const u64 len = key.offset - *last_extent; 4183 4184 ret = btrfs_insert_file_extent(trans, log, 4185 btrfs_ino(inode), 4186 *last_extent, 0, 4187 0, len, 0, len, 4188 0, 0, 0); 4189 *last_extent += len; 4190 } 4191 } 4192 } 4193 /* 4194 * Need to let the callers know we dropped the path so they should 4195 * re-search. 4196 */ 4197 if (!ret && need_find_last_extent) 4198 ret = 1; 4199 return ret; 4200 } 4201 4202 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b) 4203 { 4204 struct extent_map *em1, *em2; 4205 4206 em1 = list_entry(a, struct extent_map, list); 4207 em2 = list_entry(b, struct extent_map, list); 4208 4209 if (em1->start < em2->start) 4210 return -1; 4211 else if (em1->start > em2->start) 4212 return 1; 4213 return 0; 4214 } 4215 4216 static int log_extent_csums(struct btrfs_trans_handle *trans, 4217 struct btrfs_inode *inode, 4218 struct btrfs_root *log_root, 4219 const struct extent_map *em) 4220 { 4221 u64 csum_offset; 4222 u64 csum_len; 4223 LIST_HEAD(ordered_sums); 4224 int ret = 0; 4225 4226 if (inode->flags & BTRFS_INODE_NODATASUM || 4227 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 4228 em->block_start == EXTENT_MAP_HOLE) 4229 return 0; 4230 4231 /* If we're compressed we have to save the entire range of csums. */ 4232 if (em->compress_type) { 4233 csum_offset = 0; 4234 csum_len = max(em->block_len, em->orig_block_len); 4235 } else { 4236 csum_offset = em->mod_start - em->start; 4237 csum_len = em->mod_len; 4238 } 4239 4240 /* block start is already adjusted for the file extent offset. */ 4241 ret = btrfs_lookup_csums_range(trans->fs_info->csum_root, 4242 em->block_start + csum_offset, 4243 em->block_start + csum_offset + 4244 csum_len - 1, &ordered_sums, 0); 4245 if (ret) 4246 return ret; 4247 4248 while (!list_empty(&ordered_sums)) { 4249 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, 4250 struct btrfs_ordered_sum, 4251 list); 4252 if (!ret) 4253 ret = btrfs_csum_file_blocks(trans, log_root, sums); 4254 list_del(&sums->list); 4255 kfree(sums); 4256 } 4257 4258 return ret; 4259 } 4260 4261 static int log_one_extent(struct btrfs_trans_handle *trans, 4262 struct btrfs_inode *inode, struct btrfs_root *root, 4263 const struct extent_map *em, 4264 struct btrfs_path *path, 4265 struct btrfs_log_ctx *ctx) 4266 { 4267 struct btrfs_root *log = root->log_root; 4268 struct btrfs_file_extent_item *fi; 4269 struct extent_buffer *leaf; 4270 struct btrfs_map_token token; 4271 struct btrfs_key key; 4272 u64 extent_offset = em->start - em->orig_start; 4273 u64 block_len; 4274 int ret; 4275 int extent_inserted = 0; 4276 4277 ret = log_extent_csums(trans, inode, log, em); 4278 if (ret) 4279 return ret; 4280 4281 btrfs_init_map_token(&token); 4282 4283 ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start, 4284 em->start + em->len, NULL, 0, 1, 4285 sizeof(*fi), &extent_inserted); 4286 if (ret) 4287 return ret; 4288 4289 if (!extent_inserted) { 4290 key.objectid = btrfs_ino(inode); 4291 key.type = BTRFS_EXTENT_DATA_KEY; 4292 key.offset = em->start; 4293 4294 ret = btrfs_insert_empty_item(trans, log, path, &key, 4295 sizeof(*fi)); 4296 if (ret) 4297 return ret; 4298 } 4299 leaf = path->nodes[0]; 4300 fi = btrfs_item_ptr(leaf, path->slots[0], 4301 struct btrfs_file_extent_item); 4302 4303 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid, 4304 &token); 4305 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 4306 btrfs_set_token_file_extent_type(leaf, fi, 4307 BTRFS_FILE_EXTENT_PREALLOC, 4308 &token); 4309 else 4310 btrfs_set_token_file_extent_type(leaf, fi, 4311 BTRFS_FILE_EXTENT_REG, 4312 &token); 4313 4314 block_len = max(em->block_len, em->orig_block_len); 4315 if (em->compress_type != BTRFS_COMPRESS_NONE) { 4316 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 4317 em->block_start, 4318 &token); 4319 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len, 4320 &token); 4321 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) { 4322 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 4323 em->block_start - 4324 extent_offset, &token); 4325 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len, 4326 &token); 4327 } else { 4328 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token); 4329 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0, 4330 &token); 4331 } 4332 4333 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token); 4334 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token); 4335 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token); 4336 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type, 4337 &token); 4338 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token); 4339 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token); 4340 btrfs_mark_buffer_dirty(leaf); 4341 4342 btrfs_release_path(path); 4343 4344 return ret; 4345 } 4346 4347 /* 4348 * Log all prealloc extents beyond the inode's i_size to make sure we do not 4349 * lose them after doing a fast fsync and replaying the log. We scan the 4350 * subvolume's root instead of iterating the inode's extent map tree because 4351 * otherwise we can log incorrect extent items based on extent map conversion. 4352 * That can happen due to the fact that extent maps are merged when they 4353 * are not in the extent map tree's list of modified extents. 4354 */ 4355 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans, 4356 struct btrfs_inode *inode, 4357 struct btrfs_path *path) 4358 { 4359 struct btrfs_root *root = inode->root; 4360 struct btrfs_key key; 4361 const u64 i_size = i_size_read(&inode->vfs_inode); 4362 const u64 ino = btrfs_ino(inode); 4363 struct btrfs_path *dst_path = NULL; 4364 u64 last_extent = (u64)-1; 4365 int ins_nr = 0; 4366 int start_slot; 4367 int ret; 4368 4369 if (!(inode->flags & BTRFS_INODE_PREALLOC)) 4370 return 0; 4371 4372 key.objectid = ino; 4373 key.type = BTRFS_EXTENT_DATA_KEY; 4374 key.offset = i_size; 4375 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4376 if (ret < 0) 4377 goto out; 4378 4379 while (true) { 4380 struct extent_buffer *leaf = path->nodes[0]; 4381 int slot = path->slots[0]; 4382 4383 if (slot >= btrfs_header_nritems(leaf)) { 4384 if (ins_nr > 0) { 4385 ret = copy_items(trans, inode, dst_path, path, 4386 &last_extent, start_slot, 4387 ins_nr, 1, 0); 4388 if (ret < 0) 4389 goto out; 4390 ins_nr = 0; 4391 } 4392 ret = btrfs_next_leaf(root, path); 4393 if (ret < 0) 4394 goto out; 4395 if (ret > 0) { 4396 ret = 0; 4397 break; 4398 } 4399 continue; 4400 } 4401 4402 btrfs_item_key_to_cpu(leaf, &key, slot); 4403 if (key.objectid > ino) 4404 break; 4405 if (WARN_ON_ONCE(key.objectid < ino) || 4406 key.type < BTRFS_EXTENT_DATA_KEY || 4407 key.offset < i_size) { 4408 path->slots[0]++; 4409 continue; 4410 } 4411 if (last_extent == (u64)-1) { 4412 last_extent = key.offset; 4413 /* 4414 * Avoid logging extent items logged in past fsync calls 4415 * and leading to duplicate keys in the log tree. 4416 */ 4417 do { 4418 ret = btrfs_truncate_inode_items(trans, 4419 root->log_root, 4420 &inode->vfs_inode, 4421 i_size, 4422 BTRFS_EXTENT_DATA_KEY); 4423 } while (ret == -EAGAIN); 4424 if (ret) 4425 goto out; 4426 } 4427 if (ins_nr == 0) 4428 start_slot = slot; 4429 ins_nr++; 4430 path->slots[0]++; 4431 if (!dst_path) { 4432 dst_path = btrfs_alloc_path(); 4433 if (!dst_path) { 4434 ret = -ENOMEM; 4435 goto out; 4436 } 4437 } 4438 } 4439 if (ins_nr > 0) { 4440 ret = copy_items(trans, inode, dst_path, path, &last_extent, 4441 start_slot, ins_nr, 1, 0); 4442 if (ret > 0) 4443 ret = 0; 4444 } 4445 out: 4446 btrfs_release_path(path); 4447 btrfs_free_path(dst_path); 4448 return ret; 4449 } 4450 4451 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans, 4452 struct btrfs_root *root, 4453 struct btrfs_inode *inode, 4454 struct btrfs_path *path, 4455 struct btrfs_log_ctx *ctx, 4456 const u64 start, 4457 const u64 end) 4458 { 4459 struct extent_map *em, *n; 4460 struct list_head extents; 4461 struct extent_map_tree *tree = &inode->extent_tree; 4462 u64 test_gen; 4463 int ret = 0; 4464 int num = 0; 4465 4466 INIT_LIST_HEAD(&extents); 4467 4468 write_lock(&tree->lock); 4469 test_gen = root->fs_info->last_trans_committed; 4470 4471 list_for_each_entry_safe(em, n, &tree->modified_extents, list) { 4472 /* 4473 * Skip extents outside our logging range. It's important to do 4474 * it for correctness because if we don't ignore them, we may 4475 * log them before their ordered extent completes, and therefore 4476 * we could log them without logging their respective checksums 4477 * (the checksum items are added to the csum tree at the very 4478 * end of btrfs_finish_ordered_io()). Also leave such extents 4479 * outside of our range in the list, since we may have another 4480 * ranged fsync in the near future that needs them. If an extent 4481 * outside our range corresponds to a hole, log it to avoid 4482 * leaving gaps between extents (fsck will complain when we are 4483 * not using the NO_HOLES feature). 