xref: /linux/fs/btrfs/tree-log.c (revision 806eb9e4160d5fc633c20db660586e1aaa121e1c)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Copyright (C) 2008 Oracle.  All rights reserved.
4   */
5  
6  #include <linux/sched.h>
7  #include <linux/slab.h>
8  #include <linux/blkdev.h>
9  #include <linux/list_sort.h>
10  #include <linux/iversion.h>
11  #include "misc.h"
12  #include "ctree.h"
13  #include "tree-log.h"
14  #include "disk-io.h"
15  #include "locking.h"
16  #include "print-tree.h"
17  #include "backref.h"
18  #include "compression.h"
19  #include "qgroup.h"
20  #include "block-group.h"
21  #include "space-info.h"
22  #include "zoned.h"
23  #include "inode-item.h"
24  #include "fs.h"
25  #include "accessors.h"
26  #include "extent-tree.h"
27  #include "root-tree.h"
28  #include "dir-item.h"
29  #include "file-item.h"
30  #include "file.h"
31  #include "orphan.h"
32  #include "tree-checker.h"
33  
34  #define MAX_CONFLICT_INODES 10
35  
36  /* magic values for the inode_only field in btrfs_log_inode:
37   *
38   * LOG_INODE_ALL means to log everything
39   * LOG_INODE_EXISTS means to log just enough to recreate the inode
40   * during log replay
41   */
42  enum {
43  	LOG_INODE_ALL,
44  	LOG_INODE_EXISTS,
45  };
46  
47  /*
48   * directory trouble cases
49   *
50   * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
51   * log, we must force a full commit before doing an fsync of the directory
52   * where the unlink was done.
53   * ---> record transid of last unlink/rename per directory
54   *
55   * mkdir foo/some_dir
56   * normal commit
57   * rename foo/some_dir foo2/some_dir
58   * mkdir foo/some_dir
59   * fsync foo/some_dir/some_file
60   *
61   * The fsync above will unlink the original some_dir without recording
62   * it in its new location (foo2).  After a crash, some_dir will be gone
63   * unless the fsync of some_file forces a full commit
64   *
65   * 2) we must log any new names for any file or dir that is in the fsync
66   * log. ---> check inode while renaming/linking.
67   *
68   * 2a) we must log any new names for any file or dir during rename
69   * when the directory they are being removed from was logged.
70   * ---> check inode and old parent dir during rename
71   *
72   *  2a is actually the more important variant.  With the extra logging
73   *  a crash might unlink the old name without recreating the new one
74   *
75   * 3) after a crash, we must go through any directories with a link count
76   * of zero and redo the rm -rf
77   *
78   * mkdir f1/foo
79   * normal commit
80   * rm -rf f1/foo
81   * fsync(f1)
82   *
83   * The directory f1 was fully removed from the FS, but fsync was never
84   * called on f1, only its parent dir.  After a crash the rm -rf must
85   * be replayed.  This must be able to recurse down the entire
86   * directory tree.  The inode link count fixup code takes care of the
87   * ugly details.
88   */
89  
90  /*
91   * stages for the tree walking.  The first
92   * stage (0) is to only pin down the blocks we find
93   * the second stage (1) is to make sure that all the inodes
94   * we find in the log are created in the subvolume.
95   *
96   * The last stage is to deal with directories and links and extents
97   * and all the other fun semantics
98   */
99  enum {
100  	LOG_WALK_PIN_ONLY,
101  	LOG_WALK_REPLAY_INODES,
102  	LOG_WALK_REPLAY_DIR_INDEX,
103  	LOG_WALK_REPLAY_ALL,
104  };
105  
106  static int btrfs_log_inode(struct btrfs_trans_handle *trans,
107  			   struct btrfs_inode *inode,
108  			   int inode_only,
109  			   struct btrfs_log_ctx *ctx);
110  static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
111  			     struct btrfs_root *root,
112  			     struct btrfs_path *path, u64 objectid);
113  static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
114  				       struct btrfs_root *root,
115  				       struct btrfs_root *log,
116  				       struct btrfs_path *path,
117  				       u64 dirid, int del_all);
118  static void wait_log_commit(struct btrfs_root *root, int transid);
119  
120  /*
121   * tree logging is a special write ahead log used to make sure that
122   * fsyncs and O_SYNCs can happen without doing full tree commits.
123   *
124   * Full tree commits are expensive because they require commonly
125   * modified blocks to be recowed, creating many dirty pages in the
126   * extent tree an 4x-6x higher write load than ext3.
127   *
128   * Instead of doing a tree commit on every fsync, we use the
129   * key ranges and transaction ids to find items for a given file or directory
130   * that have changed in this transaction.  Those items are copied into
131   * a special tree (one per subvolume root), that tree is written to disk
132   * and then the fsync is considered complete.
133   *
134   * After a crash, items are copied out of the log-tree back into the
135   * subvolume tree.  Any file data extents found are recorded in the extent
136   * allocation tree, and the log-tree freed.
137   *
138   * The log tree is read three times, once to pin down all the extents it is
139   * using in ram and once, once to create all the inodes logged in the tree
140   * and once to do all the other items.
141   */
142  
143  /*
144   * start a sub transaction and setup the log tree
145   * this increments the log tree writer count to make the people
146   * syncing the tree wait for us to finish
147   */
148  static int start_log_trans(struct btrfs_trans_handle *trans,
149  			   struct btrfs_root *root,
150  			   struct btrfs_log_ctx *ctx)
151  {
152  	struct btrfs_fs_info *fs_info = root->fs_info;
153  	struct btrfs_root *tree_root = fs_info->tree_root;
154  	const bool zoned = btrfs_is_zoned(fs_info);
155  	int ret = 0;
156  	bool created = false;
157  
158  	/*
159  	 * First check if the log root tree was already created. If not, create
160  	 * it before locking the root's log_mutex, just to keep lockdep happy.
161  	 */
162  	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
163  		mutex_lock(&tree_root->log_mutex);
164  		if (!fs_info->log_root_tree) {
165  			ret = btrfs_init_log_root_tree(trans, fs_info);
166  			if (!ret) {
167  				set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
168  				created = true;
169  			}
170  		}
171  		mutex_unlock(&tree_root->log_mutex);
172  		if (ret)
173  			return ret;
174  	}
175  
176  	mutex_lock(&root->log_mutex);
177  
178  again:
179  	if (root->log_root) {
180  		int index = (root->log_transid + 1) % 2;
181  
182  		if (btrfs_need_log_full_commit(trans)) {
183  			ret = BTRFS_LOG_FORCE_COMMIT;
184  			goto out;
185  		}
186  
187  		if (zoned && atomic_read(&root->log_commit[index])) {
188  			wait_log_commit(root, root->log_transid - 1);
189  			goto again;
190  		}
191  
192  		if (!root->log_start_pid) {
193  			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
194  			root->log_start_pid = current->pid;
195  		} else if (root->log_start_pid != current->pid) {
196  			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
197  		}
198  	} else {
199  		/*
200  		 * This means fs_info->log_root_tree was already created
201  		 * for some other FS trees. Do the full commit not to mix
202  		 * nodes from multiple log transactions to do sequential
203  		 * writing.
204  		 */
205  		if (zoned && !created) {
206  			ret = BTRFS_LOG_FORCE_COMMIT;
207  			goto out;
208  		}
209  
210  		ret = btrfs_add_log_tree(trans, root);
211  		if (ret)
212  			goto out;
213  
214  		set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
215  		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
216  		root->log_start_pid = current->pid;
217  	}
218  
219  	atomic_inc(&root->log_writers);
220  	if (!ctx->logging_new_name) {
221  		int index = root->log_transid % 2;
222  		list_add_tail(&ctx->list, &root->log_ctxs[index]);
223  		ctx->log_transid = root->log_transid;
224  	}
225  
226  out:
227  	mutex_unlock(&root->log_mutex);
228  	return ret;
229  }
230  
231  /*
232   * returns 0 if there was a log transaction running and we were able
233   * to join, or returns -ENOENT if there were not transactions
234   * in progress
235   */
236  static int join_running_log_trans(struct btrfs_root *root)
237  {
238  	const bool zoned = btrfs_is_zoned(root->fs_info);
239  	int ret = -ENOENT;
240  
241  	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
242  		return ret;
243  
244  	mutex_lock(&root->log_mutex);
245  again:
246  	if (root->log_root) {
247  		int index = (root->log_transid + 1) % 2;
248  
249  		ret = 0;
250  		if (zoned && atomic_read(&root->log_commit[index])) {
251  			wait_log_commit(root, root->log_transid - 1);
252  			goto again;
253  		}
254  		atomic_inc(&root->log_writers);
255  	}
256  	mutex_unlock(&root->log_mutex);
257  	return ret;
258  }
259  
260  /*
261   * This either makes the current running log transaction wait
262   * until you call btrfs_end_log_trans() or it makes any future
263   * log transactions wait until you call btrfs_end_log_trans()
264   */
265  void btrfs_pin_log_trans(struct btrfs_root *root)
266  {
267  	atomic_inc(&root->log_writers);
268  }
269  
270  /*
271   * indicate we're done making changes to the log tree
272   * and wake up anyone waiting to do a sync
273   */
274  void btrfs_end_log_trans(struct btrfs_root *root)
275  {
276  	if (atomic_dec_and_test(&root->log_writers)) {
277  		/* atomic_dec_and_test implies a barrier */
278  		cond_wake_up_nomb(&root->log_writer_wait);
279  	}
280  }
281  
282  /*
283   * the walk control struct is used to pass state down the chain when
284   * processing the log tree.  The stage field tells us which part
285   * of the log tree processing we are currently doing.  The others
286   * are state fields used for that specific part
287   */
288  struct walk_control {
289  	/* should we free the extent on disk when done?  This is used
290  	 * at transaction commit time while freeing a log tree
291  	 */
292  	int free;
293  
294  	/* pin only walk, we record which extents on disk belong to the
295  	 * log trees
296  	 */
297  	int pin;
298  
299  	/* what stage of the replay code we're currently in */
300  	int stage;
301  
302  	/*
303  	 * Ignore any items from the inode currently being processed. Needs
304  	 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
305  	 * the LOG_WALK_REPLAY_INODES stage.
306  	 */
307  	bool ignore_cur_inode;
308  
309  	/* the root we are currently replaying */
310  	struct btrfs_root *replay_dest;
311  
312  	/* the trans handle for the current replay */
313  	struct btrfs_trans_handle *trans;
314  
315  	/* the function that gets used to process blocks we find in the
316  	 * tree.  Note the extent_buffer might not be up to date when it is
317  	 * passed in, and it must be checked or read if you need the data
318  	 * inside it
319  	 */
320  	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
321  			    struct walk_control *wc, u64 gen, int level);
322  };
323  
324  /*
325   * process_func used to pin down extents, write them or wait on them
326   */
327  static int process_one_buffer(struct btrfs_root *log,
328  			      struct extent_buffer *eb,
329  			      struct walk_control *wc, u64 gen, int level)
330  {
331  	struct btrfs_fs_info *fs_info = log->fs_info;
332  	int ret = 0;
333  
334  	/*
335  	 * If this fs is mixed then we need to be able to process the leaves to
336  	 * pin down any logged extents, so we have to read the block.
337  	 */
338  	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
339  		struct btrfs_tree_parent_check check = {
340  			.level = level,
341  			.transid = gen
342  		};
343  
344  		ret = btrfs_read_extent_buffer(eb, &check);
345  		if (ret)
346  			return ret;
347  	}
348  
349  	if (wc->pin) {
350  		ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
351  						      eb->len);
352  		if (ret)
353  			return ret;
354  
355  		if (btrfs_buffer_uptodate(eb, gen, 0) &&
356  		    btrfs_header_level(eb) == 0)
357  			ret = btrfs_exclude_logged_extents(eb);
358  	}
359  	return ret;
360  }
361  
362  /*
363   * Item overwrite used by replay and tree logging.  eb, slot and key all refer
364   * to the src data we are copying out.
365   *
366   * root is the tree we are copying into, and path is a scratch
367   * path for use in this function (it should be released on entry and
368   * will be released on exit).
369   *
370   * If the key is already in the destination tree the existing item is
371   * overwritten.  If the existing item isn't big enough, it is extended.
372   * If it is too large, it is truncated.
373   *
374   * If the key isn't in the destination yet, a new item is inserted.
375   */
376  static int overwrite_item(struct btrfs_trans_handle *trans,
377  			  struct btrfs_root *root,
378  			  struct btrfs_path *path,
379  			  struct extent_buffer *eb, int slot,
380  			  struct btrfs_key *key)
381  {
382  	int ret;
383  	u32 item_size;
384  	u64 saved_i_size = 0;
385  	int save_old_i_size = 0;
386  	unsigned long src_ptr;
387  	unsigned long dst_ptr;
388  	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
389  
390  	/*
391  	 * This is only used during log replay, so the root is always from a
392  	 * fs/subvolume tree. In case we ever need to support a log root, then
393  	 * we'll have to clone the leaf in the path, release the path and use
394  	 * the leaf before writing into the log tree. See the comments at
395  	 * copy_items() for more details.
396  	 */
397  	ASSERT(root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
398  
399  	item_size = btrfs_item_size(eb, slot);
400  	src_ptr = btrfs_item_ptr_offset(eb, slot);
401  
402  	/* Look for the key in the destination tree. */
403  	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
404  	if (ret < 0)
405  		return ret;
406  
407  	if (ret == 0) {
408  		char *src_copy;
409  		char *dst_copy;
410  		u32 dst_size = btrfs_item_size(path->nodes[0],
411  						  path->slots[0]);
412  		if (dst_size != item_size)
413  			goto insert;
414  
415  		if (item_size == 0) {
416  			btrfs_release_path(path);
417  			return 0;
418  		}
419  		dst_copy = kmalloc(item_size, GFP_NOFS);
420  		src_copy = kmalloc(item_size, GFP_NOFS);
421  		if (!dst_copy || !src_copy) {
422  			btrfs_release_path(path);
423  			kfree(dst_copy);
424  			kfree(src_copy);
425  			return -ENOMEM;
426  		}
427  
428  		read_extent_buffer(eb, src_copy, src_ptr, item_size);
429  
430  		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
431  		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
432  				   item_size);
433  		ret = memcmp(dst_copy, src_copy, item_size);
434  
435  		kfree(dst_copy);
436  		kfree(src_copy);
437  		/*
438  		 * they have the same contents, just return, this saves
439  		 * us from cowing blocks in the destination tree and doing
440  		 * extra writes that may not have been done by a previous
441  		 * sync
442  		 */
443  		if (ret == 0) {
444  			btrfs_release_path(path);
445  			return 0;
446  		}
447  
448  		/*
449  		 * We need to load the old nbytes into the inode so when we
450  		 * replay the extents we've logged we get the right nbytes.
451  		 */
452  		if (inode_item) {
453  			struct btrfs_inode_item *item;
454  			u64 nbytes;
455  			u32 mode;
456  
457  			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
458  					      struct btrfs_inode_item);
459  			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
460  			item = btrfs_item_ptr(eb, slot,
461  					      struct btrfs_inode_item);
462  			btrfs_set_inode_nbytes(eb, item, nbytes);
463  
464  			/*
465  			 * If this is a directory we need to reset the i_size to
466  			 * 0 so that we can set it up properly when replaying
467  			 * the rest of the items in this log.
