xref: /linux/fs/btrfs/tree-log.c (revision 827634added7f38b7d724cab1dccdb2b004c13c3)
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/list_sort.h>
23 #include "tree-log.h"
24 #include "disk-io.h"
25 #include "locking.h"
26 #include "print-tree.h"
27 #include "backref.h"
28 #include "hash.h"
29 
30 /* magic values for the inode_only field in btrfs_log_inode:
31  *
32  * LOG_INODE_ALL means to log everything
33  * LOG_INODE_EXISTS means to log just enough to recreate the inode
34  * during log replay
35  */
36 #define LOG_INODE_ALL 0
37 #define LOG_INODE_EXISTS 1
38 
39 /*
40  * directory trouble cases
41  *
42  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
43  * log, we must force a full commit before doing an fsync of the directory
44  * where the unlink was done.
45  * ---> record transid of last unlink/rename per directory
46  *
47  * mkdir foo/some_dir
48  * normal commit
49  * rename foo/some_dir foo2/some_dir
50  * mkdir foo/some_dir
51  * fsync foo/some_dir/some_file
52  *
53  * The fsync above will unlink the original some_dir without recording
54  * it in its new location (foo2).  After a crash, some_dir will be gone
55  * unless the fsync of some_file forces a full commit
56  *
57  * 2) we must log any new names for any file or dir that is in the fsync
58  * log. ---> check inode while renaming/linking.
59  *
60  * 2a) we must log any new names for any file or dir during rename
61  * when the directory they are being removed from was logged.
62  * ---> check inode and old parent dir during rename
63  *
64  *  2a is actually the more important variant.  With the extra logging
65  *  a crash might unlink the old name without recreating the new one
66  *
67  * 3) after a crash, we must go through any directories with a link count
68  * of zero and redo the rm -rf
69  *
70  * mkdir f1/foo
71  * normal commit
72  * rm -rf f1/foo
73  * fsync(f1)
74  *
75  * The directory f1 was fully removed from the FS, but fsync was never
76  * called on f1, only its parent dir.  After a crash the rm -rf must
77  * be replayed.  This must be able to recurse down the entire
78  * directory tree.  The inode link count fixup code takes care of the
79  * ugly details.
80  */
81 
82 /*
83  * stages for the tree walking.  The first
84  * stage (0) is to only pin down the blocks we find
85  * the second stage (1) is to make sure that all the inodes
86  * we find in the log are created in the subvolume.
87  *
88  * The last stage is to deal with directories and links and extents
89  * and all the other fun semantics
90  */
91 #define LOG_WALK_PIN_ONLY 0
92 #define LOG_WALK_REPLAY_INODES 1
93 #define LOG_WALK_REPLAY_DIR_INDEX 2
94 #define LOG_WALK_REPLAY_ALL 3
95 
96 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
97 			   struct btrfs_root *root, struct inode *inode,
98 			   int inode_only,
99 			   const loff_t start,
100 			   const loff_t end,
101 			   struct btrfs_log_ctx *ctx);
102 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
103 			     struct btrfs_root *root,
104 			     struct btrfs_path *path, u64 objectid);
105 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
106 				       struct btrfs_root *root,
107 				       struct btrfs_root *log,
108 				       struct btrfs_path *path,
109 				       u64 dirid, int del_all);
110 
111 /*
112  * tree logging is a special write ahead log used to make sure that
113  * fsyncs and O_SYNCs can happen without doing full tree commits.
114  *
115  * Full tree commits are expensive because they require commonly
116  * modified blocks to be recowed, creating many dirty pages in the
117  * extent tree an 4x-6x higher write load than ext3.
118  *
119  * Instead of doing a tree commit on every fsync, we use the
120  * key ranges and transaction ids to find items for a given file or directory
121  * that have changed in this transaction.  Those items are copied into
122  * a special tree (one per subvolume root), that tree is written to disk
123  * and then the fsync is considered complete.
124  *
125  * After a crash, items are copied out of the log-tree back into the
126  * subvolume tree.  Any file data extents found are recorded in the extent
127  * allocation tree, and the log-tree freed.
128  *
129  * The log tree is read three times, once to pin down all the extents it is
130  * using in ram and once, once to create all the inodes logged in the tree
131  * and once to do all the other items.
132  */
133 
134 /*
135  * start a sub transaction and setup the log tree
136  * this increments the log tree writer count to make the people
137  * syncing the tree wait for us to finish
138  */
139 static int start_log_trans(struct btrfs_trans_handle *trans,
140 			   struct btrfs_root *root,
141 			   struct btrfs_log_ctx *ctx)
142 {
143 	int index;
144 	int ret;
145 
146 	mutex_lock(&root->log_mutex);
147 	if (root->log_root) {
148 		if (btrfs_need_log_full_commit(root->fs_info, trans)) {
149 			ret = -EAGAIN;
150 			goto out;
151 		}
152 		if (!root->log_start_pid) {
153 			root->log_start_pid = current->pid;
154 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
155 		} else if (root->log_start_pid != current->pid) {
156 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
157 		}
158 
159 		atomic_inc(&root->log_batch);
160 		atomic_inc(&root->log_writers);
161 		if (ctx) {
162 			index = root->log_transid % 2;
163 			list_add_tail(&ctx->list, &root->log_ctxs[index]);
164 			ctx->log_transid = root->log_transid;
165 		}
166 		mutex_unlock(&root->log_mutex);
167 		return 0;
168 	}
169 
170 	ret = 0;
171 	mutex_lock(&root->fs_info->tree_log_mutex);
172 	if (!root->fs_info->log_root_tree)
173 		ret = btrfs_init_log_root_tree(trans, root->fs_info);
174 	mutex_unlock(&root->fs_info->tree_log_mutex);
175 	if (ret)
176 		goto out;
177 
178 	if (!root->log_root) {
179 		ret = btrfs_add_log_tree(trans, root);
180 		if (ret)
181 			goto out;
182 	}
183 	clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
184 	root->log_start_pid = current->pid;
185 	atomic_inc(&root->log_batch);
186 	atomic_inc(&root->log_writers);
187 	if (ctx) {
188 		index = root->log_transid % 2;
189 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
190 		ctx->log_transid = root->log_transid;
191 	}
192 out:
193 	mutex_unlock(&root->log_mutex);
194 	return ret;
195 }
196 
197 /*
198  * returns 0 if there was a log transaction running and we were able
199  * to join, or returns -ENOENT if there were not transactions
200  * in progress
201  */
202 static int join_running_log_trans(struct btrfs_root *root)
203 {
204 	int ret = -ENOENT;
205 
206 	smp_mb();
207 	if (!root->log_root)
208 		return -ENOENT;
209 
210 	mutex_lock(&root->log_mutex);
211 	if (root->log_root) {
212 		ret = 0;
213 		atomic_inc(&root->log_writers);
214 	}
215 	mutex_unlock(&root->log_mutex);
216 	return ret;
217 }
218 
219 /*
220  * This either makes the current running log transaction wait
221  * until you call btrfs_end_log_trans() or it makes any future
222  * log transactions wait until you call btrfs_end_log_trans()
223  */
224 int btrfs_pin_log_trans(struct btrfs_root *root)
225 {
226 	int ret = -ENOENT;
227 
228 	mutex_lock(&root->log_mutex);
229 	atomic_inc(&root->log_writers);
230 	mutex_unlock(&root->log_mutex);
231 	return ret;
232 }
233 
234 /*
235  * indicate we're done making changes to the log tree
236  * and wake up anyone waiting to do a sync
237  */
238 void btrfs_end_log_trans(struct btrfs_root *root)
239 {
240 	if (atomic_dec_and_test(&root->log_writers)) {
241 		smp_mb();
242 		if (waitqueue_active(&root->log_writer_wait))
243 			wake_up(&root->log_writer_wait);
244 	}
245 }
246 
247 
248 /*
249  * the walk control struct is used to pass state down the chain when
250  * processing the log tree.  The stage field tells us which part
251  * of the log tree processing we are currently doing.  The others
252  * are state fields used for that specific part
253  */
254 struct walk_control {
255 	/* should we free the extent on disk when done?  This is used
256 	 * at transaction commit time while freeing a log tree
257 	 */
258 	int free;
259 
260 	/* should we write out the extent buffer?  This is used
261 	 * while flushing the log tree to disk during a sync
262 	 */
263 	int write;
264 
265 	/* should we wait for the extent buffer io to finish?  Also used
266 	 * while flushing the log tree to disk for a sync
267 	 */
268 	int wait;
269 
270 	/* pin only walk, we record which extents on disk belong to the
271 	 * log trees
272 	 */
273 	int pin;
274 
275 	/* what stage of the replay code we're currently in */
276 	int stage;
277 
278 	/* the root we are currently replaying */
279 	struct btrfs_root *replay_dest;
280 
281 	/* the trans handle for the current replay */
282 	struct btrfs_trans_handle *trans;
283 
284 	/* the function that gets used to process blocks we find in the
285 	 * tree.  Note the extent_buffer might not be up to date when it is
286 	 * passed in, and it must be checked or read if you need the data
287 	 * inside it
288 	 */
289 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
290 			    struct walk_control *wc, u64 gen);
291 };
292 
293 /*
294  * process_func used to pin down extents, write them or wait on them
295  */
296 static int process_one_buffer(struct btrfs_root *log,
297 			      struct extent_buffer *eb,
298 			      struct walk_control *wc, u64 gen)
299 {
300 	int ret = 0;
301 
302 	/*
303 	 * If this fs is mixed then we need to be able to process the leaves to
304 	 * pin down any logged extents, so we have to read the block.
305 	 */
306 	if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) {
307 		ret = btrfs_read_buffer(eb, gen);
308 		if (ret)
309 			return ret;
310 	}
311 
312 	if (wc->pin)
313 		ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
314 						      eb->start, eb->len);
315 
316 	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
317 		if (wc->pin && btrfs_header_level(eb) == 0)
318 			ret = btrfs_exclude_logged_extents(log, eb);
319 		if (wc->write)
320 			btrfs_write_tree_block(eb);
321 		if (wc->wait)
322 			btrfs_wait_tree_block_writeback(eb);
323 	}
324 	return ret;
325 }
326 
327 /*
328  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
329  * to the src data we are copying out.
330  *
331  * root is the tree we are copying into, and path is a scratch
332  * path for use in this function (it should be released on entry and
333  * will be released on exit).
334  *
335  * If the key is already in the destination tree the existing item is
336  * overwritten.  If the existing item isn't big enough, it is extended.
337  * If it is too large, it is truncated.
338  *
339  * If the key isn't in the destination yet, a new item is inserted.
340  */
341 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
342 				   struct btrfs_root *root,
343 				   struct btrfs_path *path,
344 				   struct extent_buffer *eb, int slot,
345 				   struct btrfs_key *key)
346 {
347 	int ret;
348 	u32 item_size;
349 	u64 saved_i_size = 0;
350 	int save_old_i_size = 0;
351 	unsigned long src_ptr;
352 	unsigned long dst_ptr;
353 	int overwrite_root = 0;
354 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
355 
356 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
357 		overwrite_root = 1;
358 
359 	item_size = btrfs_item_size_nr(eb, slot);
360 	src_ptr = btrfs_item_ptr_offset(eb, slot);
361 
362 	/* look for the key in the destination tree */
363 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
364 	if (ret < 0)
365 		return ret;
366 
367 	if (ret == 0) {
368 		char *src_copy;
369 		char *dst_copy;
370 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
371 						  path->slots[0]);
372 		if (dst_size != item_size)
373 			goto insert;
374 
375 		if (item_size == 0) {
376 			btrfs_release_path(path);
377 			return 0;
378 		}
379 		dst_copy = kmalloc(item_size, GFP_NOFS);
380 		src_copy = kmalloc(item_size, GFP_NOFS);
381 		if (!dst_copy || !src_copy) {
382 			btrfs_release_path(path);
383 			kfree(dst_copy);
384 			kfree(src_copy);
385 			return -ENOMEM;
386 		}
387 
388 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
389 
390 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
391 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
392 				   item_size);
393 		ret = memcmp(dst_copy, src_copy, item_size);
394 
395 		kfree(dst_copy);
396 		kfree(src_copy);
397 		/*
398 		 * they have the same contents, just return, this saves
399 		 * us from cowing blocks in the destination tree and doing
400 		 * extra writes that may not have been done by a previous
401 		 * sync
402 		 */
403 		if (ret == 0) {
404 			btrfs_release_path(path);
405 			return 0;
406 		}
407 
408 		/*
409 		 * We need to load the old nbytes into the inode so when we
410 		 * replay the extents we've logged we get the right nbytes.
411 		 */
412 		if (inode_item) {
413 			struct btrfs_inode_item *item;
414 			u64 nbytes;
415 			u32 mode;
416 
417 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
418 					      struct btrfs_inode_item);
419 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
420 			item = btrfs_item_ptr(eb, slot,
421 					      struct btrfs_inode_item);
422 			btrfs_set_inode_nbytes(eb, item, nbytes);
423 
424 			/*
425 			 * If this is a directory we need to reset the i_size to
426 			 * 0 so that we can set it up properly when replaying
427 			 * the rest of the items in this log.
428 			 */
429 			mode = btrfs_inode_mode(eb, item);
430 			if (S_ISDIR(mode))
431 				btrfs_set_inode_size(eb, item, 0);
432 		}
433 	} else if (inode_item) {
434 		struct btrfs_inode_item *item;
435 		u32 mode;
436 
437 		/*
438 		 * New inode, set nbytes to 0 so that the nbytes comes out
439 		 * properly when we replay the extents.
440 		 */
441 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
442 		btrfs_set_inode_nbytes(eb, item, 0);
443 
444 		/*
445 		 * If this is a directory we need to reset the i_size to 0 so
446 		 * that we can set it up properly when replaying the rest of
447 		 * the items in this log.
448 		 */
449 		mode = btrfs_inode_mode(eb, item);
450 		if (S_ISDIR(mode))
451 			btrfs_set_inode_size(eb, item, 0);
452 	}
453 insert:
454 	btrfs_release_path(path);
455 	/* try to insert the key into the destination tree */
456 	path->skip_release_on_error = 1;
457 	ret = btrfs_insert_empty_item(trans, root, path,
458 				      key, item_size);
459 	path->skip_release_on_error = 0;
460 
461 	/* make sure any existing item is the correct size */
462 	if (ret == -EEXIST || ret == -EOVERFLOW) {
463 		u32 found_size;
464 		found_size = btrfs_item_size_nr(path->nodes[0],
465 						path->slots[0]);
466 		if (found_size > item_size)
467 			btrfs_truncate_item(root, path, item_size, 1);
468 		else if (found_size < item_size)
469 			btrfs_extend_item(root, path,
470 					  item_size - found_size);
471 	} else if (ret) {
472 		return ret;
473 	}
474 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
475 					path->slots[0]);
476 
477 	/* don't overwrite an existing inode if the generation number
478 	 * was logged as zero.  This is done when the tree logging code
479 	 * is just logging an inode to make sure it exists after recovery.
480 	 *
481 	 * Also, don't overwrite i_size on directories during replay.
482 	 * log replay inserts and removes directory items based on the
483 	 * state of the tree found in the subvolume, and i_size is modified
484 	 * as it goes
485 	 */
486 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
487 		struct btrfs_inode_item *src_item;
488 		struct btrfs_inode_item *dst_item;
489 
490 		src_item = (struct btrfs_inode_item *)src_ptr;
491 		dst_item = (struct btrfs_inode_item *)dst_ptr;
492 
493 		if (btrfs_inode_generation(eb, src_item) == 0) {
494 			struct extent_buffer *dst_eb = path->nodes[0];
495 			const u64 ino_size = btrfs_inode_size(eb, src_item);
496 
497 			/*
498 			 * For regular files an ino_size == 0 is used only when
499 			 * logging that an inode exists, as part of a directory
500 			 * fsync, and the inode wasn't fsynced before. In this
501 			 * case don't set the size of the inode in the fs/subvol
502 			 * tree, otherwise we would be throwing valid data away.
503 			 */
504 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
505 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
506 			    ino_size != 0) {
507 				struct btrfs_map_token token;
508 
509 				btrfs_init_map_token(&token);
510 				btrfs_set_token_inode_size(dst_eb, dst_item,
511 							   ino_size, &token);
512 			}
513 			goto no_copy;
514 		}
515 
516 		if (overwrite_root &&
517 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
518 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
519 			save_old_i_size = 1;
520 			saved_i_size = btrfs_inode_size(path->nodes[0],
521 							dst_item);
522 		}
523 	}
524 
525 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
526 			   src_ptr, item_size);
527 
528 	if (save_old_i_size) {
529 		struct btrfs_inode_item *dst_item;
530 		dst_item = (struct btrfs_inode_item *)dst_ptr;
531 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
532 	}
533 
534 	/* make sure the generation is filled in */
535 	if (key->type == BTRFS_INODE_ITEM_KEY) {
536 		struct btrfs_inode_item *dst_item;
537 		dst_item = (struct btrfs_inode_item *)dst_ptr;
538 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
539 			btrfs_set_inode_generation(path->nodes[0], dst_item,
540 						   trans->transid);
541 		}
542 	}
543 no_copy:
544 	btrfs_mark_buffer_dirty(path->nodes[0]);
545 	btrfs_release_path(path);
546 	return 0;
547 }
548 
549 /*
550  * simple helper to read an inode off the disk from a given root
551  * This can only be called for subvolume roots and not for the log
552  */
553 static noinline struct inode *read_one_inode(struct btrfs_root *root,
554 					     u64 objectid)
555 {
556 	struct btrfs_key key;
557 	struct inode *inode;
558 
559 	key.objectid = objectid;
560 	key.type = BTRFS_INODE_ITEM_KEY;
561 	key.offset = 0;
562 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
563 	if (IS_ERR(inode)) {
564 		inode = NULL;
565 	} else if (is_bad_inode(inode)) {
566 		iput(inode);
567 		inode = NULL;
568 	}
569 	return inode;
570 }
571 
572 /* replays a single extent in 'eb' at 'slot' with 'key' into the
573  * subvolume 'root'.  path is released on entry and should be released
574  * on exit.
575  *
576  * extents in the log tree have not been allocated out of the extent
577  * tree yet.  So, this completes the allocation, taking a reference
578  * as required if the extent already exists or creating a new extent
579  * if it isn't in the extent allocation tree yet.
580  *
581  * The extent is inserted into the file, dropping any existing extents
582  * from the file that overlap the new one.
583  */
584 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
585 				      struct btrfs_root *root,
586 				      struct btrfs_path *path,
587 				      struct extent_buffer *eb, int slot,
588 				      struct btrfs_key *key)
589 {
590 	int found_type;
591 	u64 extent_end;
592 	u64 start = key->offset;
593 	u64 nbytes = 0;
594 	struct btrfs_file_extent_item *item;
595 	struct inode *inode = NULL;
596 	unsigned long size;
597 	int ret = 0;
598 
599 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
600 	found_type = btrfs_file_extent_type(eb, item);
601 
602 	if (found_type == BTRFS_FILE_EXTENT_REG ||
603 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
604 		nbytes = btrfs_file_extent_num_bytes(eb, item);
605 		extent_end = start + nbytes;
606 
607 		/*
608 		 * We don't add to the inodes nbytes if we are prealloc or a
609 		 * hole.
610 		 */
611 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
612 			nbytes = 0;
613 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
614 		size = btrfs_file_extent_inline_len(eb, slot, item);
615 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
616 		extent_end = ALIGN(start + size, root->sectorsize);
617 	} else {
618 		ret = 0;
619 		goto out;
620 	}
621 
622 	inode = read_one_inode(root, key->objectid);
623 	if (!inode) {
624 		ret = -EIO;
625 		goto out;
626 	}
627 
628 	/*
629 	 * first check to see if we already have this extent in the
630 	 * file.  This must be done before the btrfs_drop_extents run
631 	 * so we don't try to drop this extent.
