xref: /linux/fs/btrfs/tree-log.c (revision a224bd36bf5ccc72d0f12ab11216706762133177)
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/list_sort.h>
23 #include "ctree.h"
24 #include "transaction.h"
25 #include "disk-io.h"
26 #include "locking.h"
27 #include "print-tree.h"
28 #include "backref.h"
29 #include "compat.h"
30 #include "tree-log.h"
31 #include "hash.h"
32 
33 /* magic values for the inode_only field in btrfs_log_inode:
34  *
35  * LOG_INODE_ALL means to log everything
36  * LOG_INODE_EXISTS means to log just enough to recreate the inode
37  * during log replay
38  */
39 #define LOG_INODE_ALL 0
40 #define LOG_INODE_EXISTS 1
41 
42 /*
43  * directory trouble cases
44  *
45  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
46  * log, we must force a full commit before doing an fsync of the directory
47  * where the unlink was done.
48  * ---> record transid of last unlink/rename per directory
49  *
50  * mkdir foo/some_dir
51  * normal commit
52  * rename foo/some_dir foo2/some_dir
53  * mkdir foo/some_dir
54  * fsync foo/some_dir/some_file
55  *
56  * The fsync above will unlink the original some_dir without recording
57  * it in its new location (foo2).  After a crash, some_dir will be gone
58  * unless the fsync of some_file forces a full commit
59  *
60  * 2) we must log any new names for any file or dir that is in the fsync
61  * log. ---> check inode while renaming/linking.
62  *
63  * 2a) we must log any new names for any file or dir during rename
64  * when the directory they are being removed from was logged.
65  * ---> check inode and old parent dir during rename
66  *
67  *  2a is actually the more important variant.  With the extra logging
68  *  a crash might unlink the old name without recreating the new one
69  *
70  * 3) after a crash, we must go through any directories with a link count
71  * of zero and redo the rm -rf
72  *
73  * mkdir f1/foo
74  * normal commit
75  * rm -rf f1/foo
76  * fsync(f1)
77  *
78  * The directory f1 was fully removed from the FS, but fsync was never
79  * called on f1, only its parent dir.  After a crash the rm -rf must
80  * be replayed.  This must be able to recurse down the entire
81  * directory tree.  The inode link count fixup code takes care of the
82  * ugly details.
83  */
84 
85 /*
86  * stages for the tree walking.  The first
87  * stage (0) is to only pin down the blocks we find
88  * the second stage (1) is to make sure that all the inodes
89  * we find in the log are created in the subvolume.
90  *
91  * The last stage is to deal with directories and links and extents
92  * and all the other fun semantics
93  */
94 #define LOG_WALK_PIN_ONLY 0
95 #define LOG_WALK_REPLAY_INODES 1
96 #define LOG_WALK_REPLAY_ALL 2
97 
98 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
99 			     struct btrfs_root *root, struct inode *inode,
100 			     int inode_only);
101 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
102 			     struct btrfs_root *root,
103 			     struct btrfs_path *path, u64 objectid);
104 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
105 				       struct btrfs_root *root,
106 				       struct btrfs_root *log,
107 				       struct btrfs_path *path,
108 				       u64 dirid, int del_all);
109 
110 /*
111  * tree logging is a special write ahead log used to make sure that
112  * fsyncs and O_SYNCs can happen without doing full tree commits.
113  *
114  * Full tree commits are expensive because they require commonly
115  * modified blocks to be recowed, creating many dirty pages in the
116  * extent tree an 4x-6x higher write load than ext3.
117  *
118  * Instead of doing a tree commit on every fsync, we use the
119  * key ranges and transaction ids to find items for a given file or directory
120  * that have changed in this transaction.  Those items are copied into
121  * a special tree (one per subvolume root), that tree is written to disk
122  * and then the fsync is considered complete.
123  *
124  * After a crash, items are copied out of the log-tree back into the
125  * subvolume tree.  Any file data extents found are recorded in the extent
126  * allocation tree, and the log-tree freed.
127  *
128  * The log tree is read three times, once to pin down all the extents it is
129  * using in ram and once, once to create all the inodes logged in the tree
130  * and once to do all the other items.
131  */
132 
133 /*
134  * start a sub transaction and setup the log tree
135  * this increments the log tree writer count to make the people
136  * syncing the tree wait for us to finish
137  */
138 static int start_log_trans(struct btrfs_trans_handle *trans,
139 			   struct btrfs_root *root)
140 {
141 	int ret;
142 	int err = 0;
143 
144 	mutex_lock(&root->log_mutex);
145 	if (root->log_root) {
146 		if (!root->log_start_pid) {
147 			root->log_start_pid = current->pid;
148 			root->log_multiple_pids = false;
149 		} else if (root->log_start_pid != current->pid) {
150 			root->log_multiple_pids = true;
151 		}
152 
153 		atomic_inc(&root->log_batch);
154 		atomic_inc(&root->log_writers);
155 		mutex_unlock(&root->log_mutex);
156 		return 0;
157 	}
158 	root->log_multiple_pids = false;
159 	root->log_start_pid = current->pid;
160 	mutex_lock(&root->fs_info->tree_log_mutex);
161 	if (!root->fs_info->log_root_tree) {
162 		ret = btrfs_init_log_root_tree(trans, root->fs_info);
163 		if (ret)
164 			err = ret;
165 	}
166 	if (err == 0 && !root->log_root) {
167 		ret = btrfs_add_log_tree(trans, root);
168 		if (ret)
169 			err = ret;
170 	}
171 	mutex_unlock(&root->fs_info->tree_log_mutex);
172 	atomic_inc(&root->log_batch);
173 	atomic_inc(&root->log_writers);
174 	mutex_unlock(&root->log_mutex);
175 	return err;
176 }
177 
178 /*
179  * returns 0 if there was a log transaction running and we were able
180  * to join, or returns -ENOENT if there were not transactions
181  * in progress
182  */
183 static int join_running_log_trans(struct btrfs_root *root)
184 {
185 	int ret = -ENOENT;
186 
187 	smp_mb();
188 	if (!root->log_root)
189 		return -ENOENT;
190 
191 	mutex_lock(&root->log_mutex);
192 	if (root->log_root) {
193 		ret = 0;
194 		atomic_inc(&root->log_writers);
195 	}
196 	mutex_unlock(&root->log_mutex);
197 	return ret;
198 }
199 
200 /*
201  * This either makes the current running log transaction wait
202  * until you call btrfs_end_log_trans() or it makes any future
203  * log transactions wait until you call btrfs_end_log_trans()
204  */
205 int btrfs_pin_log_trans(struct btrfs_root *root)
206 {
207 	int ret = -ENOENT;
208 
209 	mutex_lock(&root->log_mutex);
210 	atomic_inc(&root->log_writers);
211 	mutex_unlock(&root->log_mutex);
212 	return ret;
213 }
214 
215 /*
216  * indicate we're done making changes to the log tree
217  * and wake up anyone waiting to do a sync
218  */
219 void btrfs_end_log_trans(struct btrfs_root *root)
220 {
221 	if (atomic_dec_and_test(&root->log_writers)) {
222 		smp_mb();
223 		if (waitqueue_active(&root->log_writer_wait))
224 			wake_up(&root->log_writer_wait);
225 	}
226 }
227 
228 
229 /*
230  * the walk control struct is used to pass state down the chain when
231  * processing the log tree.  The stage field tells us which part
232  * of the log tree processing we are currently doing.  The others
233  * are state fields used for that specific part
234  */
235 struct walk_control {
236 	/* should we free the extent on disk when done?  This is used
237 	 * at transaction commit time while freeing a log tree
238 	 */
239 	int free;
240 
241 	/* should we write out the extent buffer?  This is used
242 	 * while flushing the log tree to disk during a sync
243 	 */
244 	int write;
245 
246 	/* should we wait for the extent buffer io to finish?  Also used
247 	 * while flushing the log tree to disk for a sync
248 	 */
249 	int wait;
250 
251 	/* pin only walk, we record which extents on disk belong to the
252 	 * log trees
253 	 */
254 	int pin;
255 
256 	/* what stage of the replay code we're currently in */
257 	int stage;
258 
259 	/* the root we are currently replaying */
260 	struct btrfs_root *replay_dest;
261 
262 	/* the trans handle for the current replay */
263 	struct btrfs_trans_handle *trans;
264 
265 	/* the function that gets used to process blocks we find in the
266 	 * tree.  Note the extent_buffer might not be up to date when it is
267 	 * passed in, and it must be checked or read if you need the data
268 	 * inside it
269 	 */
270 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
271 			    struct walk_control *wc, u64 gen);
272 };
273 
274 /*
275  * process_func used to pin down extents, write them or wait on them
276  */
277 static int process_one_buffer(struct btrfs_root *log,
278 			      struct extent_buffer *eb,
279 			      struct walk_control *wc, u64 gen)
280 {
281 	int ret = 0;
282 
283 	/*
284 	 * If this fs is mixed then we need to be able to process the leaves to
285 	 * pin down any logged extents, so we have to read the block.
286 	 */
287 	if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) {
288 		ret = btrfs_read_buffer(eb, gen);
289 		if (ret)
290 			return ret;
291 	}
292 
293 	if (wc->pin)
294 		ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
295 						      eb->start, eb->len);
296 
297 	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
298 		if (wc->pin && btrfs_header_level(eb) == 0)
299 			ret = btrfs_exclude_logged_extents(log, eb);
300 		if (wc->write)
301 			btrfs_write_tree_block(eb);
302 		if (wc->wait)
303 			btrfs_wait_tree_block_writeback(eb);
304 	}
305 	return ret;
306 }
307 
308 /*
309  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
310  * to the src data we are copying out.
311  *
312  * root is the tree we are copying into, and path is a scratch
313  * path for use in this function (it should be released on entry and
314  * will be released on exit).
315  *
316  * If the key is already in the destination tree the existing item is
317  * overwritten.  If the existing item isn't big enough, it is extended.
318  * If it is too large, it is truncated.
319  *
320  * If the key isn't in the destination yet, a new item is inserted.
321  */
322 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
323 				   struct btrfs_root *root,
324 				   struct btrfs_path *path,
325 				   struct extent_buffer *eb, int slot,
326 				   struct btrfs_key *key)
327 {
328 	int ret;
329 	u32 item_size;
330 	u64 saved_i_size = 0;
331 	int save_old_i_size = 0;
332 	unsigned long src_ptr;
333 	unsigned long dst_ptr;
334 	int overwrite_root = 0;
335 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
336 
337 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
338 		overwrite_root = 1;
339 
340 	item_size = btrfs_item_size_nr(eb, slot);
341 	src_ptr = btrfs_item_ptr_offset(eb, slot);
342 
343 	/* look for the key in the destination tree */
344 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
345 	if (ret < 0)
346 		return ret;
347 
348 	if (ret == 0) {
349 		char *src_copy;
350 		char *dst_copy;
351 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
352 						  path->slots[0]);
353 		if (dst_size != item_size)
354 			goto insert;
355 
356 		if (item_size == 0) {
357 			btrfs_release_path(path);
358 			return 0;
359 		}
360 		dst_copy = kmalloc(item_size, GFP_NOFS);
361 		src_copy = kmalloc(item_size, GFP_NOFS);
362 		if (!dst_copy || !src_copy) {
363 			btrfs_release_path(path);
364 			kfree(dst_copy);
365 			kfree(src_copy);
366 			return -ENOMEM;
367 		}
368 
369 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
370 
371 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
372 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
373 				   item_size);
374 		ret = memcmp(dst_copy, src_copy, item_size);
375 
376 		kfree(dst_copy);
377 		kfree(src_copy);
378 		/*
379 		 * they have the same contents, just return, this saves
380 		 * us from cowing blocks in the destination tree and doing
381 		 * extra writes that may not have been done by a previous
382 		 * sync
383 		 */
384 		if (ret == 0) {
385 			btrfs_release_path(path);
386 			return 0;
387 		}
388 
389 		/*
390 		 * We need to load the old nbytes into the inode so when we
391 		 * replay the extents we've logged we get the right nbytes.
392 		 */
393 		if (inode_item) {
394 			struct btrfs_inode_item *item;
395 			u64 nbytes;
396 
397 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
398 					      struct btrfs_inode_item);
399 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
400 			item = btrfs_item_ptr(eb, slot,
401 					      struct btrfs_inode_item);
402 			btrfs_set_inode_nbytes(eb, item, nbytes);
403 		}
404 	} else if (inode_item) {
405 		struct btrfs_inode_item *item;
406 
407 		/*
408 		 * New inode, set nbytes to 0 so that the nbytes comes out
409 		 * properly when we replay the extents.
410 		 */
411 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
412 		btrfs_set_inode_nbytes(eb, item, 0);
413 	}
414 insert:
415 	btrfs_release_path(path);
416 	/* try to insert the key into the destination tree */
417 	ret = btrfs_insert_empty_item(trans, root, path,
418 				      key, item_size);
419 
420 	/* make sure any existing item is the correct size */
421 	if (ret == -EEXIST) {
422 		u32 found_size;
423 		found_size = btrfs_item_size_nr(path->nodes[0],
424 						path->slots[0]);
425 		if (found_size > item_size)
426 			btrfs_truncate_item(root, path, item_size, 1);
427 		else if (found_size < item_size)
428 			btrfs_extend_item(root, path,
429 					  item_size - found_size);
430 	} else if (ret) {
431 		return ret;
432 	}
433 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
434 					path->slots[0]);
435 
436 	/* don't overwrite an existing inode if the generation number
437 	 * was logged as zero.  This is done when the tree logging code
438 	 * is just logging an inode to make sure it exists after recovery.
439 	 *
440 	 * Also, don't overwrite i_size on directories during replay.
441 	 * log replay inserts and removes directory items based on the
442 	 * state of the tree found in the subvolume, and i_size is modified
443 	 * as it goes
444 	 */
445 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
446 		struct btrfs_inode_item *src_item;
447 		struct btrfs_inode_item *dst_item;
448 
449 		src_item = (struct btrfs_inode_item *)src_ptr;
450 		dst_item = (struct btrfs_inode_item *)dst_ptr;
451 
452 		if (btrfs_inode_generation(eb, src_item) == 0)
453 			goto no_copy;
454 
455 		if (overwrite_root &&
456 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
457 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
458 			save_old_i_size = 1;
459 			saved_i_size = btrfs_inode_size(path->nodes[0],
460 							dst_item);
461 		}
462 	}
463 
464 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
465 			   src_ptr, item_size);
466 
467 	if (save_old_i_size) {
468 		struct btrfs_inode_item *dst_item;
469 		dst_item = (struct btrfs_inode_item *)dst_ptr;
470 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
471 	}
472 
473 	/* make sure the generation is filled in */
474 	if (key->type == BTRFS_INODE_ITEM_KEY) {
475 		struct btrfs_inode_item *dst_item;
476 		dst_item = (struct btrfs_inode_item *)dst_ptr;
477 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
478 			btrfs_set_inode_generation(path->nodes[0], dst_item,
479 						   trans->transid);
480 		}
481 	}
482 no_copy:
483 	btrfs_mark_buffer_dirty(path->nodes[0]);
484 	btrfs_release_path(path);
485 	return 0;
486 }
487 
488 /*
489  * simple helper to read an inode off the disk from a given root
490  * This can only be called for subvolume roots and not for the log
491  */
492 static noinline struct inode *read_one_inode(struct btrfs_root *root,
493 					     u64 objectid)
494 {
495 	struct btrfs_key key;
496 	struct inode *inode;
497 
498 	key.objectid = objectid;
499 	key.type = BTRFS_INODE_ITEM_KEY;
500 	key.offset = 0;
501 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
502 	if (IS_ERR(inode)) {
503 		inode = NULL;
504 	} else if (is_bad_inode(inode)) {
505 		iput(inode);
506 		inode = NULL;
507 	}
508 	return inode;
509 }
510 
511 /* replays a single extent in 'eb' at 'slot' with 'key' into the
512  * subvolume 'root'.  path is released on entry and should be released
513  * on exit.
514  *
515  * extents in the log tree have not been allocated out of the extent
516  * tree yet.  So, this completes the allocation, taking a reference
517  * as required if the extent already exists or creating a new extent
518  * if it isn't in the extent allocation tree yet.
519  *
520  * The extent is inserted into the file, dropping any existing extents
521  * from the file that overlap the new one.