468  			 */
469  			mode = btrfs_inode_mode(eb, item);
470  			if (S_ISDIR(mode))
471  				btrfs_set_inode_size(eb, item, 0);
472  		}
473  	} else if (inode_item) {
474  		struct btrfs_inode_item *item;
475  		u32 mode;
476  
477  		/*
478  		 * New inode, set nbytes to 0 so that the nbytes comes out
479  		 * properly when we replay the extents.
480  		 */
481  		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
482  		btrfs_set_inode_nbytes(eb, item, 0);
483  
484  		/*
485  		 * If this is a directory we need to reset the i_size to 0 so
486  		 * that we can set it up properly when replaying the rest of
487  		 * the items in this log.
488  		 */
489  		mode = btrfs_inode_mode(eb, item);
490  		if (S_ISDIR(mode))
491  			btrfs_set_inode_size(eb, item, 0);
492  	}
493  insert:
494  	btrfs_release_path(path);
495  	/* try to insert the key into the destination tree */
496  	path->skip_release_on_error = 1;
497  	ret = btrfs_insert_empty_item(trans, root, path,
498  				      key, item_size);
499  	path->skip_release_on_error = 0;
500  
501  	/* make sure any existing item is the correct size */
502  	if (ret == -EEXIST || ret == -EOVERFLOW) {
503  		u32 found_size;
504  		found_size = btrfs_item_size(path->nodes[0],
505  						path->slots[0]);
506  		if (found_size > item_size)
507  			btrfs_truncate_item(path, item_size, 1);
508  		else if (found_size < item_size)
509  			btrfs_extend_item(path, item_size - found_size);
510  	} else if (ret) {
511  		return ret;
512  	}
513  	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
514  					path->slots[0]);
515  
516  	/* don't overwrite an existing inode if the generation number
517  	 * was logged as zero.  This is done when the tree logging code
518  	 * is just logging an inode to make sure it exists after recovery.
519  	 *
520  	 * Also, don't overwrite i_size on directories during replay.
521  	 * log replay inserts and removes directory items based on the
522  	 * state of the tree found in the subvolume, and i_size is modified
523  	 * as it goes
524  	 */
525  	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
526  		struct btrfs_inode_item *src_item;
527  		struct btrfs_inode_item *dst_item;
528  
529  		src_item = (struct btrfs_inode_item *)src_ptr;
530  		dst_item = (struct btrfs_inode_item *)dst_ptr;
531  
532  		if (btrfs_inode_generation(eb, src_item) == 0) {
533  			struct extent_buffer *dst_eb = path->nodes[0];
534  			const u64 ino_size = btrfs_inode_size(eb, src_item);
535  
536  			/*
537  			 * For regular files an ino_size == 0 is used only when
538  			 * logging that an inode exists, as part of a directory
539  			 * fsync, and the inode wasn't fsynced before. In this
540  			 * case don't set the size of the inode in the fs/subvol
541  			 * tree, otherwise we would be throwing valid data away.
542  			 */
543  			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
544  			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
545  			    ino_size != 0)
546  				btrfs_set_inode_size(dst_eb, dst_item, ino_size);
547  			goto no_copy;
548  		}
549  
550  		if (S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
551  		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
552  			save_old_i_size = 1;
553  			saved_i_size = btrfs_inode_size(path->nodes[0],
554  							dst_item);
555  		}
556  	}
557  
558  	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
559  			   src_ptr, item_size);
560  
561  	if (save_old_i_size) {
562  		struct btrfs_inode_item *dst_item;
563  		dst_item = (struct btrfs_inode_item *)dst_ptr;
564  		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
565  	}
566  
567  	/* make sure the generation is filled in */
568  	if (key->type == BTRFS_INODE_ITEM_KEY) {
569  		struct btrfs_inode_item *dst_item;
570  		dst_item = (struct btrfs_inode_item *)dst_ptr;
571  		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
572  			btrfs_set_inode_generation(path->nodes[0], dst_item,
573  						   trans->transid);
574  		}
575  	}
576  no_copy:
577  	btrfs_mark_buffer_dirty(path->nodes[0]);
578  	btrfs_release_path(path);
579  	return 0;
580  }
581  
582  static int read_alloc_one_name(struct extent_buffer *eb, void *start, int len,
583  			       struct fscrypt_str *name)
584  {
585  	char *buf;
586  
587  	buf = kmalloc(len, GFP_NOFS);
588  	if (!buf)
589  		return -ENOMEM;
590  
591  	read_extent_buffer(eb, buf, (unsigned long)start, len);
592  	name->name = buf;
593  	name->len = len;
594  	return 0;
595  }
596  
597  /*
598   * simple helper to read an inode off the disk from a given root
599   * This can only be called for subvolume roots and not for the log
600   */
601  static noinline struct inode *read_one_inode(struct btrfs_root *root,
602  					     u64 objectid)
603  {
604  	struct inode *inode;
605  
606  	inode = btrfs_iget(root->fs_info->sb, objectid, root);
607  	if (IS_ERR(inode))
608  		inode = NULL;
609  	return inode;
610  }
611  
612  /* replays a single extent in 'eb' at 'slot' with 'key' into the
613   * subvolume 'root'.  path is released on entry and should be released
614   * on exit.
615   *
616   * extents in the log tree have not been allocated out of the extent
617   * tree yet.  So, this completes the allocation, taking a reference
618   * as required if the extent already exists or creating a new extent
619   * if it isn't in the extent allocation tree yet.
620   *
621   * The extent is inserted into the file, dropping any existing extents
622   * from the file that overlap the new one.
623   */
624  static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
625  				      struct btrfs_root *root,
626  				      struct btrfs_path *path,
627  				      struct extent_buffer *eb, int slot,
628  				      struct btrfs_key *key)
629  {
630  	struct btrfs_drop_extents_args drop_args = { 0 };
631  	struct btrfs_fs_info *fs_info = root->fs_info;
632  	int found_type;
633  	u64 extent_end;
634  	u64 start = key->offset;
635  	u64 nbytes = 0;
636  	struct btrfs_file_extent_item *item;
637  	struct inode *inode = NULL;
638  	unsigned long size;
639  	int ret = 0;
640  
641  	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
642  	found_type = btrfs_file_extent_type(eb, item);
643  
644  	if (found_type == BTRFS_FILE_EXTENT_REG ||
645  	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
646  		nbytes = btrfs_file_extent_num_bytes(eb, item);
647  		extent_end = start + nbytes;
648  
649  		/*
650  		 * We don't add to the inodes nbytes if we are prealloc or a
651  		 * hole.
652  		 */
653  		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
654  			nbytes = 0;
655  	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
656  		size = btrfs_file_extent_ram_bytes(eb, item);
657  		nbytes = btrfs_file_extent_ram_bytes(eb, item);
658  		extent_end = ALIGN(start + size,
659  				   fs_info->sectorsize);
660  	} else {
661  		ret = 0;
662  		goto out;
663  	}
664  
665  	inode = read_one_inode(root, key->objectid);
666  	if (!inode) {
667  		ret = -EIO;
668  		goto out;
669  	}
670  
671  	/*
672  	 * first check to see if we already have this extent in the
673  	 * file.  This must be done before the btrfs_drop_extents run
674  	 * so we don't try to drop this extent.
675  	 */
676  	ret = btrfs_lookup_file_extent(trans, root, path,
677  			btrfs_ino(BTRFS_I(inode)), start, 0);
678  
679  	if (ret == 0 &&
680  	    (found_type == BTRFS_FILE_EXTENT_REG ||
681  	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
682  		struct btrfs_file_extent_item cmp1;
683  		struct btrfs_file_extent_item cmp2;
684  		struct btrfs_file_extent_item *existing;
685  		struct extent_buffer *leaf;
686  
687  		leaf = path->nodes[0];
688  		existing = btrfs_item_ptr(leaf, path->slots[0],
689  					  struct btrfs_file_extent_item);
690  
691  		read_extent_buffer(eb, &cmp1, (unsigned long)item,
692  				   sizeof(cmp1));
693  		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
694  				   sizeof(cmp2));
695  
696  		/*
697  		 * we already have a pointer to this exact extent,
698  		 * we don't have to do anything
699  		 */
700  		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
701  			btrfs_release_path(path);
702  			goto out;
703  		}
704  	}
705  	btrfs_release_path(path);
706  
707  	/* drop any overlapping extents */
708  	drop_args.start = start;
709  	drop_args.end = extent_end;
710  	drop_args.drop_cache = true;
711  	ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
712  	if (ret)
713  		goto out;
714  
715  	if (found_type == BTRFS_FILE_EXTENT_REG ||
716  	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
717  		u64 offset;
718  		unsigned long dest_offset;
719  		struct btrfs_key ins;
720  
721  		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
722  		    btrfs_fs_incompat(fs_info, NO_HOLES))
723  			goto update_inode;
724  
725  		ret = btrfs_insert_empty_item(trans, root, path, key,
726  					      sizeof(*item));
727  		if (ret)
728  			goto out;
729  		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
730  						    path->slots[0]);
731  		copy_extent_buffer(path->nodes[0], eb, dest_offset,
732  				(unsigned long)item,  sizeof(*item));
733  
734  		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
735  		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
736  		ins.type = BTRFS_EXTENT_ITEM_KEY;
737  		offset = key->offset - btrfs_file_extent_offset(eb, item);
738  
739  		/*
740  		 * Manually record dirty extent, as here we did a shallow
741  		 * file extent item copy and skip normal backref update,
742  		 * but modifying extent tree all by ourselves.
743  		 * So need to manually record dirty extent for qgroup,
744  		 * as the owner of the file extent changed from log tree
745  		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
746  		 */
747  		ret = btrfs_qgroup_trace_extent(trans,
748  				btrfs_file_extent_disk_bytenr(eb, item),
749  				btrfs_file_extent_disk_num_bytes(eb, item));
750  		if (ret < 0)
751  			goto out;
752  
753  		if (ins.objectid > 0) {
754  			struct btrfs_ref ref = { 0 };
755  			u64 csum_start;
756  			u64 csum_end;
757  			LIST_HEAD(ordered_sums);
758  
759  			/*
760  			 * is this extent already allocated in the extent
761  			 * allocation tree?  If so, just add a reference
762  			 */
763  			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
764  						ins.offset);
765  			if (ret < 0) {
766  				goto out;
767  			} else if (ret == 0) {
768  				btrfs_init_generic_ref(&ref,
769  						BTRFS_ADD_DELAYED_REF,
770  						ins.objectid, ins.offset, 0);
771  				btrfs_init_data_ref(&ref,
772  						root->root_key.objectid,
773  						key->objectid, offset, 0, false);
774  				ret = btrfs_inc_extent_ref(trans, &ref);
775  				if (ret)
776  					goto out;
777  			} else {
778  				/*
779  				 * insert the extent pointer in the extent
780  				 * allocation tree
781  				 */
782  				ret = btrfs_alloc_logged_file_extent(trans,
783  						root->root_key.objectid,
784  						key->objectid, offset, &ins);
785  				if (ret)
786  					goto out;
787  			}
788  			btrfs_release_path(path);
789  
790  			if (btrfs_file_extent_compression(eb, item)) {
791  				csum_start = ins.objectid;
792  				csum_end = csum_start + ins.offset;
793  			} else {
794  				csum_start = ins.objectid +
795  					btrfs_file_extent_offset(eb, item);
796  				csum_end = csum_start +
797  					btrfs_file_extent_num_bytes(eb, item);
798  			}
799  
800  			ret = btrfs_lookup_csums_list(root->log_root,
801  						csum_start, csum_end - 1,
802  						&ordered_sums, 0, false);
803  			if (ret)
804  				goto out;
805  			/*
806  			 * Now delete all existing cums in the csum root that
807  			 * cover our range. We do this because we can have an
808  			 * extent that is completely referenced by one file
809  			 * extent item and partially referenced by another
810  			 * file extent item (like after using the clone or
811  			 * extent_same ioctls). In this case if we end up doing
812  			 * the replay of the one that partially references the
813  			 * extent first, and we do not do the csum deletion
814  			 * below, we can get 2 csum items in the csum tree that
815  			 * overlap each other. For example, imagine our log has
816  			 * the two following file extent items:
817  			 *
818  			 * key (257 EXTENT_DATA 409600)
819  			 *     extent data disk byte 12845056 nr 102400
820  			 *     extent data offset 20480 nr 20480 ram 102400
821  			 *
822  			 * key (257 EXTENT_DATA 819200)
823  			 *     extent data disk byte 12845056 nr 102400
824  			 *     extent data offset 0 nr 102400 ram 102400
825  			 *
826  			 * Where the second one fully references the 100K extent
827  			 * that starts at disk byte 12845056, and the log tree
828  			 * has a single csum item that covers the entire range
829  			 * of the extent:
830  			 *
831  			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
832  			 *
833  			 * After the first file extent item is replayed, the
834  			 * csum tree gets the following csum item:
835  			 *
836  			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
837  			 *
838  			 * Which covers the 20K sub-range starting at offset 20K
839  			 * of our extent. Now when we replay the second file
840  			 * extent item, if we do not delete existing csum items
841  			 * that cover any of its blocks, we end up getting two
842  			 * csum items in our csum tree that overlap each other:
843  			 *
844  			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
845  			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
846  			 *
847  			 * Which is a problem, because after this anyone trying
848  			 * to lookup up for the checksum of any block of our
849  			 * extent starting at an offset of 40K or higher, will
850  			 * end up looking at the second csum item only, which
851  			 * does not contain the checksum for any block starting
852  			 * at offset 40K or higher of our extent.
853  			 */
854  			while (!list_empty(&ordered_sums)) {
855  				struct btrfs_ordered_sum *sums;
856  				struct btrfs_root *csum_root;
857  
858  				sums = list_entry(ordered_sums.next,
859  						struct btrfs_ordered_sum,
860  						list);
861  				csum_root = btrfs_csum_root(fs_info,
862  							    sums->logical);
863  				if (!ret)
864  					ret = btrfs_del_csums(trans, csum_root,
865  							      sums->logical,
866  							      sums->len);
867  				if (!ret)
868  					ret = btrfs_csum_file_blocks(trans,
869  								     csum_root,
870  								     sums);
871  				list_del(&sums->list);
872  				kfree(sums);
873  			}
874  			if (ret)
875  				goto out;
876  		} else {
877  			btrfs_release_path(path);
878  		}
879  	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
880  		/* inline extents are easy, we just overwrite them */
881  		ret = overwrite_item(trans, root, path, eb, slot, key);
882  		if (ret)
883  			goto out;
884  	}
885  
886  	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
887  						extent_end - start);
888  	if (ret)
889  		goto out;
890  
891  update_inode:
892  	btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
893  	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
894  out:
895  	iput(inode);
896  	return ret;
897  }
898  
899  static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans,
900  				       struct btrfs_inode *dir,
901  				       struct btrfs_inode *inode,
902  				       const struct fscrypt_str *name)
903  {
904  	int ret;
905  
906  	ret = btrfs_unlink_inode(trans, dir, inode, name);
907  	if (ret)
908  		return ret;
909  	/*
910  	 * Whenever we need to check if a name exists or not, we check the
911  	 * fs/subvolume tree. So after an unlink we must run delayed items, so
912  	 * that future checks for a name during log replay see that the name
913  	 * does not exists anymore.
