xref: /linux/fs/btrfs/tree-log.c (revision b60a5b8dcf49af9f2c60ae82e0383ee8e62a9a52)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "ctree.h"
12 #include "tree-log.h"
13 #include "disk-io.h"
14 #include "locking.h"
15 #include "print-tree.h"
16 #include "backref.h"
17 #include "compression.h"
18 #include "qgroup.h"
19 #include "inode-map.h"
20 
21 /* magic values for the inode_only field in btrfs_log_inode:
22  *
23  * LOG_INODE_ALL means to log everything
24  * LOG_INODE_EXISTS means to log just enough to recreate the inode
25  * during log replay
26  */
27 #define LOG_INODE_ALL 0
28 #define LOG_INODE_EXISTS 1
29 #define LOG_OTHER_INODE 2
30 #define LOG_OTHER_INODE_ALL 3
31 
32 /*
33  * directory trouble cases
34  *
35  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
36  * log, we must force a full commit before doing an fsync of the directory
37  * where the unlink was done.
38  * ---> record transid of last unlink/rename per directory
39  *
40  * mkdir foo/some_dir
41  * normal commit
42  * rename foo/some_dir foo2/some_dir
43  * mkdir foo/some_dir
44  * fsync foo/some_dir/some_file
45  *
46  * The fsync above will unlink the original some_dir without recording
47  * it in its new location (foo2).  After a crash, some_dir will be gone
48  * unless the fsync of some_file forces a full commit
49  *
50  * 2) we must log any new names for any file or dir that is in the fsync
51  * log. ---> check inode while renaming/linking.
52  *
53  * 2a) we must log any new names for any file or dir during rename
54  * when the directory they are being removed from was logged.
55  * ---> check inode and old parent dir during rename
56  *
57  *  2a is actually the more important variant.  With the extra logging
58  *  a crash might unlink the old name without recreating the new one
59  *
60  * 3) after a crash, we must go through any directories with a link count
61  * of zero and redo the rm -rf
62  *
63  * mkdir f1/foo
64  * normal commit
65  * rm -rf f1/foo
66  * fsync(f1)
67  *
68  * The directory f1 was fully removed from the FS, but fsync was never
69  * called on f1, only its parent dir.  After a crash the rm -rf must
70  * be replayed.  This must be able to recurse down the entire
71  * directory tree.  The inode link count fixup code takes care of the
72  * ugly details.
73  */
74 
75 /*
76  * stages for the tree walking.  The first
77  * stage (0) is to only pin down the blocks we find
78  * the second stage (1) is to make sure that all the inodes
79  * we find in the log are created in the subvolume.
80  *
81  * The last stage is to deal with directories and links and extents
82  * and all the other fun semantics
83  */
84 #define LOG_WALK_PIN_ONLY 0
85 #define LOG_WALK_REPLAY_INODES 1
86 #define LOG_WALK_REPLAY_DIR_INDEX 2
87 #define LOG_WALK_REPLAY_ALL 3
88 
89 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
90 			   struct btrfs_root *root, struct btrfs_inode *inode,
91 			   int inode_only,
92 			   const loff_t start,
93 			   const loff_t end,
94 			   struct btrfs_log_ctx *ctx);
95 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
96 			     struct btrfs_root *root,
97 			     struct btrfs_path *path, u64 objectid);
98 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
99 				       struct btrfs_root *root,
100 				       struct btrfs_root *log,
101 				       struct btrfs_path *path,
102 				       u64 dirid, int del_all);
103 
104 /*
105  * tree logging is a special write ahead log used to make sure that
106  * fsyncs and O_SYNCs can happen without doing full tree commits.
107  *
108  * Full tree commits are expensive because they require commonly
109  * modified blocks to be recowed, creating many dirty pages in the
110  * extent tree an 4x-6x higher write load than ext3.
111  *
112  * Instead of doing a tree commit on every fsync, we use the
113  * key ranges and transaction ids to find items for a given file or directory
114  * that have changed in this transaction.  Those items are copied into
115  * a special tree (one per subvolume root), that tree is written to disk
116  * and then the fsync is considered complete.
117  *
118  * After a crash, items are copied out of the log-tree back into the
119  * subvolume tree.  Any file data extents found are recorded in the extent
120  * allocation tree, and the log-tree freed.
121  *
122  * The log tree is read three times, once to pin down all the extents it is
123  * using in ram and once, once to create all the inodes logged in the tree
124  * and once to do all the other items.
125  */
126 
127 /*
128  * start a sub transaction and setup the log tree
129  * this increments the log tree writer count to make the people
130  * syncing the tree wait for us to finish
131  */
132 static int start_log_trans(struct btrfs_trans_handle *trans,
133 			   struct btrfs_root *root,
134 			   struct btrfs_log_ctx *ctx)
135 {
136 	struct btrfs_fs_info *fs_info = root->fs_info;
137 	int ret = 0;
138 
139 	mutex_lock(&root->log_mutex);
140 
141 	if (root->log_root) {
142 		if (btrfs_need_log_full_commit(fs_info, trans)) {
143 			ret = -EAGAIN;
144 			goto out;
145 		}
146 
147 		if (!root->log_start_pid) {
148 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
149 			root->log_start_pid = current->pid;
150 		} else if (root->log_start_pid != current->pid) {
151 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
152 		}
153 	} else {
154 		mutex_lock(&fs_info->tree_log_mutex);
155 		if (!fs_info->log_root_tree)
156 			ret = btrfs_init_log_root_tree(trans, fs_info);
157 		mutex_unlock(&fs_info->tree_log_mutex);
158 		if (ret)
159 			goto out;
160 
161 		ret = btrfs_add_log_tree(trans, root);
162 		if (ret)
163 			goto out;
164 
165 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
166 		root->log_start_pid = current->pid;
167 	}
168 
169 	atomic_inc(&root->log_batch);
170 	atomic_inc(&root->log_writers);
171 	if (ctx) {
172 		int index = root->log_transid % 2;
173 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
174 		ctx->log_transid = root->log_transid;
175 	}
176 
177 out:
178 	mutex_unlock(&root->log_mutex);
179 	return ret;
180 }
181 
182 /*
183  * returns 0 if there was a log transaction running and we were able
184  * to join, or returns -ENOENT if there were not transactions
185  * in progress
186  */
187 static int join_running_log_trans(struct btrfs_root *root)
188 {
189 	int ret = -ENOENT;
190 
191 	smp_mb();
192 	if (!root->log_root)
193 		return -ENOENT;
194 
195 	mutex_lock(&root->log_mutex);
196 	if (root->log_root) {
197 		ret = 0;
198 		atomic_inc(&root->log_writers);
199 	}
200 	mutex_unlock(&root->log_mutex);
201 	return ret;
202 }
203 
204 /*
205  * This either makes the current running log transaction wait
206  * until you call btrfs_end_log_trans() or it makes any future
207  * log transactions wait until you call btrfs_end_log_trans()
208  */
209 void btrfs_pin_log_trans(struct btrfs_root *root)
210 {
211 	mutex_lock(&root->log_mutex);
212 	atomic_inc(&root->log_writers);
213 	mutex_unlock(&root->log_mutex);
214 }
215 
216 /*
217  * indicate we're done making changes to the log tree
218  * and wake up anyone waiting to do a sync
219  */
220 void btrfs_end_log_trans(struct btrfs_root *root)
221 {
222 	if (atomic_dec_and_test(&root->log_writers)) {
223 		/* atomic_dec_and_test implies a barrier */
224 		cond_wake_up_nomb(&root->log_writer_wait);
225 	}
226 }
227 
228 
229 /*
230  * the walk control struct is used to pass state down the chain when
231  * processing the log tree.  The stage field tells us which part
232  * of the log tree processing we are currently doing.  The others
233  * are state fields used for that specific part
234  */
235 struct walk_control {
236 	/* should we free the extent on disk when done?  This is used
237 	 * at transaction commit time while freeing a log tree
238 	 */
239 	int free;
240 
241 	/* should we write out the extent buffer?  This is used
242 	 * while flushing the log tree to disk during a sync
243 	 */
244 	int write;
245 
246 	/* should we wait for the extent buffer io to finish?  Also used
247 	 * while flushing the log tree to disk for a sync
248 	 */
249 	int wait;
250 
251 	/* pin only walk, we record which extents on disk belong to the
252 	 * log trees
253 	 */
254 	int pin;
255 
256 	/* what stage of the replay code we're currently in */
257 	int stage;
258 
259 	/*
260 	 * Ignore any items from the inode currently being processed. Needs
261 	 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
262 	 * the LOG_WALK_REPLAY_INODES stage.
263 	 */
264 	bool ignore_cur_inode;
265 
266 	/* the root we are currently replaying */
267 	struct btrfs_root *replay_dest;
268 
269 	/* the trans handle for the current replay */
270 	struct btrfs_trans_handle *trans;
271 
272 	/* the function that gets used to process blocks we find in the
273 	 * tree.  Note the extent_buffer might not be up to date when it is
274 	 * passed in, and it must be checked or read if you need the data
275 	 * inside it
276 	 */
277 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
278 			    struct walk_control *wc, u64 gen, int level);
279 };
280 
281 /*
282  * process_func used to pin down extents, write them or wait on them
283  */
284 static int process_one_buffer(struct btrfs_root *log,
285 			      struct extent_buffer *eb,
286 			      struct walk_control *wc, u64 gen, int level)
287 {
288 	struct btrfs_fs_info *fs_info = log->fs_info;
289 	int ret = 0;
290 
291 	/*
292 	 * If this fs is mixed then we need to be able to process the leaves to
293 	 * pin down any logged extents, so we have to read the block.
294 	 */
295 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
296 		ret = btrfs_read_buffer(eb, gen, level, NULL);
297 		if (ret)
298 			return ret;
299 	}
300 
301 	if (wc->pin)
302 		ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
303 						      eb->len);
304 
305 	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
306 		if (wc->pin && btrfs_header_level(eb) == 0)
307 			ret = btrfs_exclude_logged_extents(fs_info, eb);
308 		if (wc->write)
309 			btrfs_write_tree_block(eb);
310 		if (wc->wait)
311 			btrfs_wait_tree_block_writeback(eb);
312 	}
313 	return ret;
314 }
315 
316 /*
317  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
318  * to the src data we are copying out.
319  *
320  * root is the tree we are copying into, and path is a scratch
321  * path for use in this function (it should be released on entry and
322  * will be released on exit).
323  *
324  * If the key is already in the destination tree the existing item is
325  * overwritten.  If the existing item isn't big enough, it is extended.
326  * If it is too large, it is truncated.
327  *
328  * If the key isn't in the destination yet, a new item is inserted.
329  */
330 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
331 				   struct btrfs_root *root,
332 				   struct btrfs_path *path,
333 				   struct extent_buffer *eb, int slot,
334 				   struct btrfs_key *key)
335 {
336 	struct btrfs_fs_info *fs_info = root->fs_info;
337 	int ret;
338 	u32 item_size;
339 	u64 saved_i_size = 0;
340 	int save_old_i_size = 0;
341 	unsigned long src_ptr;
342 	unsigned long dst_ptr;
343 	int overwrite_root = 0;
344 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
345 
346 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
347 		overwrite_root = 1;
348 
349 	item_size = btrfs_item_size_nr(eb, slot);
350 	src_ptr = btrfs_item_ptr_offset(eb, slot);
351 
352 	/* look for the key in the destination tree */
353 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
354 	if (ret < 0)
355 		return ret;
356 
357 	if (ret == 0) {
358 		char *src_copy;
359 		char *dst_copy;
360 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
361 						  path->slots[0]);
362 		if (dst_size != item_size)
363 			goto insert;
364 
365 		if (item_size == 0) {
366 			btrfs_release_path(path);
367 			return 0;
368 		}
369 		dst_copy = kmalloc(item_size, GFP_NOFS);
370 		src_copy = kmalloc(item_size, GFP_NOFS);
371 		if (!dst_copy || !src_copy) {
372 			btrfs_release_path(path);
373 			kfree(dst_copy);
374 			kfree(src_copy);
375 			return -ENOMEM;
376 		}
377 
378 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
379 
380 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
381 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
382 				   item_size);
383 		ret = memcmp(dst_copy, src_copy, item_size);
384 
385 		kfree(dst_copy);
386 		kfree(src_copy);
387 		/*
388 		 * they have the same contents, just return, this saves
389 		 * us from cowing blocks in the destination tree and doing
390 		 * extra writes that may not have been done by a previous
391 		 * sync
392 		 */
393 		if (ret == 0) {
394 			btrfs_release_path(path);
395 			return 0;
396 		}
397 
398 		/*
399 		 * We need to load the old nbytes into the inode so when we
400 		 * replay the extents we've logged we get the right nbytes.
401 		 */
402 		if (inode_item) {
403 			struct btrfs_inode_item *item;
404 			u64 nbytes;
405 			u32 mode;
406 
407 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
408 					      struct btrfs_inode_item);
409 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
410 			item = btrfs_item_ptr(eb, slot,
411 					      struct btrfs_inode_item);
412 			btrfs_set_inode_nbytes(eb, item, nbytes);
413 
414 			/*
415 			 * If this is a directory we need to reset the i_size to
416 			 * 0 so that we can set it up properly when replaying
417 			 * the rest of the items in this log.
418 			 */
419 			mode = btrfs_inode_mode(eb, item);
420 			if (S_ISDIR(mode))
421 				btrfs_set_inode_size(eb, item, 0);
422 		}
423 	} else if (inode_item) {
424 		struct btrfs_inode_item *item;
425 		u32 mode;
426 
427 		/*
428 		 * New inode, set nbytes to 0 so that the nbytes comes out
429 		 * properly when we replay the extents.
430 		 */
431 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
432 		btrfs_set_inode_nbytes(eb, item, 0);
433 
434 		/*
435 		 * If this is a directory we need to reset the i_size to 0 so
436 		 * that we can set it up properly when replaying the rest of
437 		 * the items in this log.
438 		 */
439 		mode = btrfs_inode_mode(eb, item);
440 		if (S_ISDIR(mode))
441 			btrfs_set_inode_size(eb, item, 0);
442 	}
443 insert:
444 	btrfs_release_path(path);
445 	/* try to insert the key into the destination tree */
446 	path->skip_release_on_error = 1;
447 	ret = btrfs_insert_empty_item(trans, root, path,
448 				      key, item_size);
449 	path->skip_release_on_error = 0;
450 
451 	/* make sure any existing item is the correct size */
452 	if (ret == -EEXIST || ret == -EOVERFLOW) {
453 		u32 found_size;
454 		found_size = btrfs_item_size_nr(path->nodes[0],
455 						path->slots[0]);
456 		if (found_size > item_size)
457 			btrfs_truncate_item(fs_info, path, item_size, 1);
458 		else if (found_size < item_size)
459 			btrfs_extend_item(fs_info, path,
460 					  item_size - found_size);
461 	} else if (ret) {
462 		return ret;
463 	}
464 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
465 					path->slots[0]);
466 
467 	/* don't overwrite an existing inode if the generation number
468 	 * was logged as zero.  This is done when the tree logging code
469 	 * is just logging an inode to make sure it exists after recovery.
470 	 *
471 	 * Also, don't overwrite i_size on directories during replay.
472 	 * log replay inserts and removes directory items based on the
473 	 * state of the tree found in the subvolume, and i_size is modified
474 	 * as it goes
475 	 */
476 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
477 		struct btrfs_inode_item *src_item;
478 		struct btrfs_inode_item *dst_item;
479 
480 		src_item = (struct btrfs_inode_item *)src_ptr;
481 		dst_item = (struct btrfs_inode_item *)dst_ptr;
482 
483 		if (btrfs_inode_generation(eb, src_item) == 0) {
484 			struct extent_buffer *dst_eb = path->nodes[0];
485 			const u64 ino_size = btrfs_inode_size(eb, src_item);
486 
487 			/*
488 			 * For regular files an ino_size == 0 is used only when
489 			 * logging that an inode exists, as part of a directory
490 			 * fsync, and the inode wasn't fsynced before. In this
491 			 * case don't set the size of the inode in the fs/subvol
492 			 * tree, otherwise we would be throwing valid data away.
493 			 */
494 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
495 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
496 			    ino_size != 0) {
497 				struct btrfs_map_token token;
498 
499 				btrfs_init_map_token(&token);
500 				btrfs_set_token_inode_size(dst_eb, dst_item,
501 							   ino_size, &token);
502 			}
503 			goto no_copy;
504 		}
505 
506 		if (overwrite_root &&
507 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
508 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
509 			save_old_i_size = 1;
510 			saved_i_size = btrfs_inode_size(path->nodes[0],
511 							dst_item);
512 		}
513 	}
514 
515 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
516 			   src_ptr, item_size);
517 
518 	if (save_old_i_size) {
519 		struct btrfs_inode_item *dst_item;
520 		dst_item = (struct btrfs_inode_item *)dst_ptr;
521 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
522 	}
523 
524 	/* make sure the generation is filled in */
525 	if (key->type == BTRFS_INODE_ITEM_KEY) {
526 		struct btrfs_inode_item *dst_item;
527 		dst_item = (struct btrfs_inode_item *)dst_ptr;
528 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
529 			btrfs_set_inode_generation(path->nodes[0], dst_item,
530 						   trans->transid);
531 		}
532 	}
533 no_copy:
534 	btrfs_mark_buffer_dirty(path->nodes[0]);
535 	btrfs_release_path(path);
536 	return 0;
537 }
538 
539 /*
540  * simple helper to read an inode off the disk from a given root
541  * This can only be called for subvolume roots and not for the log
542  */
543 static noinline struct inode *read_one_inode(struct btrfs_root *root,
544 					     u64 objectid)
545 {
546 	struct btrfs_key key;
547 	struct inode *inode;
548 
549 	key.objectid = objectid;
550 	key.type = BTRFS_INODE_ITEM_KEY;
551 	key.offset = 0;
552 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
553 	if (IS_ERR(inode))
554 		inode = NULL;
555 	return inode;
556 }
557 
558 /* replays a single extent in 'eb' at 'slot' with 'key' into the
559  * subvolume 'root'.  path is released on entry and should be released
560  * on exit.
561  *
562  * extents in the log tree have not been allocated out of the extent
563  * tree yet.  So, this completes the allocation, taking a reference
564  * as required if the extent already exists or creating a new extent
565  * if it isn't in the extent allocation tree yet.
566  *
567  * The extent is inserted into the file, dropping any existing extents
568  * from the file that overlap the new one.
569  */
570 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
571 				      struct btrfs_root *root,
572 				      struct btrfs_path *path,
573 				      struct extent_buffer *eb, int slot,
574 				      struct btrfs_key *key)
575 {
576 	struct btrfs_fs_info *fs_info = root->fs_info;
577 	int found_type;
578 	u64 extent_end;
579 	u64 start = key->offset;
580 	u64 nbytes = 0;
581 	struct btrfs_file_extent_item *item;
582 	struct inode *inode = NULL;
583 	unsigned long size;
584 	int ret = 0;
585 
586 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
587 	found_type = btrfs_file_extent_type(eb, item);
588 
589 	if (found_type == BTRFS_FILE_EXTENT_REG ||
590 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
591 		nbytes = btrfs_file_extent_num_bytes(eb, item);
592 		extent_end = start + nbytes;
593 
594 		/*
595 		 * We don't add to the inodes nbytes if we are prealloc or a
596 		 * hole.
597 		 */
598 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
599 			nbytes = 0;
600 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
601 		size = btrfs_file_extent_ram_bytes(eb, item);
602 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
603 		extent_end = ALIGN(start + size,
604 				   fs_info->sectorsize);
605 	} else {
606 		ret = 0;
607 		goto out;
608 	}
609 
610 	inode = read_one_inode(root, key->objectid);
611 	if (!inode) {
612 		ret = -EIO;
613 		goto out;
614 	}
615 
616 	/*
617 	 * first check to see if we already have this extent in the
618 	 * file.  This must be done before the btrfs_drop_extents run
619 	 * so we don't try to drop this extent.
620 	 */
621 	ret = btrfs_lookup_file_extent(trans, root, path,
622 			btrfs_ino(BTRFS_I(inode)), start, 0);
623 
624 	if (ret == 0 &&
625 	    (found_type == BTRFS_FILE_EXTENT_REG ||
626 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
627 		struct btrfs_file_extent_item cmp1;
628 		struct btrfs_file_extent_item cmp2;
629 		struct btrfs_file_extent_item *existing;
630 		struct extent_buffer *leaf;
631 
632 		leaf = path->nodes[0];
633 		existing = btrfs_item_ptr(leaf, path->slots[0],
634 					  struct btrfs_file_extent_item);
635 
636 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
637 				   sizeof(cmp1));
638 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
639 				   sizeof(cmp2));
640 
641 		/*
642 		 * we already have a pointer to this exact extent,
643 		 * we don't have to do anything
644 		 */
645 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
646 			btrfs_release_path(path);
647 			goto out;
648 		}
649 	}
650 	btrfs_release_path(path);
651 
652 	/* drop any overlapping extents */
653 	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
654 	if (ret)
655 		goto out;
656 
657 	if (found_type == BTRFS_FILE_EXTENT_REG ||
658 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
659 		u64 offset;
660 		unsigned long dest_offset;
661 		struct btrfs_key ins;
662 
663 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
664 		    btrfs_fs_incompat(fs_info, NO_HOLES))
665 			goto update_inode;
666 
667 		ret = btrfs_insert_empty_item(trans, root, path, key,
668 					      sizeof(*item));
669 		if (ret)
670 			goto out;
671 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
672 						    path->slots[0]);
673 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
674 				(unsigned long)item,  sizeof(*item));
675 
676 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
677 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
678 		ins.type = BTRFS_EXTENT_ITEM_KEY;
679 		offset = key->offset - btrfs_file_extent_offset(eb, item);
680 
681 		/*
682 		 * Manually record dirty extent, as here we did a shallow
683 		 * file extent item copy and skip normal backref update,
684 		 * but modifying extent tree all by ourselves.
685 		 * So need to manually record dirty extent for qgroup,
686 		 * as the owner of the file extent changed from log tree
687 		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
688 		 */
689 		ret = btrfs_qgroup_trace_extent(trans,
690 				btrfs_file_extent_disk_bytenr(eb, item),
691 				btrfs_file_extent_disk_num_bytes(eb, item),
692 				GFP_NOFS);
693 		if (ret < 0)
694 			goto out;
695 
696 		if (ins.objectid > 0) {
697 			u64 csum_start;
698 			u64 csum_end;
699 			LIST_HEAD(ordered_sums);
700 			/*
701 			 * is this extent already allocated in the extent
702 			 * allocation tree?  If so, just add a reference
703 			 */
704 			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
705 						ins.offset);
706 			if (ret == 0) {
707 				ret = btrfs_inc_extent_ref(trans, root,
708 						ins.objectid, ins.offset,
709 						0, root->root_key.objectid,
710 						key->objectid, offset);
711 				if (ret)
712 					goto out;
713 			} else {
714 				/*
715 				 * insert the extent pointer in the extent
716 				 * allocation tree
717 				 */
718 				ret = btrfs_alloc_logged_file_extent(trans,
719 						root->root_key.objectid,
720 						key->objectid, offset, &ins);
721 				if (ret)
722 					goto out;
723 			}
724 			btrfs_release_path(path);
725 
726 			if (btrfs_file_extent_compression(eb, item)) {
727 				csum_start = ins.objectid;
728 				csum_end = csum_start + ins.offset;
729 			} else {
730 				csum_start = ins.objectid +
731 					btrfs_file_extent_offset(eb, item);
732 				csum_end = csum_start +
733 					btrfs_file_extent_num_bytes(eb, item);
734 			}
735 
736 			ret = btrfs_lookup_csums_range(root->log_root,
737 						csum_start, csum_end - 1,
738 						&ordered_sums, 0);
739 			if (ret)
740 				goto out;
741 			/*
742 			 * Now delete all existing cums in the csum root that
743 			 * cover our range. We do this because we can have an
744 			 * extent that is completely referenced by one file
745 			 * extent item and partially referenced by another
746 			 * file extent item (like after using the clone or
747 			 * extent_same ioctls). In this case if we end up doing
748 			 * the replay of the one that partially references the
749 			 * extent first, and we do not do the csum deletion
750 			 * below, we can get 2 csum items in the csum tree that
751 			 * overlap each other. For example, imagine our log has
752 			 * the two following file extent items:
753 			 *
754 			 * key (257 EXTENT_DATA 409600)
755 			 *     extent data disk byte 12845056 nr 102400
756 			 *     extent data offset 20480 nr 20480 ram 102400
757 			 *
758 			 * key (257 EXTENT_DATA 819200)
759 			 *     extent data disk byte 12845056 nr 102400
760 			 *     extent data offset 0 nr 102400 ram 102400
761 			 *
762 			 * Where the second one fully references the 100K extent
763 			 * that starts at disk byte 12845056, and the log tree
764 			 * has a single csum item that covers the entire range
765 			 * of the extent:
766 			 *
767 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
768 			 *
769 			 * After the first file extent item is replayed, the
770 			 * csum tree gets the following csum item:
771 			 *
772 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
773 			 *
774 			 * Which covers the 20K sub-range starting at offset 20K
775 			 * of our extent. Now when we replay the second file
776 			 * extent item, if we do not delete existing csum items
777 			 * that cover any of its blocks, we end up getting two
778 			 * csum items in our csum tree that overlap each other:
779 			 *
780 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
781 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
782 			 *
783 			 * Which is a problem, because after this anyone trying
784 			 * to lookup up for the checksum of any block of our
785 			 * extent starting at an offset of 40K or higher, will
786 			 * end up looking at the second csum item only, which
787 			 * does not contain the checksum for any block starting
788 			 * at offset 40K or higher of our extent.