632 	 */
633 	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
634 				       start, 0);
635 
636 	if (ret == 0 &&
637 	    (found_type == BTRFS_FILE_EXTENT_REG ||
638 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
639 		struct btrfs_file_extent_item cmp1;
640 		struct btrfs_file_extent_item cmp2;
641 		struct btrfs_file_extent_item *existing;
642 		struct extent_buffer *leaf;
643 
644 		leaf = path->nodes[0];
645 		existing = btrfs_item_ptr(leaf, path->slots[0],
646 					  struct btrfs_file_extent_item);
647 
648 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
649 				   sizeof(cmp1));
650 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
651 				   sizeof(cmp2));
652 
653 		/*
654 		 * we already have a pointer to this exact extent,
655 		 * we don't have to do anything
656 		 */
657 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
658 			btrfs_release_path(path);
659 			goto out;
660 		}
661 	}
662 	btrfs_release_path(path);
663 
664 	/* drop any overlapping extents */
665 	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
666 	if (ret)
667 		goto out;
668 
669 	if (found_type == BTRFS_FILE_EXTENT_REG ||
670 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
671 		u64 offset;
672 		unsigned long dest_offset;
673 		struct btrfs_key ins;
674 
675 		ret = btrfs_insert_empty_item(trans, root, path, key,
676 					      sizeof(*item));
677 		if (ret)
678 			goto out;
679 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
680 						    path->slots[0]);
681 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
682 				(unsigned long)item,  sizeof(*item));
683 
684 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
685 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
686 		ins.type = BTRFS_EXTENT_ITEM_KEY;
687 		offset = key->offset - btrfs_file_extent_offset(eb, item);
688 
689 		if (ins.objectid > 0) {
690 			u64 csum_start;
691 			u64 csum_end;
692 			LIST_HEAD(ordered_sums);
693 			/*
694 			 * is this extent already allocated in the extent
695 			 * allocation tree?  If so, just add a reference
696 			 */
697 			ret = btrfs_lookup_data_extent(root, ins.objectid,
698 						ins.offset);
699 			if (ret == 0) {
700 				ret = btrfs_inc_extent_ref(trans, root,
701 						ins.objectid, ins.offset,
702 						0, root->root_key.objectid,
703 						key->objectid, offset, 0);
704 				if (ret)
705 					goto out;
706 			} else {
707 				/*
708 				 * insert the extent pointer in the extent
709 				 * allocation tree
710 				 */
711 				ret = btrfs_alloc_logged_file_extent(trans,
712 						root, root->root_key.objectid,
713 						key->objectid, offset, &ins);
714 				if (ret)
715 					goto out;
716 			}
717 			btrfs_release_path(path);
718 
719 			if (btrfs_file_extent_compression(eb, item)) {
720 				csum_start = ins.objectid;
721 				csum_end = csum_start + ins.offset;
722 			} else {
723 				csum_start = ins.objectid +
724 					btrfs_file_extent_offset(eb, item);
725 				csum_end = csum_start +
726 					btrfs_file_extent_num_bytes(eb, item);
727 			}
728 
729 			ret = btrfs_lookup_csums_range(root->log_root,
730 						csum_start, csum_end - 1,
731 						&ordered_sums, 0);
732 			if (ret)
733 				goto out;
734 			while (!list_empty(&ordered_sums)) {
735 				struct btrfs_ordered_sum *sums;
736 				sums = list_entry(ordered_sums.next,
737 						struct btrfs_ordered_sum,
738 						list);
739 				if (!ret)
740 					ret = btrfs_csum_file_blocks(trans,
741 						root->fs_info->csum_root,
742 						sums);
743 				list_del(&sums->list);
744 				kfree(sums);
745 			}
746 			if (ret)
747 				goto out;
748 		} else {
749 			btrfs_release_path(path);
750 		}
751 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
752 		/* inline extents are easy, we just overwrite them */
753 		ret = overwrite_item(trans, root, path, eb, slot, key);
754 		if (ret)
755 			goto out;
756 	}
757 
758 	inode_add_bytes(inode, nbytes);
759 	ret = btrfs_update_inode(trans, root, inode);
760 out:
761 	if (inode)
762 		iput(inode);
763 	return ret;
764 }
765 
766 /*
767  * when cleaning up conflicts between the directory names in the
768  * subvolume, directory names in the log and directory names in the
769  * inode back references, we may have to unlink inodes from directories.
770  *
771  * This is a helper function to do the unlink of a specific directory
772  * item
773  */
774 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
775 				      struct btrfs_root *root,
776 				      struct btrfs_path *path,
777 				      struct inode *dir,
778 				      struct btrfs_dir_item *di)
779 {
780 	struct inode *inode;
781 	char *name;
782 	int name_len;
783 	struct extent_buffer *leaf;
784 	struct btrfs_key location;
785 	int ret;
786 
787 	leaf = path->nodes[0];
788 
789 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
790 	name_len = btrfs_dir_name_len(leaf, di);
791 	name = kmalloc(name_len, GFP_NOFS);
792 	if (!name)
793 		return -ENOMEM;
794 
795 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
796 	btrfs_release_path(path);
797 
798 	inode = read_one_inode(root, location.objectid);
799 	if (!inode) {
800 		ret = -EIO;
801 		goto out;
802 	}
803 
804 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
805 	if (ret)
806 		goto out;
807 
808 	ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
809 	if (ret)
810 		goto out;
811 	else
812 		ret = btrfs_run_delayed_items(trans, root);
813 out:
814 	kfree(name);
815 	iput(inode);
816 	return ret;
817 }
818 
819 /*
820  * helper function to see if a given name and sequence number found
821  * in an inode back reference are already in a directory and correctly
822  * point to this inode
823  */
824 static noinline int inode_in_dir(struct btrfs_root *root,
825 				 struct btrfs_path *path,
826 				 u64 dirid, u64 objectid, u64 index,
827 				 const char *name, int name_len)
828 {
829 	struct btrfs_dir_item *di;
830 	struct btrfs_key location;
831 	int match = 0;
832 
833 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
834 					 index, name, name_len, 0);
835 	if (di && !IS_ERR(di)) {
836 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
837 		if (location.objectid != objectid)
838 			goto out;
839 	} else
840 		goto out;
841 	btrfs_release_path(path);
842 
843 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
844 	if (di && !IS_ERR(di)) {
845 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
846 		if (location.objectid != objectid)
847 			goto out;
848 	} else
849 		goto out;
850 	match = 1;
851 out:
852 	btrfs_release_path(path);
853 	return match;
854 }
855 
856 /*
857  * helper function to check a log tree for a named back reference in
858  * an inode.  This is used to decide if a back reference that is
859  * found in the subvolume conflicts with what we find in the log.
860  *
861  * inode backreferences may have multiple refs in a single item,
862  * during replay we process one reference at a time, and we don't
863  * want to delete valid links to a file from the subvolume if that
864  * link is also in the log.
865  */
866 static noinline int backref_in_log(struct btrfs_root *log,
867 				   struct btrfs_key *key,
868 				   u64 ref_objectid,
869 				   const char *name, int namelen)
870 {
871 	struct btrfs_path *path;
872 	struct btrfs_inode_ref *ref;
873 	unsigned long ptr;
874 	unsigned long ptr_end;
875 	unsigned long name_ptr;
876 	int found_name_len;
877 	int item_size;
878 	int ret;
879 	int match = 0;
880 
881 	path = btrfs_alloc_path();
882 	if (!path)
883 		return -ENOMEM;
884 
885 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
886 	if (ret != 0)
887 		goto out;
888 
889 	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
890 
891 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
892 		if (btrfs_find_name_in_ext_backref(path, ref_objectid,
893 						   name, namelen, NULL))
894 			match = 1;
895 
896 		goto out;
897 	}
898 
899 	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
900 	ptr_end = ptr + item_size;
901 	while (ptr < ptr_end) {
902 		ref = (struct btrfs_inode_ref *)ptr;
903 		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
904 		if (found_name_len == namelen) {
905 			name_ptr = (unsigned long)(ref + 1);
906 			ret = memcmp_extent_buffer(path->nodes[0], name,
907 						   name_ptr, namelen);
908 			if (ret == 0) {
909 				match = 1;
910 				goto out;
911 			}
912 		}
913 		ptr = (unsigned long)(ref + 1) + found_name_len;
914 	}
915 out:
916 	btrfs_free_path(path);
917 	return match;
918 }
919 
920 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
921 				  struct btrfs_root *root,
922 				  struct btrfs_path *path,
923 				  struct btrfs_root *log_root,
924 				  struct inode *dir, struct inode *inode,
925 				  struct extent_buffer *eb,
926 				  u64 inode_objectid, u64 parent_objectid,
927 				  u64 ref_index, char *name, int namelen,
928 				  int *search_done)
929 {
930 	int ret;
931 	char *victim_name;
932 	int victim_name_len;
933 	struct extent_buffer *leaf;
934 	struct btrfs_dir_item *di;
935 	struct btrfs_key search_key;
936 	struct btrfs_inode_extref *extref;
937 
938 again:
939 	/* Search old style refs */
940 	search_key.objectid = inode_objectid;
941 	search_key.type = BTRFS_INODE_REF_KEY;
942 	search_key.offset = parent_objectid;
943 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
944 	if (ret == 0) {
945 		struct btrfs_inode_ref *victim_ref;
946 		unsigned long ptr;
947 		unsigned long ptr_end;
948 
949 		leaf = path->nodes[0];
950 
951 		/* are we trying to overwrite a back ref for the root directory
952 		 * if so, just jump out, we're done
953 		 */
954 		if (search_key.objectid == search_key.offset)
955 			return 1;
956 
957 		/* check all the names in this back reference to see
958 		 * if they are in the log.  if so, we allow them to stay
959 		 * otherwise they must be unlinked as a conflict
960 		 */
961 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
962 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
963 		while (ptr < ptr_end) {
964 			victim_ref = (struct btrfs_inode_ref *)ptr;
965 			victim_name_len = btrfs_inode_ref_name_len(leaf,
966 								   victim_ref);
967 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
968 			if (!victim_name)
969 				return -ENOMEM;
970 
971 			read_extent_buffer(leaf, victim_name,
972 					   (unsigned long)(victim_ref + 1),
973 					   victim_name_len);
974 
975 			if (!backref_in_log(log_root, &search_key,
976 					    parent_objectid,
977 					    victim_name,
978 					    victim_name_len)) {
979 				inc_nlink(inode);
980 				btrfs_release_path(path);
981 
982 				ret = btrfs_unlink_inode(trans, root, dir,
983 							 inode, victim_name,
984 							 victim_name_len);
985 				kfree(victim_name);
986 				if (ret)
987 					return ret;
988 				ret = btrfs_run_delayed_items(trans, root);
989 				if (ret)
990 					return ret;
991 				*search_done = 1;
992 				goto again;
993 			}
994 			kfree(victim_name);
995 
996 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
997 		}
998 
999 		/*
1000 		 * NOTE: we have searched root tree and checked the
1001 		 * coresponding ref, it does not need to check again.
1002 		 */
1003 		*search_done = 1;
1004 	}
1005 	btrfs_release_path(path);
1006 
1007 	/* Same search but for extended refs */
1008 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1009 					   inode_objectid, parent_objectid, 0,
1010 					   0);
1011 	if (!IS_ERR_OR_NULL(extref)) {
1012 		u32 item_size;
1013 		u32 cur_offset = 0;
1014 		unsigned long base;
1015 		struct inode *victim_parent;
1016 
1017 		leaf = path->nodes[0];
1018 
1019 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1020 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1021 
1022 		while (cur_offset < item_size) {
1023 			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1024 
1025 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1026 
1027 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1028 				goto next;
1029 
1030 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1031 			if (!victim_name)
1032 				return -ENOMEM;
1033 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1034 					   victim_name_len);
1035 
1036 			search_key.objectid = inode_objectid;
1037 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1038 			search_key.offset = btrfs_extref_hash(parent_objectid,
1039 							      victim_name,
1040 							      victim_name_len);
1041 			ret = 0;
1042 			if (!backref_in_log(log_root, &search_key,
1043 					    parent_objectid, victim_name,
1044 					    victim_name_len)) {
1045 				ret = -ENOENT;
1046 				victim_parent = read_one_inode(root,
1047 							       parent_objectid);
1048 				if (victim_parent) {
1049 					inc_nlink(inode);
1050 					btrfs_release_path(path);
1051 
1052 					ret = btrfs_unlink_inode(trans, root,
1053 								 victim_parent,
1054 								 inode,
1055 								 victim_name,
1056 								 victim_name_len);
1057 					if (!ret)
1058 						ret = btrfs_run_delayed_items(
1059 								  trans, root);
1060 				}
1061 				iput(victim_parent);
1062 				kfree(victim_name);
1063 				if (ret)
1064 					return ret;
1065 				*search_done = 1;
1066 				goto again;
1067 			}
1068 			kfree(victim_name);
1069 			if (ret)
1070 				return ret;
1071 next:
1072 			cur_offset += victim_name_len + sizeof(*extref);
1073 		}
1074 		*search_done = 1;
1075 	}
1076 	btrfs_release_path(path);
1077 
1078 	/* look for a conflicting sequence number */
1079 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1080 					 ref_index, name, namelen, 0);
1081 	if (di && !IS_ERR(di)) {
1082 		ret = drop_one_dir_item(trans, root, path, dir, di);
1083 		if (ret)
1084 			return ret;
1085 	}
1086 	btrfs_release_path(path);
1087 
1088 	/* look for a conflicing name */
1089 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1090 				   name, namelen, 0);
1091 	if (di && !IS_ERR(di)) {
1092 		ret = drop_one_dir_item(trans, root, path, dir, di);
1093 		if (ret)
1094 			return ret;
1095 	}
1096 	btrfs_release_path(path);
1097 
1098 	return 0;
1099 }
1100 
1101 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1102 			     u32 *namelen, char **name, u64 *index,
1103 			     u64 *parent_objectid)
1104 {
1105 	struct btrfs_inode_extref *extref;
1106 
1107 	extref = (struct btrfs_inode_extref *)ref_ptr;
1108 
1109 	*namelen = btrfs_inode_extref_name_len(eb, extref);
1110 	*name = kmalloc(*namelen, GFP_NOFS);
1111 	if (*name == NULL)
1112 		return -ENOMEM;
1113 
1114 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1115 			   *namelen);
1116 
1117 	*index = btrfs_inode_extref_index(eb, extref);
1118 	if (parent_objectid)
1119 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1120 
1121 	return 0;
1122 }
1123 
1124 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1125 			  u32 *namelen, char **name, u64 *index)
1126 {
1127 	struct btrfs_inode_ref *ref;
1128 
1129 	ref = (struct btrfs_inode_ref *)ref_ptr;
1130 
1131 	*namelen = btrfs_inode_ref_name_len(eb, ref);
1132 	*name = kmalloc(*namelen, GFP_NOFS);
1133 	if (*name == NULL)
1134 		return -ENOMEM;
1135 
1136 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1137 
1138 	*index = btrfs_inode_ref_index(eb, ref);
1139 
1140 	return 0;
1141 }
1142 
1143 /*
1144  * replay one inode back reference item found in the log tree.
1145  * eb, slot and key refer to the buffer and key found in the log tree.
1146  * root is the destination we are replaying into, and path is for temp
1147  * use by this function.  (it should be released on return).
1148  */
1149 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1150 				  struct btrfs_root *root,
1151 				  struct btrfs_root *log,
1152 				  struct btrfs_path *path,
1153 				  struct extent_buffer *eb, int slot,
1154 				  struct btrfs_key *key)
1155 {
1156 	struct inode *dir = NULL;
1157 	struct inode *inode = NULL;
1158 	unsigned long ref_ptr;
1159 	unsigned long ref_end;
1160 	char *name = NULL;
1161 	int namelen;
1162 	int ret;
1163 	int search_done = 0;
1164 	int log_ref_ver = 0;
1165 	u64 parent_objectid;
1166 	u64 inode_objectid;
1167 	u64 ref_index = 0;
1168 	int ref_struct_size;
1169 
1170 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1171 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1172 
1173 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1174 		struct btrfs_inode_extref *r;
1175 
1176 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1177 		log_ref_ver = 1;
1178 		r = (struct btrfs_inode_extref *)ref_ptr;
1179 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1180 	} else {
1181 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1182 		parent_objectid = key->offset;
1183 	}
1184 	inode_objectid = key->objectid;
1185 
1186 	/*
1187 	 * it is possible that we didn't log all the parent directories
1188 	 * for a given inode.  If we don't find the dir, just don't
1189 	 * copy the back ref in.  The link count fixup code will take
1190 	 * care of the rest
1191 	 */
1192 	dir = read_one_inode(root, parent_objectid);
1193 	if (!dir) {
1194 		ret = -ENOENT;
1195 		goto out;
1196 	}
1197 
1198 	inode = read_one_inode(root, inode_objectid);
1199 	if (!inode) {
1200 		ret = -EIO;
1201 		goto out;
1202 	}
1203 
1204 	while (ref_ptr < ref_end) {
1205 		if (log_ref_ver) {
1206 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1207 						&ref_index, &parent_objectid);
1208 			/*
1209 			 * parent object can change from one array
1210 			 * item to another.
1211 			 */
1212 			if (!dir)
1213 				dir = read_one_inode(root, parent_objectid);
1214 			if (!dir) {
1215 				ret = -ENOENT;
1216 				goto out;
1217 			}
1218 		} else {
1219 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1220 					     &ref_index);
1221 		}
1222 		if (ret)
1223 			goto out;
1224 
1225 		/* if we already have a perfect match, we're done */
1226 		if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1227 				  ref_index, name, namelen)) {
1228 			/*
1229 			 * look for a conflicting back reference in the
1230 			 * metadata. if we find one we have to unlink that name
1231 			 * of the file before we add our new link.  Later on, we
1232 			 * overwrite any existing back reference, and we don't
1233 			 * want to create dangling pointers in the directory.
1234 			 */
1235 
1236 			if (!search_done) {
1237 				ret = __add_inode_ref(trans, root, path, log,
1238 						      dir, inode, eb,
1239 						      inode_objectid,
1240 						      parent_objectid,
1241 						      ref_index, name, namelen,
1242 						      &search_done);
1243 				if (ret) {
1244 					if (ret == 1)
1245 						ret = 0;
1246 					goto out;
1247 				}
1248 			}
1249 
1250 			/* insert our name */
1251 			ret = btrfs_add_link(trans, dir, inode, name, namelen,
1252 					     0, ref_index);
1253 			if (ret)
1254 				goto out;
1255 
1256 			btrfs_update_inode(trans, root, inode);
1257 		}
1258 
1259 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1260 		kfree(name);
1261 		name = NULL;
1262 		if (log_ref_ver) {
1263 			iput(dir);
1264 			dir = NULL;
1265 		}
1266 	}
1267 
1268 	/* finally write the back reference in the inode */
1269 	ret = overwrite_item(trans, root, path, eb, slot, key);
1270 out:
1271 	btrfs_release_path(path);
1272 	kfree(name);
1273 	iput(dir);
1274 	iput(inode);
1275 	return ret;
1276 }
1277 
1278 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1279 			      struct btrfs_root *root, u64 ino)
1280 {
1281 	int ret;
1282 
1283 	ret = btrfs_insert_orphan_item(trans, root, ino);
1284 	if (ret == -EEXIST)
1285 		ret = 0;
1286 
1287 	return ret;
1288 }
1289 
1290 static int count_inode_extrefs(struct btrfs_root *root,
1291 			       struct inode *inode, struct btrfs_path *path)
1292 {
1293 	int ret = 0;
1294 	int name_len;
1295 	unsigned int nlink = 0;
1296 	u32 item_size;
1297 	u32 cur_offset = 0;
1298 	u64 inode_objectid = btrfs_ino(inode);
1299 	u64 offset = 0;
1300 	unsigned long ptr;
1301 	struct btrfs_inode_extref *extref;
1302 	struct extent_buffer *leaf;
1303 
1304 	while (1) {
1305 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1306 					    &extref, &offset);
1307 		if (ret)
1308 			break;
1309 
1310 		leaf = path->nodes[0];
1311 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1312 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1313 		cur_offset = 0;
1314 
1315 		while (cur_offset < item_size) {
1316 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1317 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1318 
1319 			nlink++;
1320 
1321 			cur_offset += name_len + sizeof(*extref);
1322 		}
1323 
1324 		offset++;
1325 		btrfs_release_path(path);
1326 	}
1327 	btrfs_release_path(path);
1328 
1329 	if (ret < 0 && ret != -ENOENT)
1330 		return ret;
1331 	return nlink;
1332 }
1333 
1334 static int count_inode_refs(struct btrfs_root *root,
1335 			       struct inode *inode, struct btrfs_path *path)
1336 {
1337 	int ret;
1338 	struct btrfs_key key;
1339 	unsigned int nlink = 0;
1340 	unsigned long ptr;
1341 	unsigned long ptr_end;
1342 	int name_len;
1343 	u64 ino = btrfs_ino(inode);
1344 
1345 	key.objectid = ino;
1346 	key.type = BTRFS_INODE_REF_KEY;
1347 	key.offset = (u64)-1;
1348 
1349 	while (1) {
1350 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1351 		if (ret < 0)
1352 			break;
1353 		if (ret > 0) {
1354 			if (path->slots[0] == 0)
1355 				break;
1356 			path->slots[0]--;
1357 		}
1358 process_slot:
1359 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1360 				      path->slots[0]);
1361 		if (key.objectid != ino ||
1362 		    key.type != BTRFS_INODE_REF_KEY)
1363 			break;
1364 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1365 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1366 						   path->slots[0]);
1367 		while (ptr < ptr_end) {
1368 			struct btrfs_inode_ref *ref;
1369 
1370 			ref = (struct btrfs_inode_ref *)ptr;
1371 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1372 							    ref);
1373 			ptr = (unsigned long)(ref + 1) + name_len;
1374 			nlink++;
1375 		}
1376 
1377 		if (key.offset == 0)
1378 			break;
1379 		if (path->slots[0] > 0) {
1380 			path->slots[0]--;
1381 			goto process_slot;
1382 		}
1383 		key.offset--;
1384 		btrfs_release_path(path);
1385 	}
1386 	btrfs_release_path(path);
1387 
1388 	return nlink;
1389 }
1390 
1391 /*
1392  * There are a few corners where the link count of the file can't
1393  * be properly maintained during replay.  So, instead of adding
1394  * lots of complexity to the log code, we just scan the backrefs
1395  * for any file that has been through replay.
