xref: /linux/fs/btrfs/tree-log.c (revision a2a58b5ca124f4a0178d0ada801f1ed2c84c393d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "misc.h"
12 #include "ctree.h"
13 #include "tree-log.h"
14 #include "disk-io.h"
15 #include "locking.h"
16 #include "print-tree.h"
17 #include "backref.h"
18 #include "compression.h"
19 #include "qgroup.h"
20 #include "block-group.h"
21 #include "space-info.h"
22 #include "zoned.h"
23 #include "inode-item.h"
24 #include "fs.h"
25 #include "accessors.h"
26 #include "extent-tree.h"
27 #include "root-tree.h"
28 #include "dir-item.h"
29 #include "file-item.h"
30 #include "file.h"
31 #include "orphan.h"
32 #include "tree-checker.h"
33 
34 #define MAX_CONFLICT_INODES 10
35 
36 /* magic values for the inode_only field in btrfs_log_inode:
37  *
38  * LOG_INODE_ALL means to log everything
39  * LOG_INODE_EXISTS means to log just enough to recreate the inode
40  * during log replay
41  */
42 enum {
43 	LOG_INODE_ALL,
44 	LOG_INODE_EXISTS,
45 };
46 
47 /*
48  * directory trouble cases
49  *
50  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
51  * log, we must force a full commit before doing an fsync of the directory
52  * where the unlink was done.
53  * ---> record transid of last unlink/rename per directory
54  *
55  * mkdir foo/some_dir
56  * normal commit
57  * rename foo/some_dir foo2/some_dir
58  * mkdir foo/some_dir
59  * fsync foo/some_dir/some_file
60  *
61  * The fsync above will unlink the original some_dir without recording
62  * it in its new location (foo2).  After a crash, some_dir will be gone
63  * unless the fsync of some_file forces a full commit
64  *
65  * 2) we must log any new names for any file or dir that is in the fsync
66  * log. ---> check inode while renaming/linking.
67  *
68  * 2a) we must log any new names for any file or dir during rename
69  * when the directory they are being removed from was logged.
70  * ---> check inode and old parent dir during rename
71  *
72  *  2a is actually the more important variant.  With the extra logging
73  *  a crash might unlink the old name without recreating the new one
74  *
75  * 3) after a crash, we must go through any directories with a link count
76  * of zero and redo the rm -rf
77  *
78  * mkdir f1/foo
79  * normal commit
80  * rm -rf f1/foo
81  * fsync(f1)
82  *
83  * The directory f1 was fully removed from the FS, but fsync was never
84  * called on f1, only its parent dir.  After a crash the rm -rf must
85  * be replayed.  This must be able to recurse down the entire
86  * directory tree.  The inode link count fixup code takes care of the
87  * ugly details.
88  */
89 
90 /*
91  * stages for the tree walking.  The first
92  * stage (0) is to only pin down the blocks we find
93  * the second stage (1) is to make sure that all the inodes
94  * we find in the log are created in the subvolume.
95  *
96  * The last stage is to deal with directories and links and extents
97  * and all the other fun semantics
98  */
99 enum {
100 	LOG_WALK_PIN_ONLY,
101 	LOG_WALK_REPLAY_INODES,
102 	LOG_WALK_REPLAY_DIR_INDEX,
103 	LOG_WALK_REPLAY_ALL,
104 };
105 
106 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
107 			   struct btrfs_inode *inode,
108 			   int inode_only,
109 			   struct btrfs_log_ctx *ctx);
110 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
111 			     struct btrfs_root *root,
112 			     struct btrfs_path *path, u64 objectid);
113 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
114 				       struct btrfs_root *root,
115 				       struct btrfs_root *log,
116 				       struct btrfs_path *path,
117 				       u64 dirid, int del_all);
118 static void wait_log_commit(struct btrfs_root *root, int transid);
119 
120 /*
121  * tree logging is a special write ahead log used to make sure that
122  * fsyncs and O_SYNCs can happen without doing full tree commits.
123  *
124  * Full tree commits are expensive because they require commonly
125  * modified blocks to be recowed, creating many dirty pages in the
126  * extent tree an 4x-6x higher write load than ext3.
127  *
128  * Instead of doing a tree commit on every fsync, we use the
129  * key ranges and transaction ids to find items for a given file or directory
130  * that have changed in this transaction.  Those items are copied into
131  * a special tree (one per subvolume root), that tree is written to disk
132  * and then the fsync is considered complete.
133  *
134  * After a crash, items are copied out of the log-tree back into the
135  * subvolume tree.  Any file data extents found are recorded in the extent
136  * allocation tree, and the log-tree freed.
137  *
138  * The log tree is read three times, once to pin down all the extents it is
139  * using in ram and once, once to create all the inodes logged in the tree
140  * and once to do all the other items.
141  */
142 
143 /*
144  * start a sub transaction and setup the log tree
145  * this increments the log tree writer count to make the people
146  * syncing the tree wait for us to finish
147  */
148 static int start_log_trans(struct btrfs_trans_handle *trans,
149 			   struct btrfs_root *root,
150 			   struct btrfs_log_ctx *ctx)
151 {
152 	struct btrfs_fs_info *fs_info = root->fs_info;
153 	struct btrfs_root *tree_root = fs_info->tree_root;
154 	const bool zoned = btrfs_is_zoned(fs_info);
155 	int ret = 0;
156 	bool created = false;
157 
158 	/*
159 	 * First check if the log root tree was already created. If not, create
160 	 * it before locking the root's log_mutex, just to keep lockdep happy.
161 	 */
162 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
163 		mutex_lock(&tree_root->log_mutex);
164 		if (!fs_info->log_root_tree) {
165 			ret = btrfs_init_log_root_tree(trans, fs_info);
166 			if (!ret) {
167 				set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
168 				created = true;
169 			}
170 		}
171 		mutex_unlock(&tree_root->log_mutex);
172 		if (ret)
173 			return ret;
174 	}
175 
176 	mutex_lock(&root->log_mutex);
177 
178 again:
179 	if (root->log_root) {
180 		int index = (root->log_transid + 1) % 2;
181 
182 		if (btrfs_need_log_full_commit(trans)) {
183 			ret = BTRFS_LOG_FORCE_COMMIT;
184 			goto out;
185 		}
186 
187 		if (zoned && atomic_read(&root->log_commit[index])) {
188 			wait_log_commit(root, root->log_transid - 1);
189 			goto again;
190 		}
191 
192 		if (!root->log_start_pid) {
193 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
194 			root->log_start_pid = current->pid;
195 		} else if (root->log_start_pid != current->pid) {
196 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
197 		}
198 	} else {
199 		/*
200 		 * This means fs_info->log_root_tree was already created
201 		 * for some other FS trees. Do the full commit not to mix
202 		 * nodes from multiple log transactions to do sequential
203 		 * writing.
204 		 */
205 		if (zoned && !created) {
206 			ret = BTRFS_LOG_FORCE_COMMIT;
207 			goto out;
208 		}
209 
210 		ret = btrfs_add_log_tree(trans, root);
211 		if (ret)
212 			goto out;
213 
214 		set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
215 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
216 		root->log_start_pid = current->pid;
217 	}
218 
219 	atomic_inc(&root->log_writers);
220 	if (!ctx->logging_new_name) {
221 		int index = root->log_transid % 2;
222 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
223 		ctx->log_transid = root->log_transid;
224 	}
225 
226 out:
227 	mutex_unlock(&root->log_mutex);
228 	return ret;
229 }
230 
231 /*
232  * returns 0 if there was a log transaction running and we were able
233  * to join, or returns -ENOENT if there were not transactions
234  * in progress
235  */
236 static int join_running_log_trans(struct btrfs_root *root)
237 {
238 	const bool zoned = btrfs_is_zoned(root->fs_info);
239 	int ret = -ENOENT;
240 
241 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
242 		return ret;
243 
244 	mutex_lock(&root->log_mutex);
245 again:
246 	if (root->log_root) {
247 		int index = (root->log_transid + 1) % 2;
248 
249 		ret = 0;
250 		if (zoned && atomic_read(&root->log_commit[index])) {
251 			wait_log_commit(root, root->log_transid - 1);
252 			goto again;
253 		}
254 		atomic_inc(&root->log_writers);
255 	}
256 	mutex_unlock(&root->log_mutex);
257 	return ret;
258 }
259 
260 /*
261  * This either makes the current running log transaction wait
262  * until you call btrfs_end_log_trans() or it makes any future
263  * log transactions wait until you call btrfs_end_log_trans()
264  */
265 void btrfs_pin_log_trans(struct btrfs_root *root)
266 {
267 	atomic_inc(&root->log_writers);
268 }
269 
270 /*
271  * indicate we're done making changes to the log tree
272  * and wake up anyone waiting to do a sync
273  */
274 void btrfs_end_log_trans(struct btrfs_root *root)
275 {
276 	if (atomic_dec_and_test(&root->log_writers)) {
277 		/* atomic_dec_and_test implies a barrier */
278 		cond_wake_up_nomb(&root->log_writer_wait);
279 	}
280 }
281 
282 /*
283  * the walk control struct is used to pass state down the chain when
284  * processing the log tree.  The stage field tells us which part
285  * of the log tree processing we are currently doing.  The others
286  * are state fields used for that specific part
287  */
288 struct walk_control {
289 	/* should we free the extent on disk when done?  This is used
290 	 * at transaction commit time while freeing a log tree
291 	 */
292 	int free;
293 
294 	/* pin only walk, we record which extents on disk belong to the
295 	 * log trees
296 	 */
297 	int pin;
298 
299 	/* what stage of the replay code we're currently in */
300 	int stage;
301 
302 	/*
303 	 * Ignore any items from the inode currently being processed. Needs
304 	 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
305 	 * the LOG_WALK_REPLAY_INODES stage.
306 	 */
307 	bool ignore_cur_inode;
308 
309 	/* the root we are currently replaying */
310 	struct btrfs_root *replay_dest;
311 
312 	/* the trans handle for the current replay */
313 	struct btrfs_trans_handle *trans;
314 
315 	/* the function that gets used to process blocks we find in the
316 	 * tree.  Note the extent_buffer might not be up to date when it is
317 	 * passed in, and it must be checked or read if you need the data
318 	 * inside it
319 	 */
320 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
321 			    struct walk_control *wc, u64 gen, int level);
322 };
323 
324 /*
325  * process_func used to pin down extents, write them or wait on them
326  */
327 static int process_one_buffer(struct btrfs_root *log,
328 			      struct extent_buffer *eb,
329 			      struct walk_control *wc, u64 gen, int level)
330 {
331 	struct btrfs_fs_info *fs_info = log->fs_info;
332 	int ret = 0;
333 
334 	/*
335 	 * If this fs is mixed then we need to be able to process the leaves to
336 	 * pin down any logged extents, so we have to read the block.
337 	 */
338 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
339 		struct btrfs_tree_parent_check check = {
340 			.level = level,
341 			.transid = gen
342 		};
343 
344 		ret = btrfs_read_extent_buffer(eb, &check);
345 		if (ret)
346 			return ret;
347 	}
348 
349 	if (wc->pin) {
350 		ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
351 						      eb->len);
352 		if (ret)
353 			return ret;
354 
355 		if (btrfs_buffer_uptodate(eb, gen, 0) &&
356 		    btrfs_header_level(eb) == 0)
357 			ret = btrfs_exclude_logged_extents(eb);
358 	}
359 	return ret;
360 }
361 
362 /*
363  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
364  * to the src data we are copying out.
365  *
366  * root is the tree we are copying into, and path is a scratch
367  * path for use in this function (it should be released on entry and
368  * will be released on exit).
369  *
370  * If the key is already in the destination tree the existing item is
371  * overwritten.  If the existing item isn't big enough, it is extended.
372  * If it is too large, it is truncated.
373  *
374  * If the key isn't in the destination yet, a new item is inserted.
375  */
376 static int overwrite_item(struct btrfs_trans_handle *trans,
377 			  struct btrfs_root *root,
378 			  struct btrfs_path *path,
379 			  struct extent_buffer *eb, int slot,
380 			  struct btrfs_key *key)
381 {
382 	int ret;
383 	u32 item_size;
384 	u64 saved_i_size = 0;
385 	int save_old_i_size = 0;
386 	unsigned long src_ptr;
387 	unsigned long dst_ptr;
388 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
389 
390 	/*
391 	 * This is only used during log replay, so the root is always from a
392 	 * fs/subvolume tree. In case we ever need to support a log root, then
393 	 * we'll have to clone the leaf in the path, release the path and use
394 	 * the leaf before writing into the log tree. See the comments at
395 	 * copy_items() for more details.
396 	 */
397 	ASSERT(root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
398 
399 	item_size = btrfs_item_size(eb, slot);
400 	src_ptr = btrfs_item_ptr_offset(eb, slot);
401 
402 	/* Look for the key in the destination tree. */
403 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
404 	if (ret < 0)
405 		return ret;
406 
407 	if (ret == 0) {
408 		char *src_copy;
409 		char *dst_copy;
410 		u32 dst_size = btrfs_item_size(path->nodes[0],
411 						  path->slots[0]);
412 		if (dst_size != item_size)
413 			goto insert;
414 
415 		if (item_size == 0) {
416 			btrfs_release_path(path);
417 			return 0;
418 		}
419 		dst_copy = kmalloc(item_size, GFP_NOFS);
420 		src_copy = kmalloc(item_size, GFP_NOFS);
421 		if (!dst_copy || !src_copy) {
422 			btrfs_release_path(path);
423 			kfree(dst_copy);
424 			kfree(src_copy);
425 			return -ENOMEM;
426 		}
427 
428 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
429 
430 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
431 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
432 				   item_size);
433 		ret = memcmp(dst_copy, src_copy, item_size);
434 
435 		kfree(dst_copy);
436 		kfree(src_copy);
437 		/*
438 		 * they have the same contents, just return, this saves
439 		 * us from cowing blocks in the destination tree and doing
440 		 * extra writes that may not have been done by a previous
441 		 * sync
442 		 */
443 		if (ret == 0) {
444 			btrfs_release_path(path);
445 			return 0;
446 		}
447 
448 		/*
449 		 * We need to load the old nbytes into the inode so when we
450 		 * replay the extents we've logged we get the right nbytes.
451 		 */
452 		if (inode_item) {
453 			struct btrfs_inode_item *item;
454 			u64 nbytes;
455 			u32 mode;
456 
457 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
458 					      struct btrfs_inode_item);
459 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
460 			item = btrfs_item_ptr(eb, slot,
461 					      struct btrfs_inode_item);
462 			btrfs_set_inode_nbytes(eb, item, nbytes);
463 
464 			/*
465 			 * If this is a directory we need to reset the i_size to
466 			 * 0 so that we can set it up properly when replaying
467 			 * the rest of the items in this log.
468 			 */
469 			mode = btrfs_inode_mode(eb, item);
470 			if (S_ISDIR(mode))
471 				btrfs_set_inode_size(eb, item, 0);
472 		}
473 	} else if (inode_item) {
474 		struct btrfs_inode_item *item;
475 		u32 mode;
476 
477 		/*
478 		 * New inode, set nbytes to 0 so that the nbytes comes out
479 		 * properly when we replay the extents.
480 		 */
481 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
482 		btrfs_set_inode_nbytes(eb, item, 0);
483 
484 		/*
485 		 * If this is a directory we need to reset the i_size to 0 so
486 		 * that we can set it up properly when replaying the rest of
487 		 * the items in this log.
488 		 */
489 		mode = btrfs_inode_mode(eb, item);
490 		if (S_ISDIR(mode))
491 			btrfs_set_inode_size(eb, item, 0);
492 	}
493 insert:
494 	btrfs_release_path(path);
495 	/* try to insert the key into the destination tree */
496 	path->skip_release_on_error = 1;
497 	ret = btrfs_insert_empty_item(trans, root, path,
498 				      key, item_size);
499 	path->skip_release_on_error = 0;
500 
501 	/* make sure any existing item is the correct size */
502 	if (ret == -EEXIST || ret == -EOVERFLOW) {
503 		u32 found_size;
504 		found_size = btrfs_item_size(path->nodes[0],
505 						path->slots[0]);
506 		if (found_size > item_size)
507 			btrfs_truncate_item(path, item_size, 1);
508 		else if (found_size < item_size)
509 			btrfs_extend_item(path, item_size - found_size);
510 	} else if (ret) {
511 		return ret;
512 	}
513 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
514 					path->slots[0]);
515 
516 	/* don't overwrite an existing inode if the generation number
517 	 * was logged as zero.  This is done when the tree logging code
518 	 * is just logging an inode to make sure it exists after recovery.
519 	 *
520 	 * Also, don't overwrite i_size on directories during replay.
521 	 * log replay inserts and removes directory items based on the
522 	 * state of the tree found in the subvolume, and i_size is modified
523 	 * as it goes
524 	 */
525 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
526 		struct btrfs_inode_item *src_item;
527 		struct btrfs_inode_item *dst_item;
528 
529 		src_item = (struct btrfs_inode_item *)src_ptr;
530 		dst_item = (struct btrfs_inode_item *)dst_ptr;
531 
532 		if (btrfs_inode_generation(eb, src_item) == 0) {
533 			struct extent_buffer *dst_eb = path->nodes[0];
534 			const u64 ino_size = btrfs_inode_size(eb, src_item);
535 
536 			/*
537 			 * For regular files an ino_size == 0 is used only when
538 			 * logging that an inode exists, as part of a directory
539 			 * fsync, and the inode wasn't fsynced before. In this
540 			 * case don't set the size of the inode in the fs/subvol
541 			 * tree, otherwise we would be throwing valid data away.
542 			 */
543 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
544 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
545 			    ino_size != 0)
546 				btrfs_set_inode_size(dst_eb, dst_item, ino_size);
547 			goto no_copy;
548 		}
549 
550 		if (S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
551 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
552 			save_old_i_size = 1;
553 			saved_i_size = btrfs_inode_size(path->nodes[0],
554 							dst_item);
555 		}
556 	}
557 
558 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
559 			   src_ptr, item_size);
560 
561 	if (save_old_i_size) {
562 		struct btrfs_inode_item *dst_item;
563 		dst_item = (struct btrfs_inode_item *)dst_ptr;
564 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
565 	}
566 
567 	/* make sure the generation is filled in */
568 	if (key->type == BTRFS_INODE_ITEM_KEY) {
569 		struct btrfs_inode_item *dst_item;
570 		dst_item = (struct btrfs_inode_item *)dst_ptr;
571 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
572 			btrfs_set_inode_generation(path->nodes[0], dst_item,
573 						   trans->transid);
574 		}
575 	}
576 no_copy:
577 	btrfs_mark_buffer_dirty(path->nodes[0]);
578 	btrfs_release_path(path);
579 	return 0;
580 }
581 
582 static int read_alloc_one_name(struct extent_buffer *eb, void *start, int len,
583 			       struct fscrypt_str *name)
584 {
585 	char *buf;
586 
587 	buf = kmalloc(len, GFP_NOFS);
588 	if (!buf)
589 		return -ENOMEM;
590 
591 	read_extent_buffer(eb, buf, (unsigned long)start, len);
592 	name->name = buf;
593 	name->len = len;
594 	return 0;
595 }
596 
597 /*
598  * simple helper to read an inode off the disk from a given root
599  * This can only be called for subvolume roots and not for the log
600  */
601 static noinline struct inode *read_one_inode(struct btrfs_root *root,
602 					     u64 objectid)
603 {
604 	struct inode *inode;
605 
606 	inode = btrfs_iget(root->fs_info->sb, objectid, root);
607 	if (IS_ERR(inode))
608 		inode = NULL;
609 	return inode;
610 }
611 
612 /* replays a single extent in 'eb' at 'slot' with 'key' into the
613  * subvolume 'root'.  path is released on entry and should be released
614  * on exit.
615  *
616  * extents in the log tree have not been allocated out of the extent
617  * tree yet.  So, this completes the allocation, taking a reference
618  * as required if the extent already exists or creating a new extent
619  * if it isn't in the extent allocation tree yet.
620  *
621  * The extent is inserted into the file, dropping any existing extents
622  * from the file that overlap the new one.
623  */
624 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
625 				      struct btrfs_root *root,
626 				      struct btrfs_path *path,
627 				      struct extent_buffer *eb, int slot,
628 				      struct btrfs_key *key)
629 {
630 	struct btrfs_drop_extents_args drop_args = { 0 };
631 	struct btrfs_fs_info *fs_info = root->fs_info;
632 	int found_type;
633 	u64 extent_end;
634 	u64 start = key->offset;
635 	u64 nbytes = 0;
636 	struct btrfs_file_extent_item *item;
637 	struct inode *inode = NULL;
638 	unsigned long size;
639 	int ret = 0;
640 
641 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
642 	found_type = btrfs_file_extent_type(eb, item);
643 
644 	if (found_type == BTRFS_FILE_EXTENT_REG ||
645 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
646 		nbytes = btrfs_file_extent_num_bytes(eb, item);
647 		extent_end = start + nbytes;
648 
649 		/*
650 		 * We don't add to the inodes nbytes if we are prealloc or a
651 		 * hole.
652 		 */
653 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
654 			nbytes = 0;
655 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
656 		size = btrfs_file_extent_ram_bytes(eb, item);
657 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
658 		extent_end = ALIGN(start + size,
659 				   fs_info->sectorsize);
660 	} else {
661 		ret = 0;
662 		goto out;
663 	}
664 
665 	inode = read_one_inode(root, key->objectid);
666 	if (!inode) {
667 		ret = -EIO;
668 		goto out;
669 	}
670 
671 	/*
672 	 * first check to see if we already have this extent in the
673 	 * file.  This must be done before the btrfs_drop_extents run
674 	 * so we don't try to drop this extent.
675 	 */
676 	ret = btrfs_lookup_file_extent(trans, root, path,
677 			btrfs_ino(BTRFS_I(inode)), start, 0);
678 
679 	if (ret == 0 &&
680 	    (found_type == BTRFS_FILE_EXTENT_REG ||
681 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
682 		struct btrfs_file_extent_item cmp1;
683 		struct btrfs_file_extent_item cmp2;
684 		struct btrfs_file_extent_item *existing;
685 		struct extent_buffer *leaf;
686 
687 		leaf = path->nodes[0];
688 		existing = btrfs_item_ptr(leaf, path->slots[0],
689 					  struct btrfs_file_extent_item);
690 
691 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
692 				   sizeof(cmp1));
693 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
694 				   sizeof(cmp2));
695 
696 		/*
697 		 * we already have a pointer to this exact extent,
698 		 * we don't have to do anything
699 		 */
700 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
701 			btrfs_release_path(path);
702 			goto out;
703 		}
704 	}
705 	btrfs_release_path(path);
706 
707 	/* drop any overlapping extents */
708 	drop_args.start = start;
709 	drop_args.end = extent_end;
710 	drop_args.drop_cache = true;
711 	ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
712 	if (ret)
713 		goto out;
714 
715 	if (found_type == BTRFS_FILE_EXTENT_REG ||
716 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
717 		u64 offset;
718 		unsigned long dest_offset;
719 		struct btrfs_key ins;
720 
721 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
722 		    btrfs_fs_incompat(fs_info, NO_HOLES))
723 			goto update_inode;
724 
725 		ret = btrfs_insert_empty_item(trans, root, path, key,
726 					      sizeof(*item));
727 		if (ret)
728 			goto out;
729 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
730 						    path->slots[0]);
731 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
732 				(unsigned long)item,  sizeof(*item));
733 
734 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
735 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
736 		ins.type = BTRFS_EXTENT_ITEM_KEY;
737 		offset = key->offset - btrfs_file_extent_offset(eb, item);
738 
739 		/*
740 		 * Manually record dirty extent, as here we did a shallow
741 		 * file extent item copy and skip normal backref update,
742 		 * but modifying extent tree all by ourselves.
743 		 * So need to manually record dirty extent for qgroup,
744 		 * as the owner of the file extent changed from log tree
745 		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
746 		 */
747 		ret = btrfs_qgroup_trace_extent(trans,
748 				btrfs_file_extent_disk_bytenr(eb, item),
749 				btrfs_file_extent_disk_num_bytes(eb, item));
750 		if (ret < 0)
751 			goto out;
752 
753 		if (ins.objectid > 0) {
754 			struct btrfs_ref ref = { 0 };
755 			u64 csum_start;
756 			u64 csum_end;
757 			LIST_HEAD(ordered_sums);
758 
759 			/*
760 			 * is this extent already allocated in the extent
761 			 * allocation tree?  If so, just add a reference
762 			 */
763 			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
764 						ins.offset);
765 			if (ret < 0) {
766 				goto out;
767 			} else if (ret == 0) {
768 				btrfs_init_generic_ref(&ref,
769 						BTRFS_ADD_DELAYED_REF,
770 						ins.objectid, ins.offset, 0);
771 				btrfs_init_data_ref(&ref,
772 						root->root_key.objectid,
773 						key->objectid, offset, 0, false);
774 				ret = btrfs_inc_extent_ref(trans, &ref);
775 				if (ret)
776 					goto out;
777 			} else {
778 				/*
779 				 * insert the extent pointer in the extent
780 				 * allocation tree
781 				 */
782 				ret = btrfs_alloc_logged_file_extent(trans,
783 						root->root_key.objectid,
784 						key->objectid, offset, &ins);
785 				if (ret)
786 					goto out;
787 			}
788 			btrfs_release_path(path);
789 
790 			if (btrfs_file_extent_compression(eb, item)) {
791 				csum_start = ins.objectid;
792 				csum_end = csum_start + ins.offset;
793 			} else {
794 				csum_start = ins.objectid +
795 					btrfs_file_extent_offset(eb, item);
796 				csum_end = csum_start +
797 					btrfs_file_extent_num_bytes(eb, item);
798 			}
799 
800 			ret = btrfs_lookup_csums_list(root->log_root,
801 						csum_start, csum_end - 1,
802 						&ordered_sums, 0, false);
803 			if (ret)
804 				goto out;
805 			/*
806 			 * Now delete all existing cums in the csum root that
807 			 * cover our range. We do this because we can have an
808 			 * extent that is completely referenced by one file
809 			 * extent item and partially referenced by another
810 			 * file extent item (like after using the clone or
811 			 * extent_same ioctls). In this case if we end up doing
812 			 * the replay of the one that partially references the
813 			 * extent first, and we do not do the csum deletion
814 			 * below, we can get 2 csum items in the csum tree that
815 			 * overlap each other. For example, imagine our log has
816 			 * the two following file extent items:
817 			 *
818 			 * key (257 EXTENT_DATA 409600)
819 			 *     extent data disk byte 12845056 nr 102400
820 			 *     extent data offset 20480 nr 20480 ram 102400
821 			 *
822 			 * key (257 EXTENT_DATA 819200)
823 			 *     extent data disk byte 12845056 nr 102400
824 			 *     extent data offset 0 nr 102400 ram 102400
825 			 *
826 			 * Where the second one fully references the 100K extent
827 			 * that starts at disk byte 12845056, and the log tree
828 			 * has a single csum item that covers the entire range
829 			 * of the extent:
830 			 *
831 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
832 			 *
833 			 * After the first file extent item is replayed, the
834 			 * csum tree gets the following csum item:
835 			 *
836 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
837 			 *
838 			 * Which covers the 20K sub-range starting at offset 20K
839 			 * of our extent. Now when we replay the second file
840 			 * extent item, if we do not delete existing csum items
841 			 * that cover any of its blocks, we end up getting two
842 			 * csum items in our csum tree that overlap each other:
843 			 *
844 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
845 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
846 			 *
847 			 * Which is a problem, because after this anyone trying
848 			 * to lookup up for the checksum of any block of our
849 			 * extent starting at an offset of 40K or higher, will
850 			 * end up looking at the second csum item only, which
851 			 * does not contain the checksum for any block starting
852 			 * at offset 40K or higher of our extent.
853 			 */
854 			while (!list_empty(&ordered_sums)) {
855 				struct btrfs_ordered_sum *sums;
856 				struct btrfs_root *csum_root;
857 
858 				sums = list_entry(ordered_sums.next,
859 						struct btrfs_ordered_sum,
860 						list);
861 				csum_root = btrfs_csum_root(fs_info,
862 							    sums->bytenr);
863 				if (!ret)
864 					ret = btrfs_del_csums(trans, csum_root,
865 							      sums->bytenr,
866 							      sums->len);
867 				if (!ret)
868 					ret = btrfs_csum_file_blocks(trans,
869 								     csum_root,
870 								     sums);
871 				list_del(&sums->list);
872 				kfree(sums);
873 			}
874 			if (ret)
875 				goto out;
876 		} else {
877 			btrfs_release_path(path);
878 		}
879 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
880 		/* inline extents are easy, we just overwrite them */
881 		ret = overwrite_item(trans, root, path, eb, slot, key);
882 		if (ret)
883 			goto out;
884 	}
885 
886 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
887 						extent_end - start);
888 	if (ret)
889 		goto out;
890 
891 update_inode:
892 	btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
893 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
894 out:
895 	iput(inode);
896 	return ret;
897 }
898 
899 static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans,
900 				       struct btrfs_inode *dir,
901 				       struct btrfs_inode *inode,
902 				       const struct fscrypt_str *name)
903 {
904 	int ret;
905 
906 	ret = btrfs_unlink_inode(trans, dir, inode, name);
907 	if (ret)
908 		return ret;
909 	/*
910 	 * Whenever we need to check if a name exists or not, we check the
911 	 * fs/subvolume tree. So after an unlink we must run delayed items, so
912 	 * that future checks for a name during log replay see that the name
913 	 * does not exists anymore.
914 	 */
915 	return btrfs_run_delayed_items(trans);
916 }
917 
918 /*
919  * when cleaning up conflicts between the directory names in the
920  * subvolume, directory names in the log and directory names in the
921  * inode back references, we may have to unlink inodes from directories.
922  *
923  * This is a helper function to do the unlink of a specific directory
924  * item
925  */
926 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
927 				      struct btrfs_path *path,
928 				      struct btrfs_inode *dir,
929 				      struct btrfs_dir_item *di)
930 {
931 	struct btrfs_root *root = dir->root;
932 	struct inode *inode;
933 	struct fscrypt_str name;
934 	struct extent_buffer *leaf;
935 	struct btrfs_key location;
936 	int ret;
937 
938 	leaf = path->nodes[0];
939 
940 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
941 	ret = read_alloc_one_name(leaf, di + 1, btrfs_dir_name_len(leaf, di), &name);
942 	if (ret)
943 		return -ENOMEM;
944 
945 	btrfs_release_path(path);
946 
947 	inode = read_one_inode(root, location.objectid);
948 	if (!inode) {
949 		ret = -EIO;
950 		goto out;
951 	}
952 
953 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
954 	if (ret)
955 		goto out;
956 
957 	ret = unlink_inode_for_log_replay(trans, dir, BTRFS_I(inode), &name);
958 out:
959 	kfree(name.name);
960 	iput(inode);
961 	return ret;
962 }
963 
964 /*
965  * See if a given name and sequence number found in an inode back reference are
966  * already in a directory and correctly point to this inode.
967  *
968  * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
969  * exists.
970  */
971 static noinline int inode_in_dir(struct btrfs_root *root,
972 				 struct btrfs_path *path,
973 				 u64 dirid, u64 objectid, u64 index,
974 				 struct fscrypt_str *name)
975 {
976 	struct btrfs_dir_item *di;
977 	struct btrfs_key location;
978 	int ret = 0;
979 
980 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
981 					 index, name, 0);
982 	if (IS_ERR(di)) {
983 		ret = PTR_ERR(di);
984 		goto out;
985 	} else if (di) {
986 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
987 		if (location.objectid != objectid)
988 			goto out;
989 	} else {
990 		goto out;
991 	}
992 
993 	btrfs_release_path(path);
994 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, 0);
995 	if (IS_ERR(di)) {
996 		ret = PTR_ERR(di);
997 		goto out;
998 	} else if (di) {
999 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1000 		if (location.objectid == objectid)
1001 			ret = 1;
1002 	}
1003 out:
1004 	btrfs_release_path(path);
1005 	return ret;
1006 }
1007 
1008 /*
1009  * helper function to check a log tree for a named back reference in
1010  * an inode.  This is used to decide if a back reference that is
1011  * found in the subvolume conflicts with what we find in the log.
1012  *
1013  * inode backreferences may have multiple refs in a single item,
1014  * during replay we process one reference at a time, and we don't
1015  * want to delete valid links to a file from the subvolume if that
1016  * link is also in the log.