914  	 */
915  	return btrfs_run_delayed_items(trans);
916  }
917  
918  /*
919   * when cleaning up conflicts between the directory names in the
920   * subvolume, directory names in the log and directory names in the
921   * inode back references, we may have to unlink inodes from directories.
922   *
923   * This is a helper function to do the unlink of a specific directory
924   * item
925   */
926  static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
927  				      struct btrfs_path *path,
928  				      struct btrfs_inode *dir,
929  				      struct btrfs_dir_item *di)
930  {
931  	struct btrfs_root *root = dir->root;
932  	struct inode *inode;
933  	struct fscrypt_str name;
934  	struct extent_buffer *leaf;
935  	struct btrfs_key location;
936  	int ret;
937  
938  	leaf = path->nodes[0];
939  
940  	btrfs_dir_item_key_to_cpu(leaf, di, &location);
941  	ret = read_alloc_one_name(leaf, di + 1, btrfs_dir_name_len(leaf, di), &name);
942  	if (ret)
943  		return -ENOMEM;
944  
945  	btrfs_release_path(path);
946  
947  	inode = read_one_inode(root, location.objectid);
948  	if (!inode) {
949  		ret = -EIO;
950  		goto out;
951  	}
952  
953  	ret = link_to_fixup_dir(trans, root, path, location.objectid);
954  	if (ret)
955  		goto out;
956  
957  	ret = unlink_inode_for_log_replay(trans, dir, BTRFS_I(inode), &name);
958  out:
959  	kfree(name.name);
960  	iput(inode);
961  	return ret;
962  }
963  
964  /*
965   * See if a given name and sequence number found in an inode back reference are
966   * already in a directory and correctly point to this inode.
967   *
968   * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
969   * exists.
970   */
971  static noinline int inode_in_dir(struct btrfs_root *root,
972  				 struct btrfs_path *path,
973  				 u64 dirid, u64 objectid, u64 index,
974  				 struct fscrypt_str *name)
975  {
976  	struct btrfs_dir_item *di;
977  	struct btrfs_key location;
978  	int ret = 0;
979  
980  	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
981  					 index, name, 0);
982  	if (IS_ERR(di)) {
983  		ret = PTR_ERR(di);
984  		goto out;
985  	} else if (di) {
986  		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
987  		if (location.objectid != objectid)
988  			goto out;
989  	} else {
990  		goto out;
991  	}
992  
993  	btrfs_release_path(path);
994  	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, 0);
995  	if (IS_ERR(di)) {
996  		ret = PTR_ERR(di);
997  		goto out;
998  	} else if (di) {
999  		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1000  		if (location.objectid == objectid)
1001  			ret = 1;
1002  	}
1003  out:
1004  	btrfs_release_path(path);
1005  	return ret;
1006  }
1007  
1008  /*
1009   * helper function to check a log tree for a named back reference in
1010   * an inode.  This is used to decide if a back reference that is
1011   * found in the subvolume conflicts with what we find in the log.
1012   *
1013   * inode backreferences may have multiple refs in a single item,
1014   * during replay we process one reference at a time, and we don't
1015   * want to delete valid links to a file from the subvolume if that
1016   * link is also in the log.
1017   */
1018  static noinline int backref_in_log(struct btrfs_root *log,
1019  				   struct btrfs_key *key,
1020  				   u64 ref_objectid,
1021  				   const struct fscrypt_str *name)
1022  {
1023  	struct btrfs_path *path;
1024  	int ret;
1025  
1026  	path = btrfs_alloc_path();
1027  	if (!path)
1028  		return -ENOMEM;
1029  
1030  	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
1031  	if (ret < 0) {
1032  		goto out;
1033  	} else if (ret == 1) {
1034  		ret = 0;
1035  		goto out;
1036  	}
1037  
1038  	if (key->type == BTRFS_INODE_EXTREF_KEY)
1039  		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1040  						       path->slots[0],
1041  						       ref_objectid, name);
1042  	else
1043  		ret = !!btrfs_find_name_in_backref(path->nodes[0],
1044  						   path->slots[0], name);
1045  out:
1046  	btrfs_free_path(path);
1047  	return ret;
1048  }
1049  
1050  static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1051  				  struct btrfs_root *root,
1052  				  struct btrfs_path *path,
1053  				  struct btrfs_root *log_root,
1054  				  struct btrfs_inode *dir,
1055  				  struct btrfs_inode *inode,
1056  				  u64 inode_objectid, u64 parent_objectid,
1057  				  u64 ref_index, struct fscrypt_str *name)
1058  {
1059  	int ret;
1060  	struct extent_buffer *leaf;
1061  	struct btrfs_dir_item *di;
1062  	struct btrfs_key search_key;
1063  	struct btrfs_inode_extref *extref;
1064  
1065  again:
1066  	/* Search old style refs */
1067  	search_key.objectid = inode_objectid;
1068  	search_key.type = BTRFS_INODE_REF_KEY;
1069  	search_key.offset = parent_objectid;
1070  	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1071  	if (ret == 0) {
1072  		struct btrfs_inode_ref *victim_ref;
1073  		unsigned long ptr;
1074  		unsigned long ptr_end;
1075  
1076  		leaf = path->nodes[0];
1077  
1078  		/* are we trying to overwrite a back ref for the root directory
1079  		 * if so, just jump out, we're done
1080  		 */
1081  		if (search_key.objectid == search_key.offset)
1082  			return 1;
1083  
1084  		/* check all the names in this back reference to see
1085  		 * if they are in the log.  if so, we allow them to stay
1086  		 * otherwise they must be unlinked as a conflict
1087  		 */
1088  		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1089  		ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]);
1090  		while (ptr < ptr_end) {
1091  			struct fscrypt_str victim_name;
1092  
1093  			victim_ref = (struct btrfs_inode_ref *)ptr;
1094  			ret = read_alloc_one_name(leaf, (victim_ref + 1),
1095  				 btrfs_inode_ref_name_len(leaf, victim_ref),
1096  				 &victim_name);
1097  			if (ret)
1098  				return ret;
1099  
1100  			ret = backref_in_log(log_root, &search_key,
1101  					     parent_objectid, &victim_name);
1102  			if (ret < 0) {
1103  				kfree(victim_name.name);
1104  				return ret;
1105  			} else if (!ret) {
1106  				inc_nlink(&inode->vfs_inode);
1107  				btrfs_release_path(path);
1108  
1109  				ret = unlink_inode_for_log_replay(trans, dir, inode,
1110  						&victim_name);
1111  				kfree(victim_name.name);
1112  				if (ret)
1113  					return ret;
1114  				goto again;
1115  			}
1116  			kfree(victim_name.name);
1117  
1118  			ptr = (unsigned long)(victim_ref + 1) + victim_name.len;
1119  		}
1120  	}
1121  	btrfs_release_path(path);
1122  
1123  	/* Same search but for extended refs */
1124  	extref = btrfs_lookup_inode_extref(NULL, root, path, name,
1125  					   inode_objectid, parent_objectid, 0,
1126  					   0);
1127  	if (IS_ERR(extref)) {
1128  		return PTR_ERR(extref);
1129  	} else if (extref) {
1130  		u32 item_size;
1131  		u32 cur_offset = 0;
1132  		unsigned long base;
1133  		struct inode *victim_parent;
1134  
1135  		leaf = path->nodes[0];
1136  
1137  		item_size = btrfs_item_size(leaf, path->slots[0]);
1138  		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1139  
1140  		while (cur_offset < item_size) {
1141  			struct fscrypt_str victim_name;
1142  
1143  			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1144  
1145  			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1146  				goto next;
1147  
1148  			ret = read_alloc_one_name(leaf, &extref->name,
1149  				 btrfs_inode_extref_name_len(leaf, extref),
1150  				 &victim_name);
1151  			if (ret)
1152  				return ret;
1153  
1154  			search_key.objectid = inode_objectid;
1155  			search_key.type = BTRFS_INODE_EXTREF_KEY;
1156  			search_key.offset = btrfs_extref_hash(parent_objectid,
1157  							      victim_name.name,
1158  							      victim_name.len);
1159  			ret = backref_in_log(log_root, &search_key,
1160  					     parent_objectid, &victim_name);
1161  			if (ret < 0) {
1162  				kfree(victim_name.name);
1163  				return ret;
1164  			} else if (!ret) {
1165  				ret = -ENOENT;
1166  				victim_parent = read_one_inode(root,
1167  						parent_objectid);
1168  				if (victim_parent) {
1169  					inc_nlink(&inode->vfs_inode);
1170  					btrfs_release_path(path);
1171  
1172  					ret = unlink_inode_for_log_replay(trans,
1173  							BTRFS_I(victim_parent),
1174  							inode, &victim_name);
1175  				}
1176  				iput(victim_parent);
1177  				kfree(victim_name.name);
1178  				if (ret)
1179  					return ret;
1180  				goto again;
1181  			}
1182  			kfree(victim_name.name);
1183  next:
1184  			cur_offset += victim_name.len + sizeof(*extref);
1185  		}
1186  	}
1187  	btrfs_release_path(path);
1188  
1189  	/* look for a conflicting sequence number */
1190  	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1191  					 ref_index, name, 0);
1192  	if (IS_ERR(di)) {
1193  		return PTR_ERR(di);
1194  	} else if (di) {
1195  		ret = drop_one_dir_item(trans, path, dir, di);
1196  		if (ret)
1197  			return ret;
1198  	}
1199  	btrfs_release_path(path);
1200  
1201  	/* look for a conflicting name */
1202  	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), name, 0);
1203  	if (IS_ERR(di)) {
1204  		return PTR_ERR(di);
1205  	} else if (di) {
1206  		ret = drop_one_dir_item(trans, path, dir, di);
1207  		if (ret)
1208  			return ret;
1209  	}
1210  	btrfs_release_path(path);
1211  
1212  	return 0;
1213  }
1214  
1215  static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1216  			     struct fscrypt_str *name, u64 *index,
1217  			     u64 *parent_objectid)
1218  {
1219  	struct btrfs_inode_extref *extref;
1220  	int ret;
1221  
1222  	extref = (struct btrfs_inode_extref *)ref_ptr;
1223  
1224  	ret = read_alloc_one_name(eb, &extref->name,
1225  				  btrfs_inode_extref_name_len(eb, extref), name);
1226  	if (ret)
1227  		return ret;
1228  
1229  	if (index)
1230  		*index = btrfs_inode_extref_index(eb, extref);
1231  	if (parent_objectid)
1232  		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1233  
1234  	return 0;
1235  }
1236  
1237  static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1238  			  struct fscrypt_str *name, u64 *index)
1239  {
1240  	struct btrfs_inode_ref *ref;
1241  	int ret;
1242  
1243  	ref = (struct btrfs_inode_ref *)ref_ptr;
1244  
1245  	ret = read_alloc_one_name(eb, ref + 1, btrfs_inode_ref_name_len(eb, ref),
1246  				  name);
1247  	if (ret)
1248  		return ret;
1249  
1250  	if (index)
1251  		*index = btrfs_inode_ref_index(eb, ref);
1252  
1253  	return 0;
1254  }
1255  
1256  /*
1257   * Take an inode reference item from the log tree and iterate all names from the
1258   * inode reference item in the subvolume tree with the same key (if it exists).
1259   * For any name that is not in the inode reference item from the log tree, do a
1260   * proper unlink of that name (that is, remove its entry from the inode
1261   * reference item and both dir index keys).
1262   */
1263  static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1264  				 struct btrfs_root *root,
1265  				 struct btrfs_path *path,
1266  				 struct btrfs_inode *inode,
1267  				 struct extent_buffer *log_eb,
1268  				 int log_slot,
1269  				 struct btrfs_key *key)
1270  {
1271  	int ret;
1272  	unsigned long ref_ptr;
1273  	unsigned long ref_end;
1274  	struct extent_buffer *eb;
1275  
1276  again:
1277  	btrfs_release_path(path);
1278  	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1279  	if (ret > 0) {
1280  		ret = 0;
1281  		goto out;
1282  	}
1283  	if (ret < 0)
1284  		goto out;
1285  
1286  	eb = path->nodes[0];
1287  	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1288  	ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]);
1289  	while (ref_ptr < ref_end) {
1290  		struct fscrypt_str name;
1291  		u64 parent_id;
1292  
1293  		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1294  			ret = extref_get_fields(eb, ref_ptr, &name,
1295  						NULL, &parent_id);
1296  		} else {
1297  			parent_id = key->offset;
1298  			ret = ref_get_fields(eb, ref_ptr, &name, NULL);
1299  		}
1300  		if (ret)
1301  			goto out;
1302  
1303  		if (key->type == BTRFS_INODE_EXTREF_KEY)
1304  			ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1305  							       parent_id, &name);
1306  		else
1307  			ret = !!btrfs_find_name_in_backref(log_eb, log_slot, &name);
1308  
1309  		if (!ret) {
1310  			struct inode *dir;
1311  
1312  			btrfs_release_path(path);
1313  			dir = read_one_inode(root, parent_id);
1314  			if (!dir) {
1315  				ret = -ENOENT;
1316  				kfree(name.name);
1317  				goto out;
1318  			}
1319  			ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir),
1320  						 inode, &name);
1321  			kfree(name.name);
1322  			iput(dir);
1323  			if (ret)
1324  				goto out;
1325  			goto again;
1326  		}
1327  
1328  		kfree(name.name);
1329  		ref_ptr += name.len;
1330  		if (key->type == BTRFS_INODE_EXTREF_KEY)
1331  			ref_ptr += sizeof(struct btrfs_inode_extref);
1332  		else
1333  			ref_ptr += sizeof(struct btrfs_inode_ref);
1334  	}
1335  	ret = 0;
1336   out:
1337  	btrfs_release_path(path);
1338  	return ret;
1339  }
1340  
1341  /*
1342   * replay one inode back reference item found in the log tree.
1343   * eb, slot and key refer to the buffer and key found in the log tree.
1344   * root is the destination we are replaying into, and path is for temp
1345   * use by this function.  (it should be released on return).