522  */
523 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
524 				      struct btrfs_root *root,
525 				      struct btrfs_path *path,
526 				      struct extent_buffer *eb, int slot,
527 				      struct btrfs_key *key)
528 {
529 	int found_type;
530 	u64 extent_end;
531 	u64 start = key->offset;
532 	u64 nbytes = 0;
533 	struct btrfs_file_extent_item *item;
534 	struct inode *inode = NULL;
535 	unsigned long size;
536 	int ret = 0;
537 
538 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
539 	found_type = btrfs_file_extent_type(eb, item);
540 
541 	if (found_type == BTRFS_FILE_EXTENT_REG ||
542 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
543 		nbytes = btrfs_file_extent_num_bytes(eb, item);
544 		extent_end = start + nbytes;
545 
546 		/*
547 		 * We don't add to the inodes nbytes if we are prealloc or a
548 		 * hole.
549 		 */
550 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
551 			nbytes = 0;
552 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
553 		size = btrfs_file_extent_inline_len(eb, item);
554 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
555 		extent_end = ALIGN(start + size, root->sectorsize);
556 	} else {
557 		ret = 0;
558 		goto out;
559 	}
560 
561 	inode = read_one_inode(root, key->objectid);
562 	if (!inode) {
563 		ret = -EIO;
564 		goto out;
565 	}
566 
567 	/*
568 	 * first check to see if we already have this extent in the
569 	 * file.  This must be done before the btrfs_drop_extents run
570 	 * so we don't try to drop this extent.
571 	 */
572 	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
573 				       start, 0);
574 
575 	if (ret == 0 &&
576 	    (found_type == BTRFS_FILE_EXTENT_REG ||
577 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
578 		struct btrfs_file_extent_item cmp1;
579 		struct btrfs_file_extent_item cmp2;
580 		struct btrfs_file_extent_item *existing;
581 		struct extent_buffer *leaf;
582 
583 		leaf = path->nodes[0];
584 		existing = btrfs_item_ptr(leaf, path->slots[0],
585 					  struct btrfs_file_extent_item);
586 
587 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
588 				   sizeof(cmp1));
589 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
590 				   sizeof(cmp2));
591 
592 		/*
593 		 * we already have a pointer to this exact extent,
594 		 * we don't have to do anything
595 		 */
596 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
597 			btrfs_release_path(path);
598 			goto out;
599 		}
600 	}
601 	btrfs_release_path(path);
602 
603 	/* drop any overlapping extents */
604 	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
605 	if (ret)
606 		goto out;
607 
608 	if (found_type == BTRFS_FILE_EXTENT_REG ||
609 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
610 		u64 offset;
611 		unsigned long dest_offset;
612 		struct btrfs_key ins;
613 
614 		ret = btrfs_insert_empty_item(trans, root, path, key,
615 					      sizeof(*item));
616 		if (ret)
617 			goto out;
618 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
619 						    path->slots[0]);
620 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
621 				(unsigned long)item,  sizeof(*item));
622 
623 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
624 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
625 		ins.type = BTRFS_EXTENT_ITEM_KEY;
626 		offset = key->offset - btrfs_file_extent_offset(eb, item);
627 
628 		if (ins.objectid > 0) {
629 			u64 csum_start;
630 			u64 csum_end;
631 			LIST_HEAD(ordered_sums);
632 			/*
633 			 * is this extent already allocated in the extent
634 			 * allocation tree?  If so, just add a reference
635 			 */
636 			ret = btrfs_lookup_extent(root, ins.objectid,
637 						ins.offset);
638 			if (ret == 0) {
639 				ret = btrfs_inc_extent_ref(trans, root,
640 						ins.objectid, ins.offset,
641 						0, root->root_key.objectid,
642 						key->objectid, offset, 0);
643 				if (ret)
644 					goto out;
645 			} else {
646 				/*
647 				 * insert the extent pointer in the extent
648 				 * allocation tree
649 				 */
650 				ret = btrfs_alloc_logged_file_extent(trans,
651 						root, root->root_key.objectid,
652 						key->objectid, offset, &ins);
653 				if (ret)
654 					goto out;
655 			}
656 			btrfs_release_path(path);
657 
658 			if (btrfs_file_extent_compression(eb, item)) {
659 				csum_start = ins.objectid;
660 				csum_end = csum_start + ins.offset;
661 			} else {
662 				csum_start = ins.objectid +
663 					btrfs_file_extent_offset(eb, item);
664 				csum_end = csum_start +
665 					btrfs_file_extent_num_bytes(eb, item);
666 			}
667 
668 			ret = btrfs_lookup_csums_range(root->log_root,
669 						csum_start, csum_end - 1,
670 						&ordered_sums, 0);
671 			if (ret)
672 				goto out;
673 			while (!list_empty(&ordered_sums)) {
674 				struct btrfs_ordered_sum *sums;
675 				sums = list_entry(ordered_sums.next,
676 						struct btrfs_ordered_sum,
677 						list);
678 				if (!ret)
679 					ret = btrfs_csum_file_blocks(trans,
680 						root->fs_info->csum_root,
681 						sums);
682 				list_del(&sums->list);
683 				kfree(sums);
684 			}
685 			if (ret)
686 				goto out;
687 		} else {
688 			btrfs_release_path(path);
689 		}
690 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
691 		/* inline extents are easy, we just overwrite them */
692 		ret = overwrite_item(trans, root, path, eb, slot, key);
693 		if (ret)
694 			goto out;
695 	}
696 
697 	inode_add_bytes(inode, nbytes);
698 	ret = btrfs_update_inode(trans, root, inode);
699 out:
700 	if (inode)
701 		iput(inode);
702 	return ret;
703 }
704 
705 /*
706  * when cleaning up conflicts between the directory names in the
707  * subvolume, directory names in the log and directory names in the
708  * inode back references, we may have to unlink inodes from directories.
709  *
710  * This is a helper function to do the unlink of a specific directory
711  * item
712  */
713 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
714 				      struct btrfs_root *root,
715 				      struct btrfs_path *path,
716 				      struct inode *dir,
717 				      struct btrfs_dir_item *di)
718 {
719 	struct inode *inode;
720 	char *name;
721 	int name_len;
722 	struct extent_buffer *leaf;
723 	struct btrfs_key location;
724 	int ret;
725 
726 	leaf = path->nodes[0];
727 
728 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
729 	name_len = btrfs_dir_name_len(leaf, di);
730 	name = kmalloc(name_len, GFP_NOFS);
731 	if (!name)
732 		return -ENOMEM;
733 
734 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
735 	btrfs_release_path(path);
736 
737 	inode = read_one_inode(root, location.objectid);
738 	if (!inode) {
739 		ret = -EIO;
740 		goto out;
741 	}
742 
743 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
744 	if (ret)
745 		goto out;
746 
747 	ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
748 	if (ret)
749 		goto out;
750 	else
751 		ret = btrfs_run_delayed_items(trans, root);
752 out:
753 	kfree(name);
754 	iput(inode);
755 	return ret;
756 }
757 
758 /*
759  * helper function to see if a given name and sequence number found
760  * in an inode back reference are already in a directory and correctly
761  * point to this inode
762  */
763 static noinline int inode_in_dir(struct btrfs_root *root,
764 				 struct btrfs_path *path,
765 				 u64 dirid, u64 objectid, u64 index,
766 				 const char *name, int name_len)
767 {
768 	struct btrfs_dir_item *di;
769 	struct btrfs_key location;
770 	int match = 0;
771 
772 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
773 					 index, name, name_len, 0);
774 	if (di && !IS_ERR(di)) {
775 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
776 		if (location.objectid != objectid)
777 			goto out;
778 	} else
779 		goto out;
780 	btrfs_release_path(path);
781 
782 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
783 	if (di && !IS_ERR(di)) {
784 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
785 		if (location.objectid != objectid)
786 			goto out;
787 	} else
788 		goto out;
789 	match = 1;
790 out:
791 	btrfs_release_path(path);
792 	return match;
793 }
794 
795 /*
796  * helper function to check a log tree for a named back reference in
797  * an inode.  This is used to decide if a back reference that is
798  * found in the subvolume conflicts with what we find in the log.
799  *
800  * inode backreferences may have multiple refs in a single item,
801  * during replay we process one reference at a time, and we don't
802  * want to delete valid links to a file from the subvolume if that
803  * link is also in the log.
804  */
805 static noinline int backref_in_log(struct btrfs_root *log,
806 				   struct btrfs_key *key,
807 				   u64 ref_objectid,
808 				   char *name, int namelen)
809 {
810 	struct btrfs_path *path;
811 	struct btrfs_inode_ref *ref;
812 	unsigned long ptr;
813 	unsigned long ptr_end;
814 	unsigned long name_ptr;
815 	int found_name_len;
816 	int item_size;
817 	int ret;
818 	int match = 0;
819 
820 	path = btrfs_alloc_path();
821 	if (!path)
822 		return -ENOMEM;
823 
824 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
825 	if (ret != 0)
826 		goto out;
827 
828 	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
829 
830 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
831 		if (btrfs_find_name_in_ext_backref(path, ref_objectid,
832 						   name, namelen, NULL))
833 			match = 1;
834 
835 		goto out;
836 	}
837 
838 	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
839 	ptr_end = ptr + item_size;
840 	while (ptr < ptr_end) {
841 		ref = (struct btrfs_inode_ref *)ptr;
842 		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
843 		if (found_name_len == namelen) {
844 			name_ptr = (unsigned long)(ref + 1);
845 			ret = memcmp_extent_buffer(path->nodes[0], name,
846 						   name_ptr, namelen);
847 			if (ret == 0) {
848 				match = 1;
849 				goto out;
850 			}
851 		}
852 		ptr = (unsigned long)(ref + 1) + found_name_len;
853 	}
854 out:
855 	btrfs_free_path(path);
856 	return match;
857 }
858 
859 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
860 				  struct btrfs_root *root,
861 				  struct btrfs_path *path,
862 				  struct btrfs_root *log_root,
863 				  struct inode *dir, struct inode *inode,
864 				  struct extent_buffer *eb,
865 				  u64 inode_objectid, u64 parent_objectid,
866 				  u64 ref_index, char *name, int namelen,
867 				  int *search_done)
868 {
869 	int ret;
870 	char *victim_name;
871 	int victim_name_len;
872 	struct extent_buffer *leaf;
873 	struct btrfs_dir_item *di;
874 	struct btrfs_key search_key;
875 	struct btrfs_inode_extref *extref;
876 
877 again:
878 	/* Search old style refs */
879 	search_key.objectid = inode_objectid;
880 	search_key.type = BTRFS_INODE_REF_KEY;
881 	search_key.offset = parent_objectid;
882 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
883 	if (ret == 0) {
884 		struct btrfs_inode_ref *victim_ref;
885 		unsigned long ptr;
886 		unsigned long ptr_end;
887 
888 		leaf = path->nodes[0];
889 
890 		/* are we trying to overwrite a back ref for the root directory
891 		 * if so, just jump out, we're done
892 		 */
893 		if (search_key.objectid == search_key.offset)
894 			return 1;
895 
896 		/* check all the names in this back reference to see
897 		 * if they are in the log.  if so, we allow them to stay
898 		 * otherwise they must be unlinked as a conflict
899 		 */
900 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
901 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
902 		while (ptr < ptr_end) {
903 			victim_ref = (struct btrfs_inode_ref *)ptr;
904 			victim_name_len = btrfs_inode_ref_name_len(leaf,
905 								   victim_ref);
906 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
907 			if (!victim_name)
908 				return -ENOMEM;
909 
910 			read_extent_buffer(leaf, victim_name,
911 					   (unsigned long)(victim_ref + 1),
912 					   victim_name_len);
913 
914 			if (!backref_in_log(log_root, &search_key,
915 					    parent_objectid,
916 					    victim_name,
917 					    victim_name_len)) {
918 				btrfs_inc_nlink(inode);
919 				btrfs_release_path(path);
920 
921 				ret = btrfs_unlink_inode(trans, root, dir,
922 							 inode, victim_name,
923 							 victim_name_len);
924 				kfree(victim_name);
925 				if (ret)
926 					return ret;
927 				ret = btrfs_run_delayed_items(trans, root);
928 				if (ret)
929 					return ret;
930 				*search_done = 1;
931 				goto again;
932 			}
933 			kfree(victim_name);
934 
935 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
936 		}
937 
938 		/*
939 		 * NOTE: we have searched root tree and checked the
940 		 * coresponding ref, it does not need to check again.
941 		 */
942 		*search_done = 1;
943 	}
944 	btrfs_release_path(path);
945 
946 	/* Same search but for extended refs */
947 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
948 					   inode_objectid, parent_objectid, 0,
949 					   0);
950 	if (!IS_ERR_OR_NULL(extref)) {
951 		u32 item_size;
952 		u32 cur_offset = 0;
953 		unsigned long base;
954 		struct inode *victim_parent;
955 
956 		leaf = path->nodes[0];
957 
958 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
959 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
960 
961 		while (cur_offset < item_size) {
962 			extref = (struct btrfs_inode_extref *)base + cur_offset;
963 
964 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
965 
966 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
967 				goto next;
968 
969 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
970 			if (!victim_name)
971 				return -ENOMEM;
972 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
973 					   victim_name_len);
974 
975 			search_key.objectid = inode_objectid;
976 			search_key.type = BTRFS_INODE_EXTREF_KEY;
977 			search_key.offset = btrfs_extref_hash(parent_objectid,
978 							      victim_name,
979 							      victim_name_len);
980 			ret = 0;
981 			if (!backref_in_log(log_root, &search_key,
982 					    parent_objectid, victim_name,
983 					    victim_name_len)) {
984 				ret = -ENOENT;
985 				victim_parent = read_one_inode(root,
986 							       parent_objectid);
987 				if (victim_parent) {
988 					btrfs_inc_nlink(inode);
989 					btrfs_release_path(path);
990 
991 					ret = btrfs_unlink_inode(trans, root,
992 								 victim_parent,
993 								 inode,
994 								 victim_name,
995 								 victim_name_len);
996 					if (!ret)
997 						ret = btrfs_run_delayed_items(
998 								  trans, root);
999 				}
1000 				iput(victim_parent);
1001 				kfree(victim_name);
1002 				if (ret)
1003 					return ret;
1004 				*search_done = 1;
1005 				goto again;
1006 			}
1007 			kfree(victim_name);
1008 			if (ret)
1009 				return ret;
1010 next:
1011 			cur_offset += victim_name_len + sizeof(*extref);
1012 		}
1013 		*search_done = 1;
1014 	}
1015 	btrfs_release_path(path);
1016 
1017 	/* look for a conflicting sequence number */
1018 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1019 					 ref_index, name, namelen, 0);
1020 	if (di && !IS_ERR(di)) {
1021 		ret = drop_one_dir_item(trans, root, path, dir, di);
1022 		if (ret)
1023 			return ret;
1024 	}
1025 	btrfs_release_path(path);
1026 
1027 	/* look for a conflicing name */
1028 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1029 				   name, namelen, 0);
1030 	if (di && !IS_ERR(di)) {
1031 		ret = drop_one_dir_item(trans, root, path, dir, di);
1032 		if (ret)
1033 			return ret;
1034 	}
1035 	btrfs_release_path(path);
1036 
1037 	return 0;
1038 }
1039 
1040 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1041 			     u32 *namelen, char **name, u64 *index,
1042 			     u64 *parent_objectid)
1043 {
1044 	struct btrfs_inode_extref *extref;
1045 
1046 	extref = (struct btrfs_inode_extref *)ref_ptr;
1047 
1048 	*namelen = btrfs_inode_extref_name_len(eb, extref);
1049 	*name = kmalloc(*namelen, GFP_NOFS);
1050 	if (*name == NULL)
1051 		return -ENOMEM;
1052 
1053 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1054 			   *namelen);
1055 
1056 	*index = btrfs_inode_extref_index(eb, extref);
1057 	if (parent_objectid)
1058 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1059 
1060 	return 0;
1061 }
1062 
1063 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1064 			  u32 *namelen, char **name, u64 *index)
1065 {
1066 	struct btrfs_inode_ref *ref;
1067 
1068 	ref = (struct btrfs_inode_ref *)ref_ptr;
1069 
1070 	*namelen = btrfs_inode_ref_name_len(eb, ref);
1071 	*name = kmalloc(*namelen, GFP_NOFS);
1072 	if (*name == NULL)
1073 		return -ENOMEM;
1074 
1075 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1076 
1077 	*index = btrfs_inode_ref_index(eb, ref);
1078 
1079 	return 0;
1080 }
1081 
1082 /*
1083  * replay one inode back reference item found in the log tree.
1084  * eb, slot and key refer to the buffer and key found in the log tree.
1085  * root is the destination we are replaying into, and path is for temp
1086  * use by this function.  (it should be released on return).