4484 */ 4485 if ((em->start > end || em->start + em->len <= start) && 4486 em->block_start != EXTENT_MAP_HOLE) 4487 continue; 4488 4489 list_del_init(&em->list); 4490 /* 4491 * Just an arbitrary number, this can be really CPU intensive 4492 * once we start getting a lot of extents, and really once we 4493 * have a bunch of extents we just want to commit since it will 4494 * be faster. 4495 */ 4496 if (++num > 32768) { 4497 list_del_init(&tree->modified_extents); 4498 ret = -EFBIG; 4499 goto process; 4500 } 4501 4502 if (em->generation <= test_gen) 4503 continue; 4504 4505 /* We log prealloc extents beyond eof later. */ 4506 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && 4507 em->start >= i_size_read(&inode->vfs_inode)) 4508 continue; 4509 4510 /* Need a ref to keep it from getting evicted from cache */ 4511 refcount_inc(&em->refs); 4512 set_bit(EXTENT_FLAG_LOGGING, &em->flags); 4513 list_add_tail(&em->list, &extents); 4514 num++; 4515 } 4516 4517 list_sort(NULL, &extents, extent_cmp); 4518 process: 4519 while (!list_empty(&extents)) { 4520 em = list_entry(extents.next, struct extent_map, list); 4521 4522 list_del_init(&em->list); 4523 4524 /* 4525 * If we had an error we just need to delete everybody from our 4526 * private list. 4527 */ 4528 if (ret) { 4529 clear_em_logging(tree, em); 4530 free_extent_map(em); 4531 continue; 4532 } 4533 4534 write_unlock(&tree->lock); 4535 4536 ret = log_one_extent(trans, inode, root, em, path, ctx); 4537 write_lock(&tree->lock); 4538 clear_em_logging(tree, em); 4539 free_extent_map(em); 4540 } 4541 WARN_ON(!list_empty(&extents)); 4542 write_unlock(&tree->lock); 4543 4544 btrfs_release_path(path); 4545 if (!ret) 4546 ret = btrfs_log_prealloc_extents(trans, inode, path); 4547 4548 return ret; 4549 } 4550 4551 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode, 4552 struct btrfs_path *path, u64 *size_ret) 4553 { 4554 struct btrfs_key key; 4555 int ret; 4556 4557 key.objectid = btrfs_ino(inode); 4558 key.type = BTRFS_INODE_ITEM_KEY; 4559 key.offset = 0; 4560 4561 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0); 4562 if (ret < 0) { 4563 return ret; 4564 } else if (ret > 0) { 4565 *size_ret = 0; 4566 } else { 4567 struct btrfs_inode_item *item; 4568 4569 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4570 struct btrfs_inode_item); 4571 *size_ret = btrfs_inode_size(path->nodes[0], item); 4572 /* 4573 * If the in-memory inode's i_size is smaller then the inode 4574 * size stored in the btree, return the inode's i_size, so 4575 * that we get a correct inode size after replaying the log 4576 * when before a power failure we had a shrinking truncate 4577 * followed by addition of a new name (rename / new hard link). 4578 * Otherwise return the inode size from the btree, to avoid 4579 * data loss when replaying a log due to previously doing a 4580 * write that expands the inode's size and logging a new name 4581 * immediately after. 4582 */ 4583 if (*size_ret > inode->vfs_inode.i_size) 4584 *size_ret = inode->vfs_inode.i_size; 4585 } 4586 4587 btrfs_release_path(path); 4588 return 0; 4589 } 4590 4591 /* 4592 * At the moment we always log all xattrs. This is to figure out at log replay 4593 * time which xattrs must have their deletion replayed. If a xattr is missing 4594 * in the log tree and exists in the fs/subvol tree, we delete it. This is 4595 * because if a xattr is deleted, the inode is fsynced and a power failure 4596 * happens, causing the log to be replayed the next time the fs is mounted, 4597 * we want the xattr to not exist anymore (same behaviour as other filesystems 4598 * with a journal, ext3/4, xfs, f2fs, etc). 4599 */ 4600 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans, 4601 struct btrfs_root *root, 4602 struct btrfs_inode *inode, 4603 struct btrfs_path *path, 4604 struct btrfs_path *dst_path) 4605 { 4606 int ret; 4607 struct btrfs_key key; 4608 const u64 ino = btrfs_ino(inode); 4609 int ins_nr = 0; 4610 int start_slot = 0; 4611 4612 key.objectid = ino; 4613 key.type = BTRFS_XATTR_ITEM_KEY; 4614 key.offset = 0; 4615 4616 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4617 if (ret < 0) 4618 return ret; 4619 4620 while (true) { 4621 int slot = path->slots[0]; 4622 struct extent_buffer *leaf = path->nodes[0]; 4623 int nritems = btrfs_header_nritems(leaf); 4624 4625 if (slot >= nritems) { 4626 if (ins_nr > 0) { 4627 u64 last_extent = 0; 4628 4629 ret = copy_items(trans, inode, dst_path, path, 4630 &last_extent, start_slot, 4631 ins_nr, 1, 0); 4632 /* can't be 1, extent items aren't processed */ 4633 ASSERT(ret <= 0); 4634 if (ret < 0) 4635 return ret; 4636 ins_nr = 0; 4637 } 4638 ret = btrfs_next_leaf(root, path); 4639 if (ret < 0) 4640 return ret; 4641 else if (ret > 0) 4642 break; 4643 continue; 4644 } 4645 4646 btrfs_item_key_to_cpu(leaf, &key, slot); 4647 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) 4648 break; 4649 4650 if (ins_nr == 0) 4651 start_slot = slot; 4652 ins_nr++; 4653 path->slots[0]++; 4654 cond_resched(); 4655 } 4656 if (ins_nr > 0) { 4657 u64 last_extent = 0; 4658 4659 ret = copy_items(trans, inode, dst_path, path, 4660 &last_extent, start_slot, 4661 ins_nr, 1, 0); 4662 /* can't be 1, extent items aren't processed */ 4663 ASSERT(ret <= 0); 4664 if (ret < 0) 4665 return ret; 4666 } 4667 4668 return 0; 4669 } 4670 4671 /* 4672 * If the no holes feature is enabled we need to make sure any hole between the 4673 * last extent and the i_size of our inode is explicitly marked in the log. This 4674 * is to make sure that doing something like: 4675 * 4676 * 1) create file with 128Kb of data 4677 * 2) truncate file to 64Kb 4678 * 3) truncate file to 256Kb 4679 * 4) fsync file 4680 * 5) <crash/power failure> 4681 * 6) mount fs and trigger log replay 4682 * 4683 * Will give us a file with a size of 256Kb, the first 64Kb of data match what 4684 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the 4685 * file correspond to a hole. The presence of explicit holes in a log tree is 4686 * what guarantees that log replay will remove/adjust file extent items in the 4687 * fs/subvol tree. 4688 * 4689 * Here we do not need to care about holes between extents, that is already done 4690 * by copy_items(). We also only need to do this in the full sync path, where we 4691 * lookup for extents from the fs/subvol tree only. In the fast path case, we 4692 * lookup the list of modified extent maps and if any represents a hole, we 4693 * insert a corresponding extent representing a hole in the log tree. 4694 */ 4695 static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans, 4696 struct btrfs_root *root, 4697 struct btrfs_inode *inode, 4698 struct btrfs_path *path) 4699 { 4700 struct btrfs_fs_info *fs_info = root->fs_info; 4701 int ret; 4702 struct btrfs_key key; 4703 u64 hole_start; 4704 u64 hole_size; 4705 struct extent_buffer *leaf; 4706 struct btrfs_root *log = root->log_root; 4707 const u64 ino = btrfs_ino(inode); 4708 const u64 i_size = i_size_read(&inode->vfs_inode); 4709 4710 if (!btrfs_fs_incompat(fs_info, NO_HOLES)) 4711 return 0; 4712 4713 key.objectid = ino; 4714 key.type = BTRFS_EXTENT_DATA_KEY; 4715 key.offset = (u64)-1; 4716 4717 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4718 ASSERT(ret != 0); 4719 if (ret < 0) 4720 return ret; 4721 4722 ASSERT(path->slots[0] > 0); 4723 path->slots[0]--; 4724 leaf = path->nodes[0]; 4725 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4726 4727 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) { 4728 /* inode does not have any extents */ 4729 hole_start = 0; 4730 hole_size = i_size; 4731 } else { 4732 struct btrfs_file_extent_item *extent; 4733 u64 len; 4734 4735 /* 4736 * If there's an extent beyond i_size, an explicit hole was 4737 * already inserted by copy_items(). 