1017  */
1018 static noinline int backref_in_log(struct btrfs_root *log,
1019 				   struct btrfs_key *key,
1020 				   u64 ref_objectid,
1021 				   const struct fscrypt_str *name)
1022 {
1023 	struct btrfs_path *path;
1024 	int ret;
1025 
1026 	path = btrfs_alloc_path();
1027 	if (!path)
1028 		return -ENOMEM;
1029 
1030 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
1031 	if (ret < 0) {
1032 		goto out;
1033 	} else if (ret == 1) {
1034 		ret = 0;
1035 		goto out;
1036 	}
1037 
1038 	if (key->type == BTRFS_INODE_EXTREF_KEY)
1039 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1040 						       path->slots[0],
1041 						       ref_objectid, name);
1042 	else
1043 		ret = !!btrfs_find_name_in_backref(path->nodes[0],
1044 						   path->slots[0], name);
1045 out:
1046 	btrfs_free_path(path);
1047 	return ret;
1048 }
1049 
1050 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1051 				  struct btrfs_root *root,
1052 				  struct btrfs_path *path,
1053 				  struct btrfs_root *log_root,
1054 				  struct btrfs_inode *dir,
1055 				  struct btrfs_inode *inode,
1056 				  u64 inode_objectid, u64 parent_objectid,
1057 				  u64 ref_index, struct fscrypt_str *name)
1058 {
1059 	int ret;
1060 	struct extent_buffer *leaf;
1061 	struct btrfs_dir_item *di;
1062 	struct btrfs_key search_key;
1063 	struct btrfs_inode_extref *extref;
1064 
1065 again:
1066 	/* Search old style refs */
1067 	search_key.objectid = inode_objectid;
1068 	search_key.type = BTRFS_INODE_REF_KEY;
1069 	search_key.offset = parent_objectid;
1070 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1071 	if (ret == 0) {
1072 		struct btrfs_inode_ref *victim_ref;
1073 		unsigned long ptr;
1074 		unsigned long ptr_end;
1075 
1076 		leaf = path->nodes[0];
1077 
1078 		/* are we trying to overwrite a back ref for the root directory
1079 		 * if so, just jump out, we're done
1080 		 */
1081 		if (search_key.objectid == search_key.offset)
1082 			return 1;
1083 
1084 		/* check all the names in this back reference to see
1085 		 * if they are in the log.  if so, we allow them to stay
1086 		 * otherwise they must be unlinked as a conflict
1087 		 */
1088 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1089 		ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]);
1090 		while (ptr < ptr_end) {
1091 			struct fscrypt_str victim_name;
1092 
1093 			victim_ref = (struct btrfs_inode_ref *)ptr;
1094 			ret = read_alloc_one_name(leaf, (victim_ref + 1),
1095 				 btrfs_inode_ref_name_len(leaf, victim_ref),
1096 				 &victim_name);
1097 			if (ret)
1098 				return ret;
1099 
1100 			ret = backref_in_log(log_root, &search_key,
1101 					     parent_objectid, &victim_name);
1102 			if (ret < 0) {
1103 				kfree(victim_name.name);
1104 				return ret;
1105 			} else if (!ret) {
1106 				inc_nlink(&inode->vfs_inode);
1107 				btrfs_release_path(path);
1108 
1109 				ret = unlink_inode_for_log_replay(trans, dir, inode,
1110 						&victim_name);
1111 				kfree(victim_name.name);
1112 				if (ret)
1113 					return ret;
1114 				goto again;
1115 			}
1116 			kfree(victim_name.name);
1117 
1118 			ptr = (unsigned long)(victim_ref + 1) + victim_name.len;
1119 		}
1120 	}
1121 	btrfs_release_path(path);
1122 
1123 	/* Same search but for extended refs */
1124 	extref = btrfs_lookup_inode_extref(NULL, root, path, name,
1125 					   inode_objectid, parent_objectid, 0,
1126 					   0);
1127 	if (IS_ERR(extref)) {
1128 		return PTR_ERR(extref);
1129 	} else if (extref) {
1130 		u32 item_size;
1131 		u32 cur_offset = 0;
1132 		unsigned long base;
1133 		struct inode *victim_parent;
1134 
1135 		leaf = path->nodes[0];
1136 
1137 		item_size = btrfs_item_size(leaf, path->slots[0]);
1138 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1139 
1140 		while (cur_offset < item_size) {
1141 			struct fscrypt_str victim_name;
1142 
1143 			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1144 
1145 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1146 				goto next;
1147 
1148 			ret = read_alloc_one_name(leaf, &extref->name,
1149 				 btrfs_inode_extref_name_len(leaf, extref),
1150 				 &victim_name);
1151 			if (ret)
1152 				return ret;
1153 
1154 			search_key.objectid = inode_objectid;
1155 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1156 			search_key.offset = btrfs_extref_hash(parent_objectid,
1157 							      victim_name.name,
1158 							      victim_name.len);
1159 			ret = backref_in_log(log_root, &search_key,
1160 					     parent_objectid, &victim_name);
1161 			if (ret < 0) {
1162 				kfree(victim_name.name);
1163 				return ret;
1164 			} else if (!ret) {
1165 				ret = -ENOENT;
1166 				victim_parent = read_one_inode(root,
1167 						parent_objectid);
1168 				if (victim_parent) {
1169 					inc_nlink(&inode->vfs_inode);
1170 					btrfs_release_path(path);
1171 
1172 					ret = unlink_inode_for_log_replay(trans,
1173 							BTRFS_I(victim_parent),
1174 							inode, &victim_name);
1175 				}
1176 				iput(victim_parent);
1177 				kfree(victim_name.name);
1178 				if (ret)
1179 					return ret;
1180 				goto again;
1181 			}
1182 			kfree(victim_name.name);
1183 next:
1184 			cur_offset += victim_name.len + sizeof(*extref);
1185 		}
1186 	}
1187 	btrfs_release_path(path);
1188 
1189 	/* look for a conflicting sequence number */
1190 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1191 					 ref_index, name, 0);
1192 	if (IS_ERR(di)) {
1193 		return PTR_ERR(di);
1194 	} else if (di) {
1195 		ret = drop_one_dir_item(trans, path, dir, di);
1196 		if (ret)
1197 			return ret;
1198 	}
1199 	btrfs_release_path(path);
1200 
1201 	/* look for a conflicting name */
1202 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), name, 0);
1203 	if (IS_ERR(di)) {
1204 		return PTR_ERR(di);
1205 	} else if (di) {
1206 		ret = drop_one_dir_item(trans, path, dir, di);
1207 		if (ret)
1208 			return ret;
1209 	}
1210 	btrfs_release_path(path);
1211 
1212 	return 0;
1213 }
1214 
1215 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1216 			     struct fscrypt_str *name, u64 *index,
1217 			     u64 *parent_objectid)
1218 {
1219 	struct btrfs_inode_extref *extref;
1220 	int ret;
1221 
1222 	extref = (struct btrfs_inode_extref *)ref_ptr;
1223 
1224 	ret = read_alloc_one_name(eb, &extref->name,
1225 				  btrfs_inode_extref_name_len(eb, extref), name);
1226 	if (ret)
1227 		return ret;
1228 
1229 	if (index)
1230 		*index = btrfs_inode_extref_index(eb, extref);
1231 	if (parent_objectid)
1232 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1233 
1234 	return 0;
1235 }
1236 
1237 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1238 			  struct fscrypt_str *name, u64 *index)
1239 {
1240 	struct btrfs_inode_ref *ref;
1241 	int ret;
1242 
1243 	ref = (struct btrfs_inode_ref *)ref_ptr;
1244 
1245 	ret = read_alloc_one_name(eb, ref + 1, btrfs_inode_ref_name_len(eb, ref),
1246 				  name);
1247 	if (ret)
1248 		return ret;
1249 
1250 	if (index)
1251 		*index = btrfs_inode_ref_index(eb, ref);
1252 
1253 	return 0;
1254 }
1255 
1256 /*
1257  * Take an inode reference item from the log tree and iterate all names from the
1258  * inode reference item in the subvolume tree with the same key (if it exists).
1259  * For any name that is not in the inode reference item from the log tree, do a
1260  * proper unlink of that name (that is, remove its entry from the inode
1261  * reference item and both dir index keys).
1262  */
1263 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1264 				 struct btrfs_root *root,
1265 				 struct btrfs_path *path,
1266 				 struct btrfs_inode *inode,
1267 				 struct extent_buffer *log_eb,
1268 				 int log_slot,
1269 				 struct btrfs_key *key)
1270 {
1271 	int ret;
1272 	unsigned long ref_ptr;
1273 	unsigned long ref_end;
1274 	struct extent_buffer *eb;
1275 
1276 again:
1277 	btrfs_release_path(path);
1278 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1279 	if (ret > 0) {
1280 		ret = 0;
1281 		goto out;
1282 	}
1283 	if (ret < 0)
1284 		goto out;
1285 
1286 	eb = path->nodes[0];
1287 	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1288 	ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]);
1289 	while (ref_ptr < ref_end) {
1290 		struct fscrypt_str name;
1291 		u64 parent_id;
1292 
1293 		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1294 			ret = extref_get_fields(eb, ref_ptr, &name,
1295 						NULL, &parent_id);
1296 		} else {
1297 			parent_id = key->offset;
1298 			ret = ref_get_fields(eb, ref_ptr, &name, NULL);
1299 		}
1300 		if (ret)
1301 			goto out;
1302 
1303 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1304 			ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1305 							       parent_id, &name);
1306 		else
1307 			ret = !!btrfs_find_name_in_backref(log_eb, log_slot, &name);
1308 
1309 		if (!ret) {
1310 			struct inode *dir;
1311 
1312 			btrfs_release_path(path);
1313 			dir = read_one_inode(root, parent_id);
1314 			if (!dir) {
1315 				ret = -ENOENT;
1316 				kfree(name.name);
1317 				goto out;
1318 			}
1319 			ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir),
1320 						 inode, &name);
1321 			kfree(name.name);
1322 			iput(dir);
1323 			if (ret)
1324 				goto out;
1325 			goto again;
1326 		}
1327 
1328 		kfree(name.name);
1329 		ref_ptr += name.len;
1330 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1331 			ref_ptr += sizeof(struct btrfs_inode_extref);
1332 		else
1333 			ref_ptr += sizeof(struct btrfs_inode_ref);
1334 	}
1335 	ret = 0;
1336  out:
1337 	btrfs_release_path(path);
1338 	return ret;
1339 }
1340 
1341 /*
1342  * replay one inode back reference item found in the log tree.
1343  * eb, slot and key refer to the buffer and key found in the log tree.
1344  * root is the destination we are replaying into, and path is for temp
1345  * use by this function.  (it should be released on return).
1346  */
1347 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1348 				  struct btrfs_root *root,
1349 				  struct btrfs_root *log,
1350 				  struct btrfs_path *path,
1351 				  struct extent_buffer *eb, int slot,
1352 				  struct btrfs_key *key)
1353 {
1354 	struct inode *dir = NULL;
1355 	struct inode *inode = NULL;
1356 	unsigned long ref_ptr;
1357 	unsigned long ref_end;
1358 	struct fscrypt_str name;
1359 	int ret;
1360 	int log_ref_ver = 0;
1361 	u64 parent_objectid;
1362 	u64 inode_objectid;
1363 	u64 ref_index = 0;
1364 	int ref_struct_size;
1365 
1366 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1367 	ref_end = ref_ptr + btrfs_item_size(eb, slot);
1368 
1369 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1370 		struct btrfs_inode_extref *r;
1371 
1372 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1373 		log_ref_ver = 1;
1374 		r = (struct btrfs_inode_extref *)ref_ptr;
1375 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1376 	} else {
1377 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1378 		parent_objectid = key->offset;
1379 	}
1380 	inode_objectid = key->objectid;
1381 
1382 	/*
1383 	 * it is possible that we didn't log all the parent directories
1384 	 * for a given inode.  If we don't find the dir, just don't
1385 	 * copy the back ref in.  The link count fixup code will take
1386 	 * care of the rest
1387 	 */
1388 	dir = read_one_inode(root, parent_objectid);
1389 	if (!dir) {
1390 		ret = -ENOENT;
1391 		goto out;
1392 	}
1393 
1394 	inode = read_one_inode(root, inode_objectid);
1395 	if (!inode) {
1396 		ret = -EIO;
1397 		goto out;
1398 	}
1399 
1400 	while (ref_ptr < ref_end) {
1401 		if (log_ref_ver) {
1402 			ret = extref_get_fields(eb, ref_ptr, &name,
1403 						&ref_index, &parent_objectid);
1404 			/*
1405 			 * parent object can change from one array
1406 			 * item to another.
1407 			 */
1408 			if (!dir)
1409 				dir = read_one_inode(root, parent_objectid);
1410 			if (!dir) {
1411 				ret = -ENOENT;
1412 				goto out;
1413 			}
1414 		} else {
1415 			ret = ref_get_fields(eb, ref_ptr, &name, &ref_index);
1416 		}
1417 		if (ret)
1418 			goto out;
1419 
1420 		ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1421 				   btrfs_ino(BTRFS_I(inode)), ref_index, &name);
1422 		if (ret < 0) {
1423 			goto out;
1424 		} else if (ret == 0) {
1425 			/*
1426 			 * look for a conflicting back reference in the
1427 			 * metadata. if we find one we have to unlink that name
1428 			 * of the file before we add our new link.  Later on, we
1429 			 * overwrite any existing back reference, and we don't
1430 			 * want to create dangling pointers in the directory.
1431 			 */
1432 			ret = __add_inode_ref(trans, root, path, log,
1433 					      BTRFS_I(dir), BTRFS_I(inode),
1434 					      inode_objectid, parent_objectid,
1435 					      ref_index, &name);
1436 			if (ret) {
1437 				if (ret == 1)
1438 					ret = 0;
1439 				goto out;
1440 			}
1441 
1442 			/* insert our name */
1443 			ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1444 					     &name, 0, ref_index);
1445 			if (ret)
1446 				goto out;
1447 
1448 			ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1449 			if (ret)
1450 				goto out;
1451 		}
1452 		/* Else, ret == 1, we already have a perfect match, we're done. */
1453 
1454 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + name.len;
1455 		kfree(name.name);
1456 		name.name = NULL;
1457 		if (log_ref_ver) {
1458 			iput(dir);
1459 			dir = NULL;
1460 		}
1461 	}
1462 
1463 	/*
1464 	 * Before we overwrite the inode reference item in the subvolume tree
1465 	 * with the item from the log tree, we must unlink all names from the
1466 	 * parent directory that are in the subvolume's tree inode reference
1467 	 * item, otherwise we end up with an inconsistent subvolume tree where
1468 	 * dir index entries exist for a name but there is no inode reference
1469 	 * item with the same name.
1470 	 */
1471 	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1472 				    key);
1473 	if (ret)
1474 		goto out;
1475 
1476 	/* finally write the back reference in the inode */
1477 	ret = overwrite_item(trans, root, path, eb, slot, key);
1478 out:
1479 	btrfs_release_path(path);
1480 	kfree(name.name);
1481 	iput(dir);
1482 	iput(inode);
1483 	return ret;
1484 }
1485 
1486 static int count_inode_extrefs(struct btrfs_root *root,
1487 		struct btrfs_inode *inode, struct btrfs_path *path)
1488 {
1489 	int ret = 0;
1490 	int name_len;
1491 	unsigned int nlink = 0;
1492 	u32 item_size;
1493 	u32 cur_offset = 0;
1494 	u64 inode_objectid = btrfs_ino(inode);
1495 	u64 offset = 0;
1496 	unsigned long ptr;
1497 	struct btrfs_inode_extref *extref;
1498 	struct extent_buffer *leaf;
1499 
1500 	while (1) {
1501 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1502 					    &extref, &offset);
1503 		if (ret)
1504 			break;
1505 
1506 		leaf = path->nodes[0];
1507 		item_size = btrfs_item_size(leaf, path->slots[0]);
1508 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1509 		cur_offset = 0;
1510 
1511 		while (cur_offset < item_size) {
1512 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1513 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1514 
1515 			nlink++;
1516 
1517 			cur_offset += name_len + sizeof(*extref);
1518 		}
1519 
1520 		offset++;
1521 		btrfs_release_path(path);
1522 	}
1523 	btrfs_release_path(path);
1524 
1525 	if (ret < 0 && ret != -ENOENT)
1526 		return ret;
1527 	return nlink;
1528 }
1529 
1530 static int count_inode_refs(struct btrfs_root *root,
1531 			struct btrfs_inode *inode, struct btrfs_path *path)
1532 {
1533 	int ret;
1534 	struct btrfs_key key;
1535 	unsigned int nlink = 0;
1536 	unsigned long ptr;
1537 	unsigned long ptr_end;
1538 	int name_len;
1539 	u64 ino = btrfs_ino(inode);
1540 
1541 	key.objectid = ino;
1542 	key.type = BTRFS_INODE_REF_KEY;
1543 	key.offset = (u64)-1;
1544 
1545 	while (1) {
1546 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1547 		if (ret < 0)
1548 			break;
1549 		if (ret > 0) {
1550 			if (path->slots[0] == 0)
1551 				break;
1552 			path->slots[0]--;
1553 		}
1554 process_slot:
1555 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1556 				      path->slots[0]);
1557 		if (key.objectid != ino ||
1558 		    key.type != BTRFS_INODE_REF_KEY)
1559 			break;
1560 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1561 		ptr_end = ptr + btrfs_item_size(path->nodes[0],
1562 						   path->slots[0]);
1563 		while (ptr < ptr_end) {
1564 			struct btrfs_inode_ref *ref;
1565 
1566 			ref = (struct btrfs_inode_ref *)ptr;
1567 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1568 							    ref);
1569 			ptr = (unsigned long)(ref + 1) + name_len;
1570 			nlink++;
1571 		}
1572 
1573 		if (key.offset == 0)
1574 			break;
1575 		if (path->slots[0] > 0) {
1576 			path->slots[0]--;
1577 			goto process_slot;
1578 		}
1579 		key.offset--;
1580 		btrfs_release_path(path);
1581 	}
1582 	btrfs_release_path(path);
1583 
1584 	return nlink;
1585 }
1586 
1587 /*
1588  * There are a few corners where the link count of the file can't
1589  * be properly maintained during replay.  So, instead of adding
1590  * lots of complexity to the log code, we just scan the backrefs
1591  * for any file that has been through replay.
1592  *
1593  * The scan will update the link count on the inode to reflect the
1594  * number of back refs found.  If it goes down to zero, the iput
1595  * will free the inode.
1596  */
1597 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1598 					   struct btrfs_root *root,
1599 					   struct inode *inode)
1600 {
1601 	struct btrfs_path *path;
1602 	int ret;
1603 	u64 nlink = 0;
1604 	u64 ino = btrfs_ino(BTRFS_I(inode));
1605 
1606 	path = btrfs_alloc_path();
1607 	if (!path)
1608 		return -ENOMEM;
1609 
1610 	ret = count_inode_refs(root, BTRFS_I(inode), path);
1611 	if (ret < 0)
1612 		goto out;
1613 
1614 	nlink = ret;
1615 
1616 	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1617 	if (ret < 0)
1618 		goto out;
1619 
1620 	nlink += ret;
1621 
1622 	ret = 0;
1623 
1624 	if (nlink != inode->i_nlink) {
1625 		set_nlink(inode, nlink);
1626 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1627 		if (ret)
1628 			goto out;
1629 	}
1630 	BTRFS_I(inode)->index_cnt = (u64)-1;
1631 
1632 	if (inode->i_nlink == 0) {
1633 		if (S_ISDIR(inode->i_mode)) {
1634 			ret = replay_dir_deletes(trans, root, NULL, path,
1635 						 ino, 1);
1636 			if (ret)
1637 				goto out;
1638 		}
1639 		ret = btrfs_insert_orphan_item(trans, root, ino);
1640 		if (ret == -EEXIST)
1641 			ret = 0;
1642 	}
1643 
1644 out:
1645 	btrfs_free_path(path);
1646 	return ret;
1647 }
1648 
1649 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1650 					    struct btrfs_root *root,
1651 					    struct btrfs_path *path)
1652 {
1653 	int ret;
1654 	struct btrfs_key key;
1655 	struct inode *inode;
1656 
1657 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1658 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1659 	key.offset = (u64)-1;
1660 	while (1) {
1661 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1662 		if (ret < 0)
1663 			break;
1664 
1665 		if (ret == 1) {
1666 			ret = 0;
1667 			if (path->slots[0] == 0)
1668 				break;
1669 			path->slots[0]--;
1670 		}
1671 
1672 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1673 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1674 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1675 			break;
1676 
1677 		ret = btrfs_del_item(trans, root, path);
1678 		if (ret)
1679 			break;
1680 
1681 		btrfs_release_path(path);
1682 		inode = read_one_inode(root, key.offset);
1683 		if (!inode) {
1684 			ret = -EIO;
1685 			break;
1686 		}
1687 
1688 		ret = fixup_inode_link_count(trans, root, inode);
1689 		iput(inode);
1690 		if (ret)
1691 			break;
1692 
1693 		/*
1694 		 * fixup on a directory may create new entries,
1695 		 * make sure we always look for the highset possible
1696 		 * offset
1697 		 */
1698 		key.offset = (u64)-1;
1699 	}
1700 	btrfs_release_path(path);
1701 	return ret;
1702 }
1703 
1704 
1705 /*
1706  * record a given inode in the fixup dir so we can check its link
1707  * count when replay is done.  The link count is incremented here
1708  * so the inode won't go away until we check it
1709  */
1710 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1711 				      struct btrfs_root *root,
1712 				      struct btrfs_path *path,
1713 				      u64 objectid)
1714 {
1715 	struct btrfs_key key;
1716 	int ret = 0;
1717 	struct inode *inode;
1718 
1719 	inode = read_one_inode(root, objectid);
1720 	if (!inode)
1721 		return -EIO;
1722 
1723 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1724 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1725 	key.offset = objectid;
1726 
1727 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1728 
1729 	btrfs_release_path(path);
1730 	if (ret == 0) {
1731 		if (!inode->i_nlink)
1732 			set_nlink(inode, 1);
1733 		else
1734 			inc_nlink(inode);
1735 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1736 	} else if (ret == -EEXIST) {
1737 		ret = 0;
1738 	}
1739 	iput(inode);
1740 
1741 	return ret;
1742 }
1743 
1744 /*
1745  * when replaying the log for a directory, we only insert names
1746  * for inodes that actually exist.  This means an fsync on a directory
1747  * does not implicitly fsync all the new files in it
1748  */
1749 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1750 				    struct btrfs_root *root,
1751 				    u64 dirid, u64 index,
1752 				    const struct fscrypt_str *name,
1753 				    struct btrfs_key *location)
1754 {
1755 	struct inode *inode;
1756 	struct inode *dir;
1757 	int ret;
1758 
1759 	inode = read_one_inode(root, location->objectid);
1760 	if (!inode)
1761 		return -ENOENT;
1762 
1763 	dir = read_one_inode(root, dirid);
1764 	if (!dir) {
1765 		iput(inode);
1766 		return -EIO;
1767 	}
1768 
1769 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1770 			     1, index);
1771 
1772 	/* FIXME, put inode into FIXUP list */
1773 
1774 	iput(inode);
1775 	iput(dir);
1776 	return ret;
1777 }
1778 
1779 static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans,
1780 					struct btrfs_inode *dir,
1781 					struct btrfs_path *path,
1782 					struct btrfs_dir_item *dst_di,
1783 					const struct btrfs_key *log_key,
1784 					u8 log_flags,
1785 					bool exists)
1786 {
1787 	struct btrfs_key found_key;
1788 
1789 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1790 	/* The existing dentry points to the same inode, don't delete it. */
1791 	if (found_key.objectid == log_key->objectid &&
1792 	    found_key.type == log_key->type &&
1793 	    found_key.offset == log_key->offset &&
1794 	    btrfs_dir_flags(path->nodes[0], dst_di) == log_flags)
1795 		return 1;
1796 
1797 	/*
1798 	 * Don't drop the conflicting directory entry if the inode for the new
1799 	 * entry doesn't exist.
1800 	 */
1801 	if (!exists)
1802 		return 0;
1803 
1804 	return drop_one_dir_item(trans, path, dir, dst_di);
1805 }
1806 
1807 /*
1808  * take a single entry in a log directory item and replay it into
1809  * the subvolume.
1810  *
1811  * if a conflicting item exists in the subdirectory already,
1812  * the inode it points to is unlinked and put into the link count
1813  * fix up tree.
1814  *
1815  * If a name from the log points to a file or directory that does
1816  * not exist in the FS, it is skipped.  fsyncs on directories
1817  * do not force down inodes inside that directory, just changes to the
1818  * names or unlinks in a directory.
1819  *
1820  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1821  * non-existing inode) and 1 if the name was replayed.
1822  */
1823 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1824 				    struct btrfs_root *root,
1825 				    struct btrfs_path *path,
1826 				    struct extent_buffer *eb,
1827 				    struct btrfs_dir_item *di,
1828 				    struct btrfs_key *key)
1829 {
1830 	struct fscrypt_str name;
1831 	struct btrfs_dir_item *dir_dst_di;
1832 	struct btrfs_dir_item *index_dst_di;
1833 	bool dir_dst_matches = false;
1834 	bool index_dst_matches = false;
1835 	struct btrfs_key log_key;
1836 	struct btrfs_key search_key;
1837 	struct inode *dir;
1838 	u8 log_flags;
1839 	bool exists;
1840 	int ret;
1841 	bool update_size = true;
1842 	bool name_added = false;
1843 
1844 	dir = read_one_inode(root, key->objectid);
1845 	if (!dir)
1846 		return -EIO;
1847 
1848 	ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
1849 	if (ret)
1850 		goto out;
1851 
1852 	log_flags = btrfs_dir_flags(eb, di);
1853 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1854 	ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1855 	btrfs_release_path(path);
1856 	if (ret < 0)
1857 		goto out;
1858 	exists = (ret == 0);
1859 	ret = 0;
1860 
1861 	dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1862 					   &name, 1);
1863 	if (IS_ERR(dir_dst_di)) {
1864 		ret = PTR_ERR(dir_dst_di);
1865 		goto out;
1866 	} else if (dir_dst_di) {
1867 		ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1868 						   dir_dst_di, &log_key,
1869 						   log_flags, exists);
1870 		if (ret < 0)
1871 			goto out;
1872 		dir_dst_matches = (ret == 1);
1873 	}
1874 
1875 	btrfs_release_path(path);
1876 
1877 	index_dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1878 						   key->objectid, key->offset,
1879 						   &name, 1);
1880 	if (IS_ERR(index_dst_di)) {
1881 		ret = PTR_ERR(index_dst_di);
1882 		goto out;
1883 	} else if (index_dst_di) {
1884 		ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1885 						   index_dst_di, &log_key,
1886 						   log_flags, exists);
1887 		if (ret < 0)
1888 			goto out;
1889 		index_dst_matches = (ret == 1);
1890 	}
1891 
1892 	btrfs_release_path(path);
1893 
1894 	if (dir_dst_matches && index_dst_matches) {
1895 		ret = 0;
1896 		update_size = false;
1897 		goto out;
1898 	}
1899 
1900 	/*
1901 	 * Check if the inode reference exists in the log for the given name,
1902 	 * inode and parent inode
1903 	 */
1904 	search_key.objectid = log_key.objectid;
1905 	search_key.type = BTRFS_INODE_REF_KEY;
1906 	search_key.offset = key->objectid;
1907 	ret = backref_in_log(root->log_root, &search_key, 0, &name);
1908 	if (ret < 0) {
1909 	        goto out;
1910 	} else if (ret) {
1911 	        /* The dentry will be added later. */
1912 	        ret = 0;
1913 	        update_size = false;
1914 	        goto out;
1915 	}
1916 
1917 	search_key.objectid = log_key.objectid;
1918 	search_key.type = BTRFS_INODE_EXTREF_KEY;
1919 	search_key.offset = key->objectid;
1920 	ret = backref_in_log(root->log_root, &search_key, key->objectid, &name);
1921 	if (ret < 0) {
1922 		goto out;
1923 	} else if (ret) {
1924 		/* The dentry will be added later. */
1925 		ret = 0;
1926 		update_size = false;
1927 		goto out;
1928 	}
1929 	btrfs_release_path(path);
1930 	ret = insert_one_name(trans, root, key->objectid, key->offset,
1931 			      &name, &log_key);
1932 	if (ret && ret != -ENOENT && ret != -EEXIST)
1933 		goto out;
1934 	if (!ret)
1935 		name_added = true;
1936 	update_size = false;
1937 	ret = 0;
1938 
1939 out:
1940 	if (!ret && update_size) {
1941 		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name.len * 2);
1942 		ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
1943 	}
1944 	kfree(name.name);
1945 	iput(dir);
1946 	if (!ret && name_added)
1947 		ret = 1;
1948 	return ret;
1949 }
1950 
1951 /* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */
1952 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1953 					struct btrfs_root *root,
1954 					struct btrfs_path *path,
1955 					struct extent_buffer *eb, int slot,
1956 					struct btrfs_key *key)
1957 {
1958 	int ret;
1959 	struct btrfs_dir_item *di;
1960 
1961 	/* We only log dir index keys, which only contain a single dir item. */
1962 	ASSERT(key->type == BTRFS_DIR_INDEX_KEY);
1963 
1964 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1965 	ret = replay_one_name(trans, root, path, eb, di, key);
1966 	if (ret < 0)
1967 		return ret;
1968 
1969 	/*
1970 	 * If this entry refers to a non-directory (directories can not have a
1971 	 * link count > 1) and it was added in the transaction that was not
1972 	 * committed, make sure we fixup the link count of the inode the entry
1973 	 * points to. Otherwise something like the following would result in a
1974 	 * directory pointing to an inode with a wrong link that does not account
1975 	 * for this dir entry:
1976 	 *
1977 	 * mkdir testdir
1978 	 * touch testdir/foo
1979 	 * touch testdir/bar
1980 	 * sync
1981 	 *
1982 	 * ln testdir/bar testdir/bar_link
1983 	 * ln testdir/foo testdir/foo_link
1984 	 * xfs_io -c "fsync" testdir/bar
1985 	 *
1986 	 * <power failure>
1987 	 *
1988 	 * mount fs, log replay happens
1989 	 *
1990 	 * File foo would remain with a link count of 1 when it has two entries
1991 	 * pointing to it in the directory testdir. This would make it impossible
1992 	 * to ever delete the parent directory has it would result in stale
1993 	 * dentries that can never be deleted.
1994 	 */
1995 	if (ret == 1 && btrfs_dir_ftype(eb, di) != BTRFS_FT_DIR) {
1996 		struct btrfs_path *fixup_path;
1997 		struct btrfs_key di_key;
1998 
1999 		fixup_path = btrfs_alloc_path();
2000 		if (!fixup_path)
2001 			return -ENOMEM;
2002 
2003 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2004 		ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid);
2005 		btrfs_free_path(fixup_path);
2006 	}
2007 
2008 	return ret;
2009 }
2010 
2011 /*
2012  * directory replay has two parts.  There are the standard directory
2013  * items in the log copied from the subvolume, and range items
2014  * created in the log while the subvolume was logged.
2015  *
2016  * The range items tell us which parts of the key space the log
2017  * is authoritative for.  During replay, if a key in the subvolume
2018  * directory is in a logged range item, but not actually in the log
2019  * that means it was deleted from the directory before the fsync
2020  * and should be removed.