1087  */
1088 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1089 				  struct btrfs_root *root,
1090 				  struct btrfs_root *log,
1091 				  struct btrfs_path *path,
1092 				  struct extent_buffer *eb, int slot,
1093 				  struct btrfs_key *key)
1094 {
1095 	struct inode *dir;
1096 	struct inode *inode;
1097 	unsigned long ref_ptr;
1098 	unsigned long ref_end;
1099 	char *name;
1100 	int namelen;
1101 	int ret;
1102 	int search_done = 0;
1103 	int log_ref_ver = 0;
1104 	u64 parent_objectid;
1105 	u64 inode_objectid;
1106 	u64 ref_index = 0;
1107 	int ref_struct_size;
1108 
1109 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1110 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1111 
1112 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1113 		struct btrfs_inode_extref *r;
1114 
1115 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1116 		log_ref_ver = 1;
1117 		r = (struct btrfs_inode_extref *)ref_ptr;
1118 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1119 	} else {
1120 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1121 		parent_objectid = key->offset;
1122 	}
1123 	inode_objectid = key->objectid;
1124 
1125 	/*
1126 	 * it is possible that we didn't log all the parent directories
1127 	 * for a given inode.  If we don't find the dir, just don't
1128 	 * copy the back ref in.  The link count fixup code will take
1129 	 * care of the rest
1130 	 */
1131 	dir = read_one_inode(root, parent_objectid);
1132 	if (!dir)
1133 		return -ENOENT;
1134 
1135 	inode = read_one_inode(root, inode_objectid);
1136 	if (!inode) {
1137 		iput(dir);
1138 		return -EIO;
1139 	}
1140 
1141 	while (ref_ptr < ref_end) {
1142 		if (log_ref_ver) {
1143 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1144 						&ref_index, &parent_objectid);
1145 			/*
1146 			 * parent object can change from one array
1147 			 * item to another.
1148 			 */
1149 			if (!dir)
1150 				dir = read_one_inode(root, parent_objectid);
1151 			if (!dir)
1152 				return -ENOENT;
1153 		} else {
1154 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1155 					     &ref_index);
1156 		}
1157 		if (ret)
1158 			return ret;
1159 
1160 		/* if we already have a perfect match, we're done */
1161 		if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1162 				  ref_index, name, namelen)) {
1163 			/*
1164 			 * look for a conflicting back reference in the
1165 			 * metadata. if we find one we have to unlink that name
1166 			 * of the file before we add our new link.  Later on, we
1167 			 * overwrite any existing back reference, and we don't
1168 			 * want to create dangling pointers in the directory.
1169 			 */
1170 
1171 			if (!search_done) {
1172 				ret = __add_inode_ref(trans, root, path, log,
1173 						      dir, inode, eb,
1174 						      inode_objectid,
1175 						      parent_objectid,
1176 						      ref_index, name, namelen,
1177 						      &search_done);
1178 				if (ret == 1) {
1179 					ret = 0;
1180 					goto out;
1181 				}
1182 				if (ret)
1183 					goto out;
1184 			}
1185 
1186 			/* insert our name */
1187 			ret = btrfs_add_link(trans, dir, inode, name, namelen,
1188 					     0, ref_index);
1189 			if (ret)
1190 				goto out;
1191 
1192 			btrfs_update_inode(trans, root, inode);
1193 		}
1194 
1195 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1196 		kfree(name);
1197 		if (log_ref_ver) {
1198 			iput(dir);
1199 			dir = NULL;
1200 		}
1201 	}
1202 
1203 	/* finally write the back reference in the inode */
1204 	ret = overwrite_item(trans, root, path, eb, slot, key);
1205 out:
1206 	btrfs_release_path(path);
1207 	iput(dir);
1208 	iput(inode);
1209 	return ret;
1210 }
1211 
1212 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1213 			      struct btrfs_root *root, u64 offset)
1214 {
1215 	int ret;
1216 	ret = btrfs_find_orphan_item(root, offset);
1217 	if (ret > 0)
1218 		ret = btrfs_insert_orphan_item(trans, root, offset);
1219 	return ret;
1220 }
1221 
1222 static int count_inode_extrefs(struct btrfs_root *root,
1223 			       struct inode *inode, struct btrfs_path *path)
1224 {
1225 	int ret = 0;
1226 	int name_len;
1227 	unsigned int nlink = 0;
1228 	u32 item_size;
1229 	u32 cur_offset = 0;
1230 	u64 inode_objectid = btrfs_ino(inode);
1231 	u64 offset = 0;
1232 	unsigned long ptr;
1233 	struct btrfs_inode_extref *extref;
1234 	struct extent_buffer *leaf;
1235 
1236 	while (1) {
1237 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1238 					    &extref, &offset);
1239 		if (ret)
1240 			break;
1241 
1242 		leaf = path->nodes[0];
1243 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1244 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1245 
1246 		while (cur_offset < item_size) {
1247 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1248 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1249 
1250 			nlink++;
1251 
1252 			cur_offset += name_len + sizeof(*extref);
1253 		}
1254 
1255 		offset++;
1256 		btrfs_release_path(path);
1257 	}
1258 	btrfs_release_path(path);
1259 
1260 	if (ret < 0)
1261 		return ret;
1262 	return nlink;
1263 }
1264 
1265 static int count_inode_refs(struct btrfs_root *root,
1266 			       struct inode *inode, struct btrfs_path *path)
1267 {
1268 	int ret;
1269 	struct btrfs_key key;
1270 	unsigned int nlink = 0;
1271 	unsigned long ptr;
1272 	unsigned long ptr_end;
1273 	int name_len;
1274 	u64 ino = btrfs_ino(inode);
1275 
1276 	key.objectid = ino;
1277 	key.type = BTRFS_INODE_REF_KEY;
1278 	key.offset = (u64)-1;
1279 
1280 	while (1) {
1281 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1282 		if (ret < 0)
1283 			break;
1284 		if (ret > 0) {
1285 			if (path->slots[0] == 0)
1286 				break;
1287 			path->slots[0]--;
1288 		}
1289 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1290 				      path->slots[0]);
1291 		if (key.objectid != ino ||
1292 		    key.type != BTRFS_INODE_REF_KEY)
1293 			break;
1294 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1295 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1296 						   path->slots[0]);
1297 		while (ptr < ptr_end) {
1298 			struct btrfs_inode_ref *ref;
1299 
1300 			ref = (struct btrfs_inode_ref *)ptr;
1301 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1302 							    ref);
1303 			ptr = (unsigned long)(ref + 1) + name_len;
1304 			nlink++;
1305 		}
1306 
1307 		if (key.offset == 0)
1308 			break;
1309 		key.offset--;
1310 		btrfs_release_path(path);
1311 	}
1312 	btrfs_release_path(path);
1313 
1314 	return nlink;
1315 }
1316 
1317 /*
1318  * There are a few corners where the link count of the file can't
1319  * be properly maintained during replay.  So, instead of adding
1320  * lots of complexity to the log code, we just scan the backrefs
1321  * for any file that has been through replay.
1322  *
1323  * The scan will update the link count on the inode to reflect the
1324  * number of back refs found.  If it goes down to zero, the iput
1325  * will free the inode.
1326  */
1327 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1328 					   struct btrfs_root *root,
1329 					   struct inode *inode)
1330 {
1331 	struct btrfs_path *path;
1332 	int ret;
1333 	u64 nlink = 0;
1334 	u64 ino = btrfs_ino(inode);
1335 
1336 	path = btrfs_alloc_path();
1337 	if (!path)
1338 		return -ENOMEM;
1339 
1340 	ret = count_inode_refs(root, inode, path);
1341 	if (ret < 0)
1342 		goto out;
1343 
1344 	nlink = ret;
1345 
1346 	ret = count_inode_extrefs(root, inode, path);
1347 	if (ret == -ENOENT)
1348 		ret = 0;
1349 
1350 	if (ret < 0)
1351 		goto out;
1352 
1353 	nlink += ret;
1354 
1355 	ret = 0;
1356 
1357 	if (nlink != inode->i_nlink) {
1358 		set_nlink(inode, nlink);
1359 		btrfs_update_inode(trans, root, inode);
1360 	}
1361 	BTRFS_I(inode)->index_cnt = (u64)-1;
1362 
1363 	if (inode->i_nlink == 0) {
1364 		if (S_ISDIR(inode->i_mode)) {
1365 			ret = replay_dir_deletes(trans, root, NULL, path,
1366 						 ino, 1);
1367 			if (ret)
1368 				goto out;
1369 		}
1370 		ret = insert_orphan_item(trans, root, ino);
1371 	}
1372 
1373 out:
1374 	btrfs_free_path(path);
1375 	return ret;
1376 }
1377 
1378 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1379 					    struct btrfs_root *root,
1380 					    struct btrfs_path *path)
1381 {
1382 	int ret;
1383 	struct btrfs_key key;
1384 	struct inode *inode;
1385 
1386 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1387 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1388 	key.offset = (u64)-1;
1389 	while (1) {
1390 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1391 		if (ret < 0)
1392 			break;
1393 
1394 		if (ret == 1) {
1395 			if (path->slots[0] == 0)
1396 				break;
1397 			path->slots[0]--;
1398 		}
1399 
1400 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1401 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1402 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1403 			break;
1404 
1405 		ret = btrfs_del_item(trans, root, path);
1406 		if (ret)
1407 			goto out;
1408 
1409 		btrfs_release_path(path);
1410 		inode = read_one_inode(root, key.offset);
1411 		if (!inode)
1412 			return -EIO;
1413 
1414 		ret = fixup_inode_link_count(trans, root, inode);
1415 		iput(inode);
1416 		if (ret)
1417 			goto out;
1418 
1419 		/*
1420 		 * fixup on a directory may create new entries,
1421 		 * make sure we always look for the highset possible
1422 		 * offset
1423 		 */
1424 		key.offset = (u64)-1;
1425 	}
1426 	ret = 0;
1427 out:
1428 	btrfs_release_path(path);
1429 	return ret;
1430 }
1431 
1432 
1433 /*
1434  * record a given inode in the fixup dir so we can check its link
1435  * count when replay is done.  The link count is incremented here
1436  * so the inode won't go away until we check it
1437  */
1438 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1439 				      struct btrfs_root *root,
1440 				      struct btrfs_path *path,
1441 				      u64 objectid)
1442 {
1443 	struct btrfs_key key;
1444 	int ret = 0;
1445 	struct inode *inode;
1446 
1447 	inode = read_one_inode(root, objectid);
1448 	if (!inode)
1449 		return -EIO;
1450 
1451 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1452 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1453 	key.offset = objectid;
1454 
1455 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1456 
1457 	btrfs_release_path(path);
1458 	if (ret == 0) {
1459 		if (!inode->i_nlink)
1460 			set_nlink(inode, 1);
1461 		else
1462 			btrfs_inc_nlink(inode);
1463 		ret = btrfs_update_inode(trans, root, inode);
1464 	} else if (ret == -EEXIST) {
1465 		ret = 0;
1466 	} else {
1467 		BUG(); /* Logic Error */
1468 	}
1469 	iput(inode);
1470 
1471 	return ret;
1472 }
1473 
1474 /*
1475  * when replaying the log for a directory, we only insert names
1476  * for inodes that actually exist.  This means an fsync on a directory
1477  * does not implicitly fsync all the new files in it
1478  */
1479 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1480 				    struct btrfs_root *root,
1481 				    struct btrfs_path *path,
1482 				    u64 dirid, u64 index,
1483 				    char *name, int name_len, u8 type,
1484 				    struct btrfs_key *location)
1485 {
1486 	struct inode *inode;
1487 	struct inode *dir;
1488 	int ret;
1489 
1490 	inode = read_one_inode(root, location->objectid);
1491 	if (!inode)
1492 		return -ENOENT;
1493 
1494 	dir = read_one_inode(root, dirid);
1495 	if (!dir) {
1496 		iput(inode);
1497 		return -EIO;
1498 	}
1499 	ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1500 
1501 	/* FIXME, put inode into FIXUP list */
1502 
1503 	iput(inode);
1504 	iput(dir);
1505 	return ret;
1506 }
1507 
1508 /*
1509  * take a single entry in a log directory item and replay it into
1510  * the subvolume.
1511  *
1512  * if a conflicting item exists in the subdirectory already,
1513  * the inode it points to is unlinked and put into the link count
1514  * fix up tree.
1515  *
1516  * If a name from the log points to a file or directory that does
1517  * not exist in the FS, it is skipped.  fsyncs on directories
1518  * do not force down inodes inside that directory, just changes to the
1519  * names or unlinks in a directory.
1520  */
1521 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1522 				    struct btrfs_root *root,
1523 				    struct btrfs_path *path,
1524 				    struct extent_buffer *eb,
1525 				    struct btrfs_dir_item *di,
1526 				    struct btrfs_key *key)
1527 {
1528 	char *name;
1529 	int name_len;
1530 	struct btrfs_dir_item *dst_di;
1531 	struct btrfs_key found_key;
1532 	struct btrfs_key log_key;
1533 	struct inode *dir;
1534 	u8 log_type;
1535 	int exists;
1536 	int ret = 0;
1537 
1538 	dir = read_one_inode(root, key->objectid);
1539 	if (!dir)
1540 		return -EIO;
1541 
1542 	name_len = btrfs_dir_name_len(eb, di);
1543 	name = kmalloc(name_len, GFP_NOFS);
1544 	if (!name) {
1545 		ret = -ENOMEM;
1546 		goto out;
1547 	}
1548 
1549 	log_type = btrfs_dir_type(eb, di);
1550 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1551 		   name_len);
1552 
1553 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1554 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1555 	if (exists == 0)
1556 		exists = 1;
1557 	else
1558 		exists = 0;
1559 	btrfs_release_path(path);
1560 
1561 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1562 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1563 				       name, name_len, 1);
1564 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1565 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1566 						     key->objectid,
1567 						     key->offset, name,
1568 						     name_len, 1);
1569 	} else {
1570 		/* Corruption */
1571 		ret = -EINVAL;
1572 		goto out;
1573 	}
1574 	if (IS_ERR_OR_NULL(dst_di)) {
1575 		/* we need a sequence number to insert, so we only
1576 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1577 		 */
1578 		if (key->type != BTRFS_DIR_INDEX_KEY)
1579 			goto out;
1580 		goto insert;
1581 	}
1582 
1583 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1584 	/* the existing item matches the logged item */
1585 	if (found_key.objectid == log_key.objectid &&
1586 	    found_key.type == log_key.type &&
1587 	    found_key.offset == log_key.offset &&
1588 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1589 		goto out;
1590 	}
1591 
1592 	/*
1593 	 * don't drop the conflicting directory entry if the inode
1594 	 * for the new entry doesn't exist
1595 	 */
1596 	if (!exists)
1597 		goto out;
1598 
1599 	ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1600 	if (ret)
1601 		goto out;
1602 
1603 	if (key->type == BTRFS_DIR_INDEX_KEY)
1604 		goto insert;
1605 out:
1606 	btrfs_release_path(path);
1607 	kfree(name);
1608 	iput(dir);
1609 	return ret;
1610 
1611 insert:
1612 	btrfs_release_path(path);
1613 	ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1614 			      name, name_len, log_type, &log_key);
1615 	if (ret && ret != -ENOENT)
1616 		goto out;
1617 	ret = 0;
1618 	goto out;
1619 }
1620 
1621 /*
1622  * find all the names in a directory item and reconcile them into
1623  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1624  * one name in a directory item, but the same code gets used for
1625  * both directory index types
1626  */
1627 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1628 					struct btrfs_root *root,
1629 					struct btrfs_path *path,
1630 					struct extent_buffer *eb, int slot,
1631 					struct btrfs_key *key)
1632 {
1633 	int ret;
1634 	u32 item_size = btrfs_item_size_nr(eb, slot);
1635 	struct btrfs_dir_item *di;
1636 	int name_len;
1637 	unsigned long ptr;
1638 	unsigned long ptr_end;
1639 
1640 	ptr = btrfs_item_ptr_offset(eb, slot);
1641 	ptr_end = ptr + item_size;
1642 	while (ptr < ptr_end) {
1643 		di = (struct btrfs_dir_item *)ptr;
1644 		if (verify_dir_item(root, eb, di))
1645 			return -EIO;
1646 		name_len = btrfs_dir_name_len(eb, di);
1647 		ret = replay_one_name(trans, root, path, eb, di, key);
1648 		if (ret)
1649 			return ret;
1650 		ptr = (unsigned long)(di + 1);
1651 		ptr += name_len;
1652 	}
1653 	return 0;
1654 }
1655 
1656 /*
1657  * directory replay has two parts.  There are the standard directory
1658  * items in the log copied from the subvolume, and range items
1659  * created in the log while the subvolume was logged.
1660  *
1661  * The range items tell us which parts of the key space the log
1662  * is authoritative for.  During replay, if a key in the subvolume
1663  * directory is in a logged range item, but not actually in the log
1664  * that means it was deleted from the directory before the fsync
1665  * and should be removed.