4738 */ 4739 if (key.offset >= i_size) 4740 return 0; 4741 4742 extent = btrfs_item_ptr(leaf, path->slots[0], 4743 struct btrfs_file_extent_item); 4744 4745 if (btrfs_file_extent_type(leaf, extent) == 4746 BTRFS_FILE_EXTENT_INLINE) 4747 return 0; 4748 4749 len = btrfs_file_extent_num_bytes(leaf, extent); 4750 /* Last extent goes beyond i_size, no need to log a hole. */ 4751 if (key.offset + len > i_size) 4752 return 0; 4753 hole_start = key.offset + len; 4754 hole_size = i_size - hole_start; 4755 } 4756 btrfs_release_path(path); 4757 4758 /* Last extent ends at i_size. */ 4759 if (hole_size == 0) 4760 return 0; 4761 4762 hole_size = ALIGN(hole_size, fs_info->sectorsize); 4763 ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0, 4764 hole_size, 0, hole_size, 0, 0, 0); 4765 return ret; 4766 } 4767 4768 /* 4769 * When we are logging a new inode X, check if it doesn't have a reference that 4770 * matches the reference from some other inode Y created in a past transaction 4771 * and that was renamed in the current transaction. If we don't do this, then at 4772 * log replay time we can lose inode Y (and all its files if it's a directory): 4773 * 4774 * mkdir /mnt/x 4775 * echo "hello world" > /mnt/x/foobar 4776 * sync 4777 * mv /mnt/x /mnt/y 4778 * mkdir /mnt/x # or touch /mnt/x 4779 * xfs_io -c fsync /mnt/x 4780 * <power fail> 4781 * mount fs, trigger log replay 4782 * 4783 * After the log replay procedure, we would lose the first directory and all its 4784 * files (file foobar). 4785 * For the case where inode Y is not a directory we simply end up losing it: 4786 * 4787 * echo "123" > /mnt/foo 4788 * sync 4789 * mv /mnt/foo /mnt/bar 4790 * echo "abc" > /mnt/foo 4791 * xfs_io -c fsync /mnt/foo 4792 * <power fail> 4793 * 4794 * We also need this for cases where a snapshot entry is replaced by some other 4795 * entry (file or directory) otherwise we end up with an unreplayable log due to 4796 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as 4797 * if it were a regular entry: 4798 * 4799 * mkdir /mnt/x 4800 * btrfs subvolume snapshot /mnt /mnt/x/snap 4801 * btrfs subvolume delete /mnt/x/snap 4802 * rmdir /mnt/x 4803 * mkdir /mnt/x 4804 * fsync /mnt/x or fsync some new file inside it 4805 * <power fail> 4806 * 4807 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in 4808 * the same transaction. 4809 */ 4810 static int btrfs_check_ref_name_override(struct extent_buffer *eb, 4811 const int slot, 4812 const struct btrfs_key *key, 4813 struct btrfs_inode *inode, 4814 u64 *other_ino, u64 *other_parent) 4815 { 4816 int ret; 4817 struct btrfs_path *search_path; 4818 char *name = NULL; 4819 u32 name_len = 0; 4820 u32 item_size = btrfs_item_size_nr(eb, slot); 4821 u32 cur_offset = 0; 4822 unsigned long ptr = btrfs_item_ptr_offset(eb, slot); 4823 4824 search_path = btrfs_alloc_path(); 4825 if (!search_path) 4826 return -ENOMEM; 4827 search_path->search_commit_root = 1; 4828 search_path->skip_locking = 1; 4829 4830 while (cur_offset < item_size) { 4831 u64 parent; 4832 u32 this_name_len; 4833 u32 this_len; 4834 unsigned long name_ptr; 4835 struct btrfs_dir_item *di; 4836 4837 if (key->type == BTRFS_INODE_REF_KEY) { 4838 struct btrfs_inode_ref *iref; 4839 4840 iref = (struct btrfs_inode_ref *)(ptr + cur_offset); 4841 parent = key->offset; 4842 this_name_len = btrfs_inode_ref_name_len(eb, iref); 4843 name_ptr = (unsigned long)(iref + 1); 4844 this_len = sizeof(*iref) + this_name_len; 4845 } else { 4846 struct btrfs_inode_extref *extref; 4847 4848 extref = (struct btrfs_inode_extref *)(ptr + 4849 cur_offset); 4850 parent = btrfs_inode_extref_parent(eb, extref); 4851 this_name_len = btrfs_inode_extref_name_len(eb, extref); 4852 name_ptr = (unsigned long)&extref->name; 4853 this_len = sizeof(*extref) + this_name_len; 4854 } 4855 4856 if (this_name_len > name_len) { 4857 char *new_name; 4858 4859 new_name = krealloc(name, this_name_len, GFP_NOFS); 4860 if (!new_name) { 4861 ret = -ENOMEM; 4862 goto out; 4863 } 4864 name_len = this_name_len; 4865 name = new_name; 4866 } 4867 4868 read_extent_buffer(eb, name, name_ptr, this_name_len); 4869 di = btrfs_lookup_dir_item(NULL, inode->root, search_path, 4870 parent, name, this_name_len, 0); 4871 if (di && !IS_ERR(di)) { 4872 struct btrfs_key di_key; 4873 4874 btrfs_dir_item_key_to_cpu(search_path->nodes[0], 4875 di, &di_key); 4876 if (di_key.type == BTRFS_INODE_ITEM_KEY) { 4877 if (di_key.objectid != key->objectid) { 4878 ret = 1; 4879 *other_ino = di_key.objectid; 4880 *other_parent = parent; 4881 } else { 4882 ret = 0; 4883 } 4884 } else { 4885 ret = -EAGAIN; 4886 } 4887 goto out; 4888 } else if (IS_ERR(di)) { 4889 ret = PTR_ERR(di); 4890 goto out; 4891 } 4892 btrfs_release_path(search_path); 4893 4894 cur_offset += this_len; 4895 } 4896 ret = 0; 4897 out: 4898 btrfs_free_path(search_path); 4899 kfree(name); 4900 return ret; 4901 } 4902 4903 struct btrfs_ino_list { 4904 u64 ino; 4905 u64 parent; 4906 struct list_head list; 4907 }; 4908 4909 static int log_conflicting_inodes(struct btrfs_trans_handle *trans, 4910 struct btrfs_root *root, 4911 struct btrfs_path *path, 4912 struct btrfs_log_ctx *ctx, 4913 u64 ino, u64 parent) 4914 { 4915 struct btrfs_ino_list *ino_elem; 4916 LIST_HEAD(inode_list); 4917 int ret = 0; 4918 4919 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS); 4920 if (!ino_elem) 4921 return -ENOMEM; 4922 ino_elem->ino = ino; 4923 ino_elem->parent = parent; 4924 list_add_tail(&ino_elem->list, &inode_list); 4925 4926 while (!list_empty(&inode_list)) { 4927 struct btrfs_fs_info *fs_info = root->fs_info; 4928 struct btrfs_key key; 4929 struct inode *inode; 4930 4931 ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list, 4932 list); 4933 ino = ino_elem->ino; 4934 parent = ino_elem->parent; 4935 list_del(&ino_elem->list); 4936 kfree(ino_elem); 4937 if (ret) 4938 continue; 4939 4940 btrfs_release_path(path); 4941 4942 key.objectid = ino; 4943 key.type = BTRFS_INODE_ITEM_KEY; 4944 key.offset = 0; 4945 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 4946 /* 4947 * If the other inode that had a conflicting dir entry was 4948 * deleted in the current transaction, we need to log its parent 4949 * directory. 4950 */ 4951 if (IS_ERR(inode)) { 4952 ret = PTR_ERR(inode); 4953 if (ret == -ENOENT) { 4954 key.objectid = parent; 4955 inode = btrfs_iget(fs_info->sb, &key, root, 4956 NULL); 4957 if (IS_ERR(inode)) { 4958 ret = PTR_ERR(inode); 4959 } else { 4960 ret = btrfs_log_inode(trans, root, 4961 BTRFS_I(inode), 4962 LOG_OTHER_INODE_ALL, 4963 0, LLONG_MAX, ctx); 4964 iput(inode); 4965 } 4966 } 4967 continue; 4968 } 4969 /* 4970 * We are safe logging the other inode without acquiring its 4971 * lock as long as we log with the LOG_INODE_EXISTS mode. We 4972 * are safe against concurrent renames of the other inode as 4973 * well because during a rename we pin the log and update the 4974 * log with the new name before we unpin it. 4975 */ 4976 ret = btrfs_log_inode(trans, root, BTRFS_I(inode), 4977 LOG_OTHER_INODE, 0, LLONG_MAX, ctx); 4978 if (ret) { 4979 iput(inode); 4980 continue; 4981 } 4982 4983 key.objectid = ino; 4984 key.type = BTRFS_INODE_REF_KEY; 4985 key.offset = 0; 4986 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4987 if (ret < 0) { 4988 iput(inode); 4989 continue; 4990 } 4991 4992 while (true) { 4993 struct extent_buffer *leaf = path->nodes[0]; 4994 int slot = path->slots[0]; 4995 u64 other_ino = 0; 4996 u64 other_parent = 0; 4997 4998 if (slot >= btrfs_header_nritems(leaf)) { 4999 ret = btrfs_next_leaf(root, path); 5000 if (ret < 0) { 5001 break; 5002 } else if (ret > 0) { 5003 ret = 0; 5004 break; 5005 } 5006 continue; 5007 } 5008 5009 btrfs_item_key_to_cpu(leaf, &key, slot); 5010 if (key.objectid != ino || 5011 (key.type != BTRFS_INODE_REF_KEY && 5012 key.type != BTRFS_INODE_EXTREF_KEY)) { 5013 ret = 0; 5014 break; 5015 } 5016 5017 ret = btrfs_check_ref_name_override(leaf, slot, &key, 5018 BTRFS_I(inode), &other_ino, 5019 &other_parent); 5020 if (ret < 0) 5021 break; 5022 if (ret > 0) { 5023 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS); 5024 if (!ino_elem) { 5025 ret = -ENOMEM; 5026 break; 5027 } 5028 ino_elem->ino = other_ino; 5029 ino_elem->parent = other_parent; 5030 list_add_tail(&ino_elem->list, &inode_list); 5031 ret = 0; 5032 } 5033 path->slots[0]++; 5034 } 5035 iput(inode); 5036 } 5037 5038 return ret; 5039 } 5040 5041 /* log a single inode in the tree log. 5042 * At least one parent directory for this inode must exist in the tree 5043 * or be logged already. 5044 * 5045 * Any items from this inode changed by the current transaction are copied 5046 * to the log tree. An extra reference is taken on any extents in this 5047 * file, allowing us to avoid a whole pile of corner cases around logging 5048 * blocks that have been removed from the tree. 5049 * 5050 * See LOG_INODE_ALL and related defines for a description of what inode_only 5051 * does. 5052 * 5053 * This handles both files and directories. 