789 			 */
790 			while (!list_empty(&ordered_sums)) {
791 				struct btrfs_ordered_sum *sums;
792 				sums = list_entry(ordered_sums.next,
793 						struct btrfs_ordered_sum,
794 						list);
795 				if (!ret)
796 					ret = btrfs_del_csums(trans, fs_info,
797 							      sums->bytenr,
798 							      sums->len);
799 				if (!ret)
800 					ret = btrfs_csum_file_blocks(trans,
801 						fs_info->csum_root, sums);
802 				list_del(&sums->list);
803 				kfree(sums);
804 			}
805 			if (ret)
806 				goto out;
807 		} else {
808 			btrfs_release_path(path);
809 		}
810 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
811 		/* inline extents are easy, we just overwrite them */
812 		ret = overwrite_item(trans, root, path, eb, slot, key);
813 		if (ret)
814 			goto out;
815 	}
816 
817 	inode_add_bytes(inode, nbytes);
818 update_inode:
819 	ret = btrfs_update_inode(trans, root, inode);
820 out:
821 	if (inode)
822 		iput(inode);
823 	return ret;
824 }
825 
826 /*
827  * when cleaning up conflicts between the directory names in the
828  * subvolume, directory names in the log and directory names in the
829  * inode back references, we may have to unlink inodes from directories.
830  *
831  * This is a helper function to do the unlink of a specific directory
832  * item
833  */
834 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
835 				      struct btrfs_root *root,
836 				      struct btrfs_path *path,
837 				      struct btrfs_inode *dir,
838 				      struct btrfs_dir_item *di)
839 {
840 	struct inode *inode;
841 	char *name;
842 	int name_len;
843 	struct extent_buffer *leaf;
844 	struct btrfs_key location;
845 	int ret;
846 
847 	leaf = path->nodes[0];
848 
849 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
850 	name_len = btrfs_dir_name_len(leaf, di);
851 	name = kmalloc(name_len, GFP_NOFS);
852 	if (!name)
853 		return -ENOMEM;
854 
855 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
856 	btrfs_release_path(path);
857 
858 	inode = read_one_inode(root, location.objectid);
859 	if (!inode) {
860 		ret = -EIO;
861 		goto out;
862 	}
863 
864 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
865 	if (ret)
866 		goto out;
867 
868 	ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
869 			name_len);
870 	if (ret)
871 		goto out;
872 	else
873 		ret = btrfs_run_delayed_items(trans);
874 out:
875 	kfree(name);
876 	iput(inode);
877 	return ret;
878 }
879 
880 /*
881  * helper function to see if a given name and sequence number found
882  * in an inode back reference are already in a directory and correctly
883  * point to this inode
884  */
885 static noinline int inode_in_dir(struct btrfs_root *root,
886 				 struct btrfs_path *path,
887 				 u64 dirid, u64 objectid, u64 index,
888 				 const char *name, int name_len)
889 {
890 	struct btrfs_dir_item *di;
891 	struct btrfs_key location;
892 	int match = 0;
893 
894 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
895 					 index, name, name_len, 0);
896 	if (di && !IS_ERR(di)) {
897 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
898 		if (location.objectid != objectid)
899 			goto out;
900 	} else
901 		goto out;
902 	btrfs_release_path(path);
903 
904 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
905 	if (di && !IS_ERR(di)) {
906 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
907 		if (location.objectid != objectid)
908 			goto out;
909 	} else
910 		goto out;
911 	match = 1;
912 out:
913 	btrfs_release_path(path);
914 	return match;
915 }
916 
917 /*
918  * helper function to check a log tree for a named back reference in
919  * an inode.  This is used to decide if a back reference that is
920  * found in the subvolume conflicts with what we find in the log.
921  *
922  * inode backreferences may have multiple refs in a single item,
923  * during replay we process one reference at a time, and we don't
924  * want to delete valid links to a file from the subvolume if that
925  * link is also in the log.
926  */
927 static noinline int backref_in_log(struct btrfs_root *log,
928 				   struct btrfs_key *key,
929 				   u64 ref_objectid,
930 				   const char *name, int namelen)
931 {
932 	struct btrfs_path *path;
933 	struct btrfs_inode_ref *ref;
934 	unsigned long ptr;
935 	unsigned long ptr_end;
936 	unsigned long name_ptr;
937 	int found_name_len;
938 	int item_size;
939 	int ret;
940 	int match = 0;
941 
942 	path = btrfs_alloc_path();
943 	if (!path)
944 		return -ENOMEM;
945 
946 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
947 	if (ret != 0)
948 		goto out;
949 
950 	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
951 
952 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
953 		if (btrfs_find_name_in_ext_backref(path->nodes[0],
954 						   path->slots[0],
955 						   ref_objectid,
956 						   name, namelen, NULL))
957 			match = 1;
958 
959 		goto out;
960 	}
961 
962 	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
963 	ptr_end = ptr + item_size;
964 	while (ptr < ptr_end) {
965 		ref = (struct btrfs_inode_ref *)ptr;
966 		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
967 		if (found_name_len == namelen) {
968 			name_ptr = (unsigned long)(ref + 1);
969 			ret = memcmp_extent_buffer(path->nodes[0], name,
970 						   name_ptr, namelen);
971 			if (ret == 0) {
972 				match = 1;
973 				goto out;
974 			}
975 		}
976 		ptr = (unsigned long)(ref + 1) + found_name_len;
977 	}
978 out:
979 	btrfs_free_path(path);
980 	return match;
981 }
982 
983 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
984 				  struct btrfs_root *root,
985 				  struct btrfs_path *path,
986 				  struct btrfs_root *log_root,
987 				  struct btrfs_inode *dir,
988 				  struct btrfs_inode *inode,
989 				  u64 inode_objectid, u64 parent_objectid,
990 				  u64 ref_index, char *name, int namelen,
991 				  int *search_done)
992 {
993 	int ret;
994 	char *victim_name;
995 	int victim_name_len;
996 	struct extent_buffer *leaf;
997 	struct btrfs_dir_item *di;
998 	struct btrfs_key search_key;
999 	struct btrfs_inode_extref *extref;
1000 
1001 again:
1002 	/* Search old style refs */
1003 	search_key.objectid = inode_objectid;
1004 	search_key.type = BTRFS_INODE_REF_KEY;
1005 	search_key.offset = parent_objectid;
1006 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1007 	if (ret == 0) {
1008 		struct btrfs_inode_ref *victim_ref;
1009 		unsigned long ptr;
1010 		unsigned long ptr_end;
1011 
1012 		leaf = path->nodes[0];
1013 
1014 		/* are we trying to overwrite a back ref for the root directory
1015 		 * if so, just jump out, we're done
1016 		 */
1017 		if (search_key.objectid == search_key.offset)
1018 			return 1;
1019 
1020 		/* check all the names in this back reference to see
1021 		 * if they are in the log.  if so, we allow them to stay
1022 		 * otherwise they must be unlinked as a conflict
1023 		 */
1024 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1025 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1026 		while (ptr < ptr_end) {
1027 			victim_ref = (struct btrfs_inode_ref *)ptr;
1028 			victim_name_len = btrfs_inode_ref_name_len(leaf,
1029 								   victim_ref);
1030 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1031 			if (!victim_name)
1032 				return -ENOMEM;
1033 
1034 			read_extent_buffer(leaf, victim_name,
1035 					   (unsigned long)(victim_ref + 1),
1036 					   victim_name_len);
1037 
1038 			if (!backref_in_log(log_root, &search_key,
1039 					    parent_objectid,
1040 					    victim_name,
1041 					    victim_name_len)) {
1042 				inc_nlink(&inode->vfs_inode);
1043 				btrfs_release_path(path);
1044 
1045 				ret = btrfs_unlink_inode(trans, root, dir, inode,
1046 						victim_name, victim_name_len);
1047 				kfree(victim_name);
1048 				if (ret)
1049 					return ret;
1050 				ret = btrfs_run_delayed_items(trans);
1051 				if (ret)
1052 					return ret;
1053 				*search_done = 1;
1054 				goto again;
1055 			}
1056 			kfree(victim_name);
1057 
1058 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1059 		}
1060 
1061 		/*
1062 		 * NOTE: we have searched root tree and checked the
1063 		 * corresponding ref, it does not need to check again.
1064 		 */
1065 		*search_done = 1;
1066 	}
1067 	btrfs_release_path(path);
1068 
1069 	/* Same search but for extended refs */
1070 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1071 					   inode_objectid, parent_objectid, 0,
1072 					   0);
1073 	if (!IS_ERR_OR_NULL(extref)) {
1074 		u32 item_size;
1075 		u32 cur_offset = 0;
1076 		unsigned long base;
1077 		struct inode *victim_parent;
1078 
1079 		leaf = path->nodes[0];
1080 
1081 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1082 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1083 
1084 		while (cur_offset < item_size) {
1085 			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1086 
1087 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1088 
1089 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1090 				goto next;
1091 
1092 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1093 			if (!victim_name)
1094 				return -ENOMEM;
1095 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1096 					   victim_name_len);
1097 
1098 			search_key.objectid = inode_objectid;
1099 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1100 			search_key.offset = btrfs_extref_hash(parent_objectid,
1101 							      victim_name,
1102 							      victim_name_len);
1103 			ret = 0;
1104 			if (!backref_in_log(log_root, &search_key,
1105 					    parent_objectid, victim_name,
1106 					    victim_name_len)) {
1107 				ret = -ENOENT;
1108 				victim_parent = read_one_inode(root,
1109 						parent_objectid);
1110 				if (victim_parent) {
1111 					inc_nlink(&inode->vfs_inode);
1112 					btrfs_release_path(path);
1113 
1114 					ret = btrfs_unlink_inode(trans, root,
1115 							BTRFS_I(victim_parent),
1116 							inode,
1117 							victim_name,
1118 							victim_name_len);
1119 					if (!ret)
1120 						ret = btrfs_run_delayed_items(
1121 								  trans);
1122 				}
1123 				iput(victim_parent);
1124 				kfree(victim_name);
1125 				if (ret)
1126 					return ret;
1127 				*search_done = 1;
1128 				goto again;
1129 			}
1130 			kfree(victim_name);
1131 next:
1132 			cur_offset += victim_name_len + sizeof(*extref);
1133 		}
1134 		*search_done = 1;
1135 	}
1136 	btrfs_release_path(path);
1137 
1138 	/* look for a conflicting sequence number */
1139 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1140 					 ref_index, name, namelen, 0);
1141 	if (di && !IS_ERR(di)) {
1142 		ret = drop_one_dir_item(trans, root, path, dir, di);
1143 		if (ret)
1144 			return ret;
1145 	}
1146 	btrfs_release_path(path);
1147 
1148 	/* look for a conflicting name */
1149 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1150 				   name, namelen, 0);
1151 	if (di && !IS_ERR(di)) {
1152 		ret = drop_one_dir_item(trans, root, path, dir, di);
1153 		if (ret)
1154 			return ret;
1155 	}
1156 	btrfs_release_path(path);
1157 
1158 	return 0;
1159 }
1160 
1161 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1162 			     u32 *namelen, char **name, u64 *index,
1163 			     u64 *parent_objectid)
1164 {
1165 	struct btrfs_inode_extref *extref;
1166 
1167 	extref = (struct btrfs_inode_extref *)ref_ptr;
1168 
1169 	*namelen = btrfs_inode_extref_name_len(eb, extref);
1170 	*name = kmalloc(*namelen, GFP_NOFS);
1171 	if (*name == NULL)
1172 		return -ENOMEM;
1173 
1174 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1175 			   *namelen);
1176 
1177 	if (index)
1178 		*index = btrfs_inode_extref_index(eb, extref);
1179 	if (parent_objectid)
1180 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1181 
1182 	return 0;
1183 }
1184 
1185 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1186 			  u32 *namelen, char **name, u64 *index)
1187 {
1188 	struct btrfs_inode_ref *ref;
1189 
1190 	ref = (struct btrfs_inode_ref *)ref_ptr;
1191 
1192 	*namelen = btrfs_inode_ref_name_len(eb, ref);
1193 	*name = kmalloc(*namelen, GFP_NOFS);
1194 	if (*name == NULL)
1195 		return -ENOMEM;
1196 
1197 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1198 
1199 	if (index)
1200 		*index = btrfs_inode_ref_index(eb, ref);
1201 
1202 	return 0;
1203 }
1204 
1205 /*
1206  * Take an inode reference item from the log tree and iterate all names from the
1207  * inode reference item in the subvolume tree with the same key (if it exists).
1208  * For any name that is not in the inode reference item from the log tree, do a
1209  * proper unlink of that name (that is, remove its entry from the inode
1210  * reference item and both dir index keys).
1211  */
1212 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1213 				 struct btrfs_root *root,
1214 				 struct btrfs_path *path,
1215 				 struct btrfs_inode *inode,
1216 				 struct extent_buffer *log_eb,
1217 				 int log_slot,
1218 				 struct btrfs_key *key)
1219 {
1220 	int ret;
1221 	unsigned long ref_ptr;
1222 	unsigned long ref_end;
1223 	struct extent_buffer *eb;
1224 
1225 again:
1226 	btrfs_release_path(path);
1227 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1228 	if (ret > 0) {
1229 		ret = 0;
1230 		goto out;
1231 	}
1232 	if (ret < 0)
1233 		goto out;
1234 
1235 	eb = path->nodes[0];
1236 	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1237 	ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1238 	while (ref_ptr < ref_end) {
1239 		char *name = NULL;
1240 		int namelen;
1241 		u64 parent_id;
1242 
1243 		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1244 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1245 						NULL, &parent_id);
1246 		} else {
1247 			parent_id = key->offset;
1248 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1249 					     NULL);
1250 		}
1251 		if (ret)
1252 			goto out;
1253 
1254 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1255 			ret = btrfs_find_name_in_ext_backref(log_eb, log_slot,
1256 							     parent_id, name,
1257 							     namelen, NULL);
1258 		else
1259 			ret = btrfs_find_name_in_backref(log_eb, log_slot, name,
1260 							 namelen, NULL);
1261 
1262 		if (!ret) {
1263 			struct inode *dir;
1264 
1265 			btrfs_release_path(path);
1266 			dir = read_one_inode(root, parent_id);
1267 			if (!dir) {
1268 				ret = -ENOENT;
1269 				kfree(name);
1270 				goto out;
1271 			}
1272 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1273 						 inode, name, namelen);
1274 			kfree(name);
1275 			iput(dir);
1276 			if (ret)
1277 				goto out;
1278 			goto again;
1279 		}
1280 
1281 		kfree(name);
1282 		ref_ptr += namelen;
1283 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1284 			ref_ptr += sizeof(struct btrfs_inode_extref);
1285 		else
1286 			ref_ptr += sizeof(struct btrfs_inode_ref);
1287 	}
1288 	ret = 0;
1289  out:
1290 	btrfs_release_path(path);
1291 	return ret;
1292 }
1293 
1294 static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1295 				  const u8 ref_type, const char *name,
1296 				  const int namelen)
1297 {
1298 	struct btrfs_key key;
1299 	struct btrfs_path *path;
1300 	const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1301 	int ret;
1302 
1303 	path = btrfs_alloc_path();
1304 	if (!path)
1305 		return -ENOMEM;
1306 
1307 	key.objectid = btrfs_ino(BTRFS_I(inode));
1308 	key.type = ref_type;
1309 	if (key.type == BTRFS_INODE_REF_KEY)
1310 		key.offset = parent_id;
1311 	else
1312 		key.offset = btrfs_extref_hash(parent_id, name, namelen);
1313 
1314 	ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1315 	if (ret < 0)
1316 		goto out;
1317 	if (ret > 0) {
1318 		ret = 0;
1319 		goto out;
1320 	}
1321 	if (key.type == BTRFS_INODE_EXTREF_KEY)
1322 		ret = btrfs_find_name_in_ext_backref(path->nodes[0],
1323 						     path->slots[0], parent_id,
1324 						     name, namelen, NULL);
1325 	else
1326 		ret = btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1327 						 name, namelen, NULL);
1328 
1329 out:
1330 	btrfs_free_path(path);
1331 	return ret;
1332 }
1333 
1334 static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1335 		    struct inode *dir, struct inode *inode, const char *name,
1336 		    int namelen, u64 ref_index)
1337 {
1338 	struct btrfs_dir_item *dir_item;
1339 	struct btrfs_key key;
1340 	struct btrfs_path *path;
1341 	struct inode *other_inode = NULL;
1342 	int ret;
1343 
1344 	path = btrfs_alloc_path();
1345 	if (!path)
1346 		return -ENOMEM;
1347 
1348 	dir_item = btrfs_lookup_dir_item(NULL, root, path,
1349 					 btrfs_ino(BTRFS_I(dir)),
1350 					 name, namelen, 0);
1351 	if (!dir_item) {
1352 		btrfs_release_path(path);
1353 		goto add_link;
1354 	} else if (IS_ERR(dir_item)) {
1355 		ret = PTR_ERR(dir_item);
1356 		goto out;
1357 	}
1358 
1359 	/*
1360 	 * Our inode's dentry collides with the dentry of another inode which is
1361 	 * in the log but not yet processed since it has a higher inode number.
1362 	 * So delete that other dentry.
1363 	 */
1364 	btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1365 	btrfs_release_path(path);
1366 	other_inode = read_one_inode(root, key.objectid);
1367 	if (!other_inode) {
1368 		ret = -ENOENT;
1369 		goto out;
1370 	}
1371 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
1372 				 name, namelen);
1373 	if (ret)
1374 		goto out;
1375 	/*
1376 	 * If we dropped the link count to 0, bump it so that later the iput()
1377 	 * on the inode will not free it. We will fixup the link count later.
1378 	 */
1379 	if (other_inode->i_nlink == 0)
1380 		inc_nlink(other_inode);
1381 
1382 	ret = btrfs_run_delayed_items(trans);
1383 	if (ret)
1384 		goto out;
1385 add_link:
1386 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1387 			     name, namelen, 0, ref_index);
1388 out:
1389 	iput(other_inode);
1390 	btrfs_free_path(path);
1391 
1392 	return ret;
1393 }
1394 
1395 /*
1396  * replay one inode back reference item found in the log tree.
1397  * eb, slot and key refer to the buffer and key found in the log tree.
1398  * root is the destination we are replaying into, and path is for temp
1399  * use by this function.  (it should be released on return).
1400  */
1401 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1402 				  struct btrfs_root *root,
1403 				  struct btrfs_root *log,
1404 				  struct btrfs_path *path,
1405 				  struct extent_buffer *eb, int slot,
1406 				  struct btrfs_key *key)
1407 {
1408 	struct inode *dir = NULL;
1409 	struct inode *inode = NULL;
1410 	unsigned long ref_ptr;
1411 	unsigned long ref_end;
1412 	char *name = NULL;
1413 	int namelen;
1414 	int ret;
1415 	int search_done = 0;
1416 	int log_ref_ver = 0;
1417 	u64 parent_objectid;
1418 	u64 inode_objectid;
1419 	u64 ref_index = 0;
1420 	int ref_struct_size;
1421 
1422 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1423 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1424 
1425 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1426 		struct btrfs_inode_extref *r;
1427 
1428 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1429 		log_ref_ver = 1;
1430 		r = (struct btrfs_inode_extref *)ref_ptr;
1431 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1432 	} else {
1433 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1434 		parent_objectid = key->offset;
1435 	}
1436 	inode_objectid = key->objectid;
1437 
1438 	/*
1439 	 * it is possible that we didn't log all the parent directories
1440 	 * for a given inode.  If we don't find the dir, just don't
1441 	 * copy the back ref in.  The link count fixup code will take
1442 	 * care of the rest
1443 	 */
1444 	dir = read_one_inode(root, parent_objectid);
1445 	if (!dir) {
1446 		ret = -ENOENT;
1447 		goto out;
1448 	}
1449 
1450 	inode = read_one_inode(root, inode_objectid);
1451 	if (!inode) {
1452 		ret = -EIO;
1453 		goto out;
1454 	}
1455 
1456 	while (ref_ptr < ref_end) {
1457 		if (log_ref_ver) {
1458 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1459 						&ref_index, &parent_objectid);
1460 			/*
1461 			 * parent object can change from one array
1462 			 * item to another.
1463 			 */
1464 			if (!dir)
1465 				dir = read_one_inode(root, parent_objectid);
1466 			if (!dir) {
1467 				ret = -ENOENT;
1468 				goto out;
1469 			}
1470 		} else {
1471 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1472 					     &ref_index);
1473 		}
1474 		if (ret)
1475 			goto out;
1476 
1477 		/* if we already have a perfect match, we're done */
1478 		if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1479 					btrfs_ino(BTRFS_I(inode)), ref_index,
1480 					name, namelen)) {
1481 			/*
1482 			 * look for a conflicting back reference in the
1483 			 * metadata. if we find one we have to unlink that name
1484 			 * of the file before we add our new link.  Later on, we
1485 			 * overwrite any existing back reference, and we don't
1486 			 * want to create dangling pointers in the directory.
1487 			 */
1488 
1489 			if (!search_done) {
1490 				ret = __add_inode_ref(trans, root, path, log,
1491 						      BTRFS_I(dir),
1492 						      BTRFS_I(inode),
1493 						      inode_objectid,
1494 						      parent_objectid,
1495 						      ref_index, name, namelen,
1496 						      &search_done);
1497 				if (ret) {
1498 					if (ret == 1)
1499 						ret = 0;
1500 					goto out;
1501 				}
1502 			}
1503 
1504 			/*
1505 			 * If a reference item already exists for this inode
1506 			 * with the same parent and name, but different index,
1507 			 * drop it and the corresponding directory index entries
1508 			 * from the parent before adding the new reference item
1509 			 * and dir index entries, otherwise we would fail with
1510 			 * -EEXIST returned from btrfs_add_link() below.
1511 			 */
1512 			ret = btrfs_inode_ref_exists(inode, dir, key->type,
1513 						     name, namelen);
1514 			if (ret > 0) {
1515 				ret = btrfs_unlink_inode(trans, root,
1516 							 BTRFS_I(dir),
1517 							 BTRFS_I(inode),
1518 							 name, namelen);
1519 				/*
1520 				 * If we dropped the link count to 0, bump it so
1521 				 * that later the iput() on the inode will not
1522 				 * free it. We will fixup the link count later.
1523 				 */
1524 				if (!ret && inode->i_nlink == 0)
1525 					inc_nlink(inode);
1526 			}
1527 			if (ret < 0)
1528 				goto out;
1529 
1530 			/* insert our name */
1531 			ret = add_link(trans, root, dir, inode, name, namelen,
1532 				       ref_index);
1533 			if (ret)
1534 				goto out;
1535 
1536 			btrfs_update_inode(trans, root, inode);
1537 		}
1538 
1539 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1540 		kfree(name);
1541 		name = NULL;
1542 		if (log_ref_ver) {
1543 			iput(dir);
1544 			dir = NULL;
1545 		}
1546 	}
1547 
1548 	/*
1549 	 * Before we overwrite the inode reference item in the subvolume tree
1550 	 * with the item from the log tree, we must unlink all names from the
1551 	 * parent directory that are in the subvolume's tree inode reference
1552 	 * item, otherwise we end up with an inconsistent subvolume tree where
1553 	 * dir index entries exist for a name but there is no inode reference
1554 	 * item with the same name.
1555 	 */
1556 	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1557 				    key);
1558 	if (ret)
1559 		goto out;
1560 
1561 	/* finally write the back reference in the inode */
1562 	ret = overwrite_item(trans, root, path, eb, slot, key);
1563 out:
1564 	btrfs_release_path(path);
1565 	kfree(name);
1566 	iput(dir);
1567 	iput(inode);
1568 	return ret;
1569 }
1570 
1571 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1572 			      struct btrfs_root *root, u64 ino)
1573 {
1574 	int ret;
1575 
1576 	ret = btrfs_insert_orphan_item(trans, root, ino);
1577 	if (ret == -EEXIST)
1578 		ret = 0;
1579 
1580 	return ret;
1581 }
1582 
1583 static int count_inode_extrefs(struct btrfs_root *root,
1584 		struct btrfs_inode *inode, struct btrfs_path *path)
1585 {
1586 	int ret = 0;
1587 	int name_len;
1588 	unsigned int nlink = 0;
1589 	u32 item_size;
1590 	u32 cur_offset = 0;
1591 	u64 inode_objectid = btrfs_ino(inode);
1592 	u64 offset = 0;
1593 	unsigned long ptr;
1594 	struct btrfs_inode_extref *extref;
1595 	struct extent_buffer *leaf;
1596 
1597 	while (1) {
1598 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1599 					    &extref, &offset);
1600 		if (ret)
1601 			break;
1602 
1603 		leaf = path->nodes[0];
1604 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1605 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1606 		cur_offset = 0;
1607 
1608 		while (cur_offset < item_size) {
1609 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1610 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1611 
1612 			nlink++;
1613 
1614 			cur_offset += name_len + sizeof(*extref);
1615 		}
1616 
1617 		offset++;
1618 		btrfs_release_path(path);
1619 	}
1620 	btrfs_release_path(path);
1621 
1622 	if (ret < 0 && ret != -ENOENT)
1623 		return ret;
1624 	return nlink;
1625 }
1626 
1627 static int count_inode_refs(struct btrfs_root *root,
1628 			struct btrfs_inode *inode, struct btrfs_path *path)
1629 {
1630 	int ret;
1631 	struct btrfs_key key;
1632 	unsigned int nlink = 0;
1633 	unsigned long ptr;
1634 	unsigned long ptr_end;
1635 	int name_len;
1636 	u64 ino = btrfs_ino(inode);
1637 
1638 	key.objectid = ino;
1639 	key.type = BTRFS_INODE_REF_KEY;
1640 	key.offset = (u64)-1;
1641 
1642 	while (1) {
1643 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1644 		if (ret < 0)
1645 			break;
1646 		if (ret > 0) {
1647 			if (path->slots[0] == 0)
1648 				break;
1649 			path->slots[0]--;
1650 		}
1651 process_slot:
1652 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1653 				      path->slots[0]);
1654 		if (key.objectid != ino ||
1655 		    key.type != BTRFS_INODE_REF_KEY)
1656 			break;
1657 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1658 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1659 						   path->slots[0]);
1660 		while (ptr < ptr_end) {
1661 			struct btrfs_inode_ref *ref;
1662 
1663 			ref = (struct btrfs_inode_ref *)ptr;
1664 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1665 							    ref);
1666 			ptr = (unsigned long)(ref + 1) + name_len;
1667 			nlink++;
1668 		}
1669 
1670 		if (key.offset == 0)
1671 			break;
1672 		if (path->slots[0] > 0) {
1673 			path->slots[0]--;
1674 			goto process_slot;
1675 		}
1676 		key.offset--;
1677 		btrfs_release_path(path);
1678 	}
1679 	btrfs_release_path(path);
1680 
1681 	return nlink;
1682 }
1683 
1684 /*
1685  * There are a few corners where the link count of the file can't
1686  * be properly maintained during replay.  So, instead of adding
1687  * lots of complexity to the log code, we just scan the backrefs
1688  * for any file that has been through replay.