1666  */
1667 static noinline int find_dir_range(struct btrfs_root *root,
1668 				   struct btrfs_path *path,
1669 				   u64 dirid, int key_type,
1670 				   u64 *start_ret, u64 *end_ret)
1671 {
1672 	struct btrfs_key key;
1673 	u64 found_end;
1674 	struct btrfs_dir_log_item *item;
1675 	int ret;
1676 	int nritems;
1677 
1678 	if (*start_ret == (u64)-1)
1679 		return 1;
1680 
1681 	key.objectid = dirid;
1682 	key.type = key_type;
1683 	key.offset = *start_ret;
1684 
1685 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1686 	if (ret < 0)
1687 		goto out;
1688 	if (ret > 0) {
1689 		if (path->slots[0] == 0)
1690 			goto out;
1691 		path->slots[0]--;
1692 	}
1693 	if (ret != 0)
1694 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1695 
1696 	if (key.type != key_type || key.objectid != dirid) {
1697 		ret = 1;
1698 		goto next;
1699 	}
1700 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1701 			      struct btrfs_dir_log_item);
1702 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1703 
1704 	if (*start_ret >= key.offset && *start_ret <= found_end) {
1705 		ret = 0;
1706 		*start_ret = key.offset;
1707 		*end_ret = found_end;
1708 		goto out;
1709 	}
1710 	ret = 1;
1711 next:
1712 	/* check the next slot in the tree to see if it is a valid item */
1713 	nritems = btrfs_header_nritems(path->nodes[0]);
1714 	if (path->slots[0] >= nritems) {
1715 		ret = btrfs_next_leaf(root, path);
1716 		if (ret)
1717 			goto out;
1718 	} else {
1719 		path->slots[0]++;
1720 	}
1721 
1722 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1723 
1724 	if (key.type != key_type || key.objectid != dirid) {
1725 		ret = 1;
1726 		goto out;
1727 	}
1728 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1729 			      struct btrfs_dir_log_item);
1730 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1731 	*start_ret = key.offset;
1732 	*end_ret = found_end;
1733 	ret = 0;
1734 out:
1735 	btrfs_release_path(path);
1736 	return ret;
1737 }
1738 
1739 /*
1740  * this looks for a given directory item in the log.  If the directory
1741  * item is not in the log, the item is removed and the inode it points
1742  * to is unlinked
1743  */
1744 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1745 				      struct btrfs_root *root,
1746 				      struct btrfs_root *log,
1747 				      struct btrfs_path *path,
1748 				      struct btrfs_path *log_path,
1749 				      struct inode *dir,
1750 				      struct btrfs_key *dir_key)
1751 {
1752 	int ret;
1753 	struct extent_buffer *eb;
1754 	int slot;
1755 	u32 item_size;
1756 	struct btrfs_dir_item *di;
1757 	struct btrfs_dir_item *log_di;
1758 	int name_len;
1759 	unsigned long ptr;
1760 	unsigned long ptr_end;
1761 	char *name;
1762 	struct inode *inode;
1763 	struct btrfs_key location;
1764 
1765 again:
1766 	eb = path->nodes[0];
1767 	slot = path->slots[0];
1768 	item_size = btrfs_item_size_nr(eb, slot);
1769 	ptr = btrfs_item_ptr_offset(eb, slot);
1770 	ptr_end = ptr + item_size;
1771 	while (ptr < ptr_end) {
1772 		di = (struct btrfs_dir_item *)ptr;
1773 		if (verify_dir_item(root, eb, di)) {
1774 			ret = -EIO;
1775 			goto out;
1776 		}
1777 
1778 		name_len = btrfs_dir_name_len(eb, di);
1779 		name = kmalloc(name_len, GFP_NOFS);
1780 		if (!name) {
1781 			ret = -ENOMEM;
1782 			goto out;
1783 		}
1784 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
1785 				  name_len);
1786 		log_di = NULL;
1787 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1788 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
1789 						       dir_key->objectid,
1790 						       name, name_len, 0);
1791 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1792 			log_di = btrfs_lookup_dir_index_item(trans, log,
1793 						     log_path,
1794 						     dir_key->objectid,
1795 						     dir_key->offset,
1796 						     name, name_len, 0);
1797 		}
1798 		if (IS_ERR_OR_NULL(log_di)) {
1799 			btrfs_dir_item_key_to_cpu(eb, di, &location);
1800 			btrfs_release_path(path);
1801 			btrfs_release_path(log_path);
1802 			inode = read_one_inode(root, location.objectid);
1803 			if (!inode) {
1804 				kfree(name);
1805 				return -EIO;
1806 			}
1807 
1808 			ret = link_to_fixup_dir(trans, root,
1809 						path, location.objectid);
1810 			if (ret) {
1811 				kfree(name);
1812 				iput(inode);
1813 				goto out;
1814 			}
1815 
1816 			btrfs_inc_nlink(inode);
1817 			ret = btrfs_unlink_inode(trans, root, dir, inode,
1818 						 name, name_len);
1819 			if (!ret)
1820 				ret = btrfs_run_delayed_items(trans, root);
1821 			kfree(name);
1822 			iput(inode);
1823 			if (ret)
1824 				goto out;
1825 
1826 			/* there might still be more names under this key
1827 			 * check and repeat if required
1828 			 */
1829 			ret = btrfs_search_slot(NULL, root, dir_key, path,
1830 						0, 0);
1831 			if (ret == 0)
1832 				goto again;
1833 			ret = 0;
1834 			goto out;
1835 		}
1836 		btrfs_release_path(log_path);
1837 		kfree(name);
1838 
1839 		ptr = (unsigned long)(di + 1);
1840 		ptr += name_len;
1841 	}
1842 	ret = 0;
1843 out:
1844 	btrfs_release_path(path);
1845 	btrfs_release_path(log_path);
1846 	return ret;
1847 }
1848 
1849 /*
1850  * deletion replay happens before we copy any new directory items
1851  * out of the log or out of backreferences from inodes.  It
1852  * scans the log to find ranges of keys that log is authoritative for,
1853  * and then scans the directory to find items in those ranges that are
1854  * not present in the log.
1855  *
1856  * Anything we don't find in the log is unlinked and removed from the
1857  * directory.
1858  */
1859 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1860 				       struct btrfs_root *root,
1861 				       struct btrfs_root *log,
1862 				       struct btrfs_path *path,
1863 				       u64 dirid, int del_all)
1864 {
1865 	u64 range_start;
1866 	u64 range_end;
1867 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1868 	int ret = 0;
1869 	struct btrfs_key dir_key;
1870 	struct btrfs_key found_key;
1871 	struct btrfs_path *log_path;
1872 	struct inode *dir;
1873 
1874 	dir_key.objectid = dirid;
1875 	dir_key.type = BTRFS_DIR_ITEM_KEY;
1876 	log_path = btrfs_alloc_path();
1877 	if (!log_path)
1878 		return -ENOMEM;
1879 
1880 	dir = read_one_inode(root, dirid);
1881 	/* it isn't an error if the inode isn't there, that can happen
1882 	 * because we replay the deletes before we copy in the inode item
1883 	 * from the log
1884 	 */
1885 	if (!dir) {
1886 		btrfs_free_path(log_path);
1887 		return 0;
1888 	}
1889 again:
1890 	range_start = 0;
1891 	range_end = 0;
1892 	while (1) {
1893 		if (del_all)
1894 			range_end = (u64)-1;
1895 		else {
1896 			ret = find_dir_range(log, path, dirid, key_type,
1897 					     &range_start, &range_end);
1898 			if (ret != 0)
1899 				break;
1900 		}
1901 
1902 		dir_key.offset = range_start;
1903 		while (1) {
1904 			int nritems;
1905 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
1906 						0, 0);
1907 			if (ret < 0)
1908 				goto out;
1909 
1910 			nritems = btrfs_header_nritems(path->nodes[0]);
1911 			if (path->slots[0] >= nritems) {
1912 				ret = btrfs_next_leaf(root, path);
1913 				if (ret)
1914 					break;
1915 			}
1916 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1917 					      path->slots[0]);
1918 			if (found_key.objectid != dirid ||
1919 			    found_key.type != dir_key.type)
1920 				goto next_type;
1921 
1922 			if (found_key.offset > range_end)
1923 				break;
1924 
1925 			ret = check_item_in_log(trans, root, log, path,
1926 						log_path, dir,
1927 						&found_key);
1928 			if (ret)
1929 				goto out;
1930 			if (found_key.offset == (u64)-1)
1931 				break;
1932 			dir_key.offset = found_key.offset + 1;
1933 		}
1934 		btrfs_release_path(path);
1935 		if (range_end == (u64)-1)
1936 			break;
1937 		range_start = range_end + 1;
1938 	}
1939 
1940 next_type:
1941 	ret = 0;
1942 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1943 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
1944 		dir_key.type = BTRFS_DIR_INDEX_KEY;
1945 		btrfs_release_path(path);
1946 		goto again;
1947 	}
1948 out:
1949 	btrfs_release_path(path);
1950 	btrfs_free_path(log_path);
1951 	iput(dir);
1952 	return ret;
1953 }
1954 
1955 /*
1956  * the process_func used to replay items from the log tree.  This
1957  * gets called in two different stages.  The first stage just looks
1958  * for inodes and makes sure they are all copied into the subvolume.
1959  *
1960  * The second stage copies all the other item types from the log into
1961  * the subvolume.  The two stage approach is slower, but gets rid of
1962  * lots of complexity around inodes referencing other inodes that exist
1963  * only in the log (references come from either directory items or inode
1964  * back refs).
1965  */
1966 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1967 			     struct walk_control *wc, u64 gen)
1968 {
1969 	int nritems;
1970 	struct btrfs_path *path;
1971 	struct btrfs_root *root = wc->replay_dest;
1972 	struct btrfs_key key;
1973 	int level;
1974 	int i;
1975 	int ret;
1976 
1977 	ret = btrfs_read_buffer(eb, gen);
1978 	if (ret)
1979 		return ret;
1980 
1981 	level = btrfs_header_level(eb);
1982 
1983 	if (level != 0)
1984 		return 0;
1985 
1986 	path = btrfs_alloc_path();
1987 	if (!path)
1988 		return -ENOMEM;
1989 
1990 	nritems = btrfs_header_nritems(eb);
1991 	for (i = 0; i < nritems; i++) {
1992 		btrfs_item_key_to_cpu(eb, &key, i);
1993 
1994 		/* inode keys are done during the first stage */
1995 		if (key.type == BTRFS_INODE_ITEM_KEY &&
1996 		    wc->stage == LOG_WALK_REPLAY_INODES) {
1997 			struct btrfs_inode_item *inode_item;
1998 			u32 mode;
1999 
2000 			inode_item = btrfs_item_ptr(eb, i,
2001 					    struct btrfs_inode_item);
2002 			mode = btrfs_inode_mode(eb, inode_item);
2003 			if (S_ISDIR(mode)) {
2004 				ret = replay_dir_deletes(wc->trans,
2005 					 root, log, path, key.objectid, 0);
2006 				if (ret)
2007 					break;
2008 			}
2009 			ret = overwrite_item(wc->trans, root, path,
2010 					     eb, i, &key);
2011 			if (ret)
2012 				break;
2013 
2014 			/* for regular files, make sure corresponding
2015 			 * orhpan item exist. extents past the new EOF
2016 			 * will be truncated later by orphan cleanup.
2017 			 */
2018 			if (S_ISREG(mode)) {
2019 				ret = insert_orphan_item(wc->trans, root,
2020 							 key.objectid);
2021 				if (ret)
2022 					break;
2023 			}
2024 
2025 			ret = link_to_fixup_dir(wc->trans, root,
2026 						path, key.objectid);
2027 			if (ret)
2028 				break;
2029 		}
2030 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2031 			continue;
2032 
2033 		/* these keys are simply copied */
2034 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2035 			ret = overwrite_item(wc->trans, root, path,
2036 					     eb, i, &key);
2037 			if (ret)
2038 				break;
2039 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2040 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2041 			ret = add_inode_ref(wc->trans, root, log, path,
2042 					    eb, i, &key);
2043 			if (ret && ret != -ENOENT)
2044 				break;
2045 			ret = 0;
2046 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2047 			ret = replay_one_extent(wc->trans, root, path,
2048 						eb, i, &key);
2049 			if (ret)
2050 				break;
2051 		} else if (key.type == BTRFS_DIR_ITEM_KEY ||
2052 			   key.type == BTRFS_DIR_INDEX_KEY) {
2053 			ret = replay_one_dir_item(wc->trans, root, path,
2054 						  eb, i, &key);
2055 			if (ret)
2056 				break;
2057 		}
2058 	}
2059 	btrfs_free_path(path);
2060 	return ret;
2061 }
2062 
2063 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2064 				   struct btrfs_root *root,
2065 				   struct btrfs_path *path, int *level,
2066 				   struct walk_control *wc)
2067 {
2068 	u64 root_owner;
2069 	u64 bytenr;
2070 	u64 ptr_gen;
2071 	struct extent_buffer *next;
2072 	struct extent_buffer *cur;
2073 	struct extent_buffer *parent;
2074 	u32 blocksize;
2075 	int ret = 0;
2076 
2077 	WARN_ON(*level < 0);
2078 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2079 
2080 	while (*level > 0) {
2081 		WARN_ON(*level < 0);
2082 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
2083 		cur = path->nodes[*level];
2084 
2085 		if (btrfs_header_level(cur) != *level)
2086 			WARN_ON(1);
2087 
2088 		if (path->slots[*level] >=
2089 		    btrfs_header_nritems(cur))
2090 			break;
2091 
2092 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2093 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2094 		blocksize = btrfs_level_size(root, *level - 1);
2095 
2096 		parent = path->nodes[*level];
2097 		root_owner = btrfs_header_owner(parent);
2098 
2099 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
2100 		if (!next)
2101 			return -ENOMEM;
2102 
2103 		if (*level == 1) {
2104 			ret = wc->process_func(root, next, wc, ptr_gen);
2105 			if (ret) {
2106 				free_extent_buffer(next);
2107 				return ret;
2108 			}
2109 
2110 			path->slots[*level]++;
2111 			if (wc->free) {
2112 				ret = btrfs_read_buffer(next, ptr_gen);
2113 				if (ret) {
2114 					free_extent_buffer(next);
2115 					return ret;
2116 				}
2117 
2118 				btrfs_tree_lock(next);
2119 				btrfs_set_lock_blocking(next);
2120 				clean_tree_block(trans, root, next);
2121 				btrfs_wait_tree_block_writeback(next);
2122 				btrfs_tree_unlock(next);
2123 
2124 				WARN_ON(root_owner !=
2125 					BTRFS_TREE_LOG_OBJECTID);
2126 				ret = btrfs_free_and_pin_reserved_extent(root,
2127 							 bytenr, blocksize);
2128 				if (ret) {
2129 					free_extent_buffer(next);
2130 					return ret;
2131 				}
2132 			}
2133 			free_extent_buffer(next);
2134 			continue;
2135 		}
2136 		ret = btrfs_read_buffer(next, ptr_gen);
2137 		if (ret) {
2138 			free_extent_buffer(next);
2139 			return ret;
2140 		}
2141 
2142 		WARN_ON(*level <= 0);
2143 		if (path->nodes[*level-1])
2144 			free_extent_buffer(path->nodes[*level-1]);
2145 		path->nodes[*level-1] = next;
2146 		*level = btrfs_header_level(next);
2147 		path->slots[*level] = 0;
2148 		cond_resched();
2149 	}
2150 	WARN_ON(*level < 0);
2151 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2152 
2153 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2154 
2155 	cond_resched();
2156 	return 0;
2157 }
2158 
2159 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2160 				 struct btrfs_root *root,
2161 				 struct btrfs_path *path, int *level,
2162 				 struct walk_control *wc)
2163 {
2164 	u64 root_owner;
2165 	int i;
2166 	int slot;
2167 	int ret;
2168 
2169 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2170 		slot = path->slots[i];
2171 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2172 			path->slots[i]++;
2173 			*level = i;
2174 			WARN_ON(*level == 0);
2175 			return 0;
2176 		} else {
2177 			struct extent_buffer *parent;
2178 			if (path->nodes[*level] == root->node)
2179 				parent = path->nodes[*level];
2180 			else
2181 				parent = path->nodes[*level + 1];
2182 
2183 			root_owner = btrfs_header_owner(parent);
2184 			ret = wc->process_func(root, path->nodes[*level], wc,
2185 				 btrfs_header_generation(path->nodes[*level]));
2186 			if (ret)
2187 				return ret;
2188 
2189 			if (wc->free) {
2190 				struct extent_buffer *next;
2191 
2192 				next = path->nodes[*level];
2193 
2194 				btrfs_tree_lock(next);
2195 				btrfs_set_lock_blocking(next);
2196 				clean_tree_block(trans, root, next);
2197 				btrfs_wait_tree_block_writeback(next);
2198 				btrfs_tree_unlock(next);
2199 
2200 				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2201 				ret = btrfs_free_and_pin_reserved_extent(root,
2202 						path->nodes[*level]->start,
2203 						path->nodes[*level]->len);
2204 				if (ret)
2205 					return ret;
2206 			}
2207 			free_extent_buffer(path->nodes[*level]);
2208 			path->nodes[*level] = NULL;
2209 			*level = i + 1;
2210 		}
2211 	}
2212 	return 1;
2213 }
2214 
2215 /*
2216  * drop the reference count on the tree rooted at 'snap'.  This traverses
2217  * the tree freeing any blocks that have a ref count of zero after being
2218  * decremented.