5054 */ 5055 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 5056 struct btrfs_root *root, struct btrfs_inode *inode, 5057 int inode_only, 5058 const loff_t start, 5059 const loff_t end, 5060 struct btrfs_log_ctx *ctx) 5061 { 5062 struct btrfs_fs_info *fs_info = root->fs_info; 5063 struct btrfs_path *path; 5064 struct btrfs_path *dst_path; 5065 struct btrfs_key min_key; 5066 struct btrfs_key max_key; 5067 struct btrfs_root *log = root->log_root; 5068 u64 last_extent = 0; 5069 int err = 0; 5070 int ret; 5071 int nritems; 5072 int ins_start_slot = 0; 5073 int ins_nr; 5074 bool fast_search = false; 5075 u64 ino = btrfs_ino(inode); 5076 struct extent_map_tree *em_tree = &inode->extent_tree; 5077 u64 logged_isize = 0; 5078 bool need_log_inode_item = true; 5079 bool xattrs_logged = false; 5080 bool recursive_logging = false; 5081 5082 path = btrfs_alloc_path(); 5083 if (!path) 5084 return -ENOMEM; 5085 dst_path = btrfs_alloc_path(); 5086 if (!dst_path) { 5087 btrfs_free_path(path); 5088 return -ENOMEM; 5089 } 5090 5091 min_key.objectid = ino; 5092 min_key.type = BTRFS_INODE_ITEM_KEY; 5093 min_key.offset = 0; 5094 5095 max_key.objectid = ino; 5096 5097 5098 /* today the code can only do partial logging of directories */ 5099 if (S_ISDIR(inode->vfs_inode.i_mode) || 5100 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5101 &inode->runtime_flags) && 5102 inode_only >= LOG_INODE_EXISTS)) 5103 max_key.type = BTRFS_XATTR_ITEM_KEY; 5104 else 5105 max_key.type = (u8)-1; 5106 max_key.offset = (u64)-1; 5107 5108 /* 5109 * Only run delayed items if we are a dir or a new file. 5110 * Otherwise commit the delayed inode only, which is needed in 5111 * order for the log replay code to mark inodes for link count 5112 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items). 5113 */ 5114 if (S_ISDIR(inode->vfs_inode.i_mode) || 5115 inode->generation > fs_info->last_trans_committed) 5116 ret = btrfs_commit_inode_delayed_items(trans, inode); 5117 else 5118 ret = btrfs_commit_inode_delayed_inode(inode); 5119 5120 if (ret) { 5121 btrfs_free_path(path); 5122 btrfs_free_path(dst_path); 5123 return ret; 5124 } 5125 5126 if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) { 5127 recursive_logging = true; 5128 if (inode_only == LOG_OTHER_INODE) 5129 inode_only = LOG_INODE_EXISTS; 5130 else 5131 inode_only = LOG_INODE_ALL; 5132 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING); 5133 } else { 5134 mutex_lock(&inode->log_mutex); 5135 } 5136 5137 /* 5138 * a brute force approach to making sure we get the most uptodate 5139 * copies of everything. 5140 */ 5141 if (S_ISDIR(inode->vfs_inode.i_mode)) { 5142 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY; 5143 5144 if (inode_only == LOG_INODE_EXISTS) 5145 max_key_type = BTRFS_XATTR_ITEM_KEY; 5146 ret = drop_objectid_items(trans, log, path, ino, max_key_type); 5147 } else { 5148 if (inode_only == LOG_INODE_EXISTS) { 5149 /* 5150 * Make sure the new inode item we write to the log has 5151 * the same isize as the current one (if it exists). 5152 * This is necessary to prevent data loss after log 5153 * replay, and also to prevent doing a wrong expanding 5154 * truncate - for e.g. create file, write 4K into offset 5155 * 0, fsync, write 4K into offset 4096, add hard link, 5156 * fsync some other file (to sync log), power fail - if 5157 * we use the inode's current i_size, after log replay 5158 * we get a 8Kb file, with the last 4Kb extent as a hole 5159 * (zeroes), as if an expanding truncate happened, 5160 * instead of getting a file of 4Kb only. 5161 */ 5162 err = logged_inode_size(log, inode, path, &logged_isize); 5163 if (err) 5164 goto out_unlock; 5165 } 5166 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5167 &inode->runtime_flags)) { 5168 if (inode_only == LOG_INODE_EXISTS) { 5169 max_key.type = BTRFS_XATTR_ITEM_KEY; 5170 ret = drop_objectid_items(trans, log, path, ino, 5171 max_key.type); 5172 } else { 5173 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5174 &inode->runtime_flags); 5175 clear_bit(BTRFS_INODE_COPY_EVERYTHING, 5176 &inode->runtime_flags); 5177 while(1) { 5178 ret = btrfs_truncate_inode_items(trans, 5179 log, &inode->vfs_inode, 0, 0); 5180 if (ret != -EAGAIN) 5181 break; 5182 } 5183 } 5184 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING, 5185 &inode->runtime_flags) || 5186 inode_only == LOG_INODE_EXISTS) { 5187 if (inode_only == LOG_INODE_ALL) 5188 fast_search = true; 5189 max_key.type = BTRFS_XATTR_ITEM_KEY; 5190 ret = drop_objectid_items(trans, log, path, ino, 5191 max_key.type); 5192 } else { 5193 if (inode_only == LOG_INODE_ALL) 5194 fast_search = true; 5195 goto log_extents; 5196 } 5197 5198 } 5199 if (ret) { 5200 err = ret; 5201 goto out_unlock; 5202 } 5203 5204 while (1) { 5205 ins_nr = 0; 5206 ret = btrfs_search_forward(root, &min_key, 5207 path, trans->transid); 5208 if (ret < 0) { 5209 err = ret; 5210 goto out_unlock; 5211 } 5212 if (ret != 0) 5213 break; 5214 again: 5215 /* note, ins_nr might be > 0 here, cleanup outside the loop */ 5216 if (min_key.objectid != ino) 5217 break; 5218 if (min_key.type > max_key.type) 5219 break; 5220 5221 if (min_key.type == BTRFS_INODE_ITEM_KEY) 5222 need_log_inode_item = false; 5223 5224 if ((min_key.type == BTRFS_INODE_REF_KEY || 5225 min_key.type == BTRFS_INODE_EXTREF_KEY) && 5226 inode->generation == trans->transid && 5227 !recursive_logging) { 5228 u64 other_ino = 0; 5229 u64 other_parent = 0; 5230 5231 ret = btrfs_check_ref_name_override(path->nodes[0], 5232 path->slots[0], &min_key, inode, 5233 &other_ino, &other_parent); 5234 if (ret < 0) { 5235 err = ret; 5236 goto out_unlock; 5237 } else if (ret > 0 && ctx && 5238 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) { 5239 if (ins_nr > 0) { 5240 ins_nr++; 5241 } else { 5242 ins_nr = 1; 5243 ins_start_slot = path->slots[0]; 5244 } 5245 ret = copy_items(trans, inode, dst_path, path, 5246 &last_extent, ins_start_slot, 5247 ins_nr, inode_only, 5248 logged_isize); 5249 if (ret < 0) { 5250 err = ret; 5251 goto out_unlock; 5252 } 5253 ins_nr = 0; 5254 5255 err = log_conflicting_inodes(trans, root, path, 5256 ctx, other_ino, other_parent); 5257 if (err) 5258 goto out_unlock; 5259 btrfs_release_path(path); 5260 goto next_key; 5261 } 5262 } 5263 5264 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */ 5265 if (min_key.type == BTRFS_XATTR_ITEM_KEY) { 5266 if (ins_nr == 0) 5267 goto next_slot; 5268 ret = copy_items(trans, inode, dst_path, path, 5269 &last_extent, ins_start_slot, 5270 ins_nr, inode_only, logged_isize); 5271 if (ret < 0) { 5272 err = ret; 5273 goto out_unlock; 5274 } 5275 ins_nr = 0; 5276 if (ret) { 5277 btrfs_release_path(path); 5278 continue; 5279 } 5280 goto next_slot; 5281 } 5282 5283 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) { 5284 ins_nr++; 5285 goto next_slot; 5286 } else if (!ins_nr) { 5287 ins_start_slot = path->slots[0]; 5288 ins_nr = 1; 5289 goto next_slot; 5290 } 5291 5292 ret = copy_items(trans, inode, dst_path, path, &last_extent, 5293 ins_start_slot, ins_nr, inode_only, 5294 logged_isize); 5295 if (ret < 0) { 5296 err = ret; 5297 goto out_unlock; 5298 } 5299 if (ret) { 5300 ins_nr = 0; 5301 btrfs_release_path(path); 5302 continue; 5303 } 5304 ins_nr = 1; 5305 ins_start_slot = path->slots[0]; 5306 next_slot: 5307 5308 nritems = btrfs_header_nritems(path->nodes[0]); 5309 path->slots[0]++; 5310 if (path->slots[0] < nritems) { 5311 btrfs_item_key_to_cpu(path->nodes[0], &min_key, 5312 path->slots[0]); 5313 goto again; 5314 } 5315 if (ins_nr) { 5316 ret = copy_items(trans, inode, dst_path, path, 5317 &last_extent, ins_start_slot, 5318 ins_nr, inode_only, logged_isize); 5319 if (ret < 0) { 5320 err = ret; 5321 goto out_unlock; 5322 } 5323 ret = 0; 5324 ins_nr = 0; 5325 } 5326 btrfs_release_path(path); 5327 next_key: 5328 if (min_key.offset < (u64)-1) { 5329 min_key.offset++; 5330 } else if (min_key.type < max_key.type) { 5331 min_key.type++; 5332 min_key.offset = 0; 5333 } else { 5334 break; 5335 } 5336 } 5337 if (ins_nr) { 5338 ret = copy_items(trans, inode, dst_path, path, &last_extent, 5339 ins_start_slot, ins_nr, inode_only, 5340 logged_isize); 5341 if (ret < 0) { 5342 err = ret; 5343 goto out_unlock; 5344 } 5345 ret = 0; 5346 ins_nr = 0; 5347 } 5348 5349 btrfs_release_path(path); 5350 btrfs_release_path(dst_path); 5351 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path); 5352 if (err) 5353 goto out_unlock; 5354 xattrs_logged = true; 5355 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) { 5356 btrfs_release_path(path); 5357 btrfs_release_path(dst_path); 5358 err = btrfs_log_trailing_hole(trans, root, inode, path); 5359 if (err) 5360 goto out_unlock; 5361 } 5362 log_extents: 5363 btrfs_release_path(path); 5364 btrfs_release_path(dst_path); 5365 if (need_log_inode_item) { 5366 err = log_inode_item(trans, log, dst_path, inode); 5367 if (!err && !xattrs_logged) { 5368 err = btrfs_log_all_xattrs(trans, root, inode, path, 5369 dst_path); 5370 btrfs_release_path(path); 5371 } 5372 if (err) 5373 goto out_unlock; 5374 } 5375 if (fast_search) { 5376 ret = btrfs_log_changed_extents(trans, root, inode, dst_path, 5377 ctx, start, end); 5378 if (ret) { 5379 err = ret; 5380 goto out_unlock; 5381 } 5382 } else if (inode_only == LOG_INODE_ALL) { 5383 struct extent_map *em, *n; 5384 5385 write_lock(&em_tree->lock); 5386 /* 5387 * We can't just remove every em if we're called for a ranged 5388 * fsync - that is, one that doesn't cover the whole possible 5389 * file range (0 to LLONG_MAX). This is because we can have 5390 * em's that fall outside the range we're logging and therefore 5391 * their ordered operations haven't completed yet 5392 * (btrfs_finish_ordered_io() not invoked yet). This means we 5393 * didn't get their respective file extent item in the fs/subvol 5394 * tree yet, and need to let the next fast fsync (one which 5395 * consults the list of modified extent maps) find the em so 5396 * that it logs a matching file extent item and waits for the 5397 * respective ordered operation to complete (if it's still 5398 * running). 