1346   */
1347  static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1348  				  struct btrfs_root *root,
1349  				  struct btrfs_root *log,
1350  				  struct btrfs_path *path,
1351  				  struct extent_buffer *eb, int slot,
1352  				  struct btrfs_key *key)
1353  {
1354  	struct inode *dir = NULL;
1355  	struct inode *inode = NULL;
1356  	unsigned long ref_ptr;
1357  	unsigned long ref_end;
1358  	struct fscrypt_str name;
1359  	int ret;
1360  	int log_ref_ver = 0;
1361  	u64 parent_objectid;
1362  	u64 inode_objectid;
1363  	u64 ref_index = 0;
1364  	int ref_struct_size;
1365  
1366  	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1367  	ref_end = ref_ptr + btrfs_item_size(eb, slot);
1368  
1369  	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1370  		struct btrfs_inode_extref *r;
1371  
1372  		ref_struct_size = sizeof(struct btrfs_inode_extref);
1373  		log_ref_ver = 1;
1374  		r = (struct btrfs_inode_extref *)ref_ptr;
1375  		parent_objectid = btrfs_inode_extref_parent(eb, r);
1376  	} else {
1377  		ref_struct_size = sizeof(struct btrfs_inode_ref);
1378  		parent_objectid = key->offset;
1379  	}
1380  	inode_objectid = key->objectid;
1381  
1382  	/*
1383  	 * it is possible that we didn't log all the parent directories
1384  	 * for a given inode.  If we don't find the dir, just don't
1385  	 * copy the back ref in.  The link count fixup code will take
1386  	 * care of the rest
1387  	 */
1388  	dir = read_one_inode(root, parent_objectid);
1389  	if (!dir) {
1390  		ret = -ENOENT;
1391  		goto out;
1392  	}
1393  
1394  	inode = read_one_inode(root, inode_objectid);
1395  	if (!inode) {
1396  		ret = -EIO;
1397  		goto out;
1398  	}
1399  
1400  	while (ref_ptr < ref_end) {
1401  		if (log_ref_ver) {
1402  			ret = extref_get_fields(eb, ref_ptr, &name,
1403  						&ref_index, &parent_objectid);
1404  			/*
1405  			 * parent object can change from one array
1406  			 * item to another.
1407  			 */
1408  			if (!dir)
1409  				dir = read_one_inode(root, parent_objectid);
1410  			if (!dir) {
1411  				ret = -ENOENT;
1412  				goto out;
1413  			}
1414  		} else {
1415  			ret = ref_get_fields(eb, ref_ptr, &name, &ref_index);
1416  		}
1417  		if (ret)
1418  			goto out;
1419  
1420  		ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1421  				   btrfs_ino(BTRFS_I(inode)), ref_index, &name);
1422  		if (ret < 0) {
1423  			goto out;
1424  		} else if (ret == 0) {
1425  			/*
1426  			 * look for a conflicting back reference in the
1427  			 * metadata. if we find one we have to unlink that name
1428  			 * of the file before we add our new link.  Later on, we
1429  			 * overwrite any existing back reference, and we don't
1430  			 * want to create dangling pointers in the directory.
1431  			 */
1432  			ret = __add_inode_ref(trans, root, path, log,
1433  					      BTRFS_I(dir), BTRFS_I(inode),
1434  					      inode_objectid, parent_objectid,
1435  					      ref_index, &name);
1436  			if (ret) {
1437  				if (ret == 1)
1438  					ret = 0;
1439  				goto out;
1440  			}
1441  
1442  			/* insert our name */
1443  			ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1444  					     &name, 0, ref_index);
1445  			if (ret)
1446  				goto out;
1447  
1448  			ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1449  			if (ret)
1450  				goto out;
1451  		}
1452  		/* Else, ret == 1, we already have a perfect match, we're done. */
1453  
1454  		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + name.len;
1455  		kfree(name.name);
1456  		name.name = NULL;
1457  		if (log_ref_ver) {
1458  			iput(dir);
1459  			dir = NULL;
1460  		}
1461  	}
1462  
1463  	/*
1464  	 * Before we overwrite the inode reference item in the subvolume tree
1465  	 * with the item from the log tree, we must unlink all names from the
1466  	 * parent directory that are in the subvolume's tree inode reference
1467  	 * item, otherwise we end up with an inconsistent subvolume tree where
1468  	 * dir index entries exist for a name but there is no inode reference
1469  	 * item with the same name.
1470  	 */
1471  	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1472  				    key);
1473  	if (ret)
1474  		goto out;
1475  
1476  	/* finally write the back reference in the inode */
1477  	ret = overwrite_item(trans, root, path, eb, slot, key);
1478  out:
1479  	btrfs_release_path(path);
1480  	kfree(name.name);
1481  	iput(dir);
1482  	iput(inode);
1483  	return ret;
1484  }
1485  
1486  static int count_inode_extrefs(struct btrfs_root *root,
1487  		struct btrfs_inode *inode, struct btrfs_path *path)
1488  {
1489  	int ret = 0;
1490  	int name_len;
1491  	unsigned int nlink = 0;
1492  	u32 item_size;
1493  	u32 cur_offset = 0;
1494  	u64 inode_objectid = btrfs_ino(inode);
1495  	u64 offset = 0;
1496  	unsigned long ptr;
1497  	struct btrfs_inode_extref *extref;
1498  	struct extent_buffer *leaf;
1499  
1500  	while (1) {
1501  		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1502  					    &extref, &offset);
1503  		if (ret)
1504  			break;
1505  
1506  		leaf = path->nodes[0];
1507  		item_size = btrfs_item_size(leaf, path->slots[0]);
1508  		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1509  		cur_offset = 0;
1510  
1511  		while (cur_offset < item_size) {
1512  			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1513  			name_len = btrfs_inode_extref_name_len(leaf, extref);
1514  
1515  			nlink++;
1516  
1517  			cur_offset += name_len + sizeof(*extref);
1518  		}
1519  
1520  		offset++;
1521  		btrfs_release_path(path);
1522  	}
1523  	btrfs_release_path(path);
1524  
1525  	if (ret < 0 && ret != -ENOENT)
1526  		return ret;
1527  	return nlink;
1528  }
1529  
1530  static int count_inode_refs(struct btrfs_root *root,
1531  			struct btrfs_inode *inode, struct btrfs_path *path)
1532  {
1533  	int ret;
1534  	struct btrfs_key key;
1535  	unsigned int nlink = 0;
1536  	unsigned long ptr;
1537  	unsigned long ptr_end;
1538  	int name_len;
1539  	u64 ino = btrfs_ino(inode);
1540  
1541  	key.objectid = ino;
1542  	key.type = BTRFS_INODE_REF_KEY;
1543  	key.offset = (u64)-1;
1544  
1545  	while (1) {
1546  		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1547  		if (ret < 0)
1548  			break;
1549  		if (ret > 0) {
1550  			if (path->slots[0] == 0)
1551  				break;
1552  			path->slots[0]--;
1553  		}
1554  process_slot:
1555  		btrfs_item_key_to_cpu(path->nodes[0], &key,
1556  				      path->slots[0]);
1557  		if (key.objectid != ino ||
1558  		    key.type != BTRFS_INODE_REF_KEY)
1559  			break;
1560  		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1561  		ptr_end = ptr + btrfs_item_size(path->nodes[0],
1562  						   path->slots[0]);
1563  		while (ptr < ptr_end) {
1564  			struct btrfs_inode_ref *ref;
1565  
1566  			ref = (struct btrfs_inode_ref *)ptr;
1567  			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1568  							    ref);
1569  			ptr = (unsigned long)(ref + 1) + name_len;
1570  			nlink++;
1571  		}
1572  
1573  		if (key.offset == 0)
1574  			break;
1575  		if (path->slots[0] > 0) {
1576  			path->slots[0]--;
1577  			goto process_slot;
1578  		}
1579  		key.offset--;
1580  		btrfs_release_path(path);
1581  	}
1582  	btrfs_release_path(path);
1583  
1584  	return nlink;
1585  }
1586  
1587  /*
1588   * There are a few corners where the link count of the file can't
1589   * be properly maintained during replay.  So, instead of adding
1590   * lots of complexity to the log code, we just scan the backrefs
1591   * for any file that has been through replay.
1592   *
1593   * The scan will update the link count on the inode to reflect the
1594   * number of back refs found.  If it goes down to zero, the iput
1595   * will free the inode.
1596   */
1597  static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1598  					   struct btrfs_root *root,
1599  					   struct inode *inode)
1600  {
1601  	struct btrfs_path *path;
1602  	int ret;
1603  	u64 nlink = 0;
1604  	u64 ino = btrfs_ino(BTRFS_I(inode));
1605  
1606  	path = btrfs_alloc_path();
1607  	if (!path)
1608  		return -ENOMEM;
1609  
1610  	ret = count_inode_refs(root, BTRFS_I(inode), path);
1611  	if (ret < 0)
1612  		goto out;
1613  
1614  	nlink = ret;
1615  
1616  	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1617  	if (ret < 0)
1618  		goto out;
1619  
1620  	nlink += ret;
1621  
1622  	ret = 0;
1623  
1624  	if (nlink != inode->i_nlink) {
1625  		set_nlink(inode, nlink);
1626  		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1627  		if (ret)
1628  			goto out;
1629  	}
1630  	BTRFS_I(inode)->index_cnt = (u64)-1;
1631  
1632  	if (inode->i_nlink == 0) {
1633  		if (S_ISDIR(inode->i_mode)) {
1634  			ret = replay_dir_deletes(trans, root, NULL, path,
1635  						 ino, 1);
1636  			if (ret)
1637  				goto out;
1638  		}
1639  		ret = btrfs_insert_orphan_item(trans, root, ino);
1640  		if (ret == -EEXIST)
1641  			ret = 0;
1642  	}
1643  
1644  out:
1645  	btrfs_free_path(path);
1646  	return ret;
1647  }
1648  
1649  static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1650  					    struct btrfs_root *root,
1651  					    struct btrfs_path *path)
1652  {
1653  	int ret;
1654  	struct btrfs_key key;
1655  	struct inode *inode;
1656  
1657  	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1658  	key.type = BTRFS_ORPHAN_ITEM_KEY;
1659  	key.offset = (u64)-1;
1660  	while (1) {
1661  		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1662  		if (ret < 0)
1663  			break;
1664  
1665  		if (ret == 1) {
1666  			ret = 0;
1667  			if (path->slots[0] == 0)
1668  				break;
1669  			path->slots[0]--;
1670  		}
1671  
1672  		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1673  		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1674  		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1675  			break;
1676  
1677  		ret = btrfs_del_item(trans, root, path);
1678  		if (ret)
1679  			break;
1680  
1681  		btrfs_release_path(path);
1682  		inode = read_one_inode(root, key.offset);
1683  		if (!inode) {
1684  			ret = -EIO;
1685  			break;
1686  		}
1687  
1688  		ret = fixup_inode_link_count(trans, root, inode);
1689  		iput(inode);
1690  		if (ret)
1691  			break;
1692  
1693  		/*
1694  		 * fixup on a directory may create new entries,
1695  		 * make sure we always look for the highset possible
1696  		 * offset
1697  		 */
1698  		key.offset = (u64)-1;
1699  	}
1700  	btrfs_release_path(path);
1701  	return ret;
1702  }
1703  
1704  
1705  /*
1706   * record a given inode in the fixup dir so we can check its link
1707   * count when replay is done.  The link count is incremented here
1708   * so the inode won't go away until we check it
1709   */
1710  static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1711  				      struct btrfs_root *root,
1712  				      struct btrfs_path *path,
1713  				      u64 objectid)
1714  {
1715  	struct btrfs_key key;
1716  	int ret = 0;
1717  	struct inode *inode;
1718  
1719  	inode = read_one_inode(root, objectid);
1720  	if (!inode)
1721  		return -EIO;
1722  
1723  	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1724  	key.type = BTRFS_ORPHAN_ITEM_KEY;
1725  	key.offset = objectid;
1726  
1727  	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1728  
1729  	btrfs_release_path(path);
1730  	if (ret == 0) {
1731  		if (!inode->i_nlink)
1732  			set_nlink(inode, 1);
1733  		else
1734  			inc_nlink(inode);
1735  		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1736  	} else if (ret == -EEXIST) {
1737  		ret = 0;
1738  	}
1739  	iput(inode);
1740  
1741  	return ret;
1742  }
1743  
1744  /*
1745   * when replaying the log for a directory, we only insert names
1746   * for inodes that actually exist.  This means an fsync on a directory
1747   * does not implicitly fsync all the new files in it
1748   */
1749  static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1750  				    struct btrfs_root *root,
1751  				    u64 dirid, u64 index,
1752  				    const struct fscrypt_str *name,
1753  				    struct btrfs_key *location)
1754  {
1755  	struct inode *inode;
1756  	struct inode *dir;
1757  	int ret;
1758  
1759  	inode = read_one_inode(root, location->objectid);
1760  	if (!inode)
1761  		return -ENOENT;
1762  
1763  	dir = read_one_inode(root, dirid);
1764  	if (!dir) {
1765  		iput(inode);
1766  		return -EIO;
1767  	}
1768  
1769  	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1770  			     1, index);
1771  
1772  	/* FIXME, put inode into FIXUP list */
1773  
1774  	iput(inode);
1775  	iput(dir);
1776  	return ret;
1777  }
1778  
1779  static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans,
1780  					struct btrfs_inode *dir,
1781  					struct btrfs_path *path,
1782  					struct btrfs_dir_item *dst_di,
1783  					const struct btrfs_key *log_key,
1784  					u8 log_flags,
1785  					bool exists)
1786  {
1787  	struct btrfs_key found_key;
1788  
1789  	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1790  	/* The existing dentry points to the same inode, don't delete it. */
1791  	if (found_key.objectid == log_key->objectid &&
1792  	    found_key.type == log_key->type &&
1793  	    found_key.offset == log_key->offset &&
1794  	    btrfs_dir_flags(path->nodes[0], dst_di) == log_flags)
1795  		return 1;
1796  
1797  	/*
1798  	 * Don't drop the conflicting directory entry if the inode for the new
1799  	 * entry doesn't exist.
1800  	 */
1801  	if (!exists)
1802  		return 0;
1803  
1804  	return drop_one_dir_item(trans, path, dir, dst_di);
1805  }
1806  
1807  /*
1808   * take a single entry in a log directory item and replay it into
1809   * the subvolume.
1810   *
1811   * if a conflicting item exists in the subdirectory already,
1812   * the inode it points to is unlinked and put into the link count
1813   * fix up tree.
1814   *
1815   * If a name from the log points to a file or directory that does
1816   * not exist in the FS, it is skipped.  fsyncs on directories
1817   * do not force down inodes inside that directory, just changes to the
1818   * names or unlinks in a directory.
1819   *
1820   * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1821   * non-existing inode) and 1 if the name was replayed.