2219  */
2220 static int walk_log_tree(struct btrfs_trans_handle *trans,
2221 			 struct btrfs_root *log, struct walk_control *wc)
2222 {
2223 	int ret = 0;
2224 	int wret;
2225 	int level;
2226 	struct btrfs_path *path;
2227 	int orig_level;
2228 
2229 	path = btrfs_alloc_path();
2230 	if (!path)
2231 		return -ENOMEM;
2232 
2233 	level = btrfs_header_level(log->node);
2234 	orig_level = level;
2235 	path->nodes[level] = log->node;
2236 	extent_buffer_get(log->node);
2237 	path->slots[level] = 0;
2238 
2239 	while (1) {
2240 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2241 		if (wret > 0)
2242 			break;
2243 		if (wret < 0) {
2244 			ret = wret;
2245 			goto out;
2246 		}
2247 
2248 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2249 		if (wret > 0)
2250 			break;
2251 		if (wret < 0) {
2252 			ret = wret;
2253 			goto out;
2254 		}
2255 	}
2256 
2257 	/* was the root node processed? if not, catch it here */
2258 	if (path->nodes[orig_level]) {
2259 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2260 			 btrfs_header_generation(path->nodes[orig_level]));
2261 		if (ret)
2262 			goto out;
2263 		if (wc->free) {
2264 			struct extent_buffer *next;
2265 
2266 			next = path->nodes[orig_level];
2267 
2268 			btrfs_tree_lock(next);
2269 			btrfs_set_lock_blocking(next);
2270 			clean_tree_block(trans, log, next);
2271 			btrfs_wait_tree_block_writeback(next);
2272 			btrfs_tree_unlock(next);
2273 
2274 			WARN_ON(log->root_key.objectid !=
2275 				BTRFS_TREE_LOG_OBJECTID);
2276 			ret = btrfs_free_and_pin_reserved_extent(log, next->start,
2277 							 next->len);
2278 			if (ret)
2279 				goto out;
2280 		}
2281 	}
2282 
2283 out:
2284 	btrfs_free_path(path);
2285 	return ret;
2286 }
2287 
2288 /*
2289  * helper function to update the item for a given subvolumes log root
2290  * in the tree of log roots
2291  */
2292 static int update_log_root(struct btrfs_trans_handle *trans,
2293 			   struct btrfs_root *log)
2294 {
2295 	int ret;
2296 
2297 	if (log->log_transid == 1) {
2298 		/* insert root item on the first sync */
2299 		ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2300 				&log->root_key, &log->root_item);
2301 	} else {
2302 		ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2303 				&log->root_key, &log->root_item);
2304 	}
2305 	return ret;
2306 }
2307 
2308 static int wait_log_commit(struct btrfs_trans_handle *trans,
2309 			   struct btrfs_root *root, unsigned long transid)
2310 {
2311 	DEFINE_WAIT(wait);
2312 	int index = transid % 2;
2313 
2314 	/*
2315 	 * we only allow two pending log transactions at a time,
2316 	 * so we know that if ours is more than 2 older than the
2317 	 * current transaction, we're done
2318 	 */
2319 	do {
2320 		prepare_to_wait(&root->log_commit_wait[index],
2321 				&wait, TASK_UNINTERRUPTIBLE);
2322 		mutex_unlock(&root->log_mutex);
2323 
2324 		if (root->fs_info->last_trans_log_full_commit !=
2325 		    trans->transid && root->log_transid < transid + 2 &&
2326 		    atomic_read(&root->log_commit[index]))
2327 			schedule();
2328 
2329 		finish_wait(&root->log_commit_wait[index], &wait);
2330 		mutex_lock(&root->log_mutex);
2331 	} while (root->fs_info->last_trans_log_full_commit !=
2332 		 trans->transid && root->log_transid < transid + 2 &&
2333 		 atomic_read(&root->log_commit[index]));
2334 	return 0;
2335 }
2336 
2337 static void wait_for_writer(struct btrfs_trans_handle *trans,
2338 			    struct btrfs_root *root)
2339 {
2340 	DEFINE_WAIT(wait);
2341 	while (root->fs_info->last_trans_log_full_commit !=
2342 	       trans->transid && atomic_read(&root->log_writers)) {
2343 		prepare_to_wait(&root->log_writer_wait,
2344 				&wait, TASK_UNINTERRUPTIBLE);
2345 		mutex_unlock(&root->log_mutex);
2346 		if (root->fs_info->last_trans_log_full_commit !=
2347 		    trans->transid && atomic_read(&root->log_writers))
2348 			schedule();
2349 		mutex_lock(&root->log_mutex);
2350 		finish_wait(&root->log_writer_wait, &wait);
2351 	}
2352 }
2353 
2354 /*
2355  * btrfs_sync_log does sends a given tree log down to the disk and
2356  * updates the super blocks to record it.  When this call is done,
2357  * you know that any inodes previously logged are safely on disk only
2358  * if it returns 0.
2359  *
2360  * Any other return value means you need to call btrfs_commit_transaction.
2361  * Some of the edge cases for fsyncing directories that have had unlinks
2362  * or renames done in the past mean that sometimes the only safe
2363  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2364  * that has happened.
2365  */
2366 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2367 		   struct btrfs_root *root)
2368 {
2369 	int index1;
2370 	int index2;
2371 	int mark;
2372 	int ret;
2373 	struct btrfs_root *log = root->log_root;
2374 	struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2375 	unsigned long log_transid = 0;
2376 	struct blk_plug plug;
2377 
2378 	mutex_lock(&root->log_mutex);
2379 	log_transid = root->log_transid;
2380 	index1 = root->log_transid % 2;
2381 	if (atomic_read(&root->log_commit[index1])) {
2382 		wait_log_commit(trans, root, root->log_transid);
2383 		mutex_unlock(&root->log_mutex);
2384 		return 0;
2385 	}
2386 	atomic_set(&root->log_commit[index1], 1);
2387 
2388 	/* wait for previous tree log sync to complete */
2389 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2390 		wait_log_commit(trans, root, root->log_transid - 1);
2391 	while (1) {
2392 		int batch = atomic_read(&root->log_batch);
2393 		/* when we're on an ssd, just kick the log commit out */
2394 		if (!btrfs_test_opt(root, SSD) && root->log_multiple_pids) {
2395 			mutex_unlock(&root->log_mutex);
2396 			schedule_timeout_uninterruptible(1);
2397 			mutex_lock(&root->log_mutex);
2398 		}
2399 		wait_for_writer(trans, root);
2400 		if (batch == atomic_read(&root->log_batch))
2401 			break;
2402 	}
2403 
2404 	/* bail out if we need to do a full commit */
2405 	if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2406 		ret = -EAGAIN;
2407 		btrfs_free_logged_extents(log, log_transid);
2408 		mutex_unlock(&root->log_mutex);
2409 		goto out;
2410 	}
2411 
2412 	if (log_transid % 2 == 0)
2413 		mark = EXTENT_DIRTY;
2414 	else
2415 		mark = EXTENT_NEW;
2416 
2417 	/* we start IO on  all the marked extents here, but we don't actually
2418 	 * wait for them until later.
2419 	 */
2420 	blk_start_plug(&plug);
2421 	ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2422 	if (ret) {
2423 		blk_finish_plug(&plug);
2424 		btrfs_abort_transaction(trans, root, ret);
2425 		btrfs_free_logged_extents(log, log_transid);
2426 		mutex_unlock(&root->log_mutex);
2427 		goto out;
2428 	}
2429 
2430 	btrfs_set_root_node(&log->root_item, log->node);
2431 
2432 	root->log_transid++;
2433 	log->log_transid = root->log_transid;
2434 	root->log_start_pid = 0;
2435 	smp_mb();
2436 	/*
2437 	 * IO has been started, blocks of the log tree have WRITTEN flag set
2438 	 * in their headers. new modifications of the log will be written to
2439 	 * new positions. so it's safe to allow log writers to go in.
2440 	 */
2441 	mutex_unlock(&root->log_mutex);
2442 
2443 	mutex_lock(&log_root_tree->log_mutex);
2444 	atomic_inc(&log_root_tree->log_batch);
2445 	atomic_inc(&log_root_tree->log_writers);
2446 	mutex_unlock(&log_root_tree->log_mutex);
2447 
2448 	ret = update_log_root(trans, log);
2449 
2450 	mutex_lock(&log_root_tree->log_mutex);
2451 	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2452 		smp_mb();
2453 		if (waitqueue_active(&log_root_tree->log_writer_wait))
2454 			wake_up(&log_root_tree->log_writer_wait);
2455 	}
2456 
2457 	if (ret) {
2458 		blk_finish_plug(&plug);
2459 		if (ret != -ENOSPC) {
2460 			btrfs_abort_transaction(trans, root, ret);
2461 			mutex_unlock(&log_root_tree->log_mutex);
2462 			goto out;
2463 		}
2464 		root->fs_info->last_trans_log_full_commit = trans->transid;
2465 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2466 		btrfs_free_logged_extents(log, log_transid);
2467 		mutex_unlock(&log_root_tree->log_mutex);
2468 		ret = -EAGAIN;
2469 		goto out;
2470 	}
2471 
2472 	index2 = log_root_tree->log_transid % 2;
2473 	if (atomic_read(&log_root_tree->log_commit[index2])) {
2474 		blk_finish_plug(&plug);
2475 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2476 		wait_log_commit(trans, log_root_tree,
2477 				log_root_tree->log_transid);
2478 		btrfs_free_logged_extents(log, log_transid);
2479 		mutex_unlock(&log_root_tree->log_mutex);
2480 		ret = 0;
2481 		goto out;
2482 	}
2483 	atomic_set(&log_root_tree->log_commit[index2], 1);
2484 
2485 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2486 		wait_log_commit(trans, log_root_tree,
2487 				log_root_tree->log_transid - 1);
2488 	}
2489 
2490 	wait_for_writer(trans, log_root_tree);
2491 
2492 	/*
2493 	 * now that we've moved on to the tree of log tree roots,
2494 	 * check the full commit flag again
2495 	 */
2496 	if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2497 		blk_finish_plug(&plug);
2498 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2499 		btrfs_free_logged_extents(log, log_transid);
2500 		mutex_unlock(&log_root_tree->log_mutex);
2501 		ret = -EAGAIN;
2502 		goto out_wake_log_root;
2503 	}
2504 
2505 	ret = btrfs_write_marked_extents(log_root_tree,
2506 					 &log_root_tree->dirty_log_pages,
2507 					 EXTENT_DIRTY | EXTENT_NEW);
2508 	blk_finish_plug(&plug);
2509 	if (ret) {
2510 		btrfs_abort_transaction(trans, root, ret);
2511 		btrfs_free_logged_extents(log, log_transid);
2512 		mutex_unlock(&log_root_tree->log_mutex);
2513 		goto out_wake_log_root;
2514 	}
2515 	btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2516 	btrfs_wait_marked_extents(log_root_tree,
2517 				  &log_root_tree->dirty_log_pages,
2518 				  EXTENT_NEW | EXTENT_DIRTY);
2519 	btrfs_wait_logged_extents(log, log_transid);
2520 
2521 	btrfs_set_super_log_root(root->fs_info->super_for_commit,
2522 				log_root_tree->node->start);
2523 	btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2524 				btrfs_header_level(log_root_tree->node));
2525 
2526 	log_root_tree->log_transid++;
2527 	smp_mb();
2528 
2529 	mutex_unlock(&log_root_tree->log_mutex);
2530 
2531 	/*
2532 	 * nobody else is going to jump in and write the the ctree
2533 	 * super here because the log_commit atomic below is protecting
2534 	 * us.  We must be called with a transaction handle pinning
2535 	 * the running transaction open, so a full commit can't hop
2536 	 * in and cause problems either.
2537 	 */
2538 	btrfs_scrub_pause_super(root);
2539 	ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
2540 	btrfs_scrub_continue_super(root);
2541 	if (ret) {
2542 		btrfs_abort_transaction(trans, root, ret);
2543 		goto out_wake_log_root;
2544 	}
2545 
2546 	mutex_lock(&root->log_mutex);
2547 	if (root->last_log_commit < log_transid)
2548 		root->last_log_commit = log_transid;
2549 	mutex_unlock(&root->log_mutex);
2550 
2551 out_wake_log_root:
2552 	atomic_set(&log_root_tree->log_commit[index2], 0);
2553 	smp_mb();
2554 	if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2555 		wake_up(&log_root_tree->log_commit_wait[index2]);
2556 out:
2557 	atomic_set(&root->log_commit[index1], 0);
2558 	smp_mb();
2559 	if (waitqueue_active(&root->log_commit_wait[index1]))
2560 		wake_up(&root->log_commit_wait[index1]);
2561 	return ret;
2562 }
2563 
2564 static void free_log_tree(struct btrfs_trans_handle *trans,
2565 			  struct btrfs_root *log)
2566 {
2567 	int ret;
2568 	u64 start;
2569 	u64 end;
2570 	struct walk_control wc = {
2571 		.free = 1,
2572 		.process_func = process_one_buffer
2573 	};
2574 
2575 	if (trans) {
2576 		ret = walk_log_tree(trans, log, &wc);
2577 
2578 		/* I don't think this can happen but just in case */
2579 		if (ret)
2580 			btrfs_abort_transaction(trans, log, ret);
2581 	}
2582 
2583 	while (1) {
2584 		ret = find_first_extent_bit(&log->dirty_log_pages,
2585 				0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
2586 				NULL);
2587 		if (ret)
2588 			break;
2589 
2590 		clear_extent_bits(&log->dirty_log_pages, start, end,
2591 				  EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2592 	}
2593 
2594 	/*
2595 	 * We may have short-circuited the log tree with the full commit logic
2596 	 * and left ordered extents on our list, so clear these out to keep us
2597 	 * from leaking inodes and memory.
2598 	 */
2599 	btrfs_free_logged_extents(log, 0);
2600 	btrfs_free_logged_extents(log, 1);
2601 
2602 	free_extent_buffer(log->node);
2603 	kfree(log);
2604 }
2605 
2606 /*
2607  * free all the extents used by the tree log.  This should be called
2608  * at commit time of the full transaction
2609  */
2610 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2611 {
2612 	if (root->log_root) {
2613 		free_log_tree(trans, root->log_root);
2614 		root->log_root = NULL;
2615 	}
2616 	return 0;
2617 }
2618 
2619 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2620 			     struct btrfs_fs_info *fs_info)
2621 {
2622 	if (fs_info->log_root_tree) {
2623 		free_log_tree(trans, fs_info->log_root_tree);
2624 		fs_info->log_root_tree = NULL;
2625 	}
2626 	return 0;
2627 }
2628 
2629 /*
2630  * If both a file and directory are logged, and unlinks or renames are
2631  * mixed in, we have a few interesting corners:
2632  *
2633  * create file X in dir Y
2634  * link file X to X.link in dir Y
2635  * fsync file X
2636  * unlink file X but leave X.link
2637  * fsync dir Y
2638  *
2639  * After a crash we would expect only X.link to exist.  But file X
2640  * didn't get fsync'd again so the log has back refs for X and X.link.
2641  *
2642  * We solve this by removing directory entries and inode backrefs from the
2643  * log when a file that was logged in the current transaction is
2644  * unlinked.  Any later fsync will include the updated log entries, and
2645  * we'll be able to reconstruct the proper directory items from backrefs.
2646  *
2647  * This optimizations allows us to avoid relogging the entire inode
2648  * or the entire directory.