1689  *
1690  * The scan will update the link count on the inode to reflect the
1691  * number of back refs found.  If it goes down to zero, the iput
1692  * will free the inode.
1693  */
1694 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1695 					   struct btrfs_root *root,
1696 					   struct inode *inode)
1697 {
1698 	struct btrfs_path *path;
1699 	int ret;
1700 	u64 nlink = 0;
1701 	u64 ino = btrfs_ino(BTRFS_I(inode));
1702 
1703 	path = btrfs_alloc_path();
1704 	if (!path)
1705 		return -ENOMEM;
1706 
1707 	ret = count_inode_refs(root, BTRFS_I(inode), path);
1708 	if (ret < 0)
1709 		goto out;
1710 
1711 	nlink = ret;
1712 
1713 	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1714 	if (ret < 0)
1715 		goto out;
1716 
1717 	nlink += ret;
1718 
1719 	ret = 0;
1720 
1721 	if (nlink != inode->i_nlink) {
1722 		set_nlink(inode, nlink);
1723 		btrfs_update_inode(trans, root, inode);
1724 	}
1725 	BTRFS_I(inode)->index_cnt = (u64)-1;
1726 
1727 	if (inode->i_nlink == 0) {
1728 		if (S_ISDIR(inode->i_mode)) {
1729 			ret = replay_dir_deletes(trans, root, NULL, path,
1730 						 ino, 1);
1731 			if (ret)
1732 				goto out;
1733 		}
1734 		ret = insert_orphan_item(trans, root, ino);
1735 	}
1736 
1737 out:
1738 	btrfs_free_path(path);
1739 	return ret;
1740 }
1741 
1742 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1743 					    struct btrfs_root *root,
1744 					    struct btrfs_path *path)
1745 {
1746 	int ret;
1747 	struct btrfs_key key;
1748 	struct inode *inode;
1749 
1750 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1751 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1752 	key.offset = (u64)-1;
1753 	while (1) {
1754 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1755 		if (ret < 0)
1756 			break;
1757 
1758 		if (ret == 1) {
1759 			if (path->slots[0] == 0)
1760 				break;
1761 			path->slots[0]--;
1762 		}
1763 
1764 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1765 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1766 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1767 			break;
1768 
1769 		ret = btrfs_del_item(trans, root, path);
1770 		if (ret)
1771 			goto out;
1772 
1773 		btrfs_release_path(path);
1774 		inode = read_one_inode(root, key.offset);
1775 		if (!inode)
1776 			return -EIO;
1777 
1778 		ret = fixup_inode_link_count(trans, root, inode);
1779 		iput(inode);
1780 		if (ret)
1781 			goto out;
1782 
1783 		/*
1784 		 * fixup on a directory may create new entries,
1785 		 * make sure we always look for the highset possible
1786 		 * offset
1787 		 */
1788 		key.offset = (u64)-1;
1789 	}
1790 	ret = 0;
1791 out:
1792 	btrfs_release_path(path);
1793 	return ret;
1794 }
1795 
1796 
1797 /*
1798  * record a given inode in the fixup dir so we can check its link
1799  * count when replay is done.  The link count is incremented here
1800  * so the inode won't go away until we check it
1801  */
1802 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1803 				      struct btrfs_root *root,
1804 				      struct btrfs_path *path,
1805 				      u64 objectid)
1806 {
1807 	struct btrfs_key key;
1808 	int ret = 0;
1809 	struct inode *inode;
1810 
1811 	inode = read_one_inode(root, objectid);
1812 	if (!inode)
1813 		return -EIO;
1814 
1815 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1816 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1817 	key.offset = objectid;
1818 
1819 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1820 
1821 	btrfs_release_path(path);
1822 	if (ret == 0) {
1823 		if (!inode->i_nlink)
1824 			set_nlink(inode, 1);
1825 		else
1826 			inc_nlink(inode);
1827 		ret = btrfs_update_inode(trans, root, inode);
1828 	} else if (ret == -EEXIST) {
1829 		ret = 0;
1830 	} else {
1831 		BUG(); /* Logic Error */
1832 	}
1833 	iput(inode);
1834 
1835 	return ret;
1836 }
1837 
1838 /*
1839  * when replaying the log for a directory, we only insert names
1840  * for inodes that actually exist.  This means an fsync on a directory
1841  * does not implicitly fsync all the new files in it
1842  */
1843 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1844 				    struct btrfs_root *root,
1845 				    u64 dirid, u64 index,
1846 				    char *name, int name_len,
1847 				    struct btrfs_key *location)
1848 {
1849 	struct inode *inode;
1850 	struct inode *dir;
1851 	int ret;
1852 
1853 	inode = read_one_inode(root, location->objectid);
1854 	if (!inode)
1855 		return -ENOENT;
1856 
1857 	dir = read_one_inode(root, dirid);
1858 	if (!dir) {
1859 		iput(inode);
1860 		return -EIO;
1861 	}
1862 
1863 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1864 			name_len, 1, index);
1865 
1866 	/* FIXME, put inode into FIXUP list */
1867 
1868 	iput(inode);
1869 	iput(dir);
1870 	return ret;
1871 }
1872 
1873 /*
1874  * Return true if an inode reference exists in the log for the given name,
1875  * inode and parent inode.
1876  */
1877 static bool name_in_log_ref(struct btrfs_root *log_root,
1878 			    const char *name, const int name_len,
1879 			    const u64 dirid, const u64 ino)
1880 {
1881 	struct btrfs_key search_key;
1882 
1883 	search_key.objectid = ino;
1884 	search_key.type = BTRFS_INODE_REF_KEY;
1885 	search_key.offset = dirid;
1886 	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1887 		return true;
1888 
1889 	search_key.type = BTRFS_INODE_EXTREF_KEY;
1890 	search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1891 	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1892 		return true;
1893 
1894 	return false;
1895 }
1896 
1897 /*
1898  * take a single entry in a log directory item and replay it into
1899  * the subvolume.
1900  *
1901  * if a conflicting item exists in the subdirectory already,
1902  * the inode it points to is unlinked and put into the link count
1903  * fix up tree.
1904  *
1905  * If a name from the log points to a file or directory that does
1906  * not exist in the FS, it is skipped.  fsyncs on directories
1907  * do not force down inodes inside that directory, just changes to the
1908  * names or unlinks in a directory.
1909  *
1910  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1911  * non-existing inode) and 1 if the name was replayed.
1912  */
1913 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1914 				    struct btrfs_root *root,
1915 				    struct btrfs_path *path,
1916 				    struct extent_buffer *eb,
1917 				    struct btrfs_dir_item *di,
1918 				    struct btrfs_key *key)
1919 {
1920 	char *name;
1921 	int name_len;
1922 	struct btrfs_dir_item *dst_di;
1923 	struct btrfs_key found_key;
1924 	struct btrfs_key log_key;
1925 	struct inode *dir;
1926 	u8 log_type;
1927 	int exists;
1928 	int ret = 0;
1929 	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1930 	bool name_added = false;
1931 
1932 	dir = read_one_inode(root, key->objectid);
1933 	if (!dir)
1934 		return -EIO;
1935 
1936 	name_len = btrfs_dir_name_len(eb, di);
1937 	name = kmalloc(name_len, GFP_NOFS);
1938 	if (!name) {
1939 		ret = -ENOMEM;
1940 		goto out;
1941 	}
1942 
1943 	log_type = btrfs_dir_type(eb, di);
1944 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1945 		   name_len);
1946 
1947 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1948 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1949 	if (exists == 0)
1950 		exists = 1;
1951 	else
1952 		exists = 0;
1953 	btrfs_release_path(path);
1954 
1955 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1956 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1957 				       name, name_len, 1);
1958 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1959 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1960 						     key->objectid,
1961 						     key->offset, name,
1962 						     name_len, 1);
1963 	} else {
1964 		/* Corruption */
1965 		ret = -EINVAL;
1966 		goto out;
1967 	}
1968 	if (IS_ERR_OR_NULL(dst_di)) {
1969 		/* we need a sequence number to insert, so we only
1970 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1971 		 */
1972 		if (key->type != BTRFS_DIR_INDEX_KEY)
1973 			goto out;
1974 		goto insert;
1975 	}
1976 
1977 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1978 	/* the existing item matches the logged item */
1979 	if (found_key.objectid == log_key.objectid &&
1980 	    found_key.type == log_key.type &&
1981 	    found_key.offset == log_key.offset &&
1982 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1983 		update_size = false;
1984 		goto out;
1985 	}
1986 
1987 	/*
1988 	 * don't drop the conflicting directory entry if the inode
1989 	 * for the new entry doesn't exist
1990 	 */
1991 	if (!exists)
1992 		goto out;
1993 
1994 	ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
1995 	if (ret)
1996 		goto out;
1997 
1998 	if (key->type == BTRFS_DIR_INDEX_KEY)
1999 		goto insert;
2000 out:
2001 	btrfs_release_path(path);
2002 	if (!ret && update_size) {
2003 		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
2004 		ret = btrfs_update_inode(trans, root, dir);
2005 	}
2006 	kfree(name);
2007 	iput(dir);
2008 	if (!ret && name_added)
2009 		ret = 1;
2010 	return ret;
2011 
2012 insert:
2013 	if (name_in_log_ref(root->log_root, name, name_len,
2014 			    key->objectid, log_key.objectid)) {
2015 		/* The dentry will be added later. */
2016 		ret = 0;
2017 		update_size = false;
2018 		goto out;
2019 	}
2020 	btrfs_release_path(path);
2021 	ret = insert_one_name(trans, root, key->objectid, key->offset,
2022 			      name, name_len, &log_key);
2023 	if (ret && ret != -ENOENT && ret != -EEXIST)
2024 		goto out;
2025 	if (!ret)
2026 		name_added = true;
2027 	update_size = false;
2028 	ret = 0;
2029 	goto out;
2030 }
2031 
2032 /*
2033  * find all the names in a directory item and reconcile them into
2034  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
2035  * one name in a directory item, but the same code gets used for
2036  * both directory index types
2037  */
2038 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2039 					struct btrfs_root *root,
2040 					struct btrfs_path *path,
2041 					struct extent_buffer *eb, int slot,
2042 					struct btrfs_key *key)
2043 {
2044 	int ret = 0;
2045 	u32 item_size = btrfs_item_size_nr(eb, slot);
2046 	struct btrfs_dir_item *di;
2047 	int name_len;
2048 	unsigned long ptr;
2049 	unsigned long ptr_end;
2050 	struct btrfs_path *fixup_path = NULL;
2051 
2052 	ptr = btrfs_item_ptr_offset(eb, slot);
2053 	ptr_end = ptr + item_size;
2054 	while (ptr < ptr_end) {
2055 		di = (struct btrfs_dir_item *)ptr;
2056 		name_len = btrfs_dir_name_len(eb, di);
2057 		ret = replay_one_name(trans, root, path, eb, di, key);
2058 		if (ret < 0)
2059 			break;
2060 		ptr = (unsigned long)(di + 1);
2061 		ptr += name_len;
2062 
2063 		/*
2064 		 * If this entry refers to a non-directory (directories can not
2065 		 * have a link count > 1) and it was added in the transaction
2066 		 * that was not committed, make sure we fixup the link count of
2067 		 * the inode it the entry points to. Otherwise something like
2068 		 * the following would result in a directory pointing to an
2069 		 * inode with a wrong link that does not account for this dir
2070 		 * entry:
2071 		 *
2072 		 * mkdir testdir
2073 		 * touch testdir/foo
2074 		 * touch testdir/bar
2075 		 * sync
2076 		 *
2077 		 * ln testdir/bar testdir/bar_link
2078 		 * ln testdir/foo testdir/foo_link
2079 		 * xfs_io -c "fsync" testdir/bar
2080 		 *
2081 		 * <power failure>
2082 		 *
2083 		 * mount fs, log replay happens
2084 		 *
2085 		 * File foo would remain with a link count of 1 when it has two
2086 		 * entries pointing to it in the directory testdir. This would
2087 		 * make it impossible to ever delete the parent directory has
2088 		 * it would result in stale dentries that can never be deleted.
2089 		 */
2090 		if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2091 			struct btrfs_key di_key;
2092 
2093 			if (!fixup_path) {
2094 				fixup_path = btrfs_alloc_path();
2095 				if (!fixup_path) {
2096 					ret = -ENOMEM;
2097 					break;
2098 				}
2099 			}
2100 
2101 			btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2102 			ret = link_to_fixup_dir(trans, root, fixup_path,
2103 						di_key.objectid);
2104 			if (ret)
2105 				break;
2106 		}
2107 		ret = 0;
2108 	}
2109 	btrfs_free_path(fixup_path);
2110 	return ret;
2111 }
2112 
2113 /*
2114  * directory replay has two parts.  There are the standard directory
2115  * items in the log copied from the subvolume, and range items
2116  * created in the log while the subvolume was logged.
2117  *
2118  * The range items tell us which parts of the key space the log
2119  * is authoritative for.  During replay, if a key in the subvolume
2120  * directory is in a logged range item, but not actually in the log
2121  * that means it was deleted from the directory before the fsync
2122  * and should be removed.
2123  */
2124 static noinline int find_dir_range(struct btrfs_root *root,
2125 				   struct btrfs_path *path,
2126 				   u64 dirid, int key_type,
2127 				   u64 *start_ret, u64 *end_ret)
2128 {
2129 	struct btrfs_key key;
2130 	u64 found_end;
2131 	struct btrfs_dir_log_item *item;
2132 	int ret;
2133 	int nritems;
2134 
2135 	if (*start_ret == (u64)-1)
2136 		return 1;
2137 
2138 	key.objectid = dirid;
2139 	key.type = key_type;
2140 	key.offset = *start_ret;
2141 
2142 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2143 	if (ret < 0)
2144 		goto out;
2145 	if (ret > 0) {
2146 		if (path->slots[0] == 0)
2147 			goto out;
2148 		path->slots[0]--;
2149 	}
2150 	if (ret != 0)
2151 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2152 
2153 	if (key.type != key_type || key.objectid != dirid) {
2154 		ret = 1;
2155 		goto next;
2156 	}
2157 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2158 			      struct btrfs_dir_log_item);
2159 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2160 
2161 	if (*start_ret >= key.offset && *start_ret <= found_end) {
2162 		ret = 0;
2163 		*start_ret = key.offset;
2164 		*end_ret = found_end;
2165 		goto out;
2166 	}
2167 	ret = 1;
2168 next:
2169 	/* check the next slot in the tree to see if it is a valid item */
2170 	nritems = btrfs_header_nritems(path->nodes[0]);
2171 	path->slots[0]++;
2172 	if (path->slots[0] >= nritems) {
2173 		ret = btrfs_next_leaf(root, path);
2174 		if (ret)
2175 			goto out;
2176 	}
2177 
2178 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2179 
2180 	if (key.type != key_type || key.objectid != dirid) {
2181 		ret = 1;
2182 		goto out;
2183 	}
2184 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2185 			      struct btrfs_dir_log_item);
2186 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2187 	*start_ret = key.offset;
2188 	*end_ret = found_end;
2189 	ret = 0;
2190 out:
2191 	btrfs_release_path(path);
2192 	return ret;
2193 }
2194 
2195 /*
2196  * this looks for a given directory item in the log.  If the directory
2197  * item is not in the log, the item is removed and the inode it points
2198  * to is unlinked
2199  */
2200 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2201 				      struct btrfs_root *root,
2202 				      struct btrfs_root *log,
2203 				      struct btrfs_path *path,
2204 				      struct btrfs_path *log_path,
2205 				      struct inode *dir,
2206 				      struct btrfs_key *dir_key)
2207 {
2208 	int ret;
2209 	struct extent_buffer *eb;
2210 	int slot;
2211 	u32 item_size;
2212 	struct btrfs_dir_item *di;
2213 	struct btrfs_dir_item *log_di;
2214 	int name_len;
2215 	unsigned long ptr;
2216 	unsigned long ptr_end;
2217 	char *name;
2218 	struct inode *inode;
2219 	struct btrfs_key location;
2220 
2221 again:
2222 	eb = path->nodes[0];
2223 	slot = path->slots[0];
2224 	item_size = btrfs_item_size_nr(eb, slot);
2225 	ptr = btrfs_item_ptr_offset(eb, slot);
2226 	ptr_end = ptr + item_size;
2227 	while (ptr < ptr_end) {
2228 		di = (struct btrfs_dir_item *)ptr;
2229 		name_len = btrfs_dir_name_len(eb, di);
2230 		name = kmalloc(name_len, GFP_NOFS);
2231 		if (!name) {
2232 			ret = -ENOMEM;
2233 			goto out;
2234 		}
2235 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
2236 				  name_len);
2237 		log_di = NULL;
2238 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2239 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
2240 						       dir_key->objectid,
2241 						       name, name_len, 0);
2242 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2243 			log_di = btrfs_lookup_dir_index_item(trans, log,
2244 						     log_path,
2245 						     dir_key->objectid,
2246 						     dir_key->offset,
2247 						     name, name_len, 0);
2248 		}
2249 		if (!log_di || log_di == ERR_PTR(-ENOENT)) {
2250 			btrfs_dir_item_key_to_cpu(eb, di, &location);
2251 			btrfs_release_path(path);
2252 			btrfs_release_path(log_path);
2253 			inode = read_one_inode(root, location.objectid);
2254 			if (!inode) {
2255 				kfree(name);
2256 				return -EIO;
2257 			}
2258 
2259 			ret = link_to_fixup_dir(trans, root,
2260 						path, location.objectid);
2261 			if (ret) {
2262 				kfree(name);
2263 				iput(inode);
2264 				goto out;
2265 			}
2266 
2267 			inc_nlink(inode);
2268 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2269 					BTRFS_I(inode), name, name_len);
2270 			if (!ret)
2271 				ret = btrfs_run_delayed_items(trans);
2272 			kfree(name);
2273 			iput(inode);
2274 			if (ret)
2275 				goto out;
2276 
2277 			/* there might still be more names under this key
2278 			 * check and repeat if required
2279 			 */
2280 			ret = btrfs_search_slot(NULL, root, dir_key, path,
2281 						0, 0);
2282 			if (ret == 0)
2283 				goto again;
2284 			ret = 0;
2285 			goto out;
2286 		} else if (IS_ERR(log_di)) {
2287 			kfree(name);
2288 			return PTR_ERR(log_di);
2289 		}
2290 		btrfs_release_path(log_path);
2291 		kfree(name);
2292 
2293 		ptr = (unsigned long)(di + 1);
2294 		ptr += name_len;
2295 	}
2296 	ret = 0;
2297 out:
2298 	btrfs_release_path(path);
2299 	btrfs_release_path(log_path);
2300 	return ret;
2301 }
2302 
2303 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2304 			      struct btrfs_root *root,
2305 			      struct btrfs_root *log,
2306 			      struct btrfs_path *path,
2307 			      const u64 ino)
2308 {
2309 	struct btrfs_key search_key;
2310 	struct btrfs_path *log_path;
2311 	int i;
2312 	int nritems;
2313 	int ret;
2314 
2315 	log_path = btrfs_alloc_path();
2316 	if (!log_path)
2317 		return -ENOMEM;
2318 
2319 	search_key.objectid = ino;
2320 	search_key.type = BTRFS_XATTR_ITEM_KEY;
2321 	search_key.offset = 0;
2322 again:
2323 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2324 	if (ret < 0)
2325 		goto out;
2326 process_leaf:
2327 	nritems = btrfs_header_nritems(path->nodes[0]);
2328 	for (i = path->slots[0]; i < nritems; i++) {
2329 		struct btrfs_key key;
2330 		struct btrfs_dir_item *di;
2331 		struct btrfs_dir_item *log_di;
2332 		u32 total_size;
2333 		u32 cur;
2334 
2335 		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2336 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2337 			ret = 0;
2338 			goto out;
2339 		}
2340 
2341 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2342 		total_size = btrfs_item_size_nr(path->nodes[0], i);
2343 		cur = 0;
2344 		while (cur < total_size) {
2345 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2346 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2347 			u32 this_len = sizeof(*di) + name_len + data_len;
2348 			char *name;
2349 
2350 			name = kmalloc(name_len, GFP_NOFS);
2351 			if (!name) {
2352 				ret = -ENOMEM;
2353 				goto out;
2354 			}
2355 			read_extent_buffer(path->nodes[0], name,
2356 					   (unsigned long)(di + 1), name_len);
2357 
2358 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2359 						    name, name_len, 0);
2360 			btrfs_release_path(log_path);
2361 			if (!log_di) {
2362 				/* Doesn't exist in log tree, so delete it. */
2363 				btrfs_release_path(path);
2364 				di = btrfs_lookup_xattr(trans, root, path, ino,
2365 							name, name_len, -1);
2366 				kfree(name);
2367 				if (IS_ERR(di)) {
2368 					ret = PTR_ERR(di);
2369 					goto out;
2370 				}
2371 				ASSERT(di);
2372 				ret = btrfs_delete_one_dir_name(trans, root,
2373 								path, di);
2374 				if (ret)
2375 					goto out;
2376 				btrfs_release_path(path);
2377 				search_key = key;
2378 				goto again;
2379 			}
2380 			kfree(name);
2381 			if (IS_ERR(log_di)) {
2382 				ret = PTR_ERR(log_di);
2383 				goto out;
2384 			}
2385 			cur += this_len;
2386 			di = (struct btrfs_dir_item *)((char *)di + this_len);
2387 		}
2388 	}
2389 	ret = btrfs_next_leaf(root, path);
2390 	if (ret > 0)
2391 		ret = 0;
2392 	else if (ret == 0)
2393 		goto process_leaf;
2394 out:
2395 	btrfs_free_path(log_path);
2396 	btrfs_release_path(path);
2397 	return ret;
2398 }
2399 
2400 
2401 /*
2402  * deletion replay happens before we copy any new directory items
2403  * out of the log or out of backreferences from inodes.  It
2404  * scans the log to find ranges of keys that log is authoritative for,
2405  * and then scans the directory to find items in those ranges that are
2406  * not present in the log.
2407  *
2408  * Anything we don't find in the log is unlinked and removed from the
2409  * directory.
2410  */
2411 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2412 				       struct btrfs_root *root,
2413 				       struct btrfs_root *log,
2414 				       struct btrfs_path *path,
2415 				       u64 dirid, int del_all)
2416 {
2417 	u64 range_start;
2418 	u64 range_end;
2419 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2420 	int ret = 0;
2421 	struct btrfs_key dir_key;
2422 	struct btrfs_key found_key;
2423 	struct btrfs_path *log_path;
2424 	struct inode *dir;
2425 
2426 	dir_key.objectid = dirid;
2427 	dir_key.type = BTRFS_DIR_ITEM_KEY;
2428 	log_path = btrfs_alloc_path();
2429 	if (!log_path)
2430 		return -ENOMEM;
2431 
2432 	dir = read_one_inode(root, dirid);
2433 	/* it isn't an error if the inode isn't there, that can happen
2434 	 * because we replay the deletes before we copy in the inode item
2435 	 * from the log
2436 	 */
2437 	if (!dir) {
2438 		btrfs_free_path(log_path);
2439 		return 0;
2440 	}
2441 again:
2442 	range_start = 0;
2443 	range_end = 0;
2444 	while (1) {
2445 		if (del_all)
2446 			range_end = (u64)-1;
2447 		else {
2448 			ret = find_dir_range(log, path, dirid, key_type,
2449 					     &range_start, &range_end);
2450 			if (ret != 0)
2451 				break;
2452 		}
2453 
2454 		dir_key.offset = range_start;
2455 		while (1) {
2456 			int nritems;
2457 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2458 						0, 0);
2459 			if (ret < 0)
2460 				goto out;
2461 
2462 			nritems = btrfs_header_nritems(path->nodes[0]);
2463 			if (path->slots[0] >= nritems) {
2464 				ret = btrfs_next_leaf(root, path);
2465 				if (ret == 1)
2466 					break;
2467 				else if (ret < 0)
2468 					goto out;
2469 			}
2470 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2471 					      path->slots[0]);
2472 			if (found_key.objectid != dirid ||
2473 			    found_key.type != dir_key.type)
2474 				goto next_type;
2475 
2476 			if (found_key.offset > range_end)
2477 				break;
2478 
2479 			ret = check_item_in_log(trans, root, log, path,
2480 						log_path, dir,
2481 						&found_key);
2482 			if (ret)
2483 				goto out;
2484 			if (found_key.offset == (u64)-1)
2485 				break;
2486 			dir_key.offset = found_key.offset + 1;
2487 		}
2488 		btrfs_release_path(path);
2489 		if (range_end == (u64)-1)
2490 			break;
2491 		range_start = range_end + 1;
2492 	}
2493 
2494 next_type:
2495 	ret = 0;
2496 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2497 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2498 		dir_key.type = BTRFS_DIR_INDEX_KEY;
2499 		btrfs_release_path(path);
2500 		goto again;
2501 	}
2502 out:
2503 	btrfs_release_path(path);
2504 	btrfs_free_path(log_path);
2505 	iput(dir);
2506 	return ret;
2507 }
2508 
2509 /*
2510  * the process_func used to replay items from the log tree.  This
2511  * gets called in two different stages.  The first stage just looks
2512  * for inodes and makes sure they are all copied into the subvolume.