5399 * 5400 * Removing every em outside the range we're logging would make 5401 * the next fast fsync not log their matching file extent items, 5402 * therefore making us lose data after a log replay. 5403 */ 5404 list_for_each_entry_safe(em, n, &em_tree->modified_extents, 5405 list) { 5406 const u64 mod_end = em->mod_start + em->mod_len - 1; 5407 5408 if (em->mod_start >= start && mod_end <= end) 5409 list_del_init(&em->list); 5410 } 5411 write_unlock(&em_tree->lock); 5412 } 5413 5414 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) { 5415 ret = log_directory_changes(trans, root, inode, path, dst_path, 5416 ctx); 5417 if (ret) { 5418 err = ret; 5419 goto out_unlock; 5420 } 5421 } 5422 5423 spin_lock(&inode->lock); 5424 inode->logged_trans = trans->transid; 5425 inode->last_log_commit = inode->last_sub_trans; 5426 spin_unlock(&inode->lock); 5427 out_unlock: 5428 mutex_unlock(&inode->log_mutex); 5429 5430 btrfs_free_path(path); 5431 btrfs_free_path(dst_path); 5432 return err; 5433 } 5434 5435 /* 5436 * Check if we must fallback to a transaction commit when logging an inode. 5437 * This must be called after logging the inode and is used only in the context 5438 * when fsyncing an inode requires the need to log some other inode - in which 5439 * case we can't lock the i_mutex of each other inode we need to log as that 5440 * can lead to deadlocks with concurrent fsync against other inodes (as we can 5441 * log inodes up or down in the hierarchy) or rename operations for example. So 5442 * we take the log_mutex of the inode after we have logged it and then check for 5443 * its last_unlink_trans value - this is safe because any task setting 5444 * last_unlink_trans must take the log_mutex and it must do this before it does 5445 * the actual unlink operation, so if we do this check before a concurrent task 5446 * sets last_unlink_trans it means we've logged a consistent version/state of 5447 * all the inode items, otherwise we are not sure and must do a transaction 5448 * commit (the concurrent task might have only updated last_unlink_trans before 5449 * we logged the inode or it might have also done the unlink). 5450 */ 5451 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans, 5452 struct btrfs_inode *inode) 5453 { 5454 struct btrfs_fs_info *fs_info = inode->root->fs_info; 5455 bool ret = false; 5456 5457 mutex_lock(&inode->log_mutex); 5458 if (inode->last_unlink_trans > fs_info->last_trans_committed) { 5459 /* 5460 * Make sure any commits to the log are forced to be full 5461 * commits. 5462 */ 5463 btrfs_set_log_full_commit(trans); 5464 ret = true; 5465 } 5466 mutex_unlock(&inode->log_mutex); 5467 5468 return ret; 5469 } 5470 5471 /* 5472 * follow the dentry parent pointers up the chain and see if any 5473 * of the directories in it require a full commit before they can 5474 * be logged. Returns zero if nothing special needs to be done or 1 if 5475 * a full commit is required. 5476 */ 5477 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans, 5478 struct btrfs_inode *inode, 5479 struct dentry *parent, 5480 struct super_block *sb, 5481 u64 last_committed) 5482 { 5483 int ret = 0; 5484 struct dentry *old_parent = NULL; 5485 5486 /* 5487 * for regular files, if its inode is already on disk, we don't 5488 * have to worry about the parents at all. This is because 5489 * we can use the last_unlink_trans field to record renames 5490 * and other fun in this file. 5491 */ 5492 if (S_ISREG(inode->vfs_inode.i_mode) && 5493 inode->generation <= last_committed && 5494 inode->last_unlink_trans <= last_committed) 5495 goto out; 5496 5497 if (!S_ISDIR(inode->vfs_inode.i_mode)) { 5498 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb) 5499 goto out; 5500 inode = BTRFS_I(d_inode(parent)); 5501 } 5502 5503 while (1) { 5504 if (btrfs_must_commit_transaction(trans, inode)) { 5505 ret = 1; 5506 break; 5507 } 5508 5509 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb) 5510 break; 5511 5512 if (IS_ROOT(parent)) { 5513 inode = BTRFS_I(d_inode(parent)); 5514 if (btrfs_must_commit_transaction(trans, inode)) 5515 ret = 1; 5516 break; 5517 } 5518 5519 parent = dget_parent(parent); 5520 dput(old_parent); 5521 old_parent = parent; 5522 inode = BTRFS_I(d_inode(parent)); 5523 5524 } 5525 dput(old_parent); 5526 out: 5527 return ret; 5528 } 5529 5530 struct btrfs_dir_list { 5531 u64 ino; 5532 struct list_head list; 5533 }; 5534 5535 /* 5536 * Log the inodes of the new dentries of a directory. See log_dir_items() for 5537 * details about the why it is needed. 5538 * This is a recursive operation - if an existing dentry corresponds to a 5539 * directory, that directory's new entries are logged too (same behaviour as 5540 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes 5541 * the dentries point to we do not lock their i_mutex, otherwise lockdep 5542 * complains about the following circular lock dependency / possible deadlock: 5543 * 5544 * CPU0 CPU1 5545 * ---- ---- 5546 * lock(&type->i_mutex_dir_key#3/2); 5547 * lock(sb_internal#2); 5548 * lock(&type->i_mutex_dir_key#3/2); 5549 * lock(&sb->s_type->i_mutex_key#14); 5550 * 5551 * Where sb_internal is the lock (a counter that works as a lock) acquired by 5552 * sb_start_intwrite() in btrfs_start_transaction(). 5553 * Not locking i_mutex of the inodes is still safe because: 5554 * 5555 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible 5556 * that while logging the inode new references (names) are added or removed 5557 * from the inode, leaving the logged inode item with a link count that does 5558 * not match the number of logged inode reference items. This is fine because 5559 * at log replay time we compute the real number of links and correct the 5560 * link count in the inode item (see replay_one_buffer() and 5561 * link_to_fixup_dir()); 5562 * 5563 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that 5564 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and 5565 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item 5566 * has a size that doesn't match the sum of the lengths of all the logged 5567 * names. This does not result in a problem because if a dir_item key is 5568 * logged but its matching dir_index key is not logged, at log replay time we 5569 * don't use it to replay the respective name (see replay_one_name()). On the 5570 * other hand if only the dir_index key ends up being logged, the respective 5571 * name is added to the fs/subvol tree with both the dir_item and dir_index 5572 * keys created (see replay_one_name()). 5573 * The directory's inode item with a wrong i_size is not a problem as well, 5574 * since we don't use it at log replay time to set the i_size in the inode 5575 * item of the fs/subvol tree (see overwrite_item()). 