2649  */
2650 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2651 				 struct btrfs_root *root,
2652 				 const char *name, int name_len,
2653 				 struct inode *dir, u64 index)
2654 {
2655 	struct btrfs_root *log;
2656 	struct btrfs_dir_item *di;
2657 	struct btrfs_path *path;
2658 	int ret;
2659 	int err = 0;
2660 	int bytes_del = 0;
2661 	u64 dir_ino = btrfs_ino(dir);
2662 
2663 	if (BTRFS_I(dir)->logged_trans < trans->transid)
2664 		return 0;
2665 
2666 	ret = join_running_log_trans(root);
2667 	if (ret)
2668 		return 0;
2669 
2670 	mutex_lock(&BTRFS_I(dir)->log_mutex);
2671 
2672 	log = root->log_root;
2673 	path = btrfs_alloc_path();
2674 	if (!path) {
2675 		err = -ENOMEM;
2676 		goto out_unlock;
2677 	}
2678 
2679 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
2680 				   name, name_len, -1);
2681 	if (IS_ERR(di)) {
2682 		err = PTR_ERR(di);
2683 		goto fail;
2684 	}
2685 	if (di) {
2686 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2687 		bytes_del += name_len;
2688 		if (ret) {
2689 			err = ret;
2690 			goto fail;
2691 		}
2692 	}
2693 	btrfs_release_path(path);
2694 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
2695 					 index, name, name_len, -1);
2696 	if (IS_ERR(di)) {
2697 		err = PTR_ERR(di);
2698 		goto fail;
2699 	}
2700 	if (di) {
2701 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2702 		bytes_del += name_len;
2703 		if (ret) {
2704 			err = ret;
2705 			goto fail;
2706 		}
2707 	}
2708 
2709 	/* update the directory size in the log to reflect the names
2710 	 * we have removed
2711 	 */
2712 	if (bytes_del) {
2713 		struct btrfs_key key;
2714 
2715 		key.objectid = dir_ino;
2716 		key.offset = 0;
2717 		key.type = BTRFS_INODE_ITEM_KEY;
2718 		btrfs_release_path(path);
2719 
2720 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2721 		if (ret < 0) {
2722 			err = ret;
2723 			goto fail;
2724 		}
2725 		if (ret == 0) {
2726 			struct btrfs_inode_item *item;
2727 			u64 i_size;
2728 
2729 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2730 					      struct btrfs_inode_item);
2731 			i_size = btrfs_inode_size(path->nodes[0], item);
2732 			if (i_size > bytes_del)
2733 				i_size -= bytes_del;
2734 			else
2735 				i_size = 0;
2736 			btrfs_set_inode_size(path->nodes[0], item, i_size);
2737 			btrfs_mark_buffer_dirty(path->nodes[0]);
2738 		} else
2739 			ret = 0;
2740 		btrfs_release_path(path);
2741 	}
2742 fail:
2743 	btrfs_free_path(path);
2744 out_unlock:
2745 	mutex_unlock(&BTRFS_I(dir)->log_mutex);
2746 	if (ret == -ENOSPC) {
2747 		root->fs_info->last_trans_log_full_commit = trans->transid;
2748 		ret = 0;
2749 	} else if (ret < 0)
2750 		btrfs_abort_transaction(trans, root, ret);
2751 
2752 	btrfs_end_log_trans(root);
2753 
2754 	return err;
2755 }
2756 
2757 /* see comments for btrfs_del_dir_entries_in_log */
2758 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2759 			       struct btrfs_root *root,
2760 			       const char *name, int name_len,
2761 			       struct inode *inode, u64 dirid)
2762 {
2763 	struct btrfs_root *log;
2764 	u64 index;
2765 	int ret;
2766 
2767 	if (BTRFS_I(inode)->logged_trans < trans->transid)
2768 		return 0;
2769 
2770 	ret = join_running_log_trans(root);
2771 	if (ret)
2772 		return 0;
2773 	log = root->log_root;
2774 	mutex_lock(&BTRFS_I(inode)->log_mutex);
2775 
2776 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
2777 				  dirid, &index);
2778 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
2779 	if (ret == -ENOSPC) {
2780 		root->fs_info->last_trans_log_full_commit = trans->transid;
2781 		ret = 0;
2782 	} else if (ret < 0 && ret != -ENOENT)
2783 		btrfs_abort_transaction(trans, root, ret);
2784 	btrfs_end_log_trans(root);
2785 
2786 	return ret;
2787 }
2788 
2789 /*
2790  * creates a range item in the log for 'dirid'.  first_offset and
2791  * last_offset tell us which parts of the key space the log should
2792  * be considered authoritative for.
2793  */
2794 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2795 				       struct btrfs_root *log,
2796 				       struct btrfs_path *path,
2797 				       int key_type, u64 dirid,
2798 				       u64 first_offset, u64 last_offset)
2799 {
2800 	int ret;
2801 	struct btrfs_key key;
2802 	struct btrfs_dir_log_item *item;
2803 
2804 	key.objectid = dirid;
2805 	key.offset = first_offset;
2806 	if (key_type == BTRFS_DIR_ITEM_KEY)
2807 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
2808 	else
2809 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
2810 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2811 	if (ret)
2812 		return ret;
2813 
2814 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2815 			      struct btrfs_dir_log_item);
2816 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2817 	btrfs_mark_buffer_dirty(path->nodes[0]);
2818 	btrfs_release_path(path);
2819 	return 0;
2820 }
2821 
2822 /*
2823  * log all the items included in the current transaction for a given
2824  * directory.  This also creates the range items in the log tree required
2825  * to replay anything deleted before the fsync
2826  */
2827 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2828 			  struct btrfs_root *root, struct inode *inode,
2829 			  struct btrfs_path *path,
2830 			  struct btrfs_path *dst_path, int key_type,
2831 			  u64 min_offset, u64 *last_offset_ret)
2832 {
2833 	struct btrfs_key min_key;
2834 	struct btrfs_key max_key;
2835 	struct btrfs_root *log = root->log_root;
2836 	struct extent_buffer *src;
2837 	int err = 0;
2838 	int ret;
2839 	int i;
2840 	int nritems;
2841 	u64 first_offset = min_offset;
2842 	u64 last_offset = (u64)-1;
2843 	u64 ino = btrfs_ino(inode);
2844 
2845 	log = root->log_root;
2846 	max_key.objectid = ino;
2847 	max_key.offset = (u64)-1;
2848 	max_key.type = key_type;
2849 
2850 	min_key.objectid = ino;
2851 	min_key.type = key_type;
2852 	min_key.offset = min_offset;
2853 
2854 	path->keep_locks = 1;
2855 
2856 	ret = btrfs_search_forward(root, &min_key, &max_key,
2857 				   path, trans->transid);
2858 
2859 	/*
2860 	 * we didn't find anything from this transaction, see if there
2861 	 * is anything at all
2862 	 */
2863 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
2864 		min_key.objectid = ino;
2865 		min_key.type = key_type;
2866 		min_key.offset = (u64)-1;
2867 		btrfs_release_path(path);
2868 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2869 		if (ret < 0) {
2870 			btrfs_release_path(path);
2871 			return ret;
2872 		}
2873 		ret = btrfs_previous_item(root, path, ino, key_type);
2874 
2875 		/* if ret == 0 there are items for this type,
2876 		 * create a range to tell us the last key of this type.
2877 		 * otherwise, there are no items in this directory after
2878 		 * *min_offset, and we create a range to indicate that.
2879 		 */
2880 		if (ret == 0) {
2881 			struct btrfs_key tmp;
2882 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2883 					      path->slots[0]);
2884 			if (key_type == tmp.type)
2885 				first_offset = max(min_offset, tmp.offset) + 1;
2886 		}
2887 		goto done;
2888 	}
2889 
2890 	/* go backward to find any previous key */
2891 	ret = btrfs_previous_item(root, path, ino, key_type);
2892 	if (ret == 0) {
2893 		struct btrfs_key tmp;
2894 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2895 		if (key_type == tmp.type) {
2896 			first_offset = tmp.offset;
2897 			ret = overwrite_item(trans, log, dst_path,
2898 					     path->nodes[0], path->slots[0],
2899 					     &tmp);
2900 			if (ret) {
2901 				err = ret;
2902 				goto done;
2903 			}
2904 		}
2905 	}
2906 	btrfs_release_path(path);
2907 
2908 	/* find the first key from this transaction again */
2909 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2910 	if (ret != 0) {
2911 		WARN_ON(1);
2912 		goto done;
2913 	}
2914 
2915 	/*
2916 	 * we have a block from this transaction, log every item in it
2917 	 * from our directory
2918 	 */
2919 	while (1) {
2920 		struct btrfs_key tmp;
2921 		src = path->nodes[0];
2922 		nritems = btrfs_header_nritems(src);
2923 		for (i = path->slots[0]; i < nritems; i++) {
2924 			btrfs_item_key_to_cpu(src, &min_key, i);
2925 
2926 			if (min_key.objectid != ino || min_key.type != key_type)
2927 				goto done;
2928 			ret = overwrite_item(trans, log, dst_path, src, i,
2929 					     &min_key);
2930 			if (ret) {
2931 				err = ret;
2932 				goto done;
2933 			}
2934 		}
2935 		path->slots[0] = nritems;
2936 
2937 		/*
2938 		 * look ahead to the next item and see if it is also
2939 		 * from this directory and from this transaction
2940 		 */
2941 		ret = btrfs_next_leaf(root, path);
2942 		if (ret == 1) {
2943 			last_offset = (u64)-1;
2944 			goto done;
2945 		}
2946 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2947 		if (tmp.objectid != ino || tmp.type != key_type) {
2948 			last_offset = (u64)-1;
2949 			goto done;
2950 		}
2951 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2952 			ret = overwrite_item(trans, log, dst_path,
2953 					     path->nodes[0], path->slots[0],
2954 					     &tmp);
2955 			if (ret)
2956 				err = ret;
2957 			else
2958 				last_offset = tmp.offset;
2959 			goto done;
2960 		}
2961 	}
2962 done:
2963 	btrfs_release_path(path);
2964 	btrfs_release_path(dst_path);
2965 
2966 	if (err == 0) {
2967 		*last_offset_ret = last_offset;
2968 		/*
2969 		 * insert the log range keys to indicate where the log
2970 		 * is valid
2971 		 */
2972 		ret = insert_dir_log_key(trans, log, path, key_type,
2973 					 ino, first_offset, last_offset);
2974 		if (ret)
2975 			err = ret;
2976 	}
2977 	return err;
2978 }
2979 
2980 /*
2981  * logging directories is very similar to logging inodes, We find all the items
2982  * from the current transaction and write them to the log.
2983  *
2984  * The recovery code scans the directory in the subvolume, and if it finds a
2985  * key in the range logged that is not present in the log tree, then it means
2986  * that dir entry was unlinked during the transaction.
2987  *
2988  * In order for that scan to work, we must include one key smaller than
2989  * the smallest logged by this transaction and one key larger than the largest
2990  * key logged by this transaction.
2991  */
2992 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2993 			  struct btrfs_root *root, struct inode *inode,
2994 			  struct btrfs_path *path,
2995 			  struct btrfs_path *dst_path)
2996 {
2997 	u64 min_key;
2998 	u64 max_key;
2999 	int ret;
3000 	int key_type = BTRFS_DIR_ITEM_KEY;
3001 
3002 again:
3003 	min_key = 0;
3004 	max_key = 0;
3005 	while (1) {
3006 		ret = log_dir_items(trans, root, inode, path,
3007 				    dst_path, key_type, min_key,
3008 				    &max_key);
3009 		if (ret)
3010 			return ret;
3011 		if (max_key == (u64)-1)
3012 			break;
3013 		min_key = max_key + 1;
3014 	}
3015 
3016 	if (key_type == BTRFS_DIR_ITEM_KEY) {
3017 		key_type = BTRFS_DIR_INDEX_KEY;
3018 		goto again;
3019 	}
3020 	return 0;
3021 }
3022 
3023 /*
3024  * a helper function to drop items from the log before we relog an
3025  * inode.  max_key_type indicates the highest item type to remove.
3026  * This cannot be run for file data extents because it does not
3027  * free the extents they point to.
3028  */
3029 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3030 				  struct btrfs_root *log,
3031 				  struct btrfs_path *path,
3032 				  u64 objectid, int max_key_type)
3033 {
3034 	int ret;
3035 	struct btrfs_key key;
3036 	struct btrfs_key found_key;
3037 	int start_slot;
3038 
3039 	key.objectid = objectid;
3040 	key.type = max_key_type;
3041 	key.offset = (u64)-1;
3042 
3043 	while (1) {
3044 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3045 		BUG_ON(ret == 0); /* Logic error */
3046 		if (ret < 0)
3047 			break;
3048 
3049 		if (path->slots[0] == 0)
3050 			break;
3051 
3052 		path->slots[0]--;
3053 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3054 				      path->slots[0]);
3055 
3056 		if (found_key.objectid != objectid)
3057 			break;
3058 
3059 		found_key.offset = 0;
3060 		found_key.type = 0;
3061 		ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3062 				       &start_slot);
3063 
3064 		ret = btrfs_del_items(trans, log, path, start_slot,
3065 				      path->slots[0] - start_slot + 1);
3066 		/*
3067 		 * If start slot isn't 0 then we don't need to re-search, we've
3068 		 * found the last guy with the objectid in this tree.
3069 		 */
3070 		if (ret || start_slot != 0)
3071 			break;
3072 		btrfs_release_path(path);
3073 	}
3074 	btrfs_release_path(path);
3075 	if (ret > 0)
3076 		ret = 0;
3077 	return ret;
3078 }
3079 
3080 static void fill_inode_item(struct btrfs_trans_handle *trans,
3081 			    struct extent_buffer *leaf,
3082 			    struct btrfs_inode_item *item,
3083 			    struct inode *inode, int log_inode_only)
3084 {
3085 	struct btrfs_map_token token;
3086 
3087 	btrfs_init_map_token(&token);
3088 
3089 	if (log_inode_only) {
3090 		/* set the generation to zero so the recover code
3091 		 * can tell the difference between an logging
3092 		 * just to say 'this inode exists' and a logging
3093 		 * to say 'update this inode with these values'
3094 		 */
3095 		btrfs_set_token_inode_generation(leaf, item, 0, &token);
3096 		btrfs_set_token_inode_size(leaf, item, 0, &token);
3097 	} else {
3098 		btrfs_set_token_inode_generation(leaf, item,
3099 						 BTRFS_I(inode)->generation,
3100 						 &token);
3101 		btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3102 	}
3103 
3104 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3105 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3106 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3107 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3108 
3109 	btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3110 				     inode->i_atime.tv_sec, &token);
3111 	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3112 				      inode->i_atime.tv_nsec, &token);
3113 
3114 	btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3115 				     inode->i_mtime.tv_sec, &token);
3116 	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3117 				      inode->i_mtime.tv_nsec, &token);
3118 
3119 	btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3120 				     inode->i_ctime.tv_sec, &token);
3121 	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3122 				      inode->i_ctime.tv_nsec, &token);
3123 
3124 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3125 				     &token);
3126 
3127 	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3128 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3129 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3130 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3131 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3132 }
3133 
3134 static int log_inode_item(struct btrfs_trans_handle *trans,
3135 			  struct btrfs_root *log, struct btrfs_path *path,
3136 			  struct inode *inode)
3137 {
3138 	struct btrfs_inode_item *inode_item;
3139 	struct btrfs_key key;
3140 	int ret;
3141 
3142 	memcpy(&key, &BTRFS_I(inode)->location, sizeof(key));
3143 	ret = btrfs_insert_empty_item(trans, log, path, &key,
3144 				      sizeof(*inode_item));
3145 	if (ret && ret != -EEXIST)
3146 		return ret;
3147 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3148 				    struct btrfs_inode_item);
3149 	fill_inode_item(trans, path->nodes[0], inode_item, inode, 0);
3150 	btrfs_release_path(path);
3151 	return 0;
3152 }
3153 
3154 static noinline int copy_items(struct btrfs_trans_handle *trans,
3155 			       struct inode *inode,
3156 			       struct btrfs_path *dst_path,
3157 			       struct extent_buffer *src,
3158 			       int start_slot, int nr, int inode_only)
3159 {
3160 	unsigned long src_offset;
3161 	unsigned long dst_offset;
3162 	struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3163 	struct btrfs_file_extent_item *extent;
3164 	struct btrfs_inode_item *inode_item;
3165 	int ret;
3166 	struct btrfs_key *ins_keys;
3167 	u32 *ins_sizes;
3168 	char *ins_data;
3169 	int i;
3170 	struct list_head ordered_sums;
3171 	int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3172 
3173 	INIT_LIST_HEAD(&ordered_sums);
3174 
3175 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3176 			   nr * sizeof(u32), GFP_NOFS);
3177 	if (!ins_data)
3178 		return -ENOMEM;
3179 
3180 	ins_sizes = (u32 *)ins_data;
3181 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3182 
3183 	for (i = 0; i < nr; i++) {
3184 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3185 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3186 	}
3187 	ret = btrfs_insert_empty_items(trans, log, dst_path,
3188 				       ins_keys, ins_sizes, nr);
3189 	if (ret) {
3190 		kfree(ins_data);
3191 		return ret;
3192 	}
3193 
3194 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3195 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3196 						   dst_path->slots[0]);
3197 
3198 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3199 
3200 		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3201 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
3202 						    dst_path->slots[0],
3203 						    struct btrfs_inode_item);
3204 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
3205 					inode, inode_only == LOG_INODE_EXISTS);
3206 		} else {
3207 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3208 					   src_offset, ins_sizes[i]);
3209 		}
3210 
3211 		/* take a reference on file data extents so that truncates
3212 		 * or deletes of this inode don't have to relog the inode
3213 		 * again
3214 		 */
3215 		if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY &&
3216 		    !skip_csum) {
3217 			int found_type;
3218 			extent = btrfs_item_ptr(src, start_slot + i,
3219 						struct btrfs_file_extent_item);
3220 
3221 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
3222 				continue;
3223 
3224 			found_type = btrfs_file_extent_type(src, extent);
3225 			if (found_type == BTRFS_FILE_EXTENT_REG) {
3226 				u64 ds, dl, cs, cl;
3227 				ds = btrfs_file_extent_disk_bytenr(src,
3228 								extent);
3229 				/* ds == 0 is a hole */
3230 				if (ds == 0)
3231 					continue;
3232 
3233 				dl = btrfs_file_extent_disk_num_bytes(src,
3234 								extent);
3235 				cs = btrfs_file_extent_offset(src, extent);
3236 				cl = btrfs_file_extent_num_bytes(src,
3237 								extent);
3238 				if (btrfs_file_extent_compression(src,
3239 								  extent)) {
3240 					cs = 0;
3241 					cl = dl;
3242 				}
3243 
3244 				ret = btrfs_lookup_csums_range(
3245 						log->fs_info->csum_root,
3246 						ds + cs, ds + cs + cl - 1,
3247 						&ordered_sums, 0);
3248 				if (ret) {
3249 					btrfs_release_path(dst_path);
3250 					kfree(ins_data);
3251 					return ret;
3252 				}
3253 			}
3254 		}
3255 	}
3256 
3257 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3258 	btrfs_release_path(dst_path);
3259 	kfree(ins_data);
3260 
3261 	/*
3262 	 * we have to do this after the loop above to avoid changing the
3263 	 * log tree while trying to change the log tree.
