1 /* 2 * Copyright (C) 2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include <linux/blkdev.h> 22 #include <linux/list_sort.h> 23 #include "ctree.h" 24 #include "transaction.h" 25 #include "disk-io.h" 26 #include "locking.h" 27 #include "print-tree.h" 28 #include "backref.h" 29 #include "compat.h" 30 #include "tree-log.h" 31 #include "hash.h" 32 33 /* magic values for the inode_only field in btrfs_log_inode: 34 * 35 * LOG_INODE_ALL means to log everything 36 * LOG_INODE_EXISTS means to log just enough to recreate the inode 37 * during log replay 38 */ 39 #define LOG_INODE_ALL 0 40 #define LOG_INODE_EXISTS 1 41 42 /* 43 * directory trouble cases 44 * 45 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync 46 * log, we must force a full commit before doing an fsync of the directory 47 * where the unlink was done. 48 * ---> record transid of last unlink/rename per directory 49 * 50 * mkdir foo/some_dir 51 * normal commit 52 * rename foo/some_dir foo2/some_dir 53 * mkdir foo/some_dir 54 * fsync foo/some_dir/some_file 55 * 56 * The fsync above will unlink the original some_dir without recording 57 * it in its new location (foo2). After a crash, some_dir will be gone 58 * unless the fsync of some_file forces a full commit 59 * 60 * 2) we must log any new names for any file or dir that is in the fsync 61 * log. ---> check inode while renaming/linking. 62 * 63 * 2a) we must log any new names for any file or dir during rename 64 * when the directory they are being removed from was logged. 65 * ---> check inode and old parent dir during rename 66 * 67 * 2a is actually the more important variant. With the extra logging 68 * a crash might unlink the old name without recreating the new one 69 * 70 * 3) after a crash, we must go through any directories with a link count 71 * of zero and redo the rm -rf 72 * 73 * mkdir f1/foo 74 * normal commit 75 * rm -rf f1/foo 76 * fsync(f1) 77 * 78 * The directory f1 was fully removed from the FS, but fsync was never 79 * called on f1, only its parent dir. After a crash the rm -rf must 80 * be replayed. This must be able to recurse down the entire 81 * directory tree. The inode link count fixup code takes care of the 82 * ugly details. 83 */ 84 85 /* 86 * stages for the tree walking. The first 87 * stage (0) is to only pin down the blocks we find 88 * the second stage (1) is to make sure that all the inodes 89 * we find in the log are created in the subvolume. 90 * 91 * The last stage is to deal with directories and links and extents 92 * and all the other fun semantics 93 */ 94 #define LOG_WALK_PIN_ONLY 0 95 #define LOG_WALK_REPLAY_INODES 1 96 #define LOG_WALK_REPLAY_ALL 2 97 98 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 99 struct btrfs_root *root, struct inode *inode, 100 int inode_only); 101 static int link_to_fixup_dir(struct btrfs_trans_handle *trans, 102 struct btrfs_root *root, 103 struct btrfs_path *path, u64 objectid); 104 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 105 struct btrfs_root *root, 106 struct btrfs_root *log, 107 struct btrfs_path *path, 108 u64 dirid, int del_all); 109 110 /* 111 * tree logging is a special write ahead log used to make sure that 112 * fsyncs and O_SYNCs can happen without doing full tree commits. 113 * 114 * Full tree commits are expensive because they require commonly 115 * modified blocks to be recowed, creating many dirty pages in the 116 * extent tree an 4x-6x higher write load than ext3. 117 * 118 * Instead of doing a tree commit on every fsync, we use the 119 * key ranges and transaction ids to find items for a given file or directory 120 * that have changed in this transaction. Those items are copied into 121 * a special tree (one per subvolume root), that tree is written to disk 122 * and then the fsync is considered complete. 123 * 124 * After a crash, items are copied out of the log-tree back into the 125 * subvolume tree. Any file data extents found are recorded in the extent 126 * allocation tree, and the log-tree freed. 127 * 128 * The log tree is read three times, once to pin down all the extents it is 129 * using in ram and once, once to create all the inodes logged in the tree 130 * and once to do all the other items. 131 */ 132 133 /* 134 * start a sub transaction and setup the log tree 135 * this increments the log tree writer count to make the people 136 * syncing the tree wait for us to finish 137 */ 138 static int start_log_trans(struct btrfs_trans_handle *trans, 139 struct btrfs_root *root) 140 { 141 int ret; 142 int err = 0; 143 144 mutex_lock(&root->log_mutex); 145 if (root->log_root) { 146 if (!root->log_start_pid) { 147 root->log_start_pid = current->pid; 148 root->log_multiple_pids = false; 149 } else if (root->log_start_pid != current->pid) { 150 root->log_multiple_pids = true; 151 } 152 153 atomic_inc(&root->log_batch); 154 atomic_inc(&root->log_writers); 155 mutex_unlock(&root->log_mutex); 156 return 0; 157 } 158 root->log_multiple_pids = false; 159 root->log_start_pid = current->pid; 160 mutex_lock(&root->fs_info->tree_log_mutex); 161 if (!root->fs_info->log_root_tree) { 162 ret = btrfs_init_log_root_tree(trans, root->fs_info); 163 if (ret) 164 err = ret; 165 } 166 if (err == 0 && !root->log_root) { 167 ret = btrfs_add_log_tree(trans, root); 168 if (ret) 169 err = ret; 170 } 171 mutex_unlock(&root->fs_info->tree_log_mutex); 172 atomic_inc(&root->log_batch); 173 atomic_inc(&root->log_writers); 174 mutex_unlock(&root->log_mutex); 175 return err; 176 } 177 178 /* 179 * returns 0 if there was a log transaction running and we were able 180 * to join, or returns -ENOENT if there were not transactions 181 * in progress 182 */ 183 static int join_running_log_trans(struct btrfs_root *root) 184 { 185 int ret = -ENOENT; 186 187 smp_mb(); 188 if (!root->log_root) 189 return -ENOENT; 190 191 mutex_lock(&root->log_mutex); 192 if (root->log_root) { 193 ret = 0; 194 atomic_inc(&root->log_writers); 195 } 196 mutex_unlock(&root->log_mutex); 197 return ret; 198 } 199 200 /* 201 * This either makes the current running log transaction wait 202 * until you call btrfs_end_log_trans() or it makes any future 203 * log transactions wait until you call btrfs_end_log_trans() 204 */ 205 int btrfs_pin_log_trans(struct btrfs_root *root) 206 { 207 int ret = -ENOENT; 208 209 mutex_lock(&root->log_mutex); 210 atomic_inc(&root->log_writers); 211 mutex_unlock(&root->log_mutex); 212 return ret; 213 } 214 215 /* 216 * indicate we're done making changes to the log tree 217 * and wake up anyone waiting to do a sync 218 */ 219 void btrfs_end_log_trans(struct btrfs_root *root) 220 { 221 if (atomic_dec_and_test(&root->log_writers)) { 222 smp_mb(); 223 if (waitqueue_active(&root->log_writer_wait)) 224 wake_up(&root->log_writer_wait); 225 } 226 } 227 228 229 /* 230 * the walk control struct is used to pass state down the chain when 231 * processing the log tree. The stage field tells us which part 232 * of the log tree processing we are currently doing. The others 233 * are state fields used for that specific part 234 */ 235 struct walk_control { 236 /* should we free the extent on disk when done? This is used 237 * at transaction commit time while freeing a log tree 238 */ 239 int free; 240 241 /* should we write out the extent buffer? This is used 242 * while flushing the log tree to disk during a sync 243 */ 244 int write; 245 246 /* should we wait for the extent buffer io to finish? Also used 247 * while flushing the log tree to disk for a sync 248 */ 249 int wait; 250 251 /* pin only walk, we record which extents on disk belong to the 252 * log trees 253 */ 254 int pin; 255 256 /* what stage of the replay code we're currently in */ 257 int stage; 258 259 /* the root we are currently replaying */ 260 struct btrfs_root *replay_dest; 261 262 /* the trans handle for the current replay */ 263 struct btrfs_trans_handle *trans; 264 265 /* the function that gets used to process blocks we find in the 266 * tree. Note the extent_buffer might not be up to date when it is 267 * passed in, and it must be checked or read if you need the data 268 * inside it 269 */ 270 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb, 271 struct walk_control *wc, u64 gen); 272 }; 273 274 /* 275 * process_func used to pin down extents, write them or wait on them 276 */ 277 static int process_one_buffer(struct btrfs_root *log, 278 struct extent_buffer *eb, 279 struct walk_control *wc, u64 gen) 280 { 281 int ret = 0; 282 283 /* 284 * If this fs is mixed then we need to be able to process the leaves to 285 * pin down any logged extents, so we have to read the block. 286 */ 287 if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) { 288 ret = btrfs_read_buffer(eb, gen); 289 if (ret) 290 return ret; 291 } 292 293 if (wc->pin) 294 ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root, 295 eb->start, eb->len); 296 297 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) { 298 if (wc->pin && btrfs_header_level(eb) == 0) 299 ret = btrfs_exclude_logged_extents(log, eb); 300 if (wc->write) 301 btrfs_write_tree_block(eb); 302 if (wc->wait) 303 btrfs_wait_tree_block_writeback(eb); 304 } 305 return ret; 306 } 307 308 /* 309 * Item overwrite used by replay and tree logging. eb, slot and key all refer 310 * to the src data we are copying out. 311 * 312 * root is the tree we are copying into, and path is a scratch 313 * path for use in this function (it should be released on entry and 314 * will be released on exit). 315 * 316 * If the key is already in the destination tree the existing item is 317 * overwritten. If the existing item isn't big enough, it is extended. 318 * If it is too large, it is truncated. 319 * 320 * If the key isn't in the destination yet, a new item is inserted. 321 */ 322 static noinline int overwrite_item(struct btrfs_trans_handle *trans, 323 struct btrfs_root *root, 324 struct btrfs_path *path, 325 struct extent_buffer *eb, int slot, 326 struct btrfs_key *key) 327 { 328 int ret; 329 u32 item_size; 330 u64 saved_i_size = 0; 331 int save_old_i_size = 0; 332 unsigned long src_ptr; 333 unsigned long dst_ptr; 334 int overwrite_root = 0; 335 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY; 336 337 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) 338 overwrite_root = 1; 339 340 item_size = btrfs_item_size_nr(eb, slot); 341 src_ptr = btrfs_item_ptr_offset(eb, slot); 342 343 /* look for the key in the destination tree */ 344 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 345 if (ret < 0) 346 return ret; 347 348 if (ret == 0) { 349 char *src_copy; 350 char *dst_copy; 351 u32 dst_size = btrfs_item_size_nr(path->nodes[0], 352 path->slots[0]); 353 if (dst_size != item_size) 354 goto insert; 355 356 if (item_size == 0) { 357 btrfs_release_path(path); 358 return 0; 359 } 360 dst_copy = kmalloc(item_size, GFP_NOFS); 361 src_copy = kmalloc(item_size, GFP_NOFS); 362 if (!dst_copy || !src_copy) { 363 btrfs_release_path(path); 364 kfree(dst_copy); 365 kfree(src_copy); 366 return -ENOMEM; 367 } 368 369 read_extent_buffer(eb, src_copy, src_ptr, item_size); 370 371 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 372 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr, 373 item_size); 374 ret = memcmp(dst_copy, src_copy, item_size); 375 376 kfree(dst_copy); 377 kfree(src_copy); 378 /* 379 * they have the same contents, just return, this saves 380 * us from cowing blocks in the destination tree and doing 381 * extra writes that may not have been done by a previous 382 * sync 383 */ 384 if (ret == 0) { 385 btrfs_release_path(path); 386 return 0; 387 } 388 389 /* 390 * We need to load the old nbytes into the inode so when we 391 * replay the extents we've logged we get the right nbytes. 392 */ 393 if (inode_item) { 394 struct btrfs_inode_item *item; 395 u64 nbytes; 396 397 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 398 struct btrfs_inode_item); 399 nbytes = btrfs_inode_nbytes(path->nodes[0], item); 400 item = btrfs_item_ptr(eb, slot, 401 struct btrfs_inode_item); 402 btrfs_set_inode_nbytes(eb, item, nbytes); 403 } 404 } else if (inode_item) { 405 struct btrfs_inode_item *item; 406 407 /* 408 * New inode, set nbytes to 0 so that the nbytes comes out 409 * properly when we replay the extents. 410 */ 411 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 412 btrfs_set_inode_nbytes(eb, item, 0); 413 } 414 insert: 415 btrfs_release_path(path); 416 /* try to insert the key into the destination tree */ 417 ret = btrfs_insert_empty_item(trans, root, path, 418 key, item_size); 419 420 /* make sure any existing item is the correct size */ 421 if (ret == -EEXIST) { 422 u32 found_size; 423 found_size = btrfs_item_size_nr(path->nodes[0], 424 path->slots[0]); 425 if (found_size > item_size) 426 btrfs_truncate_item(root, path, item_size, 1); 427 else if (found_size < item_size) 428 btrfs_extend_item(root, path, 429 item_size - found_size); 430 } else if (ret) { 431 return ret; 432 } 433 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], 434 path->slots[0]); 435 436 /* don't overwrite an existing inode if the generation number 437 * was logged as zero. This is done when the tree logging code 438 * is just logging an inode to make sure it exists after recovery. 439 * 440 * Also, don't overwrite i_size on directories during replay. 