2021  */
2022 static noinline int find_dir_range(struct btrfs_root *root,
2023 				   struct btrfs_path *path,
2024 				   u64 dirid,
2025 				   u64 *start_ret, u64 *end_ret)
2026 {
2027 	struct btrfs_key key;
2028 	u64 found_end;
2029 	struct btrfs_dir_log_item *item;
2030 	int ret;
2031 	int nritems;
2032 
2033 	if (*start_ret == (u64)-1)
2034 		return 1;
2035 
2036 	key.objectid = dirid;
2037 	key.type = BTRFS_DIR_LOG_INDEX_KEY;
2038 	key.offset = *start_ret;
2039 
2040 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2041 	if (ret < 0)
2042 		goto out;
2043 	if (ret > 0) {
2044 		if (path->slots[0] == 0)
2045 			goto out;
2046 		path->slots[0]--;
2047 	}
2048 	if (ret != 0)
2049 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2050 
2051 	if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2052 		ret = 1;
2053 		goto next;
2054 	}
2055 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2056 			      struct btrfs_dir_log_item);
2057 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2058 
2059 	if (*start_ret >= key.offset && *start_ret <= found_end) {
2060 		ret = 0;
2061 		*start_ret = key.offset;
2062 		*end_ret = found_end;
2063 		goto out;
2064 	}
2065 	ret = 1;
2066 next:
2067 	/* check the next slot in the tree to see if it is a valid item */
2068 	nritems = btrfs_header_nritems(path->nodes[0]);
2069 	path->slots[0]++;
2070 	if (path->slots[0] >= nritems) {
2071 		ret = btrfs_next_leaf(root, path);
2072 		if (ret)
2073 			goto out;
2074 	}
2075 
2076 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2077 
2078 	if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2079 		ret = 1;
2080 		goto out;
2081 	}
2082 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2083 			      struct btrfs_dir_log_item);
2084 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2085 	*start_ret = key.offset;
2086 	*end_ret = found_end;
2087 	ret = 0;
2088 out:
2089 	btrfs_release_path(path);
2090 	return ret;
2091 }
2092 
2093 /*
2094  * this looks for a given directory item in the log.  If the directory
2095  * item is not in the log, the item is removed and the inode it points
2096  * to is unlinked
2097  */
2098 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2099 				      struct btrfs_root *log,
2100 				      struct btrfs_path *path,
2101 				      struct btrfs_path *log_path,
2102 				      struct inode *dir,
2103 				      struct btrfs_key *dir_key)
2104 {
2105 	struct btrfs_root *root = BTRFS_I(dir)->root;
2106 	int ret;
2107 	struct extent_buffer *eb;
2108 	int slot;
2109 	struct btrfs_dir_item *di;
2110 	struct fscrypt_str name;
2111 	struct inode *inode = NULL;
2112 	struct btrfs_key location;
2113 
2114 	/*
2115 	 * Currently we only log dir index keys. Even if we replay a log created
2116 	 * by an older kernel that logged both dir index and dir item keys, all
2117 	 * we need to do is process the dir index keys, we (and our caller) can
2118 	 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY).
2119 	 */
2120 	ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY);
2121 
2122 	eb = path->nodes[0];
2123 	slot = path->slots[0];
2124 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2125 	ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
2126 	if (ret)
2127 		goto out;
2128 
2129 	if (log) {
2130 		struct btrfs_dir_item *log_di;
2131 
2132 		log_di = btrfs_lookup_dir_index_item(trans, log, log_path,
2133 						     dir_key->objectid,
2134 						     dir_key->offset, &name, 0);
2135 		if (IS_ERR(log_di)) {
2136 			ret = PTR_ERR(log_di);
2137 			goto out;
2138 		} else if (log_di) {
2139 			/* The dentry exists in the log, we have nothing to do. */
2140 			ret = 0;
2141 			goto out;
2142 		}
2143 	}
2144 
2145 	btrfs_dir_item_key_to_cpu(eb, di, &location);
2146 	btrfs_release_path(path);
2147 	btrfs_release_path(log_path);
2148 	inode = read_one_inode(root, location.objectid);
2149 	if (!inode) {
2150 		ret = -EIO;
2151 		goto out;
2152 	}
2153 
2154 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
2155 	if (ret)
2156 		goto out;
2157 
2158 	inc_nlink(inode);
2159 	ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), BTRFS_I(inode),
2160 					  &name);
2161 	/*
2162 	 * Unlike dir item keys, dir index keys can only have one name (entry) in
2163 	 * them, as there are no key collisions since each key has a unique offset
2164 	 * (an index number), so we're done.
2165 	 */
2166 out:
2167 	btrfs_release_path(path);
2168 	btrfs_release_path(log_path);
2169 	kfree(name.name);
2170 	iput(inode);
2171 	return ret;
2172 }
2173 
2174 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2175 			      struct btrfs_root *root,
2176 			      struct btrfs_root *log,
2177 			      struct btrfs_path *path,
2178 			      const u64 ino)
2179 {
2180 	struct btrfs_key search_key;
2181 	struct btrfs_path *log_path;
2182 	int i;
2183 	int nritems;
2184 	int ret;
2185 
2186 	log_path = btrfs_alloc_path();
2187 	if (!log_path)
2188 		return -ENOMEM;
2189 
2190 	search_key.objectid = ino;
2191 	search_key.type = BTRFS_XATTR_ITEM_KEY;
2192 	search_key.offset = 0;
2193 again:
2194 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2195 	if (ret < 0)
2196 		goto out;
2197 process_leaf:
2198 	nritems = btrfs_header_nritems(path->nodes[0]);
2199 	for (i = path->slots[0]; i < nritems; i++) {
2200 		struct btrfs_key key;
2201 		struct btrfs_dir_item *di;
2202 		struct btrfs_dir_item *log_di;
2203 		u32 total_size;
2204 		u32 cur;
2205 
2206 		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2207 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2208 			ret = 0;
2209 			goto out;
2210 		}
2211 
2212 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2213 		total_size = btrfs_item_size(path->nodes[0], i);
2214 		cur = 0;
2215 		while (cur < total_size) {
2216 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2217 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2218 			u32 this_len = sizeof(*di) + name_len + data_len;
2219 			char *name;
2220 
2221 			name = kmalloc(name_len, GFP_NOFS);
2222 			if (!name) {
2223 				ret = -ENOMEM;
2224 				goto out;
2225 			}
2226 			read_extent_buffer(path->nodes[0], name,
2227 					   (unsigned long)(di + 1), name_len);
2228 
2229 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2230 						    name, name_len, 0);
2231 			btrfs_release_path(log_path);
2232 			if (!log_di) {
2233 				/* Doesn't exist in log tree, so delete it. */
2234 				btrfs_release_path(path);
2235 				di = btrfs_lookup_xattr(trans, root, path, ino,
2236 							name, name_len, -1);
2237 				kfree(name);
2238 				if (IS_ERR(di)) {
2239 					ret = PTR_ERR(di);
2240 					goto out;
2241 				}
2242 				ASSERT(di);
2243 				ret = btrfs_delete_one_dir_name(trans, root,
2244 								path, di);
2245 				if (ret)
2246 					goto out;
2247 				btrfs_release_path(path);
2248 				search_key = key;
2249 				goto again;
2250 			}
2251 			kfree(name);
2252 			if (IS_ERR(log_di)) {
2253 				ret = PTR_ERR(log_di);
2254 				goto out;
2255 			}
2256 			cur += this_len;
2257 			di = (struct btrfs_dir_item *)((char *)di + this_len);
2258 		}
2259 	}
2260 	ret = btrfs_next_leaf(root, path);
2261 	if (ret > 0)
2262 		ret = 0;
2263 	else if (ret == 0)
2264 		goto process_leaf;
2265 out:
2266 	btrfs_free_path(log_path);
2267 	btrfs_release_path(path);
2268 	return ret;
2269 }
2270 
2271 
2272 /*
2273  * deletion replay happens before we copy any new directory items
2274  * out of the log or out of backreferences from inodes.  It
2275  * scans the log to find ranges of keys that log is authoritative for,
2276  * and then scans the directory to find items in those ranges that are
2277  * not present in the log.
2278  *
2279  * Anything we don't find in the log is unlinked and removed from the
2280  * directory.
2281  */
2282 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2283 				       struct btrfs_root *root,
2284 				       struct btrfs_root *log,
2285 				       struct btrfs_path *path,
2286 				       u64 dirid, int del_all)
2287 {
2288 	u64 range_start;
2289 	u64 range_end;
2290 	int ret = 0;
2291 	struct btrfs_key dir_key;
2292 	struct btrfs_key found_key;
2293 	struct btrfs_path *log_path;
2294 	struct inode *dir;
2295 
2296 	dir_key.objectid = dirid;
2297 	dir_key.type = BTRFS_DIR_INDEX_KEY;
2298 	log_path = btrfs_alloc_path();
2299 	if (!log_path)
2300 		return -ENOMEM;
2301 
2302 	dir = read_one_inode(root, dirid);
2303 	/* it isn't an error if the inode isn't there, that can happen
2304 	 * because we replay the deletes before we copy in the inode item
2305 	 * from the log
2306 	 */
2307 	if (!dir) {
2308 		btrfs_free_path(log_path);
2309 		return 0;
2310 	}
2311 
2312 	range_start = 0;
2313 	range_end = 0;
2314 	while (1) {
2315 		if (del_all)
2316 			range_end = (u64)-1;
2317 		else {
2318 			ret = find_dir_range(log, path, dirid,
2319 					     &range_start, &range_end);
2320 			if (ret < 0)
2321 				goto out;
2322 			else if (ret > 0)
2323 				break;
2324 		}
2325 
2326 		dir_key.offset = range_start;
2327 		while (1) {
2328 			int nritems;
2329 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2330 						0, 0);
2331 			if (ret < 0)
2332 				goto out;
2333 
2334 			nritems = btrfs_header_nritems(path->nodes[0]);
2335 			if (path->slots[0] >= nritems) {
2336 				ret = btrfs_next_leaf(root, path);
2337 				if (ret == 1)
2338 					break;
2339 				else if (ret < 0)
2340 					goto out;
2341 			}
2342 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2343 					      path->slots[0]);
2344 			if (found_key.objectid != dirid ||
2345 			    found_key.type != dir_key.type) {
2346 				ret = 0;
2347 				goto out;
2348 			}
2349 
2350 			if (found_key.offset > range_end)
2351 				break;
2352 
2353 			ret = check_item_in_log(trans, log, path,
2354 						log_path, dir,
2355 						&found_key);
2356 			if (ret)
2357 				goto out;
2358 			if (found_key.offset == (u64)-1)
2359 				break;
2360 			dir_key.offset = found_key.offset + 1;
2361 		}
2362 		btrfs_release_path(path);
2363 		if (range_end == (u64)-1)
2364 			break;
2365 		range_start = range_end + 1;
2366 	}
2367 	ret = 0;
2368 out:
2369 	btrfs_release_path(path);
2370 	btrfs_free_path(log_path);
2371 	iput(dir);
2372 	return ret;
2373 }
2374 
2375 /*
2376  * the process_func used to replay items from the log tree.  This
2377  * gets called in two different stages.  The first stage just looks
2378  * for inodes and makes sure they are all copied into the subvolume.
2379  *
2380  * The second stage copies all the other item types from the log into
2381  * the subvolume.  The two stage approach is slower, but gets rid of
2382  * lots of complexity around inodes referencing other inodes that exist
2383  * only in the log (references come from either directory items or inode
2384  * back refs).
2385  */
2386 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2387 			     struct walk_control *wc, u64 gen, int level)
2388 {
2389 	int nritems;
2390 	struct btrfs_tree_parent_check check = {
2391 		.transid = gen,
2392 		.level = level
2393 	};
2394 	struct btrfs_path *path;
2395 	struct btrfs_root *root = wc->replay_dest;
2396 	struct btrfs_key key;
2397 	int i;
2398 	int ret;
2399 
2400 	ret = btrfs_read_extent_buffer(eb, &check);
2401 	if (ret)
2402 		return ret;
2403 
2404 	level = btrfs_header_level(eb);
2405 
2406 	if (level != 0)
2407 		return 0;
2408 
2409 	path = btrfs_alloc_path();
2410 	if (!path)
2411 		return -ENOMEM;
2412 
2413 	nritems = btrfs_header_nritems(eb);
2414 	for (i = 0; i < nritems; i++) {
2415 		btrfs_item_key_to_cpu(eb, &key, i);
2416 
2417 		/* inode keys are done during the first stage */
2418 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2419 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2420 			struct btrfs_inode_item *inode_item;
2421 			u32 mode;
2422 
2423 			inode_item = btrfs_item_ptr(eb, i,
2424 					    struct btrfs_inode_item);
2425 			/*
2426 			 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2427 			 * and never got linked before the fsync, skip it, as
2428 			 * replaying it is pointless since it would be deleted
2429 			 * later. We skip logging tmpfiles, but it's always
2430 			 * possible we are replaying a log created with a kernel
2431 			 * that used to log tmpfiles.
2432 			 */
2433 			if (btrfs_inode_nlink(eb, inode_item) == 0) {
2434 				wc->ignore_cur_inode = true;
2435 				continue;
2436 			} else {
2437 				wc->ignore_cur_inode = false;
2438 			}
2439 			ret = replay_xattr_deletes(wc->trans, root, log,
2440 						   path, key.objectid);
2441 			if (ret)
2442 				break;
2443 			mode = btrfs_inode_mode(eb, inode_item);
2444 			if (S_ISDIR(mode)) {
2445 				ret = replay_dir_deletes(wc->trans,
2446 					 root, log, path, key.objectid, 0);
2447 				if (ret)
2448 					break;
2449 			}
2450 			ret = overwrite_item(wc->trans, root, path,
2451 					     eb, i, &key);
2452 			if (ret)
2453 				break;
2454 
2455 			/*
2456 			 * Before replaying extents, truncate the inode to its
2457 			 * size. We need to do it now and not after log replay
2458 			 * because before an fsync we can have prealloc extents
2459 			 * added beyond the inode's i_size. If we did it after,
2460 			 * through orphan cleanup for example, we would drop
2461 			 * those prealloc extents just after replaying them.
2462 			 */
2463 			if (S_ISREG(mode)) {
2464 				struct btrfs_drop_extents_args drop_args = { 0 };
2465 				struct inode *inode;
2466 				u64 from;
2467 
2468 				inode = read_one_inode(root, key.objectid);
2469 				if (!inode) {
2470 					ret = -EIO;
2471 					break;
2472 				}
2473 				from = ALIGN(i_size_read(inode),
2474 					     root->fs_info->sectorsize);
2475 				drop_args.start = from;
2476 				drop_args.end = (u64)-1;
2477 				drop_args.drop_cache = true;
2478 				ret = btrfs_drop_extents(wc->trans, root,
2479 							 BTRFS_I(inode),
2480 							 &drop_args);
2481 				if (!ret) {
2482 					inode_sub_bytes(inode,
2483 							drop_args.bytes_found);
2484 					/* Update the inode's nbytes. */
2485 					ret = btrfs_update_inode(wc->trans,
2486 							root, BTRFS_I(inode));
2487 				}
2488 				iput(inode);
2489 				if (ret)
2490 					break;
2491 			}
2492 
2493 			ret = link_to_fixup_dir(wc->trans, root,
2494 						path, key.objectid);
2495 			if (ret)
2496 				break;
2497 		}
2498 
2499 		if (wc->ignore_cur_inode)
2500 			continue;
2501 
2502 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2503 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2504 			ret = replay_one_dir_item(wc->trans, root, path,
2505 						  eb, i, &key);
2506 			if (ret)
2507 				break;
2508 		}
2509 
2510 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2511 			continue;
2512 
2513 		/* these keys are simply copied */
2514 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2515 			ret = overwrite_item(wc->trans, root, path,
2516 					     eb, i, &key);
2517 			if (ret)
2518 				break;
2519 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2520 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2521 			ret = add_inode_ref(wc->trans, root, log, path,
2522 					    eb, i, &key);
2523 			if (ret && ret != -ENOENT)
2524 				break;
2525 			ret = 0;
2526 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2527 			ret = replay_one_extent(wc->trans, root, path,
2528 						eb, i, &key);
2529 			if (ret)
2530 				break;
2531 		}
2532 		/*
2533 		 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the
2534 		 * BTRFS_DIR_INDEX_KEY items which we use to derive the
2535 		 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an
2536 		 * older kernel with such keys, ignore them.
2537 		 */
2538 	}
2539 	btrfs_free_path(path);
2540 	return ret;
2541 }
2542 
2543 /*
2544  * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2545  */
2546 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2547 {
2548 	struct btrfs_block_group *cache;
2549 
2550 	cache = btrfs_lookup_block_group(fs_info, start);
2551 	if (!cache) {
2552 		btrfs_err(fs_info, "unable to find block group for %llu", start);
2553 		return;
2554 	}
2555 
2556 	spin_lock(&cache->space_info->lock);
2557 	spin_lock(&cache->lock);
2558 	cache->reserved -= fs_info->nodesize;
2559 	cache->space_info->bytes_reserved -= fs_info->nodesize;
2560 	spin_unlock(&cache->lock);
2561 	spin_unlock(&cache->space_info->lock);
2562 
2563 	btrfs_put_block_group(cache);
2564 }
2565 
2566 static int clean_log_buffer(struct btrfs_trans_handle *trans,
2567 			    struct extent_buffer *eb)
2568 {
2569 	int ret;
2570 
2571 	btrfs_tree_lock(eb);
2572 	btrfs_clear_buffer_dirty(trans, eb);
2573 	wait_on_extent_buffer_writeback(eb);
2574 	btrfs_tree_unlock(eb);
2575 
2576 	if (trans) {
2577 		ret = btrfs_pin_reserved_extent(trans, eb->start, eb->len);
2578 		if (ret)
2579 			return ret;
2580 		btrfs_redirty_list_add(trans->transaction, eb);
2581 	} else {
2582 		unaccount_log_buffer(eb->fs_info, eb->start);
2583 	}
2584 
2585 	return 0;
2586 }
2587 
2588 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2589 				   struct btrfs_root *root,
2590 				   struct btrfs_path *path, int *level,
2591 				   struct walk_control *wc)
2592 {
2593 	struct btrfs_fs_info *fs_info = root->fs_info;
2594 	u64 bytenr;
2595 	u64 ptr_gen;
2596 	struct extent_buffer *next;
2597 	struct extent_buffer *cur;
2598 	int ret = 0;
2599 
2600 	while (*level > 0) {
2601 		struct btrfs_tree_parent_check check = { 0 };
2602 
2603 		cur = path->nodes[*level];
2604 
2605 		WARN_ON(btrfs_header_level(cur) != *level);
2606 
2607 		if (path->slots[*level] >=
2608 		    btrfs_header_nritems(cur))
2609 			break;
2610 
2611 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2612 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2613 		check.transid = ptr_gen;
2614 		check.level = *level - 1;
2615 		check.has_first_key = true;
2616 		btrfs_node_key_to_cpu(cur, &check.first_key, path->slots[*level]);
2617 
2618 		next = btrfs_find_create_tree_block(fs_info, bytenr,
2619 						    btrfs_header_owner(cur),
2620 						    *level - 1);
2621 		if (IS_ERR(next))
2622 			return PTR_ERR(next);
2623 
2624 		if (*level == 1) {
2625 			ret = wc->process_func(root, next, wc, ptr_gen,
2626 					       *level - 1);
2627 			if (ret) {
2628 				free_extent_buffer(next);
2629 				return ret;
2630 			}
2631 
2632 			path->slots[*level]++;
2633 			if (wc->free) {
2634 				ret = btrfs_read_extent_buffer(next, &check);
2635 				if (ret) {
2636 					free_extent_buffer(next);
2637 					return ret;
2638 				}
2639 
2640 				ret = clean_log_buffer(trans, next);
2641 				if (ret) {
2642 					free_extent_buffer(next);
2643 					return ret;
2644 				}
2645 			}
2646 			free_extent_buffer(next);
2647 			continue;
2648 		}
2649 		ret = btrfs_read_extent_buffer(next, &check);
2650 		if (ret) {
2651 			free_extent_buffer(next);
2652 			return ret;
2653 		}
2654 
2655 		if (path->nodes[*level-1])
2656 			free_extent_buffer(path->nodes[*level-1]);
2657 		path->nodes[*level-1] = next;
2658 		*level = btrfs_header_level(next);
2659 		path->slots[*level] = 0;
2660 		cond_resched();
2661 	}
2662 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2663 
2664 	cond_resched();
2665 	return 0;
2666 }
2667 
2668 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2669 				 struct btrfs_root *root,
2670 				 struct btrfs_path *path, int *level,
2671 				 struct walk_control *wc)
2672 {
2673 	int i;
2674 	int slot;
2675 	int ret;
2676 
2677 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2678 		slot = path->slots[i];
2679 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2680 			path->slots[i]++;
2681 			*level = i;
2682 			WARN_ON(*level == 0);
2683 			return 0;
2684 		} else {
2685 			ret = wc->process_func(root, path->nodes[*level], wc,
2686 				 btrfs_header_generation(path->nodes[*level]),
2687 				 *level);
2688 			if (ret)
2689 				return ret;
2690 
2691 			if (wc->free) {
2692 				ret = clean_log_buffer(trans, path->nodes[*level]);
2693 				if (ret)
2694 					return ret;
2695 			}
2696 			free_extent_buffer(path->nodes[*level]);
2697 			path->nodes[*level] = NULL;
2698 			*level = i + 1;
2699 		}
2700 	}
2701 	return 1;
2702 }
2703 
2704 /*
2705  * drop the reference count on the tree rooted at 'snap'.  This traverses
2706  * the tree freeing any blocks that have a ref count of zero after being
2707  * decremented.
2708  */
2709 static int walk_log_tree(struct btrfs_trans_handle *trans,
2710 			 struct btrfs_root *log, struct walk_control *wc)
2711 {
2712 	int ret = 0;
2713 	int wret;
2714 	int level;
2715 	struct btrfs_path *path;
2716 	int orig_level;
2717 
2718 	path = btrfs_alloc_path();
2719 	if (!path)
2720 		return -ENOMEM;
2721 
2722 	level = btrfs_header_level(log->node);
2723 	orig_level = level;
2724 	path->nodes[level] = log->node;
2725 	atomic_inc(&log->node->refs);
2726 	path->slots[level] = 0;
2727 
2728 	while (1) {
2729 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2730 		if (wret > 0)
2731 			break;
2732 		if (wret < 0) {
2733 			ret = wret;
2734 			goto out;
2735 		}
2736 
2737 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2738 		if (wret > 0)
2739 			break;
2740 		if (wret < 0) {
2741 			ret = wret;
2742 			goto out;
2743 		}
2744 	}
2745 
2746 	/* was the root node processed? if not, catch it here */
2747 	if (path->nodes[orig_level]) {
2748 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2749 			 btrfs_header_generation(path->nodes[orig_level]),
2750 			 orig_level);
2751 		if (ret)
2752 			goto out;
2753 		if (wc->free)
2754 			ret = clean_log_buffer(trans, path->nodes[orig_level]);
2755 	}
2756 
2757 out:
2758 	btrfs_free_path(path);
2759 	return ret;
2760 }
2761 
2762 /*
2763  * helper function to update the item for a given subvolumes log root
2764  * in the tree of log roots
2765  */
2766 static int update_log_root(struct btrfs_trans_handle *trans,
2767 			   struct btrfs_root *log,
2768 			   struct btrfs_root_item *root_item)
2769 {
2770 	struct btrfs_fs_info *fs_info = log->fs_info;
2771 	int ret;
2772 
2773 	if (log->log_transid == 1) {
2774 		/* insert root item on the first sync */
2775 		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2776 				&log->root_key, root_item);
2777 	} else {
2778 		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2779 				&log->root_key, root_item);
2780 	}
2781 	return ret;
2782 }
2783 
2784 static void wait_log_commit(struct btrfs_root *root, int transid)
2785 {
2786 	DEFINE_WAIT(wait);
2787 	int index = transid % 2;
2788 
2789 	/*
2790 	 * we only allow two pending log transactions at a time,
2791 	 * so we know that if ours is more than 2 older than the
2792 	 * current transaction, we're done
2793 	 */
2794 	for (;;) {
2795 		prepare_to_wait(&root->log_commit_wait[index],
2796 				&wait, TASK_UNINTERRUPTIBLE);
2797 
2798 		if (!(root->log_transid_committed < transid &&
2799 		      atomic_read(&root->log_commit[index])))
2800 			break;
2801 
2802 		mutex_unlock(&root->log_mutex);
2803 		schedule();
2804 		mutex_lock(&root->log_mutex);
2805 	}
2806 	finish_wait(&root->log_commit_wait[index], &wait);
2807 }
2808 
2809 static void wait_for_writer(struct btrfs_root *root)
2810 {
2811 	DEFINE_WAIT(wait);
2812 
2813 	for (;;) {
2814 		prepare_to_wait(&root->log_writer_wait, &wait,
2815 				TASK_UNINTERRUPTIBLE);
2816 		if (!atomic_read(&root->log_writers))
2817 			break;
2818 
2819 		mutex_unlock(&root->log_mutex);
2820 		schedule();
2821 		mutex_lock(&root->log_mutex);
2822 	}
2823 	finish_wait(&root->log_writer_wait, &wait);
2824 }
2825 
2826 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2827 					struct btrfs_log_ctx *ctx)
2828 {
2829 	mutex_lock(&root->log_mutex);
2830 	list_del_init(&ctx->list);
2831 	mutex_unlock(&root->log_mutex);
2832 }
2833 
2834 /*
2835  * Invoked in log mutex context, or be sure there is no other task which
2836  * can access the list.
2837  */
2838 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2839 					     int index, int error)
2840 {
2841 	struct btrfs_log_ctx *ctx;
2842 	struct btrfs_log_ctx *safe;
2843 
2844 	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2845 		list_del_init(&ctx->list);
2846 		ctx->log_ret = error;
2847 	}
2848 }
2849 
2850 /*
2851  * btrfs_sync_log does sends a given tree log down to the disk and
2852  * updates the super blocks to record it.  When this call is done,
2853  * you know that any inodes previously logged are safely on disk only
2854  * if it returns 0.
2855  *
2856  * Any other return value means you need to call btrfs_commit_transaction.
2857  * Some of the edge cases for fsyncing directories that have had unlinks
2858  * or renames done in the past mean that sometimes the only safe
2859  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2860  * that has happened.
2861  */
2862 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2863 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2864 {
2865 	int index1;
2866 	int index2;
2867 	int mark;
2868 	int ret;
2869 	struct btrfs_fs_info *fs_info = root->fs_info;
2870 	struct btrfs_root *log = root->log_root;
2871 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2872 	struct btrfs_root_item new_root_item;
2873 	int log_transid = 0;
2874 	struct btrfs_log_ctx root_log_ctx;
2875 	struct blk_plug plug;
2876 	u64 log_root_start;
2877 	u64 log_root_level;
2878 
2879 	mutex_lock(&root->log_mutex);
2880 	log_transid = ctx->log_transid;
2881 	if (root->log_transid_committed >= log_transid) {
2882 		mutex_unlock(&root->log_mutex);
2883 		return ctx->log_ret;
2884 	}
2885 
2886 	index1 = log_transid % 2;
2887 	if (atomic_read(&root->log_commit[index1])) {
2888 		wait_log_commit(root, log_transid);
2889 		mutex_unlock(&root->log_mutex);
2890 		return ctx->log_ret;
2891 	}
2892 	ASSERT(log_transid == root->log_transid);
2893 	atomic_set(&root->log_commit[index1], 1);
2894 
2895 	/* wait for previous tree log sync to complete */
2896 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2897 		wait_log_commit(root, log_transid - 1);
2898 
2899 	while (1) {
2900 		int batch = atomic_read(&root->log_batch);
2901 		/* when we're on an ssd, just kick the log commit out */
2902 		if (!btrfs_test_opt(fs_info, SSD) &&
2903 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2904 			mutex_unlock(&root->log_mutex);
2905 			schedule_timeout_uninterruptible(1);
2906 			mutex_lock(&root->log_mutex);
2907 		}
2908 		wait_for_writer(root);
2909 		if (batch == atomic_read(&root->log_batch))
2910 			break;
2911 	}
2912 
2913 	/* bail out if we need to do a full commit */
2914 	if (btrfs_need_log_full_commit(trans)) {
2915 		ret = BTRFS_LOG_FORCE_COMMIT;
2916 		mutex_unlock(&root->log_mutex);
2917 		goto out;
2918 	}
2919 
2920 	if (log_transid % 2 == 0)
2921 		mark = EXTENT_DIRTY;
2922 	else
2923 		mark = EXTENT_NEW;
2924 
2925 	/* we start IO on  all the marked extents here, but we don't actually
2926 	 * wait for them until later.
2927 	 */
2928 	blk_start_plug(&plug);
2929 	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
2930 	/*
2931 	 * -EAGAIN happens when someone, e.g., a concurrent transaction
2932 	 *  commit, writes a dirty extent in this tree-log commit. This
2933 	 *  concurrent write will create a hole writing out the extents,
2934 	 *  and we cannot proceed on a zoned filesystem, requiring
2935 	 *  sequential writing. While we can bail out to a full commit
2936 	 *  here, but we can continue hoping the concurrent writing fills
2937 	 *  the hole.
2938 	 */
2939 	if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
2940 		ret = 0;
2941 	if (ret) {
2942 		blk_finish_plug(&plug);
2943 		btrfs_set_log_full_commit(trans);
2944 		mutex_unlock(&root->log_mutex);
2945 		goto out;
2946 	}
2947 
2948 	/*
2949 	 * We _must_ update under the root->log_mutex in order to make sure we
2950 	 * have a consistent view of the log root we are trying to commit at
2951 	 * this moment.
2952 	 *
2953 	 * We _must_ copy this into a local copy, because we are not holding the
2954 	 * log_root_tree->log_mutex yet.  This is important because when we
2955 	 * commit the log_root_tree we must have a consistent view of the
2956 	 * log_root_tree when we update the super block to point at the
2957 	 * log_root_tree bytenr.  If we update the log_root_tree here we'll race
2958 	 * with the commit and possibly point at the new block which we may not
2959 	 * have written out.
2960 	 */
2961 	btrfs_set_root_node(&log->root_item, log->node);
2962 	memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
2963 
2964 	root->log_transid++;
2965 	log->log_transid = root->log_transid;
2966 	root->log_start_pid = 0;
2967 	/*
2968 	 * IO has been started, blocks of the log tree have WRITTEN flag set
2969 	 * in their headers. new modifications of the log will be written to
2970 	 * new positions. so it's safe to allow log writers to go in.
2971 	 */
2972 	mutex_unlock(&root->log_mutex);
2973 
2974 	if (btrfs_is_zoned(fs_info)) {
2975 		mutex_lock(&fs_info->tree_root->log_mutex);
2976 		if (!log_root_tree->node) {
2977 			ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
2978 			if (ret) {
2979 				mutex_unlock(&fs_info->tree_root->log_mutex);
2980 				blk_finish_plug(&plug);
2981 				goto out;
2982 			}
2983 		}
2984 		mutex_unlock(&fs_info->tree_root->log_mutex);
2985 	}
2986 
2987 	btrfs_init_log_ctx(&root_log_ctx, NULL);
2988 
2989 	mutex_lock(&log_root_tree->log_mutex);
2990 
2991 	index2 = log_root_tree->log_transid % 2;
2992 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2993 	root_log_ctx.log_transid = log_root_tree->log_transid;
2994 
2995 	/*
2996 	 * Now we are safe to update the log_root_tree because we're under the
2997 	 * log_mutex, and we're a current writer so we're holding the commit
2998 	 * open until we drop the log_mutex.
2999 	 */
3000 	ret = update_log_root(trans, log, &new_root_item);
3001 	if (ret) {
3002 		if (!list_empty(&root_log_ctx.list))
3003 			list_del_init(&root_log_ctx.list);
3004 
3005 		blk_finish_plug(&plug);
3006 		btrfs_set_log_full_commit(trans);
3007 		if (ret != -ENOSPC)
3008 			btrfs_err(fs_info,
3009 				  "failed to update log for root %llu ret %d",
3010 				  root->root_key.objectid, ret);
3011 		btrfs_wait_tree_log_extents(log, mark);
3012 		mutex_unlock(&log_root_tree->log_mutex);
3013 		goto out;
3014 	}
3015 
3016 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3017 		blk_finish_plug(&plug);
3018 		list_del_init(&root_log_ctx.list);
3019 		mutex_unlock(&log_root_tree->log_mutex);
3020 		ret = root_log_ctx.log_ret;
3021 		goto out;
3022 	}
3023 
3024 	index2 = root_log_ctx.log_transid % 2;
3025 	if (atomic_read(&log_root_tree->log_commit[index2])) {
3026 		blk_finish_plug(&plug);
3027 		ret = btrfs_wait_tree_log_extents(log, mark);
3028 		wait_log_commit(log_root_tree,
3029 				root_log_ctx.log_transid);
3030 		mutex_unlock(&log_root_tree->log_mutex);
3031 		if (!ret)
3032 			ret = root_log_ctx.log_ret;
3033 		goto out;
3034 	}
3035 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3036 	atomic_set(&log_root_tree->log_commit[index2], 1);
3037 
3038 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3039 		wait_log_commit(log_root_tree,
3040 				root_log_ctx.log_transid - 1);
3041 	}
3042 
3043 	/*
3044 	 * now that we've moved on to the tree of log tree roots,
3045 	 * check the full commit flag again
3046 	 */
3047 	if (btrfs_need_log_full_commit(trans)) {
3048 		blk_finish_plug(&plug);
3049 		btrfs_wait_tree_log_extents(log, mark);
3050 		mutex_unlock(&log_root_tree->log_mutex);
3051 		ret = BTRFS_LOG_FORCE_COMMIT;
3052 		goto out_wake_log_root;
3053 	}
3054 
3055 	ret = btrfs_write_marked_extents(fs_info,
3056 					 &log_root_tree->dirty_log_pages,
3057 					 EXTENT_DIRTY | EXTENT_NEW);
3058 	blk_finish_plug(&plug);
3059 	/*
3060 	 * As described above, -EAGAIN indicates a hole in the extents. We
3061 	 * cannot wait for these write outs since the waiting cause a
3062 	 * deadlock. Bail out to the full commit instead.