1396  *
1397  * The scan will update the link count on the inode to reflect the
1398  * number of back refs found.  If it goes down to zero, the iput
1399  * will free the inode.
1400  */
1401 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1402 					   struct btrfs_root *root,
1403 					   struct inode *inode)
1404 {
1405 	struct btrfs_path *path;
1406 	int ret;
1407 	u64 nlink = 0;
1408 	u64 ino = btrfs_ino(inode);
1409 
1410 	path = btrfs_alloc_path();
1411 	if (!path)
1412 		return -ENOMEM;
1413 
1414 	ret = count_inode_refs(root, inode, path);
1415 	if (ret < 0)
1416 		goto out;
1417 
1418 	nlink = ret;
1419 
1420 	ret = count_inode_extrefs(root, inode, path);
1421 	if (ret < 0)
1422 		goto out;
1423 
1424 	nlink += ret;
1425 
1426 	ret = 0;
1427 
1428 	if (nlink != inode->i_nlink) {
1429 		set_nlink(inode, nlink);
1430 		btrfs_update_inode(trans, root, inode);
1431 	}
1432 	BTRFS_I(inode)->index_cnt = (u64)-1;
1433 
1434 	if (inode->i_nlink == 0) {
1435 		if (S_ISDIR(inode->i_mode)) {
1436 			ret = replay_dir_deletes(trans, root, NULL, path,
1437 						 ino, 1);
1438 			if (ret)
1439 				goto out;
1440 		}
1441 		ret = insert_orphan_item(trans, root, ino);
1442 	}
1443 
1444 out:
1445 	btrfs_free_path(path);
1446 	return ret;
1447 }
1448 
1449 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1450 					    struct btrfs_root *root,
1451 					    struct btrfs_path *path)
1452 {
1453 	int ret;
1454 	struct btrfs_key key;
1455 	struct inode *inode;
1456 
1457 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1458 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1459 	key.offset = (u64)-1;
1460 	while (1) {
1461 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1462 		if (ret < 0)
1463 			break;
1464 
1465 		if (ret == 1) {
1466 			if (path->slots[0] == 0)
1467 				break;
1468 			path->slots[0]--;
1469 		}
1470 
1471 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1472 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1473 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1474 			break;
1475 
1476 		ret = btrfs_del_item(trans, root, path);
1477 		if (ret)
1478 			goto out;
1479 
1480 		btrfs_release_path(path);
1481 		inode = read_one_inode(root, key.offset);
1482 		if (!inode)
1483 			return -EIO;
1484 
1485 		ret = fixup_inode_link_count(trans, root, inode);
1486 		iput(inode);
1487 		if (ret)
1488 			goto out;
1489 
1490 		/*
1491 		 * fixup on a directory may create new entries,
1492 		 * make sure we always look for the highset possible
1493 		 * offset
1494 		 */
1495 		key.offset = (u64)-1;
1496 	}
1497 	ret = 0;
1498 out:
1499 	btrfs_release_path(path);
1500 	return ret;
1501 }
1502 
1503 
1504 /*
1505  * record a given inode in the fixup dir so we can check its link
1506  * count when replay is done.  The link count is incremented here
1507  * so the inode won't go away until we check it
1508  */
1509 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1510 				      struct btrfs_root *root,
1511 				      struct btrfs_path *path,
1512 				      u64 objectid)
1513 {
1514 	struct btrfs_key key;
1515 	int ret = 0;
1516 	struct inode *inode;
1517 
1518 	inode = read_one_inode(root, objectid);
1519 	if (!inode)
1520 		return -EIO;
1521 
1522 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1523 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1524 	key.offset = objectid;
1525 
1526 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1527 
1528 	btrfs_release_path(path);
1529 	if (ret == 0) {
1530 		if (!inode->i_nlink)
1531 			set_nlink(inode, 1);
1532 		else
1533 			inc_nlink(inode);
1534 		ret = btrfs_update_inode(trans, root, inode);
1535 	} else if (ret == -EEXIST) {
1536 		ret = 0;
1537 	} else {
1538 		BUG(); /* Logic Error */
1539 	}
1540 	iput(inode);
1541 
1542 	return ret;
1543 }
1544 
1545 /*
1546  * when replaying the log for a directory, we only insert names
1547  * for inodes that actually exist.  This means an fsync on a directory
1548  * does not implicitly fsync all the new files in it
1549  */
1550 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1551 				    struct btrfs_root *root,
1552 				    struct btrfs_path *path,
1553 				    u64 dirid, u64 index,
1554 				    char *name, int name_len, u8 type,
1555 				    struct btrfs_key *location)
1556 {
1557 	struct inode *inode;
1558 	struct inode *dir;
1559 	int ret;
1560 
1561 	inode = read_one_inode(root, location->objectid);
1562 	if (!inode)
1563 		return -ENOENT;
1564 
1565 	dir = read_one_inode(root, dirid);
1566 	if (!dir) {
1567 		iput(inode);
1568 		return -EIO;
1569 	}
1570 
1571 	ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1572 
1573 	/* FIXME, put inode into FIXUP list */
1574 
1575 	iput(inode);
1576 	iput(dir);
1577 	return ret;
1578 }
1579 
1580 /*
1581  * Return true if an inode reference exists in the log for the given name,
1582  * inode and parent inode.
1583  */
1584 static bool name_in_log_ref(struct btrfs_root *log_root,
1585 			    const char *name, const int name_len,
1586 			    const u64 dirid, const u64 ino)
1587 {
1588 	struct btrfs_key search_key;
1589 
1590 	search_key.objectid = ino;
1591 	search_key.type = BTRFS_INODE_REF_KEY;
1592 	search_key.offset = dirid;
1593 	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1594 		return true;
1595 
1596 	search_key.type = BTRFS_INODE_EXTREF_KEY;
1597 	search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1598 	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1599 		return true;
1600 
1601 	return false;
1602 }
1603 
1604 /*
1605  * take a single entry in a log directory item and replay it into
1606  * the subvolume.
1607  *
1608  * if a conflicting item exists in the subdirectory already,
1609  * the inode it points to is unlinked and put into the link count
1610  * fix up tree.
1611  *
1612  * If a name from the log points to a file or directory that does
1613  * not exist in the FS, it is skipped.  fsyncs on directories
1614  * do not force down inodes inside that directory, just changes to the
1615  * names or unlinks in a directory.
1616  */
1617 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1618 				    struct btrfs_root *root,
1619 				    struct btrfs_path *path,
1620 				    struct extent_buffer *eb,
1621 				    struct btrfs_dir_item *di,
1622 				    struct btrfs_key *key)
1623 {
1624 	char *name;
1625 	int name_len;
1626 	struct btrfs_dir_item *dst_di;
1627 	struct btrfs_key found_key;
1628 	struct btrfs_key log_key;
1629 	struct inode *dir;
1630 	u8 log_type;
1631 	int exists;
1632 	int ret = 0;
1633 	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1634 
1635 	dir = read_one_inode(root, key->objectid);
1636 	if (!dir)
1637 		return -EIO;
1638 
1639 	name_len = btrfs_dir_name_len(eb, di);
1640 	name = kmalloc(name_len, GFP_NOFS);
1641 	if (!name) {
1642 		ret = -ENOMEM;
1643 		goto out;
1644 	}
1645 
1646 	log_type = btrfs_dir_type(eb, di);
1647 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1648 		   name_len);
1649 
1650 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1651 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1652 	if (exists == 0)
1653 		exists = 1;
1654 	else
1655 		exists = 0;
1656 	btrfs_release_path(path);
1657 
1658 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1659 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1660 				       name, name_len, 1);
1661 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1662 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1663 						     key->objectid,
1664 						     key->offset, name,
1665 						     name_len, 1);
1666 	} else {
1667 		/* Corruption */
1668 		ret = -EINVAL;
1669 		goto out;
1670 	}
1671 	if (IS_ERR_OR_NULL(dst_di)) {
1672 		/* we need a sequence number to insert, so we only
1673 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1674 		 */
1675 		if (key->type != BTRFS_DIR_INDEX_KEY)
1676 			goto out;
1677 		goto insert;
1678 	}
1679 
1680 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1681 	/* the existing item matches the logged item */
1682 	if (found_key.objectid == log_key.objectid &&
1683 	    found_key.type == log_key.type &&
1684 	    found_key.offset == log_key.offset &&
1685 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1686 		update_size = false;
1687 		goto out;
1688 	}
1689 
1690 	/*
1691 	 * don't drop the conflicting directory entry if the inode
1692 	 * for the new entry doesn't exist
1693 	 */
1694 	if (!exists)
1695 		goto out;
1696 
1697 	ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1698 	if (ret)
1699 		goto out;
1700 
1701 	if (key->type == BTRFS_DIR_INDEX_KEY)
1702 		goto insert;
1703 out:
1704 	btrfs_release_path(path);
1705 	if (!ret && update_size) {
1706 		btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1707 		ret = btrfs_update_inode(trans, root, dir);
1708 	}
1709 	kfree(name);
1710 	iput(dir);
1711 	return ret;
1712 
1713 insert:
1714 	if (name_in_log_ref(root->log_root, name, name_len,
1715 			    key->objectid, log_key.objectid)) {
1716 		/* The dentry will be added later. */
1717 		ret = 0;
1718 		update_size = false;
1719 		goto out;
1720 	}
1721 	btrfs_release_path(path);
1722 	ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1723 			      name, name_len, log_type, &log_key);
1724 	if (ret && ret != -ENOENT && ret != -EEXIST)
1725 		goto out;
1726 	update_size = false;
1727 	ret = 0;
1728 	goto out;
1729 }
1730 
1731 /*
1732  * find all the names in a directory item and reconcile them into
1733  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1734  * one name in a directory item, but the same code gets used for
1735  * both directory index types
1736  */
1737 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1738 					struct btrfs_root *root,
1739 					struct btrfs_path *path,
1740 					struct extent_buffer *eb, int slot,
1741 					struct btrfs_key *key)
1742 {
1743 	int ret;
1744 	u32 item_size = btrfs_item_size_nr(eb, slot);
1745 	struct btrfs_dir_item *di;
1746 	int name_len;
1747 	unsigned long ptr;
1748 	unsigned long ptr_end;
1749 
1750 	ptr = btrfs_item_ptr_offset(eb, slot);
1751 	ptr_end = ptr + item_size;
1752 	while (ptr < ptr_end) {
1753 		di = (struct btrfs_dir_item *)ptr;
1754 		if (verify_dir_item(root, eb, di))
1755 			return -EIO;
1756 		name_len = btrfs_dir_name_len(eb, di);
1757 		ret = replay_one_name(trans, root, path, eb, di, key);
1758 		if (ret)
1759 			return ret;
1760 		ptr = (unsigned long)(di + 1);
1761 		ptr += name_len;
1762 	}
1763 	return 0;
1764 }
1765 
1766 /*
1767  * directory replay has two parts.  There are the standard directory
1768  * items in the log copied from the subvolume, and range items
1769  * created in the log while the subvolume was logged.
1770  *
1771  * The range items tell us which parts of the key space the log
1772  * is authoritative for.  During replay, if a key in the subvolume
1773  * directory is in a logged range item, but not actually in the log
1774  * that means it was deleted from the directory before the fsync
1775  * and should be removed.
1776  */
1777 static noinline int find_dir_range(struct btrfs_root *root,
1778 				   struct btrfs_path *path,
1779 				   u64 dirid, int key_type,
1780 				   u64 *start_ret, u64 *end_ret)
1781 {
1782 	struct btrfs_key key;
1783 	u64 found_end;
1784 	struct btrfs_dir_log_item *item;
1785 	int ret;
1786 	int nritems;
1787 
1788 	if (*start_ret == (u64)-1)
1789 		return 1;
1790 
1791 	key.objectid = dirid;
1792 	key.type = key_type;
1793 	key.offset = *start_ret;
1794 
1795 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1796 	if (ret < 0)
1797 		goto out;
1798 	if (ret > 0) {
1799 		if (path->slots[0] == 0)
1800 			goto out;
1801 		path->slots[0]--;
1802 	}
1803 	if (ret != 0)
1804 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1805 
1806 	if (key.type != key_type || key.objectid != dirid) {
1807 		ret = 1;
1808 		goto next;
1809 	}
1810 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1811 			      struct btrfs_dir_log_item);
1812 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1813 
1814 	if (*start_ret >= key.offset && *start_ret <= found_end) {
1815 		ret = 0;
1816 		*start_ret = key.offset;
1817 		*end_ret = found_end;
1818 		goto out;
1819 	}
1820 	ret = 1;
1821 next:
1822 	/* check the next slot in the tree to see if it is a valid item */
1823 	nritems = btrfs_header_nritems(path->nodes[0]);
1824 	if (path->slots[0] >= nritems) {
1825 		ret = btrfs_next_leaf(root, path);
1826 		if (ret)
1827 			goto out;
1828 	} else {
1829 		path->slots[0]++;
1830 	}
1831 
1832 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1833 
1834 	if (key.type != key_type || key.objectid != dirid) {
1835 		ret = 1;
1836 		goto out;
1837 	}
1838 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1839 			      struct btrfs_dir_log_item);
1840 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1841 	*start_ret = key.offset;
1842 	*end_ret = found_end;
1843 	ret = 0;
1844 out:
1845 	btrfs_release_path(path);
1846 	return ret;
1847 }
1848 
1849 /*
1850  * this looks for a given directory item in the log.  If the directory
1851  * item is not in the log, the item is removed and the inode it points
1852  * to is unlinked
1853  */
1854 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1855 				      struct btrfs_root *root,
1856 				      struct btrfs_root *log,
1857 				      struct btrfs_path *path,
1858 				      struct btrfs_path *log_path,
1859 				      struct inode *dir,
1860 				      struct btrfs_key *dir_key)
1861 {
1862 	int ret;
1863 	struct extent_buffer *eb;
1864 	int slot;
1865 	u32 item_size;
1866 	struct btrfs_dir_item *di;
1867 	struct btrfs_dir_item *log_di;
1868 	int name_len;
1869 	unsigned long ptr;
1870 	unsigned long ptr_end;
1871 	char *name;
1872 	struct inode *inode;
1873 	struct btrfs_key location;
1874 
1875 again:
1876 	eb = path->nodes[0];
1877 	slot = path->slots[0];
1878 	item_size = btrfs_item_size_nr(eb, slot);
1879 	ptr = btrfs_item_ptr_offset(eb, slot);
1880 	ptr_end = ptr + item_size;
1881 	while (ptr < ptr_end) {
1882 		di = (struct btrfs_dir_item *)ptr;
1883 		if (verify_dir_item(root, eb, di)) {
1884 			ret = -EIO;
1885 			goto out;
1886 		}
1887 
1888 		name_len = btrfs_dir_name_len(eb, di);
1889 		name = kmalloc(name_len, GFP_NOFS);
1890 		if (!name) {
1891 			ret = -ENOMEM;
1892 			goto out;
1893 		}
1894 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
1895 				  name_len);
1896 		log_di = NULL;
1897 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1898 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
1899 						       dir_key->objectid,
1900 						       name, name_len, 0);
1901 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1902 			log_di = btrfs_lookup_dir_index_item(trans, log,
1903 						     log_path,
1904 						     dir_key->objectid,
1905 						     dir_key->offset,
1906 						     name, name_len, 0);
1907 		}
1908 		if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
1909 			btrfs_dir_item_key_to_cpu(eb, di, &location);
1910 			btrfs_release_path(path);
1911 			btrfs_release_path(log_path);
1912 			inode = read_one_inode(root, location.objectid);
1913 			if (!inode) {
1914 				kfree(name);
1915 				return -EIO;
1916 			}
1917 
1918 			ret = link_to_fixup_dir(trans, root,
1919 						path, location.objectid);
1920 			if (ret) {
1921 				kfree(name);
1922 				iput(inode);
1923 				goto out;
1924 			}
1925 
1926 			inc_nlink(inode);
1927 			ret = btrfs_unlink_inode(trans, root, dir, inode,
1928 						 name, name_len);
1929 			if (!ret)
1930 				ret = btrfs_run_delayed_items(trans, root);
1931 			kfree(name);
1932 			iput(inode);
1933 			if (ret)
1934 				goto out;
1935 
1936 			/* there might still be more names under this key
1937 			 * check and repeat if required
1938 			 */
1939 			ret = btrfs_search_slot(NULL, root, dir_key, path,
1940 						0, 0);
1941 			if (ret == 0)
1942 				goto again;
1943 			ret = 0;
1944 			goto out;
1945 		} else if (IS_ERR(log_di)) {
1946 			kfree(name);
1947 			return PTR_ERR(log_di);
1948 		}
1949 		btrfs_release_path(log_path);
1950 		kfree(name);
1951 
1952 		ptr = (unsigned long)(di + 1);
1953 		ptr += name_len;
1954 	}
1955 	ret = 0;
1956 out:
1957 	btrfs_release_path(path);
1958 	btrfs_release_path(log_path);
1959 	return ret;
1960 }
1961 
1962 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
1963 			      struct btrfs_root *root,
1964 			      struct btrfs_root *log,
1965 			      struct btrfs_path *path,
1966 			      const u64 ino)
1967 {
1968 	struct btrfs_key search_key;
1969 	struct btrfs_path *log_path;
1970 	int i;
1971 	int nritems;
1972 	int ret;
1973 
1974 	log_path = btrfs_alloc_path();
1975 	if (!log_path)
1976 		return -ENOMEM;
1977 
1978 	search_key.objectid = ino;
1979 	search_key.type = BTRFS_XATTR_ITEM_KEY;
1980 	search_key.offset = 0;
1981 again:
1982 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1983 	if (ret < 0)
1984 		goto out;
1985 process_leaf:
1986 	nritems = btrfs_header_nritems(path->nodes[0]);
1987 	for (i = path->slots[0]; i < nritems; i++) {
1988 		struct btrfs_key key;
1989 		struct btrfs_dir_item *di;
1990 		struct btrfs_dir_item *log_di;
1991 		u32 total_size;
1992 		u32 cur;
1993 
1994 		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
1995 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
1996 			ret = 0;
1997 			goto out;
1998 		}
1999 
2000 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2001 		total_size = btrfs_item_size_nr(path->nodes[0], i);
2002 		cur = 0;
2003 		while (cur < total_size) {
2004 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2005 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2006 			u32 this_len = sizeof(*di) + name_len + data_len;
2007 			char *name;
2008 
2009 			name = kmalloc(name_len, GFP_NOFS);
2010 			if (!name) {
2011 				ret = -ENOMEM;
2012 				goto out;
2013 			}
2014 			read_extent_buffer(path->nodes[0], name,
2015 					   (unsigned long)(di + 1), name_len);
2016 
2017 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2018 						    name, name_len, 0);
2019 			btrfs_release_path(log_path);
2020 			if (!log_di) {
2021 				/* Doesn't exist in log tree, so delete it. */
2022 				btrfs_release_path(path);
2023 				di = btrfs_lookup_xattr(trans, root, path, ino,
2024 							name, name_len, -1);
2025 				kfree(name);
2026 				if (IS_ERR(di)) {
2027 					ret = PTR_ERR(di);
2028 					goto out;
2029 				}
2030 				ASSERT(di);
2031 				ret = btrfs_delete_one_dir_name(trans, root,
2032 								path, di);
2033 				if (ret)
2034 					goto out;
2035 				btrfs_release_path(path);
2036 				search_key = key;
2037 				goto again;
2038 			}
2039 			kfree(name);
2040 			if (IS_ERR(log_di)) {
2041 				ret = PTR_ERR(log_di);
2042 				goto out;
2043 			}
2044 			cur += this_len;
2045 			di = (struct btrfs_dir_item *)((char *)di + this_len);
2046 		}
2047 	}
2048 	ret = btrfs_next_leaf(root, path);
2049 	if (ret > 0)
2050 		ret = 0;
2051 	else if (ret == 0)
2052 		goto process_leaf;
2053 out:
2054 	btrfs_free_path(log_path);
2055 	btrfs_release_path(path);
2056 	return ret;
2057 }
2058 
2059 
2060 /*
2061  * deletion replay happens before we copy any new directory items
2062  * out of the log or out of backreferences from inodes.  It
2063  * scans the log to find ranges of keys that log is authoritative for,
2064  * and then scans the directory to find items in those ranges that are
2065  * not present in the log.