2513  *
2514  * The second stage copies all the other item types from the log into
2515  * the subvolume.  The two stage approach is slower, but gets rid of
2516  * lots of complexity around inodes referencing other inodes that exist
2517  * only in the log (references come from either directory items or inode
2518  * back refs).
2519  */
2520 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2521 			     struct walk_control *wc, u64 gen, int level)
2522 {
2523 	int nritems;
2524 	struct btrfs_path *path;
2525 	struct btrfs_root *root = wc->replay_dest;
2526 	struct btrfs_key key;
2527 	int i;
2528 	int ret;
2529 
2530 	ret = btrfs_read_buffer(eb, gen, level, NULL);
2531 	if (ret)
2532 		return ret;
2533 
2534 	level = btrfs_header_level(eb);
2535 
2536 	if (level != 0)
2537 		return 0;
2538 
2539 	path = btrfs_alloc_path();
2540 	if (!path)
2541 		return -ENOMEM;
2542 
2543 	nritems = btrfs_header_nritems(eb);
2544 	for (i = 0; i < nritems; i++) {
2545 		btrfs_item_key_to_cpu(eb, &key, i);
2546 
2547 		/* inode keys are done during the first stage */
2548 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2549 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2550 			struct btrfs_inode_item *inode_item;
2551 			u32 mode;
2552 
2553 			inode_item = btrfs_item_ptr(eb, i,
2554 					    struct btrfs_inode_item);
2555 			/*
2556 			 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2557 			 * and never got linked before the fsync, skip it, as
2558 			 * replaying it is pointless since it would be deleted
2559 			 * later. We skip logging tmpfiles, but it's always
2560 			 * possible we are replaying a log created with a kernel
2561 			 * that used to log tmpfiles.
2562 			 */
2563 			if (btrfs_inode_nlink(eb, inode_item) == 0) {
2564 				wc->ignore_cur_inode = true;
2565 				continue;
2566 			} else {
2567 				wc->ignore_cur_inode = false;
2568 			}
2569 			ret = replay_xattr_deletes(wc->trans, root, log,
2570 						   path, key.objectid);
2571 			if (ret)
2572 				break;
2573 			mode = btrfs_inode_mode(eb, inode_item);
2574 			if (S_ISDIR(mode)) {
2575 				ret = replay_dir_deletes(wc->trans,
2576 					 root, log, path, key.objectid, 0);
2577 				if (ret)
2578 					break;
2579 			}
2580 			ret = overwrite_item(wc->trans, root, path,
2581 					     eb, i, &key);
2582 			if (ret)
2583 				break;
2584 
2585 			/*
2586 			 * Before replaying extents, truncate the inode to its
2587 			 * size. We need to do it now and not after log replay
2588 			 * because before an fsync we can have prealloc extents
2589 			 * added beyond the inode's i_size. If we did it after,
2590 			 * through orphan cleanup for example, we would drop
2591 			 * those prealloc extents just after replaying them.
2592 			 */
2593 			if (S_ISREG(mode)) {
2594 				struct inode *inode;
2595 				u64 from;
2596 
2597 				inode = read_one_inode(root, key.objectid);
2598 				if (!inode) {
2599 					ret = -EIO;
2600 					break;
2601 				}
2602 				from = ALIGN(i_size_read(inode),
2603 					     root->fs_info->sectorsize);
2604 				ret = btrfs_drop_extents(wc->trans, root, inode,
2605 							 from, (u64)-1, 1);
2606 				if (!ret) {
2607 					/* Update the inode's nbytes. */
2608 					ret = btrfs_update_inode(wc->trans,
2609 								 root, inode);
2610 				}
2611 				iput(inode);
2612 				if (ret)
2613 					break;
2614 			}
2615 
2616 			ret = link_to_fixup_dir(wc->trans, root,
2617 						path, key.objectid);
2618 			if (ret)
2619 				break;
2620 		}
2621 
2622 		if (wc->ignore_cur_inode)
2623 			continue;
2624 
2625 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2626 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2627 			ret = replay_one_dir_item(wc->trans, root, path,
2628 						  eb, i, &key);
2629 			if (ret)
2630 				break;
2631 		}
2632 
2633 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2634 			continue;
2635 
2636 		/* these keys are simply copied */
2637 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2638 			ret = overwrite_item(wc->trans, root, path,
2639 					     eb, i, &key);
2640 			if (ret)
2641 				break;
2642 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2643 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2644 			ret = add_inode_ref(wc->trans, root, log, path,
2645 					    eb, i, &key);
2646 			if (ret && ret != -ENOENT)
2647 				break;
2648 			ret = 0;
2649 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2650 			ret = replay_one_extent(wc->trans, root, path,
2651 						eb, i, &key);
2652 			if (ret)
2653 				break;
2654 		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2655 			ret = replay_one_dir_item(wc->trans, root, path,
2656 						  eb, i, &key);
2657 			if (ret)
2658 				break;
2659 		}
2660 	}
2661 	btrfs_free_path(path);
2662 	return ret;
2663 }
2664 
2665 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2666 				   struct btrfs_root *root,
2667 				   struct btrfs_path *path, int *level,
2668 				   struct walk_control *wc)
2669 {
2670 	struct btrfs_fs_info *fs_info = root->fs_info;
2671 	u64 root_owner;
2672 	u64 bytenr;
2673 	u64 ptr_gen;
2674 	struct extent_buffer *next;
2675 	struct extent_buffer *cur;
2676 	struct extent_buffer *parent;
2677 	u32 blocksize;
2678 	int ret = 0;
2679 
2680 	WARN_ON(*level < 0);
2681 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2682 
2683 	while (*level > 0) {
2684 		struct btrfs_key first_key;
2685 
2686 		WARN_ON(*level < 0);
2687 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
2688 		cur = path->nodes[*level];
2689 
2690 		WARN_ON(btrfs_header_level(cur) != *level);
2691 
2692 		if (path->slots[*level] >=
2693 		    btrfs_header_nritems(cur))
2694 			break;
2695 
2696 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2697 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2698 		btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2699 		blocksize = fs_info->nodesize;
2700 
2701 		parent = path->nodes[*level];
2702 		root_owner = btrfs_header_owner(parent);
2703 
2704 		next = btrfs_find_create_tree_block(fs_info, bytenr);
2705 		if (IS_ERR(next))
2706 			return PTR_ERR(next);
2707 
2708 		if (*level == 1) {
2709 			ret = wc->process_func(root, next, wc, ptr_gen,
2710 					       *level - 1);
2711 			if (ret) {
2712 				free_extent_buffer(next);
2713 				return ret;
2714 			}
2715 
2716 			path->slots[*level]++;
2717 			if (wc->free) {
2718 				ret = btrfs_read_buffer(next, ptr_gen,
2719 							*level - 1, &first_key);
2720 				if (ret) {
2721 					free_extent_buffer(next);
2722 					return ret;
2723 				}
2724 
2725 				if (trans) {
2726 					btrfs_tree_lock(next);
2727 					btrfs_set_lock_blocking_write(next);
2728 					clean_tree_block(fs_info, next);
2729 					btrfs_wait_tree_block_writeback(next);
2730 					btrfs_tree_unlock(next);
2731 				} else {
2732 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2733 						clear_extent_buffer_dirty(next);
2734 				}
2735 
2736 				WARN_ON(root_owner !=
2737 					BTRFS_TREE_LOG_OBJECTID);
2738 				ret = btrfs_free_and_pin_reserved_extent(
2739 							fs_info, bytenr,
2740 							blocksize);
2741 				if (ret) {
2742 					free_extent_buffer(next);
2743 					return ret;
2744 				}
2745 			}
2746 			free_extent_buffer(next);
2747 			continue;
2748 		}
2749 		ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2750 		if (ret) {
2751 			free_extent_buffer(next);
2752 			return ret;
2753 		}
2754 
2755 		WARN_ON(*level <= 0);
2756 		if (path->nodes[*level-1])
2757 			free_extent_buffer(path->nodes[*level-1]);
2758 		path->nodes[*level-1] = next;
2759 		*level = btrfs_header_level(next);
2760 		path->slots[*level] = 0;
2761 		cond_resched();
2762 	}
2763 	WARN_ON(*level < 0);
2764 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2765 
2766 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2767 
2768 	cond_resched();
2769 	return 0;
2770 }
2771 
2772 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2773 				 struct btrfs_root *root,
2774 				 struct btrfs_path *path, int *level,
2775 				 struct walk_control *wc)
2776 {
2777 	struct btrfs_fs_info *fs_info = root->fs_info;
2778 	u64 root_owner;
2779 	int i;
2780 	int slot;
2781 	int ret;
2782 
2783 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2784 		slot = path->slots[i];
2785 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2786 			path->slots[i]++;
2787 			*level = i;
2788 			WARN_ON(*level == 0);
2789 			return 0;
2790 		} else {
2791 			struct extent_buffer *parent;
2792 			if (path->nodes[*level] == root->node)
2793 				parent = path->nodes[*level];
2794 			else
2795 				parent = path->nodes[*level + 1];
2796 
2797 			root_owner = btrfs_header_owner(parent);
2798 			ret = wc->process_func(root, path->nodes[*level], wc,
2799 				 btrfs_header_generation(path->nodes[*level]),
2800 				 *level);
2801 			if (ret)
2802 				return ret;
2803 
2804 			if (wc->free) {
2805 				struct extent_buffer *next;
2806 
2807 				next = path->nodes[*level];
2808 
2809 				if (trans) {
2810 					btrfs_tree_lock(next);
2811 					btrfs_set_lock_blocking_write(next);
2812 					clean_tree_block(fs_info, next);
2813 					btrfs_wait_tree_block_writeback(next);
2814 					btrfs_tree_unlock(next);
2815 				} else {
2816 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2817 						clear_extent_buffer_dirty(next);
2818 				}
2819 
2820 				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2821 				ret = btrfs_free_and_pin_reserved_extent(
2822 						fs_info,
2823 						path->nodes[*level]->start,
2824 						path->nodes[*level]->len);
2825 				if (ret)
2826 					return ret;
2827 			}
2828 			free_extent_buffer(path->nodes[*level]);
2829 			path->nodes[*level] = NULL;
2830 			*level = i + 1;
2831 		}
2832 	}
2833 	return 1;
2834 }
2835 
2836 /*
2837  * drop the reference count on the tree rooted at 'snap'.  This traverses
2838  * the tree freeing any blocks that have a ref count of zero after being
2839  * decremented.
2840  */
2841 static int walk_log_tree(struct btrfs_trans_handle *trans,
2842 			 struct btrfs_root *log, struct walk_control *wc)
2843 {
2844 	struct btrfs_fs_info *fs_info = log->fs_info;
2845 	int ret = 0;
2846 	int wret;
2847 	int level;
2848 	struct btrfs_path *path;
2849 	int orig_level;
2850 
2851 	path = btrfs_alloc_path();
2852 	if (!path)
2853 		return -ENOMEM;
2854 
2855 	level = btrfs_header_level(log->node);
2856 	orig_level = level;
2857 	path->nodes[level] = log->node;
2858 	extent_buffer_get(log->node);
2859 	path->slots[level] = 0;
2860 
2861 	while (1) {
2862 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2863 		if (wret > 0)
2864 			break;
2865 		if (wret < 0) {
2866 			ret = wret;
2867 			goto out;
2868 		}
2869 
2870 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2871 		if (wret > 0)
2872 			break;
2873 		if (wret < 0) {
2874 			ret = wret;
2875 			goto out;
2876 		}
2877 	}
2878 
2879 	/* was the root node processed? if not, catch it here */
2880 	if (path->nodes[orig_level]) {
2881 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2882 			 btrfs_header_generation(path->nodes[orig_level]),
2883 			 orig_level);
2884 		if (ret)
2885 			goto out;
2886 		if (wc->free) {
2887 			struct extent_buffer *next;
2888 
2889 			next = path->nodes[orig_level];
2890 
2891 			if (trans) {
2892 				btrfs_tree_lock(next);
2893 				btrfs_set_lock_blocking_write(next);
2894 				clean_tree_block(fs_info, next);
2895 				btrfs_wait_tree_block_writeback(next);
2896 				btrfs_tree_unlock(next);
2897 			} else {
2898 				if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2899 					clear_extent_buffer_dirty(next);
2900 			}
2901 
2902 			WARN_ON(log->root_key.objectid !=
2903 				BTRFS_TREE_LOG_OBJECTID);
2904 			ret = btrfs_free_and_pin_reserved_extent(fs_info,
2905 							next->start, next->len);
2906 			if (ret)
2907 				goto out;
2908 		}
2909 	}
2910 
2911 out:
2912 	btrfs_free_path(path);
2913 	return ret;
2914 }
2915 
2916 /*
2917  * helper function to update the item for a given subvolumes log root
2918  * in the tree of log roots
2919  */
2920 static int update_log_root(struct btrfs_trans_handle *trans,
2921 			   struct btrfs_root *log)
2922 {
2923 	struct btrfs_fs_info *fs_info = log->fs_info;
2924 	int ret;
2925 
2926 	if (log->log_transid == 1) {
2927 		/* insert root item on the first sync */
2928 		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2929 				&log->root_key, &log->root_item);
2930 	} else {
2931 		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2932 				&log->root_key, &log->root_item);
2933 	}
2934 	return ret;
2935 }
2936 
2937 static void wait_log_commit(struct btrfs_root *root, int transid)
2938 {
2939 	DEFINE_WAIT(wait);
2940 	int index = transid % 2;
2941 
2942 	/*
2943 	 * we only allow two pending log transactions at a time,
2944 	 * so we know that if ours is more than 2 older than the
2945 	 * current transaction, we're done
2946 	 */
2947 	for (;;) {
2948 		prepare_to_wait(&root->log_commit_wait[index],
2949 				&wait, TASK_UNINTERRUPTIBLE);
2950 
2951 		if (!(root->log_transid_committed < transid &&
2952 		      atomic_read(&root->log_commit[index])))
2953 			break;
2954 
2955 		mutex_unlock(&root->log_mutex);
2956 		schedule();
2957 		mutex_lock(&root->log_mutex);
2958 	}
2959 	finish_wait(&root->log_commit_wait[index], &wait);
2960 }
2961 
2962 static void wait_for_writer(struct btrfs_root *root)
2963 {
2964 	DEFINE_WAIT(wait);
2965 
2966 	for (;;) {
2967 		prepare_to_wait(&root->log_writer_wait, &wait,
2968 				TASK_UNINTERRUPTIBLE);
2969 		if (!atomic_read(&root->log_writers))
2970 			break;
2971 
2972 		mutex_unlock(&root->log_mutex);
2973 		schedule();
2974 		mutex_lock(&root->log_mutex);
2975 	}
2976 	finish_wait(&root->log_writer_wait, &wait);
2977 }
2978 
2979 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2980 					struct btrfs_log_ctx *ctx)
2981 {
2982 	if (!ctx)
2983 		return;
2984 
2985 	mutex_lock(&root->log_mutex);
2986 	list_del_init(&ctx->list);
2987 	mutex_unlock(&root->log_mutex);
2988 }
2989 
2990 /*
2991  * Invoked in log mutex context, or be sure there is no other task which
2992  * can access the list.
2993  */
2994 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2995 					     int index, int error)
2996 {
2997 	struct btrfs_log_ctx *ctx;
2998 	struct btrfs_log_ctx *safe;
2999 
3000 	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
3001 		list_del_init(&ctx->list);
3002 		ctx->log_ret = error;
3003 	}
3004 
3005 	INIT_LIST_HEAD(&root->log_ctxs[index]);
3006 }
3007 
3008 /*
3009  * btrfs_sync_log does sends a given tree log down to the disk and
3010  * updates the super blocks to record it.  When this call is done,
3011  * you know that any inodes previously logged are safely on disk only
3012  * if it returns 0.
3013  *
3014  * Any other return value means you need to call btrfs_commit_transaction.
3015  * Some of the edge cases for fsyncing directories that have had unlinks
3016  * or renames done in the past mean that sometimes the only safe
3017  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
3018  * that has happened.
3019  */
3020 int btrfs_sync_log(struct btrfs_trans_handle *trans,
3021 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
3022 {
3023 	int index1;
3024 	int index2;
3025 	int mark;
3026 	int ret;
3027 	struct btrfs_fs_info *fs_info = root->fs_info;
3028 	struct btrfs_root *log = root->log_root;
3029 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
3030 	int log_transid = 0;
3031 	struct btrfs_log_ctx root_log_ctx;
3032 	struct blk_plug plug;
3033 
3034 	mutex_lock(&root->log_mutex);
3035 	log_transid = ctx->log_transid;
3036 	if (root->log_transid_committed >= log_transid) {
3037 		mutex_unlock(&root->log_mutex);
3038 		return ctx->log_ret;
3039 	}
3040 
3041 	index1 = log_transid % 2;
3042 	if (atomic_read(&root->log_commit[index1])) {
3043 		wait_log_commit(root, log_transid);
3044 		mutex_unlock(&root->log_mutex);
3045 		return ctx->log_ret;
3046 	}
3047 	ASSERT(log_transid == root->log_transid);
3048 	atomic_set(&root->log_commit[index1], 1);
3049 
3050 	/* wait for previous tree log sync to complete */
3051 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
3052 		wait_log_commit(root, log_transid - 1);
3053 
3054 	while (1) {
3055 		int batch = atomic_read(&root->log_batch);
3056 		/* when we're on an ssd, just kick the log commit out */
3057 		if (!btrfs_test_opt(fs_info, SSD) &&
3058 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3059 			mutex_unlock(&root->log_mutex);
3060 			schedule_timeout_uninterruptible(1);
3061 			mutex_lock(&root->log_mutex);
3062 		}
3063 		wait_for_writer(root);
3064 		if (batch == atomic_read(&root->log_batch))
3065 			break;
3066 	}
3067 
3068 	/* bail out if we need to do a full commit */
3069 	if (btrfs_need_log_full_commit(fs_info, trans)) {
3070 		ret = -EAGAIN;
3071 		mutex_unlock(&root->log_mutex);
3072 		goto out;
3073 	}
3074 
3075 	if (log_transid % 2 == 0)
3076 		mark = EXTENT_DIRTY;
3077 	else
3078 		mark = EXTENT_NEW;
3079 
3080 	/* we start IO on  all the marked extents here, but we don't actually
3081 	 * wait for them until later.
3082 	 */
3083 	blk_start_plug(&plug);
3084 	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3085 	if (ret) {
3086 		blk_finish_plug(&plug);
3087 		btrfs_abort_transaction(trans, ret);
3088 		btrfs_set_log_full_commit(fs_info, trans);
3089 		mutex_unlock(&root->log_mutex);
3090 		goto out;
3091 	}
3092 
3093 	btrfs_set_root_node(&log->root_item, log->node);
3094 
3095 	root->log_transid++;
3096 	log->log_transid = root->log_transid;
3097 	root->log_start_pid = 0;
3098 	/*
3099 	 * IO has been started, blocks of the log tree have WRITTEN flag set
3100 	 * in their headers. new modifications of the log will be written to
3101 	 * new positions. so it's safe to allow log writers to go in.
3102 	 */
3103 	mutex_unlock(&root->log_mutex);
3104 
3105 	btrfs_init_log_ctx(&root_log_ctx, NULL);
3106 
3107 	mutex_lock(&log_root_tree->log_mutex);
3108 	atomic_inc(&log_root_tree->log_batch);
3109 	atomic_inc(&log_root_tree->log_writers);
3110 
3111 	index2 = log_root_tree->log_transid % 2;
3112 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3113 	root_log_ctx.log_transid = log_root_tree->log_transid;
3114 
3115 	mutex_unlock(&log_root_tree->log_mutex);
3116 
3117 	ret = update_log_root(trans, log);
3118 
3119 	mutex_lock(&log_root_tree->log_mutex);
3120 	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
3121 		/* atomic_dec_and_test implies a barrier */
3122 		cond_wake_up_nomb(&log_root_tree->log_writer_wait);
3123 	}
3124 
3125 	if (ret) {
3126 		if (!list_empty(&root_log_ctx.list))
3127 			list_del_init(&root_log_ctx.list);
3128 
3129 		blk_finish_plug(&plug);
3130 		btrfs_set_log_full_commit(fs_info, trans);
3131 
3132 		if (ret != -ENOSPC) {
3133 			btrfs_abort_transaction(trans, ret);
3134 			mutex_unlock(&log_root_tree->log_mutex);
3135 			goto out;
3136 		}
3137 		btrfs_wait_tree_log_extents(log, mark);
3138 		mutex_unlock(&log_root_tree->log_mutex);
3139 		ret = -EAGAIN;
3140 		goto out;
3141 	}
3142 
3143 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3144 		blk_finish_plug(&plug);
3145 		list_del_init(&root_log_ctx.list);
3146 		mutex_unlock(&log_root_tree->log_mutex);
3147 		ret = root_log_ctx.log_ret;
3148 		goto out;
3149 	}
3150 
3151 	index2 = root_log_ctx.log_transid % 2;
3152 	if (atomic_read(&log_root_tree->log_commit[index2])) {
3153 		blk_finish_plug(&plug);
3154 		ret = btrfs_wait_tree_log_extents(log, mark);
3155 		wait_log_commit(log_root_tree,
3156 				root_log_ctx.log_transid);
3157 		mutex_unlock(&log_root_tree->log_mutex);
3158 		if (!ret)
3159 			ret = root_log_ctx.log_ret;
3160 		goto out;
3161 	}
3162 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3163 	atomic_set(&log_root_tree->log_commit[index2], 1);
3164 
3165 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3166 		wait_log_commit(log_root_tree,
3167 				root_log_ctx.log_transid - 1);
3168 	}
3169 
3170 	wait_for_writer(log_root_tree);
3171 
3172 	/*
3173 	 * now that we've moved on to the tree of log tree roots,
3174 	 * check the full commit flag again
3175 	 */
3176 	if (btrfs_need_log_full_commit(fs_info, trans)) {
3177 		blk_finish_plug(&plug);
3178 		btrfs_wait_tree_log_extents(log, mark);
3179 		mutex_unlock(&log_root_tree->log_mutex);
3180 		ret = -EAGAIN;
3181 		goto out_wake_log_root;
3182 	}
3183 
3184 	ret = btrfs_write_marked_extents(fs_info,
3185 					 &log_root_tree->dirty_log_pages,
3186 					 EXTENT_DIRTY | EXTENT_NEW);
3187 	blk_finish_plug(&plug);
3188 	if (ret) {
3189 		btrfs_set_log_full_commit(fs_info, trans);
3190 		btrfs_abort_transaction(trans, ret);
3191 		mutex_unlock(&log_root_tree->log_mutex);
3192 		goto out_wake_log_root;
3193 	}
3194 	ret = btrfs_wait_tree_log_extents(log, mark);
3195 	if (!ret)
3196 		ret = btrfs_wait_tree_log_extents(log_root_tree,
3197 						  EXTENT_NEW | EXTENT_DIRTY);
3198 	if (ret) {
3199 		btrfs_set_log_full_commit(fs_info, trans);
3200 		mutex_unlock(&log_root_tree->log_mutex);
3201 		goto out_wake_log_root;
3202 	}
3203 
3204 	btrfs_set_super_log_root(fs_info->super_for_commit,
3205 				 log_root_tree->node->start);
3206 	btrfs_set_super_log_root_level(fs_info->super_for_commit,
3207 				       btrfs_header_level(log_root_tree->node));
3208 
3209 	log_root_tree->log_transid++;
3210 	mutex_unlock(&log_root_tree->log_mutex);
3211 
3212 	/*
3213 	 * Nobody else is going to jump in and write the ctree
3214 	 * super here because the log_commit atomic below is protecting
3215 	 * us.  We must be called with a transaction handle pinning
3216 	 * the running transaction open, so a full commit can't hop
3217 	 * in and cause problems either.
3218 	 */
3219 	ret = write_all_supers(fs_info, 1);
3220 	if (ret) {
3221 		btrfs_set_log_full_commit(fs_info, trans);
3222 		btrfs_abort_transaction(trans, ret);
3223 		goto out_wake_log_root;
3224 	}
3225 
3226 	mutex_lock(&root->log_mutex);
3227 	if (root->last_log_commit < log_transid)
3228 		root->last_log_commit = log_transid;
3229 	mutex_unlock(&root->log_mutex);
3230 
3231 out_wake_log_root:
3232 	mutex_lock(&log_root_tree->log_mutex);
3233 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3234 
3235 	log_root_tree->log_transid_committed++;
3236 	atomic_set(&log_root_tree->log_commit[index2], 0);
3237 	mutex_unlock(&log_root_tree->log_mutex);
3238 
3239 	/*
3240 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3241 	 * all the updates above are seen by the woken threads. It might not be
3242 	 * necessary, but proving that seems to be hard.
3243 	 */
3244 	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3245 out:
3246 	mutex_lock(&root->log_mutex);
3247 	btrfs_remove_all_log_ctxs(root, index1, ret);
3248 	root->log_transid_committed++;
3249 	atomic_set(&root->log_commit[index1], 0);
3250 	mutex_unlock(&root->log_mutex);
3251 
3252 	/*
3253 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3254 	 * all the updates above are seen by the woken threads. It might not be
3255 	 * necessary, but proving that seems to be hard.