441 * log replay inserts and removes directory items based on the 442 * state of the tree found in the subvolume, and i_size is modified 443 * as it goes 444 */ 445 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) { 446 struct btrfs_inode_item *src_item; 447 struct btrfs_inode_item *dst_item; 448 449 src_item = (struct btrfs_inode_item *)src_ptr; 450 dst_item = (struct btrfs_inode_item *)dst_ptr; 451 452 if (btrfs_inode_generation(eb, src_item) == 0) 453 goto no_copy; 454 455 if (overwrite_root && 456 S_ISDIR(btrfs_inode_mode(eb, src_item)) && 457 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) { 458 save_old_i_size = 1; 459 saved_i_size = btrfs_inode_size(path->nodes[0], 460 dst_item); 461 } 462 } 463 464 copy_extent_buffer(path->nodes[0], eb, dst_ptr, 465 src_ptr, item_size); 466 467 if (save_old_i_size) { 468 struct btrfs_inode_item *dst_item; 469 dst_item = (struct btrfs_inode_item *)dst_ptr; 470 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size); 471 } 472 473 /* make sure the generation is filled in */ 474 if (key->type == BTRFS_INODE_ITEM_KEY) { 475 struct btrfs_inode_item *dst_item; 476 dst_item = (struct btrfs_inode_item *)dst_ptr; 477 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) { 478 btrfs_set_inode_generation(path->nodes[0], dst_item, 479 trans->transid); 480 } 481 } 482 no_copy: 483 btrfs_mark_buffer_dirty(path->nodes[0]); 484 btrfs_release_path(path); 485 return 0; 486 } 487 488 /* 489 * simple helper to read an inode off the disk from a given root 490 * This can only be called for subvolume roots and not for the log 491 */ 492 static noinline struct inode *read_one_inode(struct btrfs_root *root, 493 u64 objectid) 494 { 495 struct btrfs_key key; 496 struct inode *inode; 497 498 key.objectid = objectid; 499 key.type = BTRFS_INODE_ITEM_KEY; 500 key.offset = 0; 501 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL); 502 if (IS_ERR(inode)) { 503 inode = NULL; 504 } else if (is_bad_inode(inode)) { 505 iput(inode); 506 inode = NULL; 507 } 508 return inode; 509 } 510 511 /* replays a single extent in 'eb' at 'slot' with 'key' into the 512 * subvolume 'root'. path is released on entry and should be released 513 * on exit. 514 * 515 * extents in the log tree have not been allocated out of the extent 516 * tree yet. So, this completes the allocation, taking a reference 517 * as required if the extent already exists or creating a new extent 518 * if it isn't in the extent allocation tree yet. 519 * 520 * The extent is inserted into the file, dropping any existing extents 521 * from the file that overlap the new one. 522 */ 523 static noinline int replay_one_extent(struct btrfs_trans_handle *trans, 524 struct btrfs_root *root, 525 struct btrfs_path *path, 526 struct extent_buffer *eb, int slot, 527 struct btrfs_key *key) 528 { 529 int found_type; 530 u64 extent_end; 531 u64 start = key->offset; 532 u64 nbytes = 0; 533 struct btrfs_file_extent_item *item; 534 struct inode *inode = NULL; 535 unsigned long size; 536 int ret = 0; 537 538 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 539 found_type = btrfs_file_extent_type(eb, item); 540 541 if (found_type == BTRFS_FILE_EXTENT_REG || 542 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 543 nbytes = btrfs_file_extent_num_bytes(eb, item); 544 extent_end = start + nbytes; 545 546 /* 547 * We don't add to the inodes nbytes if we are prealloc or a 548 * hole. 549 */ 550 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 551 nbytes = 0; 552 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 553 size = btrfs_file_extent_inline_len(eb, item); 554 nbytes = btrfs_file_extent_ram_bytes(eb, item); 555 extent_end = ALIGN(start + size, root->sectorsize); 556 } else { 557 ret = 0; 558 goto out; 559 } 560 561 inode = read_one_inode(root, key->objectid); 562 if (!inode) { 563 ret = -EIO; 564 goto out; 565 } 566 567 /* 568 * first check to see if we already have this extent in the 569 * file. This must be done before the btrfs_drop_extents run 570 * so we don't try to drop this extent. 571 */ 572 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode), 573 start, 0); 574 575 if (ret == 0 && 576 (found_type == BTRFS_FILE_EXTENT_REG || 577 found_type == BTRFS_FILE_EXTENT_PREALLOC)) { 578 struct btrfs_file_extent_item cmp1; 579 struct btrfs_file_extent_item cmp2; 580 struct btrfs_file_extent_item *existing; 581 struct extent_buffer *leaf; 582 583 leaf = path->nodes[0]; 584 existing = btrfs_item_ptr(leaf, path->slots[0], 585 struct btrfs_file_extent_item); 586 587 read_extent_buffer(eb, &cmp1, (unsigned long)item, 588 sizeof(cmp1)); 589 read_extent_buffer(leaf, &cmp2, (unsigned long)existing, 590 sizeof(cmp2)); 591 592 /* 593 * we already have a pointer to this exact extent, 594 * we don't have to do anything 595 */ 596 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) { 597 btrfs_release_path(path); 598 goto out; 599 } 600 } 601 btrfs_release_path(path); 602 603 /* drop any overlapping extents */ 604 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1); 605 if (ret) 606 goto out; 607 608 if (found_type == BTRFS_FILE_EXTENT_REG || 609 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 610 u64 offset; 611 unsigned long dest_offset; 612 struct btrfs_key ins; 613 614 ret = btrfs_insert_empty_item(trans, root, path, key, 615 sizeof(*item)); 616 if (ret) 617 goto out; 618 dest_offset = btrfs_item_ptr_offset(path->nodes[0], 619 path->slots[0]); 620 copy_extent_buffer(path->nodes[0], eb, dest_offset, 621 (unsigned long)item, sizeof(*item)); 622 623 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item); 624 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item); 625 ins.type = BTRFS_EXTENT_ITEM_KEY; 626 offset = key->offset - btrfs_file_extent_offset(eb, item); 627 628 if (ins.objectid > 0) { 629 u64 csum_start; 630 u64 csum_end; 631 LIST_HEAD(ordered_sums); 632 /* 633 * is this extent already allocated in the extent 634 * allocation tree? If so, just add a reference 635 */ 636 ret = btrfs_lookup_extent(root, ins.objectid, 637 ins.offset); 638 if (ret == 0) { 639 ret = btrfs_inc_extent_ref(trans, root, 640 ins.objectid, ins.offset, 641 0, root->root_key.objectid, 642 key->objectid, offset, 0); 643 if (ret) 644 goto out; 645 } else { 646 /* 647 * insert the extent pointer in the extent 648 * allocation tree 649 */ 650 ret = btrfs_alloc_logged_file_extent(trans, 651 root, root->root_key.objectid, 652 key->objectid, offset, &ins); 653 if (ret) 654 goto out; 655 } 656 btrfs_release_path(path); 657 658 if (btrfs_file_extent_compression(eb, item)) { 659 csum_start = ins.objectid; 660 csum_end = csum_start + ins.offset; 661 } else { 662 csum_start = ins.objectid + 663 btrfs_file_extent_offset(eb, item); 664 csum_end = csum_start + 665 btrfs_file_extent_num_bytes(eb, item); 666 } 667 668 ret = btrfs_lookup_csums_range(root->log_root, 669 csum_start, csum_end - 1, 670 &ordered_sums, 0); 671 if (ret) 672 goto out; 673 while (!list_empty(&ordered_sums)) { 674 struct btrfs_ordered_sum *sums; 675 sums = list_entry(ordered_sums.next, 676 struct btrfs_ordered_sum, 677 list); 678 if (!ret) 679 ret = btrfs_csum_file_blocks(trans, 680 root->fs_info->csum_root, 681 sums); 682 list_del(&sums->list); 683 kfree(sums); 684 } 685 if (ret) 686 goto out; 687 } else { 688 btrfs_release_path(path); 689 } 690 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 691 /* inline extents are easy, we just overwrite them */ 692 ret = overwrite_item(trans, root, path, eb, slot, key); 693 if (ret) 694 goto out; 695 } 696 697 inode_add_bytes(inode, nbytes); 698 ret = btrfs_update_inode(trans, root, inode); 699 out: 700 if (inode) 701 iput(inode); 702 return ret; 703 } 704 705 /* 706 * when cleaning up conflicts between the directory names in the 707 * subvolume, directory names in the log and directory names in the 708 * inode back references, we may have to unlink inodes from directories. 709 * 710 * This is a helper function to do the unlink of a specific directory 711 * item 712 */ 713 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans, 714 struct btrfs_root *root, 715 struct btrfs_path *path, 716 struct inode *dir, 717 struct btrfs_dir_item *di) 718 { 719 struct inode *inode; 720 char *name; 721 int name_len; 722 struct extent_buffer *leaf; 723 struct btrfs_key location; 724 int ret; 725 726 leaf = path->nodes[0]; 727 728 btrfs_dir_item_key_to_cpu(leaf, di, &location); 729 name_len = btrfs_dir_name_len(leaf, di); 730 name = kmalloc(name_len, GFP_NOFS); 731 if (!name) 732 return -ENOMEM; 733 734 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len); 735 btrfs_release_path(path); 736 737 inode = read_one_inode(root, location.objectid); 738 if (!inode) { 739 ret = -EIO; 740 goto out; 741 } 742 743 ret = link_to_fixup_dir(trans, root, path, location.objectid); 744 if (ret) 745 goto out; 746 747 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 748 if (ret) 749 goto out; 750 else 751 ret = btrfs_run_delayed_items(trans, root); 752 out: 753 kfree(name); 754 iput(inode); 755 return ret; 756 } 757 758 /* 759 * helper function to see if a given name and sequence number found 760 * in an inode back reference are already in a directory and correctly 761 * point to this inode 762 */ 763 static noinline int inode_in_dir(struct btrfs_root *root, 764 struct btrfs_path *path, 765 u64 dirid, u64 objectid, u64 index, 766 const char *name, int name_len) 767 { 768 struct btrfs_dir_item *di; 769 struct btrfs_key location; 770 int match = 0; 771 772 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid, 773 index, name, name_len, 0); 774 if (di && !IS_ERR(di)) { 775 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 776 if (location.objectid != objectid) 777 goto out; 778 } else 779 goto out; 780 btrfs_release_path(path); 781 782 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0); 783 if (di && !IS_ERR(di)) { 784 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 785 if (location.objectid != objectid) 786 goto out; 787 } else 788 goto out; 789 match = 1; 790 out: 791 btrfs_release_path(path); 792 return match; 793 } 794 795 /* 796 * helper function to check a log tree for a named back reference in 797 * an inode. This is used to decide if a back reference that is 798 * found in the subvolume conflicts with what we find in the log. 799 * 800 * inode backreferences may have multiple refs in a single item, 801 * during replay we process one reference at a time, and we don't 802 * want to delete valid links to a file from the subvolume if that 803 * link is also in the log. 804 */ 805 static noinline int backref_in_log(struct btrfs_root *log, 806 struct btrfs_key *key, 807 u64 ref_objectid, 808 char *name, int namelen) 809 { 810 struct btrfs_path *path; 811 struct btrfs_inode_ref *ref; 812 unsigned long ptr; 813 unsigned long ptr_end; 814 unsigned long name_ptr; 815 int found_name_len; 816 int item_size; 817 int ret; 818 int match = 0; 819 820 path = btrfs_alloc_path(); 821 if (!path) 822 return -ENOMEM; 823 824 ret = btrfs_search_slot(NULL, log, key, path, 0, 0); 825 if (ret != 0) 826 goto out; 827 828 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 829 830 if (key->type == BTRFS_INODE_EXTREF_KEY) { 831 if (btrfs_find_name_in_ext_backref(path, ref_objectid, 832 name, namelen, NULL)) 833 match = 1; 834 835 goto out; 836 } 837 838 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 839 ptr_end = ptr + item_size; 840 while (ptr < ptr_end) { 841 ref = (struct btrfs_inode_ref *)ptr; 842 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref); 843 if (found_name_len == namelen) { 844 name_ptr = (unsigned long)(ref + 1); 845 ret = memcmp_extent_buffer(path->nodes[0], name, 846 name_ptr, namelen); 847 if (ret == 0) { 848 match = 1; 849 goto out; 850 } 851 } 852 ptr = (unsigned long)(ref + 1) + found_name_len; 853 } 854 out: 855 btrfs_free_path(path); 856 return match; 857 } 858 859 static inline int __add_inode_ref(struct btrfs_trans_handle *trans, 860 struct btrfs_root *root, 861 struct btrfs_path *path, 862 struct btrfs_root *log_root, 863 struct inode *dir, struct inode *inode, 864 struct extent_buffer *eb, 865 u64 inode_objectid, u64 parent_objectid, 866 u64 ref_index, char *name, int namelen, 867 int *search_done) 868 { 869 int ret; 870 char *victim_name; 871 int victim_name_len; 872 struct extent_buffer *leaf; 873 struct btrfs_dir_item *di; 874 struct btrfs_key search_key; 875 struct btrfs_inode_extref *extref; 876 877 again: 878 /* Search old style refs */ 879 search_key.objectid = inode_objectid; 880 search_key.type = BTRFS_INODE_REF_KEY; 881 search_key.offset = parent_objectid; 882 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 883 if (ret == 0) { 884 struct btrfs_inode_ref *victim_ref; 885 unsigned long ptr; 886 unsigned long ptr_end; 887 888 leaf = path->nodes[0]; 889 890 /* are we trying to overwrite a back ref for the root directory 891 * if so, just jump out, we're done 892 */ 893 if (search_key.objectid == search_key.offset) 894 return 1; 895 896 /* check all the names in this back reference to see 897 * if they are in the log. if so, we allow them to stay 898 * otherwise they must be unlinked as a conflict 899 */ 900 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 901 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]); 902 while (ptr < ptr_end) { 903 victim_ref = (struct btrfs_inode_ref *)ptr; 904 victim_name_len = btrfs_inode_ref_name_len(leaf, 905 victim_ref); 906 victim_name = kmalloc(victim_name_len, GFP_NOFS); 907 if (!victim_name) 908 return -ENOMEM; 909 910 read_extent_buffer(leaf, victim_name, 911 (unsigned long)(victim_ref + 1), 912 victim_name_len); 913 914 if (!backref_in_log(log_root, &search_key, 915 parent_objectid, 916 victim_name, 917 victim_name_len)) { 918 btrfs_inc_nlink(inode); 919 btrfs_release_path(path); 920 921 ret = btrfs_unlink_inode(trans, root, dir, 922 inode, victim_name, 923 victim_name_len); 924 kfree(victim_name); 925 if (ret) 926 return ret; 927 ret = btrfs_run_delayed_items(trans, root); 928 if (ret) 929 return ret; 930 *search_done = 1; 931 goto again; 932 } 933 kfree(victim_name); 934 935 ptr = (unsigned long)(victim_ref + 1) + victim_name_len; 936 } 937 938 /* 939 * NOTE: we have searched root tree and checked the 940 * coresponding ref, it does not need to check again. 941 */ 942 *search_done = 1; 943 } 944 btrfs_release_path(path); 945 946 /* Same search but for extended refs */ 947 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen, 948 inode_objectid, parent_objectid, 0, 949 0); 950 if (!IS_ERR_OR_NULL(extref)) { 951 u32 item_size; 952 u32 cur_offset = 0; 953 unsigned long base; 954 struct inode *victim_parent; 955 956 leaf = path->nodes[0]; 957 958 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 959 base = btrfs_item_ptr_offset(leaf, path->slots[0]); 960 961 while (cur_offset < item_size) { 962 extref = (struct btrfs_inode_extref *)base + cur_offset; 963 964 victim_name_len = btrfs_inode_extref_name_len(leaf, extref); 965 966 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid) 967 goto next; 968 969 victim_name = kmalloc(victim_name_len, GFP_NOFS); 970 if (!victim_name) 971 return -ENOMEM; 972 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name, 973 victim_name_len); 974 975 search_key.objectid = inode_objectid; 976 search_key.type = BTRFS_INODE_EXTREF_KEY; 977 search_key.offset = btrfs_extref_hash(parent_objectid, 978 victim_name, 979 victim_name_len); 980 ret = 0; 981 if (!backref_in_log(log_root, &search_key, 982 parent_objectid, victim_name, 983 victim_name_len)) { 984 ret = -ENOENT; 985 victim_parent = read_one_inode(root, 986 parent_objectid); 987 if (victim_parent) { 988 btrfs_inc_nlink(inode); 989 btrfs_release_path(path); 990 991 ret = btrfs_unlink_inode(trans, root, 992 victim_parent, 993 inode, 994 victim_name, 995 victim_name_len); 996 if (!ret) 997 ret = btrfs_run_delayed_items( 998 trans, root); 999 } 1000 iput(victim_parent); 1001 kfree(victim_name); 1002 if (ret) 1003 return ret; 1004 *search_done = 1; 1005 goto again; 1006 } 1007 kfree(victim_name); 1008 if (ret) 1009 return ret; 1010 next: 1011 cur_offset += victim_name_len + sizeof(*extref); 1012 } 1013 *search_done = 1; 1014 } 1015 btrfs_release_path(path); 1016 1017 /* look for a conflicting sequence number */ 1018 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir), 1019 ref_index, name, namelen, 0); 1020 if (di && !IS_ERR(di)) { 1021 ret = drop_one_dir_item(trans, root, path, dir, di); 1022 if (ret) 1023 return ret; 1024 } 1025 btrfs_release_path(path); 1026 1027 /* look for a conflicing name */ 1028 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), 1029 name, namelen, 0); 1030 if (di && !IS_ERR(di)) { 1031 ret = drop_one_dir_item(trans, root, path, dir, di); 1032 if (ret) 1033 return ret; 1034 } 1035 btrfs_release_path(path); 1036 1037 return 0; 1038 } 1039 1040 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1041 u32 *namelen, char **name, u64 *index, 1042 u64 *parent_objectid) 1043 { 1044 struct btrfs_inode_extref *extref; 1045 1046 extref = (struct btrfs_inode_extref *)ref_ptr; 1047 1048 *namelen = btrfs_inode_extref_name_len(eb, extref); 1049 *name = kmalloc(*namelen, GFP_NOFS); 1050 if (*name == NULL) 1051 return -ENOMEM; 1052 1053 read_extent_buffer(eb, *name, (unsigned long)&extref->name, 1054 *namelen); 1055 1056 *index = btrfs_inode_extref_index(eb, extref); 1057 if (parent_objectid) 1058 *parent_objectid = btrfs_inode_extref_parent(eb, extref); 1059 1060 return 0; 1061 } 1062 1063 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1064 u32 *namelen, char **name, u64 *index) 1065 { 1066 struct btrfs_inode_ref *ref; 1067 1068 ref = (struct btrfs_inode_ref *)ref_ptr; 1069 1070 *namelen = btrfs_inode_ref_name_len(eb, ref); 1071 *name = kmalloc(*namelen, GFP_NOFS); 1072 if (*name == NULL) 1073 return -ENOMEM; 1074 1075 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen); 1076 1077 *index = btrfs_inode_ref_index(eb, ref); 1078 1079 return 0; 1080 } 1081 1082 /* 1083 * replay one inode back reference item found in the log tree. 1084 * eb, slot and key refer to the buffer and key found in the log tree. 1085 * root is the destination we are replaying into, and path is for temp 1086 * use by this function. (it should be released on return). 