2066  *
2067  * Anything we don't find in the log is unlinked and removed from the
2068  * directory.
2069  */
2070 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2071 				       struct btrfs_root *root,
2072 				       struct btrfs_root *log,
2073 				       struct btrfs_path *path,
2074 				       u64 dirid, int del_all)
2075 {
2076 	u64 range_start;
2077 	u64 range_end;
2078 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2079 	int ret = 0;
2080 	struct btrfs_key dir_key;
2081 	struct btrfs_key found_key;
2082 	struct btrfs_path *log_path;
2083 	struct inode *dir;
2084 
2085 	dir_key.objectid = dirid;
2086 	dir_key.type = BTRFS_DIR_ITEM_KEY;
2087 	log_path = btrfs_alloc_path();
2088 	if (!log_path)
2089 		return -ENOMEM;
2090 
2091 	dir = read_one_inode(root, dirid);
2092 	/* it isn't an error if the inode isn't there, that can happen
2093 	 * because we replay the deletes before we copy in the inode item
2094 	 * from the log
2095 	 */
2096 	if (!dir) {
2097 		btrfs_free_path(log_path);
2098 		return 0;
2099 	}
2100 again:
2101 	range_start = 0;
2102 	range_end = 0;
2103 	while (1) {
2104 		if (del_all)
2105 			range_end = (u64)-1;
2106 		else {
2107 			ret = find_dir_range(log, path, dirid, key_type,
2108 					     &range_start, &range_end);
2109 			if (ret != 0)
2110 				break;
2111 		}
2112 
2113 		dir_key.offset = range_start;
2114 		while (1) {
2115 			int nritems;
2116 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2117 						0, 0);
2118 			if (ret < 0)
2119 				goto out;
2120 
2121 			nritems = btrfs_header_nritems(path->nodes[0]);
2122 			if (path->slots[0] >= nritems) {
2123 				ret = btrfs_next_leaf(root, path);
2124 				if (ret)
2125 					break;
2126 			}
2127 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2128 					      path->slots[0]);
2129 			if (found_key.objectid != dirid ||
2130 			    found_key.type != dir_key.type)
2131 				goto next_type;
2132 
2133 			if (found_key.offset > range_end)
2134 				break;
2135 
2136 			ret = check_item_in_log(trans, root, log, path,
2137 						log_path, dir,
2138 						&found_key);
2139 			if (ret)
2140 				goto out;
2141 			if (found_key.offset == (u64)-1)
2142 				break;
2143 			dir_key.offset = found_key.offset + 1;
2144 		}
2145 		btrfs_release_path(path);
2146 		if (range_end == (u64)-1)
2147 			break;
2148 		range_start = range_end + 1;
2149 	}
2150 
2151 next_type:
2152 	ret = 0;
2153 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2154 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2155 		dir_key.type = BTRFS_DIR_INDEX_KEY;
2156 		btrfs_release_path(path);
2157 		goto again;
2158 	}
2159 out:
2160 	btrfs_release_path(path);
2161 	btrfs_free_path(log_path);
2162 	iput(dir);
2163 	return ret;
2164 }
2165 
2166 /*
2167  * the process_func used to replay items from the log tree.  This
2168  * gets called in two different stages.  The first stage just looks
2169  * for inodes and makes sure they are all copied into the subvolume.
2170  *
2171  * The second stage copies all the other item types from the log into
2172  * the subvolume.  The two stage approach is slower, but gets rid of
2173  * lots of complexity around inodes referencing other inodes that exist
2174  * only in the log (references come from either directory items or inode
2175  * back refs).
2176  */
2177 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2178 			     struct walk_control *wc, u64 gen)
2179 {
2180 	int nritems;
2181 	struct btrfs_path *path;
2182 	struct btrfs_root *root = wc->replay_dest;
2183 	struct btrfs_key key;
2184 	int level;
2185 	int i;
2186 	int ret;
2187 
2188 	ret = btrfs_read_buffer(eb, gen);
2189 	if (ret)
2190 		return ret;
2191 
2192 	level = btrfs_header_level(eb);
2193 
2194 	if (level != 0)
2195 		return 0;
2196 
2197 	path = btrfs_alloc_path();
2198 	if (!path)
2199 		return -ENOMEM;
2200 
2201 	nritems = btrfs_header_nritems(eb);
2202 	for (i = 0; i < nritems; i++) {
2203 		btrfs_item_key_to_cpu(eb, &key, i);
2204 
2205 		/* inode keys are done during the first stage */
2206 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2207 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2208 			struct btrfs_inode_item *inode_item;
2209 			u32 mode;
2210 
2211 			inode_item = btrfs_item_ptr(eb, i,
2212 					    struct btrfs_inode_item);
2213 			ret = replay_xattr_deletes(wc->trans, root, log,
2214 						   path, key.objectid);
2215 			if (ret)
2216 				break;
2217 			mode = btrfs_inode_mode(eb, inode_item);
2218 			if (S_ISDIR(mode)) {
2219 				ret = replay_dir_deletes(wc->trans,
2220 					 root, log, path, key.objectid, 0);
2221 				if (ret)
2222 					break;
2223 			}
2224 			ret = overwrite_item(wc->trans, root, path,
2225 					     eb, i, &key);
2226 			if (ret)
2227 				break;
2228 
2229 			/* for regular files, make sure corresponding
2230 			 * orhpan item exist. extents past the new EOF
2231 			 * will be truncated later by orphan cleanup.
2232 			 */
2233 			if (S_ISREG(mode)) {
2234 				ret = insert_orphan_item(wc->trans, root,
2235 							 key.objectid);
2236 				if (ret)
2237 					break;
2238 			}
2239 
2240 			ret = link_to_fixup_dir(wc->trans, root,
2241 						path, key.objectid);
2242 			if (ret)
2243 				break;
2244 		}
2245 
2246 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2247 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2248 			ret = replay_one_dir_item(wc->trans, root, path,
2249 						  eb, i, &key);
2250 			if (ret)
2251 				break;
2252 		}
2253 
2254 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2255 			continue;
2256 
2257 		/* these keys are simply copied */
2258 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2259 			ret = overwrite_item(wc->trans, root, path,
2260 					     eb, i, &key);
2261 			if (ret)
2262 				break;
2263 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2264 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2265 			ret = add_inode_ref(wc->trans, root, log, path,
2266 					    eb, i, &key);
2267 			if (ret && ret != -ENOENT)
2268 				break;
2269 			ret = 0;
2270 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2271 			ret = replay_one_extent(wc->trans, root, path,
2272 						eb, i, &key);
2273 			if (ret)
2274 				break;
2275 		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2276 			ret = replay_one_dir_item(wc->trans, root, path,
2277 						  eb, i, &key);
2278 			if (ret)
2279 				break;
2280 		}
2281 	}
2282 	btrfs_free_path(path);
2283 	return ret;
2284 }
2285 
2286 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2287 				   struct btrfs_root *root,
2288 				   struct btrfs_path *path, int *level,
2289 				   struct walk_control *wc)
2290 {
2291 	u64 root_owner;
2292 	u64 bytenr;
2293 	u64 ptr_gen;
2294 	struct extent_buffer *next;
2295 	struct extent_buffer *cur;
2296 	struct extent_buffer *parent;
2297 	u32 blocksize;
2298 	int ret = 0;
2299 
2300 	WARN_ON(*level < 0);
2301 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2302 
2303 	while (*level > 0) {
2304 		WARN_ON(*level < 0);
2305 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
2306 		cur = path->nodes[*level];
2307 
2308 		WARN_ON(btrfs_header_level(cur) != *level);
2309 
2310 		if (path->slots[*level] >=
2311 		    btrfs_header_nritems(cur))
2312 			break;
2313 
2314 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2315 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2316 		blocksize = root->nodesize;
2317 
2318 		parent = path->nodes[*level];
2319 		root_owner = btrfs_header_owner(parent);
2320 
2321 		next = btrfs_find_create_tree_block(root, bytenr);
2322 		if (!next)
2323 			return -ENOMEM;
2324 
2325 		if (*level == 1) {
2326 			ret = wc->process_func(root, next, wc, ptr_gen);
2327 			if (ret) {
2328 				free_extent_buffer(next);
2329 				return ret;
2330 			}
2331 
2332 			path->slots[*level]++;
2333 			if (wc->free) {
2334 				ret = btrfs_read_buffer(next, ptr_gen);
2335 				if (ret) {
2336 					free_extent_buffer(next);
2337 					return ret;
2338 				}
2339 
2340 				if (trans) {
2341 					btrfs_tree_lock(next);
2342 					btrfs_set_lock_blocking(next);
2343 					clean_tree_block(trans, root->fs_info,
2344 							next);
2345 					btrfs_wait_tree_block_writeback(next);
2346 					btrfs_tree_unlock(next);
2347 				}
2348 
2349 				WARN_ON(root_owner !=
2350 					BTRFS_TREE_LOG_OBJECTID);
2351 				ret = btrfs_free_and_pin_reserved_extent(root,
2352 							 bytenr, blocksize);
2353 				if (ret) {
2354 					free_extent_buffer(next);
2355 					return ret;
2356 				}
2357 			}
2358 			free_extent_buffer(next);
2359 			continue;
2360 		}
2361 		ret = btrfs_read_buffer(next, ptr_gen);
2362 		if (ret) {
2363 			free_extent_buffer(next);
2364 			return ret;
2365 		}
2366 
2367 		WARN_ON(*level <= 0);
2368 		if (path->nodes[*level-1])
2369 			free_extent_buffer(path->nodes[*level-1]);
2370 		path->nodes[*level-1] = next;
2371 		*level = btrfs_header_level(next);
2372 		path->slots[*level] = 0;
2373 		cond_resched();
2374 	}
2375 	WARN_ON(*level < 0);
2376 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2377 
2378 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2379 
2380 	cond_resched();
2381 	return 0;
2382 }
2383 
2384 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2385 				 struct btrfs_root *root,
2386 				 struct btrfs_path *path, int *level,
2387 				 struct walk_control *wc)
2388 {
2389 	u64 root_owner;
2390 	int i;
2391 	int slot;
2392 	int ret;
2393 
2394 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2395 		slot = path->slots[i];
2396 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2397 			path->slots[i]++;
2398 			*level = i;
2399 			WARN_ON(*level == 0);
2400 			return 0;
2401 		} else {
2402 			struct extent_buffer *parent;
2403 			if (path->nodes[*level] == root->node)
2404 				parent = path->nodes[*level];
2405 			else
2406 				parent = path->nodes[*level + 1];
2407 
2408 			root_owner = btrfs_header_owner(parent);
2409 			ret = wc->process_func(root, path->nodes[*level], wc,
2410 				 btrfs_header_generation(path->nodes[*level]));
2411 			if (ret)
2412 				return ret;
2413 
2414 			if (wc->free) {
2415 				struct extent_buffer *next;
2416 
2417 				next = path->nodes[*level];
2418 
2419 				if (trans) {
2420 					btrfs_tree_lock(next);
2421 					btrfs_set_lock_blocking(next);
2422 					clean_tree_block(trans, root->fs_info,
2423 							next);
2424 					btrfs_wait_tree_block_writeback(next);
2425 					btrfs_tree_unlock(next);
2426 				}
2427 
2428 				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2429 				ret = btrfs_free_and_pin_reserved_extent(root,
2430 						path->nodes[*level]->start,
2431 						path->nodes[*level]->len);
2432 				if (ret)
2433 					return ret;
2434 			}
2435 			free_extent_buffer(path->nodes[*level]);
2436 			path->nodes[*level] = NULL;
2437 			*level = i + 1;
2438 		}
2439 	}
2440 	return 1;
2441 }
2442 
2443 /*
2444  * drop the reference count on the tree rooted at 'snap'.  This traverses
2445  * the tree freeing any blocks that have a ref count of zero after being
2446  * decremented.
2447  */
2448 static int walk_log_tree(struct btrfs_trans_handle *trans,
2449 			 struct btrfs_root *log, struct walk_control *wc)
2450 {
2451 	int ret = 0;
2452 	int wret;
2453 	int level;
2454 	struct btrfs_path *path;
2455 	int orig_level;
2456 
2457 	path = btrfs_alloc_path();
2458 	if (!path)
2459 		return -ENOMEM;
2460 
2461 	level = btrfs_header_level(log->node);
2462 	orig_level = level;
2463 	path->nodes[level] = log->node;
2464 	extent_buffer_get(log->node);
2465 	path->slots[level] = 0;
2466 
2467 	while (1) {
2468 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2469 		if (wret > 0)
2470 			break;
2471 		if (wret < 0) {
2472 			ret = wret;
2473 			goto out;
2474 		}
2475 
2476 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2477 		if (wret > 0)
2478 			break;
2479 		if (wret < 0) {
2480 			ret = wret;
2481 			goto out;
2482 		}
2483 	}
2484 
2485 	/* was the root node processed? if not, catch it here */
2486 	if (path->nodes[orig_level]) {
2487 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2488 			 btrfs_header_generation(path->nodes[orig_level]));
2489 		if (ret)
2490 			goto out;
2491 		if (wc->free) {
2492 			struct extent_buffer *next;
2493 
2494 			next = path->nodes[orig_level];
2495 
2496 			if (trans) {
2497 				btrfs_tree_lock(next);
2498 				btrfs_set_lock_blocking(next);
2499 				clean_tree_block(trans, log->fs_info, next);
2500 				btrfs_wait_tree_block_writeback(next);
2501 				btrfs_tree_unlock(next);
2502 			}
2503 
2504 			WARN_ON(log->root_key.objectid !=
2505 				BTRFS_TREE_LOG_OBJECTID);
2506 			ret = btrfs_free_and_pin_reserved_extent(log, next->start,
2507 							 next->len);
2508 			if (ret)
2509 				goto out;
2510 		}
2511 	}
2512 
2513 out:
2514 	btrfs_free_path(path);
2515 	return ret;
2516 }
2517 
2518 /*
2519  * helper function to update the item for a given subvolumes log root
2520  * in the tree of log roots
2521  */
2522 static int update_log_root(struct btrfs_trans_handle *trans,
2523 			   struct btrfs_root *log)
2524 {
2525 	int ret;
2526 
2527 	if (log->log_transid == 1) {
2528 		/* insert root item on the first sync */
2529 		ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2530 				&log->root_key, &log->root_item);
2531 	} else {
2532 		ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2533 				&log->root_key, &log->root_item);
2534 	}
2535 	return ret;
2536 }
2537 
2538 static void wait_log_commit(struct btrfs_trans_handle *trans,
2539 			    struct btrfs_root *root, int transid)
2540 {
2541 	DEFINE_WAIT(wait);
2542 	int index = transid % 2;
2543 
2544 	/*
2545 	 * we only allow two pending log transactions at a time,
2546 	 * so we know that if ours is more than 2 older than the
2547 	 * current transaction, we're done
2548 	 */
2549 	do {
2550 		prepare_to_wait(&root->log_commit_wait[index],
2551 				&wait, TASK_UNINTERRUPTIBLE);
2552 		mutex_unlock(&root->log_mutex);
2553 
2554 		if (root->log_transid_committed < transid &&
2555 		    atomic_read(&root->log_commit[index]))
2556 			schedule();
2557 
2558 		finish_wait(&root->log_commit_wait[index], &wait);
2559 		mutex_lock(&root->log_mutex);
2560 	} while (root->log_transid_committed < transid &&
2561 		 atomic_read(&root->log_commit[index]));
2562 }
2563 
2564 static void wait_for_writer(struct btrfs_trans_handle *trans,
2565 			    struct btrfs_root *root)
2566 {
2567 	DEFINE_WAIT(wait);
2568 
2569 	while (atomic_read(&root->log_writers)) {
2570 		prepare_to_wait(&root->log_writer_wait,
2571 				&wait, TASK_UNINTERRUPTIBLE);
2572 		mutex_unlock(&root->log_mutex);
2573 		if (atomic_read(&root->log_writers))
2574 			schedule();
2575 		finish_wait(&root->log_writer_wait, &wait);
2576 		mutex_lock(&root->log_mutex);
2577 	}
2578 }
2579 
2580 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2581 					struct btrfs_log_ctx *ctx)
2582 {
2583 	if (!ctx)
2584 		return;
2585 
2586 	mutex_lock(&root->log_mutex);
2587 	list_del_init(&ctx->list);
2588 	mutex_unlock(&root->log_mutex);
2589 }
2590 
2591 /*
2592  * Invoked in log mutex context, or be sure there is no other task which
2593  * can access the list.
2594  */
2595 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2596 					     int index, int error)
2597 {
2598 	struct btrfs_log_ctx *ctx;
2599 
2600 	if (!error) {
2601 		INIT_LIST_HEAD(&root->log_ctxs[index]);
2602 		return;
2603 	}
2604 
2605 	list_for_each_entry(ctx, &root->log_ctxs[index], list)
2606 		ctx->log_ret = error;
2607 
2608 	INIT_LIST_HEAD(&root->log_ctxs[index]);
2609 }
2610 
2611 /*
2612  * btrfs_sync_log does sends a given tree log down to the disk and
2613  * updates the super blocks to record it.  When this call is done,
2614  * you know that any inodes previously logged are safely on disk only
2615  * if it returns 0.
2616  *
2617  * Any other return value means you need to call btrfs_commit_transaction.
2618  * Some of the edge cases for fsyncing directories that have had unlinks
2619  * or renames done in the past mean that sometimes the only safe
2620  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2621  * that has happened.
2622  */
2623 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2624 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2625 {
2626 	int index1;
2627 	int index2;
2628 	int mark;
2629 	int ret;
2630 	struct btrfs_root *log = root->log_root;
2631 	struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2632 	int log_transid = 0;
2633 	struct btrfs_log_ctx root_log_ctx;
2634 	struct blk_plug plug;
2635 
2636 	mutex_lock(&root->log_mutex);
2637 	log_transid = ctx->log_transid;
2638 	if (root->log_transid_committed >= log_transid) {
2639 		mutex_unlock(&root->log_mutex);
2640 		return ctx->log_ret;
2641 	}
2642 
2643 	index1 = log_transid % 2;
2644 	if (atomic_read(&root->log_commit[index1])) {
2645 		wait_log_commit(trans, root, log_transid);
2646 		mutex_unlock(&root->log_mutex);
2647 		return ctx->log_ret;
2648 	}
2649 	ASSERT(log_transid == root->log_transid);
2650 	atomic_set(&root->log_commit[index1], 1);
2651 
2652 	/* wait for previous tree log sync to complete */
2653 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2654 		wait_log_commit(trans, root, log_transid - 1);
2655 
2656 	while (1) {
2657 		int batch = atomic_read(&root->log_batch);
2658 		/* when we're on an ssd, just kick the log commit out */
2659 		if (!btrfs_test_opt(root, SSD) &&
2660 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2661 			mutex_unlock(&root->log_mutex);
2662 			schedule_timeout_uninterruptible(1);
2663 			mutex_lock(&root->log_mutex);
2664 		}
2665 		wait_for_writer(trans, root);
2666 		if (batch == atomic_read(&root->log_batch))
2667 			break;
2668 	}
2669 
2670 	/* bail out if we need to do a full commit */
2671 	if (btrfs_need_log_full_commit(root->fs_info, trans)) {
2672 		ret = -EAGAIN;
2673 		btrfs_free_logged_extents(log, log_transid);
2674 		mutex_unlock(&root->log_mutex);
2675 		goto out;
2676 	}
2677 
2678 	if (log_transid % 2 == 0)
2679 		mark = EXTENT_DIRTY;
2680 	else
2681 		mark = EXTENT_NEW;
2682 
2683 	/* we start IO on  all the marked extents here, but we don't actually
2684 	 * wait for them until later.