3063 	 */
3064 	if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3065 		btrfs_set_log_full_commit(trans);
3066 		btrfs_wait_tree_log_extents(log, mark);
3067 		mutex_unlock(&log_root_tree->log_mutex);
3068 		goto out_wake_log_root;
3069 	} else if (ret) {
3070 		btrfs_set_log_full_commit(trans);
3071 		mutex_unlock(&log_root_tree->log_mutex);
3072 		goto out_wake_log_root;
3073 	}
3074 	ret = btrfs_wait_tree_log_extents(log, mark);
3075 	if (!ret)
3076 		ret = btrfs_wait_tree_log_extents(log_root_tree,
3077 						  EXTENT_NEW | EXTENT_DIRTY);
3078 	if (ret) {
3079 		btrfs_set_log_full_commit(trans);
3080 		mutex_unlock(&log_root_tree->log_mutex);
3081 		goto out_wake_log_root;
3082 	}
3083 
3084 	log_root_start = log_root_tree->node->start;
3085 	log_root_level = btrfs_header_level(log_root_tree->node);
3086 	log_root_tree->log_transid++;
3087 	mutex_unlock(&log_root_tree->log_mutex);
3088 
3089 	/*
3090 	 * Here we are guaranteed that nobody is going to write the superblock
3091 	 * for the current transaction before us and that neither we do write
3092 	 * our superblock before the previous transaction finishes its commit
3093 	 * and writes its superblock, because:
3094 	 *
3095 	 * 1) We are holding a handle on the current transaction, so no body
3096 	 *    can commit it until we release the handle;
3097 	 *
3098 	 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3099 	 *    if the previous transaction is still committing, and hasn't yet
3100 	 *    written its superblock, we wait for it to do it, because a
3101 	 *    transaction commit acquires the tree_log_mutex when the commit
3102 	 *    begins and releases it only after writing its superblock.
3103 	 */
3104 	mutex_lock(&fs_info->tree_log_mutex);
3105 
3106 	/*
3107 	 * The previous transaction writeout phase could have failed, and thus
3108 	 * marked the fs in an error state.  We must not commit here, as we
3109 	 * could have updated our generation in the super_for_commit and
3110 	 * writing the super here would result in transid mismatches.  If there
3111 	 * is an error here just bail.
3112 	 */
3113 	if (BTRFS_FS_ERROR(fs_info)) {
3114 		ret = -EIO;
3115 		btrfs_set_log_full_commit(trans);
3116 		btrfs_abort_transaction(trans, ret);
3117 		mutex_unlock(&fs_info->tree_log_mutex);
3118 		goto out_wake_log_root;
3119 	}
3120 
3121 	btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3122 	btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3123 	ret = write_all_supers(fs_info, 1);
3124 	mutex_unlock(&fs_info->tree_log_mutex);
3125 	if (ret) {
3126 		btrfs_set_log_full_commit(trans);
3127 		btrfs_abort_transaction(trans, ret);
3128 		goto out_wake_log_root;
3129 	}
3130 
3131 	/*
3132 	 * We know there can only be one task here, since we have not yet set
3133 	 * root->log_commit[index1] to 0 and any task attempting to sync the
3134 	 * log must wait for the previous log transaction to commit if it's
3135 	 * still in progress or wait for the current log transaction commit if
3136 	 * someone else already started it. We use <= and not < because the
3137 	 * first log transaction has an ID of 0.
3138 	 */
3139 	ASSERT(root->last_log_commit <= log_transid);
3140 	root->last_log_commit = log_transid;
3141 
3142 out_wake_log_root:
3143 	mutex_lock(&log_root_tree->log_mutex);
3144 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3145 
3146 	log_root_tree->log_transid_committed++;
3147 	atomic_set(&log_root_tree->log_commit[index2], 0);
3148 	mutex_unlock(&log_root_tree->log_mutex);
3149 
3150 	/*
3151 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3152 	 * all the updates above are seen by the woken threads. It might not be
3153 	 * necessary, but proving that seems to be hard.
3154 	 */
3155 	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3156 out:
3157 	mutex_lock(&root->log_mutex);
3158 	btrfs_remove_all_log_ctxs(root, index1, ret);
3159 	root->log_transid_committed++;
3160 	atomic_set(&root->log_commit[index1], 0);
3161 	mutex_unlock(&root->log_mutex);
3162 
3163 	/*
3164 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3165 	 * all the updates above are seen by the woken threads. It might not be
3166 	 * necessary, but proving that seems to be hard.
3167 	 */
3168 	cond_wake_up(&root->log_commit_wait[index1]);
3169 	return ret;
3170 }
3171 
3172 static void free_log_tree(struct btrfs_trans_handle *trans,
3173 			  struct btrfs_root *log)
3174 {
3175 	int ret;
3176 	struct walk_control wc = {
3177 		.free = 1,
3178 		.process_func = process_one_buffer
3179 	};
3180 
3181 	if (log->node) {
3182 		ret = walk_log_tree(trans, log, &wc);
3183 		if (ret) {
3184 			/*
3185 			 * We weren't able to traverse the entire log tree, the
3186 			 * typical scenario is getting an -EIO when reading an
3187 			 * extent buffer of the tree, due to a previous writeback
3188 			 * failure of it.
3189 			 */
3190 			set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
3191 				&log->fs_info->fs_state);
3192 
3193 			/*
3194 			 * Some extent buffers of the log tree may still be dirty
3195 			 * and not yet written back to storage, because we may
3196 			 * have updates to a log tree without syncing a log tree,
3197 			 * such as during rename and link operations. So flush
3198 			 * them out and wait for their writeback to complete, so
3199 			 * that we properly cleanup their state and pages.
3200 			 */
3201 			btrfs_write_marked_extents(log->fs_info,
3202 						   &log->dirty_log_pages,
3203 						   EXTENT_DIRTY | EXTENT_NEW);
3204 			btrfs_wait_tree_log_extents(log,
3205 						    EXTENT_DIRTY | EXTENT_NEW);
3206 
3207 			if (trans)
3208 				btrfs_abort_transaction(trans, ret);
3209 			else
3210 				btrfs_handle_fs_error(log->fs_info, ret, NULL);
3211 		}
3212 	}
3213 
3214 	clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3215 			  EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3216 	extent_io_tree_release(&log->log_csum_range);
3217 
3218 	btrfs_put_root(log);
3219 }
3220 
3221 /*
3222  * free all the extents used by the tree log.  This should be called
3223  * at commit time of the full transaction
3224  */
3225 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3226 {
3227 	if (root->log_root) {
3228 		free_log_tree(trans, root->log_root);
3229 		root->log_root = NULL;
3230 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3231 	}
3232 	return 0;
3233 }
3234 
3235 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3236 			     struct btrfs_fs_info *fs_info)
3237 {
3238 	if (fs_info->log_root_tree) {
3239 		free_log_tree(trans, fs_info->log_root_tree);
3240 		fs_info->log_root_tree = NULL;
3241 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3242 	}
3243 	return 0;
3244 }
3245 
3246 /*
3247  * Check if an inode was logged in the current transaction. This correctly deals
3248  * with the case where the inode was logged but has a logged_trans of 0, which
3249  * happens if the inode is evicted and loaded again, as logged_trans is an in
3250  * memory only field (not persisted).
3251  *
3252  * Returns 1 if the inode was logged before in the transaction, 0 if it was not,
3253  * and < 0 on error.
3254  */
3255 static int inode_logged(struct btrfs_trans_handle *trans,
3256 			struct btrfs_inode *inode,
3257 			struct btrfs_path *path_in)
3258 {
3259 	struct btrfs_path *path = path_in;
3260 	struct btrfs_key key;
3261 	int ret;
3262 
3263 	if (inode->logged_trans == trans->transid)
3264 		return 1;
3265 
3266 	/*
3267 	 * If logged_trans is not 0, then we know the inode logged was not logged
3268 	 * in this transaction, so we can return false right away.
3269 	 */
3270 	if (inode->logged_trans > 0)
3271 		return 0;
3272 
3273 	/*
3274 	 * If no log tree was created for this root in this transaction, then
3275 	 * the inode can not have been logged in this transaction. In that case
3276 	 * set logged_trans to anything greater than 0 and less than the current
3277 	 * transaction's ID, to avoid the search below in a future call in case
3278 	 * a log tree gets created after this.
3279 	 */
3280 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) {
3281 		inode->logged_trans = trans->transid - 1;
3282 		return 0;
3283 	}
3284 
3285 	/*
3286 	 * We have a log tree and the inode's logged_trans is 0. We can't tell
3287 	 * for sure if the inode was logged before in this transaction by looking
3288 	 * only at logged_trans. We could be pessimistic and assume it was, but
3289 	 * that can lead to unnecessarily logging an inode during rename and link
3290 	 * operations, and then further updating the log in followup rename and
3291 	 * link operations, specially if it's a directory, which adds latency
3292 	 * visible to applications doing a series of rename or link operations.
3293 	 *
3294 	 * A logged_trans of 0 here can mean several things:
3295 	 *
3296 	 * 1) The inode was never logged since the filesystem was mounted, and may
3297 	 *    or may have not been evicted and loaded again;
3298 	 *
3299 	 * 2) The inode was logged in a previous transaction, then evicted and
3300 	 *    then loaded again;
3301 	 *
3302 	 * 3) The inode was logged in the current transaction, then evicted and
3303 	 *    then loaded again.
3304 	 *
3305 	 * For cases 1) and 2) we don't want to return true, but we need to detect
3306 	 * case 3) and return true. So we do a search in the log root for the inode
3307 	 * item.
3308 	 */
3309 	key.objectid = btrfs_ino(inode);
3310 	key.type = BTRFS_INODE_ITEM_KEY;
3311 	key.offset = 0;
3312 
3313 	if (!path) {
3314 		path = btrfs_alloc_path();
3315 		if (!path)
3316 			return -ENOMEM;
3317 	}
3318 
3319 	ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3320 
3321 	if (path_in)
3322 		btrfs_release_path(path);
3323 	else
3324 		btrfs_free_path(path);
3325 
3326 	/*
3327 	 * Logging an inode always results in logging its inode item. So if we
3328 	 * did not find the item we know the inode was not logged for sure.
3329 	 */
3330 	if (ret < 0) {
3331 		return ret;
3332 	} else if (ret > 0) {
3333 		/*
3334 		 * Set logged_trans to a value greater than 0 and less then the
3335 		 * current transaction to avoid doing the search in future calls.
3336 		 */
3337 		inode->logged_trans = trans->transid - 1;
3338 		return 0;
3339 	}
3340 
3341 	/*
3342 	 * The inode was previously logged and then evicted, set logged_trans to
3343 	 * the current transacion's ID, to avoid future tree searches as long as
3344 	 * the inode is not evicted again.
3345 	 */
3346 	inode->logged_trans = trans->transid;
3347 
3348 	/*
3349 	 * If it's a directory, then we must set last_dir_index_offset to the
3350 	 * maximum possible value, so that the next attempt to log the inode does
3351 	 * not skip checking if dir index keys found in modified subvolume tree
3352 	 * leaves have been logged before, otherwise it would result in attempts
3353 	 * to insert duplicate dir index keys in the log tree. This must be done
3354 	 * because last_dir_index_offset is an in-memory only field, not persisted
3355 	 * in the inode item or any other on-disk structure, so its value is lost
3356 	 * once the inode is evicted.
3357 	 */
3358 	if (S_ISDIR(inode->vfs_inode.i_mode))
3359 		inode->last_dir_index_offset = (u64)-1;
3360 
3361 	return 1;
3362 }
3363 
3364 /*
3365  * Delete a directory entry from the log if it exists.
3366  *
3367  * Returns < 0 on error
3368  *           1 if the entry does not exists
3369  *           0 if the entry existed and was successfully deleted
3370  */
3371 static int del_logged_dentry(struct btrfs_trans_handle *trans,
3372 			     struct btrfs_root *log,
3373 			     struct btrfs_path *path,
3374 			     u64 dir_ino,
3375 			     const struct fscrypt_str *name,
3376 			     u64 index)
3377 {
3378 	struct btrfs_dir_item *di;
3379 
3380 	/*
3381 	 * We only log dir index items of a directory, so we don't need to look
3382 	 * for dir item keys.
3383 	 */
3384 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3385 					 index, name, -1);
3386 	if (IS_ERR(di))
3387 		return PTR_ERR(di);
3388 	else if (!di)
3389 		return 1;
3390 
3391 	/*
3392 	 * We do not need to update the size field of the directory's
3393 	 * inode item because on log replay we update the field to reflect
3394 	 * all existing entries in the directory (see overwrite_item()).
3395 	 */
3396 	return btrfs_delete_one_dir_name(trans, log, path, di);
3397 }
3398 
3399 /*
3400  * If both a file and directory are logged, and unlinks or renames are
3401  * mixed in, we have a few interesting corners:
3402  *
3403  * create file X in dir Y
3404  * link file X to X.link in dir Y
3405  * fsync file X
3406  * unlink file X but leave X.link
3407  * fsync dir Y
3408  *
3409  * After a crash we would expect only X.link to exist.  But file X
3410  * didn't get fsync'd again so the log has back refs for X and X.link.
3411  *
3412  * We solve this by removing directory entries and inode backrefs from the
3413  * log when a file that was logged in the current transaction is
3414  * unlinked.  Any later fsync will include the updated log entries, and
3415  * we'll be able to reconstruct the proper directory items from backrefs.
3416  *
3417  * This optimizations allows us to avoid relogging the entire inode
3418  * or the entire directory.
3419  */
3420 void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3421 				  struct btrfs_root *root,
3422 				  const struct fscrypt_str *name,
3423 				  struct btrfs_inode *dir, u64 index)
3424 {
3425 	struct btrfs_path *path;
3426 	int ret;
3427 
3428 	ret = inode_logged(trans, dir, NULL);
3429 	if (ret == 0)
3430 		return;
3431 	else if (ret < 0) {
3432 		btrfs_set_log_full_commit(trans);
3433 		return;
3434 	}
3435 
3436 	ret = join_running_log_trans(root);
3437 	if (ret)
3438 		return;
3439 
3440 	mutex_lock(&dir->log_mutex);
3441 
3442 	path = btrfs_alloc_path();
3443 	if (!path) {
3444 		ret = -ENOMEM;
3445 		goto out_unlock;
3446 	}
3447 
3448 	ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir),
3449 				name, index);
3450 	btrfs_free_path(path);
3451 out_unlock:
3452 	mutex_unlock(&dir->log_mutex);
3453 	if (ret < 0)
3454 		btrfs_set_log_full_commit(trans);
3455 	btrfs_end_log_trans(root);
3456 }
3457 
3458 /* see comments for btrfs_del_dir_entries_in_log */
3459 void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3460 				struct btrfs_root *root,
3461 				const struct fscrypt_str *name,
3462 				struct btrfs_inode *inode, u64 dirid)
3463 {
3464 	struct btrfs_root *log;
3465 	u64 index;
3466 	int ret;
3467 
3468 	ret = inode_logged(trans, inode, NULL);
3469 	if (ret == 0)
3470 		return;
3471 	else if (ret < 0) {
3472 		btrfs_set_log_full_commit(trans);
3473 		return;
3474 	}
3475 
3476 	ret = join_running_log_trans(root);
3477 	if (ret)
3478 		return;
3479 	log = root->log_root;
3480 	mutex_lock(&inode->log_mutex);
3481 
3482 	ret = btrfs_del_inode_ref(trans, log, name, btrfs_ino(inode),
3483 				  dirid, &index);
3484 	mutex_unlock(&inode->log_mutex);
3485 	if (ret < 0 && ret != -ENOENT)
3486 		btrfs_set_log_full_commit(trans);
3487 	btrfs_end_log_trans(root);
3488 }
3489 
3490 /*
3491  * creates a range item in the log for 'dirid'.  first_offset and
3492  * last_offset tell us which parts of the key space the log should
3493  * be considered authoritative for.
3494  */
3495 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3496 				       struct btrfs_root *log,
3497 				       struct btrfs_path *path,
3498 				       u64 dirid,
3499 				       u64 first_offset, u64 last_offset)
3500 {
3501 	int ret;
3502 	struct btrfs_key key;
3503 	struct btrfs_dir_log_item *item;
3504 
3505 	key.objectid = dirid;
3506 	key.offset = first_offset;
3507 	key.type = BTRFS_DIR_LOG_INDEX_KEY;
3508 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3509 	/*
3510 	 * -EEXIST is fine and can happen sporadically when we are logging a
3511 	 * directory and have concurrent insertions in the subvolume's tree for
3512 	 * items from other inodes and that result in pushing off some dir items
3513 	 * from one leaf to another in order to accommodate for the new items.
3514 	 * This results in logging the same dir index range key.
3515 	 */
3516 	if (ret && ret != -EEXIST)
3517 		return ret;
3518 
3519 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3520 			      struct btrfs_dir_log_item);
3521 	if (ret == -EEXIST) {
3522 		const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item);
3523 
3524 		/*
3525 		 * btrfs_del_dir_entries_in_log() might have been called during
3526 		 * an unlink between the initial insertion of this key and the
3527 		 * current update, or we might be logging a single entry deletion
3528 		 * during a rename, so set the new last_offset to the max value.
3529 		 */
3530 		last_offset = max(last_offset, curr_end);
3531 	}
3532 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3533 	btrfs_mark_buffer_dirty(path->nodes[0]);
3534 	btrfs_release_path(path);
3535 	return 0;
3536 }
3537 
3538 static int flush_dir_items_batch(struct btrfs_trans_handle *trans,
3539 				 struct btrfs_inode *inode,
3540 				 struct extent_buffer *src,
3541 				 struct btrfs_path *dst_path,
3542 				 int start_slot,
3543 				 int count)
3544 {
3545 	struct btrfs_root *log = inode->root->log_root;
3546 	char *ins_data = NULL;
3547 	struct btrfs_item_batch batch;
3548 	struct extent_buffer *dst;
3549 	unsigned long src_offset;
3550 	unsigned long dst_offset;
3551 	u64 last_index;
3552 	struct btrfs_key key;
3553 	u32 item_size;
3554 	int ret;
3555 	int i;
3556 
3557 	ASSERT(count > 0);
3558 	batch.nr = count;
3559 
3560 	if (count == 1) {
3561 		btrfs_item_key_to_cpu(src, &key, start_slot);
3562 		item_size = btrfs_item_size(src, start_slot);
3563 		batch.keys = &key;
3564 		batch.data_sizes = &item_size;
3565 		batch.total_data_size = item_size;
3566 	} else {
3567 		struct btrfs_key *ins_keys;
3568 		u32 *ins_sizes;
3569 
3570 		ins_data = kmalloc(count * sizeof(u32) +
3571 				   count * sizeof(struct btrfs_key), GFP_NOFS);
3572 		if (!ins_data)
3573 			return -ENOMEM;
3574 
3575 		ins_sizes = (u32 *)ins_data;
3576 		ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32));
3577 		batch.keys = ins_keys;
3578 		batch.data_sizes = ins_sizes;
3579 		batch.total_data_size = 0;
3580 
3581 		for (i = 0; i < count; i++) {
3582 			const int slot = start_slot + i;
3583 
3584 			btrfs_item_key_to_cpu(src, &ins_keys[i], slot);
3585 			ins_sizes[i] = btrfs_item_size(src, slot);
3586 			batch.total_data_size += ins_sizes[i];
3587 		}
3588 	}
3589 
3590 	ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
3591 	if (ret)
3592 		goto out;
3593 
3594 	dst = dst_path->nodes[0];
3595 	/*
3596 	 * Copy all the items in bulk, in a single copy operation. Item data is
3597 	 * organized such that it's placed at the end of a leaf and from right
3598 	 * to left. For example, the data for the second item ends at an offset
3599 	 * that matches the offset where the data for the first item starts, the
3600 	 * data for the third item ends at an offset that matches the offset
3601 	 * where the data of the second items starts, and so on.
3602 	 * Therefore our source and destination start offsets for copy match the
3603 	 * offsets of the last items (highest slots).
3604 	 */
3605 	dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1);
3606 	src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1);
3607 	copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size);
3608 	btrfs_release_path(dst_path);
3609 
3610 	last_index = batch.keys[count - 1].offset;
3611 	ASSERT(last_index > inode->last_dir_index_offset);
3612 
3613 	/*
3614 	 * If for some unexpected reason the last item's index is not greater
3615 	 * than the last index we logged, warn and force a transaction commit.
3616 	 */
3617 	if (WARN_ON(last_index <= inode->last_dir_index_offset))
3618 		ret = BTRFS_LOG_FORCE_COMMIT;
3619 	else
3620 		inode->last_dir_index_offset = last_index;
3621 
3622 	if (btrfs_get_first_dir_index_to_log(inode) == 0)
3623 		btrfs_set_first_dir_index_to_log(inode, batch.keys[0].offset);
3624 out:
3625 	kfree(ins_data);
3626 
3627 	return ret;
3628 }
3629 
3630 static int process_dir_items_leaf(struct btrfs_trans_handle *trans,
3631 				  struct btrfs_inode *inode,
3632 				  struct btrfs_path *path,
3633 				  struct btrfs_path *dst_path,
3634 				  struct btrfs_log_ctx *ctx,
3635 				  u64 *last_old_dentry_offset)
3636 {
3637 	struct btrfs_root *log = inode->root->log_root;
3638 	struct extent_buffer *src;
3639 	const int nritems = btrfs_header_nritems(path->nodes[0]);
3640 	const u64 ino = btrfs_ino(inode);
3641 	bool last_found = false;
3642 	int batch_start = 0;
3643 	int batch_size = 0;
3644 	int i;
3645 
3646 	/*
3647 	 * We need to clone the leaf, release the read lock on it, and use the
3648 	 * clone before modifying the log tree. See the comment at copy_items()
3649 	 * about why we need to do this.
3650 	 */
3651 	src = btrfs_clone_extent_buffer(path->nodes[0]);
3652 	if (!src)
3653 		return -ENOMEM;
3654 
3655 	i = path->slots[0];
3656 	btrfs_release_path(path);
3657 	path->nodes[0] = src;
3658 	path->slots[0] = i;
3659 
3660 	for (; i < nritems; i++) {
3661 		struct btrfs_dir_item *di;
3662 		struct btrfs_key key;
3663 		int ret;
3664 
3665 		btrfs_item_key_to_cpu(src, &key, i);
3666 
3667 		if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) {
3668 			last_found = true;
3669 			break;
3670 		}
3671 
3672 		di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3673 
3674 		/*
3675 		 * Skip ranges of items that consist only of dir item keys created
3676 		 * in past transactions. However if we find a gap, we must log a
3677 		 * dir index range item for that gap, so that index keys in that
3678 		 * gap are deleted during log replay.
3679 		 */
3680 		if (btrfs_dir_transid(src, di) < trans->transid) {
3681 			if (key.offset > *last_old_dentry_offset + 1) {
3682 				ret = insert_dir_log_key(trans, log, dst_path,
3683 						 ino, *last_old_dentry_offset + 1,
3684 						 key.offset - 1);
3685 				if (ret < 0)
3686 					return ret;
3687 			}
3688 
3689 			*last_old_dentry_offset = key.offset;
3690 			continue;
3691 		}
3692 
3693 		/* If we logged this dir index item before, we can skip it. */
3694 		if (key.offset <= inode->last_dir_index_offset)
3695 			continue;
3696 
3697 		/*
3698 		 * We must make sure that when we log a directory entry, the
3699 		 * corresponding inode, after log replay, has a matching link
3700 		 * count. For example:
3701 		 *
3702 		 * touch foo
3703 		 * mkdir mydir
3704 		 * sync
3705 		 * ln foo mydir/bar
3706 		 * xfs_io -c "fsync" mydir
3707 		 * <crash>
3708 		 * <mount fs and log replay>
3709 		 *
3710 		 * Would result in a fsync log that when replayed, our file inode
3711 		 * would have a link count of 1, but we get two directory entries
3712 		 * pointing to the same inode. After removing one of the names,
3713 		 * it would not be possible to remove the other name, which
3714 		 * resulted always in stale file handle errors, and would not be
3715 		 * possible to rmdir the parent directory, since its i_size could
3716 		 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
3717 		 * resulting in -ENOTEMPTY errors.
3718 		 */
3719 		if (!ctx->log_new_dentries) {
3720 			struct btrfs_key di_key;
3721 
3722 			btrfs_dir_item_key_to_cpu(src, di, &di_key);
3723 			if (di_key.type != BTRFS_ROOT_ITEM_KEY)
3724 				ctx->log_new_dentries = true;
3725 		}
3726 
3727 		if (batch_size == 0)
3728 			batch_start = i;
3729 		batch_size++;
3730 	}
3731 
3732 	if (batch_size > 0) {
3733 		int ret;
3734 
3735 		ret = flush_dir_items_batch(trans, inode, src, dst_path,
3736 					    batch_start, batch_size);
3737 		if (ret < 0)
3738 			return ret;
3739 	}
3740 
3741 	return last_found ? 1 : 0;
3742 }
3743 
3744 /*
3745  * log all the items included in the current transaction for a given
3746  * directory.  This also creates the range items in the log tree required
3747  * to replay anything deleted before the fsync
3748  */
3749 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3750 			  struct btrfs_inode *inode,
3751 			  struct btrfs_path *path,
3752 			  struct btrfs_path *dst_path,
3753 			  struct btrfs_log_ctx *ctx,
3754 			  u64 min_offset, u64 *last_offset_ret)
3755 {
3756 	struct btrfs_key min_key;
3757 	struct btrfs_root *root = inode->root;
3758 	struct btrfs_root *log = root->log_root;
3759 	int ret;
3760 	u64 last_old_dentry_offset = min_offset - 1;
3761 	u64 last_offset = (u64)-1;
3762 	u64 ino = btrfs_ino(inode);
3763 
3764 	min_key.objectid = ino;
3765 	min_key.type = BTRFS_DIR_INDEX_KEY;
3766 	min_key.offset = min_offset;
3767 
3768 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3769 
3770 	/*
3771 	 * we didn't find anything from this transaction, see if there
3772 	 * is anything at all
3773 	 */
3774 	if (ret != 0 || min_key.objectid != ino ||
3775 	    min_key.type != BTRFS_DIR_INDEX_KEY) {
3776 		min_key.objectid = ino;
3777 		min_key.type = BTRFS_DIR_INDEX_KEY;
3778 		min_key.offset = (u64)-1;
3779 		btrfs_release_path(path);
3780 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3781 		if (ret < 0) {
3782 			btrfs_release_path(path);
3783 			return ret;
3784 		}
3785 		ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3786 
3787 		/* if ret == 0 there are items for this type,
3788 		 * create a range to tell us the last key of this type.
3789 		 * otherwise, there are no items in this directory after
3790 		 * *min_offset, and we create a range to indicate that.
3791 		 */
3792 		if (ret == 0) {
3793 			struct btrfs_key tmp;
3794 
3795 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3796 					      path->slots[0]);
3797 			if (tmp.type == BTRFS_DIR_INDEX_KEY)
3798 				last_old_dentry_offset = tmp.offset;
3799 		} else if (ret > 0) {
3800 			ret = 0;
3801 		}
3802 
3803 		goto done;
3804 	}
3805 
3806 	/* go backward to find any previous key */
3807 	ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3808 	if (ret == 0) {
3809 		struct btrfs_key tmp;
3810 
3811 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3812 		/*
3813 		 * The dir index key before the first one we found that needs to
3814 		 * be logged might be in a previous leaf, and there might be a
3815 		 * gap between these keys, meaning that we had deletions that
3816 		 * happened. So the key range item we log (key type
3817 		 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the
3818 		 * previous key's offset plus 1, so that those deletes are replayed.
3819 		 */
3820 		if (tmp.type == BTRFS_DIR_INDEX_KEY)
3821 			last_old_dentry_offset = tmp.offset;
3822 	} else if (ret < 0) {
3823 		goto done;
3824 	}
3825 
3826 	btrfs_release_path(path);
3827 
3828 	/*
3829 	 * Find the first key from this transaction again or the one we were at
3830 	 * in the loop below in case we had to reschedule. We may be logging the
3831 	 * directory without holding its VFS lock, which happen when logging new
3832 	 * dentries (through log_new_dir_dentries()) or in some cases when we
3833 	 * need to log the parent directory of an inode. This means a dir index
3834 	 * key might be deleted from the inode's root, and therefore we may not
3835 	 * find it anymore. If we can't find it, just move to the next key. We
3836 	 * can not bail out and ignore, because if we do that we will simply
3837 	 * not log dir index keys that come after the one that was just deleted
3838 	 * and we can end up logging a dir index range that ends at (u64)-1
3839 	 * (@last_offset is initialized to that), resulting in removing dir
3840 	 * entries we should not remove at log replay time.
3841 	 */
3842 search:
3843 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3844 	if (ret > 0) {
3845 		ret = btrfs_next_item(root, path);
3846 		if (ret > 0) {
3847 			/* There are no more keys in the inode's root. */
3848 			ret = 0;
3849 			goto done;
3850 		}
3851 	}
3852 	if (ret < 0)
3853 		goto done;
3854 
3855 	/*
3856 	 * we have a block from this transaction, log every item in it
3857 	 * from our directory
3858 	 */
3859 	while (1) {
3860 		ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx,
3861 					     &last_old_dentry_offset);
3862 		if (ret != 0) {
3863 			if (ret > 0)
3864 				ret = 0;
3865 			goto done;
3866 		}
3867 		path->slots[0] = btrfs_header_nritems(path->nodes[0]);
3868 
3869 		/*
3870 		 * look ahead to the next item and see if it is also
3871 		 * from this directory and from this transaction
3872 		 */
3873 		ret = btrfs_next_leaf(root, path);
3874 		if (ret) {
3875 			if (ret == 1) {
3876 				last_offset = (u64)-1;
3877 				ret = 0;
3878 			}
3879 			goto done;
3880 		}
3881 		btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]);
3882 		if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) {
3883 			last_offset = (u64)-1;
3884 			goto done;
3885 		}
3886 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3887 			/*
3888 			 * The next leaf was not changed in the current transaction
3889 			 * and has at least one dir index key.
3890 			 * We check for the next key because there might have been
3891 			 * one or more deletions between the last key we logged and
3892 			 * that next key. So the key range item we log (key type
3893 			 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's
3894 			 * offset minus 1, so that those deletes are replayed.
3895 			 */
3896 			last_offset = min_key.offset - 1;
3897 			goto done;
3898 		}
3899 		if (need_resched()) {
3900 			btrfs_release_path(path);
3901 			cond_resched();
3902 			goto search;
3903 		}
3904 	}
3905 done:
3906 	btrfs_release_path(path);
3907 	btrfs_release_path(dst_path);
3908 
3909 	if (ret == 0) {
3910 		*last_offset_ret = last_offset;
3911 		/*
3912 		 * In case the leaf was changed in the current transaction but
3913 		 * all its dir items are from a past transaction, the last item
3914 		 * in the leaf is a dir item and there's no gap between that last
3915 		 * dir item and the first one on the next leaf (which did not
3916 		 * change in the current transaction), then we don't need to log
3917 		 * a range, last_old_dentry_offset is == to last_offset.
3918 		 */
3919 		ASSERT(last_old_dentry_offset <= last_offset);
3920 		if (last_old_dentry_offset < last_offset)
3921 			ret = insert_dir_log_key(trans, log, path, ino,
3922 						 last_old_dentry_offset + 1,
3923 						 last_offset);
3924 	}
3925 
3926 	return ret;
3927 }
3928 
3929 /*
3930  * If the inode was logged before and it was evicted, then its
3931  * last_dir_index_offset is (u64)-1, so we don't the value of the last index
3932  * key offset. If that's the case, search for it and update the inode. This
3933  * is to avoid lookups in the log tree every time we try to insert a dir index
3934  * key from a leaf changed in the current transaction, and to allow us to always
3935  * do batch insertions of dir index keys.