5576 */ 5577 static int log_new_dir_dentries(struct btrfs_trans_handle *trans, 5578 struct btrfs_root *root, 5579 struct btrfs_inode *start_inode, 5580 struct btrfs_log_ctx *ctx) 5581 { 5582 struct btrfs_fs_info *fs_info = root->fs_info; 5583 struct btrfs_root *log = root->log_root; 5584 struct btrfs_path *path; 5585 LIST_HEAD(dir_list); 5586 struct btrfs_dir_list *dir_elem; 5587 int ret = 0; 5588 5589 path = btrfs_alloc_path(); 5590 if (!path) 5591 return -ENOMEM; 5592 5593 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS); 5594 if (!dir_elem) { 5595 btrfs_free_path(path); 5596 return -ENOMEM; 5597 } 5598 dir_elem->ino = btrfs_ino(start_inode); 5599 list_add_tail(&dir_elem->list, &dir_list); 5600 5601 while (!list_empty(&dir_list)) { 5602 struct extent_buffer *leaf; 5603 struct btrfs_key min_key; 5604 int nritems; 5605 int i; 5606 5607 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, 5608 list); 5609 if (ret) 5610 goto next_dir_inode; 5611 5612 min_key.objectid = dir_elem->ino; 5613 min_key.type = BTRFS_DIR_ITEM_KEY; 5614 min_key.offset = 0; 5615 again: 5616 btrfs_release_path(path); 5617 ret = btrfs_search_forward(log, &min_key, path, trans->transid); 5618 if (ret < 0) { 5619 goto next_dir_inode; 5620 } else if (ret > 0) { 5621 ret = 0; 5622 goto next_dir_inode; 5623 } 5624 5625 process_leaf: 5626 leaf = path->nodes[0]; 5627 nritems = btrfs_header_nritems(leaf); 5628 for (i = path->slots[0]; i < nritems; i++) { 5629 struct btrfs_dir_item *di; 5630 struct btrfs_key di_key; 5631 struct inode *di_inode; 5632 struct btrfs_dir_list *new_dir_elem; 5633 int log_mode = LOG_INODE_EXISTS; 5634 int type; 5635 5636 btrfs_item_key_to_cpu(leaf, &min_key, i); 5637 if (min_key.objectid != dir_elem->ino || 5638 min_key.type != BTRFS_DIR_ITEM_KEY) 5639 goto next_dir_inode; 5640 5641 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item); 5642 type = btrfs_dir_type(leaf, di); 5643 if (btrfs_dir_transid(leaf, di) < trans->transid && 5644 type != BTRFS_FT_DIR) 5645 continue; 5646 btrfs_dir_item_key_to_cpu(leaf, di, &di_key); 5647 if (di_key.type == BTRFS_ROOT_ITEM_KEY) 5648 continue; 5649 5650 btrfs_release_path(path); 5651 di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL); 5652 if (IS_ERR(di_inode)) { 5653 ret = PTR_ERR(di_inode); 5654 goto next_dir_inode; 5655 } 5656 5657 if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) { 5658 iput(di_inode); 5659 break; 5660 } 5661 5662 ctx->log_new_dentries = false; 5663 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK) 5664 log_mode = LOG_INODE_ALL; 5665 ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode), 5666 log_mode, 0, LLONG_MAX, ctx); 5667 if (!ret && 5668 btrfs_must_commit_transaction(trans, BTRFS_I(di_inode))) 5669 ret = 1; 5670 iput(di_inode); 5671 if (ret) 5672 goto next_dir_inode; 5673 if (ctx->log_new_dentries) { 5674 new_dir_elem = kmalloc(sizeof(*new_dir_elem), 5675 GFP_NOFS); 5676 if (!new_dir_elem) { 5677 ret = -ENOMEM; 5678 goto next_dir_inode; 5679 } 5680 new_dir_elem->ino = di_key.objectid; 5681 list_add_tail(&new_dir_elem->list, &dir_list); 5682 } 5683 break; 5684 } 5685 if (i == nritems) { 5686 ret = btrfs_next_leaf(log, path); 5687 if (ret < 0) { 5688 goto next_dir_inode; 5689 } else if (ret > 0) { 5690 ret = 0; 5691 goto next_dir_inode; 5692 } 5693 goto process_leaf; 5694 } 5695 if (min_key.offset < (u64)-1) { 5696 min_key.offset++; 5697 goto again; 5698 } 5699 next_dir_inode: 5700 list_del(&dir_elem->list); 5701 kfree(dir_elem); 5702 } 5703 5704 btrfs_free_path(path); 5705 return ret; 5706 } 5707 5708 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans, 5709 struct btrfs_inode *inode, 5710 struct btrfs_log_ctx *ctx) 5711 { 5712 struct btrfs_fs_info *fs_info = trans->fs_info; 5713 int ret; 5714 struct btrfs_path *path; 5715 struct btrfs_key key; 5716 struct btrfs_root *root = inode->root; 5717 const u64 ino = btrfs_ino(inode); 5718 5719 path = btrfs_alloc_path(); 5720 if (!path) 5721 return -ENOMEM; 5722 path->skip_locking = 1; 5723 path->search_commit_root = 1; 5724 5725 key.objectid = ino; 5726 key.type = BTRFS_INODE_REF_KEY; 5727 key.offset = 0; 5728 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5729 if (ret < 0) 5730 goto out; 5731 5732 while (true) { 5733 struct extent_buffer *leaf = path->nodes[0]; 5734 int slot = path->slots[0]; 5735 u32 cur_offset = 0; 5736 u32 item_size; 5737 unsigned long ptr; 5738 5739 if (slot >= btrfs_header_nritems(leaf)) { 5740 ret = btrfs_next_leaf(root, path); 5741 if (ret < 0) 5742 goto out; 5743 else if (ret > 0) 5744 break; 5745 continue; 5746 } 5747 5748 btrfs_item_key_to_cpu(leaf, &key, slot); 5749 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */ 5750 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY) 5751 break; 5752 5753 item_size = btrfs_item_size_nr(leaf, slot); 5754 ptr = btrfs_item_ptr_offset(leaf, slot); 5755 while (cur_offset < item_size) { 5756 struct btrfs_key inode_key; 5757 struct inode *dir_inode; 5758 5759 inode_key.type = BTRFS_INODE_ITEM_KEY; 5760 inode_key.offset = 0; 5761 5762 if (key.type == BTRFS_INODE_EXTREF_KEY) { 5763 struct btrfs_inode_extref *extref; 5764 5765 extref = (struct btrfs_inode_extref *) 5766 (ptr + cur_offset); 5767 inode_key.objectid = btrfs_inode_extref_parent( 5768 leaf, extref); 5769 cur_offset += sizeof(*extref); 5770 cur_offset += btrfs_inode_extref_name_len(leaf, 5771 extref); 5772 } else { 5773 inode_key.objectid = key.offset; 5774 cur_offset = item_size; 5775 } 5776 5777 dir_inode = btrfs_iget(fs_info->sb, &inode_key, 5778 root, NULL); 5779 /* 5780 * If the parent inode was deleted, return an error to 5781 * fallback to a transaction commit. This is to prevent 5782 * getting an inode that was moved from one parent A to 5783 * a parent B, got its former parent A deleted and then 5784 * it got fsync'ed, from existing at both parents after 5785 * a log replay (and the old parent still existing). 5786 * Example: 5787 * 5788 * mkdir /mnt/A 5789 * mkdir /mnt/B 5790 * touch /mnt/B/bar 5791 * sync 5792 * mv /mnt/B/bar /mnt/A/bar 5793 * mv -T /mnt/A /mnt/B 5794 * fsync /mnt/B/bar 5795 * <power fail> 5796 * 5797 * If we ignore the old parent B which got deleted, 5798 * after a log replay we would have file bar linked 5799 * at both parents and the old parent B would still 5800 * exist. 5801 */ 5802 if (IS_ERR(dir_inode)) { 5803 ret = PTR_ERR(dir_inode); 5804 goto out; 5805 } 5806 5807 if (ctx) 5808 ctx->log_new_dentries = false; 5809 ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode), 5810 LOG_INODE_ALL, 0, LLONG_MAX, ctx); 5811 if (!ret && 5812 btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode))) 5813 ret = 1; 5814 if (!ret && ctx && ctx->log_new_dentries) 5815 ret = log_new_dir_dentries(trans, root, 5816 BTRFS_I(dir_inode), ctx); 5817 iput(dir_inode); 5818 if (ret) 5819 goto out; 5820 } 5821 path->slots[0]++; 5822 } 5823 ret = 0; 5824 out: 5825 btrfs_free_path(path); 5826 return ret; 5827 } 5828 5829 static int log_new_ancestors(struct btrfs_trans_handle *trans, 5830 struct btrfs_root *root, 5831 struct btrfs_path *path, 5832 struct btrfs_log_ctx *ctx) 5833 { 5834 struct btrfs_key found_key; 5835 5836 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 5837 5838 while (true) { 5839 struct btrfs_fs_info *fs_info = root->fs_info; 5840 const u64 last_committed = fs_info->last_trans_committed; 5841 struct extent_buffer *leaf = path->nodes[0]; 5842 int slot = path->slots[0]; 5843 struct btrfs_key search_key; 5844 struct inode *inode; 5845 int ret = 0; 5846 5847 btrfs_release_path(path); 5848 5849 search_key.objectid = found_key.offset; 5850 search_key.type = BTRFS_INODE_ITEM_KEY; 5851 search_key.offset = 0; 5852 inode = btrfs_iget(fs_info->sb, &search_key, root, NULL); 5853 if (IS_ERR(inode)) 5854 return PTR_ERR(inode); 5855 5856 if (BTRFS_I(inode)->generation > last_committed) 5857 ret = btrfs_log_inode(trans, root, BTRFS_I(inode), 5858 LOG_INODE_EXISTS, 5859 0, LLONG_MAX, ctx); 5860 iput(inode); 5861 if (ret) 5862 return ret; 5863 5864 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID) 5865 break; 5866 5867 search_key.type = BTRFS_INODE_REF_KEY; 5868 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 5869 if (ret < 0) 5870 return ret; 5871 5872 leaf = path->nodes[0]; 5873 slot = path->slots[0]; 5874 if (slot >= btrfs_header_nritems(leaf)) { 5875 ret = btrfs_next_leaf(root, path); 5876 if (ret < 0) 5877 return ret; 5878 else if (ret > 0) 5879 return -ENOENT; 5880 leaf = path->nodes[0]; 5881 slot = path->slots[0]; 5882 } 5883 5884 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5885 if (found_key.objectid != search_key.objectid || 5886 found_key.type != BTRFS_INODE_REF_KEY) 5887 return -ENOENT; 5888 } 5889 return 0; 5890 } 5891 5892 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans, 5893 struct btrfs_inode *inode, 5894 struct dentry *parent, 5895 struct btrfs_log_ctx *ctx) 5896 { 5897 struct btrfs_root *root = inode->root; 5898 struct btrfs_fs_info *fs_info = root->fs_info; 5899 struct dentry *old_parent = NULL; 5900 struct super_block *sb = inode->vfs_inode.i_sb; 5901 int ret = 0; 5902 5903 while (true) { 5904 if (!parent || d_really_is_negative(parent) || 5905 sb != parent->d_sb) 5906 break; 5907 5908 inode = BTRFS_I(d_inode(parent)); 5909 if (root != inode->root) 5910 break; 5911 5912 if (inode->generation > fs_info->last_trans_committed) { 5913 ret = btrfs_log_inode(trans, root, inode, 5914 LOG_INODE_EXISTS, 0, LLONG_MAX, ctx); 5915 if (ret) 5916 break; 5917 } 5918 if (IS_ROOT(parent)) 5919 break; 5920 5921 parent = dget_parent(parent); 5922 dput(old_parent); 5923 old_parent = parent; 5924 } 5925 