2685 	 */
2686 	blk_start_plug(&plug);
2687 	ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2688 	if (ret) {
2689 		blk_finish_plug(&plug);
2690 		btrfs_abort_transaction(trans, root, ret);
2691 		btrfs_free_logged_extents(log, log_transid);
2692 		btrfs_set_log_full_commit(root->fs_info, trans);
2693 		mutex_unlock(&root->log_mutex);
2694 		goto out;
2695 	}
2696 
2697 	btrfs_set_root_node(&log->root_item, log->node);
2698 
2699 	root->log_transid++;
2700 	log->log_transid = root->log_transid;
2701 	root->log_start_pid = 0;
2702 	/*
2703 	 * IO has been started, blocks of the log tree have WRITTEN flag set
2704 	 * in their headers. new modifications of the log will be written to
2705 	 * new positions. so it's safe to allow log writers to go in.
2706 	 */
2707 	mutex_unlock(&root->log_mutex);
2708 
2709 	btrfs_init_log_ctx(&root_log_ctx);
2710 
2711 	mutex_lock(&log_root_tree->log_mutex);
2712 	atomic_inc(&log_root_tree->log_batch);
2713 	atomic_inc(&log_root_tree->log_writers);
2714 
2715 	index2 = log_root_tree->log_transid % 2;
2716 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2717 	root_log_ctx.log_transid = log_root_tree->log_transid;
2718 
2719 	mutex_unlock(&log_root_tree->log_mutex);
2720 
2721 	ret = update_log_root(trans, log);
2722 
2723 	mutex_lock(&log_root_tree->log_mutex);
2724 	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2725 		smp_mb();
2726 		if (waitqueue_active(&log_root_tree->log_writer_wait))
2727 			wake_up(&log_root_tree->log_writer_wait);
2728 	}
2729 
2730 	if (ret) {
2731 		if (!list_empty(&root_log_ctx.list))
2732 			list_del_init(&root_log_ctx.list);
2733 
2734 		blk_finish_plug(&plug);
2735 		btrfs_set_log_full_commit(root->fs_info, trans);
2736 
2737 		if (ret != -ENOSPC) {
2738 			btrfs_abort_transaction(trans, root, ret);
2739 			mutex_unlock(&log_root_tree->log_mutex);
2740 			goto out;
2741 		}
2742 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2743 		btrfs_free_logged_extents(log, log_transid);
2744 		mutex_unlock(&log_root_tree->log_mutex);
2745 		ret = -EAGAIN;
2746 		goto out;
2747 	}
2748 
2749 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
2750 		blk_finish_plug(&plug);
2751 		mutex_unlock(&log_root_tree->log_mutex);
2752 		ret = root_log_ctx.log_ret;
2753 		goto out;
2754 	}
2755 
2756 	index2 = root_log_ctx.log_transid % 2;
2757 	if (atomic_read(&log_root_tree->log_commit[index2])) {
2758 		blk_finish_plug(&plug);
2759 		ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages,
2760 						mark);
2761 		btrfs_wait_logged_extents(trans, log, log_transid);
2762 		wait_log_commit(trans, log_root_tree,
2763 				root_log_ctx.log_transid);
2764 		mutex_unlock(&log_root_tree->log_mutex);
2765 		if (!ret)
2766 			ret = root_log_ctx.log_ret;
2767 		goto out;
2768 	}
2769 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
2770 	atomic_set(&log_root_tree->log_commit[index2], 1);
2771 
2772 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2773 		wait_log_commit(trans, log_root_tree,
2774 				root_log_ctx.log_transid - 1);
2775 	}
2776 
2777 	wait_for_writer(trans, log_root_tree);
2778 
2779 	/*
2780 	 * now that we've moved on to the tree of log tree roots,
2781 	 * check the full commit flag again
2782 	 */
2783 	if (btrfs_need_log_full_commit(root->fs_info, trans)) {
2784 		blk_finish_plug(&plug);
2785 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2786 		btrfs_free_logged_extents(log, log_transid);
2787 		mutex_unlock(&log_root_tree->log_mutex);
2788 		ret = -EAGAIN;
2789 		goto out_wake_log_root;
2790 	}
2791 
2792 	ret = btrfs_write_marked_extents(log_root_tree,
2793 					 &log_root_tree->dirty_log_pages,
2794 					 EXTENT_DIRTY | EXTENT_NEW);
2795 	blk_finish_plug(&plug);
2796 	if (ret) {
2797 		btrfs_set_log_full_commit(root->fs_info, trans);
2798 		btrfs_abort_transaction(trans, root, ret);
2799 		btrfs_free_logged_extents(log, log_transid);
2800 		mutex_unlock(&log_root_tree->log_mutex);
2801 		goto out_wake_log_root;
2802 	}
2803 	ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2804 	if (!ret)
2805 		ret = btrfs_wait_marked_extents(log_root_tree,
2806 						&log_root_tree->dirty_log_pages,
2807 						EXTENT_NEW | EXTENT_DIRTY);
2808 	if (ret) {
2809 		btrfs_set_log_full_commit(root->fs_info, trans);
2810 		btrfs_free_logged_extents(log, log_transid);
2811 		mutex_unlock(&log_root_tree->log_mutex);
2812 		goto out_wake_log_root;
2813 	}
2814 	btrfs_wait_logged_extents(trans, log, log_transid);
2815 
2816 	btrfs_set_super_log_root(root->fs_info->super_for_commit,
2817 				log_root_tree->node->start);
2818 	btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2819 				btrfs_header_level(log_root_tree->node));
2820 
2821 	log_root_tree->log_transid++;
2822 	mutex_unlock(&log_root_tree->log_mutex);
2823 
2824 	/*
2825 	 * nobody else is going to jump in and write the the ctree
2826 	 * super here because the log_commit atomic below is protecting
2827 	 * us.  We must be called with a transaction handle pinning
2828 	 * the running transaction open, so a full commit can't hop
2829 	 * in and cause problems either.
2830 	 */
2831 	ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
2832 	if (ret) {
2833 		btrfs_set_log_full_commit(root->fs_info, trans);
2834 		btrfs_abort_transaction(trans, root, ret);
2835 		goto out_wake_log_root;
2836 	}
2837 
2838 	mutex_lock(&root->log_mutex);
2839 	if (root->last_log_commit < log_transid)
2840 		root->last_log_commit = log_transid;
2841 	mutex_unlock(&root->log_mutex);
2842 
2843 out_wake_log_root:
2844 	/*
2845 	 * We needn't get log_mutex here because we are sure all
2846 	 * the other tasks are blocked.
2847 	 */
2848 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
2849 
2850 	mutex_lock(&log_root_tree->log_mutex);
2851 	log_root_tree->log_transid_committed++;
2852 	atomic_set(&log_root_tree->log_commit[index2], 0);
2853 	mutex_unlock(&log_root_tree->log_mutex);
2854 
2855 	if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2856 		wake_up(&log_root_tree->log_commit_wait[index2]);
2857 out:
2858 	/* See above. */
2859 	btrfs_remove_all_log_ctxs(root, index1, ret);
2860 
2861 	mutex_lock(&root->log_mutex);
2862 	root->log_transid_committed++;
2863 	atomic_set(&root->log_commit[index1], 0);
2864 	mutex_unlock(&root->log_mutex);
2865 
2866 	if (waitqueue_active(&root->log_commit_wait[index1]))
2867 		wake_up(&root->log_commit_wait[index1]);
2868 	return ret;
2869 }
2870 
2871 static void free_log_tree(struct btrfs_trans_handle *trans,
2872 			  struct btrfs_root *log)
2873 {
2874 	int ret;
2875 	u64 start;
2876 	u64 end;
2877 	struct walk_control wc = {
2878 		.free = 1,
2879 		.process_func = process_one_buffer
2880 	};
2881 
2882 	ret = walk_log_tree(trans, log, &wc);
2883 	/* I don't think this can happen but just in case */
2884 	if (ret)
2885 		btrfs_abort_transaction(trans, log, ret);
2886 
2887 	while (1) {
2888 		ret = find_first_extent_bit(&log->dirty_log_pages,
2889 				0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
2890 				NULL);
2891 		if (ret)
2892 			break;
2893 
2894 		clear_extent_bits(&log->dirty_log_pages, start, end,
2895 				  EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2896 	}
2897 
2898 	/*
2899 	 * We may have short-circuited the log tree with the full commit logic
2900 	 * and left ordered extents on our list, so clear these out to keep us
2901 	 * from leaking inodes and memory.
2902 	 */
2903 	btrfs_free_logged_extents(log, 0);
2904 	btrfs_free_logged_extents(log, 1);
2905 
2906 	free_extent_buffer(log->node);
2907 	kfree(log);
2908 }
2909 
2910 /*
2911  * free all the extents used by the tree log.  This should be called
2912  * at commit time of the full transaction
2913  */
2914 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2915 {
2916 	if (root->log_root) {
2917 		free_log_tree(trans, root->log_root);
2918 		root->log_root = NULL;
2919 	}
2920 	return 0;
2921 }
2922 
2923 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2924 			     struct btrfs_fs_info *fs_info)
2925 {
2926 	if (fs_info->log_root_tree) {
2927 		free_log_tree(trans, fs_info->log_root_tree);
2928 		fs_info->log_root_tree = NULL;
2929 	}
2930 	return 0;
2931 }
2932 
2933 /*
2934  * If both a file and directory are logged, and unlinks or renames are
2935  * mixed in, we have a few interesting corners:
2936  *
2937  * create file X in dir Y
2938  * link file X to X.link in dir Y
2939  * fsync file X
2940  * unlink file X but leave X.link
2941  * fsync dir Y
2942  *
2943  * After a crash we would expect only X.link to exist.  But file X
2944  * didn't get fsync'd again so the log has back refs for X and X.link.
2945  *
2946  * We solve this by removing directory entries and inode backrefs from the
2947  * log when a file that was logged in the current transaction is
2948  * unlinked.  Any later fsync will include the updated log entries, and
2949  * we'll be able to reconstruct the proper directory items from backrefs.
2950  *
2951  * This optimizations allows us to avoid relogging the entire inode
2952  * or the entire directory.
2953  */
2954 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2955 				 struct btrfs_root *root,
2956 				 const char *name, int name_len,
2957 				 struct inode *dir, u64 index)
2958 {
2959 	struct btrfs_root *log;
2960 	struct btrfs_dir_item *di;
2961 	struct btrfs_path *path;
2962 	int ret;
2963 	int err = 0;
2964 	int bytes_del = 0;
2965 	u64 dir_ino = btrfs_ino(dir);
2966 
2967 	if (BTRFS_I(dir)->logged_trans < trans->transid)
2968 		return 0;
2969 
2970 	ret = join_running_log_trans(root);
2971 	if (ret)
2972 		return 0;
2973 
2974 	mutex_lock(&BTRFS_I(dir)->log_mutex);
2975 
2976 	log = root->log_root;
2977 	path = btrfs_alloc_path();
2978 	if (!path) {
2979 		err = -ENOMEM;
2980 		goto out_unlock;
2981 	}
2982 
2983 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
2984 				   name, name_len, -1);
2985 	if (IS_ERR(di)) {
2986 		err = PTR_ERR(di);
2987 		goto fail;
2988 	}
2989 	if (di) {
2990 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2991 		bytes_del += name_len;
2992 		if (ret) {
2993 			err = ret;
2994 			goto fail;
2995 		}
2996 	}
2997 	btrfs_release_path(path);
2998 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
2999 					 index, name, name_len, -1);
3000 	if (IS_ERR(di)) {
3001 		err = PTR_ERR(di);
3002 		goto fail;
3003 	}
3004 	if (di) {
3005 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3006 		bytes_del += name_len;
3007 		if (ret) {
3008 			err = ret;
3009 			goto fail;
3010 		}
3011 	}
3012 
3013 	/* update the directory size in the log to reflect the names
3014 	 * we have removed
3015 	 */
3016 	if (bytes_del) {
3017 		struct btrfs_key key;
3018 
3019 		key.objectid = dir_ino;
3020 		key.offset = 0;
3021 		key.type = BTRFS_INODE_ITEM_KEY;
3022 		btrfs_release_path(path);
3023 
3024 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3025 		if (ret < 0) {
3026 			err = ret;
3027 			goto fail;
3028 		}
3029 		if (ret == 0) {
3030 			struct btrfs_inode_item *item;
3031 			u64 i_size;
3032 
3033 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3034 					      struct btrfs_inode_item);
3035 			i_size = btrfs_inode_size(path->nodes[0], item);
3036 			if (i_size > bytes_del)
3037 				i_size -= bytes_del;
3038 			else
3039 				i_size = 0;
3040 			btrfs_set_inode_size(path->nodes[0], item, i_size);
3041 			btrfs_mark_buffer_dirty(path->nodes[0]);
3042 		} else
3043 			ret = 0;
3044 		btrfs_release_path(path);
3045 	}
3046 fail:
3047 	btrfs_free_path(path);
3048 out_unlock:
3049 	mutex_unlock(&BTRFS_I(dir)->log_mutex);
3050 	if (ret == -ENOSPC) {
3051 		btrfs_set_log_full_commit(root->fs_info, trans);
3052 		ret = 0;
3053 	} else if (ret < 0)
3054 		btrfs_abort_transaction(trans, root, ret);
3055 
3056 	btrfs_end_log_trans(root);
3057 
3058 	return err;
3059 }
3060 
3061 /* see comments for btrfs_del_dir_entries_in_log */
3062 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3063 			       struct btrfs_root *root,
3064 			       const char *name, int name_len,
3065 			       struct inode *inode, u64 dirid)
3066 {
3067 	struct btrfs_root *log;
3068 	u64 index;
3069 	int ret;
3070 
3071 	if (BTRFS_I(inode)->logged_trans < trans->transid)
3072 		return 0;
3073 
3074 	ret = join_running_log_trans(root);
3075 	if (ret)
3076 		return 0;
3077 	log = root->log_root;
3078 	mutex_lock(&BTRFS_I(inode)->log_mutex);
3079 
3080 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3081 				  dirid, &index);
3082 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
3083 	if (ret == -ENOSPC) {
3084 		btrfs_set_log_full_commit(root->fs_info, trans);
3085 		ret = 0;
3086 	} else if (ret < 0 && ret != -ENOENT)
3087 		btrfs_abort_transaction(trans, root, ret);
3088 	btrfs_end_log_trans(root);
3089 
3090 	return ret;
3091 }
3092 
3093 /*
3094  * creates a range item in the log for 'dirid'.  first_offset and
3095  * last_offset tell us which parts of the key space the log should
3096  * be considered authoritative for.
3097  */
3098 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3099 				       struct btrfs_root *log,
3100 				       struct btrfs_path *path,
3101 				       int key_type, u64 dirid,
3102 				       u64 first_offset, u64 last_offset)
3103 {
3104 	int ret;
3105 	struct btrfs_key key;
3106 	struct btrfs_dir_log_item *item;
3107 
3108 	key.objectid = dirid;
3109 	key.offset = first_offset;
3110 	if (key_type == BTRFS_DIR_ITEM_KEY)
3111 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
3112 	else
3113 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
3114 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3115 	if (ret)
3116 		return ret;
3117 
3118 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3119 			      struct btrfs_dir_log_item);
3120 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3121 	btrfs_mark_buffer_dirty(path->nodes[0]);
3122 	btrfs_release_path(path);
3123 	return 0;
3124 }
3125 
3126 /*
3127  * log all the items included in the current transaction for a given
3128  * directory.  This also creates the range items in the log tree required
3129  * to replay anything deleted before the fsync
3130  */
3131 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3132 			  struct btrfs_root *root, struct inode *inode,
3133 			  struct btrfs_path *path,
3134 			  struct btrfs_path *dst_path, int key_type,
3135 			  struct btrfs_log_ctx *ctx,
3136 			  u64 min_offset, u64 *last_offset_ret)
3137 {
3138 	struct btrfs_key min_key;
3139 	struct btrfs_root *log = root->log_root;
3140 	struct extent_buffer *src;
3141 	int err = 0;
3142 	int ret;
3143 	int i;
3144 	int nritems;
3145 	u64 first_offset = min_offset;
3146 	u64 last_offset = (u64)-1;
3147 	u64 ino = btrfs_ino(inode);
3148 
3149 	log = root->log_root;
3150 
3151 	min_key.objectid = ino;
3152 	min_key.type = key_type;
3153 	min_key.offset = min_offset;
3154 
3155 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3156 
3157 	/*
3158 	 * we didn't find anything from this transaction, see if there
3159 	 * is anything at all
3160 	 */
3161 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3162 		min_key.objectid = ino;
3163 		min_key.type = key_type;
3164 		min_key.offset = (u64)-1;
3165 		btrfs_release_path(path);
3166 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3167 		if (ret < 0) {
3168 			btrfs_release_path(path);
3169 			return ret;
3170 		}
3171 		ret = btrfs_previous_item(root, path, ino, key_type);
3172 
3173 		/* if ret == 0 there are items for this type,
3174 		 * create a range to tell us the last key of this type.
3175 		 * otherwise, there are no items in this directory after
3176 		 * *min_offset, and we create a range to indicate that.
3177 		 */
3178 		if (ret == 0) {
3179 			struct btrfs_key tmp;
3180 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3181 					      path->slots[0]);
3182 			if (key_type == tmp.type)
3183 				first_offset = max(min_offset, tmp.offset) + 1;
3184 		}
3185 		goto done;
3186 	}
3187 
3188 	/* go backward to find any previous key */
3189 	ret = btrfs_previous_item(root, path, ino, key_type);
3190 	if (ret == 0) {
3191 		struct btrfs_key tmp;
3192 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3193 		if (key_type == tmp.type) {
3194 			first_offset = tmp.offset;
3195 			ret = overwrite_item(trans, log, dst_path,
3196 					     path->nodes[0], path->slots[0],
3197 					     &tmp);
3198 			if (ret) {
3199 				err = ret;
3200 				goto done;
3201 			}
3202 		}
3203 	}
3204 	btrfs_release_path(path);
3205 
3206 	/* find the first key from this transaction again */
3207 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3208 	if (WARN_ON(ret != 0))
3209 		goto done;
3210 
3211 	/*
3212 	 * we have a block from this transaction, log every item in it
3213 	 * from our directory
3214 	 */
3215 	while (1) {
3216 		struct btrfs_key tmp;
3217 		src = path->nodes[0];
3218 		nritems = btrfs_header_nritems(src);
3219 		for (i = path->slots[0]; i < nritems; i++) {
3220 			struct btrfs_dir_item *di;
3221 
3222 			btrfs_item_key_to_cpu(src, &min_key, i);
3223 
3224 			if (min_key.objectid != ino || min_key.type != key_type)
3225 				goto done;
3226 			ret = overwrite_item(trans, log, dst_path, src, i,
3227 					     &min_key);
3228 			if (ret) {
3229 				err = ret;
3230 				goto done;
3231 			}
3232 
3233 			/*
3234 			 * We must make sure that when we log a directory entry,
3235 			 * the corresponding inode, after log replay, has a
3236 			 * matching link count. For example:
3237 			 *
3238 			 * touch foo
3239 			 * mkdir mydir
3240 			 * sync
3241 			 * ln foo mydir/bar
3242 			 * xfs_io -c "fsync" mydir
3243 			 * <crash>
3244 			 * <mount fs and log replay>
3245 			 *
3246 			 * Would result in a fsync log that when replayed, our
3247 			 * file inode would have a link count of 1, but we get
3248 			 * two directory entries pointing to the same inode.