1822   */
1823  static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1824  				    struct btrfs_root *root,
1825  				    struct btrfs_path *path,
1826  				    struct extent_buffer *eb,
1827  				    struct btrfs_dir_item *di,
1828  				    struct btrfs_key *key)
1829  {
1830  	struct fscrypt_str name;
1831  	struct btrfs_dir_item *dir_dst_di;
1832  	struct btrfs_dir_item *index_dst_di;
1833  	bool dir_dst_matches = false;
1834  	bool index_dst_matches = false;
1835  	struct btrfs_key log_key;
1836  	struct btrfs_key search_key;
1837  	struct inode *dir;
1838  	u8 log_flags;
1839  	bool exists;
1840  	int ret;
1841  	bool update_size = true;
1842  	bool name_added = false;
1843  
1844  	dir = read_one_inode(root, key->objectid);
1845  	if (!dir)
1846  		return -EIO;
1847  
1848  	ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
1849  	if (ret)
1850  		goto out;
1851  
1852  	log_flags = btrfs_dir_flags(eb, di);
1853  	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1854  	ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1855  	btrfs_release_path(path);
1856  	if (ret < 0)
1857  		goto out;
1858  	exists = (ret == 0);
1859  	ret = 0;
1860  
1861  	dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1862  					   &name, 1);
1863  	if (IS_ERR(dir_dst_di)) {
1864  		ret = PTR_ERR(dir_dst_di);
1865  		goto out;
1866  	} else if (dir_dst_di) {
1867  		ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1868  						   dir_dst_di, &log_key,
1869  						   log_flags, exists);
1870  		if (ret < 0)
1871  			goto out;
1872  		dir_dst_matches = (ret == 1);
1873  	}
1874  
1875  	btrfs_release_path(path);
1876  
1877  	index_dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1878  						   key->objectid, key->offset,
1879  						   &name, 1);
1880  	if (IS_ERR(index_dst_di)) {
1881  		ret = PTR_ERR(index_dst_di);
1882  		goto out;
1883  	} else if (index_dst_di) {
1884  		ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1885  						   index_dst_di, &log_key,
1886  						   log_flags, exists);
1887  		if (ret < 0)
1888  			goto out;
1889  		index_dst_matches = (ret == 1);
1890  	}
1891  
1892  	btrfs_release_path(path);
1893  
1894  	if (dir_dst_matches && index_dst_matches) {
1895  		ret = 0;
1896  		update_size = false;
1897  		goto out;
1898  	}
1899  
1900  	/*
1901  	 * Check if the inode reference exists in the log for the given name,
1902  	 * inode and parent inode
1903  	 */
1904  	search_key.objectid = log_key.objectid;
1905  	search_key.type = BTRFS_INODE_REF_KEY;
1906  	search_key.offset = key->objectid;
1907  	ret = backref_in_log(root->log_root, &search_key, 0, &name);
1908  	if (ret < 0) {
1909  	        goto out;
1910  	} else if (ret) {
1911  	        /* The dentry will be added later. */
1912  	        ret = 0;
1913  	        update_size = false;
1914  	        goto out;
1915  	}
1916  
1917  	search_key.objectid = log_key.objectid;
1918  	search_key.type = BTRFS_INODE_EXTREF_KEY;
1919  	search_key.offset = key->objectid;
1920  	ret = backref_in_log(root->log_root, &search_key, key->objectid, &name);
1921  	if (ret < 0) {
1922  		goto out;
1923  	} else if (ret) {
1924  		/* The dentry will be added later. */
1925  		ret = 0;
1926  		update_size = false;
1927  		goto out;
1928  	}
1929  	btrfs_release_path(path);
1930  	ret = insert_one_name(trans, root, key->objectid, key->offset,
1931  			      &name, &log_key);
1932  	if (ret && ret != -ENOENT && ret != -EEXIST)
1933  		goto out;
1934  	if (!ret)
1935  		name_added = true;
1936  	update_size = false;
1937  	ret = 0;
1938  
1939  out:
1940  	if (!ret && update_size) {
1941  		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name.len * 2);
1942  		ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
1943  	}
1944  	kfree(name.name);
1945  	iput(dir);
1946  	if (!ret && name_added)
1947  		ret = 1;
1948  	return ret;
1949  }
1950  
1951  /* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */
1952  static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1953  					struct btrfs_root *root,
1954  					struct btrfs_path *path,
1955  					struct extent_buffer *eb, int slot,
1956  					struct btrfs_key *key)
1957  {
1958  	int ret;
1959  	struct btrfs_dir_item *di;
1960  
1961  	/* We only log dir index keys, which only contain a single dir item. */
1962  	ASSERT(key->type == BTRFS_DIR_INDEX_KEY);
1963  
1964  	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1965  	ret = replay_one_name(trans, root, path, eb, di, key);
1966  	if (ret < 0)
1967  		return ret;
1968  
1969  	/*
1970  	 * If this entry refers to a non-directory (directories can not have a
1971  	 * link count > 1) and it was added in the transaction that was not
1972  	 * committed, make sure we fixup the link count of the inode the entry
1973  	 * points to. Otherwise something like the following would result in a
1974  	 * directory pointing to an inode with a wrong link that does not account
1975  	 * for this dir entry:
1976  	 *
1977  	 * mkdir testdir
1978  	 * touch testdir/foo
1979  	 * touch testdir/bar
1980  	 * sync
1981  	 *
1982  	 * ln testdir/bar testdir/bar_link
1983  	 * ln testdir/foo testdir/foo_link
1984  	 * xfs_io -c "fsync" testdir/bar
1985  	 *
1986  	 * <power failure>
1987  	 *
1988  	 * mount fs, log replay happens
1989  	 *
1990  	 * File foo would remain with a link count of 1 when it has two entries
1991  	 * pointing to it in the directory testdir. This would make it impossible
1992  	 * to ever delete the parent directory has it would result in stale
1993  	 * dentries that can never be deleted.
1994  	 */
1995  	if (ret == 1 && btrfs_dir_ftype(eb, di) != BTRFS_FT_DIR) {
1996  		struct btrfs_path *fixup_path;
1997  		struct btrfs_key di_key;
1998  
1999  		fixup_path = btrfs_alloc_path();
2000  		if (!fixup_path)
2001  			return -ENOMEM;
2002  
2003  		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2004  		ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid);
2005  		btrfs_free_path(fixup_path);
2006  	}
2007  
2008  	return ret;
2009  }
2010  
2011  /*
2012   * directory replay has two parts.  There are the standard directory
2013   * items in the log copied from the subvolume, and range items
2014   * created in the log while the subvolume was logged.
2015   *
2016   * The range items tell us which parts of the key space the log
2017   * is authoritative for.  During replay, if a key in the subvolume
2018   * directory is in a logged range item, but not actually in the log
2019   * that means it was deleted from the directory before the fsync
2020   * and should be removed.
2021   */
2022  static noinline int find_dir_range(struct btrfs_root *root,
2023  				   struct btrfs_path *path,
2024  				   u64 dirid,
2025  				   u64 *start_ret, u64 *end_ret)
2026  {
2027  	struct btrfs_key key;
2028  	u64 found_end;
2029  	struct btrfs_dir_log_item *item;
2030  	int ret;
2031  	int nritems;
2032  
2033  	if (*start_ret == (u64)-1)
2034  		return 1;
2035  
2036  	key.objectid = dirid;
2037  	key.type = BTRFS_DIR_LOG_INDEX_KEY;
2038  	key.offset = *start_ret;
2039  
2040  	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2041  	if (ret < 0)
2042  		goto out;
2043  	if (ret > 0) {
2044  		if (path->slots[0] == 0)
2045  			goto out;
2046  		path->slots[0]--;
2047  	}
2048  	if (ret != 0)
2049  		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2050  
2051  	if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2052  		ret = 1;
2053  		goto next;
2054  	}
2055  	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2056  			      struct btrfs_dir_log_item);
2057  	found_end = btrfs_dir_log_end(path->nodes[0], item);
2058  
2059  	if (*start_ret >= key.offset && *start_ret <= found_end) {
2060  		ret = 0;
2061  		*start_ret = key.offset;
2062  		*end_ret = found_end;
2063  		goto out;
2064  	}
2065  	ret = 1;
2066  next:
2067  	/* check the next slot in the tree to see if it is a valid item */
2068  	nritems = btrfs_header_nritems(path->nodes[0]);
2069  	path->slots[0]++;
2070  	if (path->slots[0] >= nritems) {
2071  		ret = btrfs_next_leaf(root, path);
2072  		if (ret)
2073  			goto out;
2074  	}
2075  
2076  	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2077  
2078  	if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2079  		ret = 1;
2080  		goto out;
2081  	}
2082  	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2083  			      struct btrfs_dir_log_item);
2084  	found_end = btrfs_dir_log_end(path->nodes[0], item);
2085  	*start_ret = key.offset;
2086  	*end_ret = found_end;
2087  	ret = 0;
2088  out:
2089  	btrfs_release_path(path);
2090  	return ret;
2091  }
2092  
2093  /*
2094   * this looks for a given directory item in the log.  If the directory
2095   * item is not in the log, the item is removed and the inode it points
2096   * to is unlinked
2097   */
2098  static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2099  				      struct btrfs_root *log,
2100  				      struct btrfs_path *path,
2101  				      struct btrfs_path *log_path,
2102  				      struct inode *dir,
2103  				      struct btrfs_key *dir_key)
2104  {
2105  	struct btrfs_root *root = BTRFS_I(dir)->root;
2106  	int ret;
2107  	struct extent_buffer *eb;
2108  	int slot;
2109  	struct btrfs_dir_item *di;
2110  	struct fscrypt_str name;
2111  	struct inode *inode = NULL;
2112  	struct btrfs_key location;
2113  
2114  	/*
2115  	 * Currently we only log dir index keys. Even if we replay a log created
2116  	 * by an older kernel that logged both dir index and dir item keys, all
2117  	 * we need to do is process the dir index keys, we (and our caller) can
2118  	 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY).
2119  	 */
2120  	ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY);
2121  
2122  	eb = path->nodes[0];
2123  	slot = path->slots[0];
2124  	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2125  	ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
2126  	if (ret)
2127  		goto out;
2128  
2129  	if (log) {
2130  		struct btrfs_dir_item *log_di;
2131  
2132  		log_di = btrfs_lookup_dir_index_item(trans, log, log_path,
2133  						     dir_key->objectid,
2134  						     dir_key->offset, &name, 0);
2135  		if (IS_ERR(log_di)) {
2136  			ret = PTR_ERR(log_di);
2137  			goto out;
2138  		} else if (log_di) {
2139  			/* The dentry exists in the log, we have nothing to do. */
2140  			ret = 0;
2141  			goto out;
2142  		}
2143  	}
2144  
2145  	btrfs_dir_item_key_to_cpu(eb, di, &location);
2146  	btrfs_release_path(path);
2147  	btrfs_release_path(log_path);
2148  	inode = read_one_inode(root, location.objectid);
2149  	if (!inode) {
2150  		ret = -EIO;
2151  		goto out;
2152  	}
2153  
2154  	ret = link_to_fixup_dir(trans, root, path, location.objectid);
2155  	if (ret)
2156  		goto out;
2157  
2158  	inc_nlink(inode);
2159  	ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), BTRFS_I(inode),
2160  					  &name);
2161  	/*
2162  	 * Unlike dir item keys, dir index keys can only have one name (entry) in
2163  	 * them, as there are no key collisions since each key has a unique offset
2164  	 * (an index number), so we're done.
2165  	 */
2166  out:
2167  	btrfs_release_path(path);
2168  	btrfs_release_path(log_path);
2169  	kfree(name.name);
2170  	iput(inode);
2171  	return ret;
2172  }
2173  
2174  static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2175  			      struct btrfs_root *root,
2176  			      struct btrfs_root *log,
2177  			      struct btrfs_path *path,
2178  			      const u64 ino)
2179  {
2180  	struct btrfs_key search_key;
2181  	struct btrfs_path *log_path;
2182  	int i;
2183  	int nritems;
2184  	int ret;
2185  
2186  	log_path = btrfs_alloc_path();
2187  	if (!log_path)
2188  		return -ENOMEM;
2189  
2190  	search_key.objectid = ino;
2191  	search_key.type = BTRFS_XATTR_ITEM_KEY;
2192  	search_key.offset = 0;
2193  again:
2194  	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2195  	if (ret < 0)
2196  		goto out;
2197  process_leaf:
2198  	nritems = btrfs_header_nritems(path->nodes[0]);
2199  	for (i = path->slots[0]; i < nritems; i++) {
2200  		struct btrfs_key key;
2201  		struct btrfs_dir_item *di;
2202  		struct btrfs_dir_item *log_di;
2203  		u32 total_size;
2204  		u32 cur;
2205  
2206  		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2207  		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2208  			ret = 0;
2209  			goto out;
2210  		}
2211  
2212  		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2213  		total_size = btrfs_item_size(path->nodes[0], i);
2214  		cur = 0;
2215  		while (cur < total_size) {
2216  			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2217  			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2218  			u32 this_len = sizeof(*di) + name_len + data_len;
2219  			char *name;
2220  
2221  			name = kmalloc(name_len, GFP_NOFS);
2222  			if (!name) {
2223  				ret = -ENOMEM;
2224  				goto out;
2225  			}
2226  			read_extent_buffer(path->nodes[0], name,
2227  					   (unsigned long)(di + 1), name_len);
2228  
2229  			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2230  						    name, name_len, 0);
2231  			btrfs_release_path(log_path);
2232  			if (!log_di) {
2233  				/* Doesn't exist in log tree, so delete it. */
2234  				btrfs_release_path(path);
2235  				di = btrfs_lookup_xattr(trans, root, path, ino,
2236  							name, name_len, -1);
2237  				kfree(name);
2238  				if (IS_ERR(di)) {
2239  					ret = PTR_ERR(di);
2240  					goto out;
2241  				}
2242  				ASSERT(di);
2243  				ret = btrfs_delete_one_dir_name(trans, root,
2244  								path, di);
2245  				if (ret)
2246  					goto out;
2247  				btrfs_release_path(path);
2248  				search_key = key;
2249  				goto again;
2250  			}
2251  			kfree(name);
2252  			if (IS_ERR(log_di)) {
2253  				ret = PTR_ERR(log_di);
2254  				goto out;
2255  			}
2256  			cur += this_len;
2257  			di = (struct btrfs_dir_item *)((char *)di + this_len);
2258  		}
2259  	}
2260  	ret = btrfs_next_leaf(root, path);
2261  	if (ret > 0)
2262  		ret = 0;
2263  	else if (ret == 0)
2264  		goto process_leaf;
2265  out:
2266  	btrfs_free_path(log_path);
2267  	btrfs_release_path(path);
2268  	return ret;
2269  }
2270  
2271  
2272  /*
2273   * deletion replay happens before we copy any new directory items
2274   * out of the log or out of backreferences from inodes.  It
2275   * scans the log to find ranges of keys that log is authoritative for,
2276   * and then scans the directory to find items in those ranges that are
2277   * not present in the log.
2278   *
2279   * Anything we don't find in the log is unlinked and removed from the
2280   * directory.