3256 	 */
3257 	cond_wake_up(&root->log_commit_wait[index1]);
3258 	return ret;
3259 }
3260 
3261 static void free_log_tree(struct btrfs_trans_handle *trans,
3262 			  struct btrfs_root *log)
3263 {
3264 	int ret;
3265 	struct walk_control wc = {
3266 		.free = 1,
3267 		.process_func = process_one_buffer
3268 	};
3269 
3270 	ret = walk_log_tree(trans, log, &wc);
3271 	if (ret) {
3272 		if (trans)
3273 			btrfs_abort_transaction(trans, ret);
3274 		else
3275 			btrfs_handle_fs_error(log->fs_info, ret, NULL);
3276 	}
3277 
3278 	clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3279 			  EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3280 	free_extent_buffer(log->node);
3281 	kfree(log);
3282 }
3283 
3284 /*
3285  * free all the extents used by the tree log.  This should be called
3286  * at commit time of the full transaction
3287  */
3288 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3289 {
3290 	if (root->log_root) {
3291 		free_log_tree(trans, root->log_root);
3292 		root->log_root = NULL;
3293 	}
3294 	return 0;
3295 }
3296 
3297 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3298 			     struct btrfs_fs_info *fs_info)
3299 {
3300 	if (fs_info->log_root_tree) {
3301 		free_log_tree(trans, fs_info->log_root_tree);
3302 		fs_info->log_root_tree = NULL;
3303 	}
3304 	return 0;
3305 }
3306 
3307 /*
3308  * If both a file and directory are logged, and unlinks or renames are
3309  * mixed in, we have a few interesting corners:
3310  *
3311  * create file X in dir Y
3312  * link file X to X.link in dir Y
3313  * fsync file X
3314  * unlink file X but leave X.link
3315  * fsync dir Y
3316  *
3317  * After a crash we would expect only X.link to exist.  But file X
3318  * didn't get fsync'd again so the log has back refs for X and X.link.
3319  *
3320  * We solve this by removing directory entries and inode backrefs from the
3321  * log when a file that was logged in the current transaction is
3322  * unlinked.  Any later fsync will include the updated log entries, and
3323  * we'll be able to reconstruct the proper directory items from backrefs.
3324  *
3325  * This optimizations allows us to avoid relogging the entire inode
3326  * or the entire directory.
3327  */
3328 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3329 				 struct btrfs_root *root,
3330 				 const char *name, int name_len,
3331 				 struct btrfs_inode *dir, u64 index)
3332 {
3333 	struct btrfs_root *log;
3334 	struct btrfs_dir_item *di;
3335 	struct btrfs_path *path;
3336 	int ret;
3337 	int err = 0;
3338 	int bytes_del = 0;
3339 	u64 dir_ino = btrfs_ino(dir);
3340 
3341 	if (dir->logged_trans < trans->transid)
3342 		return 0;
3343 
3344 	ret = join_running_log_trans(root);
3345 	if (ret)
3346 		return 0;
3347 
3348 	mutex_lock(&dir->log_mutex);
3349 
3350 	log = root->log_root;
3351 	path = btrfs_alloc_path();
3352 	if (!path) {
3353 		err = -ENOMEM;
3354 		goto out_unlock;
3355 	}
3356 
3357 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3358 				   name, name_len, -1);
3359 	if (IS_ERR(di)) {
3360 		err = PTR_ERR(di);
3361 		goto fail;
3362 	}
3363 	if (di) {
3364 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3365 		bytes_del += name_len;
3366 		if (ret) {
3367 			err = ret;
3368 			goto fail;
3369 		}
3370 	}
3371 	btrfs_release_path(path);
3372 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3373 					 index, name, name_len, -1);
3374 	if (IS_ERR(di)) {
3375 		err = PTR_ERR(di);
3376 		goto fail;
3377 	}
3378 	if (di) {
3379 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3380 		bytes_del += name_len;
3381 		if (ret) {
3382 			err = ret;
3383 			goto fail;
3384 		}
3385 	}
3386 
3387 	/* update the directory size in the log to reflect the names
3388 	 * we have removed
3389 	 */
3390 	if (bytes_del) {
3391 		struct btrfs_key key;
3392 
3393 		key.objectid = dir_ino;
3394 		key.offset = 0;
3395 		key.type = BTRFS_INODE_ITEM_KEY;
3396 		btrfs_release_path(path);
3397 
3398 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3399 		if (ret < 0) {
3400 			err = ret;
3401 			goto fail;
3402 		}
3403 		if (ret == 0) {
3404 			struct btrfs_inode_item *item;
3405 			u64 i_size;
3406 
3407 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3408 					      struct btrfs_inode_item);
3409 			i_size = btrfs_inode_size(path->nodes[0], item);
3410 			if (i_size > bytes_del)
3411 				i_size -= bytes_del;
3412 			else
3413 				i_size = 0;
3414 			btrfs_set_inode_size(path->nodes[0], item, i_size);
3415 			btrfs_mark_buffer_dirty(path->nodes[0]);
3416 		} else
3417 			ret = 0;
3418 		btrfs_release_path(path);
3419 	}
3420 fail:
3421 	btrfs_free_path(path);
3422 out_unlock:
3423 	mutex_unlock(&dir->log_mutex);
3424 	if (ret == -ENOSPC) {
3425 		btrfs_set_log_full_commit(root->fs_info, trans);
3426 		ret = 0;
3427 	} else if (ret < 0)
3428 		btrfs_abort_transaction(trans, ret);
3429 
3430 	btrfs_end_log_trans(root);
3431 
3432 	return err;
3433 }
3434 
3435 /* see comments for btrfs_del_dir_entries_in_log */
3436 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3437 			       struct btrfs_root *root,
3438 			       const char *name, int name_len,
3439 			       struct btrfs_inode *inode, u64 dirid)
3440 {
3441 	struct btrfs_fs_info *fs_info = root->fs_info;
3442 	struct btrfs_root *log;
3443 	u64 index;
3444 	int ret;
3445 
3446 	if (inode->logged_trans < trans->transid)
3447 		return 0;
3448 
3449 	ret = join_running_log_trans(root);
3450 	if (ret)
3451 		return 0;
3452 	log = root->log_root;
3453 	mutex_lock(&inode->log_mutex);
3454 
3455 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3456 				  dirid, &index);
3457 	mutex_unlock(&inode->log_mutex);
3458 	if (ret == -ENOSPC) {
3459 		btrfs_set_log_full_commit(fs_info, trans);
3460 		ret = 0;
3461 	} else if (ret < 0 && ret != -ENOENT)
3462 		btrfs_abort_transaction(trans, ret);
3463 	btrfs_end_log_trans(root);
3464 
3465 	return ret;
3466 }
3467 
3468 /*
3469  * creates a range item in the log for 'dirid'.  first_offset and
3470  * last_offset tell us which parts of the key space the log should
3471  * be considered authoritative for.
3472  */
3473 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3474 				       struct btrfs_root *log,
3475 				       struct btrfs_path *path,
3476 				       int key_type, u64 dirid,
3477 				       u64 first_offset, u64 last_offset)
3478 {
3479 	int ret;
3480 	struct btrfs_key key;
3481 	struct btrfs_dir_log_item *item;
3482 
3483 	key.objectid = dirid;
3484 	key.offset = first_offset;
3485 	if (key_type == BTRFS_DIR_ITEM_KEY)
3486 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
3487 	else
3488 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
3489 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3490 	if (ret)
3491 		return ret;
3492 
3493 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3494 			      struct btrfs_dir_log_item);
3495 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3496 	btrfs_mark_buffer_dirty(path->nodes[0]);
3497 	btrfs_release_path(path);
3498 	return 0;
3499 }
3500 
3501 /*
3502  * log all the items included in the current transaction for a given
3503  * directory.  This also creates the range items in the log tree required
3504  * to replay anything deleted before the fsync
3505  */
3506 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3507 			  struct btrfs_root *root, struct btrfs_inode *inode,
3508 			  struct btrfs_path *path,
3509 			  struct btrfs_path *dst_path, int key_type,
3510 			  struct btrfs_log_ctx *ctx,
3511 			  u64 min_offset, u64 *last_offset_ret)
3512 {
3513 	struct btrfs_key min_key;
3514 	struct btrfs_root *log = root->log_root;
3515 	struct extent_buffer *src;
3516 	int err = 0;
3517 	int ret;
3518 	int i;
3519 	int nritems;
3520 	u64 first_offset = min_offset;
3521 	u64 last_offset = (u64)-1;
3522 	u64 ino = btrfs_ino(inode);
3523 
3524 	log = root->log_root;
3525 
3526 	min_key.objectid = ino;
3527 	min_key.type = key_type;
3528 	min_key.offset = min_offset;
3529 
3530 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3531 
3532 	/*
3533 	 * we didn't find anything from this transaction, see if there
3534 	 * is anything at all
3535 	 */
3536 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3537 		min_key.objectid = ino;
3538 		min_key.type = key_type;
3539 		min_key.offset = (u64)-1;
3540 		btrfs_release_path(path);
3541 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3542 		if (ret < 0) {
3543 			btrfs_release_path(path);
3544 			return ret;
3545 		}
3546 		ret = btrfs_previous_item(root, path, ino, key_type);
3547 
3548 		/* if ret == 0 there are items for this type,
3549 		 * create a range to tell us the last key of this type.
3550 		 * otherwise, there are no items in this directory after
3551 		 * *min_offset, and we create a range to indicate that.
3552 		 */
3553 		if (ret == 0) {
3554 			struct btrfs_key tmp;
3555 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3556 					      path->slots[0]);
3557 			if (key_type == tmp.type)
3558 				first_offset = max(min_offset, tmp.offset) + 1;
3559 		}
3560 		goto done;
3561 	}
3562 
3563 	/* go backward to find any previous key */
3564 	ret = btrfs_previous_item(root, path, ino, key_type);
3565 	if (ret == 0) {
3566 		struct btrfs_key tmp;
3567 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3568 		if (key_type == tmp.type) {
3569 			first_offset = tmp.offset;
3570 			ret = overwrite_item(trans, log, dst_path,
3571 					     path->nodes[0], path->slots[0],
3572 					     &tmp);
3573 			if (ret) {
3574 				err = ret;
3575 				goto done;
3576 			}
3577 		}
3578 	}
3579 	btrfs_release_path(path);
3580 
3581 	/* find the first key from this transaction again */
3582 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3583 	if (WARN_ON(ret != 0))
3584 		goto done;
3585 
3586 	/*
3587 	 * we have a block from this transaction, log every item in it
3588 	 * from our directory
3589 	 */
3590 	while (1) {
3591 		struct btrfs_key tmp;
3592 		src = path->nodes[0];
3593 		nritems = btrfs_header_nritems(src);
3594 		for (i = path->slots[0]; i < nritems; i++) {
3595 			struct btrfs_dir_item *di;
3596 
3597 			btrfs_item_key_to_cpu(src, &min_key, i);
3598 
3599 			if (min_key.objectid != ino || min_key.type != key_type)
3600 				goto done;
3601 			ret = overwrite_item(trans, log, dst_path, src, i,
3602 					     &min_key);
3603 			if (ret) {
3604 				err = ret;
3605 				goto done;
3606 			}
3607 
3608 			/*
3609 			 * We must make sure that when we log a directory entry,
3610 			 * the corresponding inode, after log replay, has a
3611 			 * matching link count. For example:
3612 			 *
3613 			 * touch foo
3614 			 * mkdir mydir
3615 			 * sync
3616 			 * ln foo mydir/bar
3617 			 * xfs_io -c "fsync" mydir
3618 			 * <crash>
3619 			 * <mount fs and log replay>
3620 			 *
3621 			 * Would result in a fsync log that when replayed, our
3622 			 * file inode would have a link count of 1, but we get
3623 			 * two directory entries pointing to the same inode.
3624 			 * After removing one of the names, it would not be
3625 			 * possible to remove the other name, which resulted
3626 			 * always in stale file handle errors, and would not
3627 			 * be possible to rmdir the parent directory, since
3628 			 * its i_size could never decrement to the value
3629 			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3630 			 */
3631 			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3632 			btrfs_dir_item_key_to_cpu(src, di, &tmp);
3633 			if (ctx &&
3634 			    (btrfs_dir_transid(src, di) == trans->transid ||
3635 			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3636 			    tmp.type != BTRFS_ROOT_ITEM_KEY)
3637 				ctx->log_new_dentries = true;
3638 		}
3639 		path->slots[0] = nritems;
3640 
3641 		/*
3642 		 * look ahead to the next item and see if it is also
3643 		 * from this directory and from this transaction
3644 		 */
3645 		ret = btrfs_next_leaf(root, path);
3646 		if (ret) {
3647 			if (ret == 1)
3648 				last_offset = (u64)-1;
3649 			else
3650 				err = ret;
3651 			goto done;
3652 		}
3653 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3654 		if (tmp.objectid != ino || tmp.type != key_type) {
3655 			last_offset = (u64)-1;
3656 			goto done;
3657 		}
3658 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3659 			ret = overwrite_item(trans, log, dst_path,
3660 					     path->nodes[0], path->slots[0],
3661 					     &tmp);
3662 			if (ret)
3663 				err = ret;
3664 			else
3665 				last_offset = tmp.offset;
3666 			goto done;
3667 		}
3668 	}
3669 done:
3670 	btrfs_release_path(path);
3671 	btrfs_release_path(dst_path);
3672 
3673 	if (err == 0) {
3674 		*last_offset_ret = last_offset;
3675 		/*
3676 		 * insert the log range keys to indicate where the log
3677 		 * is valid
3678 		 */
3679 		ret = insert_dir_log_key(trans, log, path, key_type,
3680 					 ino, first_offset, last_offset);
3681 		if (ret)
3682 			err = ret;
3683 	}
3684 	return err;
3685 }
3686 
3687 /*
3688  * logging directories is very similar to logging inodes, We find all the items
3689  * from the current transaction and write them to the log.
3690  *
3691  * The recovery code scans the directory in the subvolume, and if it finds a
3692  * key in the range logged that is not present in the log tree, then it means
3693  * that dir entry was unlinked during the transaction.
3694  *
3695  * In order for that scan to work, we must include one key smaller than
3696  * the smallest logged by this transaction and one key larger than the largest
3697  * key logged by this transaction.
3698  */
3699 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3700 			  struct btrfs_root *root, struct btrfs_inode *inode,
3701 			  struct btrfs_path *path,
3702 			  struct btrfs_path *dst_path,
3703 			  struct btrfs_log_ctx *ctx)
3704 {
3705 	u64 min_key;
3706 	u64 max_key;
3707 	int ret;
3708 	int key_type = BTRFS_DIR_ITEM_KEY;
3709 
3710 again:
3711 	min_key = 0;
3712 	max_key = 0;
3713 	while (1) {
3714 		ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3715 				ctx, min_key, &max_key);
3716 		if (ret)
3717 			return ret;
3718 		if (max_key == (u64)-1)
3719 			break;
3720 		min_key = max_key + 1;
3721 	}
3722 
3723 	if (key_type == BTRFS_DIR_ITEM_KEY) {
3724 		key_type = BTRFS_DIR_INDEX_KEY;
3725 		goto again;
3726 	}
3727 	return 0;
3728 }
3729 
3730 /*
3731  * a helper function to drop items from the log before we relog an
3732  * inode.  max_key_type indicates the highest item type to remove.
3733  * This cannot be run for file data extents because it does not
3734  * free the extents they point to.
3735  */
3736 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3737 				  struct btrfs_root *log,
3738 				  struct btrfs_path *path,
3739 				  u64 objectid, int max_key_type)
3740 {
3741 	int ret;
3742 	struct btrfs_key key;
3743 	struct btrfs_key found_key;
3744 	int start_slot;
3745 
3746 	key.objectid = objectid;
3747 	key.type = max_key_type;
3748 	key.offset = (u64)-1;
3749 
3750 	while (1) {
3751 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3752 		BUG_ON(ret == 0); /* Logic error */
3753 		if (ret < 0)
3754 			break;
3755 
3756 		if (path->slots[0] == 0)
3757 			break;
3758 
3759 		path->slots[0]--;
3760 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3761 				      path->slots[0]);
3762 
3763 		if (found_key.objectid != objectid)
3764 			break;
3765 
3766 		found_key.offset = 0;
3767 		found_key.type = 0;
3768 		ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3769 				       &start_slot);
3770 		if (ret < 0)
3771 			break;
3772 
3773 		ret = btrfs_del_items(trans, log, path, start_slot,
3774 				      path->slots[0] - start_slot + 1);
3775 		/*
3776 		 * If start slot isn't 0 then we don't need to re-search, we've
3777 		 * found the last guy with the objectid in this tree.
3778 		 */
3779 		if (ret || start_slot != 0)
3780 			break;
3781 		btrfs_release_path(path);
3782 	}
3783 	btrfs_release_path(path);
3784 	if (ret > 0)
3785 		ret = 0;
3786 	return ret;
3787 }
3788 
3789 static void fill_inode_item(struct btrfs_trans_handle *trans,
3790 			    struct extent_buffer *leaf,
3791 			    struct btrfs_inode_item *item,
3792 			    struct inode *inode, int log_inode_only,
3793 			    u64 logged_isize)
3794 {
3795 	struct btrfs_map_token token;
3796 
3797 	btrfs_init_map_token(&token);
3798 
3799 	if (log_inode_only) {
3800 		/* set the generation to zero so the recover code
3801 		 * can tell the difference between an logging
3802 		 * just to say 'this inode exists' and a logging
3803 		 * to say 'update this inode with these values'
3804 		 */
3805 		btrfs_set_token_inode_generation(leaf, item, 0, &token);
3806 		btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3807 	} else {
3808 		btrfs_set_token_inode_generation(leaf, item,
3809 						 BTRFS_I(inode)->generation,
3810 						 &token);
3811 		btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3812 	}
3813 
3814 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3815 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3816 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3817 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3818 
3819 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3820 				     inode->i_atime.tv_sec, &token);
3821 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3822 				      inode->i_atime.tv_nsec, &token);
3823 
3824 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3825 				     inode->i_mtime.tv_sec, &token);
3826 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3827 				      inode->i_mtime.tv_nsec, &token);
3828 
3829 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3830 				     inode->i_ctime.tv_sec, &token);
3831 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3832 				      inode->i_ctime.tv_nsec, &token);
3833 
3834 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3835 				     &token);
3836 
3837 	btrfs_set_token_inode_sequence(leaf, item,
3838 				       inode_peek_iversion(inode), &token);
3839 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3840 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3841 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3842 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3843 }
3844 
3845 static int log_inode_item(struct btrfs_trans_handle *trans,
3846 			  struct btrfs_root *log, struct btrfs_path *path,
3847 			  struct btrfs_inode *inode)
3848 {
3849 	struct btrfs_inode_item *inode_item;
3850 	int ret;
3851 
3852 	ret = btrfs_insert_empty_item(trans, log, path,
3853 				      &inode->location, sizeof(*inode_item));
3854 	if (ret && ret != -EEXIST)
3855 		return ret;
3856 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3857 				    struct btrfs_inode_item);
3858 	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3859 			0, 0);
3860 	btrfs_release_path(path);
3861 	return 0;
3862 }
3863 
3864 static noinline int copy_items(struct btrfs_trans_handle *trans,
3865 			       struct btrfs_inode *inode,
3866 			       struct btrfs_path *dst_path,
3867 			       struct btrfs_path *src_path, u64 *last_extent,
3868 			       int start_slot, int nr, int inode_only,
3869 			       u64 logged_isize)
3870 {
3871 	struct btrfs_fs_info *fs_info = trans->fs_info;
3872 	unsigned long src_offset;
3873 	unsigned long dst_offset;
3874 	struct btrfs_root *log = inode->root->log_root;
3875 	struct btrfs_file_extent_item *extent;
3876 	struct btrfs_inode_item *inode_item;
3877 	struct extent_buffer *src = src_path->nodes[0];
3878 	struct btrfs_key first_key, last_key, key;
3879 	int ret;
3880 	struct btrfs_key *ins_keys;
3881 	u32 *ins_sizes;
3882 	char *ins_data;
3883 	int i;
3884 	struct list_head ordered_sums;
3885 	int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
3886 	bool has_extents = false;
3887 	bool need_find_last_extent = true;
3888 	bool done = false;
3889 
3890 	INIT_LIST_HEAD(&ordered_sums);
3891 
3892 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3893 			   nr * sizeof(u32), GFP_NOFS);
3894 	if (!ins_data)
3895 		return -ENOMEM;
3896 
3897 	first_key.objectid = (u64)-1;
3898 
3899 	ins_sizes = (u32 *)ins_data;
3900 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3901 
3902 	for (i = 0; i < nr; i++) {
3903 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3904 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3905 	}
3906 	ret = btrfs_insert_empty_items(trans, log, dst_path,
3907 				       ins_keys, ins_sizes, nr);
3908 	if (ret) {
3909 		kfree(ins_data);
3910 		return ret;
3911 	}
3912 
3913 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3914 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3915 						   dst_path->slots[0]);
3916 
3917 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3918 
3919 		if (i == nr - 1)
3920 			last_key = ins_keys[i];
3921 
3922 		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3923 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
3924 						    dst_path->slots[0],
3925 						    struct btrfs_inode_item);
3926 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
3927 					&inode->vfs_inode,
3928 					inode_only == LOG_INODE_EXISTS,
3929 					logged_isize);
3930 		} else {
3931 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3932 					   src_offset, ins_sizes[i]);
3933 		}
3934 
3935 		/*
3936 		 * We set need_find_last_extent here in case we know we were
3937 		 * processing other items and then walk into the first extent in
3938 		 * the inode.  If we don't hit an extent then nothing changes,
3939 		 * we'll do the last search the next time around.
3940 		 */
3941 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3942 			has_extents = true;
3943 			if (first_key.objectid == (u64)-1)
3944 				first_key = ins_keys[i];
3945 		} else {
3946 			need_find_last_extent = false;
3947 		}
3948 
3949 		/* take a reference on file data extents so that truncates
3950 		 * or deletes of this inode don't have to relog the inode
3951 		 * again
3952 		 */
3953 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
3954 		    !skip_csum) {
3955 			int found_type;
3956 			extent = btrfs_item_ptr(src, start_slot + i,
3957 						struct btrfs_file_extent_item);
3958 
3959 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
3960 				continue;
3961 
3962 			found_type = btrfs_file_extent_type(src, extent);
3963 			if (found_type == BTRFS_FILE_EXTENT_REG) {
3964 				u64 ds, dl, cs, cl;
3965 				ds = btrfs_file_extent_disk_bytenr(src,
3966 								extent);
3967 				/* ds == 0 is a hole */
3968 				if (ds == 0)
3969 					continue;
3970 
3971 				dl = btrfs_file_extent_disk_num_bytes(src,
3972 								extent);
3973 				cs = btrfs_file_extent_offset(src, extent);
3974 				cl = btrfs_file_extent_num_bytes(src,
3975 								extent);
3976 				if (btrfs_file_extent_compression(src,
3977 								  extent)) {
3978 					cs = 0;
3979 					cl = dl;
3980 				}
3981 
3982 				ret = btrfs_lookup_csums_range(
3983 						fs_info->csum_root,
3984 						ds + cs, ds + cs + cl - 1,
3985 						&ordered_sums, 0);
3986 				if (ret) {
3987 					btrfs_release_path(dst_path);
3988 					kfree(ins_data);
3989 					return ret;
3990 				}
3991 			}
3992 		}
3993 	}
3994 
3995 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3996 	btrfs_release_path(dst_path);
3997 	kfree(ins_data);
3998 
3999 	/*
4000 	 * we have to do this after the loop above to avoid changing the
4001 	 * log tree while trying to change the log tree.
4002 	 */
4003 	ret = 0;
4004 	while (!list_empty(&ordered_sums)) {
4005 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4006 						   struct btrfs_ordered_sum,
4007 						   list);
4008 		if (!ret)
4009 			ret = btrfs_csum_file_blocks(trans, log, sums);
4010 		list_del(&sums->list);
4011 		kfree(sums);
4012 	}
4013 
4014 	if (!has_extents)
4015 		return ret;
4016 
4017 	if (need_find_last_extent && *last_extent == first_key.offset) {
4018 		/*
4019 		 * We don't have any leafs between our current one and the one
4020 		 * we processed before that can have file extent items for our
4021 		 * inode (and have a generation number smaller than our current
4022 		 * transaction id).
4023 		 */
4024 		need_find_last_extent = false;
4025 	}
4026 
4027 	/*
4028 	 * Because we use btrfs_search_forward we could skip leaves that were
4029 	 * not modified and then assume *last_extent is valid when it really
4030 	 * isn't.  So back up to the previous leaf and read the end of the last
4031 	 * extent before we go and fill in holes.
4032 	 */
4033 	if (need_find_last_extent) {
4034 		u64 len;
4035 
4036 		ret = btrfs_prev_leaf(inode->root, src_path);
4037 		if (ret < 0)
4038 			return ret;
4039 		if (ret)
4040 			goto fill_holes;
4041 		if (src_path->slots[0])
4042 			src_path->slots[0]--;
4043 		src = src_path->nodes[0];
4044 		btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
4045 		if (key.objectid != btrfs_ino(inode) ||
4046 		    key.type != BTRFS_EXTENT_DATA_KEY)
4047 			goto fill_holes;
4048 		extent = btrfs_item_ptr(src, src_path->slots[0],
4049 					struct btrfs_file_extent_item);
4050 		if (btrfs_file_extent_type(src, extent) ==
4051 		    BTRFS_FILE_EXTENT_INLINE) {
4052 			len = btrfs_file_extent_ram_bytes(src, extent);
4053 			*last_extent = ALIGN(key.offset + len,
4054 					     fs_info->sectorsize);
4055 		} else {
4056 			len = btrfs_file_extent_num_bytes(src, extent);
4057 			*last_extent = key.offset + len;
4058 		}
4059 	}
4060 fill_holes:
4061 	/* So we did prev_leaf, now we need to move to the next leaf, but a few
4062 	 * things could have happened
4063 	 *
4064 	 * 1) A merge could have happened, so we could currently be on a leaf
4065 	 * that holds what we were copying in the first place.
4066 	 * 2) A split could have happened, and now not all of the items we want
4067 	 * are on the same leaf.
4068 	 *
4069 	 * So we need to adjust how we search for holes, we need to drop the
4070 	 * path and re-search for the first extent key we found, and then walk
4071 	 * forward until we hit the last one we copied.
4072 	 */
4073 	if (need_find_last_extent) {
4074 		/* btrfs_prev_leaf could return 1 without releasing the path */
4075 		btrfs_release_path(src_path);
4076 		ret = btrfs_search_slot(NULL, inode->root, &first_key,
4077 				src_path, 0, 0);
4078 		if (ret < 0)
4079 			return ret;
4080 		ASSERT(ret == 0);
4081 		src = src_path->nodes[0];
4082 		i = src_path->slots[0];
4083 	} else {
4084 		i = start_slot;
4085 	}
4086 
4087 	/*
4088 	 * Ok so here we need to go through and fill in any holes we may have
4089 	 * to make sure that holes are punched for those areas in case they had
4090 	 * extents previously.