dput(old_parent); 5926 5927 return ret; 5928 } 5929 5930 static int log_all_new_ancestors(struct btrfs_trans_handle *trans, 5931 struct btrfs_inode *inode, 5932 struct dentry *parent, 5933 struct btrfs_log_ctx *ctx) 5934 { 5935 struct btrfs_root *root = inode->root; 5936 const u64 ino = btrfs_ino(inode); 5937 struct btrfs_path *path; 5938 struct btrfs_key search_key; 5939 int ret; 5940 5941 /* 5942 * For a single hard link case, go through a fast path that does not 5943 * need to iterate the fs/subvolume tree. 5944 */ 5945 if (inode->vfs_inode.i_nlink < 2) 5946 return log_new_ancestors_fast(trans, inode, parent, ctx); 5947 5948 path = btrfs_alloc_path(); 5949 if (!path) 5950 return -ENOMEM; 5951 5952 search_key.objectid = ino; 5953 search_key.type = BTRFS_INODE_REF_KEY; 5954 search_key.offset = 0; 5955 again: 5956 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 5957 if (ret < 0) 5958 goto out; 5959 if (ret == 0) 5960 path->slots[0]++; 5961 5962 while (true) { 5963 struct extent_buffer *leaf = path->nodes[0]; 5964 int slot = path->slots[0]; 5965 struct btrfs_key found_key; 5966 5967 if (slot >= btrfs_header_nritems(leaf)) { 5968 ret = btrfs_next_leaf(root, path); 5969 if (ret < 0) 5970 goto out; 5971 else if (ret > 0) 5972 break; 5973 continue; 5974 } 5975 5976 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5977 if (found_key.objectid != ino || 5978 found_key.type > BTRFS_INODE_EXTREF_KEY) 5979 break; 5980 5981 /* 5982 * Don't deal with extended references because they are rare 5983 * cases and too complex to deal with (we would need to keep 5984 * track of which subitem we are processing for each item in 5985 * this loop, etc). So just return some error to fallback to 5986 * a transaction commit. 5987 */ 5988 if (found_key.type == BTRFS_INODE_EXTREF_KEY) { 5989 ret = -EMLINK; 5990 goto out; 5991 } 5992 5993 /* 5994 * Logging ancestors needs to do more searches on the fs/subvol 5995 * tree, so it releases the path as needed to avoid deadlocks. 5996 * Keep track of the last inode ref key and resume from that key 5997 * after logging all new ancestors for the current hard link. 5998 */ 5999 memcpy(&search_key, &found_key, sizeof(search_key)); 6000 6001 ret = log_new_ancestors(trans, root, path, ctx); 6002 if (ret) 6003 goto out; 6004 btrfs_release_path(path); 6005 goto again; 6006 } 6007 ret = 0; 6008 out: 6009 btrfs_free_path(path); 6010 return ret; 6011 } 6012 6013 /* 6014 * helper function around btrfs_log_inode to make sure newly created 6015 * parent directories also end up in the log. A minimal inode and backref 6016 * only logging is done of any parent directories that are older than 6017 * the last committed transaction 6018 */ 6019 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans, 6020 struct btrfs_inode *inode, 6021 struct dentry *parent, 6022 const loff_t start, 6023 const loff_t end, 6024 int inode_only, 6025 struct btrfs_log_ctx *ctx) 6026 { 6027 struct btrfs_root *root = inode->root; 6028 struct btrfs_fs_info *fs_info = root->fs_info; 6029 struct super_block *sb; 6030 int ret = 0; 6031 u64 last_committed = fs_info->last_trans_committed; 6032 bool log_dentries = false; 6033 6034 sb = inode->vfs_inode.i_sb; 6035 6036 if (btrfs_test_opt(fs_info, NOTREELOG)) { 6037 ret = 1; 6038 goto end_no_trans; 6039 } 6040 6041 /* 6042 * The prev transaction commit doesn't complete, we need do 6043 * full commit by ourselves. 6044 */ 6045 if (fs_info->last_trans_log_full_commit > 6046 fs_info->last_trans_committed) { 6047 ret = 1; 6048 goto end_no_trans; 6049 } 6050 6051 if (btrfs_root_refs(&root->root_item) == 0) { 6052 ret = 1; 6053 goto end_no_trans; 6054 } 6055 6056 ret = check_parent_dirs_for_sync(trans, inode, parent, sb, 6057 last_committed); 6058 if (ret) 6059 goto end_no_trans; 6060 6061 /* 6062 * Skip already logged inodes or inodes corresponding to tmpfiles 6063 * (since logging them is pointless, a link count of 0 means they 6064 * will never be accessible). 6065 */ 6066 if (btrfs_inode_in_log(inode, trans->transid) || 6067 inode->vfs_inode.i_nlink == 0) { 6068 ret = BTRFS_NO_LOG_SYNC; 6069 goto end_no_trans; 6070 } 6071 6072 ret = start_log_trans(trans, root, ctx); 6073 if (ret) 6074 goto end_no_trans; 6075 6076 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx); 6077 if (ret) 6078 goto end_trans; 6079 6080 /* 6081 * for regular files, if its inode is already on disk, we don't 6082 * have to worry about the parents at all. This is because 6083 * we can use the last_unlink_trans field to record renames 6084 * and other fun in this file. 6085 */ 6086 if (S_ISREG(inode->vfs_inode.i_mode) && 6087 inode->generation <= last_committed && 6088 inode->last_unlink_trans <= last_committed) { 6089 ret = 0; 6090 goto end_trans; 6091 } 6092 6093 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries) 6094 log_dentries = true; 6095 6096 /* 6097 * On unlink we must make sure all our current and old parent directory 6098 * inodes are fully logged. This is to prevent leaving dangling 6099 * directory index entries in directories that were our parents but are 6100 * not anymore. Not doing this results in old parent directory being 6101 * impossible to delete after log replay (rmdir will always fail with 6102 * error -ENOTEMPTY). 6103 * 6104 * Example 1: 6105 * 6106 * mkdir testdir 6107 * touch testdir/foo 6108 * ln testdir/foo testdir/bar 6109 * sync 6110 * unlink testdir/bar 6111 * xfs_io -c fsync testdir/foo 6112 * <power failure> 6113 * mount fs, triggers log replay 6114 * 6115 * If we don't log the parent directory (testdir), after log replay the 6116 * directory still has an entry pointing to the file inode using the bar 6117 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and 6118 * the file inode has a link count of 1. 6119 * 6120 * Example 2: 6121 * 6122 * mkdir testdir 6123 * touch foo 6124 * ln foo testdir/foo2 6125 * ln foo testdir/foo3 6126 * sync 6127 * unlink testdir/foo3 6128 * xfs_io -c fsync foo 6129 * <power failure> 6130 * mount fs, triggers log replay 6131 * 6132 * Similar as the first example, after log replay the parent directory 6133 * testdir still has an entry pointing to the inode file with name foo3 6134 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item 6135 * and has a link count of 2. 6136 */ 6137 if (inode->last_unlink_trans > last_committed) { 6138 ret = btrfs_log_all_parents(trans, inode, ctx); 6139 if (ret) 6140 goto end_trans; 6141 } 6142 6143 ret = log_all_new_ancestors(trans, inode, parent, ctx); 6144 if (ret) 6145 goto end_trans; 6146 6147 if (log_dentries) 6148 ret = log_new_dir_dentries(trans, root, inode, ctx); 6149 else 6150 ret = 0; 6151 end_trans: 6152 if (ret < 0) { 6153 btrfs_set_log_full_commit(trans); 6154 ret = 1; 6155 } 6156 6157 if (ret) 6158 btrfs_remove_log_ctx(root, ctx); 6159 btrfs_end_log_trans(root); 6160 end_no_trans: 6161 return ret; 6162 } 6163 6164 /* 6165 * it is not safe to log dentry if the chunk root has added new 6166 * chunks. This returns 0 if the dentry was logged, and 1 otherwise. 6167 * If this returns 1, you must commit the transaction to safely get your 6168 * data on disk. 6169 */ 6170 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans, 6171 struct dentry *dentry, 6172 const loff_t start, 6173 const loff_t end, 6174 struct btrfs_log_ctx *ctx) 6175 { 6176 struct dentry *parent = dget_parent(dentry); 6177 int ret; 6178 6179 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent, 6180 start, end, LOG_INODE_ALL, ctx); 6181 dput(parent); 6182 6183 return ret; 6184 } 6185 6186 /* 6187 * should be called during mount to recover any replay any log trees 6188 * from the FS 6189 */ 6190 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree) 6191 { 6192 int ret; 6193 struct btrfs_path *path; 6194 struct btrfs_trans_handle *trans; 6195 struct btrfs_key key; 6196 struct btrfs_key found_key; 6197 struct btrfs_key tmp_key; 6198 struct btrfs_root *log; 6199 struct btrfs_fs_info *fs_info = log_root_tree->fs_info; 6200 struct walk_control wc = { 6201 .process_func = process_one_buffer, 6202 .stage = 0, 6203 }; 6204 6205 path = btrfs_alloc_path(); 6206 if (!path) 6207 return -ENOMEM; 6208 6209 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 6210 6211 trans = btrfs_start_transaction(fs_info->tree_root, 0); 6212 if (IS_ERR(trans)) { 6213 ret = PTR_ERR(trans); 6214 goto error; 6215 } 6216 6217 wc.trans = trans; 6218 wc.pin = 1; 6219 6220 ret = walk_log_tree(trans, log_root_tree, &wc); 6221 if (ret) { 6222 btrfs_handle_fs_error(fs_info, ret, 6223 "Failed to pin buffers while recovering log root tree."); 6224 goto error; 6225 } 6226 6227 again: 6228 key.objectid = BTRFS_TREE_LOG_OBJECTID; 6229 key.offset = (u64)-1; 