3249 			 * After removing one of the names, it would not be
3250 			 * possible to remove the other name, which resulted
3251 			 * always in stale file handle errors, and would not
3252 			 * be possible to rmdir the parent directory, since
3253 			 * its i_size could never decrement to the value
3254 			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3255 			 */
3256 			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3257 			btrfs_dir_item_key_to_cpu(src, di, &tmp);
3258 			if (ctx &&
3259 			    (btrfs_dir_transid(src, di) == trans->transid ||
3260 			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3261 			    tmp.type != BTRFS_ROOT_ITEM_KEY)
3262 				ctx->log_new_dentries = true;
3263 		}
3264 		path->slots[0] = nritems;
3265 
3266 		/*
3267 		 * look ahead to the next item and see if it is also
3268 		 * from this directory and from this transaction
3269 		 */
3270 		ret = btrfs_next_leaf(root, path);
3271 		if (ret == 1) {
3272 			last_offset = (u64)-1;
3273 			goto done;
3274 		}
3275 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3276 		if (tmp.objectid != ino || tmp.type != key_type) {
3277 			last_offset = (u64)-1;
3278 			goto done;
3279 		}
3280 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3281 			ret = overwrite_item(trans, log, dst_path,
3282 					     path->nodes[0], path->slots[0],
3283 					     &tmp);
3284 			if (ret)
3285 				err = ret;
3286 			else
3287 				last_offset = tmp.offset;
3288 			goto done;
3289 		}
3290 	}
3291 done:
3292 	btrfs_release_path(path);
3293 	btrfs_release_path(dst_path);
3294 
3295 	if (err == 0) {
3296 		*last_offset_ret = last_offset;
3297 		/*
3298 		 * insert the log range keys to indicate where the log
3299 		 * is valid
3300 		 */
3301 		ret = insert_dir_log_key(trans, log, path, key_type,
3302 					 ino, first_offset, last_offset);
3303 		if (ret)
3304 			err = ret;
3305 	}
3306 	return err;
3307 }
3308 
3309 /*
3310  * logging directories is very similar to logging inodes, We find all the items
3311  * from the current transaction and write them to the log.
3312  *
3313  * The recovery code scans the directory in the subvolume, and if it finds a
3314  * key in the range logged that is not present in the log tree, then it means
3315  * that dir entry was unlinked during the transaction.
3316  *
3317  * In order for that scan to work, we must include one key smaller than
3318  * the smallest logged by this transaction and one key larger than the largest
3319  * key logged by this transaction.
3320  */
3321 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3322 			  struct btrfs_root *root, struct inode *inode,
3323 			  struct btrfs_path *path,
3324 			  struct btrfs_path *dst_path,
3325 			  struct btrfs_log_ctx *ctx)
3326 {
3327 	u64 min_key;
3328 	u64 max_key;
3329 	int ret;
3330 	int key_type = BTRFS_DIR_ITEM_KEY;
3331 
3332 again:
3333 	min_key = 0;
3334 	max_key = 0;
3335 	while (1) {
3336 		ret = log_dir_items(trans, root, inode, path,
3337 				    dst_path, key_type, ctx, min_key,
3338 				    &max_key);
3339 		if (ret)
3340 			return ret;
3341 		if (max_key == (u64)-1)
3342 			break;
3343 		min_key = max_key + 1;
3344 	}
3345 
3346 	if (key_type == BTRFS_DIR_ITEM_KEY) {
3347 		key_type = BTRFS_DIR_INDEX_KEY;
3348 		goto again;
3349 	}
3350 	return 0;
3351 }
3352 
3353 /*
3354  * a helper function to drop items from the log before we relog an
3355  * inode.  max_key_type indicates the highest item type to remove.
3356  * This cannot be run for file data extents because it does not
3357  * free the extents they point to.
3358  */
3359 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3360 				  struct btrfs_root *log,
3361 				  struct btrfs_path *path,
3362 				  u64 objectid, int max_key_type)
3363 {
3364 	int ret;
3365 	struct btrfs_key key;
3366 	struct btrfs_key found_key;
3367 	int start_slot;
3368 
3369 	key.objectid = objectid;
3370 	key.type = max_key_type;
3371 	key.offset = (u64)-1;
3372 
3373 	while (1) {
3374 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3375 		BUG_ON(ret == 0); /* Logic error */
3376 		if (ret < 0)
3377 			break;
3378 
3379 		if (path->slots[0] == 0)
3380 			break;
3381 
3382 		path->slots[0]--;
3383 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3384 				      path->slots[0]);
3385 
3386 		if (found_key.objectid != objectid)
3387 			break;
3388 
3389 		found_key.offset = 0;
3390 		found_key.type = 0;
3391 		ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3392 				       &start_slot);
3393 
3394 		ret = btrfs_del_items(trans, log, path, start_slot,
3395 				      path->slots[0] - start_slot + 1);
3396 		/*
3397 		 * If start slot isn't 0 then we don't need to re-search, we've
3398 		 * found the last guy with the objectid in this tree.
3399 		 */
3400 		if (ret || start_slot != 0)
3401 			break;
3402 		btrfs_release_path(path);
3403 	}
3404 	btrfs_release_path(path);
3405 	if (ret > 0)
3406 		ret = 0;
3407 	return ret;
3408 }
3409 
3410 static void fill_inode_item(struct btrfs_trans_handle *trans,
3411 			    struct extent_buffer *leaf,
3412 			    struct btrfs_inode_item *item,
3413 			    struct inode *inode, int log_inode_only,
3414 			    u64 logged_isize)
3415 {
3416 	struct btrfs_map_token token;
3417 
3418 	btrfs_init_map_token(&token);
3419 
3420 	if (log_inode_only) {
3421 		/* set the generation to zero so the recover code
3422 		 * can tell the difference between an logging
3423 		 * just to say 'this inode exists' and a logging
3424 		 * to say 'update this inode with these values'
3425 		 */
3426 		btrfs_set_token_inode_generation(leaf, item, 0, &token);
3427 		btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3428 	} else {
3429 		btrfs_set_token_inode_generation(leaf, item,
3430 						 BTRFS_I(inode)->generation,
3431 						 &token);
3432 		btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3433 	}
3434 
3435 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3436 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3437 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3438 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3439 
3440 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3441 				     inode->i_atime.tv_sec, &token);
3442 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3443 				      inode->i_atime.tv_nsec, &token);
3444 
3445 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3446 				     inode->i_mtime.tv_sec, &token);
3447 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3448 				      inode->i_mtime.tv_nsec, &token);
3449 
3450 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3451 				     inode->i_ctime.tv_sec, &token);
3452 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3453 				      inode->i_ctime.tv_nsec, &token);
3454 
3455 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3456 				     &token);
3457 
3458 	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3459 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3460 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3461 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3462 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3463 }
3464 
3465 static int log_inode_item(struct btrfs_trans_handle *trans,
3466 			  struct btrfs_root *log, struct btrfs_path *path,
3467 			  struct inode *inode)
3468 {
3469 	struct btrfs_inode_item *inode_item;
3470 	int ret;
3471 
3472 	ret = btrfs_insert_empty_item(trans, log, path,
3473 				      &BTRFS_I(inode)->location,
3474 				      sizeof(*inode_item));
3475 	if (ret && ret != -EEXIST)
3476 		return ret;
3477 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3478 				    struct btrfs_inode_item);
3479 	fill_inode_item(trans, path->nodes[0], inode_item, inode, 0, 0);
3480 	btrfs_release_path(path);
3481 	return 0;
3482 }
3483 
3484 static noinline int copy_items(struct btrfs_trans_handle *trans,
3485 			       struct inode *inode,
3486 			       struct btrfs_path *dst_path,
3487 			       struct btrfs_path *src_path, u64 *last_extent,
3488 			       int start_slot, int nr, int inode_only,
3489 			       u64 logged_isize)
3490 {
3491 	unsigned long src_offset;
3492 	unsigned long dst_offset;
3493 	struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3494 	struct btrfs_file_extent_item *extent;
3495 	struct btrfs_inode_item *inode_item;
3496 	struct extent_buffer *src = src_path->nodes[0];
3497 	struct btrfs_key first_key, last_key, key;
3498 	int ret;
3499 	struct btrfs_key *ins_keys;
3500 	u32 *ins_sizes;
3501 	char *ins_data;
3502 	int i;
3503 	struct list_head ordered_sums;
3504 	int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3505 	bool has_extents = false;
3506 	bool need_find_last_extent = true;
3507 	bool done = false;
3508 
3509 	INIT_LIST_HEAD(&ordered_sums);
3510 
3511 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3512 			   nr * sizeof(u32), GFP_NOFS);
3513 	if (!ins_data)
3514 		return -ENOMEM;
3515 
3516 	first_key.objectid = (u64)-1;
3517 
3518 	ins_sizes = (u32 *)ins_data;
3519 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3520 
3521 	for (i = 0; i < nr; i++) {
3522 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3523 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3524 	}
3525 	ret = btrfs_insert_empty_items(trans, log, dst_path,
3526 				       ins_keys, ins_sizes, nr);
3527 	if (ret) {
3528 		kfree(ins_data);
3529 		return ret;
3530 	}
3531 
3532 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3533 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3534 						   dst_path->slots[0]);
3535 
3536 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3537 
3538 		if ((i == (nr - 1)))
3539 			last_key = ins_keys[i];
3540 
3541 		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3542 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
3543 						    dst_path->slots[0],
3544 						    struct btrfs_inode_item);
3545 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
3546 					inode, inode_only == LOG_INODE_EXISTS,
3547 					logged_isize);
3548 		} else {
3549 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3550 					   src_offset, ins_sizes[i]);
3551 		}
3552 
3553 		/*
3554 		 * We set need_find_last_extent here in case we know we were
3555 		 * processing other items and then walk into the first extent in
3556 		 * the inode.  If we don't hit an extent then nothing changes,
3557 		 * we'll do the last search the next time around.
3558 		 */
3559 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3560 			has_extents = true;
3561 			if (first_key.objectid == (u64)-1)
3562 				first_key = ins_keys[i];
3563 		} else {
3564 			need_find_last_extent = false;
3565 		}
3566 
3567 		/* take a reference on file data extents so that truncates
3568 		 * or deletes of this inode don't have to relog the inode
3569 		 * again
3570 		 */
3571 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
3572 		    !skip_csum) {
3573 			int found_type;
3574 			extent = btrfs_item_ptr(src, start_slot + i,
3575 						struct btrfs_file_extent_item);
3576 
3577 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
3578 				continue;
3579 
3580 			found_type = btrfs_file_extent_type(src, extent);
3581 			if (found_type == BTRFS_FILE_EXTENT_REG) {
3582 				u64 ds, dl, cs, cl;
3583 				ds = btrfs_file_extent_disk_bytenr(src,
3584 								extent);
3585 				/* ds == 0 is a hole */
3586 				if (ds == 0)
3587 					continue;
3588 
3589 				dl = btrfs_file_extent_disk_num_bytes(src,
3590 								extent);
3591 				cs = btrfs_file_extent_offset(src, extent);
3592 				cl = btrfs_file_extent_num_bytes(src,
3593 								extent);
3594 				if (btrfs_file_extent_compression(src,
3595 								  extent)) {
3596 					cs = 0;
3597 					cl = dl;
3598 				}
3599 
3600 				ret = btrfs_lookup_csums_range(
3601 						log->fs_info->csum_root,
3602 						ds + cs, ds + cs + cl - 1,
3603 						&ordered_sums, 0);
3604 				if (ret) {
3605 					btrfs_release_path(dst_path);
3606 					kfree(ins_data);
3607 					return ret;
3608 				}
3609 			}
3610 		}
3611 	}
3612 
3613 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3614 	btrfs_release_path(dst_path);
3615 	kfree(ins_data);
3616 
3617 	/*
3618 	 * we have to do this after the loop above to avoid changing the
3619 	 * log tree while trying to change the log tree.
3620 	 */
3621 	ret = 0;
3622 	while (!list_empty(&ordered_sums)) {
3623 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3624 						   struct btrfs_ordered_sum,
3625 						   list);
3626 		if (!ret)
3627 			ret = btrfs_csum_file_blocks(trans, log, sums);
3628 		list_del(&sums->list);
3629 		kfree(sums);
3630 	}
3631 
3632 	if (!has_extents)
3633 		return ret;
3634 
3635 	if (need_find_last_extent && *last_extent == first_key.offset) {
3636 		/*
3637 		 * We don't have any leafs between our current one and the one
3638 		 * we processed before that can have file extent items for our
3639 		 * inode (and have a generation number smaller than our current
3640 		 * transaction id).
3641 		 */
3642 		need_find_last_extent = false;
3643 	}
3644 
3645 	/*
3646 	 * Because we use btrfs_search_forward we could skip leaves that were
3647 	 * not modified and then assume *last_extent is valid when it really
3648 	 * isn't.  So back up to the previous leaf and read the end of the last
3649 	 * extent before we go and fill in holes.
3650 	 */
3651 	if (need_find_last_extent) {
3652 		u64 len;
3653 
3654 		ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path);
3655 		if (ret < 0)
3656 			return ret;
3657 		if (ret)
3658 			goto fill_holes;
3659 		if (src_path->slots[0])
3660 			src_path->slots[0]--;
3661 		src = src_path->nodes[0];
3662 		btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3663 		if (key.objectid != btrfs_ino(inode) ||
3664 		    key.type != BTRFS_EXTENT_DATA_KEY)
3665 			goto fill_holes;
3666 		extent = btrfs_item_ptr(src, src_path->slots[0],
3667 					struct btrfs_file_extent_item);
3668 		if (btrfs_file_extent_type(src, extent) ==
3669 		    BTRFS_FILE_EXTENT_INLINE) {
3670 			len = btrfs_file_extent_inline_len(src,
3671 							   src_path->slots[0],
3672 							   extent);
3673 			*last_extent = ALIGN(key.offset + len,
3674 					     log->sectorsize);
3675 		} else {
3676 			len = btrfs_file_extent_num_bytes(src, extent);
3677 			*last_extent = key.offset + len;
3678 		}
3679 	}
3680 fill_holes:
3681 	/* So we did prev_leaf, now we need to move to the next leaf, but a few
3682 	 * things could have happened
3683 	 *
3684 	 * 1) A merge could have happened, so we could currently be on a leaf
3685 	 * that holds what we were copying in the first place.
3686 	 * 2) A split could have happened, and now not all of the items we want
3687 	 * are on the same leaf.
3688 	 *
3689 	 * So we need to adjust how we search for holes, we need to drop the
3690 	 * path and re-search for the first extent key we found, and then walk
3691 	 * forward until we hit the last one we copied.
3692 	 */
3693 	if (need_find_last_extent) {
3694 		/* btrfs_prev_leaf could return 1 without releasing the path */
3695 		btrfs_release_path(src_path);
3696 		ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key,
3697 					src_path, 0, 0);
3698 		if (ret < 0)
3699 			return ret;
3700 		ASSERT(ret == 0);
3701 		src = src_path->nodes[0];
3702 		i = src_path->slots[0];
3703 	} else {
3704 		i = start_slot;
3705 	}
3706 
3707 	/*
3708 	 * Ok so here we need to go through and fill in any holes we may have
3709 	 * to make sure that holes are punched for those areas in case they had
3710 	 * extents previously.
3711 	 */
3712 	while (!done) {
3713 		u64 offset, len;
3714 		u64 extent_end;
3715 
3716 		if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3717 			ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path);
3718 			if (ret < 0)
3719 				return ret;
3720 			ASSERT(ret == 0);
3721 			src = src_path->nodes[0];
3722 			i = 0;
3723 		}
3724 
3725 		btrfs_item_key_to_cpu(src, &key, i);
3726 		if (!btrfs_comp_cpu_keys(&key, &last_key))
3727 			done = true;
3728 		if (key.objectid != btrfs_ino(inode) ||
3729 		    key.type != BTRFS_EXTENT_DATA_KEY) {
3730 			i++;
3731 			continue;
3732 		}
3733 		extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3734 		if (btrfs_file_extent_type(src, extent) ==
3735 		    BTRFS_FILE_EXTENT_INLINE) {
3736 			len = btrfs_file_extent_inline_len(src, i, extent);
3737 			extent_end = ALIGN(key.offset + len, log->sectorsize);
3738 		} else {
3739 			len = btrfs_file_extent_num_bytes(src, extent);
3740 			extent_end = key.offset + len;
3741 		}
3742 		i++;
3743 
3744 		if (*last_extent == key.offset) {
3745 			*last_extent = extent_end;
3746 			continue;
3747 		}
3748 		offset = *last_extent;
3749 		len = key.offset - *last_extent;
3750 		ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3751 					       offset, 0, 0, len, 0, len, 0,
3752 					       0, 0);
3753 		if (ret)
3754 			break;
3755 		*last_extent = extent_end;
3756 	}
3757 	/*
3758 	 * Need to let the callers know we dropped the path so they should
3759 	 * re-search.
3760 	 */
3761 	if (!ret && need_find_last_extent)
3762 		ret = 1;
3763 	return ret;
3764 }
3765 
3766 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3767 {
3768 	struct extent_map *em1, *em2;
3769 
3770 	em1 = list_entry(a, struct extent_map, list);
3771 	em2 = list_entry(b, struct extent_map, list);
3772 
3773 	if (em1->start < em2->start)
3774 		return -1;
3775 	else if (em1->start > em2->start)
3776 		return 1;
3777 	return 0;
3778 }
3779 
3780 static int wait_ordered_extents(struct btrfs_trans_handle *trans,
3781 				struct inode *inode,
3782 				struct btrfs_root *root,
3783 				const struct extent_map *em,
3784 				const struct list_head *logged_list,
3785 				bool *ordered_io_error)
3786 {
3787 	struct btrfs_ordered_extent *ordered;
3788 	struct btrfs_root *log = root->log_root;
3789 	u64 mod_start = em->mod_start;
3790 	u64 mod_len = em->mod_len;
3791 	const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3792 	u64 csum_offset;
3793 	u64 csum_len;
3794 	LIST_HEAD(ordered_sums);
3795 	int ret = 0;
3796 
3797 	*ordered_io_error = false;
3798 
3799 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
3800 	    em->block_start == EXTENT_MAP_HOLE)
3801 		return 0;
3802 
3803 	/*
3804 	 * Wait far any ordered extent that covers our extent map. If it
3805 	 * finishes without an error, first check and see if our csums are on
3806 	 * our outstanding ordered extents.
3807 	 */
3808 	list_for_each_entry(ordered, logged_list, log_list) {
3809 		struct btrfs_ordered_sum *sum;
3810 
3811 		if (!mod_len)
3812 			break;
3813 
3814 		if (ordered->file_offset + ordered->len <= mod_start ||
3815 		    mod_start + mod_len <= ordered->file_offset)
3816 			continue;
3817 
3818 		if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
3819 		    !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3820 		    !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
3821 			const u64 start = ordered->file_offset;
3822 			const u64 end = ordered->file_offset + ordered->len - 1;
3823 
3824 			WARN_ON(ordered->inode != inode);
3825 			filemap_fdatawrite_range(inode->i_mapping, start, end);
3826 		}
3827 
3828 		wait_event(ordered->wait,
3829 			   (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
3830 			    test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
3831 
3832 		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
3833 			/*
3834 			 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
3835 			 * i_mapping flags, so that the next fsync won't get
3836 			 * an outdated io error too.
3837 			 */
3838 			btrfs_inode_check_errors(inode);
3839 			*ordered_io_error = true;
3840 			break;
3841 		}
3842 		/*
3843 		 * We are going to copy all the csums on this ordered extent, so
3844 		 * go ahead and adjust mod_start and mod_len in case this
3845 		 * ordered extent has already been logged.
3846 		 */
3847 		if (ordered->file_offset > mod_start) {
3848 			if (ordered->file_offset + ordered->len >=
3849 			    mod_start + mod_len)
3850 				mod_len = ordered->file_offset - mod_start;
3851 			/*
3852 			 * If we have this case
3853 			 *
3854 			 * |--------- logged extent ---------|
3855 			 *       |----- ordered extent ----|
3856 			 *
3857 			 * Just don't mess with mod_start and mod_len, we'll
3858 			 * just end up logging more csums than we need and it
3859 			 * will be ok.
3860 			 */
3861 		} else {
3862 			if (ordered->file_offset + ordered->len <
3863 			    mod_start + mod_len) {
3864 				mod_len = (mod_start + mod_len) -
3865 					(ordered->file_offset + ordered->len);
3866 				mod_start = ordered->file_offset +
3867 					ordered->len;
3868 			} else {
3869 				mod_len = 0;
3870 			}
3871 		}
3872 
3873 		if (skip_csum)
3874 			continue;
3875 
3876 		/*
3877 		 * To keep us from looping for the above case of an ordered
3878 		 * extent that falls inside of the logged extent.