4091 	 */
4092 	while (!done) {
4093 		u64 offset, len;
4094 		u64 extent_end;
4095 
4096 		if (i >= btrfs_header_nritems(src_path->nodes[0])) {
4097 			ret = btrfs_next_leaf(inode->root, src_path);
4098 			if (ret < 0)
4099 				return ret;
4100 			ASSERT(ret == 0);
4101 			src = src_path->nodes[0];
4102 			i = 0;
4103 			need_find_last_extent = true;
4104 		}
4105 
4106 		btrfs_item_key_to_cpu(src, &key, i);
4107 		if (!btrfs_comp_cpu_keys(&key, &last_key))
4108 			done = true;
4109 		if (key.objectid != btrfs_ino(inode) ||
4110 		    key.type != BTRFS_EXTENT_DATA_KEY) {
4111 			i++;
4112 			continue;
4113 		}
4114 		extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
4115 		if (btrfs_file_extent_type(src, extent) ==
4116 		    BTRFS_FILE_EXTENT_INLINE) {
4117 			len = btrfs_file_extent_ram_bytes(src, extent);
4118 			extent_end = ALIGN(key.offset + len,
4119 					   fs_info->sectorsize);
4120 		} else {
4121 			len = btrfs_file_extent_num_bytes(src, extent);
4122 			extent_end = key.offset + len;
4123 		}
4124 		i++;
4125 
4126 		if (*last_extent == key.offset) {
4127 			*last_extent = extent_end;
4128 			continue;
4129 		}
4130 		offset = *last_extent;
4131 		len = key.offset - *last_extent;
4132 		ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
4133 				offset, 0, 0, len, 0, len, 0, 0, 0);
4134 		if (ret)
4135 			break;
4136 		*last_extent = extent_end;
4137 	}
4138 
4139 	/*
4140 	 * Check if there is a hole between the last extent found in our leaf
4141 	 * and the first extent in the next leaf. If there is one, we need to
4142 	 * log an explicit hole so that at replay time we can punch the hole.
4143 	 */
4144 	if (ret == 0 &&
4145 	    key.objectid == btrfs_ino(inode) &&
4146 	    key.type == BTRFS_EXTENT_DATA_KEY &&
4147 	    i == btrfs_header_nritems(src_path->nodes[0])) {
4148 		ret = btrfs_next_leaf(inode->root, src_path);
4149 		need_find_last_extent = true;
4150 		if (ret > 0) {
4151 			ret = 0;
4152 		} else if (ret == 0) {
4153 			btrfs_item_key_to_cpu(src_path->nodes[0], &key,
4154 					      src_path->slots[0]);
4155 			if (key.objectid == btrfs_ino(inode) &&
4156 			    key.type == BTRFS_EXTENT_DATA_KEY &&
4157 			    *last_extent < key.offset) {
4158 				const u64 len = key.offset - *last_extent;
4159 
4160 				ret = btrfs_insert_file_extent(trans, log,
4161 							       btrfs_ino(inode),
4162 							       *last_extent, 0,
4163 							       0, len, 0, len,
4164 							       0, 0, 0);
4165 			}
4166 		}
4167 	}
4168 	/*
4169 	 * Need to let the callers know we dropped the path so they should
4170 	 * re-search.
4171 	 */
4172 	if (!ret && need_find_last_extent)
4173 		ret = 1;
4174 	return ret;
4175 }
4176 
4177 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
4178 {
4179 	struct extent_map *em1, *em2;
4180 
4181 	em1 = list_entry(a, struct extent_map, list);
4182 	em2 = list_entry(b, struct extent_map, list);
4183 
4184 	if (em1->start < em2->start)
4185 		return -1;
4186 	else if (em1->start > em2->start)
4187 		return 1;
4188 	return 0;
4189 }
4190 
4191 static int log_extent_csums(struct btrfs_trans_handle *trans,
4192 			    struct btrfs_inode *inode,
4193 			    struct btrfs_root *log_root,
4194 			    const struct extent_map *em)
4195 {
4196 	u64 csum_offset;
4197 	u64 csum_len;
4198 	LIST_HEAD(ordered_sums);
4199 	int ret = 0;
4200 
4201 	if (inode->flags & BTRFS_INODE_NODATASUM ||
4202 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4203 	    em->block_start == EXTENT_MAP_HOLE)
4204 		return 0;
4205 
4206 	/* If we're compressed we have to save the entire range of csums. */
4207 	if (em->compress_type) {
4208 		csum_offset = 0;
4209 		csum_len = max(em->block_len, em->orig_block_len);
4210 	} else {
4211 		csum_offset = em->mod_start - em->start;
4212 		csum_len = em->mod_len;
4213 	}
4214 
4215 	/* block start is already adjusted for the file extent offset. */
4216 	ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
4217 				       em->block_start + csum_offset,
4218 				       em->block_start + csum_offset +
4219 				       csum_len - 1, &ordered_sums, 0);
4220 	if (ret)
4221 		return ret;
4222 
4223 	while (!list_empty(&ordered_sums)) {
4224 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4225 						   struct btrfs_ordered_sum,
4226 						   list);
4227 		if (!ret)
4228 			ret = btrfs_csum_file_blocks(trans, log_root, sums);
4229 		list_del(&sums->list);
4230 		kfree(sums);
4231 	}
4232 
4233 	return ret;
4234 }
4235 
4236 static int log_one_extent(struct btrfs_trans_handle *trans,
4237 			  struct btrfs_inode *inode, struct btrfs_root *root,
4238 			  const struct extent_map *em,
4239 			  struct btrfs_path *path,
4240 			  struct btrfs_log_ctx *ctx)
4241 {
4242 	struct btrfs_root *log = root->log_root;
4243 	struct btrfs_file_extent_item *fi;
4244 	struct extent_buffer *leaf;
4245 	struct btrfs_map_token token;
4246 	struct btrfs_key key;
4247 	u64 extent_offset = em->start - em->orig_start;
4248 	u64 block_len;
4249 	int ret;
4250 	int extent_inserted = 0;
4251 
4252 	ret = log_extent_csums(trans, inode, log, em);
4253 	if (ret)
4254 		return ret;
4255 
4256 	btrfs_init_map_token(&token);
4257 
4258 	ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
4259 				   em->start + em->len, NULL, 0, 1,
4260 				   sizeof(*fi), &extent_inserted);
4261 	if (ret)
4262 		return ret;
4263 
4264 	if (!extent_inserted) {
4265 		key.objectid = btrfs_ino(inode);
4266 		key.type = BTRFS_EXTENT_DATA_KEY;
4267 		key.offset = em->start;
4268 
4269 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4270 					      sizeof(*fi));
4271 		if (ret)
4272 			return ret;
4273 	}
4274 	leaf = path->nodes[0];
4275 	fi = btrfs_item_ptr(leaf, path->slots[0],
4276 			    struct btrfs_file_extent_item);
4277 
4278 	btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4279 					       &token);
4280 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4281 		btrfs_set_token_file_extent_type(leaf, fi,
4282 						 BTRFS_FILE_EXTENT_PREALLOC,
4283 						 &token);
4284 	else
4285 		btrfs_set_token_file_extent_type(leaf, fi,
4286 						 BTRFS_FILE_EXTENT_REG,
4287 						 &token);
4288 
4289 	block_len = max(em->block_len, em->orig_block_len);
4290 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4291 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4292 							em->block_start,
4293 							&token);
4294 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4295 							   &token);
4296 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4297 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4298 							em->block_start -
4299 							extent_offset, &token);
4300 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4301 							   &token);
4302 	} else {
4303 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4304 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4305 							   &token);
4306 	}
4307 
4308 	btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4309 	btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4310 	btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4311 	btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4312 						&token);
4313 	btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4314 	btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4315 	btrfs_mark_buffer_dirty(leaf);
4316 
4317 	btrfs_release_path(path);
4318 
4319 	return ret;
4320 }
4321 
4322 /*
4323  * Log all prealloc extents beyond the inode's i_size to make sure we do not
4324  * lose them after doing a fast fsync and replaying the log. We scan the
4325  * subvolume's root instead of iterating the inode's extent map tree because
4326  * otherwise we can log incorrect extent items based on extent map conversion.
4327  * That can happen due to the fact that extent maps are merged when they
4328  * are not in the extent map tree's list of modified extents.
4329  */
4330 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4331 				      struct btrfs_inode *inode,
4332 				      struct btrfs_path *path)
4333 {
4334 	struct btrfs_root *root = inode->root;
4335 	struct btrfs_key key;
4336 	const u64 i_size = i_size_read(&inode->vfs_inode);
4337 	const u64 ino = btrfs_ino(inode);
4338 	struct btrfs_path *dst_path = NULL;
4339 	u64 last_extent = (u64)-1;
4340 	int ins_nr = 0;
4341 	int start_slot;
4342 	int ret;
4343 
4344 	if (!(inode->flags & BTRFS_INODE_PREALLOC))
4345 		return 0;
4346 
4347 	key.objectid = ino;
4348 	key.type = BTRFS_EXTENT_DATA_KEY;
4349 	key.offset = i_size;
4350 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4351 	if (ret < 0)
4352 		goto out;
4353 
4354 	while (true) {
4355 		struct extent_buffer *leaf = path->nodes[0];
4356 		int slot = path->slots[0];
4357 
4358 		if (slot >= btrfs_header_nritems(leaf)) {
4359 			if (ins_nr > 0) {
4360 				ret = copy_items(trans, inode, dst_path, path,
4361 						 &last_extent, start_slot,
4362 						 ins_nr, 1, 0);
4363 				if (ret < 0)
4364 					goto out;
4365 				ins_nr = 0;
4366 			}
4367 			ret = btrfs_next_leaf(root, path);
4368 			if (ret < 0)
4369 				goto out;
4370 			if (ret > 0) {
4371 				ret = 0;
4372 				break;
4373 			}
4374 			continue;
4375 		}
4376 
4377 		btrfs_item_key_to_cpu(leaf, &key, slot);
4378 		if (key.objectid > ino)
4379 			break;
4380 		if (WARN_ON_ONCE(key.objectid < ino) ||
4381 		    key.type < BTRFS_EXTENT_DATA_KEY ||
4382 		    key.offset < i_size) {
4383 			path->slots[0]++;
4384 			continue;
4385 		}
4386 		if (last_extent == (u64)-1) {
4387 			last_extent = key.offset;
4388 			/*
4389 			 * Avoid logging extent items logged in past fsync calls
4390 			 * and leading to duplicate keys in the log tree.
4391 			 */
4392 			do {
4393 				ret = btrfs_truncate_inode_items(trans,
4394 							 root->log_root,
4395 							 &inode->vfs_inode,
4396 							 i_size,
4397 							 BTRFS_EXTENT_DATA_KEY);
4398 			} while (ret == -EAGAIN);
4399 			if (ret)
4400 				goto out;
4401 		}
4402 		if (ins_nr == 0)
4403 			start_slot = slot;
4404 		ins_nr++;
4405 		path->slots[0]++;
4406 		if (!dst_path) {
4407 			dst_path = btrfs_alloc_path();
4408 			if (!dst_path) {
4409 				ret = -ENOMEM;
4410 				goto out;
4411 			}
4412 		}
4413 	}
4414 	if (ins_nr > 0) {
4415 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
4416 				 start_slot, ins_nr, 1, 0);
4417 		if (ret > 0)
4418 			ret = 0;
4419 	}
4420 out:
4421 	btrfs_release_path(path);
4422 	btrfs_free_path(dst_path);
4423 	return ret;
4424 }
4425 
4426 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4427 				     struct btrfs_root *root,
4428 				     struct btrfs_inode *inode,
4429 				     struct btrfs_path *path,
4430 				     struct btrfs_log_ctx *ctx,
4431 				     const u64 start,
4432 				     const u64 end)
4433 {
4434 	struct extent_map *em, *n;
4435 	struct list_head extents;
4436 	struct extent_map_tree *tree = &inode->extent_tree;
4437 	u64 test_gen;
4438 	int ret = 0;
4439 	int num = 0;
4440 
4441 	INIT_LIST_HEAD(&extents);
4442 
4443 	write_lock(&tree->lock);
4444 	test_gen = root->fs_info->last_trans_committed;
4445 
4446 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4447 		/*
4448 		 * Skip extents outside our logging range. It's important to do
4449 		 * it for correctness because if we don't ignore them, we may
4450 		 * log them before their ordered extent completes, and therefore
4451 		 * we could log them without logging their respective checksums
4452 		 * (the checksum items are added to the csum tree at the very
4453 		 * end of btrfs_finish_ordered_io()). Also leave such extents
4454 		 * outside of our range in the list, since we may have another
4455 		 * ranged fsync in the near future that needs them. If an extent
4456 		 * outside our range corresponds to a hole, log it to avoid
4457 		 * leaving gaps between extents (fsck will complain when we are
4458 		 * not using the NO_HOLES feature).
4459 		 */
4460 		if ((em->start > end || em->start + em->len <= start) &&
4461 		    em->block_start != EXTENT_MAP_HOLE)
4462 			continue;
4463 
4464 		list_del_init(&em->list);
4465 		/*
4466 		 * Just an arbitrary number, this can be really CPU intensive
4467 		 * once we start getting a lot of extents, and really once we
4468 		 * have a bunch of extents we just want to commit since it will
4469 		 * be faster.
4470 		 */
4471 		if (++num > 32768) {
4472 			list_del_init(&tree->modified_extents);
4473 			ret = -EFBIG;
4474 			goto process;
4475 		}
4476 
4477 		if (em->generation <= test_gen)
4478 			continue;
4479 
4480 		/* We log prealloc extents beyond eof later. */
4481 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4482 		    em->start >= i_size_read(&inode->vfs_inode))
4483 			continue;
4484 
4485 		/* Need a ref to keep it from getting evicted from cache */
4486 		refcount_inc(&em->refs);
4487 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4488 		list_add_tail(&em->list, &extents);
4489 		num++;
4490 	}
4491 
4492 	list_sort(NULL, &extents, extent_cmp);
4493 process:
4494 	while (!list_empty(&extents)) {
4495 		em = list_entry(extents.next, struct extent_map, list);
4496 
4497 		list_del_init(&em->list);
4498 
4499 		/*
4500 		 * If we had an error we just need to delete everybody from our
4501 		 * private list.
4502 		 */
4503 		if (ret) {
4504 			clear_em_logging(tree, em);
4505 			free_extent_map(em);
4506 			continue;
4507 		}
4508 
4509 		write_unlock(&tree->lock);
4510 
4511 		ret = log_one_extent(trans, inode, root, em, path, ctx);
4512 		write_lock(&tree->lock);
4513 		clear_em_logging(tree, em);
4514 		free_extent_map(em);
4515 	}
4516 	WARN_ON(!list_empty(&extents));
4517 	write_unlock(&tree->lock);
4518 
4519 	btrfs_release_path(path);
4520 	if (!ret)
4521 		ret = btrfs_log_prealloc_extents(trans, inode, path);
4522 
4523 	return ret;
4524 }
4525 
4526 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4527 			     struct btrfs_path *path, u64 *size_ret)
4528 {
4529 	struct btrfs_key key;
4530 	int ret;
4531 
4532 	key.objectid = btrfs_ino(inode);
4533 	key.type = BTRFS_INODE_ITEM_KEY;
4534 	key.offset = 0;
4535 
4536 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4537 	if (ret < 0) {
4538 		return ret;
4539 	} else if (ret > 0) {
4540 		*size_ret = 0;
4541 	} else {
4542 		struct btrfs_inode_item *item;
4543 
4544 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4545 				      struct btrfs_inode_item);
4546 		*size_ret = btrfs_inode_size(path->nodes[0], item);
4547 	}
4548 
4549 	btrfs_release_path(path);
4550 	return 0;
4551 }
4552 
4553 /*
4554  * At the moment we always log all xattrs. This is to figure out at log replay
4555  * time which xattrs must have their deletion replayed. If a xattr is missing
4556  * in the log tree and exists in the fs/subvol tree, we delete it. This is
4557  * because if a xattr is deleted, the inode is fsynced and a power failure
4558  * happens, causing the log to be replayed the next time the fs is mounted,
4559  * we want the xattr to not exist anymore (same behaviour as other filesystems
4560  * with a journal, ext3/4, xfs, f2fs, etc).
4561  */
4562 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4563 				struct btrfs_root *root,
4564 				struct btrfs_inode *inode,
4565 				struct btrfs_path *path,
4566 				struct btrfs_path *dst_path)
4567 {
4568 	int ret;
4569 	struct btrfs_key key;
4570 	const u64 ino = btrfs_ino(inode);
4571 	int ins_nr = 0;
4572 	int start_slot = 0;
4573 
4574 	key.objectid = ino;
4575 	key.type = BTRFS_XATTR_ITEM_KEY;
4576 	key.offset = 0;
4577 
4578 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4579 	if (ret < 0)
4580 		return ret;
4581 
4582 	while (true) {
4583 		int slot = path->slots[0];
4584 		struct extent_buffer *leaf = path->nodes[0];
4585 		int nritems = btrfs_header_nritems(leaf);
4586 
4587 		if (slot >= nritems) {
4588 			if (ins_nr > 0) {
4589 				u64 last_extent = 0;
4590 
4591 				ret = copy_items(trans, inode, dst_path, path,
4592 						 &last_extent, start_slot,
4593 						 ins_nr, 1, 0);
4594 				/* can't be 1, extent items aren't processed */
4595 				ASSERT(ret <= 0);
4596 				if (ret < 0)
4597 					return ret;
4598 				ins_nr = 0;
4599 			}
4600 			ret = btrfs_next_leaf(root, path);
4601 			if (ret < 0)
4602 				return ret;
4603 			else if (ret > 0)
4604 				break;
4605 			continue;
4606 		}
4607 
4608 		btrfs_item_key_to_cpu(leaf, &key, slot);
4609 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4610 			break;
4611 
4612 		if (ins_nr == 0)
4613 			start_slot = slot;
4614 		ins_nr++;
4615 		path->slots[0]++;
4616 		cond_resched();
4617 	}
4618 	if (ins_nr > 0) {
4619 		u64 last_extent = 0;
4620 
4621 		ret = copy_items(trans, inode, dst_path, path,
4622 				 &last_extent, start_slot,
4623 				 ins_nr, 1, 0);
4624 		/* can't be 1, extent items aren't processed */
4625 		ASSERT(ret <= 0);
4626 		if (ret < 0)
4627 			return ret;
4628 	}
4629 
4630 	return 0;
4631 }
4632 
4633 /*
4634  * If the no holes feature is enabled we need to make sure any hole between the
4635  * last extent and the i_size of our inode is explicitly marked in the log. This
4636  * is to make sure that doing something like:
4637  *
4638  *      1) create file with 128Kb of data
4639  *      2) truncate file to 64Kb
4640  *      3) truncate file to 256Kb
4641  *      4) fsync file
4642  *      5) <crash/power failure>
4643  *      6) mount fs and trigger log replay
4644  *
4645  * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4646  * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4647  * file correspond to a hole. The presence of explicit holes in a log tree is
4648  * what guarantees that log replay will remove/adjust file extent items in the
4649  * fs/subvol tree.
4650  *
4651  * Here we do not need to care about holes between extents, that is already done
4652  * by copy_items(). We also only need to do this in the full sync path, where we
4653  * lookup for extents from the fs/subvol tree only. In the fast path case, we
4654  * lookup the list of modified extent maps and if any represents a hole, we
4655  * insert a corresponding extent representing a hole in the log tree.
4656  */
4657 static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4658 				   struct btrfs_root *root,
4659 				   struct btrfs_inode *inode,
4660 				   struct btrfs_path *path)
4661 {
4662 	struct btrfs_fs_info *fs_info = root->fs_info;
4663 	int ret;
4664 	struct btrfs_key key;
4665 	u64 hole_start;
4666 	u64 hole_size;
4667 	struct extent_buffer *leaf;
4668 	struct btrfs_root *log = root->log_root;
4669 	const u64 ino = btrfs_ino(inode);
4670 	const u64 i_size = i_size_read(&inode->vfs_inode);
4671 
4672 	if (!btrfs_fs_incompat(fs_info, NO_HOLES))
4673 		return 0;
4674 
4675 	key.objectid = ino;
4676 	key.type = BTRFS_EXTENT_DATA_KEY;
4677 	key.offset = (u64)-1;
4678 
4679 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4680 	ASSERT(ret != 0);
4681 	if (ret < 0)
4682 		return ret;
4683 
4684 	ASSERT(path->slots[0] > 0);
4685 	path->slots[0]--;
4686 	leaf = path->nodes[0];
4687 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4688 
4689 	if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4690 		/* inode does not have any extents */
4691 		hole_start = 0;
4692 		hole_size = i_size;
4693 	} else {
4694 		struct btrfs_file_extent_item *extent;
4695 		u64 len;
4696 
4697 		/*
4698 		 * If there's an extent beyond i_size, an explicit hole was
4699 		 * already inserted by copy_items().
4700 		 */
4701 		if (key.offset >= i_size)
4702 			return 0;
4703 
4704 		extent = btrfs_item_ptr(leaf, path->slots[0],
4705 					struct btrfs_file_extent_item);
4706 
4707 		if (btrfs_file_extent_type(leaf, extent) ==
4708 		    BTRFS_FILE_EXTENT_INLINE) {
4709 			len = btrfs_file_extent_ram_bytes(leaf, extent);
4710 			ASSERT(len == i_size ||
4711 			       (len == fs_info->sectorsize &&
4712 				btrfs_file_extent_compression(leaf, extent) !=
4713 				BTRFS_COMPRESS_NONE) ||
4714 			       (len < i_size && i_size < fs_info->sectorsize));
4715 			return 0;
4716 		}
4717 
4718 		len = btrfs_file_extent_num_bytes(leaf, extent);
4719 		/* Last extent goes beyond i_size, no need to log a hole. */
4720 		if (key.offset + len > i_size)
4721 			return 0;
4722 		hole_start = key.offset + len;
4723 		hole_size = i_size - hole_start;
4724 	}
4725 	btrfs_release_path(path);
4726 
4727 	/* Last extent ends at i_size. */
4728 	if (hole_size == 0)
4729 		return 0;
4730 
4731 	hole_size = ALIGN(hole_size, fs_info->sectorsize);
4732 	ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4733 				       hole_size, 0, hole_size, 0, 0, 0);
4734 	return ret;
4735 }
4736 
4737 /*
4738  * When we are logging a new inode X, check if it doesn't have a reference that
4739  * matches the reference from some other inode Y created in a past transaction
4740  * and that was renamed in the current transaction. If we don't do this, then at
4741  * log replay time we can lose inode Y (and all its files if it's a directory):
4742  *
4743  * mkdir /mnt/x
4744  * echo "hello world" > /mnt/x/foobar
4745  * sync
4746  * mv /mnt/x /mnt/y
4747  * mkdir /mnt/x                 # or touch /mnt/x
4748  * xfs_io -c fsync /mnt/x
4749  * <power fail>
4750  * mount fs, trigger log replay
4751  *
4752  * After the log replay procedure, we would lose the first directory and all its
4753  * files (file foobar).
4754  * For the case where inode Y is not a directory we simply end up losing it:
4755  *
4756  * echo "123" > /mnt/foo
4757  * sync
4758  * mv /mnt/foo /mnt/bar
4759  * echo "abc" > /mnt/foo
4760  * xfs_io -c fsync /mnt/foo
4761  * <power fail>
4762  *
4763  * We also need this for cases where a snapshot entry is replaced by some other
4764  * entry (file or directory) otherwise we end up with an unreplayable log due to
4765  * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4766  * if it were a regular entry:
4767  *
4768  * mkdir /mnt/x
4769  * btrfs subvolume snapshot /mnt /mnt/x/snap
4770  * btrfs subvolume delete /mnt/x/snap
4771  * rmdir /mnt/x
4772  * mkdir /mnt/x
4773  * fsync /mnt/x or fsync some new file inside it
4774  * <power fail>
4775  *
4776  * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4777  * the same transaction.