3936  */
3937 static int update_last_dir_index_offset(struct btrfs_inode *inode,
3938 					struct btrfs_path *path,
3939 					const struct btrfs_log_ctx *ctx)
3940 {
3941 	const u64 ino = btrfs_ino(inode);
3942 	struct btrfs_key key;
3943 	int ret;
3944 
3945 	lockdep_assert_held(&inode->log_mutex);
3946 
3947 	if (inode->last_dir_index_offset != (u64)-1)
3948 		return 0;
3949 
3950 	if (!ctx->logged_before) {
3951 		inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
3952 		return 0;
3953 	}
3954 
3955 	key.objectid = ino;
3956 	key.type = BTRFS_DIR_INDEX_KEY;
3957 	key.offset = (u64)-1;
3958 
3959 	ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3960 	/*
3961 	 * An error happened or we actually have an index key with an offset
3962 	 * value of (u64)-1. Bail out, we're done.
3963 	 */
3964 	if (ret <= 0)
3965 		goto out;
3966 
3967 	ret = 0;
3968 	inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
3969 
3970 	/*
3971 	 * No dir index items, bail out and leave last_dir_index_offset with
3972 	 * the value right before the first valid index value.
3973 	 */
3974 	if (path->slots[0] == 0)
3975 		goto out;
3976 
3977 	/*
3978 	 * btrfs_search_slot() left us at one slot beyond the slot with the last
3979 	 * index key, or beyond the last key of the directory that is not an
3980 	 * index key. If we have an index key before, set last_dir_index_offset
3981 	 * to its offset value, otherwise leave it with a value right before the
3982 	 * first valid index value, as it means we have an empty directory.
3983 	 */
3984 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3985 	if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY)
3986 		inode->last_dir_index_offset = key.offset;
3987 
3988 out:
3989 	btrfs_release_path(path);
3990 
3991 	return ret;
3992 }
3993 
3994 /*
3995  * logging directories is very similar to logging inodes, We find all the items
3996  * from the current transaction and write them to the log.
3997  *
3998  * The recovery code scans the directory in the subvolume, and if it finds a
3999  * key in the range logged that is not present in the log tree, then it means
4000  * that dir entry was unlinked during the transaction.
4001  *
4002  * In order for that scan to work, we must include one key smaller than
4003  * the smallest logged by this transaction and one key larger than the largest
4004  * key logged by this transaction.
4005  */
4006 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
4007 			  struct btrfs_inode *inode,
4008 			  struct btrfs_path *path,
4009 			  struct btrfs_path *dst_path,
4010 			  struct btrfs_log_ctx *ctx)
4011 {
4012 	u64 min_key;
4013 	u64 max_key;
4014 	int ret;
4015 
4016 	ret = update_last_dir_index_offset(inode, path, ctx);
4017 	if (ret)
4018 		return ret;
4019 
4020 	min_key = BTRFS_DIR_START_INDEX;
4021 	max_key = 0;
4022 
4023 	while (1) {
4024 		ret = log_dir_items(trans, inode, path, dst_path,
4025 				ctx, min_key, &max_key);
4026 		if (ret)
4027 			return ret;
4028 		if (max_key == (u64)-1)
4029 			break;
4030 		min_key = max_key + 1;
4031 	}
4032 
4033 	return 0;
4034 }
4035 
4036 /*
4037  * a helper function to drop items from the log before we relog an
4038  * inode.  max_key_type indicates the highest item type to remove.
4039  * This cannot be run for file data extents because it does not
4040  * free the extents they point to.
4041  */
4042 static int drop_inode_items(struct btrfs_trans_handle *trans,
4043 				  struct btrfs_root *log,
4044 				  struct btrfs_path *path,
4045 				  struct btrfs_inode *inode,
4046 				  int max_key_type)
4047 {
4048 	int ret;
4049 	struct btrfs_key key;
4050 	struct btrfs_key found_key;
4051 	int start_slot;
4052 
4053 	key.objectid = btrfs_ino(inode);
4054 	key.type = max_key_type;
4055 	key.offset = (u64)-1;
4056 
4057 	while (1) {
4058 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
4059 		BUG_ON(ret == 0); /* Logic error */
4060 		if (ret < 0)
4061 			break;
4062 
4063 		if (path->slots[0] == 0)
4064 			break;
4065 
4066 		path->slots[0]--;
4067 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4068 				      path->slots[0]);
4069 
4070 		if (found_key.objectid != key.objectid)
4071 			break;
4072 
4073 		found_key.offset = 0;
4074 		found_key.type = 0;
4075 		ret = btrfs_bin_search(path->nodes[0], 0, &found_key, &start_slot);
4076 		if (ret < 0)
4077 			break;
4078 
4079 		ret = btrfs_del_items(trans, log, path, start_slot,
4080 				      path->slots[0] - start_slot + 1);
4081 		/*
4082 		 * If start slot isn't 0 then we don't need to re-search, we've
4083 		 * found the last guy with the objectid in this tree.
4084 		 */
4085 		if (ret || start_slot != 0)
4086 			break;
4087 		btrfs_release_path(path);
4088 	}
4089 	btrfs_release_path(path);
4090 	if (ret > 0)
4091 		ret = 0;
4092 	return ret;
4093 }
4094 
4095 static int truncate_inode_items(struct btrfs_trans_handle *trans,
4096 				struct btrfs_root *log_root,
4097 				struct btrfs_inode *inode,
4098 				u64 new_size, u32 min_type)
4099 {
4100 	struct btrfs_truncate_control control = {
4101 		.new_size = new_size,
4102 		.ino = btrfs_ino(inode),
4103 		.min_type = min_type,
4104 		.skip_ref_updates = true,
4105 	};
4106 
4107 	return btrfs_truncate_inode_items(trans, log_root, &control);
4108 }
4109 
4110 static void fill_inode_item(struct btrfs_trans_handle *trans,
4111 			    struct extent_buffer *leaf,
4112 			    struct btrfs_inode_item *item,
4113 			    struct inode *inode, int log_inode_only,
4114 			    u64 logged_isize)
4115 {
4116 	struct btrfs_map_token token;
4117 	u64 flags;
4118 
4119 	btrfs_init_map_token(&token, leaf);
4120 
4121 	if (log_inode_only) {
4122 		/* set the generation to zero so the recover code
4123 		 * can tell the difference between an logging
4124 		 * just to say 'this inode exists' and a logging
4125 		 * to say 'update this inode with these values'
4126 		 */
4127 		btrfs_set_token_inode_generation(&token, item, 0);
4128 		btrfs_set_token_inode_size(&token, item, logged_isize);
4129 	} else {
4130 		btrfs_set_token_inode_generation(&token, item,
4131 						 BTRFS_I(inode)->generation);
4132 		btrfs_set_token_inode_size(&token, item, inode->i_size);
4133 	}
4134 
4135 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4136 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4137 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4138 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4139 
4140 	btrfs_set_token_timespec_sec(&token, &item->atime,
4141 				     inode->i_atime.tv_sec);
4142 	btrfs_set_token_timespec_nsec(&token, &item->atime,
4143 				      inode->i_atime.tv_nsec);
4144 
4145 	btrfs_set_token_timespec_sec(&token, &item->mtime,
4146 				     inode->i_mtime.tv_sec);
4147 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
4148 				      inode->i_mtime.tv_nsec);
4149 
4150 	btrfs_set_token_timespec_sec(&token, &item->ctime,
4151 				     inode->i_ctime.tv_sec);
4152 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
4153 				      inode->i_ctime.tv_nsec);
4154 
4155 	/*
4156 	 * We do not need to set the nbytes field, in fact during a fast fsync
4157 	 * its value may not even be correct, since a fast fsync does not wait
4158 	 * for ordered extent completion, which is where we update nbytes, it
4159 	 * only waits for writeback to complete. During log replay as we find
4160 	 * file extent items and replay them, we adjust the nbytes field of the
4161 	 * inode item in subvolume tree as needed (see overwrite_item()).
4162 	 */
4163 
4164 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4165 	btrfs_set_token_inode_transid(&token, item, trans->transid);
4166 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4167 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4168 					  BTRFS_I(inode)->ro_flags);
4169 	btrfs_set_token_inode_flags(&token, item, flags);
4170 	btrfs_set_token_inode_block_group(&token, item, 0);
4171 }
4172 
4173 static int log_inode_item(struct btrfs_trans_handle *trans,
4174 			  struct btrfs_root *log, struct btrfs_path *path,
4175 			  struct btrfs_inode *inode, bool inode_item_dropped)
4176 {
4177 	struct btrfs_inode_item *inode_item;
4178 	int ret;
4179 
4180 	/*
4181 	 * If we are doing a fast fsync and the inode was logged before in the
4182 	 * current transaction, then we know the inode was previously logged and
4183 	 * it exists in the log tree. For performance reasons, in this case use
4184 	 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4185 	 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4186 	 * contention in case there are concurrent fsyncs for other inodes of the
4187 	 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4188 	 * already exists can also result in unnecessarily splitting a leaf.
4189 	 */
4190 	if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4191 		ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1);
4192 		ASSERT(ret <= 0);
4193 		if (ret > 0)
4194 			ret = -ENOENT;
4195 	} else {
4196 		/*
4197 		 * This means it is the first fsync in the current transaction,
4198 		 * so the inode item is not in the log and we need to insert it.
4199 		 * We can never get -EEXIST because we are only called for a fast
4200 		 * fsync and in case an inode eviction happens after the inode was
4201 		 * logged before in the current transaction, when we load again
4202 		 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4203 		 * flags and set ->logged_trans to 0.
4204 		 */
4205 		ret = btrfs_insert_empty_item(trans, log, path, &inode->location,
4206 					      sizeof(*inode_item));
4207 		ASSERT(ret != -EEXIST);
4208 	}
4209 	if (ret)
4210 		return ret;
4211 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4212 				    struct btrfs_inode_item);
4213 	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4214 			0, 0);
4215 	btrfs_release_path(path);
4216 	return 0;
4217 }
4218 
4219 static int log_csums(struct btrfs_trans_handle *trans,
4220 		     struct btrfs_inode *inode,
4221 		     struct btrfs_root *log_root,
4222 		     struct btrfs_ordered_sum *sums)
4223 {
4224 	const u64 lock_end = sums->bytenr + sums->len - 1;
4225 	struct extent_state *cached_state = NULL;
4226 	int ret;
4227 
4228 	/*
4229 	 * If this inode was not used for reflink operations in the current
4230 	 * transaction with new extents, then do the fast path, no need to
4231 	 * worry about logging checksum items with overlapping ranges.
4232 	 */
4233 	if (inode->last_reflink_trans < trans->transid)
4234 		return btrfs_csum_file_blocks(trans, log_root, sums);
4235 
4236 	/*
4237 	 * Serialize logging for checksums. This is to avoid racing with the
4238 	 * same checksum being logged by another task that is logging another
4239 	 * file which happens to refer to the same extent as well. Such races
4240 	 * can leave checksum items in the log with overlapping ranges.
4241 	 */
4242 	ret = lock_extent(&log_root->log_csum_range, sums->bytenr, lock_end,
4243 			  &cached_state);
4244 	if (ret)
4245 		return ret;
4246 	/*
4247 	 * Due to extent cloning, we might have logged a csum item that covers a
4248 	 * subrange of a cloned extent, and later we can end up logging a csum
4249 	 * item for a larger subrange of the same extent or the entire range.
4250 	 * This would leave csum items in the log tree that cover the same range
4251 	 * and break the searches for checksums in the log tree, resulting in
4252 	 * some checksums missing in the fs/subvolume tree. So just delete (or
4253 	 * trim and adjust) any existing csum items in the log for this range.
4254 	 */
4255 	ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
4256 	if (!ret)
4257 		ret = btrfs_csum_file_blocks(trans, log_root, sums);
4258 
4259 	unlock_extent(&log_root->log_csum_range, sums->bytenr, lock_end,
4260 		      &cached_state);
4261 
4262 	return ret;
4263 }
4264 
4265 static noinline int copy_items(struct btrfs_trans_handle *trans,
4266 			       struct btrfs_inode *inode,
4267 			       struct btrfs_path *dst_path,
4268 			       struct btrfs_path *src_path,
4269 			       int start_slot, int nr, int inode_only,
4270 			       u64 logged_isize)
4271 {
4272 	struct btrfs_root *log = inode->root->log_root;
4273 	struct btrfs_file_extent_item *extent;
4274 	struct extent_buffer *src;
4275 	int ret = 0;
4276 	struct btrfs_key *ins_keys;
4277 	u32 *ins_sizes;
4278 	struct btrfs_item_batch batch;
4279 	char *ins_data;
4280 	int i;
4281 	int dst_index;
4282 	const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM);
4283 	const u64 i_size = i_size_read(&inode->vfs_inode);
4284 
4285 	/*
4286 	 * To keep lockdep happy and avoid deadlocks, clone the source leaf and
4287 	 * use the clone. This is because otherwise we would be changing the log
4288 	 * tree, to insert items from the subvolume tree or insert csum items,
4289 	 * while holding a read lock on a leaf from the subvolume tree, which
4290 	 * creates a nasty lock dependency when COWing log tree nodes/leaves:
4291 	 *
4292 	 * 1) Modifying the log tree triggers an extent buffer allocation while
4293 	 *    holding a write lock on a parent extent buffer from the log tree.
4294 	 *    Allocating the pages for an extent buffer, or the extent buffer
4295 	 *    struct, can trigger inode eviction and finally the inode eviction
4296 	 *    will trigger a release/remove of a delayed node, which requires
4297 	 *    taking the delayed node's mutex;
4298 	 *
4299 	 * 2) Allocating a metadata extent for a log tree can trigger the async
4300 	 *    reclaim thread and make us wait for it to release enough space and
4301 	 *    unblock our reservation ticket. The reclaim thread can start
4302 	 *    flushing delayed items, and that in turn results in the need to
4303 	 *    lock delayed node mutexes and in the need to write lock extent
4304 	 *    buffers of a subvolume tree - all this while holding a write lock
4305 	 *    on the parent extent buffer in the log tree.
4306 	 *
4307 	 * So one task in scenario 1) running in parallel with another task in
4308 	 * scenario 2) could lead to a deadlock, one wanting to lock a delayed
4309 	 * node mutex while having a read lock on a leaf from the subvolume,
4310 	 * while the other is holding the delayed node's mutex and wants to
4311 	 * write lock the same subvolume leaf for flushing delayed items.
4312 	 */
4313 	src = btrfs_clone_extent_buffer(src_path->nodes[0]);
4314 	if (!src)
4315 		return -ENOMEM;
4316 
4317 	i = src_path->slots[0];
4318 	btrfs_release_path(src_path);
4319 	src_path->nodes[0] = src;
4320 	src_path->slots[0] = i;
4321 
4322 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4323 			   nr * sizeof(u32), GFP_NOFS);
4324 	if (!ins_data)
4325 		return -ENOMEM;
4326 
4327 	ins_sizes = (u32 *)ins_data;
4328 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4329 	batch.keys = ins_keys;
4330 	batch.data_sizes = ins_sizes;
4331 	batch.total_data_size = 0;
4332 	batch.nr = 0;
4333 
4334 	dst_index = 0;
4335 	for (i = 0; i < nr; i++) {
4336 		const int src_slot = start_slot + i;
4337 		struct btrfs_root *csum_root;
4338 		struct btrfs_ordered_sum *sums;
4339 		struct btrfs_ordered_sum *sums_next;
4340 		LIST_HEAD(ordered_sums);
4341 		u64 disk_bytenr;
4342 		u64 disk_num_bytes;
4343 		u64 extent_offset;
4344 		u64 extent_num_bytes;
4345 		bool is_old_extent;
4346 
4347 		btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot);
4348 
4349 		if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY)
4350 			goto add_to_batch;
4351 
4352 		extent = btrfs_item_ptr(src, src_slot,
4353 					struct btrfs_file_extent_item);
4354 
4355 		is_old_extent = (btrfs_file_extent_generation(src, extent) <
4356 				 trans->transid);
4357 
4358 		/*
4359 		 * Don't copy extents from past generations. That would make us
4360 		 * log a lot more metadata for common cases like doing only a
4361 		 * few random writes into a file and then fsync it for the first
4362 		 * time or after the full sync flag is set on the inode. We can
4363 		 * get leaves full of extent items, most of which are from past
4364 		 * generations, so we can skip them - as long as the inode has
4365 		 * not been the target of a reflink operation in this transaction,
4366 		 * as in that case it might have had file extent items with old
4367 		 * generations copied into it. We also must always log prealloc
4368 		 * extents that start at or beyond eof, otherwise we would lose
4369 		 * them on log replay.
4370 		 */
4371 		if (is_old_extent &&
4372 		    ins_keys[dst_index].offset < i_size &&
4373 		    inode->last_reflink_trans < trans->transid)
4374 			continue;
4375 
4376 		if (skip_csum)
4377 			goto add_to_batch;
4378 
4379 		/* Only regular extents have checksums. */
4380 		if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG)
4381 			goto add_to_batch;
4382 
4383 		/*
4384 		 * If it's an extent created in a past transaction, then its
4385 		 * checksums are already accessible from the committed csum tree,
4386 		 * no need to log them.
4387 		 */
4388 		if (is_old_extent)
4389 			goto add_to_batch;
4390 
4391 		disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent);
4392 		/* If it's an explicit hole, there are no checksums. */
4393 		if (disk_bytenr == 0)
4394 			goto add_to_batch;
4395 
4396 		disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent);
4397 
4398 		if (btrfs_file_extent_compression(src, extent)) {
4399 			extent_offset = 0;
4400 			extent_num_bytes = disk_num_bytes;
4401 		} else {
4402 			extent_offset = btrfs_file_extent_offset(src, extent);
4403 			extent_num_bytes = btrfs_file_extent_num_bytes(src, extent);
4404 		}
4405 
4406 		csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr);
4407 		disk_bytenr += extent_offset;
4408 		ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4409 					      disk_bytenr + extent_num_bytes - 1,
4410 					      &ordered_sums, 0, false);
4411 		if (ret)
4412 			goto out;
4413 
4414 		list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) {
4415 			if (!ret)
4416 				ret = log_csums(trans, inode, log, sums);
4417 			list_del(&sums->list);
4418 			kfree(sums);
4419 		}
4420 		if (ret)
4421 			goto out;
4422 
4423 add_to_batch:
4424 		ins_sizes[dst_index] = btrfs_item_size(src, src_slot);
4425 		batch.total_data_size += ins_sizes[dst_index];
4426 		batch.nr++;
4427 		dst_index++;
4428 	}
4429 
4430 	/*
4431 	 * We have a leaf full of old extent items that don't need to be logged,
4432 	 * so we don't need to do anything.
4433 	 */
4434 	if (batch.nr == 0)
4435 		goto out;
4436 
4437 	ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
4438 	if (ret)
4439 		goto out;
4440 
4441 	dst_index = 0;
4442 	for (i = 0; i < nr; i++) {
4443 		const int src_slot = start_slot + i;
4444 		const int dst_slot = dst_path->slots[0] + dst_index;
4445 		struct btrfs_key key;
4446 		unsigned long src_offset;
4447 		unsigned long dst_offset;
4448 
4449 		/*
4450 		 * We're done, all the remaining items in the source leaf
4451 		 * correspond to old file extent items.
4452 		 */
4453 		if (dst_index >= batch.nr)
4454 			break;
4455 
4456 		btrfs_item_key_to_cpu(src, &key, src_slot);
4457 
4458 		if (key.type != BTRFS_EXTENT_DATA_KEY)
4459 			goto copy_item;
4460 
4461 		extent = btrfs_item_ptr(src, src_slot,
4462 					struct btrfs_file_extent_item);
4463 
4464 		/* See the comment in the previous loop, same logic. */
4465 		if (btrfs_file_extent_generation(src, extent) < trans->transid &&
4466 		    key.offset < i_size &&
4467 		    inode->last_reflink_trans < trans->transid)
4468 			continue;
4469 
4470 copy_item:
4471 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot);
4472 		src_offset = btrfs_item_ptr_offset(src, src_slot);
4473 
4474 		if (key.type == BTRFS_INODE_ITEM_KEY) {
4475 			struct btrfs_inode_item *inode_item;
4476 
4477 			inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot,
4478 						    struct btrfs_inode_item);
4479 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
4480 					&inode->vfs_inode,
4481 					inode_only == LOG_INODE_EXISTS,
4482 					logged_isize);
4483 		} else {
4484 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4485 					   src_offset, ins_sizes[dst_index]);
4486 		}
4487 
4488 		dst_index++;
4489 	}
4490 
4491 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4492 	btrfs_release_path(dst_path);
4493 out:
4494 	kfree(ins_data);
4495 
4496 	return ret;
4497 }
4498 
4499 static int extent_cmp(void *priv, const struct list_head *a,
4500 		      const struct list_head *b)
4501 {
4502 	const struct extent_map *em1, *em2;
4503 
4504 	em1 = list_entry(a, struct extent_map, list);
4505 	em2 = list_entry(b, struct extent_map, list);
4506 
4507 	if (em1->start < em2->start)
4508 		return -1;
4509 	else if (em1->start > em2->start)
4510 		return 1;
4511 	return 0;
4512 }
4513 
4514 static int log_extent_csums(struct btrfs_trans_handle *trans,
4515 			    struct btrfs_inode *inode,
4516 			    struct btrfs_root *log_root,
4517 			    const struct extent_map *em,
4518 			    struct btrfs_log_ctx *ctx)
4519 {
4520 	struct btrfs_ordered_extent *ordered;
4521 	struct btrfs_root *csum_root;
4522 	u64 csum_offset;
4523 	u64 csum_len;
4524 	u64 mod_start = em->mod_start;
4525 	u64 mod_len = em->mod_len;
4526 	LIST_HEAD(ordered_sums);
4527 	int ret = 0;
4528 
4529 	if (inode->flags & BTRFS_INODE_NODATASUM ||
4530 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4531 	    em->block_start == EXTENT_MAP_HOLE)
4532 		return 0;
4533 
4534 	list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4535 		const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4536 		const u64 mod_end = mod_start + mod_len;
4537 		struct btrfs_ordered_sum *sums;
4538 
4539 		if (mod_len == 0)
4540 			break;
4541 
4542 		if (ordered_end <= mod_start)
4543 			continue;
4544 		if (mod_end <= ordered->file_offset)
4545 			break;
4546 
4547 		/*
4548 		 * We are going to copy all the csums on this ordered extent, so
4549 		 * go ahead and adjust mod_start and mod_len in case this ordered
4550 		 * extent has already been logged.
4551 		 */
4552 		if (ordered->file_offset > mod_start) {
4553 			if (ordered_end >= mod_end)
4554 				mod_len = ordered->file_offset - mod_start;
4555 			/*
4556 			 * If we have this case
4557 			 *
4558 			 * |--------- logged extent ---------|
4559 			 *       |----- ordered extent ----|
4560 			 *
4561 			 * Just don't mess with mod_start and mod_len, we'll
4562 			 * just end up logging more csums than we need and it
4563 			 * will be ok.
4564 			 */
4565 		} else {
4566 			if (ordered_end < mod_end) {
4567 				mod_len = mod_end - ordered_end;
4568 				mod_start = ordered_end;
4569 			} else {
4570 				mod_len = 0;
4571 			}
4572 		}
4573 
4574 		/*
4575 		 * To keep us from looping for the above case of an ordered
4576 		 * extent that falls inside of the logged extent.
4577 		 */
4578 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4579 			continue;
4580 
4581 		list_for_each_entry(sums, &ordered->list, list) {
4582 			ret = log_csums(trans, inode, log_root, sums);
4583 			if (ret)
4584 				return ret;
4585 		}
4586 	}
4587 
4588 	/* We're done, found all csums in the ordered extents. */
4589 	if (mod_len == 0)
4590 		return 0;
4591 
4592 	/* If we're compressed we have to save the entire range of csums. */
4593 	if (em->compress_type) {
4594 		csum_offset = 0;
4595 		csum_len = max(em->block_len, em->orig_block_len);
4596 	} else {
4597 		csum_offset = mod_start - em->start;
4598 		csum_len = mod_len;
4599 	}
4600 
4601 	/* block start is already adjusted for the file extent offset. */
4602 	csum_root = btrfs_csum_root(trans->fs_info, em->block_start);
4603 	ret = btrfs_lookup_csums_list(csum_root, em->block_start + csum_offset,
4604 				      em->block_start + csum_offset +
4605 				      csum_len - 1, &ordered_sums, 0, false);
4606 	if (ret)
4607 		return ret;
4608 
4609 	while (!list_empty(&ordered_sums)) {
4610 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4611 						   struct btrfs_ordered_sum,
4612 						   list);
4613 		if (!ret)
4614 			ret = log_csums(trans, inode, log_root, sums);
4615 		list_del(&sums->list);
4616 		kfree(sums);
4617 	}
4618 
4619 	return ret;
4620 }
4621 
4622 static int log_one_extent(struct btrfs_trans_handle *trans,
4623 			  struct btrfs_inode *inode,
4624 			  const struct extent_map *em,
4625 			  struct btrfs_path *path,
4626 			  struct btrfs_log_ctx *ctx)
4627 {
4628 	struct btrfs_drop_extents_args drop_args = { 0 };
4629 	struct btrfs_root *log = inode->root->log_root;
4630 	struct btrfs_file_extent_item fi = { 0 };
4631 	struct extent_buffer *leaf;
4632 	struct btrfs_key key;
4633 	u64 extent_offset = em->start - em->orig_start;
4634 	u64 block_len;
4635 	int ret;
4636 
4637 	btrfs_set_stack_file_extent_generation(&fi, trans->transid);
4638 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4639 		btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC);
4640 	else
4641 		btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG);
4642 
4643 	block_len = max(em->block_len, em->orig_block_len);
4644 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4645 		btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start);
4646 		btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4647 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4648 		btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start -
4649 							extent_offset);
4650 		btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4651 	}
4652 
4653 	btrfs_set_stack_file_extent_offset(&fi, extent_offset);
4654 	btrfs_set_stack_file_extent_num_bytes(&fi, em->len);
4655 	btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes);
4656 	btrfs_set_stack_file_extent_compression(&fi, em->compress_type);
4657 
4658 	ret = log_extent_csums(trans, inode, log, em, ctx);
4659 	if (ret)
4660 		return ret;
4661 
4662 	/*
4663 	 * If this is the first time we are logging the inode in the current
4664 	 * transaction, we can avoid btrfs_drop_extents(), which is expensive
4665 	 * because it does a deletion search, which always acquires write locks
4666 	 * for extent buffers at levels 2, 1 and 0. This not only wastes time
4667 	 * but also adds significant contention in a log tree, since log trees
4668 	 * are small, with a root at level 2 or 3 at most, due to their short
4669 	 * life span.
4670 	 */
4671 	if (ctx->logged_before) {
4672 		drop_args.path = path;
4673 		drop_args.start = em->start;
4674 		drop_args.end = em->start + em->len;
4675 		drop_args.replace_extent = true;
4676 		drop_args.extent_item_size = sizeof(fi);
4677 		ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4678 		if (ret)
4679 			return ret;
4680 	}
4681 
4682 	if (!drop_args.extent_inserted) {
4683 		key.objectid = btrfs_ino(inode);
4684 		key.type = BTRFS_EXTENT_DATA_KEY;
4685 		key.offset = em->start;
4686 
4687 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4688 					      sizeof(fi));
4689 		if (ret)
4690 			return ret;
4691 	}
4692 	leaf = path->nodes[0];
4693 	write_extent_buffer(leaf, &fi,
4694 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4695 			    sizeof(fi));
4696 	btrfs_mark_buffer_dirty(leaf);
4697 
4698 	btrfs_release_path(path);
4699 
4700 	return ret;
4701 }
4702 
4703 /*
4704  * Log all prealloc extents beyond the inode's i_size to make sure we do not
4705  * lose them after doing a full/fast fsync and replaying the log. We scan the
4706  * subvolume's root instead of iterating the inode's extent map tree because
4707  * otherwise we can log incorrect extent items based on extent map conversion.
4708  * That can happen due to the fact that extent maps are merged when they
4709  * are not in the extent map tree's list of modified extents.
4710  */
4711 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4712 				      struct btrfs_inode *inode,
4713 				      struct btrfs_path *path)
4714 {
4715 	struct btrfs_root *root = inode->root;
4716 	struct btrfs_key key;
4717 	const u64 i_size = i_size_read(&inode->vfs_inode);
4718 	const u64 ino = btrfs_ino(inode);
4719 	struct btrfs_path *dst_path = NULL;
4720 	bool dropped_extents = false;
4721 	u64 truncate_offset = i_size;
4722 	struct extent_buffer *leaf;
4723 	int slot;
4724 	int ins_nr = 0;
4725 	int start_slot;
4726 	int ret;
4727 
4728 	if (!(inode->flags & BTRFS_INODE_PREALLOC))
4729 		return 0;
4730 
4731 	key.objectid = ino;
4732 	key.type = BTRFS_EXTENT_DATA_KEY;
4733 	key.offset = i_size;
4734 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4735 	if (ret < 0)
4736 		goto out;
4737 
4738 	/*
4739 	 * We must check if there is a prealloc extent that starts before the
4740 	 * i_size and crosses the i_size boundary. This is to ensure later we
4741 	 * truncate down to the end of that extent and not to the i_size, as
4742 	 * otherwise we end up losing part of the prealloc extent after a log
4743 	 * replay and with an implicit hole if there is another prealloc extent
4744 	 * that starts at an offset beyond i_size.
4745 	 */
4746 	ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4747 	if (ret < 0)
4748 		goto out;
4749 
4750 	if (ret == 0) {
4751 		struct btrfs_file_extent_item *ei;
4752 
4753 		leaf = path->nodes[0];
4754 		slot = path->slots[0];
4755 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4756 
4757 		if (btrfs_file_extent_type(leaf, ei) ==
4758 		    BTRFS_FILE_EXTENT_PREALLOC) {
4759 			u64 extent_end;
4760 
4761 			btrfs_item_key_to_cpu(leaf, &key, slot);
4762 			extent_end = key.offset +
4763 				btrfs_file_extent_num_bytes(leaf, ei);
4764 
4765 			if (extent_end > i_size)
4766 				truncate_offset = extent_end;
4767 		}
4768 	} else {
4769 		ret = 0;
4770 	}
4771 
4772 	while (true) {
4773 		leaf = path->nodes[0];
4774 		slot = path->slots[0];
4775 
4776 		if (slot >= btrfs_header_nritems(leaf)) {
4777 			if (ins_nr > 0) {
4778 				ret = copy_items(trans, inode, dst_path, path,
4779 						 start_slot, ins_nr, 1, 0);
4780 				if (ret < 0)
4781 					goto out;
4782 				ins_nr = 0;
4783 			}
4784 			ret = btrfs_next_leaf(root, path);
4785 			if (ret < 0)
4786 				goto out;
4787 			if (ret > 0) {
4788 				ret = 0;
4789 				break;
4790 			}
4791 			continue;
4792 		}
4793 
4794 		btrfs_item_key_to_cpu(leaf, &key, slot);
4795 		if (key.objectid > ino)
4796 			break;
4797 		if (WARN_ON_ONCE(key.objectid < ino) ||
4798 		    key.type < BTRFS_EXTENT_DATA_KEY ||
4799 		    key.offset < i_size) {
4800 			path->slots[0]++;
4801 			continue;
4802 		}
4803 		if (!dropped_extents) {
4804 			/*
4805 			 * Avoid logging extent items logged in past fsync calls
4806 			 * and leading to duplicate keys in the log tree.