1087 */ 1088 static noinline int add_inode_ref(struct btrfs_trans_handle *trans, 1089 struct btrfs_root *root, 1090 struct btrfs_root *log, 1091 struct btrfs_path *path, 1092 struct extent_buffer *eb, int slot, 1093 struct btrfs_key *key) 1094 { 1095 struct inode *dir; 1096 struct inode *inode; 1097 unsigned long ref_ptr; 1098 unsigned long ref_end; 1099 char *name; 1100 int namelen; 1101 int ret; 1102 int search_done = 0; 1103 int log_ref_ver = 0; 1104 u64 parent_objectid; 1105 u64 inode_objectid; 1106 u64 ref_index = 0; 1107 int ref_struct_size; 1108 1109 ref_ptr = btrfs_item_ptr_offset(eb, slot); 1110 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot); 1111 1112 if (key->type == BTRFS_INODE_EXTREF_KEY) { 1113 struct btrfs_inode_extref *r; 1114 1115 ref_struct_size = sizeof(struct btrfs_inode_extref); 1116 log_ref_ver = 1; 1117 r = (struct btrfs_inode_extref *)ref_ptr; 1118 parent_objectid = btrfs_inode_extref_parent(eb, r); 1119 } else { 1120 ref_struct_size = sizeof(struct btrfs_inode_ref); 1121 parent_objectid = key->offset; 1122 } 1123 inode_objectid = key->objectid; 1124 1125 /* 1126 * it is possible that we didn't log all the parent directories 1127 * for a given inode. If we don't find the dir, just don't 1128 * copy the back ref in. The link count fixup code will take 1129 * care of the rest 1130 */ 1131 dir = read_one_inode(root, parent_objectid); 1132 if (!dir) 1133 return -ENOENT; 1134 1135 inode = read_one_inode(root, inode_objectid); 1136 if (!inode) { 1137 iput(dir); 1138 return -EIO; 1139 } 1140 1141 while (ref_ptr < ref_end) { 1142 if (log_ref_ver) { 1143 ret = extref_get_fields(eb, ref_ptr, &namelen, &name, 1144 &ref_index, &parent_objectid); 1145 /* 1146 * parent object can change from one array 1147 * item to another. 1148 */ 1149 if (!dir) 1150 dir = read_one_inode(root, parent_objectid); 1151 if (!dir) 1152 return -ENOENT; 1153 } else { 1154 ret = ref_get_fields(eb, ref_ptr, &namelen, &name, 1155 &ref_index); 1156 } 1157 if (ret) 1158 return ret; 1159 1160 /* if we already have a perfect match, we're done */ 1161 if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode), 1162 ref_index, name, namelen)) { 1163 /* 1164 * look for a conflicting back reference in the 1165 * metadata. if we find one we have to unlink that name 1166 * of the file before we add our new link. Later on, we 1167 * overwrite any existing back reference, and we don't 1168 * want to create dangling pointers in the directory. 1169 */ 1170 1171 if (!search_done) { 1172 ret = __add_inode_ref(trans, root, path, log, 1173 dir, inode, eb, 1174 inode_objectid, 1175 parent_objectid, 1176 ref_index, name, namelen, 1177 &search_done); 1178 if (ret == 1) { 1179 ret = 0; 1180 goto out; 1181 } 1182 if (ret) 1183 goto out; 1184 } 1185 1186 /* insert our name */ 1187 ret = btrfs_add_link(trans, dir, inode, name, namelen, 1188 0, ref_index); 1189 if (ret) 1190 goto out; 1191 1192 btrfs_update_inode(trans, root, inode); 1193 } 1194 1195 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen; 1196 kfree(name); 1197 if (log_ref_ver) { 1198 iput(dir); 1199 dir = NULL; 1200 } 1201 } 1202 1203 /* finally write the back reference in the inode */ 1204 ret = overwrite_item(trans, root, path, eb, slot, key); 1205 out: 1206 btrfs_release_path(path); 1207 iput(dir); 1208 iput(inode); 1209 return ret; 1210 } 1211 1212 static int insert_orphan_item(struct btrfs_trans_handle *trans, 1213 struct btrfs_root *root, u64 offset) 1214 { 1215 int ret; 1216 ret = btrfs_find_orphan_item(root, offset); 1217 if (ret > 0) 1218 ret = btrfs_insert_orphan_item(trans, root, offset); 1219 return ret; 1220 } 1221 1222 static int count_inode_extrefs(struct btrfs_root *root, 1223 struct inode *inode, struct btrfs_path *path) 1224 { 1225 int ret = 0; 1226 int name_len; 1227 unsigned int nlink = 0; 1228 u32 item_size; 1229 u32 cur_offset = 0; 1230 u64 inode_objectid = btrfs_ino(inode); 1231 u64 offset = 0; 1232 unsigned long ptr; 1233 struct btrfs_inode_extref *extref; 1234 struct extent_buffer *leaf; 1235 1236 while (1) { 1237 ret = btrfs_find_one_extref(root, inode_objectid, offset, path, 1238 &extref, &offset); 1239 if (ret) 1240 break; 1241 1242 leaf = path->nodes[0]; 1243 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1244 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1245 1246 while (cur_offset < item_size) { 1247 extref = (struct btrfs_inode_extref *) (ptr + cur_offset); 1248 name_len = btrfs_inode_extref_name_len(leaf, extref); 1249 1250 nlink++; 1251 1252 cur_offset += name_len + sizeof(*extref); 1253 } 1254 1255 offset++; 1256 btrfs_release_path(path); 1257 } 1258 btrfs_release_path(path); 1259 1260 if (ret < 0) 1261 return ret; 1262 return nlink; 1263 } 1264 1265 static int count_inode_refs(struct btrfs_root *root, 1266 struct inode *inode, struct btrfs_path *path) 1267 { 1268 int ret; 1269 struct btrfs_key key; 1270 unsigned int nlink = 0; 1271 unsigned long ptr; 1272 unsigned long ptr_end; 1273 int name_len; 1274 u64 ino = btrfs_ino(inode); 1275 1276 key.objectid = ino; 1277 key.type = BTRFS_INODE_REF_KEY; 1278 key.offset = (u64)-1; 1279 1280 while (1) { 1281 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1282 if (ret < 0) 1283 break; 1284 if (ret > 0) { 1285 if (path->slots[0] == 0) 1286 break; 1287 path->slots[0]--; 1288 } 1289 btrfs_item_key_to_cpu(path->nodes[0], &key, 1290 path->slots[0]); 1291 if (key.objectid != ino || 1292 key.type != BTRFS_INODE_REF_KEY) 1293 break; 1294 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 1295 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0], 1296 path->slots[0]); 1297 while (ptr < ptr_end) { 1298 struct btrfs_inode_ref *ref; 1299 1300 ref = (struct btrfs_inode_ref *)ptr; 1301 name_len = btrfs_inode_ref_name_len(path->nodes[0], 1302 ref); 1303 ptr = (unsigned long)(ref + 1) + name_len; 1304 nlink++; 1305 } 1306 1307 if (key.offset == 0) 1308 break; 1309 key.offset--; 1310 btrfs_release_path(path); 1311 } 1312 btrfs_release_path(path); 1313 1314 return nlink; 1315 } 1316 1317 /* 1318 * There are a few corners where the link count of the file can't 1319 * be properly maintained during replay. So, instead of adding 1320 * lots of complexity to the log code, we just scan the backrefs 1321 * for any file that has been through replay. 1322 * 1323 * The scan will update the link count on the inode to reflect the 1324 * number of back refs found. If it goes down to zero, the iput 1325 * will free the inode. 1326 */ 1327 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans, 1328 struct btrfs_root *root, 1329 struct inode *inode) 1330 { 1331 struct btrfs_path *path; 1332 int ret; 1333 u64 nlink = 0; 1334 u64 ino = btrfs_ino(inode); 1335 1336 path = btrfs_alloc_path(); 1337 if (!path) 1338 return -ENOMEM; 1339 1340 ret = count_inode_refs(root, inode, path); 1341 if (ret < 0) 1342 goto out; 1343 1344 nlink = ret; 1345 1346 ret = count_inode_extrefs(root, inode, path); 1347 if (ret == -ENOENT) 1348 ret = 0; 1349 1350 if (ret < 0) 1351 goto out; 1352 1353 nlink += ret; 1354 1355 ret = 0; 1356 1357 if (nlink != inode->i_nlink) { 1358 set_nlink(inode, nlink); 1359 btrfs_update_inode(trans, root, inode); 1360 } 1361 BTRFS_I(inode)->index_cnt = (u64)-1; 1362 1363 if (inode->i_nlink == 0) { 1364 if (S_ISDIR(inode->i_mode)) { 1365 ret = replay_dir_deletes(trans, root, NULL, path, 1366 ino, 1); 1367 if (ret) 1368 goto out; 1369 } 1370 ret = insert_orphan_item(trans, root, ino); 1371 } 1372 1373 out: 1374 btrfs_free_path(path); 1375 return ret; 1376 } 1377 1378 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans, 1379 struct btrfs_root *root, 1380 struct btrfs_path *path) 1381 { 1382 int ret; 1383 struct btrfs_key key; 1384 struct inode *inode; 1385 1386 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1387 key.type = BTRFS_ORPHAN_ITEM_KEY; 1388 key.offset = (u64)-1; 1389 while (1) { 1390 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1391 if (ret < 0) 1392 break; 1393 1394 if (ret == 1) { 1395 if (path->slots[0] == 0) 1396 break; 1397 path->slots[0]--; 1398 } 1399 1400 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1401 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID || 1402 key.type != BTRFS_ORPHAN_ITEM_KEY) 1403 break; 1404 1405 ret = btrfs_del_item(trans, root, path); 1406 if (ret) 1407 goto out; 1408 1409 btrfs_release_path(path); 1410 inode = read_one_inode(root, key.offset); 1411 if (!inode) 1412 return -EIO; 1413 1414 ret = fixup_inode_link_count(trans, root, inode); 1415 iput(inode); 1416 if (ret) 1417 goto out; 1418 1419 /* 1420 * fixup on a directory may create new entries, 1421 * make sure we always look for the highset possible 1422 * offset 1423 */ 1424 key.offset = (u64)-1; 1425 } 1426 ret = 0; 1427 out: 1428 btrfs_release_path(path); 1429 return ret; 1430 } 1431 1432 1433 /* 1434 * record a given inode in the fixup dir so we can check its link 1435 * count when replay is done. The link count is incremented here 1436 * so the inode won't go away until we check it 1437 */ 1438 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans, 1439 struct btrfs_root *root, 1440 struct btrfs_path *path, 1441 u64 objectid) 1442 { 1443 struct btrfs_key key; 1444 int ret = 0; 1445 struct inode *inode; 1446 1447 inode = read_one_inode(root, objectid); 1448 if (!inode) 1449 return -EIO; 1450 1451 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1452 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); 1453 key.offset = objectid; 1454 1455 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1456 1457 btrfs_release_path(path); 1458 if (ret == 0) { 1459 if (!inode->i_nlink) 1460 set_nlink(inode, 1); 1461 else 1462 btrfs_inc_nlink(inode); 1463 ret = btrfs_update_inode(trans, root, inode); 1464 } else if (ret == -EEXIST) { 1465 ret = 0; 1466 } else { 1467 BUG(); /* Logic Error */ 1468 } 1469 iput(inode); 1470 1471 return ret; 1472 } 1473 1474 /* 1475 * when replaying the log for a directory, we only insert names 1476 * for inodes that actually exist. This means an fsync on a directory 1477 * does not implicitly fsync all the new files in it 1478 */ 1479 static noinline int insert_one_name(struct btrfs_trans_handle *trans, 1480 struct btrfs_root *root, 1481 struct btrfs_path *path, 1482 u64 dirid, u64 index, 1483 char *name, int name_len, u8 type, 1484 struct btrfs_key *location) 1485 { 1486 struct inode *inode; 1487 struct inode *dir; 1488 int ret; 1489 1490 inode = read_one_inode(root, location->objectid); 1491 if (!inode) 1492 return -ENOENT; 1493 1494 dir = read_one_inode(root, dirid); 1495 if (!dir) { 1496 iput(inode); 1497 return -EIO; 1498 } 1499 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index); 1500 1501 /* FIXME, put inode into FIXUP list */ 1502 1503 iput(inode); 1504 iput(dir); 1505 return ret; 1506 } 1507 1508 /* 1509 * take a single entry in a log directory item and replay it into 1510 * the subvolume. 1511 * 1512 * if a conflicting item exists in the subdirectory already, 1513 * the inode it points to is unlinked and put into the link count 1514 * fix up tree. 1515 * 1516 * If a name from the log points to a file or directory that does 1517 * not exist in the FS, it is skipped. fsyncs on directories 1518 * do not force down inodes inside that directory, just changes to the 1519 * names or unlinks in a directory. 1520 */ 1521 static noinline int replay_one_name(struct btrfs_trans_handle *trans, 1522 struct btrfs_root *root, 1523 struct btrfs_path *path, 1524 struct extent_buffer *eb, 1525 struct btrfs_dir_item *di, 1526 struct btrfs_key *key) 1527 { 1528 char *name; 1529 int name_len; 1530 struct btrfs_dir_item *dst_di; 1531 struct btrfs_key found_key; 1532 struct btrfs_key log_key; 1533 struct inode *dir; 1534 u8 log_type; 1535 int exists; 1536 int ret = 0; 1537 1538 dir = read_one_inode(root, key->objectid); 1539 if (!dir) 1540 return -EIO; 1541 1542 name_len = btrfs_dir_name_len(eb, di); 1543 name = kmalloc(name_len, GFP_NOFS); 1544 if (!name) { 1545 ret = -ENOMEM; 1546 goto out; 1547 } 1548 1549 log_type = btrfs_dir_type(eb, di); 1550 read_extent_buffer(eb, name, (unsigned long)(di + 1), 1551 name_len); 1552 1553 btrfs_dir_item_key_to_cpu(eb, di, &log_key); 1554 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0); 1555 if (exists == 0) 1556 exists = 1; 1557 else 1558 exists = 0; 1559 btrfs_release_path(path); 1560 1561 if (key->type == BTRFS_DIR_ITEM_KEY) { 1562 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid, 1563 name, name_len, 1); 1564 } else if (key->type == BTRFS_DIR_INDEX_KEY) { 1565 dst_di = btrfs_lookup_dir_index_item(trans, root, path, 1566 key->objectid, 1567 key->offset, name, 1568 name_len, 1); 1569 } else { 1570 /* Corruption */ 1571 ret = -EINVAL; 1572 goto out; 1573 } 1574 if (IS_ERR_OR_NULL(dst_di)) { 1575 /* we need a sequence number to insert, so we only 1576 * do inserts for the BTRFS_DIR_INDEX_KEY types 1577 */ 1578 if (key->type != BTRFS_DIR_INDEX_KEY) 1579 goto out; 1580 goto insert; 1581 } 1582 1583 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key); 1584 /* the existing item matches the logged item */ 1585 if (found_key.objectid == log_key.objectid && 1586 found_key.type == log_key.type && 1587 found_key.offset == log_key.offset && 1588 btrfs_dir_type(path->nodes[0], dst_di) == log_type) { 1589 goto out; 1590 } 1591 1592 /* 1593 * don't drop the conflicting directory entry if the inode 1594 * for the new entry doesn't exist 1595 */ 1596 if (!exists) 1597 goto out; 1598 1599 ret = drop_one_dir_item(trans, root, path, dir, dst_di); 1600 if (ret) 1601 goto out; 1602 1603 if (key->type == BTRFS_DIR_INDEX_KEY) 1604 goto insert; 1605 out: 1606 btrfs_release_path(path); 1607 kfree(name); 1608 iput(dir); 1609 return ret; 1610 1611 insert: 1612 btrfs_release_path(path); 1613 ret = insert_one_name(trans, root, path, key->objectid, key->offset, 1614 name, name_len, log_type, &log_key); 1615 if (ret && ret != -ENOENT) 1616 goto out; 1617 ret = 0; 1618 goto out; 1619 } 1620 1621 /* 1622 * find all the names in a directory item and reconcile them into 1623 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than 1624 * one name in a directory item, but the same code gets used for 1625 * both directory index types 1626 */ 1627 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans, 1628 struct btrfs_root *root, 1629 struct btrfs_path *path, 1630 struct extent_buffer *eb, int slot, 1631 struct btrfs_key *key) 1632 { 1633 int ret; 1634 u32 item_size = btrfs_item_size_nr(eb, slot); 1635 struct btrfs_dir_item *di; 1636 int name_len; 1637 unsigned long ptr; 1638 unsigned long ptr_end; 1639 1640 ptr = btrfs_item_ptr_offset(eb, slot); 1641 ptr_end = ptr + item_size; 1642 while (ptr < ptr_end) { 1643 di = (struct btrfs_dir_item *)ptr; 1644 if (verify_dir_item(root, eb, di)) 1645 return -EIO; 1646 name_len = btrfs_dir_name_len(eb, di); 1647 ret = replay_one_name(trans, root, path, eb, di, key); 1648 if (ret) 1649 return ret; 1650 ptr = (unsigned long)(di + 1); 1651 ptr += name_len; 1652 } 1653 return 0; 1654 } 1655 1656 /* 1657 * directory replay has two parts. There are the standard directory 1658 * items in the log copied from the subvolume, and range items 1659 * created in the log while the subvolume was logged. 