4778  */
4779 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4780 					 const int slot,
4781 					 const struct btrfs_key *key,
4782 					 struct btrfs_inode *inode,
4783 					 u64 *other_ino, u64 *other_parent)
4784 {
4785 	int ret;
4786 	struct btrfs_path *search_path;
4787 	char *name = NULL;
4788 	u32 name_len = 0;
4789 	u32 item_size = btrfs_item_size_nr(eb, slot);
4790 	u32 cur_offset = 0;
4791 	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4792 
4793 	search_path = btrfs_alloc_path();
4794 	if (!search_path)
4795 		return -ENOMEM;
4796 	search_path->search_commit_root = 1;
4797 	search_path->skip_locking = 1;
4798 
4799 	while (cur_offset < item_size) {
4800 		u64 parent;
4801 		u32 this_name_len;
4802 		u32 this_len;
4803 		unsigned long name_ptr;
4804 		struct btrfs_dir_item *di;
4805 
4806 		if (key->type == BTRFS_INODE_REF_KEY) {
4807 			struct btrfs_inode_ref *iref;
4808 
4809 			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4810 			parent = key->offset;
4811 			this_name_len = btrfs_inode_ref_name_len(eb, iref);
4812 			name_ptr = (unsigned long)(iref + 1);
4813 			this_len = sizeof(*iref) + this_name_len;
4814 		} else {
4815 			struct btrfs_inode_extref *extref;
4816 
4817 			extref = (struct btrfs_inode_extref *)(ptr +
4818 							       cur_offset);
4819 			parent = btrfs_inode_extref_parent(eb, extref);
4820 			this_name_len = btrfs_inode_extref_name_len(eb, extref);
4821 			name_ptr = (unsigned long)&extref->name;
4822 			this_len = sizeof(*extref) + this_name_len;
4823 		}
4824 
4825 		if (this_name_len > name_len) {
4826 			char *new_name;
4827 
4828 			new_name = krealloc(name, this_name_len, GFP_NOFS);
4829 			if (!new_name) {
4830 				ret = -ENOMEM;
4831 				goto out;
4832 			}
4833 			name_len = this_name_len;
4834 			name = new_name;
4835 		}
4836 
4837 		read_extent_buffer(eb, name, name_ptr, this_name_len);
4838 		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4839 				parent, name, this_name_len, 0);
4840 		if (di && !IS_ERR(di)) {
4841 			struct btrfs_key di_key;
4842 
4843 			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4844 						  di, &di_key);
4845 			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4846 				if (di_key.objectid != key->objectid) {
4847 					ret = 1;
4848 					*other_ino = di_key.objectid;
4849 					*other_parent = parent;
4850 				} else {
4851 					ret = 0;
4852 				}
4853 			} else {
4854 				ret = -EAGAIN;
4855 			}
4856 			goto out;
4857 		} else if (IS_ERR(di)) {
4858 			ret = PTR_ERR(di);
4859 			goto out;
4860 		}
4861 		btrfs_release_path(search_path);
4862 
4863 		cur_offset += this_len;
4864 	}
4865 	ret = 0;
4866 out:
4867 	btrfs_free_path(search_path);
4868 	kfree(name);
4869 	return ret;
4870 }
4871 
4872 struct btrfs_ino_list {
4873 	u64 ino;
4874 	u64 parent;
4875 	struct list_head list;
4876 };
4877 
4878 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
4879 				  struct btrfs_root *root,
4880 				  struct btrfs_path *path,
4881 				  struct btrfs_log_ctx *ctx,
4882 				  u64 ino, u64 parent)
4883 {
4884 	struct btrfs_ino_list *ino_elem;
4885 	LIST_HEAD(inode_list);
4886 	int ret = 0;
4887 
4888 	ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4889 	if (!ino_elem)
4890 		return -ENOMEM;
4891 	ino_elem->ino = ino;
4892 	ino_elem->parent = parent;
4893 	list_add_tail(&ino_elem->list, &inode_list);
4894 
4895 	while (!list_empty(&inode_list)) {
4896 		struct btrfs_fs_info *fs_info = root->fs_info;
4897 		struct btrfs_key key;
4898 		struct inode *inode;
4899 
4900 		ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
4901 					    list);
4902 		ino = ino_elem->ino;
4903 		parent = ino_elem->parent;
4904 		list_del(&ino_elem->list);
4905 		kfree(ino_elem);
4906 		if (ret)
4907 			continue;
4908 
4909 		btrfs_release_path(path);
4910 
4911 		key.objectid = ino;
4912 		key.type = BTRFS_INODE_ITEM_KEY;
4913 		key.offset = 0;
4914 		inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4915 		/*
4916 		 * If the other inode that had a conflicting dir entry was
4917 		 * deleted in the current transaction, we need to log its parent
4918 		 * directory.
4919 		 */
4920 		if (IS_ERR(inode)) {
4921 			ret = PTR_ERR(inode);
4922 			if (ret == -ENOENT) {
4923 				key.objectid = parent;
4924 				inode = btrfs_iget(fs_info->sb, &key, root,
4925 						   NULL);
4926 				if (IS_ERR(inode)) {
4927 					ret = PTR_ERR(inode);
4928 				} else {
4929 					ret = btrfs_log_inode(trans, root,
4930 						      BTRFS_I(inode),
4931 						      LOG_OTHER_INODE_ALL,
4932 						      0, LLONG_MAX, ctx);
4933 					iput(inode);
4934 				}
4935 			}
4936 			continue;
4937 		}
4938 		/*
4939 		 * We are safe logging the other inode without acquiring its
4940 		 * lock as long as we log with the LOG_INODE_EXISTS mode. We
4941 		 * are safe against concurrent renames of the other inode as
4942 		 * well because during a rename we pin the log and update the
4943 		 * log with the new name before we unpin it.
4944 		 */
4945 		ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
4946 				      LOG_OTHER_INODE, 0, LLONG_MAX, ctx);
4947 		if (ret) {
4948 			iput(inode);
4949 			continue;
4950 		}
4951 
4952 		key.objectid = ino;
4953 		key.type = BTRFS_INODE_REF_KEY;
4954 		key.offset = 0;
4955 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4956 		if (ret < 0) {
4957 			iput(inode);
4958 			continue;
4959 		}
4960 
4961 		while (true) {
4962 			struct extent_buffer *leaf = path->nodes[0];
4963 			int slot = path->slots[0];
4964 			u64 other_ino = 0;
4965 			u64 other_parent = 0;
4966 
4967 			if (slot >= btrfs_header_nritems(leaf)) {
4968 				ret = btrfs_next_leaf(root, path);
4969 				if (ret < 0) {
4970 					break;
4971 				} else if (ret > 0) {
4972 					ret = 0;
4973 					break;
4974 				}
4975 				continue;
4976 			}
4977 
4978 			btrfs_item_key_to_cpu(leaf, &key, slot);
4979 			if (key.objectid != ino ||
4980 			    (key.type != BTRFS_INODE_REF_KEY &&
4981 			     key.type != BTRFS_INODE_EXTREF_KEY)) {
4982 				ret = 0;
4983 				break;
4984 			}
4985 
4986 			ret = btrfs_check_ref_name_override(leaf, slot, &key,
4987 					BTRFS_I(inode), &other_ino,
4988 					&other_parent);
4989 			if (ret < 0)
4990 				break;
4991 			if (ret > 0) {
4992 				ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4993 				if (!ino_elem) {
4994 					ret = -ENOMEM;
4995 					break;
4996 				}
4997 				ino_elem->ino = other_ino;
4998 				ino_elem->parent = other_parent;
4999 				list_add_tail(&ino_elem->list, &inode_list);
5000 				ret = 0;
5001 			}
5002 			path->slots[0]++;
5003 		}
5004 		iput(inode);
5005 	}
5006 
5007 	return ret;
5008 }
5009 
5010 /* log a single inode in the tree log.
5011  * At least one parent directory for this inode must exist in the tree
5012  * or be logged already.
5013  *
5014  * Any items from this inode changed by the current transaction are copied
5015  * to the log tree.  An extra reference is taken on any extents in this
5016  * file, allowing us to avoid a whole pile of corner cases around logging
5017  * blocks that have been removed from the tree.
5018  *
5019  * See LOG_INODE_ALL and related defines for a description of what inode_only
5020  * does.
5021  *
5022  * This handles both files and directories.
5023  */
5024 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
5025 			   struct btrfs_root *root, struct btrfs_inode *inode,
5026 			   int inode_only,
5027 			   const loff_t start,
5028 			   const loff_t end,
5029 			   struct btrfs_log_ctx *ctx)
5030 {
5031 	struct btrfs_fs_info *fs_info = root->fs_info;
5032 	struct btrfs_path *path;
5033 	struct btrfs_path *dst_path;
5034 	struct btrfs_key min_key;
5035 	struct btrfs_key max_key;
5036 	struct btrfs_root *log = root->log_root;
5037 	u64 last_extent = 0;
5038 	int err = 0;
5039 	int ret;
5040 	int nritems;
5041 	int ins_start_slot = 0;
5042 	int ins_nr;
5043 	bool fast_search = false;
5044 	u64 ino = btrfs_ino(inode);
5045 	struct extent_map_tree *em_tree = &inode->extent_tree;
5046 	u64 logged_isize = 0;
5047 	bool need_log_inode_item = true;
5048 	bool xattrs_logged = false;
5049 	bool recursive_logging = false;
5050 
5051 	path = btrfs_alloc_path();
5052 	if (!path)
5053 		return -ENOMEM;
5054 	dst_path = btrfs_alloc_path();
5055 	if (!dst_path) {
5056 		btrfs_free_path(path);
5057 		return -ENOMEM;
5058 	}
5059 
5060 	min_key.objectid = ino;
5061 	min_key.type = BTRFS_INODE_ITEM_KEY;
5062 	min_key.offset = 0;
5063 
5064 	max_key.objectid = ino;
5065 
5066 
5067 	/* today the code can only do partial logging of directories */
5068 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
5069 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5070 		       &inode->runtime_flags) &&
5071 	     inode_only >= LOG_INODE_EXISTS))
5072 		max_key.type = BTRFS_XATTR_ITEM_KEY;
5073 	else
5074 		max_key.type = (u8)-1;
5075 	max_key.offset = (u64)-1;
5076 
5077 	/*
5078 	 * Only run delayed items if we are a dir or a new file.
5079 	 * Otherwise commit the delayed inode only, which is needed in
5080 	 * order for the log replay code to mark inodes for link count
5081 	 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
5082 	 */
5083 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
5084 	    inode->generation > fs_info->last_trans_committed)
5085 		ret = btrfs_commit_inode_delayed_items(trans, inode);
5086 	else
5087 		ret = btrfs_commit_inode_delayed_inode(inode);
5088 
5089 	if (ret) {
5090 		btrfs_free_path(path);
5091 		btrfs_free_path(dst_path);
5092 		return ret;
5093 	}
5094 
5095 	if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5096 		recursive_logging = true;
5097 		if (inode_only == LOG_OTHER_INODE)
5098 			inode_only = LOG_INODE_EXISTS;
5099 		else
5100 			inode_only = LOG_INODE_ALL;
5101 		mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
5102 	} else {
5103 		mutex_lock(&inode->log_mutex);
5104 	}
5105 
5106 	/*
5107 	 * a brute force approach to making sure we get the most uptodate
5108 	 * copies of everything.
5109 	 */
5110 	if (S_ISDIR(inode->vfs_inode.i_mode)) {
5111 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5112 
5113 		if (inode_only == LOG_INODE_EXISTS)
5114 			max_key_type = BTRFS_XATTR_ITEM_KEY;
5115 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
5116 	} else {
5117 		if (inode_only == LOG_INODE_EXISTS) {
5118 			/*
5119 			 * Make sure the new inode item we write to the log has
5120 			 * the same isize as the current one (if it exists).
5121 			 * This is necessary to prevent data loss after log
5122 			 * replay, and also to prevent doing a wrong expanding
5123 			 * truncate - for e.g. create file, write 4K into offset
5124 			 * 0, fsync, write 4K into offset 4096, add hard link,
5125 			 * fsync some other file (to sync log), power fail - if
5126 			 * we use the inode's current i_size, after log replay
5127 			 * we get a 8Kb file, with the last 4Kb extent as a hole
5128 			 * (zeroes), as if an expanding truncate happened,
5129 			 * instead of getting a file of 4Kb only.
5130 			 */
5131 			err = logged_inode_size(log, inode, path, &logged_isize);
5132 			if (err)
5133 				goto out_unlock;
5134 		}
5135 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5136 			     &inode->runtime_flags)) {
5137 			if (inode_only == LOG_INODE_EXISTS) {
5138 				max_key.type = BTRFS_XATTR_ITEM_KEY;
5139 				ret = drop_objectid_items(trans, log, path, ino,
5140 							  max_key.type);
5141 			} else {
5142 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5143 					  &inode->runtime_flags);
5144 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5145 					  &inode->runtime_flags);
5146 				while(1) {
5147 					ret = btrfs_truncate_inode_items(trans,
5148 						log, &inode->vfs_inode, 0, 0);
5149 					if (ret != -EAGAIN)
5150 						break;
5151 				}
5152 			}
5153 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5154 					      &inode->runtime_flags) ||
5155 			   inode_only == LOG_INODE_EXISTS) {
5156 			if (inode_only == LOG_INODE_ALL)
5157 				fast_search = true;
5158 			max_key.type = BTRFS_XATTR_ITEM_KEY;
5159 			ret = drop_objectid_items(trans, log, path, ino,
5160 						  max_key.type);
5161 		} else {
5162 			if (inode_only == LOG_INODE_ALL)
5163 				fast_search = true;
5164 			goto log_extents;
5165 		}
5166 
5167 	}
5168 	if (ret) {
5169 		err = ret;
5170 		goto out_unlock;
5171 	}
5172 
5173 	while (1) {
5174 		ins_nr = 0;
5175 		ret = btrfs_search_forward(root, &min_key,
5176 					   path, trans->transid);
5177 		if (ret < 0) {
5178 			err = ret;
5179 			goto out_unlock;
5180 		}
5181 		if (ret != 0)
5182 			break;
5183 again:
5184 		/* note, ins_nr might be > 0 here, cleanup outside the loop */
5185 		if (min_key.objectid != ino)
5186 			break;
5187 		if (min_key.type > max_key.type)
5188 			break;
5189 
5190 		if (min_key.type == BTRFS_INODE_ITEM_KEY)
5191 			need_log_inode_item = false;
5192 
5193 		if ((min_key.type == BTRFS_INODE_REF_KEY ||
5194 		     min_key.type == BTRFS_INODE_EXTREF_KEY) &&
5195 		    inode->generation == trans->transid &&
5196 		    !recursive_logging) {
5197 			u64 other_ino = 0;
5198 			u64 other_parent = 0;
5199 
5200 			ret = btrfs_check_ref_name_override(path->nodes[0],
5201 					path->slots[0], &min_key, inode,
5202 					&other_ino, &other_parent);
5203 			if (ret < 0) {
5204 				err = ret;
5205 				goto out_unlock;
5206 			} else if (ret > 0 && ctx &&
5207 				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5208 				if (ins_nr > 0) {
5209 					ins_nr++;
5210 				} else {
5211 					ins_nr = 1;
5212 					ins_start_slot = path->slots[0];
5213 				}
5214 				ret = copy_items(trans, inode, dst_path, path,
5215 						 &last_extent, ins_start_slot,
5216 						 ins_nr, inode_only,
5217 						 logged_isize);
5218 				if (ret < 0) {
5219 					err = ret;
5220 					goto out_unlock;
5221 				}
5222 				ins_nr = 0;
5223 
5224 				err = log_conflicting_inodes(trans, root, path,
5225 						ctx, other_ino, other_parent);
5226 				if (err)
5227 					goto out_unlock;
5228 				btrfs_release_path(path);
5229 				goto next_key;
5230 			}
5231 		}
5232 
5233 		/* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5234 		if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
5235 			if (ins_nr == 0)
5236 				goto next_slot;
5237 			ret = copy_items(trans, inode, dst_path, path,
5238 					 &last_extent, ins_start_slot,
5239 					 ins_nr, inode_only, logged_isize);
5240 			if (ret < 0) {
5241 				err = ret;
5242 				goto out_unlock;
5243 			}
5244 			ins_nr = 0;
5245 			if (ret) {
5246 				btrfs_release_path(path);
5247 				continue;
5248 			}
5249 			goto next_slot;
5250 		}
5251 
5252 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5253 			ins_nr++;
5254 			goto next_slot;
5255 		} else if (!ins_nr) {
5256 			ins_start_slot = path->slots[0];
5257 			ins_nr = 1;
5258 			goto next_slot;
5259 		}
5260 
5261 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
5262 				 ins_start_slot, ins_nr, inode_only,
5263 				 logged_isize);
5264 		if (ret < 0) {
5265 			err = ret;
5266 			goto out_unlock;
5267 		}
5268 		if (ret) {
5269 			ins_nr = 0;
5270 			btrfs_release_path(path);
5271 			continue;
5272 		}
5273 		ins_nr = 1;
5274 		ins_start_slot = path->slots[0];
5275 next_slot:
5276 
5277 		nritems = btrfs_header_nritems(path->nodes[0]);
5278 		path->slots[0]++;
5279 		if (path->slots[0] < nritems) {
5280 			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
5281 					      path->slots[0]);
5282 			goto again;
5283 		}
5284 		if (ins_nr) {
5285 			ret = copy_items(trans, inode, dst_path, path,
5286 					 &last_extent, ins_start_slot,
5287 					 ins_nr, inode_only, logged_isize);
5288 			if (ret < 0) {
5289 				err = ret;
5290 				goto out_unlock;
5291 			}
5292 			ret = 0;
5293 			ins_nr = 0;
5294 		}
5295 		btrfs_release_path(path);
5296 next_key:
5297 		if (min_key.offset < (u64)-1) {
5298 			min_key.offset++;
5299 		} else if (min_key.type < max_key.type) {
5300 			min_key.type++;
5301 			min_key.offset = 0;
5302 		} else {
5303 			break;
5304 		}
5305 	}
5306 	if (ins_nr) {
5307 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
5308 				 ins_start_slot, ins_nr, inode_only,
5309 				 logged_isize);
5310 		if (ret < 0) {
5311 			err = ret;
5312 			goto out_unlock;
5313 		}
5314 		ret = 0;
5315 		ins_nr = 0;
5316 	}
5317 
5318 	btrfs_release_path(path);
5319 	btrfs_release_path(dst_path);
5320 	err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5321 	if (err)
5322 		goto out_unlock;
5323 	xattrs_logged = true;
5324 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5325 		btrfs_release_path(path);
5326 		btrfs_release_path(dst_path);
5327 		err = btrfs_log_trailing_hole(trans, root, inode, path);
5328 		if (err)
5329 			goto out_unlock;
5330 	}
5331 log_extents:
5332 	btrfs_release_path(path);
5333 	btrfs_release_path(dst_path);
5334 	if (need_log_inode_item) {
5335 		err = log_inode_item(trans, log, dst_path, inode);
5336 		if (!err && !xattrs_logged) {
5337 			err = btrfs_log_all_xattrs(trans, root, inode, path,
5338 						   dst_path);
5339 			btrfs_release_path(path);
5340 		}
5341 		if (err)
5342 			goto out_unlock;
5343 	}
5344 	if (fast_search) {
5345 		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5346 						ctx, start, end);
5347 		if (ret) {
5348 			err = ret;
5349 			goto out_unlock;
5350 		}
5351 	} else if (inode_only == LOG_INODE_ALL) {
5352 		struct extent_map *em, *n;
5353 
5354 		write_lock(&em_tree->lock);
5355 		/*
5356 		 * We can't just remove every em if we're called for a ranged
5357 		 * fsync - that is, one that doesn't cover the whole possible
5358 		 * file range (0 to LLONG_MAX). This is because we can have
5359 		 * em's that fall outside the range we're logging and therefore
5360 		 * their ordered operations haven't completed yet
5361 		 * (btrfs_finish_ordered_io() not invoked yet). This means we
5362 		 * didn't get their respective file extent item in the fs/subvol
5363 		 * tree yet, and need to let the next fast fsync (one which
5364 		 * consults the list of modified extent maps) find the em so
5365 		 * that it logs a matching file extent item and waits for the
5366 		 * respective ordered operation to complete (if it's still
5367 		 * running).
5368 		 *
5369 		 * Removing every em outside the range we're logging would make
5370 		 * the next fast fsync not log their matching file extent items,
5371 		 * therefore making us lose data after a log replay.
5372 		 */
5373 		list_for_each_entry_safe(em, n, &em_tree->modified_extents,
5374 					 list) {
5375 			const u64 mod_end = em->mod_start + em->mod_len - 1;
5376 
5377 			if (em->mod_start >= start && mod_end <= end)
5378 				list_del_init(&em->list);
5379 		}
5380 		write_unlock(&em_tree->lock);
5381 	}
5382 
5383 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5384 		ret = log_directory_changes(trans, root, inode, path, dst_path,
5385 					ctx);
5386 		if (ret) {
5387 			err = ret;
5388 			goto out_unlock;
5389 		}
5390 	}
5391 
5392 	spin_lock(&inode->lock);
5393 	inode->logged_trans = trans->transid;
5394 	inode->last_log_commit = inode->last_sub_trans;
5395 	spin_unlock(&inode->lock);
5396 out_unlock:
5397 	mutex_unlock(&inode->log_mutex);
5398 
5399 	btrfs_free_path(path);
5400 	btrfs_free_path(dst_path);
5401 	return err;
5402 }
5403 
5404 /*
5405  * Check if we must fallback to a transaction commit when logging an inode.
5406  * This must be called after logging the inode and is used only in the context
5407  * when fsyncing an inode requires the need to log some other inode - in which
5408  * case we can't lock the i_mutex of each other inode we need to log as that
5409  * can lead to deadlocks with concurrent fsync against other inodes (as we can
5410  * log inodes up or down in the hierarchy) or rename operations for example. So
5411  * we take the log_mutex of the inode after we have logged it and then check for
5412  * its last_unlink_trans value - this is safe because any task setting
5413  * last_unlink_trans must take the log_mutex and it must do this before it does
5414  * the actual unlink operation, so if we do this check before a concurrent task
5415  * sets last_unlink_trans it means we've logged a consistent version/state of
5416  * all the inode items, otherwise we are not sure and must do a transaction
5417  * commit (the concurrent task might have only updated last_unlink_trans before
5418  * we logged the inode or it might have also done the unlink).
5419  */
5420 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5421 					  struct btrfs_inode *inode)
5422 {
5423 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
5424 	bool ret = false;
5425 
5426 	mutex_lock(&inode->log_mutex);
5427 	if (inode->last_unlink_trans > fs_info->last_trans_committed) {
5428 		/*
5429 		 * Make sure any commits to the log are forced to be full
5430 		 * commits.
5431 		 */
5432 		btrfs_set_log_full_commit(fs_info, trans);
5433 		ret = true;
5434 	}
5435 	mutex_unlock(&inode->log_mutex);
5436 
5437 	return ret;
5438 }
5439 
5440 /*
5441  * follow the dentry parent pointers up the chain and see if any
5442  * of the directories in it require a full commit before they can
5443  * be logged.  Returns zero if nothing special needs to be done or 1 if
5444  * a full commit is required.
5445  */
5446 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5447 					       struct btrfs_inode *inode,
5448 					       struct dentry *parent,
5449 					       struct super_block *sb,
5450 					       u64 last_committed)
5451 {
5452 	int ret = 0;
5453 	struct dentry *old_parent = NULL;
5454 	struct btrfs_inode *orig_inode = inode;
5455 
5456 	/*
5457 	 * for regular files, if its inode is already on disk, we don't
5458 	 * have to worry about the parents at all.  This is because
5459 	 * we can use the last_unlink_trans field to record renames
5460 	 * and other fun in this file.
5461 	 */
5462 	if (S_ISREG(inode->vfs_inode.i_mode) &&
5463 	    inode->generation <= last_committed &&
5464 	    inode->last_unlink_trans <= last_committed)
5465 		goto out;
5466 
5467 	if (!S_ISDIR(inode->vfs_inode.i_mode)) {
5468 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5469 			goto out;
5470 		inode = BTRFS_I(d_inode(parent));
5471 	}
5472 
5473 	while (1) {
5474 		/*
5475 		 * If we are logging a directory then we start with our inode,
5476 		 * not our parent's inode, so we need to skip setting the
5477 		 * logged_trans so that further down in the log code we don't
5478 		 * think this inode has already been logged.
5479 		 */
5480 		if (inode != orig_inode)
5481 			inode->logged_trans = trans->transid;
5482 		smp_mb();
5483 
5484 		if (btrfs_must_commit_transaction(trans, inode)) {
5485 			ret = 1;
5486 			break;
5487 		}
5488 
5489 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5490 			break;
5491 
5492 		if (IS_ROOT(parent)) {
5493 			inode = BTRFS_I(d_inode(parent));
5494 			if (btrfs_must_commit_transaction(trans, inode))
5495 				ret = 1;
5496 			break;
5497 		}
5498 
5499 		parent = dget_parent(parent);
5500 		dput(old_parent);
5501 		old_parent = parent;
5502 		inode = BTRFS_I(d_inode(parent));
5503 
5504 	}
5505 	dput(old_parent);
5506 out:
5507 	return ret;
5508 }
5509 
5510 struct btrfs_dir_list {
5511 	u64 ino;
5512 	struct list_head list;
5513 };
5514 
5515 /*
5516  * Log the inodes of the new dentries of a directory. See log_dir_items() for
5517  * details about the why it is needed.
5518  * This is a recursive operation - if an existing dentry corresponds to a
5519  * directory, that directory's new entries are logged too (same behaviour as
5520  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5521  * the dentries point to we do not lock their i_mutex, otherwise lockdep
5522  * complains about the following circular lock dependency / possible deadlock:
5523  *
5524  *        CPU0                                        CPU1
5525  *        ----                                        ----
5526  * lock(&type->i_mutex_dir_key#3/2);
5527  *                                            lock(sb_internal#2);
5528  *                                            lock(&type->i_mutex_dir_key#3/2);
5529  * lock(&sb->s_type->i_mutex_key#14);
5530  *
5531  * Where sb_internal is the lock (a counter that works as a lock) acquired by
5532  * sb_start_intwrite() in btrfs_start_transaction().
5533  * Not locking i_mutex of the inodes is still safe because:
5534  *
5535  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5536  *    that while logging the inode new references (names) are added or removed
5537  *    from the inode, leaving the logged inode item with a link count that does
5538  *    not match the number of logged inode reference items. This is fine because
5539  *    at log replay time we compute the real number of links and correct the
5540  *    link count in the inode item (see replay_one_buffer() and
5541  *    link_to_fixup_dir());
5542  *
5543  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5544  *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5545  *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5546  *    has a size that doesn't match the sum of the lengths of all the logged
5547  *    names. This does not result in a problem because if a dir_item key is
5548  *    logged but its matching dir_index key is not logged, at log replay time we
5549  *    don't use it to replay the respective name (see replay_one_name()). On the
5550  *    other hand if only the dir_index key ends up being logged, the respective
5551  *    name is added to the fs/subvol tree with both the dir_item and dir_index
5552  *    keys created (see replay_one_name()).
5553  *    The directory's inode item with a wrong i_size is not a problem as well,
5554  *    since we don't use it at log replay time to set the i_size in the inode
5555  *    item of the fs/subvol tree (see overwrite_item()).