4807 			 */
4808 			ret = truncate_inode_items(trans, root->log_root, inode,
4809 						   truncate_offset,
4810 						   BTRFS_EXTENT_DATA_KEY);
4811 			if (ret)
4812 				goto out;
4813 			dropped_extents = true;
4814 		}
4815 		if (ins_nr == 0)
4816 			start_slot = slot;
4817 		ins_nr++;
4818 		path->slots[0]++;
4819 		if (!dst_path) {
4820 			dst_path = btrfs_alloc_path();
4821 			if (!dst_path) {
4822 				ret = -ENOMEM;
4823 				goto out;
4824 			}
4825 		}
4826 	}
4827 	if (ins_nr > 0)
4828 		ret = copy_items(trans, inode, dst_path, path,
4829 				 start_slot, ins_nr, 1, 0);
4830 out:
4831 	btrfs_release_path(path);
4832 	btrfs_free_path(dst_path);
4833 	return ret;
4834 }
4835 
4836 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4837 				     struct btrfs_inode *inode,
4838 				     struct btrfs_path *path,
4839 				     struct btrfs_log_ctx *ctx)
4840 {
4841 	struct btrfs_ordered_extent *ordered;
4842 	struct btrfs_ordered_extent *tmp;
4843 	struct extent_map *em, *n;
4844 	struct list_head extents;
4845 	struct extent_map_tree *tree = &inode->extent_tree;
4846 	int ret = 0;
4847 	int num = 0;
4848 
4849 	INIT_LIST_HEAD(&extents);
4850 
4851 	write_lock(&tree->lock);
4852 
4853 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4854 		list_del_init(&em->list);
4855 		/*
4856 		 * Just an arbitrary number, this can be really CPU intensive
4857 		 * once we start getting a lot of extents, and really once we
4858 		 * have a bunch of extents we just want to commit since it will
4859 		 * be faster.
4860 		 */
4861 		if (++num > 32768) {
4862 			list_del_init(&tree->modified_extents);
4863 			ret = -EFBIG;
4864 			goto process;
4865 		}
4866 
4867 		if (em->generation < trans->transid)
4868 			continue;
4869 
4870 		/* We log prealloc extents beyond eof later. */
4871 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4872 		    em->start >= i_size_read(&inode->vfs_inode))
4873 			continue;
4874 
4875 		/* Need a ref to keep it from getting evicted from cache */
4876 		refcount_inc(&em->refs);
4877 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4878 		list_add_tail(&em->list, &extents);
4879 		num++;
4880 	}
4881 
4882 	list_sort(NULL, &extents, extent_cmp);
4883 process:
4884 	while (!list_empty(&extents)) {
4885 		em = list_entry(extents.next, struct extent_map, list);
4886 
4887 		list_del_init(&em->list);
4888 
4889 		/*
4890 		 * If we had an error we just need to delete everybody from our
4891 		 * private list.
4892 		 */
4893 		if (ret) {
4894 			clear_em_logging(tree, em);
4895 			free_extent_map(em);
4896 			continue;
4897 		}
4898 
4899 		write_unlock(&tree->lock);
4900 
4901 		ret = log_one_extent(trans, inode, em, path, ctx);
4902 		write_lock(&tree->lock);
4903 		clear_em_logging(tree, em);
4904 		free_extent_map(em);
4905 	}
4906 	WARN_ON(!list_empty(&extents));
4907 	write_unlock(&tree->lock);
4908 
4909 	if (!ret)
4910 		ret = btrfs_log_prealloc_extents(trans, inode, path);
4911 	if (ret)
4912 		return ret;
4913 
4914 	/*
4915 	 * We have logged all extents successfully, now make sure the commit of
4916 	 * the current transaction waits for the ordered extents to complete
4917 	 * before it commits and wipes out the log trees, otherwise we would
4918 	 * lose data if an ordered extents completes after the transaction
4919 	 * commits and a power failure happens after the transaction commit.
4920 	 */
4921 	list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4922 		list_del_init(&ordered->log_list);
4923 		set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4924 
4925 		if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4926 			spin_lock_irq(&inode->ordered_tree.lock);
4927 			if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4928 				set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4929 				atomic_inc(&trans->transaction->pending_ordered);
4930 			}
4931 			spin_unlock_irq(&inode->ordered_tree.lock);
4932 		}
4933 		btrfs_put_ordered_extent(ordered);
4934 	}
4935 
4936 	return 0;
4937 }
4938 
4939 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4940 			     struct btrfs_path *path, u64 *size_ret)
4941 {
4942 	struct btrfs_key key;
4943 	int ret;
4944 
4945 	key.objectid = btrfs_ino(inode);
4946 	key.type = BTRFS_INODE_ITEM_KEY;
4947 	key.offset = 0;
4948 
4949 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4950 	if (ret < 0) {
4951 		return ret;
4952 	} else if (ret > 0) {
4953 		*size_ret = 0;
4954 	} else {
4955 		struct btrfs_inode_item *item;
4956 
4957 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4958 				      struct btrfs_inode_item);
4959 		*size_ret = btrfs_inode_size(path->nodes[0], item);
4960 		/*
4961 		 * If the in-memory inode's i_size is smaller then the inode
4962 		 * size stored in the btree, return the inode's i_size, so
4963 		 * that we get a correct inode size after replaying the log
4964 		 * when before a power failure we had a shrinking truncate
4965 		 * followed by addition of a new name (rename / new hard link).
4966 		 * Otherwise return the inode size from the btree, to avoid
4967 		 * data loss when replaying a log due to previously doing a
4968 		 * write that expands the inode's size and logging a new name
4969 		 * immediately after.
4970 		 */
4971 		if (*size_ret > inode->vfs_inode.i_size)
4972 			*size_ret = inode->vfs_inode.i_size;
4973 	}
4974 
4975 	btrfs_release_path(path);
4976 	return 0;
4977 }
4978 
4979 /*
4980  * At the moment we always log all xattrs. This is to figure out at log replay
4981  * time which xattrs must have their deletion replayed. If a xattr is missing
4982  * in the log tree and exists in the fs/subvol tree, we delete it. This is
4983  * because if a xattr is deleted, the inode is fsynced and a power failure
4984  * happens, causing the log to be replayed the next time the fs is mounted,
4985  * we want the xattr to not exist anymore (same behaviour as other filesystems
4986  * with a journal, ext3/4, xfs, f2fs, etc).
4987  */
4988 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4989 				struct btrfs_inode *inode,
4990 				struct btrfs_path *path,
4991 				struct btrfs_path *dst_path)
4992 {
4993 	struct btrfs_root *root = inode->root;
4994 	int ret;
4995 	struct btrfs_key key;
4996 	const u64 ino = btrfs_ino(inode);
4997 	int ins_nr = 0;
4998 	int start_slot = 0;
4999 	bool found_xattrs = false;
5000 
5001 	if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
5002 		return 0;
5003 
5004 	key.objectid = ino;
5005 	key.type = BTRFS_XATTR_ITEM_KEY;
5006 	key.offset = 0;
5007 
5008 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5009 	if (ret < 0)
5010 		return ret;
5011 
5012 	while (true) {
5013 		int slot = path->slots[0];
5014 		struct extent_buffer *leaf = path->nodes[0];
5015 		int nritems = btrfs_header_nritems(leaf);
5016 
5017 		if (slot >= nritems) {
5018 			if (ins_nr > 0) {
5019 				ret = copy_items(trans, inode, dst_path, path,
5020 						 start_slot, ins_nr, 1, 0);
5021 				if (ret < 0)
5022 					return ret;
5023 				ins_nr = 0;
5024 			}
5025 			ret = btrfs_next_leaf(root, path);
5026 			if (ret < 0)
5027 				return ret;
5028 			else if (ret > 0)
5029 				break;
5030 			continue;
5031 		}
5032 
5033 		btrfs_item_key_to_cpu(leaf, &key, slot);
5034 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
5035 			break;
5036 
5037 		if (ins_nr == 0)
5038 			start_slot = slot;
5039 		ins_nr++;
5040 		path->slots[0]++;
5041 		found_xattrs = true;
5042 		cond_resched();
5043 	}
5044 	if (ins_nr > 0) {
5045 		ret = copy_items(trans, inode, dst_path, path,
5046 				 start_slot, ins_nr, 1, 0);
5047 		if (ret < 0)
5048 			return ret;
5049 	}
5050 
5051 	if (!found_xattrs)
5052 		set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
5053 
5054 	return 0;
5055 }
5056 
5057 /*
5058  * When using the NO_HOLES feature if we punched a hole that causes the
5059  * deletion of entire leafs or all the extent items of the first leaf (the one
5060  * that contains the inode item and references) we may end up not processing
5061  * any extents, because there are no leafs with a generation matching the
5062  * current transaction that have extent items for our inode. So we need to find
5063  * if any holes exist and then log them. We also need to log holes after any
5064  * truncate operation that changes the inode's size.
5065  */
5066 static int btrfs_log_holes(struct btrfs_trans_handle *trans,
5067 			   struct btrfs_inode *inode,
5068 			   struct btrfs_path *path)
5069 {
5070 	struct btrfs_root *root = inode->root;
5071 	struct btrfs_fs_info *fs_info = root->fs_info;
5072 	struct btrfs_key key;
5073 	const u64 ino = btrfs_ino(inode);
5074 	const u64 i_size = i_size_read(&inode->vfs_inode);
5075 	u64 prev_extent_end = 0;
5076 	int ret;
5077 
5078 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
5079 		return 0;
5080 
5081 	key.objectid = ino;
5082 	key.type = BTRFS_EXTENT_DATA_KEY;
5083 	key.offset = 0;
5084 
5085 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5086 	if (ret < 0)
5087 		return ret;
5088 
5089 	while (true) {
5090 		struct extent_buffer *leaf = path->nodes[0];
5091 
5092 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
5093 			ret = btrfs_next_leaf(root, path);
5094 			if (ret < 0)
5095 				return ret;
5096 			if (ret > 0) {
5097 				ret = 0;
5098 				break;
5099 			}
5100 			leaf = path->nodes[0];
5101 		}
5102 
5103 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5104 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
5105 			break;
5106 
5107 		/* We have a hole, log it. */
5108 		if (prev_extent_end < key.offset) {
5109 			const u64 hole_len = key.offset - prev_extent_end;
5110 
5111 			/*
5112 			 * Release the path to avoid deadlocks with other code
5113 			 * paths that search the root while holding locks on
5114 			 * leafs from the log root.
5115 			 */
5116 			btrfs_release_path(path);
5117 			ret = btrfs_insert_hole_extent(trans, root->log_root,
5118 						       ino, prev_extent_end,
5119 						       hole_len);
5120 			if (ret < 0)
5121 				return ret;
5122 
5123 			/*
5124 			 * Search for the same key again in the root. Since it's
5125 			 * an extent item and we are holding the inode lock, the
5126 			 * key must still exist. If it doesn't just emit warning
5127 			 * and return an error to fall back to a transaction
5128 			 * commit.
5129 			 */
5130 			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5131 			if (ret < 0)
5132 				return ret;
5133 			if (WARN_ON(ret > 0))
5134 				return -ENOENT;
5135 			leaf = path->nodes[0];
5136 		}
5137 
5138 		prev_extent_end = btrfs_file_extent_end(path);
5139 		path->slots[0]++;
5140 		cond_resched();
5141 	}
5142 
5143 	if (prev_extent_end < i_size) {
5144 		u64 hole_len;
5145 
5146 		btrfs_release_path(path);
5147 		hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
5148 		ret = btrfs_insert_hole_extent(trans, root->log_root, ino,
5149 					       prev_extent_end, hole_len);
5150 		if (ret < 0)
5151 			return ret;
5152 	}
5153 
5154 	return 0;
5155 }
5156 
5157 /*
5158  * When we are logging a new inode X, check if it doesn't have a reference that
5159  * matches the reference from some other inode Y created in a past transaction
5160  * and that was renamed in the current transaction. If we don't do this, then at
5161  * log replay time we can lose inode Y (and all its files if it's a directory):
5162  *
5163  * mkdir /mnt/x
5164  * echo "hello world" > /mnt/x/foobar
5165  * sync
5166  * mv /mnt/x /mnt/y
5167  * mkdir /mnt/x                 # or touch /mnt/x
5168  * xfs_io -c fsync /mnt/x
5169  * <power fail>
5170  * mount fs, trigger log replay
5171  *
5172  * After the log replay procedure, we would lose the first directory and all its
5173  * files (file foobar).
5174  * For the case where inode Y is not a directory we simply end up losing it:
5175  *
5176  * echo "123" > /mnt/foo
5177  * sync
5178  * mv /mnt/foo /mnt/bar
5179  * echo "abc" > /mnt/foo
5180  * xfs_io -c fsync /mnt/foo
5181  * <power fail>
5182  *
5183  * We also need this for cases where a snapshot entry is replaced by some other
5184  * entry (file or directory) otherwise we end up with an unreplayable log due to
5185  * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5186  * if it were a regular entry:
5187  *
5188  * mkdir /mnt/x
5189  * btrfs subvolume snapshot /mnt /mnt/x/snap
5190  * btrfs subvolume delete /mnt/x/snap
5191  * rmdir /mnt/x
5192  * mkdir /mnt/x
5193  * fsync /mnt/x or fsync some new file inside it
5194  * <power fail>
5195  *
5196  * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5197  * the same transaction.
5198  */
5199 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
5200 					 const int slot,
5201 					 const struct btrfs_key *key,
5202 					 struct btrfs_inode *inode,
5203 					 u64 *other_ino, u64 *other_parent)
5204 {
5205 	int ret;
5206 	struct btrfs_path *search_path;
5207 	char *name = NULL;
5208 	u32 name_len = 0;
5209 	u32 item_size = btrfs_item_size(eb, slot);
5210 	u32 cur_offset = 0;
5211 	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
5212 
5213 	search_path = btrfs_alloc_path();
5214 	if (!search_path)
5215 		return -ENOMEM;
5216 	search_path->search_commit_root = 1;
5217 	search_path->skip_locking = 1;
5218 
5219 	while (cur_offset < item_size) {
5220 		u64 parent;
5221 		u32 this_name_len;
5222 		u32 this_len;
5223 		unsigned long name_ptr;
5224 		struct btrfs_dir_item *di;
5225 		struct fscrypt_str name_str;
5226 
5227 		if (key->type == BTRFS_INODE_REF_KEY) {
5228 			struct btrfs_inode_ref *iref;
5229 
5230 			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
5231 			parent = key->offset;
5232 			this_name_len = btrfs_inode_ref_name_len(eb, iref);
5233 			name_ptr = (unsigned long)(iref + 1);
5234 			this_len = sizeof(*iref) + this_name_len;
5235 		} else {
5236 			struct btrfs_inode_extref *extref;
5237 
5238 			extref = (struct btrfs_inode_extref *)(ptr +
5239 							       cur_offset);
5240 			parent = btrfs_inode_extref_parent(eb, extref);
5241 			this_name_len = btrfs_inode_extref_name_len(eb, extref);
5242 			name_ptr = (unsigned long)&extref->name;
5243 			this_len = sizeof(*extref) + this_name_len;
5244 		}
5245 
5246 		if (this_name_len > name_len) {
5247 			char *new_name;
5248 
5249 			new_name = krealloc(name, this_name_len, GFP_NOFS);
5250 			if (!new_name) {
5251 				ret = -ENOMEM;
5252 				goto out;
5253 			}
5254 			name_len = this_name_len;
5255 			name = new_name;
5256 		}
5257 
5258 		read_extent_buffer(eb, name, name_ptr, this_name_len);
5259 
5260 		name_str.name = name;
5261 		name_str.len = this_name_len;
5262 		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
5263 				parent, &name_str, 0);
5264 		if (di && !IS_ERR(di)) {
5265 			struct btrfs_key di_key;
5266 
5267 			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
5268 						  di, &di_key);
5269 			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
5270 				if (di_key.objectid != key->objectid) {
5271 					ret = 1;
5272 					*other_ino = di_key.objectid;
5273 					*other_parent = parent;
5274 				} else {
5275 					ret = 0;
5276 				}
5277 			} else {
5278 				ret = -EAGAIN;
5279 			}
5280 			goto out;
5281 		} else if (IS_ERR(di)) {
5282 			ret = PTR_ERR(di);
5283 			goto out;
5284 		}
5285 		btrfs_release_path(search_path);
5286 
5287 		cur_offset += this_len;
5288 	}
5289 	ret = 0;
5290 out:
5291 	btrfs_free_path(search_path);
5292 	kfree(name);
5293 	return ret;
5294 }
5295 
5296 /*
5297  * Check if we need to log an inode. This is used in contexts where while
5298  * logging an inode we need to log another inode (either that it exists or in
5299  * full mode). This is used instead of btrfs_inode_in_log() because the later
5300  * requires the inode to be in the log and have the log transaction committed,
5301  * while here we do not care if the log transaction was already committed - our
5302  * caller will commit the log later - and we want to avoid logging an inode
5303  * multiple times when multiple tasks have joined the same log transaction.
5304  */
5305 static bool need_log_inode(const struct btrfs_trans_handle *trans,
5306 			   const struct btrfs_inode *inode)
5307 {
5308 	/*
5309 	 * If a directory was not modified, no dentries added or removed, we can
5310 	 * and should avoid logging it.
5311 	 */
5312 	if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
5313 		return false;
5314 
5315 	/*
5316 	 * If this inode does not have new/updated/deleted xattrs since the last
5317 	 * time it was logged and is flagged as logged in the current transaction,
5318 	 * we can skip logging it. As for new/deleted names, those are updated in
5319 	 * the log by link/unlink/rename operations.
5320 	 * In case the inode was logged and then evicted and reloaded, its
5321 	 * logged_trans will be 0, in which case we have to fully log it since
5322 	 * logged_trans is a transient field, not persisted.
5323 	 */
5324 	if (inode->logged_trans == trans->transid &&
5325 	    !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5326 		return false;
5327 
5328 	return true;
5329 }
5330 
5331 struct btrfs_dir_list {
5332 	u64 ino;
5333 	struct list_head list;
5334 };
5335 
5336 /*
5337  * Log the inodes of the new dentries of a directory.
5338  * See process_dir_items_leaf() for details about why it is needed.
5339  * This is a recursive operation - if an existing dentry corresponds to a
5340  * directory, that directory's new entries are logged too (same behaviour as
5341  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5342  * the dentries point to we do not acquire their VFS lock, otherwise lockdep
5343  * complains about the following circular lock dependency / possible deadlock:
5344  *
5345  *        CPU0                                        CPU1
5346  *        ----                                        ----
5347  * lock(&type->i_mutex_dir_key#3/2);
5348  *                                            lock(sb_internal#2);
5349  *                                            lock(&type->i_mutex_dir_key#3/2);
5350  * lock(&sb->s_type->i_mutex_key#14);
5351  *
5352  * Where sb_internal is the lock (a counter that works as a lock) acquired by
5353  * sb_start_intwrite() in btrfs_start_transaction().
5354  * Not acquiring the VFS lock of the inodes is still safe because:
5355  *
5356  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5357  *    that while logging the inode new references (names) are added or removed
5358  *    from the inode, leaving the logged inode item with a link count that does
5359  *    not match the number of logged inode reference items. This is fine because
5360  *    at log replay time we compute the real number of links and correct the
5361  *    link count in the inode item (see replay_one_buffer() and
5362  *    link_to_fixup_dir());
5363  *
5364  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5365  *    while logging the inode's items new index items (key type
5366  *    BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item
5367  *    has a size that doesn't match the sum of the lengths of all the logged
5368  *    names - this is ok, not a problem, because at log replay time we set the
5369  *    directory's i_size to the correct value (see replay_one_name() and
5370  *    overwrite_item()).
5371  */
5372 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5373 				struct btrfs_inode *start_inode,
5374 				struct btrfs_log_ctx *ctx)
5375 {
5376 	struct btrfs_root *root = start_inode->root;
5377 	struct btrfs_fs_info *fs_info = root->fs_info;
5378 	struct btrfs_path *path;
5379 	LIST_HEAD(dir_list);
5380 	struct btrfs_dir_list *dir_elem;
5381 	u64 ino = btrfs_ino(start_inode);
5382 	struct btrfs_inode *curr_inode = start_inode;
5383 	int ret = 0;
5384 
5385 	/*
5386 	 * If we are logging a new name, as part of a link or rename operation,
5387 	 * don't bother logging new dentries, as we just want to log the names
5388 	 * of an inode and that any new parents exist.
5389 	 */
5390 	if (ctx->logging_new_name)
5391 		return 0;
5392 
5393 	path = btrfs_alloc_path();
5394 	if (!path)
5395 		return -ENOMEM;
5396 
5397 	/* Pairs with btrfs_add_delayed_iput below. */
5398 	ihold(&curr_inode->vfs_inode);
5399 
5400 	while (true) {
5401 		struct inode *vfs_inode;
5402 		struct btrfs_key key;
5403 		struct btrfs_key found_key;
5404 		u64 next_index;
5405 		bool continue_curr_inode = true;
5406 		int iter_ret;
5407 
5408 		key.objectid = ino;
5409 		key.type = BTRFS_DIR_INDEX_KEY;
5410 		key.offset = btrfs_get_first_dir_index_to_log(curr_inode);
5411 		next_index = key.offset;
5412 again:
5413 		btrfs_for_each_slot(root->log_root, &key, &found_key, path, iter_ret) {
5414 			struct extent_buffer *leaf = path->nodes[0];
5415 			struct btrfs_dir_item *di;
5416 			struct btrfs_key di_key;
5417 			struct inode *di_inode;
5418 			int log_mode = LOG_INODE_EXISTS;
5419 			int type;
5420 
5421 			if (found_key.objectid != ino ||
5422 			    found_key.type != BTRFS_DIR_INDEX_KEY) {
5423 				continue_curr_inode = false;
5424 				break;
5425 			}
5426 
5427 			next_index = found_key.offset + 1;
5428 
5429 			di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5430 			type = btrfs_dir_ftype(leaf, di);
5431 			if (btrfs_dir_transid(leaf, di) < trans->transid)
5432 				continue;
5433 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5434 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5435 				continue;
5436 
5437 			btrfs_release_path(path);
5438 			di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5439 			if (IS_ERR(di_inode)) {
5440 				ret = PTR_ERR(di_inode);
5441 				goto out;
5442 			}
5443 
5444 			if (!need_log_inode(trans, BTRFS_I(di_inode))) {
5445 				btrfs_add_delayed_iput(BTRFS_I(di_inode));
5446 				break;
5447 			}
5448 
5449 			ctx->log_new_dentries = false;
5450 			if (type == BTRFS_FT_DIR)
5451 				log_mode = LOG_INODE_ALL;
5452 			ret = btrfs_log_inode(trans, BTRFS_I(di_inode),
5453 					      log_mode, ctx);
5454 			btrfs_add_delayed_iput(BTRFS_I(di_inode));
5455 			if (ret)
5456 				goto out;
5457 			if (ctx->log_new_dentries) {
5458 				dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5459 				if (!dir_elem) {
5460 					ret = -ENOMEM;
5461 					goto out;
5462 				}
5463 				dir_elem->ino = di_key.objectid;
5464 				list_add_tail(&dir_elem->list, &dir_list);
5465 			}
5466 			break;
5467 		}
5468 
5469 		btrfs_release_path(path);
5470 
5471 		if (iter_ret < 0) {
5472 			ret = iter_ret;
5473 			goto out;
5474 		} else if (iter_ret > 0) {
5475 			continue_curr_inode = false;
5476 		} else {
5477 			key = found_key;
5478 		}
5479 
5480 		if (continue_curr_inode && key.offset < (u64)-1) {
5481 			key.offset++;
5482 			goto again;
5483 		}
5484 
5485 		btrfs_set_first_dir_index_to_log(curr_inode, next_index);
5486 
5487 		if (list_empty(&dir_list))
5488 			break;
5489 
5490 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list);
5491 		ino = dir_elem->ino;
5492 		list_del(&dir_elem->list);
5493 		kfree(dir_elem);
5494 
5495 		btrfs_add_delayed_iput(curr_inode);
5496 		curr_inode = NULL;
5497 
5498 		vfs_inode = btrfs_iget(fs_info->sb, ino, root);
5499 		if (IS_ERR(vfs_inode)) {
5500 			ret = PTR_ERR(vfs_inode);
5501 			break;
5502 		}
5503 		curr_inode = BTRFS_I(vfs_inode);
5504 	}
5505 out:
5506 	btrfs_free_path(path);
5507 	if (curr_inode)
5508 		btrfs_add_delayed_iput(curr_inode);
5509 
5510 	if (ret) {
5511 		struct btrfs_dir_list *next;
5512 
5513 		list_for_each_entry_safe(dir_elem, next, &dir_list, list)
5514 			kfree(dir_elem);
5515 	}
5516 
5517 	return ret;
5518 }
5519 
5520 struct btrfs_ino_list {
5521 	u64 ino;
5522 	u64 parent;
5523 	struct list_head list;
5524 };
5525 
5526 static void free_conflicting_inodes(struct btrfs_log_ctx *ctx)
5527 {
5528 	struct btrfs_ino_list *curr;
5529 	struct btrfs_ino_list *next;
5530 
5531 	list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) {
5532 		list_del(&curr->list);
5533 		kfree(curr);
5534 	}
5535 }
5536 
5537 static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino,
5538 				    struct btrfs_path *path)
5539 {
5540 	struct btrfs_key key;
5541 	int ret;
5542 
5543 	key.objectid = ino;
5544 	key.type = BTRFS_INODE_ITEM_KEY;
5545 	key.offset = 0;
5546 
5547 	path->search_commit_root = 1;
5548 	path->skip_locking = 1;
5549 
5550 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5551 	if (WARN_ON_ONCE(ret > 0)) {
5552 		/*
5553 		 * We have previously found the inode through the commit root
5554 		 * so this should not happen. If it does, just error out and
5555 		 * fallback to a transaction commit.
5556 		 */
5557 		ret = -ENOENT;
5558 	} else if (ret == 0) {
5559 		struct btrfs_inode_item *item;
5560 
5561 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5562 				      struct btrfs_inode_item);
5563 		if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item)))
5564 			ret = 1;
5565 	}
5566 
5567 	btrfs_release_path(path);
5568 	path->search_commit_root = 0;
5569 	path->skip_locking = 0;
5570 
5571 	return ret;
5572 }
5573 
5574 static int add_conflicting_inode(struct btrfs_trans_handle *trans,
5575 				 struct btrfs_root *root,
5576 				 struct btrfs_path *path,
5577 				 u64 ino, u64 parent,
5578 				 struct btrfs_log_ctx *ctx)
5579 {
5580 	struct btrfs_ino_list *ino_elem;
5581 	struct inode *inode;
5582 
5583 	/*
5584 	 * It's rare to have a lot of conflicting inodes, in practice it is not
5585 	 * common to have more than 1 or 2. We don't want to collect too many,
5586 	 * as we could end up logging too many inodes (even if only in
5587 	 * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction
5588 	 * commits.
5589 	 */
5590 	if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES)
5591 		return BTRFS_LOG_FORCE_COMMIT;
5592 
5593 	inode = btrfs_iget(root->fs_info->sb, ino, root);
5594 	/*
5595 	 * If the other inode that had a conflicting dir entry was deleted in
5596 	 * the current transaction then we either:
5597 	 *
5598 	 * 1) Log the parent directory (later after adding it to the list) if
5599 	 *    the inode is a directory. This is because it may be a deleted
5600 	 *    subvolume/snapshot or it may be a regular directory that had
5601 	 *    deleted subvolumes/snapshots (or subdirectories that had them),
5602 	 *    and at the moment we can't deal with dropping subvolumes/snapshots
5603 	 *    during log replay. So we just log the parent, which will result in
5604 	 *    a fallback to a transaction commit if we are dealing with those
5605 	 *    cases (last_unlink_trans will match the current transaction);
5606 	 *
5607 	 * 2) Do nothing if it's not a directory. During log replay we simply
5608 	 *    unlink the conflicting dentry from the parent directory and then
5609 	 *    add the dentry for our inode. Like this we can avoid logging the
5610 	 *    parent directory (and maybe fallback to a transaction commit in
5611 	 *    case it has a last_unlink_trans == trans->transid, due to moving
5612 	 *    some inode from it to some other directory).
5613 	 */
5614 	if (IS_ERR(inode)) {
5615 		int ret = PTR_ERR(inode);
5616 
5617 		if (ret != -ENOENT)
5618 			return ret;
5619 
5620 		ret = conflicting_inode_is_dir(root, ino, path);
5621 		/* Not a directory or we got an error. */
5622 		if (ret <= 0)
5623 			return ret;
5624 
5625 		/* Conflicting inode is a directory, so we'll log its parent. */
5626 		ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5627 		if (!ino_elem)
5628 			return -ENOMEM;
5629 		ino_elem->ino = ino;
5630 		ino_elem->parent = parent;
5631 		list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5632 		ctx->num_conflict_inodes++;
5633 
5634 		return 0;
5635 	}
5636 
5637 	/*
5638 	 * If the inode was already logged skip it - otherwise we can hit an
5639 	 * infinite loop. Example:
5640 	 *
5641 	 * From the commit root (previous transaction) we have the following
5642 	 * inodes:
5643 	 *
5644 	 * inode 257 a directory
5645 	 * inode 258 with references "zz" and "zz_link" on inode 257
5646 	 * inode 259 with reference "a" on inode 257
5647 	 *
5648 	 * And in the current (uncommitted) transaction we have:
5649 	 *
5650 	 * inode 257 a directory, unchanged
5651 	 * inode 258 with references "a" and "a2" on inode 257
5652 	 * inode 259 with reference "zz_link" on inode 257
5653 	 * inode 261 with reference "zz" on inode 257
5654 	 *
5655 	 * When logging inode 261 the following infinite loop could
5656 	 * happen if we don't skip already logged inodes:
5657 	 *
5658 	 * - we detect inode 258 as a conflicting inode, with inode 261
5659 	 *   on reference "zz", and log it;
5660 	 *
5661 	 * - we detect inode 259 as a conflicting inode, with inode 258
5662 	 *   on reference "a", and log it;
5663 	 *
5664 	 * - we detect inode 258 as a conflicting inode, with inode 259
5665 	 *   on reference "zz_link", and log it - again! After this we
5666 	 *   repeat the above steps forever.
5667 	 *
5668 	 * Here we can use need_log_inode() because we only need to log the
5669 	 * inode in LOG_INODE_EXISTS mode and rename operations update the log,
5670 	 * so that the log ends up with the new name and without the old name.
5671 	 */
5672 	if (!need_log_inode(trans, BTRFS_I(inode))) {
5673 		btrfs_add_delayed_iput(BTRFS_I(inode));
5674 		return 0;
5675 	}
5676 
5677 	btrfs_add_delayed_iput(BTRFS_I(inode));
5678 
5679 	ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5680 	if (!ino_elem)
5681 		return -ENOMEM;
5682 	ino_elem->ino = ino;
5683 	ino_elem->parent = parent;
5684 	list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5685 	ctx->num_conflict_inodes++;
5686 
5687 	return 0;
5688 }
5689 
5690 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5691 				  struct btrfs_root *root,
5692 				  struct btrfs_log_ctx *ctx)
5693 {
5694 	struct btrfs_fs_info *fs_info = root->fs_info;
5695 	int ret = 0;
5696 
5697 	/*
5698 	 * Conflicting inodes are logged by the first call to btrfs_log_inode(),
5699 	 * otherwise we could have unbounded recursion of btrfs_log_inode()
5700 	 * calls. This check guarantees we can have only 1 level of recursion.
5701 	 */
5702 	if (ctx->logging_conflict_inodes)
5703 		return 0;
5704 
5705 	ctx->logging_conflict_inodes = true;
5706 
5707 	/*
5708 	 * New conflicting inodes may be found and added to the list while we
5709 	 * are logging a conflicting inode, so keep iterating while the list is
5710 	 * not empty.
5711 	 */
5712 	while (!list_empty(&ctx->conflict_inodes)) {
5713 		struct btrfs_ino_list *curr;
5714 		struct inode *inode;
5715 		u64 ino;
5716 		u64 parent;
5717 
5718 		curr = list_first_entry(&ctx->conflict_inodes,
5719 					struct btrfs_ino_list, list);
5720 		ino = curr->ino;
5721 		parent = curr->parent;
5722 		list_del(&curr->list);
5723 		kfree(curr);
5724 
5725 		inode = btrfs_iget(fs_info->sb, ino, root);
5726 		/*
5727 		 * If the other inode that had a conflicting dir entry was
5728 		 * deleted in the current transaction, we need to log its parent
5729 		 * directory. See the comment at add_conflicting_inode().
5730 		 */
5731 		if (IS_ERR(inode)) {
5732 			ret = PTR_ERR(inode);
5733 			if (ret != -ENOENT)
5734 				break;
5735 
5736 			inode = btrfs_iget(fs_info->sb, parent, root);
5737 			if (IS_ERR(inode)) {
5738 				ret = PTR_ERR(inode);
5739 				break;
5740 			}
5741 
5742 			/*
5743 			 * Always log the directory, we cannot make this
5744 			 * conditional on need_log_inode() because the directory
5745 			 * might have been logged in LOG_INODE_EXISTS mode or
5746 			 * the dir index of the conflicting inode is not in a
5747 			 * dir index key range logged for the directory. So we
5748 			 * must make sure the deletion is recorded.