3264 	 */
3265 	ret = 0;
3266 	while (!list_empty(&ordered_sums)) {
3267 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3268 						   struct btrfs_ordered_sum,
3269 						   list);
3270 		if (!ret)
3271 			ret = btrfs_csum_file_blocks(trans, log, sums);
3272 		list_del(&sums->list);
3273 		kfree(sums);
3274 	}
3275 	return ret;
3276 }
3277 
3278 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3279 {
3280 	struct extent_map *em1, *em2;
3281 
3282 	em1 = list_entry(a, struct extent_map, list);
3283 	em2 = list_entry(b, struct extent_map, list);
3284 
3285 	if (em1->start < em2->start)
3286 		return -1;
3287 	else if (em1->start > em2->start)
3288 		return 1;
3289 	return 0;
3290 }
3291 
3292 static int log_one_extent(struct btrfs_trans_handle *trans,
3293 			  struct inode *inode, struct btrfs_root *root,
3294 			  struct extent_map *em, struct btrfs_path *path)
3295 {
3296 	struct btrfs_root *log = root->log_root;
3297 	struct btrfs_file_extent_item *fi;
3298 	struct extent_buffer *leaf;
3299 	struct btrfs_ordered_extent *ordered;
3300 	struct list_head ordered_sums;
3301 	struct btrfs_map_token token;
3302 	struct btrfs_key key;
3303 	u64 mod_start = em->mod_start;
3304 	u64 mod_len = em->mod_len;
3305 	u64 csum_offset;
3306 	u64 csum_len;
3307 	u64 extent_offset = em->start - em->orig_start;
3308 	u64 block_len;
3309 	int ret;
3310 	int index = log->log_transid % 2;
3311 	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3312 
3313 	ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
3314 				   em->start + em->len, NULL, 0);
3315 	if (ret)
3316 		return ret;
3317 
3318 	INIT_LIST_HEAD(&ordered_sums);
3319 	btrfs_init_map_token(&token);
3320 	key.objectid = btrfs_ino(inode);
3321 	key.type = BTRFS_EXTENT_DATA_KEY;
3322 	key.offset = em->start;
3323 
3324 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*fi));
3325 	if (ret)
3326 		return ret;
3327 	leaf = path->nodes[0];
3328 	fi = btrfs_item_ptr(leaf, path->slots[0],
3329 			    struct btrfs_file_extent_item);
3330 
3331 	btrfs_set_token_file_extent_generation(leaf, fi, em->generation,
3332 					       &token);
3333 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3334 		skip_csum = true;
3335 		btrfs_set_token_file_extent_type(leaf, fi,
3336 						 BTRFS_FILE_EXTENT_PREALLOC,
3337 						 &token);
3338 	} else {
3339 		btrfs_set_token_file_extent_type(leaf, fi,
3340 						 BTRFS_FILE_EXTENT_REG,
3341 						 &token);
3342 		if (em->block_start == 0)
3343 			skip_csum = true;
3344 	}
3345 
3346 	block_len = max(em->block_len, em->orig_block_len);
3347 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
3348 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3349 							em->block_start,
3350 							&token);
3351 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3352 							   &token);
3353 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
3354 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3355 							em->block_start -
3356 							extent_offset, &token);
3357 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3358 							   &token);
3359 	} else {
3360 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
3361 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
3362 							   &token);
3363 	}
3364 
3365 	btrfs_set_token_file_extent_offset(leaf, fi,
3366 					   em->start - em->orig_start,
3367 					   &token);
3368 	btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
3369 	btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
3370 	btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
3371 						&token);
3372 	btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
3373 	btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
3374 	btrfs_mark_buffer_dirty(leaf);
3375 
3376 	btrfs_release_path(path);
3377 	if (ret) {
3378 		return ret;
3379 	}
3380 
3381 	if (skip_csum)
3382 		return 0;
3383 
3384 	if (em->compress_type) {
3385 		csum_offset = 0;
3386 		csum_len = block_len;
3387 	}
3388 
3389 	/*
3390 	 * First check and see if our csums are on our outstanding ordered
3391 	 * extents.
3392 	 */
3393 again:
3394 	spin_lock_irq(&log->log_extents_lock[index]);
3395 	list_for_each_entry(ordered, &log->logged_list[index], log_list) {
3396 		struct btrfs_ordered_sum *sum;
3397 
3398 		if (!mod_len)
3399 			break;
3400 
3401 		if (ordered->inode != inode)
3402 			continue;
3403 
3404 		if (ordered->file_offset + ordered->len <= mod_start ||
3405 		    mod_start + mod_len <= ordered->file_offset)
3406 			continue;
3407 
3408 		/*
3409 		 * We are going to copy all the csums on this ordered extent, so
3410 		 * go ahead and adjust mod_start and mod_len in case this
3411 		 * ordered extent has already been logged.
3412 		 */
3413 		if (ordered->file_offset > mod_start) {
3414 			if (ordered->file_offset + ordered->len >=
3415 			    mod_start + mod_len)
3416 				mod_len = ordered->file_offset - mod_start;
3417 			/*
3418 			 * If we have this case
3419 			 *
3420 			 * |--------- logged extent ---------|
3421 			 *       |----- ordered extent ----|
3422 			 *
3423 			 * Just don't mess with mod_start and mod_len, we'll
3424 			 * just end up logging more csums than we need and it
3425 			 * will be ok.
3426 			 */
3427 		} else {
3428 			if (ordered->file_offset + ordered->len <
3429 			    mod_start + mod_len) {
3430 				mod_len = (mod_start + mod_len) -
3431 					(ordered->file_offset + ordered->len);
3432 				mod_start = ordered->file_offset +
3433 					ordered->len;
3434 			} else {
3435 				mod_len = 0;
3436 			}
3437 		}
3438 
3439 		/*
3440 		 * To keep us from looping for the above case of an ordered
3441 		 * extent that falls inside of the logged extent.
3442 		 */
3443 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
3444 				     &ordered->flags))
3445 			continue;
3446 		atomic_inc(&ordered->refs);
3447 		spin_unlock_irq(&log->log_extents_lock[index]);
3448 		/*
3449 		 * we've dropped the lock, we must either break or
3450 		 * start over after this.
3451 		 */
3452 
3453 		wait_event(ordered->wait, ordered->csum_bytes_left == 0);
3454 
3455 		list_for_each_entry(sum, &ordered->list, list) {
3456 			ret = btrfs_csum_file_blocks(trans, log, sum);
3457 			if (ret) {
3458 				btrfs_put_ordered_extent(ordered);
3459 				goto unlocked;
3460 			}
3461 		}
3462 		btrfs_put_ordered_extent(ordered);
3463 		goto again;
3464 
3465 	}
3466 	spin_unlock_irq(&log->log_extents_lock[index]);
3467 unlocked:
3468 
3469 	if (!mod_len || ret)
3470 		return ret;
3471 
3472 	csum_offset = mod_start - em->start;
3473 	csum_len = mod_len;
3474 
3475 	/* block start is already adjusted for the file extent offset. */
3476 	ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
3477 				       em->block_start + csum_offset,
3478 				       em->block_start + csum_offset +
3479 				       csum_len - 1, &ordered_sums, 0);
3480 	if (ret)
3481 		return ret;
3482 
3483 	while (!list_empty(&ordered_sums)) {
3484 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3485 						   struct btrfs_ordered_sum,
3486 						   list);
3487 		if (!ret)
3488 			ret = btrfs_csum_file_blocks(trans, log, sums);
3489 		list_del(&sums->list);
3490 		kfree(sums);
3491 	}
3492 
3493 	return ret;
3494 }
3495 
3496 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
3497 				     struct btrfs_root *root,
3498 				     struct inode *inode,
3499 				     struct btrfs_path *path)
3500 {
3501 	struct extent_map *em, *n;
3502 	struct list_head extents;
3503 	struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3504 	u64 test_gen;
3505 	int ret = 0;
3506 	int num = 0;
3507 
3508 	INIT_LIST_HEAD(&extents);
3509 
3510 	write_lock(&tree->lock);
3511 	test_gen = root->fs_info->last_trans_committed;
3512 
3513 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
3514 		list_del_init(&em->list);
3515 
3516 		/*
3517 		 * Just an arbitrary number, this can be really CPU intensive
3518 		 * once we start getting a lot of extents, and really once we
3519 		 * have a bunch of extents we just want to commit since it will
3520 		 * be faster.
3521 		 */
3522 		if (++num > 32768) {
3523 			list_del_init(&tree->modified_extents);
3524 			ret = -EFBIG;
3525 			goto process;
3526 		}
3527 
3528 		if (em->generation <= test_gen)
3529 			continue;
3530 		/* Need a ref to keep it from getting evicted from cache */
3531 		atomic_inc(&em->refs);
3532 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
3533 		list_add_tail(&em->list, &extents);
3534 		num++;
3535 	}
3536 
3537 	list_sort(NULL, &extents, extent_cmp);
3538 
3539 process:
3540 	while (!list_empty(&extents)) {
3541 		em = list_entry(extents.next, struct extent_map, list);
3542 
3543 		list_del_init(&em->list);
3544 
3545 		/*
3546 		 * If we had an error we just need to delete everybody from our
3547 		 * private list.
3548 		 */
3549 		if (ret) {
3550 			clear_em_logging(tree, em);
3551 			free_extent_map(em);
3552 			continue;
3553 		}
3554 
3555 		write_unlock(&tree->lock);
3556 
3557 		ret = log_one_extent(trans, inode, root, em, path);
3558 		write_lock(&tree->lock);
3559 		clear_em_logging(tree, em);
3560 		free_extent_map(em);
3561 	}
3562 	WARN_ON(!list_empty(&extents));
3563 	write_unlock(&tree->lock);
3564 
3565 	btrfs_release_path(path);
3566 	return ret;
3567 }
3568 
3569 /* log a single inode in the tree log.
3570  * At least one parent directory for this inode must exist in the tree
3571  * or be logged already.
3572  *
3573  * Any items from this inode changed by the current transaction are copied
3574  * to the log tree.  An extra reference is taken on any extents in this
3575  * file, allowing us to avoid a whole pile of corner cases around logging
3576  * blocks that have been removed from the tree.
3577  *
3578  * See LOG_INODE_ALL and related defines for a description of what inode_only
3579  * does.
3580  *
3581  * This handles both files and directories.
3582  */
3583 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
3584 			     struct btrfs_root *root, struct inode *inode,
3585 			     int inode_only)
3586 {
3587 	struct btrfs_path *path;
3588 	struct btrfs_path *dst_path;
3589 	struct btrfs_key min_key;
3590 	struct btrfs_key max_key;
3591 	struct btrfs_root *log = root->log_root;
3592 	struct extent_buffer *src = NULL;
3593 	int err = 0;
3594 	int ret;
3595 	int nritems;
3596 	int ins_start_slot = 0;
3597 	int ins_nr;
3598 	bool fast_search = false;
3599 	u64 ino = btrfs_ino(inode);
3600 
3601 	path = btrfs_alloc_path();
3602 	if (!path)
3603 		return -ENOMEM;
3604 	dst_path = btrfs_alloc_path();
3605 	if (!dst_path) {
3606 		btrfs_free_path(path);
3607 		return -ENOMEM;
3608 	}
3609 
3610 	min_key.objectid = ino;
3611 	min_key.type = BTRFS_INODE_ITEM_KEY;
3612 	min_key.offset = 0;
3613 
3614 	max_key.objectid = ino;
3615 
3616 
3617 	/* today the code can only do partial logging of directories */
3618 	if (S_ISDIR(inode->i_mode) ||
3619 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3620 		       &BTRFS_I(inode)->runtime_flags) &&
3621 	     inode_only == LOG_INODE_EXISTS))
3622 		max_key.type = BTRFS_XATTR_ITEM_KEY;
3623 	else
3624 		max_key.type = (u8)-1;
3625 	max_key.offset = (u64)-1;
3626 
3627 	/* Only run delayed items if we are a dir or a new file */
3628 	if (S_ISDIR(inode->i_mode) ||
3629 	    BTRFS_I(inode)->generation > root->fs_info->last_trans_committed) {
3630 		ret = btrfs_commit_inode_delayed_items(trans, inode);
3631 		if (ret) {
3632 			btrfs_free_path(path);
3633 			btrfs_free_path(dst_path);
3634 			return ret;
3635 		}
3636 	}
3637 
3638 	mutex_lock(&BTRFS_I(inode)->log_mutex);
3639 
3640 	btrfs_get_logged_extents(log, inode);
3641 
3642 	/*
3643 	 * a brute force approach to making sure we get the most uptodate
3644 	 * copies of everything.