5556  */
5557 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5558 				struct btrfs_root *root,
5559 				struct btrfs_inode *start_inode,
5560 				struct btrfs_log_ctx *ctx)
5561 {
5562 	struct btrfs_fs_info *fs_info = root->fs_info;
5563 	struct btrfs_root *log = root->log_root;
5564 	struct btrfs_path *path;
5565 	LIST_HEAD(dir_list);
5566 	struct btrfs_dir_list *dir_elem;
5567 	int ret = 0;
5568 
5569 	path = btrfs_alloc_path();
5570 	if (!path)
5571 		return -ENOMEM;
5572 
5573 	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5574 	if (!dir_elem) {
5575 		btrfs_free_path(path);
5576 		return -ENOMEM;
5577 	}
5578 	dir_elem->ino = btrfs_ino(start_inode);
5579 	list_add_tail(&dir_elem->list, &dir_list);
5580 
5581 	while (!list_empty(&dir_list)) {
5582 		struct extent_buffer *leaf;
5583 		struct btrfs_key min_key;
5584 		int nritems;
5585 		int i;
5586 
5587 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5588 					    list);
5589 		if (ret)
5590 			goto next_dir_inode;
5591 
5592 		min_key.objectid = dir_elem->ino;
5593 		min_key.type = BTRFS_DIR_ITEM_KEY;
5594 		min_key.offset = 0;
5595 again:
5596 		btrfs_release_path(path);
5597 		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5598 		if (ret < 0) {
5599 			goto next_dir_inode;
5600 		} else if (ret > 0) {
5601 			ret = 0;
5602 			goto next_dir_inode;
5603 		}
5604 
5605 process_leaf:
5606 		leaf = path->nodes[0];
5607 		nritems = btrfs_header_nritems(leaf);
5608 		for (i = path->slots[0]; i < nritems; i++) {
5609 			struct btrfs_dir_item *di;
5610 			struct btrfs_key di_key;
5611 			struct inode *di_inode;
5612 			struct btrfs_dir_list *new_dir_elem;
5613 			int log_mode = LOG_INODE_EXISTS;
5614 			int type;
5615 
5616 			btrfs_item_key_to_cpu(leaf, &min_key, i);
5617 			if (min_key.objectid != dir_elem->ino ||
5618 			    min_key.type != BTRFS_DIR_ITEM_KEY)
5619 				goto next_dir_inode;
5620 
5621 			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5622 			type = btrfs_dir_type(leaf, di);
5623 			if (btrfs_dir_transid(leaf, di) < trans->transid &&
5624 			    type != BTRFS_FT_DIR)
5625 				continue;
5626 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5627 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5628 				continue;
5629 
5630 			btrfs_release_path(path);
5631 			di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
5632 			if (IS_ERR(di_inode)) {
5633 				ret = PTR_ERR(di_inode);
5634 				goto next_dir_inode;
5635 			}
5636 
5637 			if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
5638 				iput(di_inode);
5639 				break;
5640 			}
5641 
5642 			ctx->log_new_dentries = false;
5643 			if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5644 				log_mode = LOG_INODE_ALL;
5645 			ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5646 					      log_mode, 0, LLONG_MAX, ctx);
5647 			if (!ret &&
5648 			    btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
5649 				ret = 1;
5650 			iput(di_inode);
5651 			if (ret)
5652 				goto next_dir_inode;
5653 			if (ctx->log_new_dentries) {
5654 				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5655 						       GFP_NOFS);
5656 				if (!new_dir_elem) {
5657 					ret = -ENOMEM;
5658 					goto next_dir_inode;
5659 				}
5660 				new_dir_elem->ino = di_key.objectid;
5661 				list_add_tail(&new_dir_elem->list, &dir_list);
5662 			}
5663 			break;
5664 		}
5665 		if (i == nritems) {
5666 			ret = btrfs_next_leaf(log, path);
5667 			if (ret < 0) {
5668 				goto next_dir_inode;
5669 			} else if (ret > 0) {
5670 				ret = 0;
5671 				goto next_dir_inode;
5672 			}
5673 			goto process_leaf;
5674 		}
5675 		if (min_key.offset < (u64)-1) {
5676 			min_key.offset++;
5677 			goto again;
5678 		}
5679 next_dir_inode:
5680 		list_del(&dir_elem->list);
5681 		kfree(dir_elem);
5682 	}
5683 
5684 	btrfs_free_path(path);
5685 	return ret;
5686 }
5687 
5688 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5689 				 struct btrfs_inode *inode,
5690 				 struct btrfs_log_ctx *ctx)
5691 {
5692 	struct btrfs_fs_info *fs_info = trans->fs_info;
5693 	int ret;
5694 	struct btrfs_path *path;
5695 	struct btrfs_key key;
5696 	struct btrfs_root *root = inode->root;
5697 	const u64 ino = btrfs_ino(inode);
5698 
5699 	path = btrfs_alloc_path();
5700 	if (!path)
5701 		return -ENOMEM;
5702 	path->skip_locking = 1;
5703 	path->search_commit_root = 1;
5704 
5705 	key.objectid = ino;
5706 	key.type = BTRFS_INODE_REF_KEY;
5707 	key.offset = 0;
5708 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5709 	if (ret < 0)
5710 		goto out;
5711 
5712 	while (true) {
5713 		struct extent_buffer *leaf = path->nodes[0];
5714 		int slot = path->slots[0];
5715 		u32 cur_offset = 0;
5716 		u32 item_size;
5717 		unsigned long ptr;
5718 
5719 		if (slot >= btrfs_header_nritems(leaf)) {
5720 			ret = btrfs_next_leaf(root, path);
5721 			if (ret < 0)
5722 				goto out;
5723 			else if (ret > 0)
5724 				break;
5725 			continue;
5726 		}
5727 
5728 		btrfs_item_key_to_cpu(leaf, &key, slot);
5729 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5730 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5731 			break;
5732 
5733 		item_size = btrfs_item_size_nr(leaf, slot);
5734 		ptr = btrfs_item_ptr_offset(leaf, slot);
5735 		while (cur_offset < item_size) {
5736 			struct btrfs_key inode_key;
5737 			struct inode *dir_inode;
5738 
5739 			inode_key.type = BTRFS_INODE_ITEM_KEY;
5740 			inode_key.offset = 0;
5741 
5742 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
5743 				struct btrfs_inode_extref *extref;
5744 
5745 				extref = (struct btrfs_inode_extref *)
5746 					(ptr + cur_offset);
5747 				inode_key.objectid = btrfs_inode_extref_parent(
5748 					leaf, extref);
5749 				cur_offset += sizeof(*extref);
5750 				cur_offset += btrfs_inode_extref_name_len(leaf,
5751 					extref);
5752 			} else {
5753 				inode_key.objectid = key.offset;
5754 				cur_offset = item_size;
5755 			}
5756 
5757 			dir_inode = btrfs_iget(fs_info->sb, &inode_key,
5758 					       root, NULL);
5759 			/*
5760 			 * If the parent inode was deleted, return an error to
5761 			 * fallback to a transaction commit. This is to prevent
5762 			 * getting an inode that was moved from one parent A to
5763 			 * a parent B, got its former parent A deleted and then
5764 			 * it got fsync'ed, from existing at both parents after
5765 			 * a log replay (and the old parent still existing).
5766 			 * Example:
5767 			 *
5768 			 * mkdir /mnt/A
5769 			 * mkdir /mnt/B
5770 			 * touch /mnt/B/bar
5771 			 * sync
5772 			 * mv /mnt/B/bar /mnt/A/bar
5773 			 * mv -T /mnt/A /mnt/B
5774 			 * fsync /mnt/B/bar
5775 			 * <power fail>
5776 			 *
5777 			 * If we ignore the old parent B which got deleted,
5778 			 * after a log replay we would have file bar linked
5779 			 * at both parents and the old parent B would still
5780 			 * exist.
5781 			 */
5782 			if (IS_ERR(dir_inode)) {
5783 				ret = PTR_ERR(dir_inode);
5784 				goto out;
5785 			}
5786 
5787 			if (ctx)
5788 				ctx->log_new_dentries = false;
5789 			ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5790 					      LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5791 			if (!ret &&
5792 			    btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
5793 				ret = 1;
5794 			if (!ret && ctx && ctx->log_new_dentries)
5795 				ret = log_new_dir_dentries(trans, root,
5796 						   BTRFS_I(dir_inode), ctx);
5797 			iput(dir_inode);
5798 			if (ret)
5799 				goto out;
5800 		}
5801 		path->slots[0]++;
5802 	}
5803 	ret = 0;
5804 out:
5805 	btrfs_free_path(path);
5806 	return ret;
5807 }
5808 
5809 /*
5810  * helper function around btrfs_log_inode to make sure newly created
5811  * parent directories also end up in the log.  A minimal inode and backref
5812  * only logging is done of any parent directories that are older than
5813  * the last committed transaction
5814  */
5815 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5816 				  struct btrfs_inode *inode,
5817 				  struct dentry *parent,
5818 				  const loff_t start,
5819 				  const loff_t end,
5820 				  int inode_only,
5821 				  struct btrfs_log_ctx *ctx)
5822 {
5823 	struct btrfs_root *root = inode->root;
5824 	struct btrfs_fs_info *fs_info = root->fs_info;
5825 	struct super_block *sb;
5826 	struct dentry *old_parent = NULL;
5827 	int ret = 0;
5828 	u64 last_committed = fs_info->last_trans_committed;
5829 	bool log_dentries = false;
5830 	struct btrfs_inode *orig_inode = inode;
5831 
5832 	sb = inode->vfs_inode.i_sb;
5833 
5834 	if (btrfs_test_opt(fs_info, NOTREELOG)) {
5835 		ret = 1;
5836 		goto end_no_trans;
5837 	}
5838 
5839 	/*
5840 	 * The prev transaction commit doesn't complete, we need do
5841 	 * full commit by ourselves.
5842 	 */
5843 	if (fs_info->last_trans_log_full_commit >
5844 	    fs_info->last_trans_committed) {
5845 		ret = 1;
5846 		goto end_no_trans;
5847 	}
5848 
5849 	if (btrfs_root_refs(&root->root_item) == 0) {
5850 		ret = 1;
5851 		goto end_no_trans;
5852 	}
5853 
5854 	ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
5855 			last_committed);
5856 	if (ret)
5857 		goto end_no_trans;
5858 
5859 	/*
5860 	 * Skip already logged inodes or inodes corresponding to tmpfiles
5861 	 * (since logging them is pointless, a link count of 0 means they
5862 	 * will never be accessible).
5863 	 */
5864 	if (btrfs_inode_in_log(inode, trans->transid) ||
5865 	    inode->vfs_inode.i_nlink == 0) {
5866 		ret = BTRFS_NO_LOG_SYNC;
5867 		goto end_no_trans;
5868 	}
5869 
5870 	ret = start_log_trans(trans, root, ctx);
5871 	if (ret)
5872 		goto end_no_trans;
5873 
5874 	ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
5875 	if (ret)
5876 		goto end_trans;
5877 
5878 	/*
5879 	 * for regular files, if its inode is already on disk, we don't
5880 	 * have to worry about the parents at all.  This is because
5881 	 * we can use the last_unlink_trans field to record renames
5882 	 * and other fun in this file.
5883 	 */
5884 	if (S_ISREG(inode->vfs_inode.i_mode) &&
5885 	    inode->generation <= last_committed &&
5886 	    inode->last_unlink_trans <= last_committed) {
5887 		ret = 0;
5888 		goto end_trans;
5889 	}
5890 
5891 	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
5892 		log_dentries = true;
5893 
5894 	/*
5895 	 * On unlink we must make sure all our current and old parent directory
5896 	 * inodes are fully logged. This is to prevent leaving dangling
5897 	 * directory index entries in directories that were our parents but are
5898 	 * not anymore. Not doing this results in old parent directory being
5899 	 * impossible to delete after log replay (rmdir will always fail with
5900 	 * error -ENOTEMPTY).
5901 	 *
5902 	 * Example 1:
5903 	 *
5904 	 * mkdir testdir
5905 	 * touch testdir/foo
5906 	 * ln testdir/foo testdir/bar
5907 	 * sync
5908 	 * unlink testdir/bar
5909 	 * xfs_io -c fsync testdir/foo
5910 	 * <power failure>
5911 	 * mount fs, triggers log replay
5912 	 *
5913 	 * If we don't log the parent directory (testdir), after log replay the
5914 	 * directory still has an entry pointing to the file inode using the bar
5915 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5916 	 * the file inode has a link count of 1.
5917 	 *
5918 	 * Example 2:
5919 	 *
5920 	 * mkdir testdir
5921 	 * touch foo
5922 	 * ln foo testdir/foo2
5923 	 * ln foo testdir/foo3
5924 	 * sync
5925 	 * unlink testdir/foo3
5926 	 * xfs_io -c fsync foo
5927 	 * <power failure>
5928 	 * mount fs, triggers log replay
5929 	 *
5930 	 * Similar as the first example, after log replay the parent directory
5931 	 * testdir still has an entry pointing to the inode file with name foo3
5932 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5933 	 * and has a link count of 2.
5934 	 */
5935 	if (inode->last_unlink_trans > last_committed) {
5936 		ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5937 		if (ret)
5938 			goto end_trans;
5939 	}
5940 
5941 	/*
5942 	 * If a new hard link was added to the inode in the current transaction
5943 	 * and its link count is now greater than 1, we need to fallback to a
5944 	 * transaction commit, otherwise we can end up not logging all its new
5945 	 * parents for all the hard links. Here just from the dentry used to
5946 	 * fsync, we can not visit the ancestor inodes for all the other hard
5947 	 * links to figure out if any is new, so we fallback to a transaction
5948 	 * commit (instead of adding a lot of complexity of scanning a btree,
5949 	 * since this scenario is not a common use case).
5950 	 */
5951 	if (inode->vfs_inode.i_nlink > 1 &&
5952 	    inode->last_link_trans > last_committed) {
5953 		ret = -EMLINK;
5954 		goto end_trans;
5955 	}
5956 
5957 	while (1) {
5958 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5959 			break;
5960 
5961 		inode = BTRFS_I(d_inode(parent));
5962 		if (root != inode->root)
5963 			break;
5964 
5965 		if (inode->generation > last_committed) {
5966 			ret = btrfs_log_inode(trans, root, inode,
5967 					LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
5968 			if (ret)
5969 				goto end_trans;
5970 		}
5971 		if (IS_ROOT(parent))
5972 			break;
5973 
5974 		parent = dget_parent(parent);
5975 		dput(old_parent);
5976 		old_parent = parent;
5977 	}
5978 	if (log_dentries)
5979 		ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
5980 	else
5981 		ret = 0;
5982 end_trans:
5983 	dput(old_parent);
5984 	if (ret < 0) {
5985 		btrfs_set_log_full_commit(fs_info, trans);
5986 		ret = 1;
5987 	}
5988 
5989 	if (ret)
5990 		btrfs_remove_log_ctx(root, ctx);
5991 	btrfs_end_log_trans(root);
5992 end_no_trans:
5993 	return ret;
5994 }
5995 
5996 /*
5997  * it is not safe to log dentry if the chunk root has added new
5998  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
5999  * If this returns 1, you must commit the transaction to safely get your
6000  * data on disk.
6001  */
6002 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
6003 			  struct dentry *dentry,
6004 			  const loff_t start,
6005 			  const loff_t end,
6006 			  struct btrfs_log_ctx *ctx)
6007 {
6008 	struct dentry *parent = dget_parent(dentry);
6009 	int ret;
6010 
6011 	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6012 				     start, end, LOG_INODE_ALL, ctx);
6013 	dput(parent);
6014 
6015 	return ret;
6016 }
6017 
6018 /*
6019  * should be called during mount to recover any replay any log trees
6020  * from the FS
6021  */
6022 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6023 {
6024 	int ret;
6025 	struct btrfs_path *path;
6026 	struct btrfs_trans_handle *trans;
6027 	struct btrfs_key key;
6028 	struct btrfs_key found_key;
6029 	struct btrfs_key tmp_key;
6030 	struct btrfs_root *log;
6031 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6032 	struct walk_control wc = {
6033 		.process_func = process_one_buffer,
6034 		.stage = 0,
6035 	};
6036 
6037 	path = btrfs_alloc_path();
6038 	if (!path)
6039 		return -ENOMEM;
6040 
6041 	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6042 
6043 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
6044 	if (IS_ERR(trans)) {
6045 		ret = PTR_ERR(trans);
6046 		goto error;
6047 	}
6048 
6049 	wc.trans = trans;
6050 	wc.pin = 1;
6051 
6052 	ret = walk_log_tree(trans, log_root_tree, &wc);
6053 	if (ret) {
6054 		btrfs_handle_fs_error(fs_info, ret,
6055 			"Failed to pin buffers while recovering log root tree.");
6056 		goto error;
6057 	}
6058 
6059 again:
6060 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
6061 	key.offset = (u64)-1;
6062 	key.type = BTRFS_ROOT_ITEM_KEY;
6063 
6064 	while (1) {
6065 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
6066 
6067 		if (ret < 0) {
6068 			btrfs_handle_fs_error(fs_info, ret,
6069 				    "Couldn't find tree log root.");
6070 			goto error;
6071 		}
6072 		if (ret > 0) {
6073 			if (path->slots[0] == 0)
6074 				break;
6075 			path->slots[0]--;
6076 		}
6077 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6078 				      path->slots[0]);
6079 		btrfs_release_path(path);
6080 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6081 			break;
6082 
6083 		log = btrfs_read_fs_root(log_root_tree, &found_key);
6084 		if (IS_ERR(log)) {
6085 			ret = PTR_ERR(log);
6086 			btrfs_handle_fs_error(fs_info, ret,
6087 				    "Couldn't read tree log root.");
6088 			goto error;
6089 		}
6090 
6091 		tmp_key.objectid = found_key.offset;
6092 		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
6093 		tmp_key.offset = (u64)-1;
6094 
6095 		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
6096 		if (IS_ERR(wc.replay_dest)) {
6097 			ret = PTR_ERR(wc.replay_dest);
6098 			free_extent_buffer(log->node);
6099 			free_extent_buffer(log->commit_root);
6100 			kfree(log);
6101 			btrfs_handle_fs_error(fs_info, ret,
6102 				"Couldn't read target root for tree log recovery.");
6103 			goto error;
6104 		}
6105 
6106 		wc.replay_dest->log_root = log;
6107 		btrfs_record_root_in_trans(trans, wc.replay_dest);
6108 		ret = walk_log_tree(trans, log, &wc);
6109 
6110 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6111 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
6112 						      path);
6113 		}
6114 
6115 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6116 			struct btrfs_root *root = wc.replay_dest;
6117 
6118 			btrfs_release_path(path);
6119 
6120 			/*
6121 			 * We have just replayed everything, and the highest
6122 			 * objectid of fs roots probably has changed in case
6123 			 * some inode_item's got replayed.
6124 			 *
6125 			 * root->objectid_mutex is not acquired as log replay
6126 			 * could only happen during mount.
6127 			 */
6128 			ret = btrfs_find_highest_objectid(root,
6129 						  &root->highest_objectid);
6130 		}
6131 
6132 		key.offset = found_key.offset - 1;
6133 		wc.replay_dest->log_root = NULL;
6134 		free_extent_buffer(log->node);
6135 		free_extent_buffer(log->commit_root);
6136 		kfree(log);
6137 
6138 		if (ret)
6139 			goto error;
6140 
6141 		if (found_key.offset == 0)
6142 			break;
6143 	}
6144 	btrfs_release_path(path);
6145 
6146 	/* step one is to pin it all, step two is to replay just inodes */
6147 	if (wc.pin) {
6148 		wc.pin = 0;
6149 		wc.process_func = replay_one_buffer;
6150 		wc.stage = LOG_WALK_REPLAY_INODES;
6151 		goto again;
6152 	}
6153 	/* step three is to replay everything */
6154 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
6155 		wc.stage++;
6156 		goto again;
6157 	}
6158 
6159 	btrfs_free_path(path);
6160 
6161 	/* step 4: commit the transaction, which also unpins the blocks */
6162 	ret = btrfs_commit_transaction(trans);
6163 	if (ret)
6164 		return ret;
6165 
6166 	free_extent_buffer(log_root_tree->node);
6167 	log_root_tree->log_root = NULL;
6168 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6169 	kfree(log_root_tree);
6170 
6171 	return 0;
6172 error:
6173 	if (wc.trans)
6174 		btrfs_end_transaction(wc.trans);
6175 	btrfs_free_path(path);
6176 	return ret;
6177 }
6178 
6179 /*
6180  * there are some corner cases where we want to force a full
6181  * commit instead of allowing a directory to be logged.
6182  *
6183  * They revolve around files there were unlinked from the directory, and
6184  * this function updates the parent directory so that a full commit is
6185  * properly done if it is fsync'd later after the unlinks are done.
6186  *
6187  * Must be called before the unlink operations (updates to the subvolume tree,
6188  * inodes, etc) are done.
6189  */
6190 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6191 			     struct btrfs_inode *dir, struct btrfs_inode *inode,
6192 			     int for_rename)
6193 {
6194 	/*
6195 	 * when we're logging a file, if it hasn't been renamed
6196 	 * or unlinked, and its inode is fully committed on disk,
6197 	 * we don't have to worry about walking up the directory chain
6198 	 * to log its parents.
6199 	 *
6200 	 * So, we use the last_unlink_trans field to put this transid
6201 	 * into the file.  When the file is logged we check it and
6202 	 * don't log the parents if the file is fully on disk.
6203 	 */
6204 	mutex_lock(&inode->log_mutex);
6205 	inode->last_unlink_trans = trans->transid;
6206 	mutex_unlock(&inode->log_mutex);
6207 
6208 	/*
6209 	 * if this directory was already logged any new
6210 	 * names for this file/dir will get recorded
6211 	 */
6212 	smp_mb();
6213 	if (dir->logged_trans == trans->transid)
6214 		return;
6215 
6216 	/*
6217 	 * if the inode we're about to unlink was logged,
6218 	 * the log will be properly updated for any new names
6219 	 */
6220 	if (inode->logged_trans == trans->transid)
6221 		return;
6222 
6223 	/*
6224 	 * when renaming files across directories, if the directory
6225 	 * there we're unlinking from gets fsync'd later on, there's
6226 	 * no way to find the destination directory later and fsync it
6227 	 * properly.  So, we have to be conservative and force commits
6228 	 * so the new name gets discovered.
6229 	 */
6230 	if (for_rename)
6231 		goto record;
6232 
6233 	/* we can safely do the unlink without any special recording */
6234 	return;
6235 
6236 record:
6237 	mutex_lock(&dir->log_mutex);
6238 	dir->last_unlink_trans = trans->transid;
6239 	mutex_unlock(&dir->log_mutex);
6240 }
6241 
6242 /*
6243  * Make sure that if someone attempts to fsync the parent directory of a deleted
6244  * snapshot, it ends up triggering a transaction commit. This is to guarantee
6245  * that after replaying the log tree of the parent directory's root we will not
6246  * see the snapshot anymore and at log replay time we will not see any log tree
6247  * corresponding to the deleted snapshot's root, which could lead to replaying
6248  * it after replaying the log tree of the parent directory (which would replay
6249  * the snapshot delete operation).
6250  *
6251  * Must be called before the actual snapshot destroy operation (updates to the
6252  * parent root and tree of tree roots trees, etc) are done.
6253  */
6254 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6255 				   struct btrfs_inode *dir)
6256 {
6257 	mutex_lock(&dir->log_mutex);
6258 	dir->last_unlink_trans = trans->transid;
6259 	mutex_unlock(&dir->log_mutex);
6260 }
6261 
6262 /*
6263  * Call this after adding a new name for a file and it will properly
6264  * update the log to reflect the new name.
6265  *
6266  * @ctx can not be NULL when @sync_log is false, and should be NULL when it's
6267  * true (because it's not used).
6268  *
6269  * Return value depends on whether @sync_log is true or false.
6270  * When true: returns BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6271  *            committed by the caller, and BTRFS_DONT_NEED_TRANS_COMMIT
6272  *            otherwise.
6273  * When false: returns BTRFS_DONT_NEED_LOG_SYNC if the caller does not need to
6274  *             to sync the log, BTRFS_NEED_LOG_SYNC if it needs to sync the log,
6275  *             or BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6276  *             committed (without attempting to sync the log).
6277  */
6278 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
6279 			struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6280 			struct dentry *parent,
6281 			bool sync_log, struct btrfs_log_ctx *ctx)
6282 {
6283 	struct btrfs_fs_info *fs_info = trans->fs_info;
6284 	int ret;
6285 
6286 	/*
6287 	 * this will force the logging code to walk the dentry chain
6288 	 * up for the file
6289 	 */
6290 	if (!S_ISDIR(inode->vfs_inode.i_mode))
6291 		inode->last_unlink_trans = trans->transid;
6292 
6293 	/*
6294 	 * if this inode hasn't been logged and directory we're renaming it
6295 	 * from hasn't been logged, we don't need to log it
6296 	 */
6297 	if (inode->logged_trans <= fs_info->last_trans_committed &&
6298 	    (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
6299 		return sync_log ? BTRFS_DONT_NEED_TRANS_COMMIT :
6300 			BTRFS_DONT_NEED_LOG_SYNC;
6301 
6302 	if (sync_log) {
6303 		struct btrfs_log_ctx ctx2;
6304 
6305 		btrfs_init_log_ctx(&ctx2, &inode->vfs_inode);
6306 		ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6307 					     LOG_INODE_EXISTS, &ctx2);
6308 		if (ret == BTRFS_NO_LOG_SYNC)
6309 			return BTRFS_DONT_NEED_TRANS_COMMIT;
6310 		else if (ret)
6311 			return BTRFS_NEED_TRANS_COMMIT;
6312 
6313 		ret = btrfs_sync_log(trans, inode->root, &ctx2);
6314 		if (ret)
6315 			return BTRFS_NEED_TRANS_COMMIT;
6316 		return BTRFS_DONT_NEED_TRANS_COMMIT;
6317 	}
6318 
6319 	ASSERT(ctx);
6320 	ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6321 				     LOG_INODE_EXISTS, ctx);
6322 	if (ret == BTRFS_NO_LOG_SYNC)
6323 		return BTRFS_DONT_NEED_LOG_SYNC;
6324 	else if (ret)
6325 		return BTRFS_NEED_TRANS_COMMIT;
6326 
6327 	return BTRFS_NEED_LOG_SYNC;
6328 }
6329 
6330