5749 			 */
5750 			ret = btrfs_log_inode(trans, BTRFS_I(inode),
5751 					      LOG_INODE_ALL, ctx);
5752 			btrfs_add_delayed_iput(BTRFS_I(inode));
5753 			if (ret)
5754 				break;
5755 			continue;
5756 		}
5757 
5758 		/*
5759 		 * Here we can use need_log_inode() because we only need to log
5760 		 * the inode in LOG_INODE_EXISTS mode and rename operations
5761 		 * update the log, so that the log ends up with the new name and
5762 		 * without the old name.
5763 		 *
5764 		 * We did this check at add_conflicting_inode(), but here we do
5765 		 * it again because if some other task logged the inode after
5766 		 * that, we can avoid doing it again.
5767 		 */
5768 		if (!need_log_inode(trans, BTRFS_I(inode))) {
5769 			btrfs_add_delayed_iput(BTRFS_I(inode));
5770 			continue;
5771 		}
5772 
5773 		/*
5774 		 * We are safe logging the other inode without acquiring its
5775 		 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5776 		 * are safe against concurrent renames of the other inode as
5777 		 * well because during a rename we pin the log and update the
5778 		 * log with the new name before we unpin it.
5779 		 */
5780 		ret = btrfs_log_inode(trans, BTRFS_I(inode), LOG_INODE_EXISTS, ctx);
5781 		btrfs_add_delayed_iput(BTRFS_I(inode));
5782 		if (ret)
5783 			break;
5784 	}
5785 
5786 	ctx->logging_conflict_inodes = false;
5787 	if (ret)
5788 		free_conflicting_inodes(ctx);
5789 
5790 	return ret;
5791 }
5792 
5793 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5794 				   struct btrfs_inode *inode,
5795 				   struct btrfs_key *min_key,
5796 				   const struct btrfs_key *max_key,
5797 				   struct btrfs_path *path,
5798 				   struct btrfs_path *dst_path,
5799 				   const u64 logged_isize,
5800 				   const int inode_only,
5801 				   struct btrfs_log_ctx *ctx,
5802 				   bool *need_log_inode_item)
5803 {
5804 	const u64 i_size = i_size_read(&inode->vfs_inode);
5805 	struct btrfs_root *root = inode->root;
5806 	int ins_start_slot = 0;
5807 	int ins_nr = 0;
5808 	int ret;
5809 
5810 	while (1) {
5811 		ret = btrfs_search_forward(root, min_key, path, trans->transid);
5812 		if (ret < 0)
5813 			return ret;
5814 		if (ret > 0) {
5815 			ret = 0;
5816 			break;
5817 		}
5818 again:
5819 		/* Note, ins_nr might be > 0 here, cleanup outside the loop */
5820 		if (min_key->objectid != max_key->objectid)
5821 			break;
5822 		if (min_key->type > max_key->type)
5823 			break;
5824 
5825 		if (min_key->type == BTRFS_INODE_ITEM_KEY) {
5826 			*need_log_inode_item = false;
5827 		} else if (min_key->type == BTRFS_EXTENT_DATA_KEY &&
5828 			   min_key->offset >= i_size) {
5829 			/*
5830 			 * Extents at and beyond eof are logged with
5831 			 * btrfs_log_prealloc_extents().
5832 			 * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
5833 			 * and no keys greater than that, so bail out.
5834 			 */
5835 			break;
5836 		} else if ((min_key->type == BTRFS_INODE_REF_KEY ||
5837 			    min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5838 			   (inode->generation == trans->transid ||
5839 			    ctx->logging_conflict_inodes)) {
5840 			u64 other_ino = 0;
5841 			u64 other_parent = 0;
5842 
5843 			ret = btrfs_check_ref_name_override(path->nodes[0],
5844 					path->slots[0], min_key, inode,
5845 					&other_ino, &other_parent);
5846 			if (ret < 0) {
5847 				return ret;
5848 			} else if (ret > 0 &&
5849 				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5850 				if (ins_nr > 0) {
5851 					ins_nr++;
5852 				} else {
5853 					ins_nr = 1;
5854 					ins_start_slot = path->slots[0];
5855 				}
5856 				ret = copy_items(trans, inode, dst_path, path,
5857 						 ins_start_slot, ins_nr,
5858 						 inode_only, logged_isize);
5859 				if (ret < 0)
5860 					return ret;
5861 				ins_nr = 0;
5862 
5863 				btrfs_release_path(path);
5864 				ret = add_conflicting_inode(trans, root, path,
5865 							    other_ino,
5866 							    other_parent, ctx);
5867 				if (ret)
5868 					return ret;
5869 				goto next_key;
5870 			}
5871 		} else if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5872 			/* Skip xattrs, logged later with btrfs_log_all_xattrs() */
5873 			if (ins_nr == 0)
5874 				goto next_slot;
5875 			ret = copy_items(trans, inode, dst_path, path,
5876 					 ins_start_slot,
5877 					 ins_nr, inode_only, logged_isize);
5878 			if (ret < 0)
5879 				return ret;
5880 			ins_nr = 0;
5881 			goto next_slot;
5882 		}
5883 
5884 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5885 			ins_nr++;
5886 			goto next_slot;
5887 		} else if (!ins_nr) {
5888 			ins_start_slot = path->slots[0];
5889 			ins_nr = 1;
5890 			goto next_slot;
5891 		}
5892 
5893 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5894 				 ins_nr, inode_only, logged_isize);
5895 		if (ret < 0)
5896 			return ret;
5897 		ins_nr = 1;
5898 		ins_start_slot = path->slots[0];
5899 next_slot:
5900 		path->slots[0]++;
5901 		if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5902 			btrfs_item_key_to_cpu(path->nodes[0], min_key,
5903 					      path->slots[0]);
5904 			goto again;
5905 		}
5906 		if (ins_nr) {
5907 			ret = copy_items(trans, inode, dst_path, path,
5908 					 ins_start_slot, ins_nr, inode_only,
5909 					 logged_isize);
5910 			if (ret < 0)
5911 				return ret;
5912 			ins_nr = 0;
5913 		}
5914 		btrfs_release_path(path);
5915 next_key:
5916 		if (min_key->offset < (u64)-1) {
5917 			min_key->offset++;
5918 		} else if (min_key->type < max_key->type) {
5919 			min_key->type++;
5920 			min_key->offset = 0;
5921 		} else {
5922 			break;
5923 		}
5924 
5925 		/*
5926 		 * We may process many leaves full of items for our inode, so
5927 		 * avoid monopolizing a cpu for too long by rescheduling while
5928 		 * not holding locks on any tree.
5929 		 */
5930 		cond_resched();
5931 	}
5932 	if (ins_nr) {
5933 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5934 				 ins_nr, inode_only, logged_isize);
5935 		if (ret)
5936 			return ret;
5937 	}
5938 
5939 	if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) {
5940 		/*
5941 		 * Release the path because otherwise we might attempt to double
5942 		 * lock the same leaf with btrfs_log_prealloc_extents() below.
5943 		 */
5944 		btrfs_release_path(path);
5945 		ret = btrfs_log_prealloc_extents(trans, inode, dst_path);
5946 	}
5947 
5948 	return ret;
5949 }
5950 
5951 static int insert_delayed_items_batch(struct btrfs_trans_handle *trans,
5952 				      struct btrfs_root *log,
5953 				      struct btrfs_path *path,
5954 				      const struct btrfs_item_batch *batch,
5955 				      const struct btrfs_delayed_item *first_item)
5956 {
5957 	const struct btrfs_delayed_item *curr = first_item;
5958 	int ret;
5959 
5960 	ret = btrfs_insert_empty_items(trans, log, path, batch);
5961 	if (ret)
5962 		return ret;
5963 
5964 	for (int i = 0; i < batch->nr; i++) {
5965 		char *data_ptr;
5966 
5967 		data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
5968 		write_extent_buffer(path->nodes[0], &curr->data,
5969 				    (unsigned long)data_ptr, curr->data_len);
5970 		curr = list_next_entry(curr, log_list);
5971 		path->slots[0]++;
5972 	}
5973 
5974 	btrfs_release_path(path);
5975 
5976 	return 0;
5977 }
5978 
5979 static int log_delayed_insertion_items(struct btrfs_trans_handle *trans,
5980 				       struct btrfs_inode *inode,
5981 				       struct btrfs_path *path,
5982 				       const struct list_head *delayed_ins_list,
5983 				       struct btrfs_log_ctx *ctx)
5984 {
5985 	/* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */
5986 	const int max_batch_size = 195;
5987 	const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info);
5988 	const u64 ino = btrfs_ino(inode);
5989 	struct btrfs_root *log = inode->root->log_root;
5990 	struct btrfs_item_batch batch = {
5991 		.nr = 0,
5992 		.total_data_size = 0,
5993 	};
5994 	const struct btrfs_delayed_item *first = NULL;
5995 	const struct btrfs_delayed_item *curr;
5996 	char *ins_data;
5997 	struct btrfs_key *ins_keys;
5998 	u32 *ins_sizes;
5999 	u64 curr_batch_size = 0;
6000 	int batch_idx = 0;
6001 	int ret;
6002 
6003 	/* We are adding dir index items to the log tree. */
6004 	lockdep_assert_held(&inode->log_mutex);
6005 
6006 	/*
6007 	 * We collect delayed items before copying index keys from the subvolume
6008 	 * to the log tree. However just after we collected them, they may have
6009 	 * been flushed (all of them or just some of them), and therefore we
6010 	 * could have copied them from the subvolume tree to the log tree.
6011 	 * So find the first delayed item that was not yet logged (they are
6012 	 * sorted by index number).
6013 	 */
6014 	list_for_each_entry(curr, delayed_ins_list, log_list) {
6015 		if (curr->index > inode->last_dir_index_offset) {
6016 			first = curr;
6017 			break;
6018 		}
6019 	}
6020 
6021 	/* Empty list or all delayed items were already logged. */
6022 	if (!first)
6023 		return 0;
6024 
6025 	ins_data = kmalloc(max_batch_size * sizeof(u32) +
6026 			   max_batch_size * sizeof(struct btrfs_key), GFP_NOFS);
6027 	if (!ins_data)
6028 		return -ENOMEM;
6029 	ins_sizes = (u32 *)ins_data;
6030 	batch.data_sizes = ins_sizes;
6031 	ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32));
6032 	batch.keys = ins_keys;
6033 
6034 	curr = first;
6035 	while (!list_entry_is_head(curr, delayed_ins_list, log_list)) {
6036 		const u32 curr_size = curr->data_len + sizeof(struct btrfs_item);
6037 
6038 		if (curr_batch_size + curr_size > leaf_data_size ||
6039 		    batch.nr == max_batch_size) {
6040 			ret = insert_delayed_items_batch(trans, log, path,
6041 							 &batch, first);
6042 			if (ret)
6043 				goto out;
6044 			batch_idx = 0;
6045 			batch.nr = 0;
6046 			batch.total_data_size = 0;
6047 			curr_batch_size = 0;
6048 			first = curr;
6049 		}
6050 
6051 		ins_sizes[batch_idx] = curr->data_len;
6052 		ins_keys[batch_idx].objectid = ino;
6053 		ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY;
6054 		ins_keys[batch_idx].offset = curr->index;
6055 		curr_batch_size += curr_size;
6056 		batch.total_data_size += curr->data_len;
6057 		batch.nr++;
6058 		batch_idx++;
6059 		curr = list_next_entry(curr, log_list);
6060 	}
6061 
6062 	ASSERT(batch.nr >= 1);
6063 	ret = insert_delayed_items_batch(trans, log, path, &batch, first);
6064 
6065 	curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item,
6066 			       log_list);
6067 	inode->last_dir_index_offset = curr->index;
6068 out:
6069 	kfree(ins_data);
6070 
6071 	return ret;
6072 }
6073 
6074 static int log_delayed_deletions_full(struct btrfs_trans_handle *trans,
6075 				      struct btrfs_inode *inode,
6076 				      struct btrfs_path *path,
6077 				      const struct list_head *delayed_del_list,
6078 				      struct btrfs_log_ctx *ctx)
6079 {
6080 	const u64 ino = btrfs_ino(inode);
6081 	const struct btrfs_delayed_item *curr;
6082 
6083 	curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6084 				log_list);
6085 
6086 	while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6087 		u64 first_dir_index = curr->index;
6088 		u64 last_dir_index;
6089 		const struct btrfs_delayed_item *next;
6090 		int ret;
6091 
6092 		/*
6093 		 * Find a range of consecutive dir index items to delete. Like
6094 		 * this we log a single dir range item spanning several contiguous
6095 		 * dir items instead of logging one range item per dir index item.
6096 		 */
6097 		next = list_next_entry(curr, log_list);
6098 		while (!list_entry_is_head(next, delayed_del_list, log_list)) {
6099 			if (next->index != curr->index + 1)
6100 				break;
6101 			curr = next;
6102 			next = list_next_entry(next, log_list);
6103 		}
6104 
6105 		last_dir_index = curr->index;
6106 		ASSERT(last_dir_index >= first_dir_index);
6107 
6108 		ret = insert_dir_log_key(trans, inode->root->log_root, path,
6109 					 ino, first_dir_index, last_dir_index);
6110 		if (ret)
6111 			return ret;
6112 		curr = list_next_entry(curr, log_list);
6113 	}
6114 
6115 	return 0;
6116 }
6117 
6118 static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans,
6119 					struct btrfs_inode *inode,
6120 					struct btrfs_path *path,
6121 					struct btrfs_log_ctx *ctx,
6122 					const struct list_head *delayed_del_list,
6123 					const struct btrfs_delayed_item *first,
6124 					const struct btrfs_delayed_item **last_ret)
6125 {
6126 	const struct btrfs_delayed_item *next;
6127 	struct extent_buffer *leaf = path->nodes[0];
6128 	const int last_slot = btrfs_header_nritems(leaf) - 1;
6129 	int slot = path->slots[0] + 1;
6130 	const u64 ino = btrfs_ino(inode);
6131 
6132 	next = list_next_entry(first, log_list);
6133 
6134 	while (slot < last_slot &&
6135 	       !list_entry_is_head(next, delayed_del_list, log_list)) {
6136 		struct btrfs_key key;
6137 
6138 		btrfs_item_key_to_cpu(leaf, &key, slot);
6139 		if (key.objectid != ino ||
6140 		    key.type != BTRFS_DIR_INDEX_KEY ||
6141 		    key.offset != next->index)
6142 			break;
6143 
6144 		slot++;
6145 		*last_ret = next;
6146 		next = list_next_entry(next, log_list);
6147 	}
6148 
6149 	return btrfs_del_items(trans, inode->root->log_root, path,
6150 			       path->slots[0], slot - path->slots[0]);
6151 }
6152 
6153 static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans,
6154 					     struct btrfs_inode *inode,
6155 					     struct btrfs_path *path,
6156 					     const struct list_head *delayed_del_list,
6157 					     struct btrfs_log_ctx *ctx)
6158 {
6159 	struct btrfs_root *log = inode->root->log_root;
6160 	const struct btrfs_delayed_item *curr;
6161 	u64 last_range_start;
6162 	u64 last_range_end = 0;
6163 	struct btrfs_key key;
6164 
6165 	key.objectid = btrfs_ino(inode);
6166 	key.type = BTRFS_DIR_INDEX_KEY;
6167 	curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6168 				log_list);
6169 
6170 	while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6171 		const struct btrfs_delayed_item *last = curr;
6172 		u64 first_dir_index = curr->index;
6173 		u64 last_dir_index;
6174 		bool deleted_items = false;
6175 		int ret;
6176 
6177 		key.offset = curr->index;
6178 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
6179 		if (ret < 0) {
6180 			return ret;
6181 		} else if (ret == 0) {
6182 			ret = batch_delete_dir_index_items(trans, inode, path, ctx,
6183 							   delayed_del_list, curr,
6184 							   &last);
6185 			if (ret)
6186 				return ret;
6187 			deleted_items = true;
6188 		}
6189 
6190 		btrfs_release_path(path);
6191 
6192 		/*
6193 		 * If we deleted items from the leaf, it means we have a range
6194 		 * item logging their range, so no need to add one or update an
6195 		 * existing one. Otherwise we have to log a dir range item.
6196 		 */
6197 		if (deleted_items)
6198 			goto next_batch;
6199 
6200 		last_dir_index = last->index;
6201 		ASSERT(last_dir_index >= first_dir_index);
6202 		/*
6203 		 * If this range starts right after where the previous one ends,
6204 		 * then we want to reuse the previous range item and change its
6205 		 * end offset to the end of this range. This is just to minimize
6206 		 * leaf space usage, by avoiding adding a new range item.
6207 		 */
6208 		if (last_range_end != 0 && first_dir_index == last_range_end + 1)
6209 			first_dir_index = last_range_start;
6210 
6211 		ret = insert_dir_log_key(trans, log, path, key.objectid,
6212 					 first_dir_index, last_dir_index);
6213 		if (ret)
6214 			return ret;
6215 
6216 		last_range_start = first_dir_index;
6217 		last_range_end = last_dir_index;
6218 next_batch:
6219 		curr = list_next_entry(last, log_list);
6220 	}
6221 
6222 	return 0;
6223 }
6224 
6225 static int log_delayed_deletion_items(struct btrfs_trans_handle *trans,
6226 				      struct btrfs_inode *inode,
6227 				      struct btrfs_path *path,
6228 				      const struct list_head *delayed_del_list,
6229 				      struct btrfs_log_ctx *ctx)
6230 {
6231 	/*
6232 	 * We are deleting dir index items from the log tree or adding range
6233 	 * items to it.
6234 	 */
6235 	lockdep_assert_held(&inode->log_mutex);
6236 
6237 	if (list_empty(delayed_del_list))
6238 		return 0;
6239 
6240 	if (ctx->logged_before)
6241 		return log_delayed_deletions_incremental(trans, inode, path,
6242 							 delayed_del_list, ctx);
6243 
6244 	return log_delayed_deletions_full(trans, inode, path, delayed_del_list,
6245 					  ctx);
6246 }
6247 
6248 /*
6249  * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed
6250  * items instead of the subvolume tree.
6251  */
6252 static int log_new_delayed_dentries(struct btrfs_trans_handle *trans,
6253 				    struct btrfs_inode *inode,
6254 				    const struct list_head *delayed_ins_list,
6255 				    struct btrfs_log_ctx *ctx)
6256 {
6257 	const bool orig_log_new_dentries = ctx->log_new_dentries;
6258 	struct btrfs_fs_info *fs_info = trans->fs_info;
6259 	struct btrfs_delayed_item *item;
6260 	int ret = 0;
6261 
6262 	/*
6263 	 * No need for the log mutex, plus to avoid potential deadlocks or
6264 	 * lockdep annotations due to nesting of delayed inode mutexes and log
6265 	 * mutexes.
6266 	 */
6267 	lockdep_assert_not_held(&inode->log_mutex);
6268 
6269 	ASSERT(!ctx->logging_new_delayed_dentries);
6270 	ctx->logging_new_delayed_dentries = true;
6271 
6272 	list_for_each_entry(item, delayed_ins_list, log_list) {
6273 		struct btrfs_dir_item *dir_item;
6274 		struct inode *di_inode;
6275 		struct btrfs_key key;
6276 		int log_mode = LOG_INODE_EXISTS;
6277 
6278 		dir_item = (struct btrfs_dir_item *)item->data;
6279 		btrfs_disk_key_to_cpu(&key, &dir_item->location);
6280 
6281 		if (key.type == BTRFS_ROOT_ITEM_KEY)
6282 			continue;
6283 
6284 		di_inode = btrfs_iget(fs_info->sb, key.objectid, inode->root);
6285 		if (IS_ERR(di_inode)) {
6286 			ret = PTR_ERR(di_inode);
6287 			break;
6288 		}
6289 
6290 		if (!need_log_inode(trans, BTRFS_I(di_inode))) {
6291 			btrfs_add_delayed_iput(BTRFS_I(di_inode));
6292 			continue;
6293 		}
6294 
6295 		if (btrfs_stack_dir_ftype(dir_item) == BTRFS_FT_DIR)
6296 			log_mode = LOG_INODE_ALL;
6297 
6298 		ctx->log_new_dentries = false;
6299 		ret = btrfs_log_inode(trans, BTRFS_I(di_inode), log_mode, ctx);
6300 
6301 		if (!ret && ctx->log_new_dentries)
6302 			ret = log_new_dir_dentries(trans, BTRFS_I(di_inode), ctx);
6303 
6304 		btrfs_add_delayed_iput(BTRFS_I(di_inode));
6305 
6306 		if (ret)
6307 			break;
6308 	}
6309 
6310 	ctx->log_new_dentries = orig_log_new_dentries;
6311 	ctx->logging_new_delayed_dentries = false;
6312 
6313 	return ret;
6314 }
6315 
6316 /* log a single inode in the tree log.
6317  * At least one parent directory for this inode must exist in the tree
6318  * or be logged already.
6319  *
6320  * Any items from this inode changed by the current transaction are copied
6321  * to the log tree.  An extra reference is taken on any extents in this
6322  * file, allowing us to avoid a whole pile of corner cases around logging
6323  * blocks that have been removed from the tree.
6324  *
6325  * See LOG_INODE_ALL and related defines for a description of what inode_only
6326  * does.
6327  *
6328  * This handles both files and directories.
6329  */
6330 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
6331 			   struct btrfs_inode *inode,
6332 			   int inode_only,
6333 			   struct btrfs_log_ctx *ctx)
6334 {
6335 	struct btrfs_path *path;
6336 	struct btrfs_path *dst_path;
6337 	struct btrfs_key min_key;
6338 	struct btrfs_key max_key;
6339 	struct btrfs_root *log = inode->root->log_root;
6340 	int ret;
6341 	bool fast_search = false;
6342 	u64 ino = btrfs_ino(inode);
6343 	struct extent_map_tree *em_tree = &inode->extent_tree;
6344 	u64 logged_isize = 0;
6345 	bool need_log_inode_item = true;
6346 	bool xattrs_logged = false;
6347 	bool inode_item_dropped = true;
6348 	bool full_dir_logging = false;
6349 	LIST_HEAD(delayed_ins_list);
6350 	LIST_HEAD(delayed_del_list);
6351 
6352 	path = btrfs_alloc_path();
6353 	if (!path)
6354 		return -ENOMEM;
6355 	dst_path = btrfs_alloc_path();
6356 	if (!dst_path) {
6357 		btrfs_free_path(path);
6358 		return -ENOMEM;
6359 	}
6360 
6361 	min_key.objectid = ino;
6362 	min_key.type = BTRFS_INODE_ITEM_KEY;
6363 	min_key.offset = 0;
6364 
6365 	max_key.objectid = ino;
6366 
6367 
6368 	/* today the code can only do partial logging of directories */
6369 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
6370 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6371 		       &inode->runtime_flags) &&
6372 	     inode_only >= LOG_INODE_EXISTS))
6373 		max_key.type = BTRFS_XATTR_ITEM_KEY;
6374 	else
6375 		max_key.type = (u8)-1;
6376 	max_key.offset = (u64)-1;
6377 
6378 	if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL)
6379 		full_dir_logging = true;
6380 
6381 	/*
6382 	 * If we are logging a directory while we are logging dentries of the
6383 	 * delayed items of some other inode, then we need to flush the delayed
6384 	 * items of this directory and not log the delayed items directly. This
6385 	 * is to prevent more than one level of recursion into btrfs_log_inode()
6386 	 * by having something like this:
6387 	 *
6388 	 *     $ mkdir -p a/b/c/d/e/f/g/h/...
6389 	 *     $ xfs_io -c "fsync" a
6390 	 *
6391 	 * Where all directories in the path did not exist before and are
6392 	 * created in the current transaction.
6393 	 * So in such a case we directly log the delayed items of the main
6394 	 * directory ("a") without flushing them first, while for each of its
6395 	 * subdirectories we flush their delayed items before logging them.
6396 	 * This prevents a potential unbounded recursion like this:
6397 	 *
6398 	 * btrfs_log_inode()
6399 	 *   log_new_delayed_dentries()
6400 	 *      btrfs_log_inode()
6401 	 *        log_new_delayed_dentries()
6402 	 *          btrfs_log_inode()
6403 	 *            log_new_delayed_dentries()
6404 	 *              (...)
6405 	 *
6406 	 * We have thresholds for the maximum number of delayed items to have in
6407 	 * memory, and once they are hit, the items are flushed asynchronously.
6408 	 * However the limit is quite high, so lets prevent deep levels of
6409 	 * recursion to happen by limiting the maximum depth to be 1.
6410 	 */
6411 	if (full_dir_logging && ctx->logging_new_delayed_dentries) {
6412 		ret = btrfs_commit_inode_delayed_items(trans, inode);
6413 		if (ret)
6414 			goto out;
6415 	}
6416 
6417 	mutex_lock(&inode->log_mutex);
6418 
6419 	/*
6420 	 * For symlinks, we must always log their content, which is stored in an
6421 	 * inline extent, otherwise we could end up with an empty symlink after
6422 	 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if
6423 	 * one attempts to create an empty symlink).
6424 	 * We don't need to worry about flushing delalloc, because when we create
6425 	 * the inline extent when the symlink is created (we never have delalloc
6426 	 * for symlinks).
6427 	 */
6428 	if (S_ISLNK(inode->vfs_inode.i_mode))
6429 		inode_only = LOG_INODE_ALL;
6430 
6431 	/*
6432 	 * Before logging the inode item, cache the value returned by
6433 	 * inode_logged(), because after that we have the need to figure out if
6434 	 * the inode was previously logged in this transaction.
6435 	 */
6436 	ret = inode_logged(trans, inode, path);
6437 	if (ret < 0)
6438 		goto out_unlock;
6439 	ctx->logged_before = (ret == 1);
6440 	ret = 0;
6441 
6442 	/*
6443 	 * This is for cases where logging a directory could result in losing a
6444 	 * a file after replaying the log. For example, if we move a file from a
6445 	 * directory A to a directory B, then fsync directory A, we have no way
6446 	 * to known the file was moved from A to B, so logging just A would
6447 	 * result in losing the file after a log replay.
6448 	 */
6449 	if (full_dir_logging && inode->last_unlink_trans >= trans->transid) {
6450 		ret = BTRFS_LOG_FORCE_COMMIT;
6451 		goto out_unlock;
6452 	}
6453 
6454 	/*
6455 	 * a brute force approach to making sure we get the most uptodate
6456 	 * copies of everything.
6457 	 */
6458 	if (S_ISDIR(inode->vfs_inode.i_mode)) {
6459 		clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
6460 		if (ctx->logged_before)
6461 			ret = drop_inode_items(trans, log, path, inode,
6462 					       BTRFS_XATTR_ITEM_KEY);
6463 	} else {
6464 		if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) {
6465 			/*
6466 			 * Make sure the new inode item we write to the log has
6467 			 * the same isize as the current one (if it exists).
6468 			 * This is necessary to prevent data loss after log
6469 			 * replay, and also to prevent doing a wrong expanding
6470 			 * truncate - for e.g. create file, write 4K into offset
6471 			 * 0, fsync, write 4K into offset 4096, add hard link,
6472 			 * fsync some other file (to sync log), power fail - if
6473 			 * we use the inode's current i_size, after log replay
6474 			 * we get a 8Kb file, with the last 4Kb extent as a hole
6475 			 * (zeroes), as if an expanding truncate happened,
6476 			 * instead of getting a file of 4Kb only.
6477 			 */
6478 			ret = logged_inode_size(log, inode, path, &logged_isize);
6479 			if (ret)
6480 				goto out_unlock;
6481 		}
6482 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6483 			     &inode->runtime_flags)) {
6484 			if (inode_only == LOG_INODE_EXISTS) {
6485 				max_key.type = BTRFS_XATTR_ITEM_KEY;
6486 				if (ctx->logged_before)
6487 					ret = drop_inode_items(trans, log, path,
6488 							       inode, max_key.type);
6489 			} else {
6490 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6491 					  &inode->runtime_flags);
6492 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6493 					  &inode->runtime_flags);
6494 				if (ctx->logged_before)
6495 					ret = truncate_inode_items(trans, log,
6496 								   inode, 0, 0);
6497 			}
6498 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6499 					      &inode->runtime_flags) ||
6500 			   inode_only == LOG_INODE_EXISTS) {
6501 			if (inode_only == LOG_INODE_ALL)
6502 				fast_search = true;
6503 			max_key.type = BTRFS_XATTR_ITEM_KEY;
6504 			if (ctx->logged_before)
6505 				ret = drop_inode_items(trans, log, path, inode,
6506 						       max_key.type);
6507 		} else {
6508 			if (inode_only == LOG_INODE_ALL)
6509 				fast_search = true;
6510 			inode_item_dropped = false;
6511 			goto log_extents;
6512 		}
6513 
6514 	}
6515 	if (ret)
6516 		goto out_unlock;
6517 
6518 	/*
6519 	 * If we are logging a directory in full mode, collect the delayed items
6520 	 * before iterating the subvolume tree, so that we don't miss any new
6521 	 * dir index items in case they get flushed while or right after we are
6522 	 * iterating the subvolume tree.
6523 	 */
6524 	if (full_dir_logging && !ctx->logging_new_delayed_dentries)
6525 		btrfs_log_get_delayed_items(inode, &delayed_ins_list,
6526 					    &delayed_del_list);
6527 
6528 	ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
6529 				      path, dst_path, logged_isize,
6530 				      inode_only, ctx,
6531 				      &need_log_inode_item);
6532 	if (ret)
6533 		goto out_unlock;
6534 
6535 	btrfs_release_path(path);
6536 	btrfs_release_path(dst_path);
6537 	ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
6538 	if (ret)
6539 		goto out_unlock;
6540 	xattrs_logged = true;
6541 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
6542 		btrfs_release_path(path);
6543 		btrfs_release_path(dst_path);
6544 		ret = btrfs_log_holes(trans, inode, path);
6545 		if (ret)
6546 			goto out_unlock;
6547 	}
6548 log_extents:
6549 	btrfs_release_path(path);
6550 	btrfs_release_path(dst_path);
6551 	if (need_log_inode_item) {
6552 		ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
6553 		if (ret)
6554 			goto out_unlock;
6555 		/*
6556 		 * If we are doing a fast fsync and the inode was logged before
6557 		 * in this transaction, we don't need to log the xattrs because
6558 		 * they were logged before. If xattrs were added, changed or
6559 		 * deleted since the last time we logged the inode, then we have
6560 		 * already logged them because the inode had the runtime flag
6561 		 * BTRFS_INODE_COPY_EVERYTHING set.
6562 		 */
6563 		if (!xattrs_logged && inode->logged_trans < trans->transid) {
6564 			ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
6565 			if (ret)
6566 				goto out_unlock;
6567 			btrfs_release_path(path);
6568 		}
6569 	}
6570 	if (fast_search) {
6571 		ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx);
6572 		if (ret)
6573 			goto out_unlock;
6574 	} else if (inode_only == LOG_INODE_ALL) {
6575 		struct extent_map *em, *n;
6576 
6577 		write_lock(&em_tree->lock);
6578 		list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
6579 			list_del_init(&em->list);
6580 		write_unlock(&em_tree->lock);
6581 	}
6582 
6583 	if (full_dir_logging) {
6584 		ret = log_directory_changes(trans, inode, path, dst_path, ctx);
6585 		if (ret)
6586 			goto out_unlock;
6587 		ret = log_delayed_insertion_items(trans, inode, path,
6588 						  &delayed_ins_list, ctx);
6589 		if (ret)
6590 			goto out_unlock;
6591 		ret = log_delayed_deletion_items(trans, inode, path,
6592 						 &delayed_del_list, ctx);
6593 		if (ret)
6594 			goto out_unlock;
6595 	}
6596 
6597 	spin_lock(&inode->lock);
6598 	inode->logged_trans = trans->transid;
6599 	/*
6600 	 * Don't update last_log_commit if we logged that an inode exists.
6601 	 * We do this for three reasons:
6602 	 *
6603 	 * 1) We might have had buffered writes to this inode that were
6604 	 *    flushed and had their ordered extents completed in this
6605 	 *    transaction, but we did not previously log the inode with
6606 	 *    LOG_INODE_ALL. Later the inode was evicted and after that
6607 	 *    it was loaded again and this LOG_INODE_EXISTS log operation
6608 	 *    happened. We must make sure that if an explicit fsync against
6609 	 *    the inode is performed later, it logs the new extents, an
6610 	 *    updated inode item, etc, and syncs the log. The same logic
6611 	 *    applies to direct IO writes instead of buffered writes.