2281   */
2282  static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2283  				       struct btrfs_root *root,
2284  				       struct btrfs_root *log,
2285  				       struct btrfs_path *path,
2286  				       u64 dirid, int del_all)
2287  {
2288  	u64 range_start;
2289  	u64 range_end;
2290  	int ret = 0;
2291  	struct btrfs_key dir_key;
2292  	struct btrfs_key found_key;
2293  	struct btrfs_path *log_path;
2294  	struct inode *dir;
2295  
2296  	dir_key.objectid = dirid;
2297  	dir_key.type = BTRFS_DIR_INDEX_KEY;
2298  	log_path = btrfs_alloc_path();
2299  	if (!log_path)
2300  		return -ENOMEM;
2301  
2302  	dir = read_one_inode(root, dirid);
2303  	/* it isn't an error if the inode isn't there, that can happen
2304  	 * because we replay the deletes before we copy in the inode item
2305  	 * from the log
2306  	 */
2307  	if (!dir) {
2308  		btrfs_free_path(log_path);
2309  		return 0;
2310  	}
2311  
2312  	range_start = 0;
2313  	range_end = 0;
2314  	while (1) {
2315  		if (del_all)
2316  			range_end = (u64)-1;
2317  		else {
2318  			ret = find_dir_range(log, path, dirid,
2319  					     &range_start, &range_end);
2320  			if (ret < 0)
2321  				goto out;
2322  			else if (ret > 0)
2323  				break;
2324  		}
2325  
2326  		dir_key.offset = range_start;
2327  		while (1) {
2328  			int nritems;
2329  			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2330  						0, 0);
2331  			if (ret < 0)
2332  				goto out;
2333  
2334  			nritems = btrfs_header_nritems(path->nodes[0]);
2335  			if (path->slots[0] >= nritems) {
2336  				ret = btrfs_next_leaf(root, path);
2337  				if (ret == 1)
2338  					break;
2339  				else if (ret < 0)
2340  					goto out;
2341  			}
2342  			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2343  					      path->slots[0]);
2344  			if (found_key.objectid != dirid ||
2345  			    found_key.type != dir_key.type) {
2346  				ret = 0;
2347  				goto out;
2348  			}
2349  
2350  			if (found_key.offset > range_end)
2351  				break;
2352  
2353  			ret = check_item_in_log(trans, log, path,
2354  						log_path, dir,
2355  						&found_key);
2356  			if (ret)
2357  				goto out;
2358  			if (found_key.offset == (u64)-1)
2359  				break;
2360  			dir_key.offset = found_key.offset + 1;
2361  		}
2362  		btrfs_release_path(path);
2363  		if (range_end == (u64)-1)
2364  			break;
2365  		range_start = range_end + 1;
2366  	}
2367  	ret = 0;
2368  out:
2369  	btrfs_release_path(path);
2370  	btrfs_free_path(log_path);
2371  	iput(dir);
2372  	return ret;
2373  }
2374  
2375  /*
2376   * the process_func used to replay items from the log tree.  This
2377   * gets called in two different stages.  The first stage just looks
2378   * for inodes and makes sure they are all copied into the subvolume.
2379   *
2380   * The second stage copies all the other item types from the log into
2381   * the subvolume.  The two stage approach is slower, but gets rid of
2382   * lots of complexity around inodes referencing other inodes that exist
2383   * only in the log (references come from either directory items or inode
2384   * back refs).
2385   */
2386  static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2387  			     struct walk_control *wc, u64 gen, int level)
2388  {
2389  	int nritems;
2390  	struct btrfs_tree_parent_check check = {
2391  		.transid = gen,
2392  		.level = level
2393  	};
2394  	struct btrfs_path *path;
2395  	struct btrfs_root *root = wc->replay_dest;
2396  	struct btrfs_key key;
2397  	int i;
2398  	int ret;
2399  
2400  	ret = btrfs_read_extent_buffer(eb, &check);
2401  	if (ret)
2402  		return ret;
2403  
2404  	level = btrfs_header_level(eb);
2405  
2406  	if (level != 0)
2407  		return 0;
2408  
2409  	path = btrfs_alloc_path();
2410  	if (!path)
2411  		return -ENOMEM;
2412  
2413  	nritems = btrfs_header_nritems(eb);
2414  	for (i = 0; i < nritems; i++) {
2415  		btrfs_item_key_to_cpu(eb, &key, i);
2416  
2417  		/* inode keys are done during the first stage */
2418  		if (key.type == BTRFS_INODE_ITEM_KEY &&
2419  		    wc->stage == LOG_WALK_REPLAY_INODES) {
2420  			struct btrfs_inode_item *inode_item;
2421  			u32 mode;
2422  
2423  			inode_item = btrfs_item_ptr(eb, i,
2424  					    struct btrfs_inode_item);
2425  			/*
2426  			 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2427  			 * and never got linked before the fsync, skip it, as
2428  			 * replaying it is pointless since it would be deleted
2429  			 * later. We skip logging tmpfiles, but it's always
2430  			 * possible we are replaying a log created with a kernel
2431  			 * that used to log tmpfiles.
2432  			 */
2433  			if (btrfs_inode_nlink(eb, inode_item) == 0) {
2434  				wc->ignore_cur_inode = true;
2435  				continue;
2436  			} else {
2437  				wc->ignore_cur_inode = false;
2438  			}
2439  			ret = replay_xattr_deletes(wc->trans, root, log,
2440  						   path, key.objectid);
2441  			if (ret)
2442  				break;
2443  			mode = btrfs_inode_mode(eb, inode_item);
2444  			if (S_ISDIR(mode)) {
2445  				ret = replay_dir_deletes(wc->trans,
2446  					 root, log, path, key.objectid, 0);
2447  				if (ret)
2448  					break;
2449  			}
2450  			ret = overwrite_item(wc->trans, root, path,
2451  					     eb, i, &key);
2452  			if (ret)
2453  				break;
2454  
2455  			/*
2456  			 * Before replaying extents, truncate the inode to its
2457  			 * size. We need to do it now and not after log replay
2458  			 * because before an fsync we can have prealloc extents
2459  			 * added beyond the inode's i_size. If we did it after,
2460  			 * through orphan cleanup for example, we would drop
2461  			 * those prealloc extents just after replaying them.
2462  			 */
2463  			if (S_ISREG(mode)) {
2464  				struct btrfs_drop_extents_args drop_args = { 0 };
2465  				struct inode *inode;
2466  				u64 from;
2467  
2468  				inode = read_one_inode(root, key.objectid);
2469  				if (!inode) {
2470  					ret = -EIO;
2471  					break;
2472  				}
2473  				from = ALIGN(i_size_read(inode),
2474  					     root->fs_info->sectorsize);
2475  				drop_args.start = from;
2476  				drop_args.end = (u64)-1;
2477  				drop_args.drop_cache = true;
2478  				ret = btrfs_drop_extents(wc->trans, root,
2479  							 BTRFS_I(inode),
2480  							 &drop_args);
2481  				if (!ret) {
2482  					inode_sub_bytes(inode,
2483  							drop_args.bytes_found);
2484  					/* Update the inode's nbytes. */
2485  					ret = btrfs_update_inode(wc->trans,
2486  							root, BTRFS_I(inode));
2487  				}
2488  				iput(inode);
2489  				if (ret)
2490  					break;
2491  			}
2492  
2493  			ret = link_to_fixup_dir(wc->trans, root,
2494  						path, key.objectid);
2495  			if (ret)
2496  				break;
2497  		}
2498  
2499  		if (wc->ignore_cur_inode)
2500  			continue;
2501  
2502  		if (key.type == BTRFS_DIR_INDEX_KEY &&
2503  		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2504  			ret = replay_one_dir_item(wc->trans, root, path,
2505  						  eb, i, &key);
2506  			if (ret)
2507  				break;
2508  		}
2509  
2510  		if (wc->stage < LOG_WALK_REPLAY_ALL)
2511  			continue;
2512  
2513  		/* these keys are simply copied */
2514  		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2515  			ret = overwrite_item(wc->trans, root, path,
2516  					     eb, i, &key);
2517  			if (ret)
2518  				break;
2519  		} else if (key.type == BTRFS_INODE_REF_KEY ||
2520  			   key.type == BTRFS_INODE_EXTREF_KEY) {
2521  			ret = add_inode_ref(wc->trans, root, log, path,
2522  					    eb, i, &key);
2523  			if (ret && ret != -ENOENT)
2524  				break;
2525  			ret = 0;
2526  		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2527  			ret = replay_one_extent(wc->trans, root, path,
2528  						eb, i, &key);
2529  			if (ret)
2530  				break;
2531  		}
2532  		/*
2533  		 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the
2534  		 * BTRFS_DIR_INDEX_KEY items which we use to derive the
2535  		 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an
2536  		 * older kernel with such keys, ignore them.
2537  		 */
2538  	}
2539  	btrfs_free_path(path);
2540  	return ret;
2541  }
2542  
2543  /*
2544   * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2545   */
2546  static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2547  {
2548  	struct btrfs_block_group *cache;
2549  
2550  	cache = btrfs_lookup_block_group(fs_info, start);
2551  	if (!cache) {
2552  		btrfs_err(fs_info, "unable to find block group for %llu", start);
2553  		return;
2554  	}
2555  
2556  	spin_lock(&cache->space_info->lock);
2557  	spin_lock(&cache->lock);
2558  	cache->reserved -= fs_info->nodesize;
2559  	cache->space_info->bytes_reserved -= fs_info->nodesize;
2560  	spin_unlock(&cache->lock);
2561  	spin_unlock(&cache->space_info->lock);
2562  
2563  	btrfs_put_block_group(cache);
2564  }
2565  
2566  static int clean_log_buffer(struct btrfs_trans_handle *trans,
2567  			    struct extent_buffer *eb)
2568  {
2569  	int ret;
2570  
2571  	btrfs_tree_lock(eb);
2572  	btrfs_clear_buffer_dirty(trans, eb);
2573  	wait_on_extent_buffer_writeback(eb);
2574  	btrfs_tree_unlock(eb);
2575  
2576  	if (trans) {
2577  		ret = btrfs_pin_reserved_extent(trans, eb->start, eb->len);
2578  		if (ret)
2579  			return ret;
2580  		btrfs_redirty_list_add(trans->transaction, eb);
2581  	} else {
2582  		unaccount_log_buffer(eb->fs_info, eb->start);
2583  	}
2584  
2585  	return 0;
2586  }
2587  
2588  static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2589  				   struct btrfs_root *root,
2590  				   struct btrfs_path *path, int *level,
2591  				   struct walk_control *wc)
2592  {
2593  	struct btrfs_fs_info *fs_info = root->fs_info;
2594  	u64 bytenr;
2595  	u64 ptr_gen;
2596  	struct extent_buffer *next;
2597  	struct extent_buffer *cur;
2598  	int ret = 0;
2599  
2600  	while (*level > 0) {
2601  		struct btrfs_tree_parent_check check = { 0 };
2602  
2603  		cur = path->nodes[*level];
2604  
2605  		WARN_ON(btrfs_header_level(cur) != *level);
2606  
2607  		if (path->slots[*level] >=
2608  		    btrfs_header_nritems(cur))
2609  			break;
2610  
2611  		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2612  		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2613  		check.transid = ptr_gen;
2614  		check.level = *level - 1;
2615  		check.has_first_key = true;
2616  		btrfs_node_key_to_cpu(cur, &check.first_key, path->slots[*level]);
2617  
2618  		next = btrfs_find_create_tree_block(fs_info, bytenr,
2619  						    btrfs_header_owner(cur),
2620  						    *level - 1);
2621  		if (IS_ERR(next))
2622  			return PTR_ERR(next);
2623  
2624  		if (*level == 1) {
2625  			ret = wc->process_func(root, next, wc, ptr_gen,
2626  					       *level - 1);
2627  			if (ret) {
2628  				free_extent_buffer(next);
2629  				return ret;
2630  			}
2631  
2632  			path->slots[*level]++;
2633  			if (wc->free) {
2634  				ret = btrfs_read_extent_buffer(next, &check);
2635  				if (ret) {
2636  					free_extent_buffer(next);
2637  					return ret;
2638  				}
2639  
2640  				ret = clean_log_buffer(trans, next);
2641  				if (ret) {
2642  					free_extent_buffer(next);
2643  					return ret;
2644  				}
2645  			}
2646  			free_extent_buffer(next);
2647  			continue;
2648  		}
2649  		ret = btrfs_read_extent_buffer(next, &check);
2650  		if (ret) {
2651  			free_extent_buffer(next);
2652  			return ret;
2653  		}
2654  
2655  		if (path->nodes[*level-1])
2656  			free_extent_buffer(path->nodes[*level-1]);
2657  		path->nodes[*level-1] = next;
2658  		*level = btrfs_header_level(next);
2659  		path->slots[*level] = 0;
2660  		cond_resched();
2661  	}
2662  	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2663  
2664  	cond_resched();
2665  	return 0;
2666  }
2667  
2668  static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2669  				 struct btrfs_root *root,
2670  				 struct btrfs_path *path, int *level,
2671  				 struct walk_control *wc)
2672  {
2673  	int i;
2674  	int slot;
2675  	int ret;
2676  
2677  	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2678  		slot = path->slots[i];
2679  		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2680  			path->slots[i]++;
2681  			*level = i;
2682  			WARN_ON(*level == 0);
2683  			return 0;
2684  		} else {
2685  			ret = wc->process_func(root, path->nodes[*level], wc,
2686  				 btrfs_header_generation(path->nodes[*level]),
2687  				 *level);
2688  			if (ret)
2689  				return ret;
2690  
2691  			if (wc->free) {
2692  				ret = clean_log_buffer(trans, path->nodes[*level]);
2693  				if (ret)
2694  					return ret;
2695  			}
2696  			free_extent_buffer(path->nodes[*level]);
2697  			path->nodes[*level] = NULL;
2698  			*level = i + 1;
2699  		}
2700  	}
2701  	return 1;
2702  }
2703  
2704  /*
2705   * drop the reference count on the tree rooted at 'snap'.  This traverses
2706   * the tree freeing any blocks that have a ref count of zero after being
2707   * decremented.