3645 	 */
3646 	if (S_ISDIR(inode->i_mode)) {
3647 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
3648 
3649 		if (inode_only == LOG_INODE_EXISTS)
3650 			max_key_type = BTRFS_XATTR_ITEM_KEY;
3651 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
3652 	} else {
3653 		if (test_and_clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3654 				       &BTRFS_I(inode)->runtime_flags)) {
3655 			clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3656 				  &BTRFS_I(inode)->runtime_flags);
3657 			ret = btrfs_truncate_inode_items(trans, log,
3658 							 inode, 0, 0);
3659 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3660 					      &BTRFS_I(inode)->runtime_flags)) {
3661 			if (inode_only == LOG_INODE_ALL)
3662 				fast_search = true;
3663 			max_key.type = BTRFS_XATTR_ITEM_KEY;
3664 			ret = drop_objectid_items(trans, log, path, ino,
3665 						  max_key.type);
3666 		} else {
3667 			if (inode_only == LOG_INODE_ALL)
3668 				fast_search = true;
3669 			ret = log_inode_item(trans, log, dst_path, inode);
3670 			if (ret) {
3671 				err = ret;
3672 				goto out_unlock;
3673 			}
3674 			goto log_extents;
3675 		}
3676 
3677 	}
3678 	if (ret) {
3679 		err = ret;
3680 		goto out_unlock;
3681 	}
3682 	path->keep_locks = 1;
3683 
3684 	while (1) {
3685 		ins_nr = 0;
3686 		ret = btrfs_search_forward(root, &min_key, &max_key,
3687 					   path, trans->transid);
3688 		if (ret != 0)
3689 			break;
3690 again:
3691 		/* note, ins_nr might be > 0 here, cleanup outside the loop */
3692 		if (min_key.objectid != ino)
3693 			break;
3694 		if (min_key.type > max_key.type)
3695 			break;
3696 
3697 		src = path->nodes[0];
3698 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
3699 			ins_nr++;
3700 			goto next_slot;
3701 		} else if (!ins_nr) {
3702 			ins_start_slot = path->slots[0];
3703 			ins_nr = 1;
3704 			goto next_slot;
3705 		}
3706 
3707 		ret = copy_items(trans, inode, dst_path, src, ins_start_slot,
3708 				 ins_nr, inode_only);
3709 		if (ret) {
3710 			err = ret;
3711 			goto out_unlock;
3712 		}
3713 		ins_nr = 1;
3714 		ins_start_slot = path->slots[0];
3715 next_slot:
3716 
3717 		nritems = btrfs_header_nritems(path->nodes[0]);
3718 		path->slots[0]++;
3719 		if (path->slots[0] < nritems) {
3720 			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
3721 					      path->slots[0]);
3722 			goto again;
3723 		}
3724 		if (ins_nr) {
3725 			ret = copy_items(trans, inode, dst_path, src,
3726 					 ins_start_slot,
3727 					 ins_nr, inode_only);
3728 			if (ret) {
3729 				err = ret;
3730 				goto out_unlock;
3731 			}
3732 			ins_nr = 0;
3733 		}
3734 		btrfs_release_path(path);
3735 
3736 		if (min_key.offset < (u64)-1)
3737 			min_key.offset++;
3738 		else if (min_key.type < (u8)-1)
3739 			min_key.type++;
3740 		else if (min_key.objectid < (u64)-1)
3741 			min_key.objectid++;
3742 		else
3743 			break;
3744 	}
3745 	if (ins_nr) {
3746 		ret = copy_items(trans, inode, dst_path, src, ins_start_slot,
3747 				 ins_nr, inode_only);
3748 		if (ret) {
3749 			err = ret;
3750 			goto out_unlock;
3751 		}
3752 		ins_nr = 0;
3753 	}
3754 
3755 log_extents:
3756 	btrfs_release_path(path);
3757 	btrfs_release_path(dst_path);
3758 	if (fast_search) {
3759 		ret = btrfs_log_changed_extents(trans, root, inode, dst_path);
3760 		if (ret) {
3761 			err = ret;
3762 			goto out_unlock;
3763 		}
3764 	} else {
3765 		struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3766 		struct extent_map *em, *n;
3767 
3768 		write_lock(&tree->lock);
3769 		list_for_each_entry_safe(em, n, &tree->modified_extents, list)
3770 			list_del_init(&em->list);
3771 		write_unlock(&tree->lock);
3772 	}
3773 
3774 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
3775 		ret = log_directory_changes(trans, root, inode, path, dst_path);
3776 		if (ret) {
3777 			err = ret;
3778 			goto out_unlock;
3779 		}
3780 	}
3781 	BTRFS_I(inode)->logged_trans = trans->transid;
3782 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
3783 out_unlock:
3784 	if (err)
3785 		btrfs_free_logged_extents(log, log->log_transid);
3786 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
3787 
3788 	btrfs_free_path(path);
3789 	btrfs_free_path(dst_path);
3790 	return err;
3791 }
3792 
3793 /*
3794  * follow the dentry parent pointers up the chain and see if any
3795  * of the directories in it require a full commit before they can
3796  * be logged.  Returns zero if nothing special needs to be done or 1 if
3797  * a full commit is required.
3798  */
3799 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
3800 					       struct inode *inode,
3801 					       struct dentry *parent,
3802 					       struct super_block *sb,
3803 					       u64 last_committed)
3804 {
3805 	int ret = 0;
3806 	struct btrfs_root *root;
3807 	struct dentry *old_parent = NULL;
3808 
3809 	/*
3810 	 * for regular files, if its inode is already on disk, we don't
3811 	 * have to worry about the parents at all.  This is because
3812 	 * we can use the last_unlink_trans field to record renames
3813 	 * and other fun in this file.
3814 	 */
3815 	if (S_ISREG(inode->i_mode) &&
3816 	    BTRFS_I(inode)->generation <= last_committed &&
3817 	    BTRFS_I(inode)->last_unlink_trans <= last_committed)
3818 			goto out;
3819 
3820 	if (!S_ISDIR(inode->i_mode)) {
3821 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3822 			goto out;
3823 		inode = parent->d_inode;
3824 	}
3825 
3826 	while (1) {
3827 		BTRFS_I(inode)->logged_trans = trans->transid;
3828 		smp_mb();
3829 
3830 		if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
3831 			root = BTRFS_I(inode)->root;
3832 
3833 			/*
3834 			 * make sure any commits to the log are forced
3835 			 * to be full commits
3836 			 */
3837 			root->fs_info->last_trans_log_full_commit =
3838 				trans->transid;
3839 			ret = 1;
3840 			break;
3841 		}
3842 
3843 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3844 			break;
3845 
3846 		if (IS_ROOT(parent))
3847 			break;
3848 
3849 		parent = dget_parent(parent);
3850 		dput(old_parent);
3851 		old_parent = parent;
3852 		inode = parent->d_inode;
3853 
3854 	}
3855 	dput(old_parent);
3856 out:
3857 	return ret;
3858 }
3859 
3860 /*
3861  * helper function around btrfs_log_inode to make sure newly created
3862  * parent directories also end up in the log.  A minimal inode and backref
3863  * only logging is done of any parent directories that are older than
3864  * the last committed transaction
3865  */
3866 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
3867 			    	  struct btrfs_root *root, struct inode *inode,
3868 			    	  struct dentry *parent, int exists_only)
3869 {
3870 	int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
3871 	struct super_block *sb;
3872 	struct dentry *old_parent = NULL;
3873 	int ret = 0;
3874 	u64 last_committed = root->fs_info->last_trans_committed;
3875 
3876 	sb = inode->i_sb;
3877 
3878 	if (btrfs_test_opt(root, NOTREELOG)) {
3879 		ret = 1;
3880 		goto end_no_trans;
3881 	}
3882 
3883 	if (root->fs_info->last_trans_log_full_commit >
3884 	    root->fs_info->last_trans_committed) {
3885 		ret = 1;
3886 		goto end_no_trans;
3887 	}
3888 
3889 	if (root != BTRFS_I(inode)->root ||
3890 	    btrfs_root_refs(&root->root_item) == 0) {
3891 		ret = 1;
3892 		goto end_no_trans;
3893 	}
3894 
3895 	ret = check_parent_dirs_for_sync(trans, inode, parent,
3896 					 sb, last_committed);
3897 	if (ret)
3898 		goto end_no_trans;
3899 
3900 	if (btrfs_inode_in_log(inode, trans->transid)) {
3901 		ret = BTRFS_NO_LOG_SYNC;
3902 		goto end_no_trans;
3903 	}
3904 
3905 	ret = start_log_trans(trans, root);
3906 	if (ret)
3907 		goto end_trans;
3908 
3909 	ret = btrfs_log_inode(trans, root, inode, inode_only);
3910 	if (ret)
3911 		goto end_trans;
3912 
3913 	/*
3914 	 * for regular files, if its inode is already on disk, we don't
3915 	 * have to worry about the parents at all.  This is because
3916 	 * we can use the last_unlink_trans field to record renames
3917 	 * and other fun in this file.
3918 	 */
3919 	if (S_ISREG(inode->i_mode) &&
3920 	    BTRFS_I(inode)->generation <= last_committed &&
3921 	    BTRFS_I(inode)->last_unlink_trans <= last_committed) {
3922 		ret = 0;
3923 		goto end_trans;
3924 	}
3925 
3926 	inode_only = LOG_INODE_EXISTS;
3927 	while (1) {
3928 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3929 			break;
3930 
3931 		inode = parent->d_inode;
3932 		if (root != BTRFS_I(inode)->root)
3933 			break;
3934 
3935 		if (BTRFS_I(inode)->generation >
3936 		    root->fs_info->last_trans_committed) {
3937 			ret = btrfs_log_inode(trans, root, inode, inode_only);
3938 			if (ret)
3939 				goto end_trans;
3940 		}
3941 		if (IS_ROOT(parent))
3942 			break;
3943 
3944 		parent = dget_parent(parent);
3945 		dput(old_parent);
3946 		old_parent = parent;
3947 	}
3948 	ret = 0;
3949 end_trans:
3950 	dput(old_parent);
3951 	if (ret < 0) {
3952 		root->fs_info->last_trans_log_full_commit = trans->transid;
3953 		ret = 1;
3954 	}
3955 	btrfs_end_log_trans(root);
3956 end_no_trans:
3957 	return ret;
3958 }
3959 
3960 /*
3961  * it is not safe to log dentry if the chunk root has added new
3962  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
3963  * If this returns 1, you must commit the transaction to safely get your
3964  * data on disk.
3965  */
3966 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
3967 			  struct btrfs_root *root, struct dentry *dentry)
3968 {
3969 	struct dentry *parent = dget_parent(dentry);
3970 	int ret;
3971 
3972 	ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
3973 	dput(parent);
3974 
3975 	return ret;
3976 }
3977 
3978 /*
3979  * should be called during mount to recover any replay any log trees
3980  * from the FS
3981  */
3982 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
3983 {
3984 	int ret;
3985 	struct btrfs_path *path;
3986 	struct btrfs_trans_handle *trans;
3987 	struct btrfs_key key;
3988 	struct btrfs_key found_key;
3989 	struct btrfs_key tmp_key;
3990 	struct btrfs_root *log;
3991 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
3992 	struct walk_control wc = {
3993 		.process_func = process_one_buffer,
3994 		.stage = 0,
3995 	};
3996 
3997 	path = btrfs_alloc_path();
3998 	if (!path)
3999 		return -ENOMEM;
4000 
4001 	fs_info->log_root_recovering = 1;
4002 
4003 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4004 	if (IS_ERR(trans)) {
4005 		ret = PTR_ERR(trans);
4006 		goto error;
4007 	}
4008 
4009 	wc.trans = trans;
4010 	wc.pin = 1;
4011 
4012 	ret = walk_log_tree(trans, log_root_tree, &wc);
4013 	if (ret) {
4014 		btrfs_error(fs_info, ret, "Failed to pin buffers while "
4015 			    "recovering log root tree.");
4016 		goto error;
4017 	}
4018 
4019 again:
4020 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
4021 	key.offset = (u64)-1;
4022 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
4023 
4024 	while (1) {
4025 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
4026 
4027 		if (ret < 0) {
4028 			btrfs_error(fs_info, ret,
4029 				    "Couldn't find tree log root.");
4030 			goto error;
4031 		}
4032 		if (ret > 0) {
4033 			if (path->slots[0] == 0)
4034 				break;
4035 			path->slots[0]--;
4036 		}
4037 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4038 				      path->slots[0]);
4039 		btrfs_release_path(path);
4040 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4041 			break;
4042 
4043 		log = btrfs_read_fs_root(log_root_tree, &found_key);
4044 		if (IS_ERR(log)) {
4045 			ret = PTR_ERR(log);
4046 			btrfs_error(fs_info, ret,
4047 				    "Couldn't read tree log root.");
4048 			goto error;
4049 		}
4050 
4051 		tmp_key.objectid = found_key.offset;
4052 		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
4053 		tmp_key.offset = (u64)-1;
4054 
4055 		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
4056 		if (IS_ERR(wc.replay_dest)) {
4057 			ret = PTR_ERR(wc.replay_dest);
4058 			free_extent_buffer(log->node);
4059 			free_extent_buffer(log->commit_root);
4060 			kfree(log);
4061 			btrfs_error(fs_info, ret, "Couldn't read target root "
4062 				    "for tree log recovery.");
4063 			goto error;
4064 		}
4065 
4066 		wc.replay_dest->log_root = log;
4067 		btrfs_record_root_in_trans(trans, wc.replay_dest);
4068 		ret = walk_log_tree(trans, log, &wc);
4069 
4070 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
4071 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
4072 						      path);
4073 		}
4074 
4075 		key.offset = found_key.offset - 1;
4076 		wc.replay_dest->log_root = NULL;
4077 		free_extent_buffer(log->node);
4078 		free_extent_buffer(log->commit_root);
4079 		kfree(log);
4080 
4081 		if (ret)
4082 			goto error;
4083 
4084 		if (found_key.offset == 0)
4085 			break;
4086 	}
4087 	btrfs_release_path(path);
4088 
4089 	/* step one is to pin it all, step two is to replay just inodes */
4090 	if (wc.pin) {
4091 		wc.pin = 0;
4092 		wc.process_func = replay_one_buffer;
4093 		wc.stage = LOG_WALK_REPLAY_INODES;
4094 		goto again;
4095 	}
4096 	/* step three is to replay everything */
4097 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
4098 		wc.stage++;
4099 		goto again;
4100 	}
4101 
4102 	btrfs_free_path(path);
4103 
4104 	/* step 4: commit the transaction, which also unpins the blocks */
4105 	ret = btrfs_commit_transaction(trans, fs_info->tree_root);
4106 	if (ret)
4107 		return ret;
4108 
4109 	free_extent_buffer(log_root_tree->node);
4110 	log_root_tree->log_root = NULL;
4111 	fs_info->log_root_recovering = 0;
4112 	kfree(log_root_tree);
4113 
4114 	return 0;
4115 error:
4116 	if (wc.trans)
4117 		btrfs_end_transaction(wc.trans, fs_info->tree_root);
4118 	btrfs_free_path(path);
4119 	return ret;
4120 }
4121 
4122 /*
4123  * there are some corner cases where we want to force a full
4124  * commit instead of allowing a directory to be logged.
4125  *
4126  * They revolve around files there were unlinked from the directory, and
4127  * this function updates the parent directory so that a full commit is
4128  * properly done if it is fsync'd later after the unlinks are done.
4129  */
4130 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4131 			     struct inode *dir, struct inode *inode,
4132 			     int for_rename)
4133 {
4134 	/*
4135 	 * when we're logging a file, if it hasn't been renamed
4136 	 * or unlinked, and its inode is fully committed on disk,
4137 	 * we don't have to worry about walking up the directory chain
4138 	 * to log its parents.
4139 	 *
4140 	 * So, we use the last_unlink_trans field to put this transid
4141 	 * into the file.  When the file is logged we check it and
4142 	 * don't log the parents if the file is fully on disk.
4143 	 */
4144 	if (S_ISREG(inode->i_mode))
4145 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
4146 
4147 	/*
4148 	 * if this directory was already logged any new
4149 	 * names for this file/dir will get recorded
4150 	 */
4151 	smp_mb();
4152 	if (BTRFS_I(dir)->logged_trans == trans->transid)
4153 		return;
4154 
4155 	/*
4156 	 * if the inode we're about to unlink was logged,
4157 	 * the log will be properly updated for any new names
4158 	 */
4159 	if (BTRFS_I(inode)->logged_trans == trans->transid)
4160 		return;
4161 
4162 	/*
4163 	 * when renaming files across directories, if the directory
4164 	 * there we're unlinking from gets fsync'd later on, there's
4165 	 * no way to find the destination directory later and fsync it
4166 	 * properly.  So, we have to be conservative and force commits
4167 	 * so the new name gets discovered.
4168 	 */
4169 	if (for_rename)
4170 		goto record;
4171 
4172 	/* we can safely do the unlink without any special recording */
4173 	return;
4174 
4175 record:
4176 	BTRFS_I(dir)->last_unlink_trans = trans->transid;
4177 }
4178 
4179 /*
4180  * Call this after adding a new name for a file and it will properly
4181  * update the log to reflect the new name.
4182  *
4183  * It will return zero if all goes well, and it will return 1 if a
4184  * full transaction commit is required.
4185  */
4186 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
4187 			struct inode *inode, struct inode *old_dir,
4188 			struct dentry *parent)
4189 {
4190 	struct btrfs_root * root = BTRFS_I(inode)->root;
4191 
4192 	/*
4193 	 * this will force the logging code to walk the dentry chain
4194 	 * up for the file
4195 	 */
4196 	if (S_ISREG(inode->i_mode))
4197 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
4198 
4199 	/*
4200 	 * if this inode hasn't been logged and directory we're renaming it
4201 	 * from hasn't been logged, we don't need to log it
4202 	 */
4203 	if (BTRFS_I(inode)->logged_trans <=
4204 	    root->fs_info->last_trans_committed &&
4205 	    (!old_dir || BTRFS_I(old_dir)->logged_trans <=
4206 		    root->fs_info->last_trans_committed))
4207 		return 0;
4208 
4209 	return btrfs_log_inode_parent(trans, root, inode, parent, 1);
4210 }
4211 
4212