1660 * 1661 * The range items tell us which parts of the key space the log 1662 * is authoritative for. During replay, if a key in the subvolume 1663 * directory is in a logged range item, but not actually in the log 1664 * that means it was deleted from the directory before the fsync 1665 * and should be removed. 1666 */ 1667 static noinline int find_dir_range(struct btrfs_root *root, 1668 struct btrfs_path *path, 1669 u64 dirid, int key_type, 1670 u64 *start_ret, u64 *end_ret) 1671 { 1672 struct btrfs_key key; 1673 u64 found_end; 1674 struct btrfs_dir_log_item *item; 1675 int ret; 1676 int nritems; 1677 1678 if (*start_ret == (u64)-1) 1679 return 1; 1680 1681 key.objectid = dirid; 1682 key.type = key_type; 1683 key.offset = *start_ret; 1684 1685 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1686 if (ret < 0) 1687 goto out; 1688 if (ret > 0) { 1689 if (path->slots[0] == 0) 1690 goto out; 1691 path->slots[0]--; 1692 } 1693 if (ret != 0) 1694 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1695 1696 if (key.type != key_type || key.objectid != dirid) { 1697 ret = 1; 1698 goto next; 1699 } 1700 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 1701 struct btrfs_dir_log_item); 1702 found_end = btrfs_dir_log_end(path->nodes[0], item); 1703 1704 if (*start_ret >= key.offset && *start_ret <= found_end) { 1705 ret = 0; 1706 *start_ret = key.offset; 1707 *end_ret = found_end; 1708 goto out; 1709 } 1710 ret = 1; 1711 next: 1712 /* check the next slot in the tree to see if it is a valid item */ 1713 nritems = btrfs_header_nritems(path->nodes[0]); 1714 if (path->slots[0] >= nritems) { 1715 ret = btrfs_next_leaf(root, path); 1716 if (ret) 1717 goto out; 1718 } else { 1719 path->slots[0]++; 1720 } 1721 1722 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1723 1724 if (key.type != key_type || key.objectid != dirid) { 1725 ret = 1; 1726 goto out; 1727 } 1728 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 1729 struct btrfs_dir_log_item); 1730 found_end = btrfs_dir_log_end(path->nodes[0], item); 1731 *start_ret = key.offset; 1732 *end_ret = found_end; 1733 ret = 0; 1734 out: 1735 btrfs_release_path(path); 1736 return ret; 1737 } 1738 1739 /* 1740 * this looks for a given directory item in the log. If the directory 1741 * item is not in the log, the item is removed and the inode it points 1742 * to is unlinked 1743 */ 1744 static noinline int check_item_in_log(struct btrfs_trans_handle *trans, 1745 struct btrfs_root *root, 1746 struct btrfs_root *log, 1747 struct btrfs_path *path, 1748 struct btrfs_path *log_path, 1749 struct inode *dir, 1750 struct btrfs_key *dir_key) 1751 { 1752 int ret; 1753 struct extent_buffer *eb; 1754 int slot; 1755 u32 item_size; 1756 struct btrfs_dir_item *di; 1757 struct btrfs_dir_item *log_di; 1758 int name_len; 1759 unsigned long ptr; 1760 unsigned long ptr_end; 1761 char *name; 1762 struct inode *inode; 1763 struct btrfs_key location; 1764 1765 again: 1766 eb = path->nodes[0]; 1767 slot = path->slots[0]; 1768 item_size = btrfs_item_size_nr(eb, slot); 1769 ptr = btrfs_item_ptr_offset(eb, slot); 1770 ptr_end = ptr + item_size; 1771 while (ptr < ptr_end) { 1772 di = (struct btrfs_dir_item *)ptr; 1773 if (verify_dir_item(root, eb, di)) { 1774 ret = -EIO; 1775 goto out; 1776 } 1777 1778 name_len = btrfs_dir_name_len(eb, di); 1779 name = kmalloc(name_len, GFP_NOFS); 1780 if (!name) { 1781 ret = -ENOMEM; 1782 goto out; 1783 } 1784 read_extent_buffer(eb, name, (unsigned long)(di + 1), 1785 name_len); 1786 log_di = NULL; 1787 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) { 1788 log_di = btrfs_lookup_dir_item(trans, log, log_path, 1789 dir_key->objectid, 1790 name, name_len, 0); 1791 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) { 1792 log_di = btrfs_lookup_dir_index_item(trans, log, 1793 log_path, 1794 dir_key->objectid, 1795 dir_key->offset, 1796 name, name_len, 0); 1797 } 1798 if (IS_ERR_OR_NULL(log_di)) { 1799 btrfs_dir_item_key_to_cpu(eb, di, &location); 1800 btrfs_release_path(path); 1801 btrfs_release_path(log_path); 1802 inode = read_one_inode(root, location.objectid); 1803 if (!inode) { 1804 kfree(name); 1805 return -EIO; 1806 } 1807 1808 ret = link_to_fixup_dir(trans, root, 1809 path, location.objectid); 1810 if (ret) { 1811 kfree(name); 1812 iput(inode); 1813 goto out; 1814 } 1815 1816 btrfs_inc_nlink(inode); 1817 ret = btrfs_unlink_inode(trans, root, dir, inode, 1818 name, name_len); 1819 if (!ret) 1820 ret = btrfs_run_delayed_items(trans, root); 1821 kfree(name); 1822 iput(inode); 1823 if (ret) 1824 goto out; 1825 1826 /* there might still be more names under this key 1827 * check and repeat if required 1828 */ 1829 ret = btrfs_search_slot(NULL, root, dir_key, path, 1830 0, 0); 1831 if (ret == 0) 1832 goto again; 1833 ret = 0; 1834 goto out; 1835 } 1836 btrfs_release_path(log_path); 1837 kfree(name); 1838 1839 ptr = (unsigned long)(di + 1); 1840 ptr += name_len; 1841 } 1842 ret = 0; 1843 out: 1844 btrfs_release_path(path); 1845 btrfs_release_path(log_path); 1846 return ret; 1847 } 1848 1849 /* 1850 * deletion replay happens before we copy any new directory items 1851 * out of the log or out of backreferences from inodes. It 1852 * scans the log to find ranges of keys that log is authoritative for, 1853 * and then scans the directory to find items in those ranges that are 1854 * not present in the log. 1855 * 1856 * Anything we don't find in the log is unlinked and removed from the 1857 * directory. 1858 */ 1859 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 1860 struct btrfs_root *root, 1861 struct btrfs_root *log, 1862 struct btrfs_path *path, 1863 u64 dirid, int del_all) 1864 { 1865 u64 range_start; 1866 u64 range_end; 1867 int key_type = BTRFS_DIR_LOG_ITEM_KEY; 1868 int ret = 0; 1869 struct btrfs_key dir_key; 1870 struct btrfs_key found_key; 1871 struct btrfs_path *log_path; 1872 struct inode *dir; 1873 1874 dir_key.objectid = dirid; 1875 dir_key.type = BTRFS_DIR_ITEM_KEY; 1876 log_path = btrfs_alloc_path(); 1877 if (!log_path) 1878 return -ENOMEM; 1879 1880 dir = read_one_inode(root, dirid); 1881 /* it isn't an error if the inode isn't there, that can happen 1882 * because we replay the deletes before we copy in the inode item 1883 * from the log 1884 */ 1885 if (!dir) { 1886 btrfs_free_path(log_path); 1887 return 0; 1888 } 1889 again: 1890 range_start = 0; 1891 range_end = 0; 1892 while (1) { 1893 if (del_all) 1894 range_end = (u64)-1; 1895 else { 1896 ret = find_dir_range(log, path, dirid, key_type, 1897 &range_start, &range_end); 1898 if (ret != 0) 1899 break; 1900 } 1901 1902 dir_key.offset = range_start; 1903 while (1) { 1904 int nritems; 1905 ret = btrfs_search_slot(NULL, root, &dir_key, path, 1906 0, 0); 1907 if (ret < 0) 1908 goto out; 1909 1910 nritems = btrfs_header_nritems(path->nodes[0]); 1911 if (path->slots[0] >= nritems) { 1912 ret = btrfs_next_leaf(root, path); 1913 if (ret) 1914 break; 1915 } 1916 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1917 path->slots[0]); 1918 if (found_key.objectid != dirid || 1919 found_key.type != dir_key.type) 1920 goto next_type; 1921 1922 if (found_key.offset > range_end) 1923 break; 1924 1925 ret = check_item_in_log(trans, root, log, path, 1926 log_path, dir, 1927 &found_key); 1928 if (ret) 1929 goto out; 1930 if (found_key.offset == (u64)-1) 1931 break; 1932 dir_key.offset = found_key.offset + 1; 1933 } 1934 btrfs_release_path(path); 1935 if (range_end == (u64)-1) 1936 break; 1937 range_start = range_end + 1; 1938 } 1939 1940 next_type: 1941 ret = 0; 1942 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) { 1943 key_type = BTRFS_DIR_LOG_INDEX_KEY; 1944 dir_key.type = BTRFS_DIR_INDEX_KEY; 1945 btrfs_release_path(path); 1946 goto again; 1947 } 1948 out: 1949 btrfs_release_path(path); 1950 btrfs_free_path(log_path); 1951 iput(dir); 1952 return ret; 1953 } 1954 1955 /* 1956 * the process_func used to replay items from the log tree. This 1957 * gets called in two different stages. The first stage just looks 1958 * for inodes and makes sure they are all copied into the subvolume. 1959 * 1960 * The second stage copies all the other item types from the log into 1961 * the subvolume. The two stage approach is slower, but gets rid of 1962 * lots of complexity around inodes referencing other inodes that exist 1963 * only in the log (references come from either directory items or inode 1964 * back refs). 1965 */ 1966 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb, 1967 struct walk_control *wc, u64 gen) 1968 { 1969 int nritems; 1970 struct btrfs_path *path; 1971 struct btrfs_root *root = wc->replay_dest; 1972 struct btrfs_key key; 1973 int level; 1974 int i; 1975 int ret; 1976 1977 ret = btrfs_read_buffer(eb, gen); 1978 if (ret) 1979 return ret; 1980 1981 level = btrfs_header_level(eb); 1982 1983 if (level != 0) 1984 return 0; 1985 1986 path = btrfs_alloc_path(); 1987 if (!path) 1988 return -ENOMEM; 1989 1990 nritems = btrfs_header_nritems(eb); 1991 for (i = 0; i < nritems; i++) { 1992 btrfs_item_key_to_cpu(eb, &key, i); 1993 1994 /* inode keys are done during the first stage */ 1995 if (key.type == BTRFS_INODE_ITEM_KEY && 1996 wc->stage == LOG_WALK_REPLAY_INODES) { 1997 struct btrfs_inode_item *inode_item; 1998 u32 mode; 1999 2000 inode_item = btrfs_item_ptr(eb, i, 2001 struct btrfs_inode_item); 2002 mode = btrfs_inode_mode(eb, inode_item); 2003 if (S_ISDIR(mode)) { 2004 ret = replay_dir_deletes(wc->trans, 2005 root, log, path, key.objectid, 0); 2006 if (ret) 2007 break; 2008 } 2009 ret = overwrite_item(wc->trans, root, path, 2010 eb, i, &key); 2011 if (ret) 2012 break; 2013 2014 /* for regular files, make sure corresponding 2015 * orhpan item exist. extents past the new EOF 2016 * will be truncated later by orphan cleanup. 2017 */ 2018 if (S_ISREG(mode)) { 2019 ret = insert_orphan_item(wc->trans, root, 2020 key.objectid); 2021 if (ret) 2022 break; 2023 } 2024 2025 ret = link_to_fixup_dir(wc->trans, root, 2026 path, key.objectid); 2027 if (ret) 2028 break; 2029 } 2030 if (wc->stage < LOG_WALK_REPLAY_ALL) 2031 continue; 2032 2033 /* these keys are simply copied */ 2034 if (key.type == BTRFS_XATTR_ITEM_KEY) { 2035 ret = overwrite_item(wc->trans, root, path, 2036 eb, i, &key); 2037 if (ret) 2038 break; 2039 } else if (key.type == BTRFS_INODE_REF_KEY || 2040 key.type == BTRFS_INODE_EXTREF_KEY) { 2041 ret = add_inode_ref(wc->trans, root, log, path, 2042 eb, i, &key); 2043 if (ret && ret != -ENOENT) 2044 break; 2045 ret = 0; 2046 } else if (key.type == BTRFS_EXTENT_DATA_KEY) { 2047 ret = replay_one_extent(wc->trans, root, path, 2048 eb, i, &key); 2049 if (ret) 2050 break; 2051 } else if (key.type == BTRFS_DIR_ITEM_KEY || 2052 key.type == BTRFS_DIR_INDEX_KEY) { 2053 ret = replay_one_dir_item(wc->trans, root, path, 2054 eb, i, &key); 2055 if (ret) 2056 break; 2057 } 2058 } 2059 btrfs_free_path(path); 2060 return ret; 2061 } 2062 2063 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans, 2064 struct btrfs_root *root, 2065 struct btrfs_path *path, int *level, 2066 struct walk_control *wc) 2067 { 2068 u64 root_owner; 2069 u64 bytenr; 2070 u64 ptr_gen; 2071 struct extent_buffer *next; 2072 struct extent_buffer *cur; 2073 struct extent_buffer *parent; 2074 u32 blocksize; 2075 int ret = 0; 2076 2077 WARN_ON(*level < 0); 2078 WARN_ON(*level >= BTRFS_MAX_LEVEL); 2079 2080 while (*level > 0) { 2081 WARN_ON(*level < 0); 2082 WARN_ON(*level >= BTRFS_MAX_LEVEL); 2083 cur = path->nodes[*level]; 2084 2085 if (btrfs_header_level(cur) != *level) 2086 WARN_ON(1); 2087 2088 if (path->slots[*level] >= 2089 btrfs_header_nritems(cur)) 2090 break; 2091 2092 bytenr = btrfs_node_blockptr(cur, path->slots[*level]); 2093 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); 2094 blocksize = btrfs_level_size(root, *level - 1); 2095 2096 parent = path->nodes[*level]; 2097 root_owner = btrfs_header_owner(parent); 2098 2099 next = btrfs_find_create_tree_block(root, bytenr, blocksize); 2100 if (!next) 2101 return -ENOMEM; 2102 2103 if (*level == 1) { 2104 ret = wc->process_func(root, next, wc, ptr_gen); 2105 if (ret) { 2106 free_extent_buffer(next); 2107 return ret; 2108 } 2109 2110 path->slots[*level]++; 2111 if (wc->free) { 2112 ret = btrfs_read_buffer(next, ptr_gen); 2113 if (ret) { 2114 free_extent_buffer(next); 2115 return ret; 2116 } 2117 2118 btrfs_tree_lock(next); 2119 btrfs_set_lock_blocking(next); 2120 clean_tree_block(trans, root, next); 2121 btrfs_wait_tree_block_writeback(next); 2122 btrfs_tree_unlock(next); 2123 2124 WARN_ON(root_owner != 2125 BTRFS_TREE_LOG_OBJECTID); 2126 ret = btrfs_free_and_pin_reserved_extent(root, 2127 bytenr, blocksize); 2128 if (ret) { 2129 free_extent_buffer(next); 2130 return ret; 2131 } 2132 } 2133 free_extent_buffer(next); 2134 continue; 2135 } 2136 ret = btrfs_read_buffer(next, ptr_gen); 2137 if (ret) { 2138 free_extent_buffer(next); 2139 return ret; 2140 } 2141 2142 WARN_ON(*level <= 0); 2143 if (path->nodes[*level-1]) 2144 free_extent_buffer(path->nodes[*level-1]); 2145 path->nodes[*level-1] = next; 2146 *level = btrfs_header_level(next); 2147 path->slots[*level] = 0; 2148 cond_resched(); 2149 } 2150 WARN_ON(*level < 0); 2151 WARN_ON(*level >= BTRFS_MAX_LEVEL); 2152 2153 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]); 2154 2155 cond_resched(); 2156 return 0; 2157 } 2158 2159 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans, 2160 struct btrfs_root *root, 2161 struct btrfs_path *path, int *level, 2162 struct walk_control *wc) 2163 { 2164 u64 root_owner; 2165 int i; 2166 int slot; 2167 int ret; 2168 2169 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { 2170 slot = path->slots[i]; 2171 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) { 2172 path->slots[i]++; 2173 *level = i; 2174 WARN_ON(*level == 0); 2175 return 0; 2176 } else { 2177 struct extent_buffer *parent; 2178 if (path->nodes[*level] == root->node) 2179 parent = path->nodes[*level]; 2180 else 2181 parent = path->nodes[*level + 1]; 2182 2183 root_owner = btrfs_header_owner(parent); 2184 ret = wc->process_func(root, path->nodes[*level], wc, 2185 btrfs_header_generation(path->nodes[*level])); 2186 if (ret) 2187 return ret; 2188 2189 if (wc->free) { 2190 struct extent_buffer *next; 2191 2192 next = path->nodes[*level]; 2193 2194 btrfs_tree_lock(next); 2195 btrfs_set_lock_blocking(next); 2196 clean_tree_block(trans, root, next); 2197 btrfs_wait_tree_block_writeback(next); 2198 btrfs_tree_unlock(next); 2199 2200 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID); 2201 ret = btrfs_free_and_pin_reserved_extent(root, 2202 path->nodes[*level]->start, 2203 path->nodes[*level]->len); 2204 if (ret) 2205 return ret; 2206 } 2207 free_extent_buffer(path->nodes[*level]); 2208 path->nodes[*level] = NULL; 2209 *level = i + 1; 2210 } 2211 } 2212 return 1; 2213 } 2214 2215 /* 2216 * drop the reference count on the tree rooted at 'snap'. This traverses 2217 * the tree freeing any blocks that have a ref count of zero after being 2218 * decremented. 