3879 		 */
3880 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
3881 				     &ordered->flags))
3882 			continue;
3883 
3884 		if (ordered->csum_bytes_left) {
3885 			btrfs_start_ordered_extent(inode, ordered, 0);
3886 			wait_event(ordered->wait,
3887 				   ordered->csum_bytes_left == 0);
3888 		}
3889 
3890 		list_for_each_entry(sum, &ordered->list, list) {
3891 			ret = btrfs_csum_file_blocks(trans, log, sum);
3892 			if (ret)
3893 				break;
3894 		}
3895 	}
3896 
3897 	if (*ordered_io_error || !mod_len || ret || skip_csum)
3898 		return ret;
3899 
3900 	if (em->compress_type) {
3901 		csum_offset = 0;
3902 		csum_len = max(em->block_len, em->orig_block_len);
3903 	} else {
3904 		csum_offset = mod_start - em->start;
3905 		csum_len = mod_len;
3906 	}
3907 
3908 	/* block start is already adjusted for the file extent offset. */
3909 	ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
3910 				       em->block_start + csum_offset,
3911 				       em->block_start + csum_offset +
3912 				       csum_len - 1, &ordered_sums, 0);
3913 	if (ret)
3914 		return ret;
3915 
3916 	while (!list_empty(&ordered_sums)) {
3917 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3918 						   struct btrfs_ordered_sum,
3919 						   list);
3920 		if (!ret)
3921 			ret = btrfs_csum_file_blocks(trans, log, sums);
3922 		list_del(&sums->list);
3923 		kfree(sums);
3924 	}
3925 
3926 	return ret;
3927 }
3928 
3929 static int log_one_extent(struct btrfs_trans_handle *trans,
3930 			  struct inode *inode, struct btrfs_root *root,
3931 			  const struct extent_map *em,
3932 			  struct btrfs_path *path,
3933 			  const struct list_head *logged_list,
3934 			  struct btrfs_log_ctx *ctx)
3935 {
3936 	struct btrfs_root *log = root->log_root;
3937 	struct btrfs_file_extent_item *fi;
3938 	struct extent_buffer *leaf;
3939 	struct btrfs_map_token token;
3940 	struct btrfs_key key;
3941 	u64 extent_offset = em->start - em->orig_start;
3942 	u64 block_len;
3943 	int ret;
3944 	int extent_inserted = 0;
3945 	bool ordered_io_err = false;
3946 
3947 	ret = wait_ordered_extents(trans, inode, root, em, logged_list,
3948 				   &ordered_io_err);
3949 	if (ret)
3950 		return ret;
3951 
3952 	if (ordered_io_err) {
3953 		ctx->io_err = -EIO;
3954 		return 0;
3955 	}
3956 
3957 	btrfs_init_map_token(&token);
3958 
3959 	ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
3960 				   em->start + em->len, NULL, 0, 1,
3961 				   sizeof(*fi), &extent_inserted);
3962 	if (ret)
3963 		return ret;
3964 
3965 	if (!extent_inserted) {
3966 		key.objectid = btrfs_ino(inode);
3967 		key.type = BTRFS_EXTENT_DATA_KEY;
3968 		key.offset = em->start;
3969 
3970 		ret = btrfs_insert_empty_item(trans, log, path, &key,
3971 					      sizeof(*fi));
3972 		if (ret)
3973 			return ret;
3974 	}
3975 	leaf = path->nodes[0];
3976 	fi = btrfs_item_ptr(leaf, path->slots[0],
3977 			    struct btrfs_file_extent_item);
3978 
3979 	btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
3980 					       &token);
3981 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3982 		btrfs_set_token_file_extent_type(leaf, fi,
3983 						 BTRFS_FILE_EXTENT_PREALLOC,
3984 						 &token);
3985 	else
3986 		btrfs_set_token_file_extent_type(leaf, fi,
3987 						 BTRFS_FILE_EXTENT_REG,
3988 						 &token);
3989 
3990 	block_len = max(em->block_len, em->orig_block_len);
3991 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
3992 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3993 							em->block_start,
3994 							&token);
3995 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3996 							   &token);
3997 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
3998 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3999 							em->block_start -
4000 							extent_offset, &token);
4001 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4002 							   &token);
4003 	} else {
4004 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4005 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4006 							   &token);
4007 	}
4008 
4009 	btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4010 	btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4011 	btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4012 	btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4013 						&token);
4014 	btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4015 	btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4016 	btrfs_mark_buffer_dirty(leaf);
4017 
4018 	btrfs_release_path(path);
4019 
4020 	return ret;
4021 }
4022 
4023 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4024 				     struct btrfs_root *root,
4025 				     struct inode *inode,
4026 				     struct btrfs_path *path,
4027 				     struct list_head *logged_list,
4028 				     struct btrfs_log_ctx *ctx)
4029 {
4030 	struct extent_map *em, *n;
4031 	struct list_head extents;
4032 	struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
4033 	u64 test_gen;
4034 	int ret = 0;
4035 	int num = 0;
4036 
4037 	INIT_LIST_HEAD(&extents);
4038 
4039 	write_lock(&tree->lock);
4040 	test_gen = root->fs_info->last_trans_committed;
4041 
4042 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4043 		list_del_init(&em->list);
4044 
4045 		/*
4046 		 * Just an arbitrary number, this can be really CPU intensive
4047 		 * once we start getting a lot of extents, and really once we
4048 		 * have a bunch of extents we just want to commit since it will
4049 		 * be faster.
4050 		 */
4051 		if (++num > 32768) {
4052 			list_del_init(&tree->modified_extents);
4053 			ret = -EFBIG;
4054 			goto process;
4055 		}
4056 
4057 		if (em->generation <= test_gen)
4058 			continue;
4059 		/* Need a ref to keep it from getting evicted from cache */
4060 		atomic_inc(&em->refs);
4061 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4062 		list_add_tail(&em->list, &extents);
4063 		num++;
4064 	}
4065 
4066 	list_sort(NULL, &extents, extent_cmp);
4067 
4068 process:
4069 	while (!list_empty(&extents)) {
4070 		em = list_entry(extents.next, struct extent_map, list);
4071 
4072 		list_del_init(&em->list);
4073 
4074 		/*
4075 		 * If we had an error we just need to delete everybody from our
4076 		 * private list.
4077 		 */
4078 		if (ret) {
4079 			clear_em_logging(tree, em);
4080 			free_extent_map(em);
4081 			continue;
4082 		}
4083 
4084 		write_unlock(&tree->lock);
4085 
4086 		ret = log_one_extent(trans, inode, root, em, path, logged_list,
4087 				     ctx);
4088 		write_lock(&tree->lock);
4089 		clear_em_logging(tree, em);
4090 		free_extent_map(em);
4091 	}
4092 	WARN_ON(!list_empty(&extents));
4093 	write_unlock(&tree->lock);
4094 
4095 	btrfs_release_path(path);
4096 	return ret;
4097 }
4098 
4099 static int logged_inode_size(struct btrfs_root *log, struct inode *inode,
4100 			     struct btrfs_path *path, u64 *size_ret)
4101 {
4102 	struct btrfs_key key;
4103 	int ret;
4104 
4105 	key.objectid = btrfs_ino(inode);
4106 	key.type = BTRFS_INODE_ITEM_KEY;
4107 	key.offset = 0;
4108 
4109 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4110 	if (ret < 0) {
4111 		return ret;
4112 	} else if (ret > 0) {
4113 		*size_ret = 0;
4114 	} else {
4115 		struct btrfs_inode_item *item;
4116 
4117 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4118 				      struct btrfs_inode_item);
4119 		*size_ret = btrfs_inode_size(path->nodes[0], item);
4120 	}
4121 
4122 	btrfs_release_path(path);
4123 	return 0;
4124 }
4125 
4126 /* log a single inode in the tree log.
4127  * At least one parent directory for this inode must exist in the tree
4128  * or be logged already.
4129  *
4130  * Any items from this inode changed by the current transaction are copied
4131  * to the log tree.  An extra reference is taken on any extents in this
4132  * file, allowing us to avoid a whole pile of corner cases around logging
4133  * blocks that have been removed from the tree.
4134  *
4135  * See LOG_INODE_ALL and related defines for a description of what inode_only
4136  * does.
4137  *
4138  * This handles both files and directories.
4139  */
4140 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
4141 			   struct btrfs_root *root, struct inode *inode,
4142 			   int inode_only,
4143 			   const loff_t start,
4144 			   const loff_t end,
4145 			   struct btrfs_log_ctx *ctx)
4146 {
4147 	struct btrfs_path *path;
4148 	struct btrfs_path *dst_path;
4149 	struct btrfs_key min_key;
4150 	struct btrfs_key max_key;
4151 	struct btrfs_root *log = root->log_root;
4152 	struct extent_buffer *src = NULL;
4153 	LIST_HEAD(logged_list);
4154 	u64 last_extent = 0;
4155 	int err = 0;
4156 	int ret;
4157 	int nritems;
4158 	int ins_start_slot = 0;
4159 	int ins_nr;
4160 	bool fast_search = false;
4161 	u64 ino = btrfs_ino(inode);
4162 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4163 	u64 logged_isize = 0;
4164 
4165 	path = btrfs_alloc_path();
4166 	if (!path)
4167 		return -ENOMEM;
4168 	dst_path = btrfs_alloc_path();
4169 	if (!dst_path) {
4170 		btrfs_free_path(path);
4171 		return -ENOMEM;
4172 	}
4173 
4174 	min_key.objectid = ino;
4175 	min_key.type = BTRFS_INODE_ITEM_KEY;
4176 	min_key.offset = 0;
4177 
4178 	max_key.objectid = ino;
4179 
4180 
4181 	/* today the code can only do partial logging of directories */
4182 	if (S_ISDIR(inode->i_mode) ||
4183 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4184 		       &BTRFS_I(inode)->runtime_flags) &&
4185 	     inode_only == LOG_INODE_EXISTS))
4186 		max_key.type = BTRFS_XATTR_ITEM_KEY;
4187 	else
4188 		max_key.type = (u8)-1;
4189 	max_key.offset = (u64)-1;
4190 
4191 	/*
4192 	 * Only run delayed items if we are a dir or a new file.
4193 	 * Otherwise commit the delayed inode only, which is needed in
4194 	 * order for the log replay code to mark inodes for link count
4195 	 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4196 	 */
4197 	if (S_ISDIR(inode->i_mode) ||
4198 	    BTRFS_I(inode)->generation > root->fs_info->last_trans_committed)
4199 		ret = btrfs_commit_inode_delayed_items(trans, inode);
4200 	else
4201 		ret = btrfs_commit_inode_delayed_inode(inode);
4202 
4203 	if (ret) {
4204 		btrfs_free_path(path);
4205 		btrfs_free_path(dst_path);
4206 		return ret;
4207 	}
4208 
4209 	mutex_lock(&BTRFS_I(inode)->log_mutex);
4210 
4211 	btrfs_get_logged_extents(inode, &logged_list, start, end);
4212 
4213 	/*
4214 	 * a brute force approach to making sure we get the most uptodate
4215 	 * copies of everything.
4216 	 */
4217 	if (S_ISDIR(inode->i_mode)) {
4218 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4219 
4220 		if (inode_only == LOG_INODE_EXISTS)
4221 			max_key_type = BTRFS_XATTR_ITEM_KEY;
4222 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
4223 	} else {
4224 		if (inode_only == LOG_INODE_EXISTS) {
4225 			/*
4226 			 * Make sure the new inode item we write to the log has
4227 			 * the same isize as the current one (if it exists).
4228 			 * This is necessary to prevent data loss after log
4229 			 * replay, and also to prevent doing a wrong expanding
4230 			 * truncate - for e.g. create file, write 4K into offset
4231 			 * 0, fsync, write 4K into offset 4096, add hard link,
4232 			 * fsync some other file (to sync log), power fail - if
4233 			 * we use the inode's current i_size, after log replay
4234 			 * we get a 8Kb file, with the last 4Kb extent as a hole
4235 			 * (zeroes), as if an expanding truncate happened,
4236 			 * instead of getting a file of 4Kb only.
4237 			 */
4238 			err = logged_inode_size(log, inode, path,
4239 						&logged_isize);
4240 			if (err)
4241 				goto out_unlock;
4242 		}
4243 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4244 			     &BTRFS_I(inode)->runtime_flags)) {
4245 			if (inode_only == LOG_INODE_EXISTS) {
4246 				max_key.type = BTRFS_XATTR_ITEM_KEY;
4247 				ret = drop_objectid_items(trans, log, path, ino,
4248 							  max_key.type);
4249 			} else {
4250 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4251 					  &BTRFS_I(inode)->runtime_flags);
4252 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4253 					  &BTRFS_I(inode)->runtime_flags);
4254 				while(1) {
4255 					ret = btrfs_truncate_inode_items(trans,
4256 							 log, inode, 0, 0);
4257 					if (ret != -EAGAIN)
4258 						break;
4259 				}
4260 			}
4261 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4262 					      &BTRFS_I(inode)->runtime_flags) ||
4263 			   inode_only == LOG_INODE_EXISTS) {
4264 			if (inode_only == LOG_INODE_ALL)
4265 				fast_search = true;
4266 			max_key.type = BTRFS_XATTR_ITEM_KEY;
4267 			ret = drop_objectid_items(trans, log, path, ino,
4268 						  max_key.type);
4269 		} else {
4270 			if (inode_only == LOG_INODE_ALL)
4271 				fast_search = true;
4272 			ret = log_inode_item(trans, log, dst_path, inode);
4273 			if (ret) {
4274 				err = ret;
4275 				goto out_unlock;
4276 			}
4277 			goto log_extents;
4278 		}
4279 
4280 	}
4281 	if (ret) {
4282 		err = ret;
4283 		goto out_unlock;
4284 	}
4285 
4286 	while (1) {
4287 		ins_nr = 0;
4288 		ret = btrfs_search_forward(root, &min_key,
4289 					   path, trans->transid);
4290 		if (ret != 0)
4291 			break;
4292 again:
4293 		/* note, ins_nr might be > 0 here, cleanup outside the loop */
4294 		if (min_key.objectid != ino)
4295 			break;
4296 		if (min_key.type > max_key.type)
4297 			break;
4298 
4299 		src = path->nodes[0];
4300 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
4301 			ins_nr++;
4302 			goto next_slot;
4303 		} else if (!ins_nr) {
4304 			ins_start_slot = path->slots[0];
4305 			ins_nr = 1;
4306 			goto next_slot;
4307 		}
4308 
4309 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
4310 				 ins_start_slot, ins_nr, inode_only,
4311 				 logged_isize);
4312 		if (ret < 0) {
4313 			err = ret;
4314 			goto out_unlock;
4315 		}
4316 		if (ret) {
4317 			ins_nr = 0;
4318 			btrfs_release_path(path);
4319 			continue;
4320 		}
4321 		ins_nr = 1;
4322 		ins_start_slot = path->slots[0];
4323 next_slot:
4324 
4325 		nritems = btrfs_header_nritems(path->nodes[0]);
4326 		path->slots[0]++;
4327 		if (path->slots[0] < nritems) {
4328 			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
4329 					      path->slots[0]);
4330 			goto again;
4331 		}
4332 		if (ins_nr) {
4333 			ret = copy_items(trans, inode, dst_path, path,
4334 					 &last_extent, ins_start_slot,
4335 					 ins_nr, inode_only, logged_isize);
4336 			if (ret < 0) {
4337 				err = ret;
4338 				goto out_unlock;
4339 			}
4340 			ret = 0;
4341 			ins_nr = 0;
4342 		}
4343 		btrfs_release_path(path);
4344 
4345 		if (min_key.offset < (u64)-1) {
4346 			min_key.offset++;
4347 		} else if (min_key.type < max_key.type) {
4348 			min_key.type++;
4349 			min_key.offset = 0;
4350 		} else {
4351 			break;
4352 		}
4353 	}
4354 	if (ins_nr) {
4355 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
4356 				 ins_start_slot, ins_nr, inode_only,
4357 				 logged_isize);
4358 		if (ret < 0) {
4359 			err = ret;
4360 			goto out_unlock;
4361 		}
4362 		ret = 0;
4363 		ins_nr = 0;
4364 	}
4365 
4366 log_extents:
4367 	btrfs_release_path(path);
4368 	btrfs_release_path(dst_path);
4369 	if (fast_search) {
4370 		/*
4371 		 * Some ordered extents started by fsync might have completed
4372 		 * before we collected the ordered extents in logged_list, which
4373 		 * means they're gone, not in our logged_list nor in the inode's
4374 		 * ordered tree. We want the application/user space to know an
4375 		 * error happened while attempting to persist file data so that
4376 		 * it can take proper action. If such error happened, we leave
4377 		 * without writing to the log tree and the fsync must report the
4378 		 * file data write error and not commit the current transaction.
4379 		 */
4380 		err = btrfs_inode_check_errors(inode);
4381 		if (err) {
4382 			ctx->io_err = err;
4383 			goto out_unlock;
4384 		}
4385 		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
4386 						&logged_list, ctx);
4387 		if (ret) {
4388 			err = ret;
4389 			goto out_unlock;
4390 		}
4391 	} else if (inode_only == LOG_INODE_ALL) {
4392 		struct extent_map *em, *n;
4393 
4394 		write_lock(&em_tree->lock);
4395 		/*
4396 		 * We can't just remove every em if we're called for a ranged
4397 		 * fsync - that is, one that doesn't cover the whole possible
4398 		 * file range (0 to LLONG_MAX). This is because we can have
4399 		 * em's that fall outside the range we're logging and therefore
4400 		 * their ordered operations haven't completed yet
4401 		 * (btrfs_finish_ordered_io() not invoked yet). This means we
4402 		 * didn't get their respective file extent item in the fs/subvol
4403 		 * tree yet, and need to let the next fast fsync (one which
4404 		 * consults the list of modified extent maps) find the em so
4405 		 * that it logs a matching file extent item and waits for the
4406 		 * respective ordered operation to complete (if it's still
4407 		 * running).
4408 		 *
4409 		 * Removing every em outside the range we're logging would make
4410 		 * the next fast fsync not log their matching file extent items,
4411 		 * therefore making us lose data after a log replay.
4412 		 */
4413 		list_for_each_entry_safe(em, n, &em_tree->modified_extents,
4414 					 list) {
4415 			const u64 mod_end = em->mod_start + em->mod_len - 1;
4416 
4417 			if (em->mod_start >= start && mod_end <= end)
4418 				list_del_init(&em->list);
4419 		}
4420 		write_unlock(&em_tree->lock);
4421 	}
4422 
4423 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
4424 		ret = log_directory_changes(trans, root, inode, path, dst_path,
4425 					    ctx);
4426 		if (ret) {
4427 			err = ret;
4428 			goto out_unlock;
4429 		}
4430 	}
4431 
4432 	spin_lock(&BTRFS_I(inode)->lock);
4433 	BTRFS_I(inode)->logged_trans = trans->transid;
4434 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
4435 	spin_unlock(&BTRFS_I(inode)->lock);
4436 out_unlock:
4437 	if (unlikely(err))
4438 		btrfs_put_logged_extents(&logged_list);
4439 	else
4440 		btrfs_submit_logged_extents(&logged_list, log);
4441 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
4442 
4443 	btrfs_free_path(path);
4444 	btrfs_free_path(dst_path);
4445 	return err;
4446 }
4447 
4448 /*
4449  * follow the dentry parent pointers up the chain and see if any
4450  * of the directories in it require a full commit before they can
4451  * be logged.  Returns zero if nothing special needs to be done or 1 if
4452  * a full commit is required.
4453  */
4454 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
4455 					       struct inode *inode,
4456 					       struct dentry *parent,
4457 					       struct super_block *sb,
4458 					       u64 last_committed)
4459 {
4460 	int ret = 0;
4461 	struct btrfs_root *root;
4462 	struct dentry *old_parent = NULL;
4463 	struct inode *orig_inode = inode;
4464 
4465 	/*
4466 	 * for regular files, if its inode is already on disk, we don't
4467 	 * have to worry about the parents at all.  This is because
4468 	 * we can use the last_unlink_trans field to record renames
4469 	 * and other fun in this file.
4470 	 */
4471 	if (S_ISREG(inode->i_mode) &&
4472 	    BTRFS_I(inode)->generation <= last_committed &&
4473 	    BTRFS_I(inode)->last_unlink_trans <= last_committed)
4474 			goto out;
4475 
4476 	if (!S_ISDIR(inode->i_mode)) {
4477 		if (!parent || d_really_is_negative(parent) || sb != d_inode(parent)->i_sb)
4478 			goto out;
4479 		inode = d_inode(parent);
4480 	}
4481 
4482 	while (1) {
4483 		/*
4484 		 * If we are logging a directory then we start with our inode,
4485 		 * not our parents inode, so we need to skipp setting the
4486 		 * logged_trans so that further down in the log code we don't
4487 		 * think this inode has already been logged.