6230 key.type = BTRFS_ROOT_ITEM_KEY; 6231 6232 while (1) { 6233 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0); 6234 6235 if (ret < 0) { 6236 btrfs_handle_fs_error(fs_info, ret, 6237 "Couldn't find tree log root."); 6238 goto error; 6239 } 6240 if (ret > 0) { 6241 if (path->slots[0] == 0) 6242 break; 6243 path->slots[0]--; 6244 } 6245 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 6246 path->slots[0]); 6247 btrfs_release_path(path); 6248 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID) 6249 break; 6250 6251 log = btrfs_read_fs_root(log_root_tree, &found_key); 6252 if (IS_ERR(log)) { 6253 ret = PTR_ERR(log); 6254 btrfs_handle_fs_error(fs_info, ret, 6255 "Couldn't read tree log root."); 6256 goto error; 6257 } 6258 6259 tmp_key.objectid = found_key.offset; 6260 tmp_key.type = BTRFS_ROOT_ITEM_KEY; 6261 tmp_key.offset = (u64)-1; 6262 6263 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key); 6264 if (IS_ERR(wc.replay_dest)) { 6265 ret = PTR_ERR(wc.replay_dest); 6266 free_extent_buffer(log->node); 6267 free_extent_buffer(log->commit_root); 6268 kfree(log); 6269 btrfs_handle_fs_error(fs_info, ret, 6270 "Couldn't read target root for tree log recovery."); 6271 goto error; 6272 } 6273 6274 wc.replay_dest->log_root = log; 6275 btrfs_record_root_in_trans(trans, wc.replay_dest); 6276 ret = walk_log_tree(trans, log, &wc); 6277 6278 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) { 6279 ret = fixup_inode_link_counts(trans, wc.replay_dest, 6280 path); 6281 } 6282 6283 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) { 6284 struct btrfs_root *root = wc.replay_dest; 6285 6286 btrfs_release_path(path); 6287 6288 /* 6289 * We have just replayed everything, and the highest 6290 * objectid of fs roots probably has changed in case 6291 * some inode_item's got replayed. 6292 * 6293 * root->objectid_mutex is not acquired as log replay 6294 * could only happen during mount. 6295 */ 6296 ret = btrfs_find_highest_objectid(root, 6297 &root->highest_objectid); 6298 } 6299 6300 key.offset = found_key.offset - 1; 6301 wc.replay_dest->log_root = NULL; 6302 free_extent_buffer(log->node); 6303 free_extent_buffer(log->commit_root); 6304 kfree(log); 6305 6306 if (ret) 6307 goto error; 6308 6309 if (found_key.offset == 0) 6310 break; 6311 } 6312 btrfs_release_path(path); 6313 6314 /* step one is to pin it all, step two is to replay just inodes */ 6315 if (wc.pin) { 6316 wc.pin = 0; 6317 wc.process_func = replay_one_buffer; 6318 wc.stage = LOG_WALK_REPLAY_INODES; 6319 goto again; 6320 } 6321 /* step three is to replay everything */ 6322 if (wc.stage < LOG_WALK_REPLAY_ALL) { 6323 wc.stage++; 6324 goto again; 6325 } 6326 6327 btrfs_free_path(path); 6328 6329 /* step 4: commit the transaction, which also unpins the blocks */ 6330 ret = btrfs_commit_transaction(trans); 6331 if (ret) 6332 return ret; 6333 6334 free_extent_buffer(log_root_tree->node); 6335 log_root_tree->log_root = NULL; 6336 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 6337 kfree(log_root_tree); 6338 6339 return 0; 6340 error: 6341 if (wc.trans) 6342 btrfs_end_transaction(wc.trans); 6343 btrfs_free_path(path); 6344 return ret; 6345 } 6346 6347 /* 6348 * there are some corner cases where we want to force a full 6349 * commit instead of allowing a directory to be logged. 6350 * 6351 * They revolve around files there were unlinked from the directory, and 6352 * this function updates the parent directory so that a full commit is 6353 * properly done if it is fsync'd later after the unlinks are done. 6354 * 6355 * Must be called before the unlink operations (updates to the subvolume tree, 6356 * inodes, etc) are done. 6357 */ 6358 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans, 6359 struct btrfs_inode *dir, struct btrfs_inode *inode, 6360 int for_rename) 6361 { 6362 /* 6363 * when we're logging a file, if it hasn't been renamed 6364 * or unlinked, and its inode is fully committed on disk, 6365 * we don't have to worry about walking up the directory chain 6366 * to log its parents. 6367 * 6368 * So, we use the last_unlink_trans field to put this transid 6369 * into the file. When the file is logged we check it and 6370 * don't log the parents if the file is fully on disk. 6371 */ 6372 mutex_lock(&inode->log_mutex); 6373 inode->last_unlink_trans = trans->transid; 6374 mutex_unlock(&inode->log_mutex); 6375 6376 /* 6377 * if this directory was already logged any new 6378 * names for this file/dir will get recorded 6379 */ 6380 if (dir->logged_trans == trans->transid) 6381 return; 6382 6383 /* 6384 * if the inode we're about to unlink was logged, 6385 * the log will be properly updated for any new names 6386 */ 6387 if (inode->logged_trans == trans->transid) 6388 return; 6389 6390 /* 6391 * when renaming files across directories, if the directory 6392 * there we're unlinking from gets fsync'd later on, there's 6393 * no way to find the destination directory later and fsync it 6394 * properly. So, we have to be conservative and force commits 6395 * so the new name gets discovered. 6396 */ 6397 if (for_rename) 6398 goto record; 6399 6400 /* we can safely do the unlink without any special recording */ 6401 return; 6402 6403 record: 6404 mutex_lock(&dir->log_mutex); 6405 dir->last_unlink_trans = trans->transid; 6406 mutex_unlock(&dir->log_mutex); 6407 } 6408 6409 /* 6410 * Make sure that if someone attempts to fsync the parent directory of a deleted 6411 * snapshot, it ends up triggering a transaction commit. This is to guarantee 6412 * that after replaying the log tree of the parent directory's root we will not 6413 * see the snapshot anymore and at log replay time we will not see any log tree 6414 * corresponding to the deleted snapshot's root, which could lead to replaying 6415 * it after replaying the log tree of the parent directory (which would replay 6416 * the snapshot delete operation). 6417 * 6418 * Must be called before the actual snapshot destroy operation (updates to the 6419 * parent root and tree of tree roots trees, etc) are done. 6420 */ 6421 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans, 6422 struct btrfs_inode *dir) 6423 { 6424 mutex_lock(&dir->log_mutex); 6425 dir->last_unlink_trans = trans->transid; 6426 mutex_unlock(&dir->log_mutex); 6427 } 6428 6429 /* 6430 * Call this after adding a new name for a file and it will properly 6431 * update the log to reflect the new name. 6432 * 6433 * @ctx can not be NULL when @sync_log is false, and should be NULL when it's 6434 * true (because it's not used). 6435 * 6436 * Return value depends on whether @sync_log is true or false. 6437 * When true: returns BTRFS_NEED_TRANS_COMMIT if the transaction needs to be 6438 * committed by the caller, and BTRFS_DONT_NEED_TRANS_COMMIT 6439 * otherwise. 6440 * When false: returns BTRFS_DONT_NEED_LOG_SYNC if the caller does not need to 6441 * to sync the log, BTRFS_NEED_LOG_SYNC if it needs to sync the log, 6442 * or BTRFS_NEED_TRANS_COMMIT if the transaction needs to be 6443 * committed (without attempting to sync the log). 6444 */ 6445 int btrfs_log_new_name(struct btrfs_trans_handle *trans, 6446 struct btrfs_inode *inode, struct btrfs_inode *old_dir, 6447 struct dentry *parent, 6448 bool sync_log, struct btrfs_log_ctx *ctx) 6449 { 6450 struct btrfs_fs_info *fs_info = trans->fs_info; 6451 int ret; 6452 6453 /* 6454 * this will force the logging code to walk the dentry chain 6455 * up for the file 6456 */ 6457 if (!S_ISDIR(inode->vfs_inode.i_mode)) 6458 inode->last_unlink_trans = trans->transid; 6459 6460 /* 6461 * if this inode hasn't been logged and directory we're renaming it 6462 * from hasn't been logged, we don't need to log it 6463 */ 6464 if (inode->logged_trans <= fs_info->last_trans_committed && 6465 (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed)) 6466 return sync_log ? BTRFS_DONT_NEED_TRANS_COMMIT : 6467 BTRFS_DONT_NEED_LOG_SYNC; 6468 6469 if (sync_log) { 6470 struct btrfs_log_ctx ctx2; 6471 6472 btrfs_init_log_ctx(&ctx2, &inode->vfs_inode); 6473 ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX, 6474 LOG_INODE_EXISTS, &ctx2); 6475 if (ret == BTRFS_NO_LOG_SYNC) 6476 return BTRFS_DONT_NEED_TRANS_COMMIT; 6477 else if (ret) 6478 return BTRFS_NEED_TRANS_COMMIT; 6479 6480 ret = btrfs_sync_log(trans, inode->root, &ctx2); 6481 if (ret) 6482 return BTRFS_NEED_TRANS_COMMIT; 6483 return BTRFS_DONT_NEED_TRANS_COMMIT; 6484 } 6485 6486 ASSERT(ctx); 6487 ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX, 6488 LOG_INODE_EXISTS, ctx); 6489 if (ret == BTRFS_NO_LOG_SYNC) 6490 return BTRFS_DONT_NEED_LOG_SYNC; 6491 else if (ret) 6492 return BTRFS_NEED_TRANS_COMMIT; 6493 6494 return BTRFS_NEED_LOG_SYNC; 6495 } 6496 6497