2219 */ 2220 static int walk_log_tree(struct btrfs_trans_handle *trans, 2221 struct btrfs_root *log, struct walk_control *wc) 2222 { 2223 int ret = 0; 2224 int wret; 2225 int level; 2226 struct btrfs_path *path; 2227 int orig_level; 2228 2229 path = btrfs_alloc_path(); 2230 if (!path) 2231 return -ENOMEM; 2232 2233 level = btrfs_header_level(log->node); 2234 orig_level = level; 2235 path->nodes[level] = log->node; 2236 extent_buffer_get(log->node); 2237 path->slots[level] = 0; 2238 2239 while (1) { 2240 wret = walk_down_log_tree(trans, log, path, &level, wc); 2241 if (wret > 0) 2242 break; 2243 if (wret < 0) { 2244 ret = wret; 2245 goto out; 2246 } 2247 2248 wret = walk_up_log_tree(trans, log, path, &level, wc); 2249 if (wret > 0) 2250 break; 2251 if (wret < 0) { 2252 ret = wret; 2253 goto out; 2254 } 2255 } 2256 2257 /* was the root node processed? if not, catch it here */ 2258 if (path->nodes[orig_level]) { 2259 ret = wc->process_func(log, path->nodes[orig_level], wc, 2260 btrfs_header_generation(path->nodes[orig_level])); 2261 if (ret) 2262 goto out; 2263 if (wc->free) { 2264 struct extent_buffer *next; 2265 2266 next = path->nodes[orig_level]; 2267 2268 btrfs_tree_lock(next); 2269 btrfs_set_lock_blocking(next); 2270 clean_tree_block(trans, log, next); 2271 btrfs_wait_tree_block_writeback(next); 2272 btrfs_tree_unlock(next); 2273 2274 WARN_ON(log->root_key.objectid != 2275 BTRFS_TREE_LOG_OBJECTID); 2276 ret = btrfs_free_and_pin_reserved_extent(log, next->start, 2277 next->len); 2278 if (ret) 2279 goto out; 2280 } 2281 } 2282 2283 out: 2284 btrfs_free_path(path); 2285 return ret; 2286 } 2287 2288 /* 2289 * helper function to update the item for a given subvolumes log root 2290 * in the tree of log roots 2291 */ 2292 static int update_log_root(struct btrfs_trans_handle *trans, 2293 struct btrfs_root *log) 2294 { 2295 int ret; 2296 2297 if (log->log_transid == 1) { 2298 /* insert root item on the first sync */ 2299 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree, 2300 &log->root_key, &log->root_item); 2301 } else { 2302 ret = btrfs_update_root(trans, log->fs_info->log_root_tree, 2303 &log->root_key, &log->root_item); 2304 } 2305 return ret; 2306 } 2307 2308 static int wait_log_commit(struct btrfs_trans_handle *trans, 2309 struct btrfs_root *root, unsigned long transid) 2310 { 2311 DEFINE_WAIT(wait); 2312 int index = transid % 2; 2313 2314 /* 2315 * we only allow two pending log transactions at a time, 2316 * so we know that if ours is more than 2 older than the 2317 * current transaction, we're done 2318 */ 2319 do { 2320 prepare_to_wait(&root->log_commit_wait[index], 2321 &wait, TASK_UNINTERRUPTIBLE); 2322 mutex_unlock(&root->log_mutex); 2323 2324 if (root->fs_info->last_trans_log_full_commit != 2325 trans->transid && root->log_transid < transid + 2 && 2326 atomic_read(&root->log_commit[index])) 2327 schedule(); 2328 2329 finish_wait(&root->log_commit_wait[index], &wait); 2330 mutex_lock(&root->log_mutex); 2331 } while (root->fs_info->last_trans_log_full_commit != 2332 trans->transid && root->log_transid < transid + 2 && 2333 atomic_read(&root->log_commit[index])); 2334 return 0; 2335 } 2336 2337 static void wait_for_writer(struct btrfs_trans_handle *trans, 2338 struct btrfs_root *root) 2339 { 2340 DEFINE_WAIT(wait); 2341 while (root->fs_info->last_trans_log_full_commit != 2342 trans->transid && atomic_read(&root->log_writers)) { 2343 prepare_to_wait(&root->log_writer_wait, 2344 &wait, TASK_UNINTERRUPTIBLE); 2345 mutex_unlock(&root->log_mutex); 2346 if (root->fs_info->last_trans_log_full_commit != 2347 trans->transid && atomic_read(&root->log_writers)) 2348 schedule(); 2349 mutex_lock(&root->log_mutex); 2350 finish_wait(&root->log_writer_wait, &wait); 2351 } 2352 } 2353 2354 /* 2355 * btrfs_sync_log does sends a given tree log down to the disk and 2356 * updates the super blocks to record it. When this call is done, 2357 * you know that any inodes previously logged are safely on disk only 2358 * if it returns 0. 2359 * 2360 * Any other return value means you need to call btrfs_commit_transaction. 2361 * Some of the edge cases for fsyncing directories that have had unlinks 2362 * or renames done in the past mean that sometimes the only safe 2363 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN, 2364 * that has happened. 2365 */ 2366 int btrfs_sync_log(struct btrfs_trans_handle *trans, 2367 struct btrfs_root *root) 2368 { 2369 int index1; 2370 int index2; 2371 int mark; 2372 int ret; 2373 struct btrfs_root *log = root->log_root; 2374 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree; 2375 unsigned long log_transid = 0; 2376 struct blk_plug plug; 2377 2378 mutex_lock(&root->log_mutex); 2379 log_transid = root->log_transid; 2380 index1 = root->log_transid % 2; 2381 if (atomic_read(&root->log_commit[index1])) { 2382 wait_log_commit(trans, root, root->log_transid); 2383 mutex_unlock(&root->log_mutex); 2384 return 0; 2385 } 2386 atomic_set(&root->log_commit[index1], 1); 2387 2388 /* wait for previous tree log sync to complete */ 2389 if (atomic_read(&root->log_commit[(index1 + 1) % 2])) 2390 wait_log_commit(trans, root, root->log_transid - 1); 2391 while (1) { 2392 int batch = atomic_read(&root->log_batch); 2393 /* when we're on an ssd, just kick the log commit out */ 2394 if (!btrfs_test_opt(root, SSD) && root->log_multiple_pids) { 2395 mutex_unlock(&root->log_mutex); 2396 schedule_timeout_uninterruptible(1); 2397 mutex_lock(&root->log_mutex); 2398 } 2399 wait_for_writer(trans, root); 2400 if (batch == atomic_read(&root->log_batch)) 2401 break; 2402 } 2403 2404 /* bail out if we need to do a full commit */ 2405 if (root->fs_info->last_trans_log_full_commit == trans->transid) { 2406 ret = -EAGAIN; 2407 btrfs_free_logged_extents(log, log_transid); 2408 mutex_unlock(&root->log_mutex); 2409 goto out; 2410 } 2411 2412 if (log_transid % 2 == 0) 2413 mark = EXTENT_DIRTY; 2414 else 2415 mark = EXTENT_NEW; 2416 2417 /* we start IO on all the marked extents here, but we don't actually 2418 * wait for them until later. 2419 */ 2420 blk_start_plug(&plug); 2421 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark); 2422 if (ret) { 2423 blk_finish_plug(&plug); 2424 btrfs_abort_transaction(trans, root, ret); 2425 btrfs_free_logged_extents(log, log_transid); 2426 mutex_unlock(&root->log_mutex); 2427 goto out; 2428 } 2429 2430 btrfs_set_root_node(&log->root_item, log->node); 2431 2432 root->log_transid++; 2433 log->log_transid = root->log_transid; 2434 root->log_start_pid = 0; 2435 smp_mb(); 2436 /* 2437 * IO has been started, blocks of the log tree have WRITTEN flag set 2438 * in their headers. new modifications of the log will be written to 2439 * new positions. so it's safe to allow log writers to go in. 2440 */ 2441 mutex_unlock(&root->log_mutex); 2442 2443 mutex_lock(&log_root_tree->log_mutex); 2444 atomic_inc(&log_root_tree->log_batch); 2445 atomic_inc(&log_root_tree->log_writers); 2446 mutex_unlock(&log_root_tree->log_mutex); 2447 2448 ret = update_log_root(trans, log); 2449 2450 mutex_lock(&log_root_tree->log_mutex); 2451 if (atomic_dec_and_test(&log_root_tree->log_writers)) { 2452 smp_mb(); 2453 if (waitqueue_active(&log_root_tree->log_writer_wait)) 2454 wake_up(&log_root_tree->log_writer_wait); 2455 } 2456 2457 if (ret) { 2458 blk_finish_plug(&plug); 2459 if (ret != -ENOSPC) { 2460 btrfs_abort_transaction(trans, root, ret); 2461 mutex_unlock(&log_root_tree->log_mutex); 2462 goto out; 2463 } 2464 root->fs_info->last_trans_log_full_commit = trans->transid; 2465 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark); 2466 btrfs_free_logged_extents(log, log_transid); 2467 mutex_unlock(&log_root_tree->log_mutex); 2468 ret = -EAGAIN; 2469 goto out; 2470 } 2471 2472 index2 = log_root_tree->log_transid % 2; 2473 if (atomic_read(&log_root_tree->log_commit[index2])) { 2474 blk_finish_plug(&plug); 2475 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark); 2476 wait_log_commit(trans, log_root_tree, 2477 log_root_tree->log_transid); 2478 btrfs_free_logged_extents(log, log_transid); 2479 mutex_unlock(&log_root_tree->log_mutex); 2480 ret = 0; 2481 goto out; 2482 } 2483 atomic_set(&log_root_tree->log_commit[index2], 1); 2484 2485 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) { 2486 wait_log_commit(trans, log_root_tree, 2487 log_root_tree->log_transid - 1); 2488 } 2489 2490 wait_for_writer(trans, log_root_tree); 2491 2492 /* 2493 * now that we've moved on to the tree of log tree roots, 2494 * check the full commit flag again 2495 */ 2496 if (root->fs_info->last_trans_log_full_commit == trans->transid) { 2497 blk_finish_plug(&plug); 2498 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark); 2499 btrfs_free_logged_extents(log, log_transid); 2500 mutex_unlock(&log_root_tree->log_mutex); 2501 ret = -EAGAIN; 2502 goto out_wake_log_root; 2503 } 2504 2505 ret = btrfs_write_marked_extents(log_root_tree, 2506 &log_root_tree->dirty_log_pages, 2507 EXTENT_DIRTY | EXTENT_NEW); 2508 blk_finish_plug(&plug); 2509 if (ret) { 2510 btrfs_abort_transaction(trans, root, ret); 2511 btrfs_free_logged_extents(log, log_transid); 2512 mutex_unlock(&log_root_tree->log_mutex); 2513 goto out_wake_log_root; 2514 } 2515 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark); 2516 btrfs_wait_marked_extents(log_root_tree, 2517 &log_root_tree->dirty_log_pages, 2518 EXTENT_NEW | EXTENT_DIRTY); 2519 btrfs_wait_logged_extents(log, log_transid); 2520 2521 btrfs_set_super_log_root(root->fs_info->super_for_commit, 2522 log_root_tree->node->start); 2523 btrfs_set_super_log_root_level(root->fs_info->super_for_commit, 2524 btrfs_header_level(log_root_tree->node)); 2525 2526 log_root_tree->log_transid++; 2527 smp_mb(); 2528 2529 mutex_unlock(&log_root_tree->log_mutex); 2530 2531 /* 2532 * nobody else is going to jump in and write the the ctree 2533 * super here because the log_commit atomic below is protecting 2534 * us. We must be called with a transaction handle pinning 2535 * the running transaction open, so a full commit can't hop 2536 * in and cause problems either. 2537 */ 2538 btrfs_scrub_pause_super(root); 2539 ret = write_ctree_super(trans, root->fs_info->tree_root, 1); 2540 btrfs_scrub_continue_super(root); 2541 if (ret) { 2542 btrfs_abort_transaction(trans, root, ret); 2543 goto out_wake_log_root; 2544 } 2545 2546 mutex_lock(&root->log_mutex); 2547 if (root->last_log_commit < log_transid) 2548 root->last_log_commit = log_transid; 2549 mutex_unlock(&root->log_mutex); 2550 2551 out_wake_log_root: 2552 atomic_set(&log_root_tree->log_commit[index2], 0); 2553 smp_mb(); 2554 if (waitqueue_active(&log_root_tree->log_commit_wait[index2])) 2555 wake_up(&log_root_tree->log_commit_wait[index2]); 2556 out: 2557 atomic_set(&root->log_commit[index1], 0); 2558 smp_mb(); 2559 if (waitqueue_active(&root->log_commit_wait[index1])) 2560 wake_up(&root->log_commit_wait[index1]); 2561 return ret; 2562 } 2563 2564 static void free_log_tree(struct btrfs_trans_handle *trans, 2565 struct btrfs_root *log) 2566 { 2567 int ret; 2568 u64 start; 2569 u64 end; 2570 struct walk_control wc = { 2571 .free = 1, 2572 .process_func = process_one_buffer 2573 }; 2574 2575 if (trans) { 2576 ret = walk_log_tree(trans, log, &wc); 2577 2578 /* I don't think this can happen but just in case */ 2579 if (ret) 2580 btrfs_abort_transaction(trans, log, ret); 2581 } 2582 2583 while (1) { 2584 ret = find_first_extent_bit(&log->dirty_log_pages, 2585 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW, 2586 NULL); 2587 if (ret) 2588 break; 2589 2590 clear_extent_bits(&log->dirty_log_pages, start, end, 2591 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS); 2592 } 2593 2594 /* 2595 * We may have short-circuited the log tree with the full commit logic 2596 * and left ordered extents on our list, so clear these out to keep us 2597 * from leaking inodes and memory. 2598 */ 2599 btrfs_free_logged_extents(log, 0); 2600 btrfs_free_logged_extents(log, 1); 2601 2602 free_extent_buffer(log->node); 2603 kfree(log); 2604 } 2605 2606 /* 2607 * free all the extents used by the tree log. This should be called 2608 * at commit time of the full transaction 2609 */ 2610 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root) 2611 { 2612 if (root->log_root) { 2613 free_log_tree(trans, root->log_root); 2614 root->log_root = NULL; 2615 } 2616 return 0; 2617 } 2618 2619 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans, 2620 struct btrfs_fs_info *fs_info) 2621 { 2622 if (fs_info->log_root_tree) { 2623 free_log_tree(trans, fs_info->log_root_tree); 2624 fs_info->log_root_tree = NULL; 2625 } 2626 return 0; 2627 } 2628 2629 /* 2630 * If both a file and directory are logged, and unlinks or renames are 2631 * mixed in, we have a few interesting corners: 2632 * 2633 * create file X in dir Y 2634 * link file X to X.link in dir Y 2635 * fsync file X 2636 * unlink file X but leave X.link 2637 * fsync dir Y 2638 * 2639 * After a crash we would expect only X.link to exist. But file X 2640 * didn't get fsync'd again so the log has back refs for X and X.link. 2641 * 2642 * We solve this by removing directory entries and inode backrefs from the 2643 * log when a file that was logged in the current transaction is 2644 * unlinked. Any later fsync will include the updated log entries, and 2645 * we'll be able to reconstruct the proper directory items from backrefs. 