4488 		 */
4489 		if (inode != orig_inode)
4490 			BTRFS_I(inode)->logged_trans = trans->transid;
4491 		smp_mb();
4492 
4493 		if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
4494 			root = BTRFS_I(inode)->root;
4495 
4496 			/*
4497 			 * make sure any commits to the log are forced
4498 			 * to be full commits
4499 			 */
4500 			btrfs_set_log_full_commit(root->fs_info, trans);
4501 			ret = 1;
4502 			break;
4503 		}
4504 
4505 		if (!parent || d_really_is_negative(parent) || sb != d_inode(parent)->i_sb)
4506 			break;
4507 
4508 		if (IS_ROOT(parent))
4509 			break;
4510 
4511 		parent = dget_parent(parent);
4512 		dput(old_parent);
4513 		old_parent = parent;
4514 		inode = d_inode(parent);
4515 
4516 	}
4517 	dput(old_parent);
4518 out:
4519 	return ret;
4520 }
4521 
4522 struct btrfs_dir_list {
4523 	u64 ino;
4524 	struct list_head list;
4525 };
4526 
4527 /*
4528  * Log the inodes of the new dentries of a directory. See log_dir_items() for
4529  * details about the why it is needed.
4530  * This is a recursive operation - if an existing dentry corresponds to a
4531  * directory, that directory's new entries are logged too (same behaviour as
4532  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
4533  * the dentries point to we do not lock their i_mutex, otherwise lockdep
4534  * complains about the following circular lock dependency / possible deadlock:
4535  *
4536  *        CPU0                                        CPU1
4537  *        ----                                        ----
4538  * lock(&type->i_mutex_dir_key#3/2);
4539  *                                            lock(sb_internal#2);
4540  *                                            lock(&type->i_mutex_dir_key#3/2);
4541  * lock(&sb->s_type->i_mutex_key#14);
4542  *
4543  * Where sb_internal is the lock (a counter that works as a lock) acquired by
4544  * sb_start_intwrite() in btrfs_start_transaction().
4545  * Not locking i_mutex of the inodes is still safe because:
4546  *
4547  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
4548  *    that while logging the inode new references (names) are added or removed
4549  *    from the inode, leaving the logged inode item with a link count that does
4550  *    not match the number of logged inode reference items. This is fine because
4551  *    at log replay time we compute the real number of links and correct the
4552  *    link count in the inode item (see replay_one_buffer() and
4553  *    link_to_fixup_dir());
4554  *
4555  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
4556  *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
4557  *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
4558  *    has a size that doesn't match the sum of the lengths of all the logged
4559  *    names. This does not result in a problem because if a dir_item key is
4560  *    logged but its matching dir_index key is not logged, at log replay time we
4561  *    don't use it to replay the respective name (see replay_one_name()). On the
4562  *    other hand if only the dir_index key ends up being logged, the respective
4563  *    name is added to the fs/subvol tree with both the dir_item and dir_index
4564  *    keys created (see replay_one_name()).
4565  *    The directory's inode item with a wrong i_size is not a problem as well,
4566  *    since we don't use it at log replay time to set the i_size in the inode
4567  *    item of the fs/subvol tree (see overwrite_item()).
4568  */
4569 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
4570 				struct btrfs_root *root,
4571 				struct inode *start_inode,
4572 				struct btrfs_log_ctx *ctx)
4573 {
4574 	struct btrfs_root *log = root->log_root;
4575 	struct btrfs_path *path;
4576 	LIST_HEAD(dir_list);
4577 	struct btrfs_dir_list *dir_elem;
4578 	int ret = 0;
4579 
4580 	path = btrfs_alloc_path();
4581 	if (!path)
4582 		return -ENOMEM;
4583 
4584 	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
4585 	if (!dir_elem) {
4586 		btrfs_free_path(path);
4587 		return -ENOMEM;
4588 	}
4589 	dir_elem->ino = btrfs_ino(start_inode);
4590 	list_add_tail(&dir_elem->list, &dir_list);
4591 
4592 	while (!list_empty(&dir_list)) {
4593 		struct extent_buffer *leaf;
4594 		struct btrfs_key min_key;
4595 		int nritems;
4596 		int i;
4597 
4598 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
4599 					    list);
4600 		if (ret)
4601 			goto next_dir_inode;
4602 
4603 		min_key.objectid = dir_elem->ino;
4604 		min_key.type = BTRFS_DIR_ITEM_KEY;
4605 		min_key.offset = 0;
4606 again:
4607 		btrfs_release_path(path);
4608 		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
4609 		if (ret < 0) {
4610 			goto next_dir_inode;
4611 		} else if (ret > 0) {
4612 			ret = 0;
4613 			goto next_dir_inode;
4614 		}
4615 
4616 process_leaf:
4617 		leaf = path->nodes[0];
4618 		nritems = btrfs_header_nritems(leaf);
4619 		for (i = path->slots[0]; i < nritems; i++) {
4620 			struct btrfs_dir_item *di;
4621 			struct btrfs_key di_key;
4622 			struct inode *di_inode;
4623 			struct btrfs_dir_list *new_dir_elem;
4624 			int log_mode = LOG_INODE_EXISTS;
4625 			int type;
4626 
4627 			btrfs_item_key_to_cpu(leaf, &min_key, i);
4628 			if (min_key.objectid != dir_elem->ino ||
4629 			    min_key.type != BTRFS_DIR_ITEM_KEY)
4630 				goto next_dir_inode;
4631 
4632 			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
4633 			type = btrfs_dir_type(leaf, di);
4634 			if (btrfs_dir_transid(leaf, di) < trans->transid &&
4635 			    type != BTRFS_FT_DIR)
4636 				continue;
4637 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
4638 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
4639 				continue;
4640 
4641 			di_inode = btrfs_iget(root->fs_info->sb, &di_key,
4642 					      root, NULL);
4643 			if (IS_ERR(di_inode)) {
4644 				ret = PTR_ERR(di_inode);
4645 				goto next_dir_inode;
4646 			}
4647 
4648 			if (btrfs_inode_in_log(di_inode, trans->transid)) {
4649 				iput(di_inode);
4650 				continue;
4651 			}
4652 
4653 			ctx->log_new_dentries = false;
4654 			if (type == BTRFS_FT_DIR)
4655 				log_mode = LOG_INODE_ALL;
4656 			btrfs_release_path(path);
4657 			ret = btrfs_log_inode(trans, root, di_inode,
4658 					      log_mode, 0, LLONG_MAX, ctx);
4659 			iput(di_inode);
4660 			if (ret)
4661 				goto next_dir_inode;
4662 			if (ctx->log_new_dentries) {
4663 				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
4664 						       GFP_NOFS);
4665 				if (!new_dir_elem) {
4666 					ret = -ENOMEM;
4667 					goto next_dir_inode;
4668 				}
4669 				new_dir_elem->ino = di_key.objectid;
4670 				list_add_tail(&new_dir_elem->list, &dir_list);
4671 			}
4672 			break;
4673 		}
4674 		if (i == nritems) {
4675 			ret = btrfs_next_leaf(log, path);
4676 			if (ret < 0) {
4677 				goto next_dir_inode;
4678 			} else if (ret > 0) {
4679 				ret = 0;
4680 				goto next_dir_inode;
4681 			}
4682 			goto process_leaf;
4683 		}
4684 		if (min_key.offset < (u64)-1) {
4685 			min_key.offset++;
4686 			goto again;
4687 		}
4688 next_dir_inode:
4689 		list_del(&dir_elem->list);
4690 		kfree(dir_elem);
4691 	}
4692 
4693 	btrfs_free_path(path);
4694 	return ret;
4695 }
4696 
4697 /*
4698  * helper function around btrfs_log_inode to make sure newly created
4699  * parent directories also end up in the log.  A minimal inode and backref
4700  * only logging is done of any parent directories that are older than
4701  * the last committed transaction
4702  */
4703 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
4704 			    	  struct btrfs_root *root, struct inode *inode,
4705 				  struct dentry *parent,
4706 				  const loff_t start,
4707 				  const loff_t end,
4708 				  int exists_only,
4709 				  struct btrfs_log_ctx *ctx)
4710 {
4711 	int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
4712 	struct super_block *sb;
4713 	struct dentry *old_parent = NULL;
4714 	int ret = 0;
4715 	u64 last_committed = root->fs_info->last_trans_committed;
4716 	const struct dentry * const first_parent = parent;
4717 	const bool did_unlink = (BTRFS_I(inode)->last_unlink_trans >
4718 				 last_committed);
4719 	bool log_dentries = false;
4720 	struct inode *orig_inode = inode;
4721 
4722 	sb = inode->i_sb;
4723 
4724 	if (btrfs_test_opt(root, NOTREELOG)) {
4725 		ret = 1;
4726 		goto end_no_trans;
4727 	}
4728 
4729 	/*
4730 	 * The prev transaction commit doesn't complete, we need do
4731 	 * full commit by ourselves.
4732 	 */
4733 	if (root->fs_info->last_trans_log_full_commit >
4734 	    root->fs_info->last_trans_committed) {
4735 		ret = 1;
4736 		goto end_no_trans;
4737 	}
4738 
4739 	if (root != BTRFS_I(inode)->root ||
4740 	    btrfs_root_refs(&root->root_item) == 0) {
4741 		ret = 1;
4742 		goto end_no_trans;
4743 	}
4744 
4745 	ret = check_parent_dirs_for_sync(trans, inode, parent,
4746 					 sb, last_committed);
4747 	if (ret)
4748 		goto end_no_trans;
4749 
4750 	if (btrfs_inode_in_log(inode, trans->transid)) {
4751 		ret = BTRFS_NO_LOG_SYNC;
4752 		goto end_no_trans;
4753 	}
4754 
4755 	ret = start_log_trans(trans, root, ctx);
4756 	if (ret)
4757 		goto end_no_trans;
4758 
4759 	ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
4760 	if (ret)
4761 		goto end_trans;
4762 
4763 	/*
4764 	 * for regular files, if its inode is already on disk, we don't
4765 	 * have to worry about the parents at all.  This is because
4766 	 * we can use the last_unlink_trans field to record renames
4767 	 * and other fun in this file.
4768 	 */
4769 	if (S_ISREG(inode->i_mode) &&
4770 	    BTRFS_I(inode)->generation <= last_committed &&
4771 	    BTRFS_I(inode)->last_unlink_trans <= last_committed) {
4772 		ret = 0;
4773 		goto end_trans;
4774 	}
4775 
4776 	if (S_ISDIR(inode->i_mode) && ctx && ctx->log_new_dentries)
4777 		log_dentries = true;
4778 
4779 	while (1) {
4780 		if (!parent || d_really_is_negative(parent) || sb != d_inode(parent)->i_sb)
4781 			break;
4782 
4783 		inode = d_inode(parent);
4784 		if (root != BTRFS_I(inode)->root)
4785 			break;
4786 
4787 		/*
4788 		 * On unlink we must make sure our immediate parent directory
4789 		 * inode is fully logged. This is to prevent leaving dangling
4790 		 * directory index entries and a wrong directory inode's i_size.
4791 		 * Not doing so can result in a directory being impossible to
4792 		 * delete after log replay (rmdir will always fail with error
4793 		 * -ENOTEMPTY).
4794 		 */
4795 		if (did_unlink && parent == first_parent)
4796 			inode_only = LOG_INODE_ALL;
4797 		else
4798 			inode_only = LOG_INODE_EXISTS;
4799 
4800 		if (BTRFS_I(inode)->generation >
4801 		    root->fs_info->last_trans_committed ||
4802 		    inode_only == LOG_INODE_ALL) {
4803 			ret = btrfs_log_inode(trans, root, inode, inode_only,
4804 					      0, LLONG_MAX, ctx);
4805 			if (ret)
4806 				goto end_trans;
4807 		}
4808 		if (IS_ROOT(parent))
4809 			break;
4810 
4811 		parent = dget_parent(parent);
4812 		dput(old_parent);
4813 		old_parent = parent;
4814 	}
4815 	if (log_dentries)
4816 		ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
4817 	else
4818 		ret = 0;
4819 end_trans:
4820 	dput(old_parent);
4821 	if (ret < 0) {
4822 		btrfs_set_log_full_commit(root->fs_info, trans);
4823 		ret = 1;
4824 	}
4825 
4826 	if (ret)
4827 		btrfs_remove_log_ctx(root, ctx);
4828 	btrfs_end_log_trans(root);
4829 end_no_trans:
4830 	return ret;
4831 }
4832 
4833 /*
4834  * it is not safe to log dentry if the chunk root has added new
4835  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
4836  * If this returns 1, you must commit the transaction to safely get your
4837  * data on disk.
4838  */
4839 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
4840 			  struct btrfs_root *root, struct dentry *dentry,
4841 			  const loff_t start,
4842 			  const loff_t end,
4843 			  struct btrfs_log_ctx *ctx)
4844 {
4845 	struct dentry *parent = dget_parent(dentry);
4846 	int ret;
4847 
4848 	ret = btrfs_log_inode_parent(trans, root, d_inode(dentry), parent,
4849 				     start, end, 0, ctx);
4850 	dput(parent);
4851 
4852 	return ret;
4853 }
4854 
4855 /*
4856  * should be called during mount to recover any replay any log trees
4857  * from the FS
4858  */
4859 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
4860 {
4861 	int ret;
4862 	struct btrfs_path *path;
4863 	struct btrfs_trans_handle *trans;
4864 	struct btrfs_key key;
4865 	struct btrfs_key found_key;
4866 	struct btrfs_key tmp_key;
4867 	struct btrfs_root *log;
4868 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
4869 	struct walk_control wc = {
4870 		.process_func = process_one_buffer,
4871 		.stage = 0,
4872 	};
4873 
4874 	path = btrfs_alloc_path();
4875 	if (!path)
4876 		return -ENOMEM;
4877 
4878 	fs_info->log_root_recovering = 1;
4879 
4880 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4881 	if (IS_ERR(trans)) {
4882 		ret = PTR_ERR(trans);
4883 		goto error;
4884 	}
4885 
4886 	wc.trans = trans;
4887 	wc.pin = 1;
4888 
4889 	ret = walk_log_tree(trans, log_root_tree, &wc);
4890 	if (ret) {
4891 		btrfs_error(fs_info, ret, "Failed to pin buffers while "
4892 			    "recovering log root tree.");
4893 		goto error;
4894 	}
4895 
4896 again:
4897 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
4898 	key.offset = (u64)-1;
4899 	key.type = BTRFS_ROOT_ITEM_KEY;
4900 
4901 	while (1) {
4902 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
4903 
4904 		if (ret < 0) {
4905 			btrfs_error(fs_info, ret,
4906 				    "Couldn't find tree log root.");
4907 			goto error;
4908 		}
4909 		if (ret > 0) {
4910 			if (path->slots[0] == 0)
4911 				break;
4912 			path->slots[0]--;
4913 		}
4914 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4915 				      path->slots[0]);
4916 		btrfs_release_path(path);
4917 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4918 			break;
4919 
4920 		log = btrfs_read_fs_root(log_root_tree, &found_key);
4921 		if (IS_ERR(log)) {
4922 			ret = PTR_ERR(log);
4923 			btrfs_error(fs_info, ret,
4924 				    "Couldn't read tree log root.");
4925 			goto error;
4926 		}
4927 
4928 		tmp_key.objectid = found_key.offset;
4929 		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
4930 		tmp_key.offset = (u64)-1;
4931 
4932 		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
4933 		if (IS_ERR(wc.replay_dest)) {
4934 			ret = PTR_ERR(wc.replay_dest);
4935 			free_extent_buffer(log->node);
4936 			free_extent_buffer(log->commit_root);
4937 			kfree(log);
4938 			btrfs_error(fs_info, ret, "Couldn't read target root "
4939 				    "for tree log recovery.");
4940 			goto error;
4941 		}
4942 
4943 		wc.replay_dest->log_root = log;
4944 		btrfs_record_root_in_trans(trans, wc.replay_dest);
4945 		ret = walk_log_tree(trans, log, &wc);
4946 
4947 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
4948 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
4949 						      path);
4950 		}
4951 
4952 		key.offset = found_key.offset - 1;
4953 		wc.replay_dest->log_root = NULL;
4954 		free_extent_buffer(log->node);
4955 		free_extent_buffer(log->commit_root);
4956 		kfree(log);
4957 
4958 		if (ret)
4959 			goto error;
4960 
4961 		if (found_key.offset == 0)
4962 			break;
4963 	}
4964 	btrfs_release_path(path);
4965 
4966 	/* step one is to pin it all, step two is to replay just inodes */
4967 	if (wc.pin) {
4968 		wc.pin = 0;
4969 		wc.process_func = replay_one_buffer;
4970 		wc.stage = LOG_WALK_REPLAY_INODES;
4971 		goto again;
4972 	}
4973 	/* step three is to replay everything */
4974 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
4975 		wc.stage++;
4976 		goto again;
4977 	}
4978 
4979 	btrfs_free_path(path);
4980 
4981 	/* step 4: commit the transaction, which also unpins the blocks */
4982 	ret = btrfs_commit_transaction(trans, fs_info->tree_root);
4983 	if (ret)
4984 		return ret;
4985 
4986 	free_extent_buffer(log_root_tree->node);
4987 	log_root_tree->log_root = NULL;
4988 	fs_info->log_root_recovering = 0;
4989 	kfree(log_root_tree);
4990 
4991 	return 0;
4992 error:
4993 	if (wc.trans)
4994 		btrfs_end_transaction(wc.trans, fs_info->tree_root);
4995 	btrfs_free_path(path);
4996 	return ret;
4997 }
4998 
4999 /*
5000  * there are some corner cases where we want to force a full
5001  * commit instead of allowing a directory to be logged.
5002  *
5003  * They revolve around files there were unlinked from the directory, and
5004  * this function updates the parent directory so that a full commit is
5005  * properly done if it is fsync'd later after the unlinks are done.
5006  */
5007 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
5008 			     struct inode *dir, struct inode *inode,
5009 			     int for_rename)
5010 {
5011 	/*
5012 	 * when we're logging a file, if it hasn't been renamed
5013 	 * or unlinked, and its inode is fully committed on disk,
5014 	 * we don't have to worry about walking up the directory chain
5015 	 * to log its parents.
5016 	 *
5017 	 * So, we use the last_unlink_trans field to put this transid
5018 	 * into the file.  When the file is logged we check it and
5019 	 * don't log the parents if the file is fully on disk.
5020 	 */
5021 	if (S_ISREG(inode->i_mode))
5022 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
5023 
5024 	/*
5025 	 * if this directory was already logged any new
5026 	 * names for this file/dir will get recorded
5027 	 */
5028 	smp_mb();
5029 	if (BTRFS_I(dir)->logged_trans == trans->transid)
5030 		return;
5031 
5032 	/*
5033 	 * if the inode we're about to unlink was logged,
5034 	 * the log will be properly updated for any new names
5035 	 */
5036 	if (BTRFS_I(inode)->logged_trans == trans->transid)
5037 		return;
5038 
5039 	/*
5040 	 * when renaming files across directories, if the directory
5041 	 * there we're unlinking from gets fsync'd later on, there's
5042 	 * no way to find the destination directory later and fsync it
5043 	 * properly.  So, we have to be conservative and force commits
5044 	 * so the new name gets discovered.
5045 	 */
5046 	if (for_rename)
5047 		goto record;
5048 
5049 	/* we can safely do the unlink without any special recording */
5050 	return;
5051 
5052 record:
5053 	BTRFS_I(dir)->last_unlink_trans = trans->transid;
5054 }
5055 
5056 /*
5057  * Call this after adding a new name for a file and it will properly
5058  * update the log to reflect the new name.
5059  *
5060  * It will return zero if all goes well, and it will return 1 if a
5061  * full transaction commit is required.
5062  */
5063 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
5064 			struct inode *inode, struct inode *old_dir,
5065 			struct dentry *parent)
5066 {
5067 	struct btrfs_root * root = BTRFS_I(inode)->root;
5068 
5069 	/*
5070 	 * this will force the logging code to walk the dentry chain
5071 	 * up for the file
5072 	 */
5073 	if (S_ISREG(inode->i_mode))
5074 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
5075 
5076 	/*
5077 	 * if this inode hasn't been logged and directory we're renaming it
5078 	 * from hasn't been logged, we don't need to log it
5079 	 */
5080 	if (BTRFS_I(inode)->logged_trans <=
5081 	    root->fs_info->last_trans_committed &&
5082 	    (!old_dir || BTRFS_I(old_dir)->logged_trans <=
5083 		    root->fs_info->last_trans_committed))
5084 		return 0;
5085 
5086 	return btrfs_log_inode_parent(trans, root, inode, parent, 0,
5087 				      LLONG_MAX, 1, NULL);
5088 }
5089 
5090