2708   */
2709  static int walk_log_tree(struct btrfs_trans_handle *trans,
2710  			 struct btrfs_root *log, struct walk_control *wc)
2711  {
2712  	int ret = 0;
2713  	int wret;
2714  	int level;
2715  	struct btrfs_path *path;
2716  	int orig_level;
2717  
2718  	path = btrfs_alloc_path();
2719  	if (!path)
2720  		return -ENOMEM;
2721  
2722  	level = btrfs_header_level(log->node);
2723  	orig_level = level;
2724  	path->nodes[level] = log->node;
2725  	atomic_inc(&log->node->refs);
2726  	path->slots[level] = 0;
2727  
2728  	while (1) {
2729  		wret = walk_down_log_tree(trans, log, path, &level, wc);
2730  		if (wret > 0)
2731  			break;
2732  		if (wret < 0) {
2733  			ret = wret;
2734  			goto out;
2735  		}
2736  
2737  		wret = walk_up_log_tree(trans, log, path, &level, wc);
2738  		if (wret > 0)
2739  			break;
2740  		if (wret < 0) {
2741  			ret = wret;
2742  			goto out;
2743  		}
2744  	}
2745  
2746  	/* was the root node processed? if not, catch it here */
2747  	if (path->nodes[orig_level]) {
2748  		ret = wc->process_func(log, path->nodes[orig_level], wc,
2749  			 btrfs_header_generation(path->nodes[orig_level]),
2750  			 orig_level);
2751  		if (ret)
2752  			goto out;
2753  		if (wc->free)
2754  			ret = clean_log_buffer(trans, path->nodes[orig_level]);
2755  	}
2756  
2757  out:
2758  	btrfs_free_path(path);
2759  	return ret;
2760  }
2761  
2762  /*
2763   * helper function to update the item for a given subvolumes log root
2764   * in the tree of log roots
2765   */
2766  static int update_log_root(struct btrfs_trans_handle *trans,
2767  			   struct btrfs_root *log,
2768  			   struct btrfs_root_item *root_item)
2769  {
2770  	struct btrfs_fs_info *fs_info = log->fs_info;
2771  	int ret;
2772  
2773  	if (log->log_transid == 1) {
2774  		/* insert root item on the first sync */
2775  		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2776  				&log->root_key, root_item);
2777  	} else {
2778  		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2779  				&log->root_key, root_item);
2780  	}
2781  	return ret;
2782  }
2783  
2784  static void wait_log_commit(struct btrfs_root *root, int transid)
2785  {
2786  	DEFINE_WAIT(wait);
2787  	int index = transid % 2;
2788  
2789  	/*
2790  	 * we only allow two pending log transactions at a time,
2791  	 * so we know that if ours is more than 2 older than the
2792  	 * current transaction, we're done
2793  	 */
2794  	for (;;) {
2795  		prepare_to_wait(&root->log_commit_wait[index],
2796  				&wait, TASK_UNINTERRUPTIBLE);
2797  
2798  		if (!(root->log_transid_committed < transid &&
2799  		      atomic_read(&root->log_commit[index])))
2800  			break;
2801  
2802  		mutex_unlock(&root->log_mutex);
2803  		schedule();
2804  		mutex_lock(&root->log_mutex);
2805  	}
2806  	finish_wait(&root->log_commit_wait[index], &wait);
2807  }
2808  
2809  static void wait_for_writer(struct btrfs_root *root)
2810  {
2811  	DEFINE_WAIT(wait);
2812  
2813  	for (;;) {
2814  		prepare_to_wait(&root->log_writer_wait, &wait,
2815  				TASK_UNINTERRUPTIBLE);
2816  		if (!atomic_read(&root->log_writers))
2817  			break;
2818  
2819  		mutex_unlock(&root->log_mutex);
2820  		schedule();
2821  		mutex_lock(&root->log_mutex);
2822  	}
2823  	finish_wait(&root->log_writer_wait, &wait);
2824  }
2825  
2826  static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2827  					struct btrfs_log_ctx *ctx)
2828  {
2829  	mutex_lock(&root->log_mutex);
2830  	list_del_init(&ctx->list);
2831  	mutex_unlock(&root->log_mutex);
2832  }
2833  
2834  /*
2835   * Invoked in log mutex context, or be sure there is no other task which
2836   * can access the list.
2837   */
2838  static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2839  					     int index, int error)
2840  {
2841  	struct btrfs_log_ctx *ctx;
2842  	struct btrfs_log_ctx *safe;
2843  
2844  	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2845  		list_del_init(&ctx->list);
2846  		ctx->log_ret = error;
2847  	}
2848  }
2849  
2850  /*
2851   * btrfs_sync_log does sends a given tree log down to the disk and
2852   * updates the super blocks to record it.  When this call is done,
2853   * you know that any inodes previously logged are safely on disk only
2854   * if it returns 0.
2855   *
2856   * Any other return value means you need to call btrfs_commit_transaction.
2857   * Some of the edge cases for fsyncing directories that have had unlinks
2858   * or renames done in the past mean that sometimes the only safe
2859   * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2860   * that has happened.
2861   */
2862  int btrfs_sync_log(struct btrfs_trans_handle *trans,
2863  		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2864  {
2865  	int index1;
2866  	int index2;
2867  	int mark;
2868  	int ret;
2869  	struct btrfs_fs_info *fs_info = root->fs_info;
2870  	struct btrfs_root *log = root->log_root;
2871  	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2872  	struct btrfs_root_item new_root_item;
2873  	int log_transid = 0;
2874  	struct btrfs_log_ctx root_log_ctx;
2875  	struct blk_plug plug;
2876  	u64 log_root_start;
2877  	u64 log_root_level;
2878  
2879  	mutex_lock(&root->log_mutex);
2880  	log_transid = ctx->log_transid;
2881  	if (root->log_transid_committed >= log_transid) {
2882  		mutex_unlock(&root->log_mutex);
2883  		return ctx->log_ret;
2884  	}
2885  
2886  	index1 = log_transid % 2;
2887  	if (atomic_read(&root->log_commit[index1])) {
2888  		wait_log_commit(root, log_transid);
2889  		mutex_unlock(&root->log_mutex);
2890  		return ctx->log_ret;
2891  	}
2892  	ASSERT(log_transid == root->log_transid);
2893  	atomic_set(&root->log_commit[index1], 1);
2894  
2895  	/* wait for previous tree log sync to complete */
2896  	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2897  		wait_log_commit(root, log_transid - 1);
2898  
2899  	while (1) {
2900  		int batch = atomic_read(&root->log_batch);
2901  		/* when we're on an ssd, just kick the log commit out */
2902  		if (!btrfs_test_opt(fs_info, SSD) &&
2903  		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2904  			mutex_unlock(&root->log_mutex);
2905  			schedule_timeout_uninterruptible(1);
2906  			mutex_lock(&root->log_mutex);
2907  		}
2908  		wait_for_writer(root);
2909  		if (batch == atomic_read(&root->log_batch))
2910  			break;
2911  	}
2912  
2913  	/* bail out if we need to do a full commit */
2914  	if (btrfs_need_log_full_commit(trans)) {
2915  		ret = BTRFS_LOG_FORCE_COMMIT;
2916  		mutex_unlock(&root->log_mutex);
2917  		goto out;
2918  	}
2919  
2920  	if (log_transid % 2 == 0)
2921  		mark = EXTENT_DIRTY;
2922  	else
2923  		mark = EXTENT_NEW;
2924  
2925  	/* we start IO on  all the marked extents here, but we don't actually
2926  	 * wait for them until later.
2927  	 */
2928  	blk_start_plug(&plug);
2929  	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
2930  	/*
2931  	 * -EAGAIN happens when someone, e.g., a concurrent transaction
2932  	 *  commit, writes a dirty extent in this tree-log commit. This
2933  	 *  concurrent write will create a hole writing out the extents,
2934  	 *  and we cannot proceed on a zoned filesystem, requiring
2935  	 *  sequential writing. While we can bail out to a full commit
2936  	 *  here, but we can continue hoping the concurrent writing fills
2937  	 *  the hole.
2938  	 */
2939  	if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
2940  		ret = 0;
2941  	if (ret) {
2942  		blk_finish_plug(&plug);
2943  		btrfs_set_log_full_commit(trans);
2944  		mutex_unlock(&root->log_mutex);
2945  		goto out;
2946  	}
2947  
2948  	/*
2949  	 * We _must_ update under the root->log_mutex in order to make sure we
2950  	 * have a consistent view of the log root we are trying to commit at
2951  	 * this moment.
2952  	 *
2953  	 * We _must_ copy this into a local copy, because we are not holding the
2954  	 * log_root_tree->log_mutex yet.  This is important because when we
2955  	 * commit the log_root_tree we must have a consistent view of the
2956  	 * log_root_tree when we update the super block to point at the
2957  	 * log_root_tree bytenr.  If we update the log_root_tree here we'll race
2958  	 * with the commit and possibly point at the new block which we may not
2959  	 * have written out.
2960  	 */
2961  	btrfs_set_root_node(&log->root_item, log->node);
2962  	memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
2963  
2964  	root->log_transid++;
2965  	log->log_transid = root->log_transid;
2966  	root->log_start_pid = 0;
2967  	/*
2968  	 * IO has been started, blocks of the log tree have WRITTEN flag set
2969  	 * in their headers. new modifications of the log will be written to
2970  	 * new positions. so it's safe to allow log writers to go in.
2971  	 */
2972  	mutex_unlock(&root->log_mutex);
2973  
2974  	if (btrfs_is_zoned(fs_info)) {
2975  		mutex_lock(&fs_info->tree_root->log_mutex);
2976  		if (!log_root_tree->node) {
2977  			ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
2978  			if (ret) {
2979  				mutex_unlock(&fs_info->tree_root->log_mutex);
2980  				blk_finish_plug(&plug);
2981  				goto out;
2982  			}
2983  		}
2984  		mutex_unlock(&fs_info->tree_root->log_mutex);
2985  	}
2986  
2987  	btrfs_init_log_ctx(&root_log_ctx, NULL);
2988  
2989  	mutex_lock(&log_root_tree->log_mutex);
2990  
2991  	index2 = log_root_tree->log_transid % 2;
2992  	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2993  	root_log_ctx.log_transid = log_root_tree->log_transid;
2994  
2995  	/*
2996  	 * Now we are safe to update the log_root_tree because we're under the
2997  	 * log_mutex, and we're a current writer so we're holding the commit
2998  	 * open until we drop the log_mutex.
2999  	 */
3000  	ret = update_log_root(trans, log, &new_root_item);
3001  	if (ret) {
3002  		if (!list_empty(&root_log_ctx.list))
3003  			list_del_init(&root_log_ctx.list);
3004  
3005  		blk_finish_plug(&plug);
3006  		btrfs_set_log_full_commit(trans);
3007  		if (ret != -ENOSPC)
3008  			btrfs_err(fs_info,
3009  				  "failed to update log for root %llu ret %d",
3010  				  root->root_key.objectid, ret);
3011  		btrfs_wait_tree_log_extents(log, mark);
3012  		mutex_unlock(&log_root_tree->log_mutex);
3013  		goto out;
3014  	}
3015  
3016  	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3017  		blk_finish_plug(&plug);
3018  		list_del_init(&root_log_ctx.list);
3019  		mutex_unlock(&log_root_tree->log_mutex);
3020  		ret = root_log_ctx.log_ret;
3021  		goto out;
3022  	}
3023  
3024  	index2 = root_log_ctx.log_transid % 2;
3025  	if (atomic_read(&log_root_tree->log_commit[index2])) {
3026  		blk_finish_plug(&plug);
3027  		ret = btrfs_wait_tree_log_extents(log, mark);
3028  		wait_log_commit(log_root_tree,
3029  				root_log_ctx.log_transid);
3030  		mutex_unlock(&log_root_tree->log_mutex);
3031  		if (!ret)
3032  			ret = root_log_ctx.log_ret;
3033  		goto out;
3034  	}
3035  	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3036  	atomic_set(&log_root_tree->log_commit[index2], 1);
3037  
3038  	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3039  		wait_log_commit(log_root_tree,
3040  				root_log_ctx.log_transid - 1);
3041  	}
3042  
3043  	/*
3044  	 * now that we've moved on to the tree of log tree roots,
3045  	 * check the full commit flag again
3046  	 */
3047  	if (btrfs_need_log_full_commit(trans)) {
3048  		blk_finish_plug(&plug);
3049  		btrfs_wait_tree_log_extents(log, mark);
3050  		mutex_unlock(&log_root_tree->log_mutex);
3051  		ret = BTRFS_LOG_FORCE_COMMIT;
3052  		goto out_wake_log_root;
3053  	}
3054  
3055  	ret = btrfs_write_marked_extents(fs_info,
3056  					 &log_root_tree->dirty_log_pages,
3057  					 EXTENT_DIRTY | EXTENT_NEW);
3058  	blk_finish_plug(&plug);
3059  	/*
3060  	 * As described above, -EAGAIN indicates a hole in the extents. We
3061  	 * cannot wait for these write outs since the waiting cause a
3062  	 * deadlock. Bail out to the full commit instead.
3063  	 */
3064  	if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3065  		btrfs_set_log_full_commit(trans);
3066  		btrfs_wait_tree_log_extents(log, mark);
3067  		mutex_unlock(&log_root_tree->log_mutex);
3068  		goto out_wake_log_root;
3069  	} else if (ret) {
3070  		btrfs_set_log_full_commit(trans);
3071  		mutex_unlock(&log_root_tree->log_mutex);
3072  		goto out_wake_log_root;
3073  	}
3074  	ret = btrfs_wait_tree_log_extents(log, mark);
3075  	if (!ret)
3076  		ret = btrfs_wait_tree_log_extents(log_root_tree,
3077  						  EXTENT_NEW | EXTENT_DIRTY);
3078  	if (ret) {
3079  		btrfs_set_log_full_commit(trans);
3080  		mutex_unlock(&log_root_tree->log_mutex);
3081  		goto out_wake_log_root;
3082  	}
3083  
3084  	log_root_start = log_root_tree->node->start;
3085  	log_root_level = btrfs_header_level(log_root_tree->node);
3086  	log_root_tree->log_transid++;
3087  	mutex_unlock(&log_root_tree->log_mutex);
3088  
3089  	/*
3090  	 * Here we are guaranteed that nobody is going to write the superblock
3091  	 * for the current transaction before us and that neither we do write
3092  	 * our superblock before the previous transaction finishes its commit
3093  	 * and writes its superblock, because:
3094  	 *
3095  	 * 1) We are holding a handle on the current transaction, so no body
3096  	 *    can commit it until we release the handle;
3097  	 *
3098  	 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3099  	 *    if the previous transaction is still committing, and hasn't yet
3100  	 *    written its superblock, we wait for it to do it, because a
3101  	 *    transaction commit acquires the tree_log_mutex when the commit
3102  	 *    begins and releases it only after writing its superblock.
3103  	 */
3104  	mutex_lock(&fs_info->tree_log_mutex);
3105  
3106  	/*
3107  	 * The previous transaction writeout phase could have failed, and thus
3108  	 * marked the fs in an error state.  We must not commit here, as we
3109  	 * could have updated our generation in the super_for_commit and
3110  	 * writing the super here would result in transid mismatches.  If there
3111  	 * is an error here just bail.
3112  	 */
3113  	if (BTRFS_FS_ERROR(fs_info)) {
3114  		ret = -EIO;
3115  		btrfs_set_log_full_commit(trans);
3116  		btrfs_abort_transaction(trans, ret);
3117  		mutex_unlock(&fs_info->tree_log_mutex);
3118  		goto out_wake_log_root;
3119  	}
3120  
3121  	btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3122  	btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3123  	ret = write_all_supers(fs_info, 1);
3124  	mutex_unlock(&fs_info->tree_log_mutex);
3125  	if (ret) {
3126  		btrfs_set_log_full_commit(trans);
3127  		btrfs_abort_transaction(trans, ret);
3128  		goto out_wake_log_root;
3129  	}
3130  
3131  	/*
3132  	 * We know there can only be one task here, since we have not yet set
3133  	 * root->log_commit[index1] to 0 and any task attempting to sync the
3134  	 * log must wait for the previous log transaction to commit if it's
3135  	 * still in progress or wait for the current log transaction commit if
3136  	 * someone else already started it. We use <= and not < because the
3137  	 * first log transaction has an ID of 0.
3138  	 */
3139  	ASSERT(root->last_log_commit <= log_transid);
3140  	root->last_log_commit = log_transid;
3141  
3142  out_wake_log_root:
3143  	mutex_lock(&log_root_tree->log_mutex);
3144  	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3145  
3146  	log_root_tree->log_transid_committed++;
3147  	atomic_set(&log_root_tree->log_commit[index2], 0);
3148  	mutex_unlock(&log_root_tree->log_mutex);
3149  
3150  	/*
3151  	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3152  	 * all the updates above are seen by the woken threads. It might not be
3153  	 * necessary, but proving that seems to be hard.