2646 * 2647 * This optimizations allows us to avoid relogging the entire inode 2648 * or the entire directory. 2649 */ 2650 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans, 2651 struct btrfs_root *root, 2652 const char *name, int name_len, 2653 struct inode *dir, u64 index) 2654 { 2655 struct btrfs_root *log; 2656 struct btrfs_dir_item *di; 2657 struct btrfs_path *path; 2658 int ret; 2659 int err = 0; 2660 int bytes_del = 0; 2661 u64 dir_ino = btrfs_ino(dir); 2662 2663 if (BTRFS_I(dir)->logged_trans < trans->transid) 2664 return 0; 2665 2666 ret = join_running_log_trans(root); 2667 if (ret) 2668 return 0; 2669 2670 mutex_lock(&BTRFS_I(dir)->log_mutex); 2671 2672 log = root->log_root; 2673 path = btrfs_alloc_path(); 2674 if (!path) { 2675 err = -ENOMEM; 2676 goto out_unlock; 2677 } 2678 2679 di = btrfs_lookup_dir_item(trans, log, path, dir_ino, 2680 name, name_len, -1); 2681 if (IS_ERR(di)) { 2682 err = PTR_ERR(di); 2683 goto fail; 2684 } 2685 if (di) { 2686 ret = btrfs_delete_one_dir_name(trans, log, path, di); 2687 bytes_del += name_len; 2688 if (ret) { 2689 err = ret; 2690 goto fail; 2691 } 2692 } 2693 btrfs_release_path(path); 2694 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino, 2695 index, name, name_len, -1); 2696 if (IS_ERR(di)) { 2697 err = PTR_ERR(di); 2698 goto fail; 2699 } 2700 if (di) { 2701 ret = btrfs_delete_one_dir_name(trans, log, path, di); 2702 bytes_del += name_len; 2703 if (ret) { 2704 err = ret; 2705 goto fail; 2706 } 2707 } 2708 2709 /* update the directory size in the log to reflect the names 2710 * we have removed 2711 */ 2712 if (bytes_del) { 2713 struct btrfs_key key; 2714 2715 key.objectid = dir_ino; 2716 key.offset = 0; 2717 key.type = BTRFS_INODE_ITEM_KEY; 2718 btrfs_release_path(path); 2719 2720 ret = btrfs_search_slot(trans, log, &key, path, 0, 1); 2721 if (ret < 0) { 2722 err = ret; 2723 goto fail; 2724 } 2725 if (ret == 0) { 2726 struct btrfs_inode_item *item; 2727 u64 i_size; 2728 2729 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2730 struct btrfs_inode_item); 2731 i_size = btrfs_inode_size(path->nodes[0], item); 2732 if (i_size > bytes_del) 2733 i_size -= bytes_del; 2734 else 2735 i_size = 0; 2736 btrfs_set_inode_size(path->nodes[0], item, i_size); 2737 btrfs_mark_buffer_dirty(path->nodes[0]); 2738 } else 2739 ret = 0; 2740 btrfs_release_path(path); 2741 } 2742 fail: 2743 btrfs_free_path(path); 2744 out_unlock: 2745 mutex_unlock(&BTRFS_I(dir)->log_mutex); 2746 if (ret == -ENOSPC) { 2747 root->fs_info->last_trans_log_full_commit = trans->transid; 2748 ret = 0; 2749 } else if (ret < 0) 2750 btrfs_abort_transaction(trans, root, ret); 2751 2752 btrfs_end_log_trans(root); 2753 2754 return err; 2755 } 2756 2757 /* see comments for btrfs_del_dir_entries_in_log */ 2758 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans, 2759 struct btrfs_root *root, 2760 const char *name, int name_len, 2761 struct inode *inode, u64 dirid) 2762 { 2763 struct btrfs_root *log; 2764 u64 index; 2765 int ret; 2766 2767 if (BTRFS_I(inode)->logged_trans < trans->transid) 2768 return 0; 2769 2770 ret = join_running_log_trans(root); 2771 if (ret) 2772 return 0; 2773 log = root->log_root; 2774 mutex_lock(&BTRFS_I(inode)->log_mutex); 2775 2776 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode), 2777 dirid, &index); 2778 mutex_unlock(&BTRFS_I(inode)->log_mutex); 2779 if (ret == -ENOSPC) { 2780 root->fs_info->last_trans_log_full_commit = trans->transid; 2781 ret = 0; 2782 } else if (ret < 0 && ret != -ENOENT) 2783 btrfs_abort_transaction(trans, root, ret); 2784 btrfs_end_log_trans(root); 2785 2786 return ret; 2787 } 2788 2789 /* 2790 * creates a range item in the log for 'dirid'. first_offset and 2791 * last_offset tell us which parts of the key space the log should 2792 * be considered authoritative for. 2793 */ 2794 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans, 2795 struct btrfs_root *log, 2796 struct btrfs_path *path, 2797 int key_type, u64 dirid, 2798 u64 first_offset, u64 last_offset) 2799 { 2800 int ret; 2801 struct btrfs_key key; 2802 struct btrfs_dir_log_item *item; 2803 2804 key.objectid = dirid; 2805 key.offset = first_offset; 2806 if (key_type == BTRFS_DIR_ITEM_KEY) 2807 key.type = BTRFS_DIR_LOG_ITEM_KEY; 2808 else 2809 key.type = BTRFS_DIR_LOG_INDEX_KEY; 2810 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item)); 2811 if (ret) 2812 return ret; 2813 2814 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2815 struct btrfs_dir_log_item); 2816 btrfs_set_dir_log_end(path->nodes[0], item, last_offset); 2817 btrfs_mark_buffer_dirty(path->nodes[0]); 2818 btrfs_release_path(path); 2819 return 0; 2820 } 2821 2822 /* 2823 * log all the items included in the current transaction for a given 2824 * directory. This also creates the range items in the log tree required 2825 * to replay anything deleted before the fsync 2826 */ 2827 static noinline int log_dir_items(struct btrfs_trans_handle *trans, 2828 struct btrfs_root *root, struct inode *inode, 2829 struct btrfs_path *path, 2830 struct btrfs_path *dst_path, int key_type, 2831 u64 min_offset, u64 *last_offset_ret) 2832 { 2833 struct btrfs_key min_key; 2834 struct btrfs_key max_key; 2835 struct btrfs_root *log = root->log_root; 2836 struct extent_buffer *src; 2837 int err = 0; 2838 int ret; 2839 int i; 2840 int nritems; 2841 u64 first_offset = min_offset; 2842 u64 last_offset = (u64)-1; 2843 u64 ino = btrfs_ino(inode); 2844 2845 log = root->log_root; 2846 max_key.objectid = ino; 2847 max_key.offset = (u64)-1; 2848 max_key.type = key_type; 2849 2850 min_key.objectid = ino; 2851 min_key.type = key_type; 2852 min_key.offset = min_offset; 2853 2854 path->keep_locks = 1; 2855 2856 ret = btrfs_search_forward(root, &min_key, &max_key, 2857 path, trans->transid); 2858 2859 /* 2860 * we didn't find anything from this transaction, see if there 2861 * is anything at all 2862 */ 2863 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) { 2864 min_key.objectid = ino; 2865 min_key.type = key_type; 2866 min_key.offset = (u64)-1; 2867 btrfs_release_path(path); 2868 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 2869 if (ret < 0) { 2870 btrfs_release_path(path); 2871 return ret; 2872 } 2873 ret = btrfs_previous_item(root, path, ino, key_type); 2874 2875 /* if ret == 0 there are items for this type, 2876 * create a range to tell us the last key of this type. 2877 * otherwise, there are no items in this directory after 2878 * *min_offset, and we create a range to indicate that. 2879 */ 2880 if (ret == 0) { 2881 struct btrfs_key tmp; 2882 btrfs_item_key_to_cpu(path->nodes[0], &tmp, 2883 path->slots[0]); 2884 if (key_type == tmp.type) 2885 first_offset = max(min_offset, tmp.offset) + 1; 2886 } 2887 goto done; 2888 } 2889 2890 /* go backward to find any previous key */ 2891 ret = btrfs_previous_item(root, path, ino, key_type); 2892 if (ret == 0) { 2893 struct btrfs_key tmp; 2894 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 2895 if (key_type == tmp.type) { 2896 first_offset = tmp.offset; 2897 ret = overwrite_item(trans, log, dst_path, 2898 path->nodes[0], path->slots[0], 2899 &tmp); 2900 if (ret) { 2901 err = ret; 2902 goto done; 2903 } 2904 } 2905 } 2906 btrfs_release_path(path); 2907 2908 /* find the first key from this transaction again */ 2909 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 2910 if (ret != 0) { 2911 WARN_ON(1); 2912 goto done; 2913 } 2914 2915 /* 2916 * we have a block from this transaction, log every item in it 2917 * from our directory 2918 */ 2919 while (1) { 2920 struct btrfs_key tmp; 2921 src = path->nodes[0]; 2922 nritems = btrfs_header_nritems(src); 2923 for (i = path->slots[0]; i < nritems; i++) { 2924 btrfs_item_key_to_cpu(src, &min_key, i); 2925 2926 if (min_key.objectid != ino || min_key.type != key_type) 2927 goto done; 2928 ret = overwrite_item(trans, log, dst_path, src, i, 2929 &min_key); 2930 if (ret) { 2931 err = ret; 2932 goto done; 2933 } 2934 } 2935 path->slots[0] = nritems; 2936 2937 /* 2938 * look ahead to the next item and see if it is also 2939 * from this directory and from this transaction 2940 */ 2941 ret = btrfs_next_leaf(root, path); 2942 if (ret == 1) { 2943 last_offset = (u64)-1; 2944 goto done; 2945 } 2946 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 2947 if (tmp.objectid != ino || tmp.type != key_type) { 2948 last_offset = (u64)-1; 2949 goto done; 2950 } 2951 if (btrfs_header_generation(path->nodes[0]) != trans->transid) { 2952 ret = overwrite_item(trans, log, dst_path, 2953 path->nodes[0], path->slots[0], 2954 &tmp); 2955 if (ret) 2956 err = ret; 2957 else 2958 last_offset = tmp.offset; 2959 goto done; 2960 } 2961 } 2962 done: 2963 btrfs_release_path(path); 2964 btrfs_release_path(dst_path); 2965 2966 if (err == 0) { 2967 *last_offset_ret = last_offset; 2968 /* 2969 * insert the log range keys to indicate where the log 2970 * is valid 2971 */ 2972 ret = insert_dir_log_key(trans, log, path, key_type, 2973 ino, first_offset, last_offset); 2974 if (ret) 2975 err = ret; 2976 } 2977 return err; 2978 } 2979 2980 /* 2981 * logging directories is very similar to logging inodes, We find all the items 2982 * from the current transaction and write them to the log. 2983 * 2984 * The recovery code scans the directory in the subvolume, and if it finds a 2985 * key in the range logged that is not present in the log tree, then it means 2986 * that dir entry was unlinked during the transaction. 2987 * 2988 * In order for that scan to work, we must include one key smaller than 2989 * the smallest logged by this transaction and one key larger than the largest 2990 * key logged by this transaction. 2991 */ 2992 static noinline int log_directory_changes(struct btrfs_trans_handle *trans, 2993 struct btrfs_root *root, struct inode *inode, 2994 struct btrfs_path *path, 2995 struct btrfs_path *dst_path) 2996 { 2997 u64 min_key; 2998 u64 max_key; 2999 int ret; 3000 int key_type = BTRFS_DIR_ITEM_KEY; 3001 3002 again: 3003 min_key = 0; 3004 max_key = 0; 3005 while (1) { 3006 ret = log_dir_items(trans, root, inode, path, 3007 dst_path, key_type, min_key, 3008 &max_key); 3009 if (ret) 3010 return ret; 3011 if (max_key == (u64)-1) 3012 break; 3013 min_key = max_key + 1; 3014 } 3015 3016 if (key_type == BTRFS_DIR_ITEM_KEY) { 3017 key_type = BTRFS_DIR_INDEX_KEY; 3018 goto again; 3019 } 3020 return 0; 3021 } 3022 3023 /* 3024 * a helper function to drop items from the log before we relog an 3025 * inode. max_key_type indicates the highest item type to remove. 3026 * This cannot be run for file data extents because it does not 3027 * free the extents they point to. 3028 */ 3029 static int drop_objectid_items(struct btrfs_trans_handle *trans, 3030 struct btrfs_root *log, 3031 struct btrfs_path *path, 3032 u64 objectid, int max_key_type) 3033 { 3034 int ret; 3035 struct btrfs_key key; 3036 struct btrfs_key found_key; 3037 int start_slot; 3038 3039 key.objectid = objectid; 3040 key.type = max_key_type; 3041 key.offset = (u64)-1; 3042 3043 while (1) { 3044 ret = btrfs_search_slot(trans, log, &key, path, -1, 1); 3045 BUG_ON(ret == 0); /* Logic error */ 3046 if (ret < 0) 3047 break; 3048 3049 if (path->slots[0] == 0) 3050 break; 3051 3052 path->slots[0]--; 3053 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 3054 path->slots[0]); 3055 3056 if (found_key.objectid != objectid) 3057 break; 3058 3059 found_key.offset = 0; 3060 found_key.type = 0; 3061 ret = btrfs_bin_search(path->nodes[0], &found_key, 0, 3062 &start_slot); 3063 3064 ret = btrfs_del_items(trans, log, path, start_slot, 3065 path->slots[0] - start_slot + 1); 3066 /* 3067 * If start slot isn't 0 then we don't need to re-search, we've 3068 * found the last guy with the objectid in this tree. 3069 */ 3070 if (ret || start_slot != 0) 3071 break; 3072 btrfs_release_path(path); 3073 } 3074 btrfs_release_path(path); 3075 if (ret > 0) 3076 ret = 0; 3077 return ret; 3078 } 3079 3080 static void fill_inode_item(struct btrfs_trans_handle *trans, 3081 struct extent_buffer *leaf, 3082 struct btrfs_inode_item *item, 3083 struct inode *inode, int log_inode_only) 3084 { 3085 struct btrfs_map_token token; 3086 3087 btrfs_init_map_token(&token); 3088 3089 if (log_inode_only) { 3090 /* set the generation to zero so the recover code 3091 * can tell the difference between an logging 3092 * just to say 'this inode exists' and a logging 3093 * to say 'update this inode with these values' 3094 */ 3095 btrfs_set_token_inode_generation(leaf, item, 0, &token); 3096 btrfs_set_token_inode_size(leaf, item, 0, &token); 3097 } else { 3098 btrfs_set_token_inode_generation(leaf, item, 3099 BTRFS_I(inode)->generation, 3100 &token); 3101 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token); 3102 } 3103 3104 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3105 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3106 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3107 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3108 3109 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item), 3110 inode->i_atime.tv_sec, &token); 3111 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item), 3112 inode->i_atime.tv_nsec, &token); 3113 3114 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item), 3115 inode->i_mtime.tv_sec, &token); 3116 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item), 3117 inode->i_mtime.tv_nsec, &token); 3118 3119 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item), 3120 inode->i_ctime.tv_sec, &token); 3121 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item), 3122 inode->i_ctime.tv_nsec, &token); 3123 3124 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3125 &token); 3126 3127 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token); 3128 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3129 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3130 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3131 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3132 } 3133 3134 static int log_inode_item(struct btrfs_trans_handle *trans, 3135 struct btrfs_root *log, struct btrfs_path *path, 3136 struct inode *inode) 3137 { 3138 struct btrfs_inode_item *inode_item; 3139 struct btrfs_key key; 3140 int ret; 3141 3142 memcpy(&key, &BTRFS_I(inode)->location, sizeof(key)); 3143 ret = btrfs_insert_empty_item(trans, log, path, &key, 3144 sizeof(*inode_item)); 3145 if (ret && ret != -EEXIST) 3146 return ret; 3147 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3148 struct btrfs_inode_item); 3149 fill_inode_item(trans, path->nodes[0], inode_item, inode, 0); 3150 btrfs_release_path(path); 3151 return 0; 3152 } 3153 3154 static noinline int copy_items(struct btrfs_trans_handle *trans, 3155 struct inode *inode, 3156 struct btrfs_path *dst_path, 3157 