6612 	 *
6613 	 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
6614 	 *    is logged with an i_size of 0 or whatever value was logged
6615 	 *    before. If later the i_size of the inode is increased by a
6616 	 *    truncate operation, the log is synced through an fsync of
6617 	 *    some other inode and then finally an explicit fsync against
6618 	 *    this inode is made, we must make sure this fsync logs the
6619 	 *    inode with the new i_size, the hole between old i_size and
6620 	 *    the new i_size, and syncs the log.
6621 	 *
6622 	 * 3) If we are logging that an ancestor inode exists as part of
6623 	 *    logging a new name from a link or rename operation, don't update
6624 	 *    its last_log_commit - otherwise if an explicit fsync is made
6625 	 *    against an ancestor, the fsync considers the inode in the log
6626 	 *    and doesn't sync the log, resulting in the ancestor missing after
6627 	 *    a power failure unless the log was synced as part of an fsync
6628 	 *    against any other unrelated inode.
6629 	 */
6630 	if (inode_only != LOG_INODE_EXISTS)
6631 		inode->last_log_commit = inode->last_sub_trans;
6632 	spin_unlock(&inode->lock);
6633 
6634 	/*
6635 	 * Reset the last_reflink_trans so that the next fsync does not need to
6636 	 * go through the slower path when logging extents and their checksums.
6637 	 */
6638 	if (inode_only == LOG_INODE_ALL)
6639 		inode->last_reflink_trans = 0;
6640 
6641 out_unlock:
6642 	mutex_unlock(&inode->log_mutex);
6643 out:
6644 	btrfs_free_path(path);
6645 	btrfs_free_path(dst_path);
6646 
6647 	if (ret)
6648 		free_conflicting_inodes(ctx);
6649 	else
6650 		ret = log_conflicting_inodes(trans, inode->root, ctx);
6651 
6652 	if (full_dir_logging && !ctx->logging_new_delayed_dentries) {
6653 		if (!ret)
6654 			ret = log_new_delayed_dentries(trans, inode,
6655 						       &delayed_ins_list, ctx);
6656 
6657 		btrfs_log_put_delayed_items(inode, &delayed_ins_list,
6658 					    &delayed_del_list);
6659 	}
6660 
6661 	return ret;
6662 }
6663 
6664 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
6665 				 struct btrfs_inode *inode,
6666 				 struct btrfs_log_ctx *ctx)
6667 {
6668 	struct btrfs_fs_info *fs_info = trans->fs_info;
6669 	int ret;
6670 	struct btrfs_path *path;
6671 	struct btrfs_key key;
6672 	struct btrfs_root *root = inode->root;
6673 	const u64 ino = btrfs_ino(inode);
6674 
6675 	path = btrfs_alloc_path();
6676 	if (!path)
6677 		return -ENOMEM;
6678 	path->skip_locking = 1;
6679 	path->search_commit_root = 1;
6680 
6681 	key.objectid = ino;
6682 	key.type = BTRFS_INODE_REF_KEY;
6683 	key.offset = 0;
6684 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6685 	if (ret < 0)
6686 		goto out;
6687 
6688 	while (true) {
6689 		struct extent_buffer *leaf = path->nodes[0];
6690 		int slot = path->slots[0];
6691 		u32 cur_offset = 0;
6692 		u32 item_size;
6693 		unsigned long ptr;
6694 
6695 		if (slot >= btrfs_header_nritems(leaf)) {
6696 			ret = btrfs_next_leaf(root, path);
6697 			if (ret < 0)
6698 				goto out;
6699 			else if (ret > 0)
6700 				break;
6701 			continue;
6702 		}
6703 
6704 		btrfs_item_key_to_cpu(leaf, &key, slot);
6705 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
6706 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
6707 			break;
6708 
6709 		item_size = btrfs_item_size(leaf, slot);
6710 		ptr = btrfs_item_ptr_offset(leaf, slot);
6711 		while (cur_offset < item_size) {
6712 			struct btrfs_key inode_key;
6713 			struct inode *dir_inode;
6714 
6715 			inode_key.type = BTRFS_INODE_ITEM_KEY;
6716 			inode_key.offset = 0;
6717 
6718 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
6719 				struct btrfs_inode_extref *extref;
6720 
6721 				extref = (struct btrfs_inode_extref *)
6722 					(ptr + cur_offset);
6723 				inode_key.objectid = btrfs_inode_extref_parent(
6724 					leaf, extref);
6725 				cur_offset += sizeof(*extref);
6726 				cur_offset += btrfs_inode_extref_name_len(leaf,
6727 					extref);
6728 			} else {
6729 				inode_key.objectid = key.offset;
6730 				cur_offset = item_size;
6731 			}
6732 
6733 			dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
6734 					       root);
6735 			/*
6736 			 * If the parent inode was deleted, return an error to
6737 			 * fallback to a transaction commit. This is to prevent
6738 			 * getting an inode that was moved from one parent A to
6739 			 * a parent B, got its former parent A deleted and then
6740 			 * it got fsync'ed, from existing at both parents after
6741 			 * a log replay (and the old parent still existing).
6742 			 * Example:
6743 			 *
6744 			 * mkdir /mnt/A
6745 			 * mkdir /mnt/B
6746 			 * touch /mnt/B/bar
6747 			 * sync
6748 			 * mv /mnt/B/bar /mnt/A/bar
6749 			 * mv -T /mnt/A /mnt/B
6750 			 * fsync /mnt/B/bar
6751 			 * <power fail>
6752 			 *
6753 			 * If we ignore the old parent B which got deleted,
6754 			 * after a log replay we would have file bar linked
6755 			 * at both parents and the old parent B would still
6756 			 * exist.
6757 			 */
6758 			if (IS_ERR(dir_inode)) {
6759 				ret = PTR_ERR(dir_inode);
6760 				goto out;
6761 			}
6762 
6763 			if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
6764 				btrfs_add_delayed_iput(BTRFS_I(dir_inode));
6765 				continue;
6766 			}
6767 
6768 			ctx->log_new_dentries = false;
6769 			ret = btrfs_log_inode(trans, BTRFS_I(dir_inode),
6770 					      LOG_INODE_ALL, ctx);
6771 			if (!ret && ctx->log_new_dentries)
6772 				ret = log_new_dir_dentries(trans,
6773 						   BTRFS_I(dir_inode), ctx);
6774 			btrfs_add_delayed_iput(BTRFS_I(dir_inode));
6775 			if (ret)
6776 				goto out;
6777 		}
6778 		path->slots[0]++;
6779 	}
6780 	ret = 0;
6781 out:
6782 	btrfs_free_path(path);
6783 	return ret;
6784 }
6785 
6786 static int log_new_ancestors(struct btrfs_trans_handle *trans,
6787 			     struct btrfs_root *root,
6788 			     struct btrfs_path *path,
6789 			     struct btrfs_log_ctx *ctx)
6790 {
6791 	struct btrfs_key found_key;
6792 
6793 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
6794 
6795 	while (true) {
6796 		struct btrfs_fs_info *fs_info = root->fs_info;
6797 		struct extent_buffer *leaf = path->nodes[0];
6798 		int slot = path->slots[0];
6799 		struct btrfs_key search_key;
6800 		struct inode *inode;
6801 		u64 ino;
6802 		int ret = 0;
6803 
6804 		btrfs_release_path(path);
6805 
6806 		ino = found_key.offset;
6807 
6808 		search_key.objectid = found_key.offset;
6809 		search_key.type = BTRFS_INODE_ITEM_KEY;
6810 		search_key.offset = 0;
6811 		inode = btrfs_iget(fs_info->sb, ino, root);
6812 		if (IS_ERR(inode))
6813 			return PTR_ERR(inode);
6814 
6815 		if (BTRFS_I(inode)->generation >= trans->transid &&
6816 		    need_log_inode(trans, BTRFS_I(inode)))
6817 			ret = btrfs_log_inode(trans, BTRFS_I(inode),
6818 					      LOG_INODE_EXISTS, ctx);
6819 		btrfs_add_delayed_iput(BTRFS_I(inode));
6820 		if (ret)
6821 			return ret;
6822 
6823 		if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
6824 			break;
6825 
6826 		search_key.type = BTRFS_INODE_REF_KEY;
6827 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6828 		if (ret < 0)
6829 			return ret;
6830 
6831 		leaf = path->nodes[0];
6832 		slot = path->slots[0];
6833 		if (slot >= btrfs_header_nritems(leaf)) {
6834 			ret = btrfs_next_leaf(root, path);
6835 			if (ret < 0)
6836 				return ret;
6837 			else if (ret > 0)
6838 				return -ENOENT;
6839 			leaf = path->nodes[0];
6840 			slot = path->slots[0];
6841 		}
6842 
6843 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6844 		if (found_key.objectid != search_key.objectid ||
6845 		    found_key.type != BTRFS_INODE_REF_KEY)
6846 			return -ENOENT;
6847 	}
6848 	return 0;
6849 }
6850 
6851 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6852 				  struct btrfs_inode *inode,
6853 				  struct dentry *parent,
6854 				  struct btrfs_log_ctx *ctx)
6855 {
6856 	struct btrfs_root *root = inode->root;
6857 	struct dentry *old_parent = NULL;
6858 	struct super_block *sb = inode->vfs_inode.i_sb;
6859 	int ret = 0;
6860 
6861 	while (true) {
6862 		if (!parent || d_really_is_negative(parent) ||
6863 		    sb != parent->d_sb)
6864 			break;
6865 
6866 		inode = BTRFS_I(d_inode(parent));
6867 		if (root != inode->root)
6868 			break;
6869 
6870 		if (inode->generation >= trans->transid &&
6871 		    need_log_inode(trans, inode)) {
6872 			ret = btrfs_log_inode(trans, inode,
6873 					      LOG_INODE_EXISTS, ctx);
6874 			if (ret)
6875 				break;
6876 		}
6877 		if (IS_ROOT(parent))
6878 			break;
6879 
6880 		parent = dget_parent(parent);
6881 		dput(old_parent);
6882 		old_parent = parent;
6883 	}
6884 	dput(old_parent);
6885 
6886 	return ret;
6887 }
6888 
6889 static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6890 				 struct btrfs_inode *inode,
6891 				 struct dentry *parent,
6892 				 struct btrfs_log_ctx *ctx)
6893 {
6894 	struct btrfs_root *root = inode->root;
6895 	const u64 ino = btrfs_ino(inode);
6896 	struct btrfs_path *path;
6897 	struct btrfs_key search_key;
6898 	int ret;
6899 
6900 	/*
6901 	 * For a single hard link case, go through a fast path that does not
6902 	 * need to iterate the fs/subvolume tree.
6903 	 */
6904 	if (inode->vfs_inode.i_nlink < 2)
6905 		return log_new_ancestors_fast(trans, inode, parent, ctx);
6906 
6907 	path = btrfs_alloc_path();
6908 	if (!path)
6909 		return -ENOMEM;
6910 
6911 	search_key.objectid = ino;
6912 	search_key.type = BTRFS_INODE_REF_KEY;
6913 	search_key.offset = 0;
6914 again:
6915 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6916 	if (ret < 0)
6917 		goto out;
6918 	if (ret == 0)
6919 		path->slots[0]++;
6920 
6921 	while (true) {
6922 		struct extent_buffer *leaf = path->nodes[0];
6923 		int slot = path->slots[0];
6924 		struct btrfs_key found_key;
6925 
6926 		if (slot >= btrfs_header_nritems(leaf)) {
6927 			ret = btrfs_next_leaf(root, path);
6928 			if (ret < 0)
6929 				goto out;
6930 			else if (ret > 0)
6931 				break;
6932 			continue;
6933 		}
6934 
6935 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6936 		if (found_key.objectid != ino ||
6937 		    found_key.type > BTRFS_INODE_EXTREF_KEY)
6938 			break;
6939 
6940 		/*
6941 		 * Don't deal with extended references because they are rare
6942 		 * cases and too complex to deal with (we would need to keep
6943 		 * track of which subitem we are processing for each item in
6944 		 * this loop, etc). So just return some error to fallback to
6945 		 * a transaction commit.
6946 		 */
6947 		if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6948 			ret = -EMLINK;
6949 			goto out;
6950 		}
6951 
6952 		/*
6953 		 * Logging ancestors needs to do more searches on the fs/subvol
6954 		 * tree, so it releases the path as needed to avoid deadlocks.
6955 		 * Keep track of the last inode ref key and resume from that key
6956 		 * after logging all new ancestors for the current hard link.
6957 		 */
6958 		memcpy(&search_key, &found_key, sizeof(search_key));
6959 
6960 		ret = log_new_ancestors(trans, root, path, ctx);
6961 		if (ret)
6962 			goto out;
6963 		btrfs_release_path(path);
6964 		goto again;
6965 	}
6966 	ret = 0;
6967 out:
6968 	btrfs_free_path(path);
6969 	return ret;
6970 }
6971 
6972 /*
6973  * helper function around btrfs_log_inode to make sure newly created
6974  * parent directories also end up in the log.  A minimal inode and backref
6975  * only logging is done of any parent directories that are older than
6976  * the last committed transaction
6977  */
6978 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
6979 				  struct btrfs_inode *inode,
6980 				  struct dentry *parent,
6981 				  int inode_only,
6982 				  struct btrfs_log_ctx *ctx)
6983 {
6984 	struct btrfs_root *root = inode->root;
6985 	struct btrfs_fs_info *fs_info = root->fs_info;
6986 	int ret = 0;
6987 	bool log_dentries = false;
6988 
6989 	if (btrfs_test_opt(fs_info, NOTREELOG)) {
6990 		ret = BTRFS_LOG_FORCE_COMMIT;
6991 		goto end_no_trans;
6992 	}
6993 
6994 	if (btrfs_root_refs(&root->root_item) == 0) {
6995 		ret = BTRFS_LOG_FORCE_COMMIT;
6996 		goto end_no_trans;
6997 	}
6998 
6999 	/*
7000 	 * Skip already logged inodes or inodes corresponding to tmpfiles
7001 	 * (since logging them is pointless, a link count of 0 means they
7002 	 * will never be accessible).
7003 	 */
7004 	if ((btrfs_inode_in_log(inode, trans->transid) &&
7005 	     list_empty(&ctx->ordered_extents)) ||
7006 	    inode->vfs_inode.i_nlink == 0) {
7007 		ret = BTRFS_NO_LOG_SYNC;
7008 		goto end_no_trans;
7009 	}
7010 
7011 	ret = start_log_trans(trans, root, ctx);
7012 	if (ret)
7013 		goto end_no_trans;
7014 
7015 	ret = btrfs_log_inode(trans, inode, inode_only, ctx);
7016 	if (ret)
7017 		goto end_trans;
7018 
7019 	/*
7020 	 * for regular files, if its inode is already on disk, we don't
7021 	 * have to worry about the parents at all.  This is because
7022 	 * we can use the last_unlink_trans field to record renames
7023 	 * and other fun in this file.
7024 	 */
7025 	if (S_ISREG(inode->vfs_inode.i_mode) &&
7026 	    inode->generation < trans->transid &&
7027 	    inode->last_unlink_trans < trans->transid) {
7028 		ret = 0;
7029 		goto end_trans;
7030 	}
7031 
7032 	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries)
7033 		log_dentries = true;
7034 
7035 	/*
7036 	 * On unlink we must make sure all our current and old parent directory
7037 	 * inodes are fully logged. This is to prevent leaving dangling
7038 	 * directory index entries in directories that were our parents but are
7039 	 * not anymore. Not doing this results in old parent directory being
7040 	 * impossible to delete after log replay (rmdir will always fail with
7041 	 * error -ENOTEMPTY).
7042 	 *
7043 	 * Example 1:
7044 	 *
7045 	 * mkdir testdir
7046 	 * touch testdir/foo
7047 	 * ln testdir/foo testdir/bar
7048 	 * sync
7049 	 * unlink testdir/bar
7050 	 * xfs_io -c fsync testdir/foo
7051 	 * <power failure>
7052 	 * mount fs, triggers log replay
7053 	 *
7054 	 * If we don't log the parent directory (testdir), after log replay the
7055 	 * directory still has an entry pointing to the file inode using the bar
7056 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
7057 	 * the file inode has a link count of 1.
7058 	 *
7059 	 * Example 2:
7060 	 *
7061 	 * mkdir testdir
7062 	 * touch foo
7063 	 * ln foo testdir/foo2
7064 	 * ln foo testdir/foo3
7065 	 * sync
7066 	 * unlink testdir/foo3
7067 	 * xfs_io -c fsync foo
7068 	 * <power failure>
7069 	 * mount fs, triggers log replay
7070 	 *
7071 	 * Similar as the first example, after log replay the parent directory
7072 	 * testdir still has an entry pointing to the inode file with name foo3
7073 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
7074 	 * and has a link count of 2.
7075 	 */
7076 	if (inode->last_unlink_trans >= trans->transid) {
7077 		ret = btrfs_log_all_parents(trans, inode, ctx);
7078 		if (ret)
7079 			goto end_trans;
7080 	}
7081 
7082 	ret = log_all_new_ancestors(trans, inode, parent, ctx);
7083 	if (ret)
7084 		goto end_trans;
7085 
7086 	if (log_dentries)
7087 		ret = log_new_dir_dentries(trans, inode, ctx);
7088 	else
7089 		ret = 0;
7090 end_trans:
7091 	if (ret < 0) {
7092 		btrfs_set_log_full_commit(trans);
7093 		ret = BTRFS_LOG_FORCE_COMMIT;
7094 	}
7095 
7096 	if (ret)
7097 		btrfs_remove_log_ctx(root, ctx);
7098 	btrfs_end_log_trans(root);
7099 end_no_trans:
7100 	return ret;
7101 }
7102 
7103 /*
7104  * it is not safe to log dentry if the chunk root has added new
7105  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
7106  * If this returns 1, you must commit the transaction to safely get your
7107  * data on disk.
7108  */
7109 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
7110 			  struct dentry *dentry,
7111 			  struct btrfs_log_ctx *ctx)
7112 {
7113 	struct dentry *parent = dget_parent(dentry);
7114 	int ret;
7115 
7116 	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
7117 				     LOG_INODE_ALL, ctx);
7118 	dput(parent);
7119 
7120 	return ret;
7121 }
7122 
7123 /*
7124  * should be called during mount to recover any replay any log trees
7125  * from the FS
7126  */
7127 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
7128 {
7129 	int ret;
7130 	struct btrfs_path *path;
7131 	struct btrfs_trans_handle *trans;
7132 	struct btrfs_key key;
7133 	struct btrfs_key found_key;
7134 	struct btrfs_root *log;
7135 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
7136 	struct walk_control wc = {
7137 		.process_func = process_one_buffer,
7138 		.stage = LOG_WALK_PIN_ONLY,
7139 	};
7140 
7141 	path = btrfs_alloc_path();
7142 	if (!path)
7143 		return -ENOMEM;
7144 
7145 	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7146 
7147 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
7148 	if (IS_ERR(trans)) {
7149 		ret = PTR_ERR(trans);
7150 		goto error;
7151 	}
7152 
7153 	wc.trans = trans;
7154 	wc.pin = 1;
7155 
7156 	ret = walk_log_tree(trans, log_root_tree, &wc);
7157 	if (ret) {
7158 		btrfs_abort_transaction(trans, ret);
7159 		goto error;
7160 	}
7161 
7162 again:
7163 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
7164 	key.offset = (u64)-1;
7165 	key.type = BTRFS_ROOT_ITEM_KEY;
7166 
7167 	while (1) {
7168 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
7169 
7170 		if (ret < 0) {
7171 			btrfs_abort_transaction(trans, ret);
7172 			goto error;
7173 		}
7174 		if (ret > 0) {
7175 			if (path->slots[0] == 0)
7176 				break;
7177 			path->slots[0]--;
7178 		}
7179 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
7180 				      path->slots[0]);
7181 		btrfs_release_path(path);
7182 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7183 			break;
7184 
7185 		log = btrfs_read_tree_root(log_root_tree, &found_key);
7186 		if (IS_ERR(log)) {
7187 			ret = PTR_ERR(log);
7188 			btrfs_abort_transaction(trans, ret);
7189 			goto error;
7190 		}
7191 
7192 		wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
7193 						   true);
7194 		if (IS_ERR(wc.replay_dest)) {
7195 			ret = PTR_ERR(wc.replay_dest);
7196 
7197 			/*
7198 			 * We didn't find the subvol, likely because it was
7199 			 * deleted.  This is ok, simply skip this log and go to
7200 			 * the next one.
7201 			 *
7202 			 * We need to exclude the root because we can't have
7203 			 * other log replays overwriting this log as we'll read
7204 			 * it back in a few more times.  This will keep our
7205 			 * block from being modified, and we'll just bail for
7206 			 * each subsequent pass.
7207 			 */
7208 			if (ret == -ENOENT)
7209 				ret = btrfs_pin_extent_for_log_replay(trans,
7210 							log->node->start,
7211 							log->node->len);
7212 			btrfs_put_root(log);
7213 
7214 			if (!ret)
7215 				goto next;
7216 			btrfs_abort_transaction(trans, ret);
7217 			goto error;
7218 		}
7219 
7220 		wc.replay_dest->log_root = log;
7221 		ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
7222 		if (ret)
7223 			/* The loop needs to continue due to the root refs */
7224 			btrfs_abort_transaction(trans, ret);
7225 		else
7226 			ret = walk_log_tree(trans, log, &wc);
7227 
7228 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7229 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
7230 						      path);
7231 			if (ret)
7232 				btrfs_abort_transaction(trans, ret);
7233 		}
7234 
7235 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7236 			struct btrfs_root *root = wc.replay_dest;
7237 
7238 			btrfs_release_path(path);
7239 
7240 			/*
7241 			 * We have just replayed everything, and the highest
7242 			 * objectid of fs roots probably has changed in case
7243 			 * some inode_item's got replayed.
7244 			 *
7245 			 * root->objectid_mutex is not acquired as log replay
7246 			 * could only happen during mount.
7247 			 */
7248 			ret = btrfs_init_root_free_objectid(root);
7249 			if (ret)
7250 				btrfs_abort_transaction(trans, ret);
7251 		}
7252 
7253 		wc.replay_dest->log_root = NULL;
7254 		btrfs_put_root(wc.replay_dest);
7255 		btrfs_put_root(log);
7256 
7257 		if (ret)
7258 			goto error;
7259 next:
7260 		if (found_key.offset == 0)
7261 			break;
7262 		key.offset = found_key.offset - 1;
7263 	}
7264 	btrfs_release_path(path);
7265 
7266 	/* step one is to pin it all, step two is to replay just inodes */
7267 	if (wc.pin) {
7268 		wc.pin = 0;
7269 		wc.process_func = replay_one_buffer;
7270 		wc.stage = LOG_WALK_REPLAY_INODES;
7271 		goto again;
7272 	}
7273 	/* step three is to replay everything */
7274 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
7275 		wc.stage++;
7276 		goto again;
7277 	}
7278 
7279 	btrfs_free_path(path);
7280 
7281 	/* step 4: commit the transaction, which also unpins the blocks */
7282 	ret = btrfs_commit_transaction(trans);
7283 	if (ret)
7284 		return ret;
7285 
7286 	log_root_tree->log_root = NULL;
7287 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7288 	btrfs_put_root(log_root_tree);
7289 
7290 	return 0;
7291 error:
7292 	if (wc.trans)
7293 		btrfs_end_transaction(wc.trans);
7294 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7295 	btrfs_free_path(path);
7296 	return ret;
7297 }
7298 
7299 /*
7300  * there are some corner cases where we want to force a full
7301  * commit instead of allowing a directory to be logged.
7302  *
7303  * They revolve around files there were unlinked from the directory, and
7304  * this function updates the parent directory so that a full commit is
7305  * properly done if it is fsync'd later after the unlinks are done.
7306  *
7307  * Must be called before the unlink operations (updates to the subvolume tree,
7308  * inodes, etc) are done.
7309  */
7310 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
7311 			     struct btrfs_inode *dir, struct btrfs_inode *inode,
7312 			     int for_rename)
7313 {
7314 	/*
7315 	 * when we're logging a file, if it hasn't been renamed
7316 	 * or unlinked, and its inode is fully committed on disk,
7317 	 * we don't have to worry about walking up the directory chain
7318 	 * to log its parents.
7319 	 *
7320 	 * So, we use the last_unlink_trans field to put this transid
7321 	 * into the file.  When the file is logged we check it and
7322 	 * don't log the parents if the file is fully on disk.
7323 	 */
7324 	mutex_lock(&inode->log_mutex);
7325 	inode->last_unlink_trans = trans->transid;
7326 	mutex_unlock(&inode->log_mutex);
7327 
7328 	/*
7329 	 * if this directory was already logged any new
7330 	 * names for this file/dir will get recorded
7331 	 */
7332 	if (dir->logged_trans == trans->transid)
7333 		return;
7334 
7335 	/*
7336 	 * if the inode we're about to unlink was logged,
7337 	 * the log will be properly updated for any new names
7338 	 */
7339 	if (inode->logged_trans == trans->transid)
7340 		return;
7341 
7342 	/*
7343 	 * when renaming files across directories, if the directory
7344 	 * there we're unlinking from gets fsync'd later on, there's
7345 	 * no way to find the destination directory later and fsync it
7346 	 * properly.  So, we have to be conservative and force commits
7347 	 * so the new name gets discovered.
7348 	 */
7349 	if (for_rename)
7350 		goto record;
7351 
7352 	/* we can safely do the unlink without any special recording */
7353 	return;
7354 
7355 record:
7356 	mutex_lock(&dir->log_mutex);
7357 	dir->last_unlink_trans = trans->transid;
7358 	mutex_unlock(&dir->log_mutex);
7359 }
7360 
7361 /*
7362  * Make sure that if someone attempts to fsync the parent directory of a deleted
7363  * snapshot, it ends up triggering a transaction commit. This is to guarantee
7364  * that after replaying the log tree of the parent directory's root we will not
7365  * see the snapshot anymore and at log replay time we will not see any log tree
7366  * corresponding to the deleted snapshot's root, which could lead to replaying
7367  * it after replaying the log tree of the parent directory (which would replay
7368  * the snapshot delete operation).
7369  *
7370  * Must be called before the actual snapshot destroy operation (updates to the
7371  * parent root and tree of tree roots trees, etc) are done.
7372  */
7373 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
7374 				   struct btrfs_inode *dir)
7375 {
7376 	mutex_lock(&dir->log_mutex);
7377 	dir->last_unlink_trans = trans->transid;
7378 	mutex_unlock(&dir->log_mutex);
7379 }
7380 
7381 /*
7382  * Update the log after adding a new name for an inode.
7383  *
7384  * @trans:              Transaction handle.
7385  * @old_dentry:         The dentry associated with the old name and the old
7386  *                      parent directory.
7387  * @old_dir:            The inode of the previous parent directory for the case
7388  *                      of a rename. For a link operation, it must be NULL.
7389  * @old_dir_index:      The index number associated with the old name, meaningful
7390  *                      only for rename operations (when @old_dir is not NULL).
7391  *                      Ignored for link operations.
7392  * @parent:             The dentry associated with the directory under which the
7393  *                      new name is located.
7394  *
7395  * Call this after adding a new name for an inode, as a result of a link or
7396  * rename operation, and it will properly update the log to reflect the new name.
7397  */
7398 void btrfs_log_new_name(struct btrfs_trans_handle *trans,
7399 			struct dentry *old_dentry, struct btrfs_inode *old_dir,
7400 			u64 old_dir_index, struct dentry *parent)
7401 {
7402 	struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry));
7403 	struct btrfs_root *root = inode->root;
7404 	struct btrfs_log_ctx ctx;
7405 	bool log_pinned = false;
7406 	int ret;
7407 
7408 	/*
7409 	 * this will force the logging code to walk the dentry chain
7410 	 * up for the file
7411 	 */
7412 	if (!S_ISDIR(inode->vfs_inode.i_mode))
7413 		inode->last_unlink_trans = trans->transid;
7414 
7415 	/*
7416 	 * if this inode hasn't been logged and directory we're renaming it
7417 	 * from hasn't been logged, we don't need to log it
7418 	 */
7419 	ret = inode_logged(trans, inode, NULL);
7420 	if (ret < 0) {
7421 		goto out;
7422 	} else if (ret == 0) {
7423 		if (!old_dir)
7424 			return;
7425 		/*
7426 		 * If the inode was not logged and we are doing a rename (old_dir is not
7427 		 * NULL), check if old_dir was logged - if it was not we can return and
7428 		 * do nothing.
7429 		 */
7430 		ret = inode_logged(trans, old_dir, NULL);
7431 		if (ret < 0)
7432 			goto out;
7433 		else if (ret == 0)
7434 			return;
7435 	}
7436 	ret = 0;
7437 
7438 	/*
7439 	 * If we are doing a rename (old_dir is not NULL) from a directory that
7440 	 * was previously logged, make sure that on log replay we get the old
7441 	 * dir entry deleted. This is needed because we will also log the new
7442 	 * name of the renamed inode, so we need to make sure that after log
7443 	 * replay we don't end up with both the new and old dir entries existing.
7444 	 */
7445 	if (old_dir && old_dir->logged_trans == trans->transid) {
7446 		struct btrfs_root *log = old_dir->root->log_root;
7447 		struct btrfs_path *path;
7448 		struct fscrypt_name fname;
7449 
7450 		ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX);
7451 
7452 		ret = fscrypt_setup_filename(&old_dir->vfs_inode,
7453 					     &old_dentry->d_name, 0, &fname);
7454 		if (ret)
7455 			goto out;
7456 		/*
7457 		 * We have two inodes to update in the log, the old directory and
7458 		 * the inode that got renamed, so we must pin the log to prevent
7459 		 * anyone from syncing the log until we have updated both inodes
7460 		 * in the log.
7461 		 */
7462 		ret = join_running_log_trans(root);
7463 		/*
7464 		 * At least one of the inodes was logged before, so this should
7465 		 * not fail, but if it does, it's not serious, just bail out and
7466 		 * mark the log for a full commit.
7467 		 */
7468 		if (WARN_ON_ONCE(ret < 0)) {
7469 			fscrypt_free_filename(&fname);
7470 			goto out;
7471 		}
7472 
7473 		log_pinned = true;
7474 
7475 		path = btrfs_alloc_path();
7476 		if (!path) {
7477 			ret = -ENOMEM;
7478 			fscrypt_free_filename(&fname);
7479 			goto out;
7480 		}
7481 
7482 		/*
7483 		 * Other concurrent task might be logging the old directory,
7484 		 * as it can be triggered when logging other inode that had or
7485 		 * still has a dentry in the old directory. We lock the old
7486 		 * directory's log_mutex to ensure the deletion of the old
7487 		 * name is persisted, because during directory logging we
7488 		 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of
7489 		 * the old name's dir index item is in the delayed items, so
7490 		 * it could be missed by an in progress directory logging.
7491 		 */
7492 		mutex_lock(&old_dir->log_mutex);
7493 		ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir),
7494 					&fname.disk_name, old_dir_index);
7495 		if (ret > 0) {
7496 			/*
7497 			 * The dentry does not exist in the log, so record its
7498 			 * deletion.
7499 			 */
7500 			btrfs_release_path(path);
7501 			ret = insert_dir_log_key(trans, log, path,
7502 						 btrfs_ino(old_dir),
7503 						 old_dir_index, old_dir_index);
7504 		}
7505 		mutex_unlock(&old_dir->log_mutex);
7506 
7507 		btrfs_free_path(path);
7508 		fscrypt_free_filename(&fname);
7509 		if (ret < 0)
7510 			goto out;
7511 	}
7512 
7513 	btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
7514 	ctx.logging_new_name = true;
7515 	/*
7516 	 * We don't care about the return value. If we fail to log the new name
7517 	 * then we know the next attempt to sync the log will fallback to a full
7518 	 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
7519 	 * we don't need to worry about getting a log committed that has an
7520 	 * inconsistent state after a rename operation.
7521 	 */
7522 	btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
7523 	ASSERT(list_empty(&ctx.conflict_inodes));
7524 out:
7525 	/*
7526 	 * If an error happened mark the log for a full commit because it's not
7527 	 * consistent and up to date or we couldn't find out if one of the
7528 	 * inodes was logged before in this transaction. Do it before unpinning
7529 	 * the log, to avoid any races with someone else trying to commit it.
7530 	 */
7531 	if (ret < 0)
7532 		btrfs_set_log_full_commit(trans);
7533 	if (log_pinned)
7534 		btrfs_end_log_trans(root);
7535 }
7536 
7537