struct extent_buffer *src, 3158 int start_slot, int nr, int inode_only) 3159 { 3160 unsigned long src_offset; 3161 unsigned long dst_offset; 3162 struct btrfs_root *log = BTRFS_I(inode)->root->log_root; 3163 struct btrfs_file_extent_item *extent; 3164 struct btrfs_inode_item *inode_item; 3165 int ret; 3166 struct btrfs_key *ins_keys; 3167 u32 *ins_sizes; 3168 char *ins_data; 3169 int i; 3170 struct list_head ordered_sums; 3171 int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 3172 3173 INIT_LIST_HEAD(&ordered_sums); 3174 3175 ins_data = kmalloc(nr * sizeof(struct btrfs_key) + 3176 nr * sizeof(u32), GFP_NOFS); 3177 if (!ins_data) 3178 return -ENOMEM; 3179 3180 ins_sizes = (u32 *)ins_data; 3181 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32)); 3182 3183 for (i = 0; i < nr; i++) { 3184 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot); 3185 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot); 3186 } 3187 ret = btrfs_insert_empty_items(trans, log, dst_path, 3188 ins_keys, ins_sizes, nr); 3189 if (ret) { 3190 kfree(ins_data); 3191 return ret; 3192 } 3193 3194 for (i = 0; i < nr; i++, dst_path->slots[0]++) { 3195 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], 3196 dst_path->slots[0]); 3197 3198 src_offset = btrfs_item_ptr_offset(src, start_slot + i); 3199 3200 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) { 3201 inode_item = btrfs_item_ptr(dst_path->nodes[0], 3202 dst_path->slots[0], 3203 struct btrfs_inode_item); 3204 fill_inode_item(trans, dst_path->nodes[0], inode_item, 3205 inode, inode_only == LOG_INODE_EXISTS); 3206 } else { 3207 copy_extent_buffer(dst_path->nodes[0], src, dst_offset, 3208 src_offset, ins_sizes[i]); 3209 } 3210 3211 /* take a reference on file data extents so that truncates 3212 * or deletes of this inode don't have to relog the inode 3213 * again 3214 */ 3215 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY && 3216 !skip_csum) { 3217 int found_type; 3218 extent = btrfs_item_ptr(src, start_slot + i, 3219 struct btrfs_file_extent_item); 3220 3221 if (btrfs_file_extent_generation(src, extent) < trans->transid) 3222 continue; 3223 3224 found_type = btrfs_file_extent_type(src, extent); 3225 if (found_type == BTRFS_FILE_EXTENT_REG) { 3226 u64 ds, dl, cs, cl; 3227 ds = btrfs_file_extent_disk_bytenr(src, 3228 extent); 3229 /* ds == 0 is a hole */ 3230 if (ds == 0) 3231 continue; 3232 3233 dl = btrfs_file_extent_disk_num_bytes(src, 3234 extent); 3235 cs = btrfs_file_extent_offset(src, extent); 3236 cl = btrfs_file_extent_num_bytes(src, 3237 extent); 3238 if (btrfs_file_extent_compression(src, 3239 extent)) { 3240 cs = 0; 3241 cl = dl; 3242 } 3243 3244 ret = btrfs_lookup_csums_range( 3245 log->fs_info->csum_root, 3246 ds + cs, ds + cs + cl - 1, 3247 &ordered_sums, 0); 3248 if (ret) { 3249 btrfs_release_path(dst_path); 3250 kfree(ins_data); 3251 return ret; 3252 } 3253 } 3254 } 3255 } 3256 3257 btrfs_mark_buffer_dirty(dst_path->nodes[0]); 3258 btrfs_release_path(dst_path); 3259 kfree(ins_data); 3260 3261 /* 3262 * we have to do this after the loop above to avoid changing the 3263 * log tree while trying to change the log tree. 3264 */ 3265 ret = 0; 3266 while (!list_empty(&ordered_sums)) { 3267 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, 3268 struct btrfs_ordered_sum, 3269 list); 3270 if (!ret) 3271 ret = btrfs_csum_file_blocks(trans, log, sums); 3272 list_del(&sums->list); 3273 kfree(sums); 3274 } 3275 return ret; 3276 } 3277 3278 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b) 3279 { 3280 struct extent_map *em1, *em2; 3281 3282 em1 = list_entry(a, struct extent_map, list); 3283 em2 = list_entry(b, struct extent_map, list); 3284 3285 if (em1->start < em2->start) 3286 return -1; 3287 else if (em1->start > em2->start) 3288 return 1; 3289 return 0; 3290 } 3291 3292 static int log_one_extent(struct btrfs_trans_handle *trans, 3293 struct inode *inode, struct btrfs_root *root, 3294 struct extent_map *em, struct btrfs_path *path) 3295 { 3296 struct btrfs_root *log = root->log_root; 3297 struct btrfs_file_extent_item *fi; 3298 struct extent_buffer *leaf; 3299 struct btrfs_ordered_extent *ordered; 3300 struct list_head ordered_sums; 3301 struct btrfs_map_token token; 3302 struct btrfs_key key; 3303 u64 mod_start = em->mod_start; 3304 u64 mod_len = em->mod_len; 3305 u64 csum_offset; 3306 u64 csum_len; 3307 u64 extent_offset = em->start - em->orig_start; 3308 u64 block_len; 3309 int ret; 3310 int index = log->log_transid % 2; 3311 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 3312 3313 ret = __btrfs_drop_extents(trans, log, inode, path, em->start, 3314 em->start + em->len, NULL, 0); 3315 if (ret) 3316 return ret; 3317 3318 INIT_LIST_HEAD(&ordered_sums); 3319 btrfs_init_map_token(&token); 3320 key.objectid = btrfs_ino(inode); 3321 key.type = BTRFS_EXTENT_DATA_KEY; 3322 key.offset = em->start; 3323 3324 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*fi)); 3325 if (ret) 3326 return ret; 3327 leaf = path->nodes[0]; 3328 fi = btrfs_item_ptr(leaf, path->slots[0], 3329 struct btrfs_file_extent_item); 3330 3331 btrfs_set_token_file_extent_generation(leaf, fi, em->generation, 3332 &token); 3333 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3334 skip_csum = true; 3335 btrfs_set_token_file_extent_type(leaf, fi, 3336 BTRFS_FILE_EXTENT_PREALLOC, 3337 &token); 3338 } else { 3339 btrfs_set_token_file_extent_type(leaf, fi, 3340 BTRFS_FILE_EXTENT_REG, 3341 &token); 3342 if (em->block_start == 0) 3343 skip_csum = true; 3344 } 3345 3346 block_len = max(em->block_len, em->orig_block_len); 3347 if (em->compress_type != BTRFS_COMPRESS_NONE) { 3348 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 3349 em->block_start, 3350 &token); 3351 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len, 3352 &token); 3353 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) { 3354 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 3355 em->block_start - 3356 extent_offset, &token); 3357 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len, 3358 &token); 3359 } else { 3360 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token); 3361 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0, 3362 &token); 3363 } 3364 3365 btrfs_set_token_file_extent_offset(leaf, fi, 3366 em->start - em->orig_start, 3367 &token); 3368 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token); 3369 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token); 3370 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type, 3371 &token); 3372 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token); 3373 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token); 3374 btrfs_mark_buffer_dirty(leaf); 3375 3376 btrfs_release_path(path); 3377 if (ret) { 3378 return ret; 3379 } 3380 3381 if (skip_csum) 3382 return 0; 3383 3384 if (em->compress_type) { 3385 csum_offset = 0; 3386 csum_len = block_len; 3387 } 3388 3389 /* 3390 * First check and see if our csums are on our outstanding ordered 3391 * extents. 3392 */ 3393 again: 3394 spin_lock_irq(&log->log_extents_lock[index]); 3395 list_for_each_entry(ordered, &log->logged_list[index], log_list) { 3396 struct btrfs_ordered_sum *sum; 3397 3398 if (!mod_len) 3399 break; 3400 3401 if (ordered->inode != inode) 3402 continue; 3403 3404 if (ordered->file_offset + ordered->len <= mod_start || 3405 mod_start + mod_len <= ordered->file_offset) 3406 continue; 3407 3408 /* 3409 * We are going to copy all the csums on this ordered extent, so 3410 * go ahead and adjust mod_start and mod_len in case this 3411 * ordered extent has already been logged. 3412 */ 3413 if (ordered->file_offset > mod_start) { 3414 if (ordered->file_offset + ordered->len >= 3415 mod_start + mod_len) 3416 mod_len = ordered->file_offset - mod_start; 3417 /* 3418 * If we have this case 3419 * 3420 * |--------- logged extent ---------| 3421 * |----- ordered extent ----| 3422 * 3423 * Just don't mess with mod_start and mod_len, we'll 3424 * just end up logging more csums than we need and it 3425 * will be ok. 3426 */ 3427 } else { 3428 if (ordered->file_offset + ordered->len < 3429 mod_start + mod_len) { 3430 mod_len = (mod_start + mod_len) - 3431 (ordered->file_offset + ordered->len); 3432 mod_start = ordered->file_offset + 3433 ordered->len; 3434 } else { 3435 mod_len = 0; 3436 } 3437 } 3438 3439 /* 3440 * To keep us from looping for the above case of an ordered 3441 * extent that falls inside of the logged extent. 3442 */ 3443 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, 3444 &ordered->flags)) 3445 continue; 3446 atomic_inc(&ordered->refs); 3447 spin_unlock_irq(&log->log_extents_lock[index]); 3448 /* 3449 * we've dropped the lock, we must either break or 3450 * start over after this. 3451 */ 3452 3453 wait_event(ordered->wait, ordered->csum_bytes_left == 0); 3454 3455 list_for_each_entry(sum, &ordered->list, list) { 3456 ret = btrfs_csum_file_blocks(trans, log, sum); 3457 if (ret) { 3458 btrfs_put_ordered_extent(ordered); 3459 goto unlocked; 3460 } 3461 } 3462 btrfs_put_ordered_extent(ordered); 3463 goto again; 3464 3465 } 3466 spin_unlock_irq(&log->log_extents_lock[index]); 3467 unlocked: 3468 3469 if (!mod_len || ret) 3470 return ret; 3471 3472 csum_offset = mod_start - em->start; 3473 csum_len = mod_len; 3474 3475 /* block start is already adjusted for the file extent offset. */ 3476 ret = btrfs_lookup_csums_range(log->fs_info->csum_root, 3477 em->block_start + csum_offset, 3478 em->block_start + csum_offset + 3479 csum_len - 1, &ordered_sums, 0); 3480 if (ret) 3481 return ret; 3482 3483 while (!list_empty(&ordered_sums)) { 3484 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, 3485 struct btrfs_ordered_sum, 3486 list); 3487 if (!ret) 3488 ret = btrfs_csum_file_blocks(trans, log, sums); 3489 list_del(&sums->list); 3490 kfree(sums); 3491 } 3492 3493 return ret; 3494 } 3495 3496 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans, 3497 struct btrfs_root *root, 3498 struct inode *inode, 3499 struct btrfs_path *path) 3500 { 3501 struct extent_map *em, *n; 3502 struct list_head extents; 3503 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree; 3504 u64 test_gen; 3505 int ret = 0; 3506 int num = 0; 3507 3508 INIT_LIST_HEAD(&extents); 3509 3510 write_lock(&tree->lock); 3511 test_gen = root->fs_info->last_trans_committed; 3512 3513 list_for_each_entry_safe(em, n, &tree->modified_extents, list) { 3514 list_del_init(&em->list); 3515 3516 /* 3517 * Just an arbitrary number, this can be really CPU intensive 3518 * once we start getting a lot of extents, and really once we 3519 * have a bunch of extents we just want to commit since it will 3520 * be faster. 3521 */ 3522 if (++num > 32768) { 3523 list_del_init(&tree->modified_extents); 3524 ret = -EFBIG; 3525 goto process; 3526 } 3527 3528 if (em->generation <= test_gen) 3529 continue; 3530 /* Need a ref to keep it from getting evicted from cache */ 3531 atomic_inc(&em->refs); 3532 set_bit(EXTENT_FLAG_LOGGING, &em->flags); 3533 list_add_tail(&em->list, &extents); 3534 num++; 3535 } 3536 3537 list_sort(NULL, &extents, extent_cmp); 3538 3539 process: 3540 while (!list_empty(&extents)) { 3541 em = list_entry(extents.next, struct extent_map, list); 3542 3543 list_del_init(&em->list); 3544 3545 /* 3546 * If we had an error we just need to delete everybody from our 3547 * private list. 3548 */ 3549 if (ret) { 3550 clear_em_logging(tree, em); 3551 free_extent_map(em); 3552 continue; 3553 } 3554 3555 write_unlock(&tree->lock); 3556 3557 ret = log_one_extent(trans, inode, root, em, path); 3558 write_lock(&tree->lock); 3559 clear_em_logging(tree, em); 3560 free_extent_map(em); 3561 } 3562 WARN_ON(!list_empty(&extents)); 3563 write_unlock(&tree->lock); 3564 3565 btrfs_release_path(path); 3566 return ret; 3567 } 3568 3569 /* log a single inode in the tree log. 3570 * At least one parent directory for this inode must exist in the tree 3571 * or be logged already. 3572 * 3573 * Any items from this inode changed by the current transaction are copied 3574 * to the log tree. An extra reference is taken on any extents in this 3575 * file, allowing us to avoid a whole pile of corner cases around logging 3576 * blocks that have been removed from the tree. 3577 * 3578 * See LOG_INODE_ALL and related defines for a description of what inode_only 3579 * does. 3580 * 3581 * This handles both files and directories. 3582 */ 3583 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 3584 struct btrfs_root *root, struct inode *inode, 3585 int inode_only) 3586 { 3587 struct btrfs_path *path; 3588 struct btrfs_path *dst_path; 3589 struct btrfs_key min_key; 3590 struct btrfs_key max_key; 3591 struct btrfs_root *log = root->log_root; 3592 struct extent_buffer *src = NULL; 3593 int err = 0; 3594 int ret; 3595 int nritems; 3596 int ins_start_slot = 0; 3597 int ins_nr; 3598 bool fast_search = false; 3599 u64 ino = btrfs_ino(inode); 3600 3601 path = btrfs_alloc_path(); 3602 if (!path) 3603 return -ENOMEM; 3604 dst_path = btrfs_alloc_path(); 3605 if (!dst_path) { 3606 btrfs_free_path(path); 3607 return -ENOMEM; 3608 } 3609 3610 min_key.objectid = ino; 3611 min_key.type = BTRFS_INODE_ITEM_KEY; 3612 min_key.offset = 0; 3613 3614 max_key.objectid = ino; 3615 3616 3617 /* today the code can only do partial logging of directories */ 3618 if (S_ISDIR(inode->i_mode) || 3619 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3620 &BTRFS_I(inode)->runtime_flags) && 3621 inode_only == LOG_INODE_EXISTS)) 3622 max_key.type = BTRFS_XATTR_ITEM_KEY; 3623 else 3624 max_key.type = (u8)-1; 3625 max_key.offset = (u64)-1; 3626 3627 /* Only run delayed items if we are a dir or a new file */ 3628 if (S_ISDIR(inode->i_mode) || 3629 BTRFS_I(inode)->generation > root->fs_info->last_trans_committed) { 3630 ret = btrfs_commit_inode_delayed_items(trans, inode); 3631 if (ret) { 3632 btrfs_free_path(path); 3633 btrfs_free_path(dst_path); 3634 return ret; 3635 } 3636 } 3637 3638 mutex_lock(&BTRFS_I(inode)->log_mutex); 3639 3640 btrfs_get_logged_extents(log, inode); 3641 3642 /* 3643 * a brute force approach to making sure we get the most uptodate 3644 * copies of everything. 3645 */ 3646 if (S_ISDIR(inode->i_mode)) { 3647 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY; 3648 3649 if (inode_only == LOG_INODE_EXISTS) 3650 max_key_type = BTRFS_XATTR_ITEM_KEY; 3651 ret = drop_objectid_items(trans, log, path, ino, max_key_type); 3652 } else { 3653 if (test_and_clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3654 &BTRFS_I(inode)->runtime_flags)) { 3655 clear_bit(BTRFS_INODE_COPY_EVERYTHING, 3656 &BTRFS_I(inode)->runtime_flags); 3657 ret = btrfs_truncate_inode_items(trans, log, 3658 inode, 0, 0); 3659 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING, 3660 &BTRFS_I(inode)->runtime_flags)) { 3661 if (inode_only == LOG_INODE_ALL) 3662 fast_search = true; 3663 max_key.type = BTRFS_XATTR_ITEM_KEY; 3664 ret = drop_objectid_items(trans, log, path, ino, 3665 max_key.type); 3666 } else { 3667 if (inode_only == LOG_INODE_ALL) 3668 fast_search = true; 3669 ret = log_inode_item(trans, log, dst_path, inode); 3670 if (ret) { 3671 err = ret; 3672 goto out_unlock; 3673 } 3674 goto log_extents; 3675 } 3676 3677 } 3678 if (ret) { 3679 err = ret; 3680 goto out_unlock; 3681 } 3682 path->keep_locks = 1; 3683 3684 while (1) { 3685 ins_nr = 0; 3686 ret = btrfs_search_forward(root, &min_key, &max_key, 3687 path, trans->transid); 3688 if (ret != 0) 3689 break; 3690 again: 3691 /* note, ins_nr might be > 0 here, cleanup outside the loop */ 3692 if (min_key.objectid != ino) 3693 break; 3694 if (min_key.type > max_key.type) 3695 break; 3696 3697 src = path->nodes[0]; 3698 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) { 3699 ins_nr++; 3700 goto next_slot; 3701 } else if (!ins_nr) { 3702 ins_start_slot = path->slots[0]; 3703 ins_nr = 1; 3704 goto next_slot; 3705 } 3706 3707 ret = copy_items(trans, inode, dst_path, src, ins_start_slot, 3708 ins_nr, inode_only); 3709 if (ret) { 3710 err = ret; 3711 goto out_unlock; 3712 } 3713 ins_nr = 1; 3714 ins_start_slot = path->slots[0]; 3715 next_slot: 3716 3717 nritems = btrfs_header_nritems(path->nodes[0]); 3718 path->slots[0]++; 3719 if (path->slots[0] < nritems) { 3720 btrfs_item_key_to_cpu(path->nodes[0], &min_key, 3721 path->slots[0]); 3722 goto again; 3723 } 3724 if (ins_nr) { 3725 ret = copy_items(trans, inode, dst_path, src, 3726 ins_start_slot, 3727 ins_nr, inode_only); 3728 if (ret) { 3729 err = ret; 3730 goto out_unlock; 3731 } 3732 ins_nr = 0; 3733 } 3734 btrfs_release_path(path); 3735 3736 if (min_key.offset < (u64)-1) 3737 min_key.offset++; 3738 else if (min_key.type < (u8)-1) 3739 min_key.type++; 3740 else if (min_key.objectid < (u64)-1) 3741 min_key.objectid++; 3742 else 3743 break; 3744 } 3745 if (ins_nr) { 3746 ret = copy_items(trans, inode, dst_path, src, ins_start_slot, 3747 ins_nr, inode_only); 3748 if (ret) { 3749 err = ret; 3750 goto out_unlock; 3751 } 3752 ins_nr = 0; 3753 } 3754 3755 log_extents: 3756 btrfs_release_path(path); 3757 btrfs_release_path(dst_path); 3758 if (fast_search) { 3759 ret = btrfs_log_changed_extents(trans, root, inode, dst_path); 3760 if (ret) { 3761 err = ret; 3762 goto out_unlock; 3763 } 3764 } else { 3765 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree; 3766 struct extent_map *em, *n; 3767 3768 write_lock(&tree->lock); 3769 list_for_each_entry_safe(em, n, &tree->modified_extents, list) 3770 list_del_init(&em->list); 3771 write_unlock(&tree->lock); 3772 } 3773 3774 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) { 3775 ret = log_directory_changes(trans, root, inode, path, dst_path); 3776 if (ret) { 3777 err = ret; 3778 goto out_unlock; 3779 } 3780 } 3781 BTRFS_I(inode)->logged_trans = trans->transid; 3782 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans; 3783 out_unlock: 3784 if (err) 3785 btrfs_free_logged_extents(log, log->log_transid); 3786 mutex_unlock(&BTRFS_I(inode)->log_mutex); 3787 3788 btrfs_free_path(path); 3789 btrfs_free_path(dst_path); 3790 return err; 3791 } 3792 3793 /* 3794 * follow the dentry parent pointers up the chain and see if any 3795 * of the directories in it require a full commit before they can 3796 * be logged. Returns zero if nothing special needs to be done or 1 if 3797 * a full commit is required. 3798 */ 3799 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans, 3800 struct inode *inode, 3801 struct dentry *parent, 3802 struct super_block *sb, 3803 u64 last_committed) 3804 { 3805 int ret = 0; 3806 struct btrfs_root *root; 3807 struct dentry *old_parent = NULL; 3808 3809 /* 3810 * for regular files, if its inode is already on disk, we don't 3811 * have to worry about the parents at all. This is because 3812 * we can use the last_unlink_trans field to record renames 3813 * and other fun in this file. 3814 */ 3815 if (S_ISREG(inode->i_mode) && 3816 BTRFS_I(inode)->generation <= last_committed && 3817 BTRFS_I(inode)->last_unlink_trans <= last_committed) 3818 goto out; 3819 3820 if (!S_ISDIR(inode->i_mode)) { 3821 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb) 3822 goto out; 3823 inode = parent->d_inode; 3824 } 3825 3826 while (1) { 3827 BTRFS_I(inode)->logged_trans = trans->transid; 3828 smp_mb(); 3829 3830 if (BTRFS_I(inode)->last_unlink_trans > last_committed) { 3831 root = BTRFS_I(inode)->root; 3832 3833 /* 3834 * make sure any commits to the log are forced 3835 * to be full commits 3836 */ 3837 root->fs_info->last_trans_log_full_commit = 3838 trans->transid; 3839 ret = 1; 3840 break; 3841 } 3842 3843 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb) 3844 break; 3845 3846 if (IS_ROOT(parent)) 3847 break; 3848 3849 parent = dget_parent(parent); 3850 dput(old_parent); 3851 old_parent = parent; 3852 inode = parent->d_inode; 3853 3854 } 3855 dput(old_parent); 3856 out: 3857 return ret; 3858 } 3859 3860 /* 3861 * helper function around btrfs_log_inode to make sure newly created 3862 * parent directories also end up in the log. A minimal inode and backref 3863 * only logging is done of any parent directories that are older than 3864 * the last committed transaction 3865 */ 3866 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans, 3867 struct btrfs_root *root, struct inode *inode, 3868 struct dentry *parent, int exists_only) 3869 { 3870 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL; 3871 struct super_block *sb; 3872 struct dentry *old_parent = NULL; 3873 int ret = 0; 3874 u64 last_committed = root->fs_info->last_trans_committed; 3875 3876 sb = inode->i_sb; 3877 3878 if (btrfs_test_opt(root, NOTREELOG)) { 3879 ret = 1; 3880 goto end_no_trans; 3881 } 3882 3883 if (root->fs_info->last_trans_log_full_commit > 3884 root->fs_info->last_trans_committed) { 3885 ret = 1; 3886 goto end_no_trans; 3887 } 3888 3889 if (root != BTRFS_I(inode)->root || 3890 btrfs_root_refs(&root->root_item) == 0) { 3891 ret = 1; 3892 goto end_no_trans; 3893 } 3894 3895 ret = check_parent_dirs_for_sync(trans, inode, parent, 3896 sb, last_committed); 3897 if (ret) 3898 goto end_no_trans; 3899 3900 if (btrfs_inode_in_log(inode, trans->transid)) { 3901 ret = BTRFS_NO_LOG_SYNC; 3902 goto end_no_trans; 3903 } 3904 3905 ret = start_log_trans(trans, root); 3906 if (ret) 3907 goto end_trans; 3908 3909 ret = btrfs_log_inode(trans, root, inode, inode_only); 3910 if (ret) 3911 goto end_trans; 3912 3913 /* 3914 * for regular files, if its inode is already on disk, we don't 3915 * have to worry about the parents at all. This is because 3916 * we can use the last_unlink_trans field to record renames 3917 * and other fun in this file. 3918 */ 3919 if (S_ISREG(inode->i_mode) && 3920 BTRFS_I(inode)->generation <= last_committed && 3921 BTRFS_I(inode)->last_unlink_trans <= last_committed) { 3922 ret = 0; 3923 goto end_trans; 3924 } 3925 3926 inode_only = LOG_INODE_EXISTS; 3927 while (1) { 3928 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb) 3929 break; 3930 3931 inode = parent->d_inode; 3932 if (root != BTRFS_I(inode)->root) 3933 break; 3934 3935 if (BTRFS_I(inode)->generation > 3936 root->fs_info->last_trans_committed) { 3937 ret = btrfs_log_inode(trans, root, inode, inode_only); 3938 if (ret) 3939 goto end_trans; 3940 } 3941 if (IS_ROOT(parent)) 3942 break; 3943 3944 parent = dget_parent(parent); 3945 dput(old_parent); 3946 old_parent = parent; 3947 } 3948 ret = 0; 3949 end_trans: 3950 dput(old_parent); 3951 if (ret < 0) { 3952 root->fs_info->last_trans_log_full_commit = trans->transid; 3953 ret = 1; 3954 } 3955 btrfs_end_log_trans(root); 3956 end_no_trans: 3957 return ret; 3958 } 3959 3960 /* 3961 * it is not safe to log dentry if the chunk root has added new 3962 * chunks. This returns 0 if the dentry was logged, and 1 otherwise. 3963 * If this returns 1, you must commit the transaction to safely get your 3964 * data on disk. 3965 */ 3966 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans, 3967 struct btrfs_root *root, struct dentry *dentry) 3968 { 3969 struct dentry *parent = dget_parent(dentry); 3970 int ret; 3971 3972 ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0); 3973 dput(parent); 3974 3975 return ret; 3976 } 3977 3978 /* 3979 * should be called during mount to recover any replay any log trees 3980 * from the FS 3981 */ 3982 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree) 3983 { 3984 int ret; 3985 struct btrfs_path *path; 3986 struct btrfs_trans_handle *trans; 3987 struct btrfs_key key; 3988 struct btrfs_key found_key; 3989 struct btrfs_key tmp_key; 3990 struct btrfs_root *log; 3991 struct btrfs_fs_info *fs_info = log_root_tree->fs_info; 3992 struct walk_control wc = { 3993 .process_func = process_one_buffer, 3994 .stage = 0, 3995 }; 3996 3997 path = btrfs_alloc_path(); 3998 if (!path) 3999 return -ENOMEM; 4000 4001 fs_info->log_root_recovering = 1; 4002 4003 trans = btrfs_start_transaction(fs_info->tree_root, 0); 4004 if (IS_ERR(trans)) { 4005 ret = PTR_ERR(trans); 4006 goto error; 4007 } 4008 4009 wc.trans = trans; 4010 wc.pin = 1; 4011 4012 ret = walk_log_tree(trans, log_root_tree, &wc); 4013 if (ret) { 4014 btrfs_error(fs_info, ret, "Failed to pin buffers while " 4015 "recovering log root tree."); 4016 goto error; 4017 } 4018 4019 again: 4020 key.objectid = BTRFS_TREE_LOG_OBJECTID; 4021 key.offset = (u64)-1; 4022 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); 4023 4024 while (1) { 4025 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0); 4026 4027 if (ret < 0) { 4028 btrfs_error(fs_info, ret, 4029 "Couldn't find tree log root."); 4030 goto error; 4031 } 4032 if (ret > 0) { 4033 if (path->slots[0] == 0) 4034 break; 4035 path->slots[0]--; 4036 } 4037 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 4038 path->slots[0]); 4039 btrfs_release_path(path); 4040 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID) 4041 break; 4042 4043 log = btrfs_read_fs_root(log_root_tree, &found_key); 4044 if (IS_ERR(log)) { 4045 ret = PTR_ERR(log); 4046 btrfs_error(fs_info, ret, 4047 "Couldn't read tree log root."); 4048 goto error; 4049 } 4050 4051 tmp_key.objectid = found_key.offset; 4052 tmp_key.type = BTRFS_ROOT_ITEM_KEY; 4053 tmp_key.offset = (u64)-1; 4054 4055 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key); 4056 if (IS_ERR(wc.replay_dest)) { 4057 ret = PTR_ERR(wc.replay_dest); 4058 free_extent_buffer(log->node); 4059 free_extent_buffer(log->commit_root); 4060 kfree(log); 4061 btrfs_error(fs_info, ret, "Couldn't read target root " 4062 "for tree log recovery."); 4063 goto error; 4064 } 4065 4066 wc.replay_dest->log_root = log; 4067 btrfs_record_root_in_trans(trans, wc.replay_dest); 4068 ret = walk_log_tree(trans, log, &wc); 4069 4070 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) { 4071 ret = fixup_inode_link_counts(trans, wc.replay_dest, 4072 path); 4073 } 4074 4075 key.offset = found_key.offset - 1; 4076 wc.replay_dest->log_root = NULL; 4077 free_extent_buffer(log->node); 4078 free_extent_buffer(log->commit_root); 4079 kfree(log); 4080 4081 if (ret) 4082 goto error; 4083 4084 if (found_key.offset == 0) 4085 break; 4086 } 4087 btrfs_release_path(path); 4088 4089 /* step one is to pin it all, step two is to replay just inodes */ 4090 if (wc.pin) { 4091 wc.pin = 0; 4092 wc.process_func = replay_one_buffer; 4093 wc.stage = LOG_WALK_REPLAY_INODES; 4094 goto again; 4095 } 4096 /* step three is to replay everything */ 4097 if (wc.stage < LOG_WALK_REPLAY_ALL) { 4098 wc.stage++; 4099 goto again; 4100 } 4101 4102 btrfs_free_path(path); 4103 4104 /* step 4: commit the transaction, which also unpins the blocks */ 4105 ret = btrfs_commit_transaction(trans, fs_info->tree_root); 4106 if (ret) 4107 return ret; 4108 4109 free_extent_buffer(log_root_tree->node); 4110 log_root_tree->log_root = NULL; 4111 fs_info->log_root_recovering = 0; 4112 kfree(log_root_tree); 4113 4114 return 0; 4115 error: 4116 if (wc.trans) 4117 btrfs_end_transaction(wc.trans, fs_info->tree_root); 4118 btrfs_free_path(path); 4119 return ret; 4120 } 4121 4122 /* 4123 * there are some corner cases where we want to force a full 4124 * commit instead of allowing a directory to be logged. 4125 * 4126 * They revolve around files there were unlinked from the directory, and 4127 * this function updates the parent directory so that a full commit is 4128 * properly done if it is fsync'd later after the unlinks are done. 4129 */ 4130 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans, 4131 struct inode *dir, struct inode *inode, 4132 int for_rename) 4133 { 4134 /* 4135 * when we're logging a file, if it hasn't been renamed 4136 * or unlinked, and its inode is fully committed on disk, 4137 * we don't have to worry about walking up the directory chain 4138 * to log its parents. 4139 * 4140 * So, we use the last_unlink_trans field to put this transid 4141 * into the file. When the file is logged we check it and 4142 * don't log the parents if the file is fully on disk. 4143 */ 4144 if (S_ISREG(inode->i_mode)) 4145 BTRFS_I(inode)->last_unlink_trans = trans->transid; 4146 4147 /* 4148 * if this directory was already logged any new 4149 * names for this file/dir will get recorded 4150 */ 4151 smp_mb(); 4152 if (BTRFS_I(dir)->logged_trans == trans->transid) 4153 return; 4154 4155 /* 4156 * if the inode we're about to unlink was logged, 4157 * the log will be properly updated for any new names 4158 */ 4159 if (BTRFS_I(inode)->logged_trans == trans->transid) 4160 return; 4161 4162 /* 4163 * when renaming files across directories, if the directory 4164 * there we're unlinking from gets fsync'd later on, there's 4165 * no way to find the destination directory later and fsync it 4166 * properly. So, we have to be conservative and force commits 4167 * so the new name gets discovered. 4168 */ 4169 if (for_rename) 4170 goto record; 4171 4172 /* we can safely do the unlink without any special recording */ 4173 return; 4174 4175 record: 4176 BTRFS_I(dir)->last_unlink_trans = trans->transid; 4177 } 4178 4179 /* 4180 * Call this after adding a new name for a file and it will properly 4181 * update the log to reflect the new name. 4182 * 4183 * It will return zero if all goes well, and it will return 1 if a 4184 * full transaction commit is required. 4185 */ 4186 int btrfs_log_new_name(struct btrfs_trans_handle *trans, 4187 struct inode *inode, struct inode *old_dir, 4188 struct dentry *parent) 4189 { 4190 struct btrfs_root * root = BTRFS_I(inode)->root; 4191 4192 /* 4193 * this will force the logging code to walk the dentry chain 4194 * up for the file 4195 */ 4196 if (S_ISREG(inode->i_mode)) 4197 BTRFS_I(inode)->last_unlink_trans = trans->transid; 4198 4199 /* 4200 * if this inode hasn't been logged and directory we're renaming it 4201 * from hasn't been logged, we don't need to log it 4202 */ 4203 if (BTRFS_I(inode)->logged_trans <= 4204 root->fs_info->last_trans_committed && 4205 (!old_dir || BTRFS_I(old_dir)->logged_trans <= 4206 root->fs_info->last_trans_committed)) 4207 return 0; 4208 4209 return btrfs_log_inode_parent(trans, root, inode, parent, 1); 4210 } 4211 4212