3154  	 */
3155  	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3156  out:
3157  	mutex_lock(&root->log_mutex);
3158  	btrfs_remove_all_log_ctxs(root, index1, ret);
3159  	root->log_transid_committed++;
3160  	atomic_set(&root->log_commit[index1], 0);
3161  	mutex_unlock(&root->log_mutex);
3162  
3163  	/*
3164  	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3165  	 * all the updates above are seen by the woken threads. It might not be
3166  	 * necessary, but proving that seems to be hard.
3167  	 */
3168  	cond_wake_up(&root->log_commit_wait[index1]);
3169  	return ret;
3170  }
3171  
3172  static void free_log_tree(struct btrfs_trans_handle *trans,
3173  			  struct btrfs_root *log)
3174  {
3175  	int ret;
3176  	struct walk_control wc = {
3177  		.free = 1,
3178  		.process_func = process_one_buffer
3179  	};
3180  
3181  	if (log->node) {
3182  		ret = walk_log_tree(trans, log, &wc);
3183  		if (ret) {
3184  			/*
3185  			 * We weren't able to traverse the entire log tree, the
3186  			 * typical scenario is getting an -EIO when reading an
3187  			 * extent buffer of the tree, due to a previous writeback
3188  			 * failure of it.
3189  			 */
3190  			set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
3191  				&log->fs_info->fs_state);
3192  
3193  			/*
3194  			 * Some extent buffers of the log tree may still be dirty
3195  			 * and not yet written back to storage, because we may
3196  			 * have updates to a log tree without syncing a log tree,
3197  			 * such as during rename and link operations. So flush
3198  			 * them out and wait for their writeback to complete, so
3199  			 * that we properly cleanup their state and pages.
3200  			 */
3201  			btrfs_write_marked_extents(log->fs_info,
3202  						   &log->dirty_log_pages,
3203  						   EXTENT_DIRTY | EXTENT_NEW);
3204  			btrfs_wait_tree_log_extents(log,
3205  						    EXTENT_DIRTY | EXTENT_NEW);
3206  
3207  			if (trans)
3208  				btrfs_abort_transaction(trans, ret);
3209  			else
3210  				btrfs_handle_fs_error(log->fs_info, ret, NULL);
3211  		}
3212  	}
3213  
3214  	clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3215  			  EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3216  	extent_io_tree_release(&log->log_csum_range);
3217  
3218  	btrfs_put_root(log);
3219  }
3220  
3221  /*
3222   * free all the extents used by the tree log.  This should be called
3223   * at commit time of the full transaction
3224   */
3225  int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3226  {
3227  	if (root->log_root) {
3228  		free_log_tree(trans, root->log_root);
3229  		root->log_root = NULL;
3230  		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3231  	}
3232  	return 0;
3233  }
3234  
3235  int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3236  			     struct btrfs_fs_info *fs_info)
3237  {
3238  	if (fs_info->log_root_tree) {
3239  		free_log_tree(trans, fs_info->log_root_tree);
3240  		fs_info->log_root_tree = NULL;
3241  		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3242  	}
3243  	return 0;
3244  }
3245  
3246  /*
3247   * Check if an inode was logged in the current transaction. This correctly deals
3248   * with the case where the inode was logged but has a logged_trans of 0, which
3249   * happens if the inode is evicted and loaded again, as logged_trans is an in
3250   * memory only field (not persisted).
3251   *
3252   * Returns 1 if the inode was logged before in the transaction, 0 if it was not,
3253   * and < 0 on error.
3254   */
3255  static int inode_logged(const struct btrfs_trans_handle *trans,
3256  			struct btrfs_inode *inode,
3257  			struct btrfs_path *path_in)
3258  {
3259  	struct btrfs_path *path = path_in;
3260  	struct btrfs_key key;
3261  	int ret;
3262  
3263  	if (inode->logged_trans == trans->transid)
3264  		return 1;
3265  
3266  	/*
3267  	 * If logged_trans is not 0, then we know the inode logged was not logged
3268  	 * in this transaction, so we can return false right away.
3269  	 */
3270  	if (inode->logged_trans > 0)
3271  		return 0;
3272  
3273  	/*
3274  	 * If no log tree was created for this root in this transaction, then
3275  	 * the inode can not have been logged in this transaction. In that case
3276  	 * set logged_trans to anything greater than 0 and less than the current
3277  	 * transaction's ID, to avoid the search below in a future call in case
3278  	 * a log tree gets created after this.
3279  	 */
3280  	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) {
3281  		inode->logged_trans = trans->transid - 1;
3282  		return 0;
3283  	}
3284  
3285  	/*
3286  	 * We have a log tree and the inode's logged_trans is 0. We can't tell
3287  	 * for sure if the inode was logged before in this transaction by looking
3288  	 * only at logged_trans. We could be pessimistic and assume it was, but
3289  	 * that can lead to unnecessarily logging an inode during rename and link
3290  	 * operations, and then further updating the log in followup rename and
3291  	 * link operations, specially if it's a directory, which adds latency
3292  	 * visible to applications doing a series of rename or link operations.
3293  	 *
3294  	 * A logged_trans of 0 here can mean several things:
3295  	 *
3296  	 * 1) The inode was never logged since the filesystem was mounted, and may
3297  	 *    or may have not been evicted and loaded again;
3298  	 *
3299  	 * 2) The inode was logged in a previous transaction, then evicted and
3300  	 *    then loaded again;
3301  	 *
3302  	 * 3) The inode was logged in the current transaction, then evicted and
3303  	 *    then loaded again.
3304  	 *
3305  	 * For cases 1) and 2) we don't want to return true, but we need to detect
3306  	 * case 3) and return true. So we do a search in the log root for the inode
3307  	 * item.
3308  	 */
3309  	key.objectid = btrfs_ino(inode);
3310  	key.type = BTRFS_INODE_ITEM_KEY;
3311  	key.offset = 0;
3312  
3313  	if (!path) {
3314  		path = btrfs_alloc_path();
3315  		if (!path)
3316  			return -ENOMEM;
3317  	}
3318  
3319  	ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3320  
3321  	if (path_in)
3322  		btrfs_release_path(path);
3323  	else
3324  		btrfs_free_path(path);
3325  
3326  	/*
3327  	 * Logging an inode always results in logging its inode item. So if we
3328  	 * did not find the item we know the inode was not logged for sure.
3329  	 */
3330  	if (ret < 0) {
3331  		return ret;
3332  	} else if (ret > 0) {
3333  		/*
3334  		 * Set logged_trans to a value greater than 0 and less then the
3335  		 * current transaction to avoid doing the search in future calls.
3336  		 */
3337  		inode->logged_trans = trans->transid - 1;
3338  		return 0;
3339  	}
3340  
3341  	/*
3342  	 * The inode was previously logged and then evicted, set logged_trans to
3343  	 * the current transacion's ID, to avoid future tree searches as long as
3344  	 * the inode is not evicted again.
3345  	 */
3346  	inode->logged_trans = trans->transid;
3347  
3348  	/*
3349  	 * If it's a directory, then we must set last_dir_index_offset to the
3350  	 * maximum possible value, so that the next attempt to log the inode does
3351  	 * not skip checking if dir index keys found in modified subvolume tree
3352  	 * leaves have been logged before, otherwise it would result in attempts
3353  	 * to insert duplicate dir index keys in the log tree. This must be done
3354  	 * because last_dir_index_offset is an in-memory only field, not persisted
3355  	 * in the inode item or any other on-disk structure, so its value is lost
3356  	 * once the inode is evicted.
3357  	 */
3358  	if (S_ISDIR(inode->vfs_inode.i_mode))
3359  		inode->last_dir_index_offset = (u64)-1;
3360  
3361  	return 1;
3362  }
3363  
3364  /*
3365   * Delete a directory entry from the log if it exists.
3366   *
3367   * Returns < 0 on error
3368   *           1 if the entry does not exists
3369   *           0 if the entry existed and was successfully deleted
3370   */
3371  static int del_logged_dentry(struct btrfs_trans_handle *trans,
3372  			     struct btrfs_root *log,
3373  			     struct btrfs_path *path,
3374  			     u64 dir_ino,
3375  			     const struct fscrypt_str *name,
3376  			     u64 index)
3377  {
3378  	struct btrfs_dir_item *di;
3379  
3380  	/*
3381  	 * We only log dir index items of a directory, so we don't need to look
3382  	 * for dir item keys.
3383  	 */
3384  	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3385  					 index, name, -1);
3386  	if (IS_ERR(di))
3387  		return PTR_ERR(di);
3388  	else if (!di)
3389  		return 1;
3390  
3391  	/*
3392  	 * We do not need to update the size field of the directory's
3393  	 * inode item because on log replay we update the field to reflect
3394  	 * all existing entries in the directory (see overwrite_item()).
3395  	 */
3396  	return btrfs_delete_one_dir_name(trans, log, path, di);
3397  }
3398  
3399  /*
3400   * If both a file and directory are logged, and unlinks or renames are
3401   * mixed in, we have a few interesting corners:
3402   *
3403   * create file X in dir Y
3404   * link file X to X.link in dir Y
3405   * fsync file X
3406   * unlink file X but leave X.link
3407   * fsync dir Y
3408   *
3409   * After a crash we would expect only X.link to exist.  But file X
3410   * didn't get fsync'd again so the log has back refs for X and X.link.
3411   *
3412   * We solve this by removing directory entries and inode backrefs from the
3413   * log when a file that was logged in the current transaction is
3414   * unlinked.  Any later fsync will include the updated log entries, and
3415   * we'll be able to reconstruct the proper directory items from backrefs.
3416   *
3417   * This optimizations allows us to avoid relogging the entire inode
3418   * or the entire directory.
3419   */
3420  void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3421  				  struct btrfs_root *root,
3422  				  const struct fscrypt_str *name,
3423  				  struct btrfs_inode *dir, u64 index)
3424  {
3425  	struct btrfs_path *path;
3426  	int ret;
3427  
3428  	ret = inode_logged(trans, dir, NULL);
3429  	if (ret == 0)
3430  		return;
3431  	else if (ret < 0) {
3432  		btrfs_set_log_full_commit(trans);
3433  		return;
3434  	}
3435  
3436  	ret = join_running_log_trans(root);
3437  	if (ret)
3438  		return;
3439  
3440  	mutex_lock(&dir->log_mutex);
3441  
3442  	path = btrfs_alloc_path();
3443  	if (!path) {
3444  		ret = -ENOMEM;
3445  		goto out_unlock;
3446  	}
3447  
3448  	ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir),
3449  				name, index);
3450  	btrfs_free_path(path);
3451  out_unlock:
3452  	mutex_unlock(&dir->log_mutex);
3453  	if (ret < 0)
3454  		btrfs_set_log_full_commit(trans);
3455  	btrfs_end_log_trans(root);
3456  }
3457  
3458  /* see comments for btrfs_del_dir_entries_in_log */
3459  void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3460  				struct btrfs_root *root,
3461  				const struct fscrypt_str *name,
3462  				struct btrfs_inode *inode, u64 dirid)
3463  {
3464  	struct btrfs_root *log;
3465  	u64 index;
3466  	int ret;
3467  
3468  	ret = inode_logged(trans, inode, NULL);
3469  	if (ret == 0)
3470  		return;
3471  	else if (ret < 0) {
3472  		btrfs_set_log_full_commit(trans);
3473  		return;
3474  	}
3475  
3476  	ret = join_running_log_trans(root);
3477  	if (ret)
3478  		return;
3479  	log = root->log_root;
3480  	mutex_lock(&inode->log_mutex);
3481  
3482  	ret = btrfs_del_inode_ref(trans, log, name, btrfs_ino(inode),
3483  				  dirid, &index);
3484  	mutex_unlock(&inode->log_mutex);
3485  	if (ret < 0 && ret != -ENOENT)
3486  		btrfs_set_log_full_commit(trans);
3487  	btrfs_end_log_trans(root);
3488  }
3489  
3490  /*
3491   * creates a range item in the log for 'dirid'.  first_offset and
3492   * last_offset tell us which parts of the key space the log should
3493   * be considered authoritative for.
3494   */
3495  static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3496  				       struct btrfs_root *log,
3497  				       struct btrfs_path *path,
3498  				       u64 dirid,
3499  				       u64 first_offset, u64 last_offset)
3500  {
3501  	int ret;
3502  	struct btrfs_key key;
3503  	struct btrfs_dir_log_item *item;
3504  
3505  	key.objectid = dirid;
3506  	key.offset = first_offset;
3507  	key.type = BTRFS_DIR_LOG_INDEX_KEY;
3508  	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3509  	/*
3510  	 * -EEXIST is fine and can happen sporadically when we are logging a
3511  	 * directory and have concurrent insertions in the subvolume's tree for
3512  	 * items from other inodes and that result in pushing off some dir items
3513  	 * from one leaf to another in order to accommodate for the new items.
3514  	 * This results in logging the same dir index range key.
3515  	 */
3516  	if (ret && ret != -EEXIST)
3517  		return ret;
3518  
3519  	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3520  			      struct btrfs_dir_log_item);
3521  	if (ret == -EEXIST) {
3522  		const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item);
3523  
3524  		/*
3525  		 * btrfs_del_dir_entries_in_log() might have been called during
3526  		 * an unlink between the initial insertion of this key and the
3527  		 * current update, or we might be logging a single entry deletion
3528  		 * during a rename, so set the new last_offset to the max value.
3529  		 */
3530  		last_offset = max(last_offset, curr_end);
3531  	}
3532  	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3533  	btrfs_mark_buffer_dirty(path->nodes[0]);
3534  	btrfs_release_path(path);
3535  	return 0;
3536  }
3537  
3538  static int flush_dir_items_batch(struct btrfs_trans_handle *trans,
3539  				 struct btrfs_inode *inode,
3540  				 struct extent_buffer *src,
3541  				 struct btrfs_path *dst_path,
3542  				 int start_slot,
3543  				 int count)
3544  {
3545  	struct btrfs_root *log = inode->root->log_root;
3546  	char *ins_data = NULL;
3547  	struct btrfs_item_batch batch;
3548  	struct extent_buffer *dst;
3549  	unsigned long src_offset;
3550  	unsigned long dst_offset;
3551  	u64 last_index;
3552  	struct btrfs_key key;
3553  	u32 item_size;
3554  	int ret;
3555  	int i;
3556  
3557  	ASSERT(count > 0);
3558  	batch.nr = count;
3559  
3560  	if (count == 1) {
3561  		btrfs_item_key_to_cpu(src, &key, start_slot);
3562  		item_size = btrfs_item_size(src, start_slot);
3563  		batch.keys = &key;
3564  		batch.data_sizes = &item_size;
3565  		batch.total_data_size = item_size;
3566  	} else {
3567  		struct btrfs_key *ins_keys;
3568  		u32 *ins_sizes;
3569  
3570  		ins_data = kmalloc(count * sizeof(u32) +
3571  				   count * sizeof(struct btrfs_key), GFP_NOFS);
3572  		if (!ins_data)
3573  			return -ENOMEM;
3574  
3575  		ins_sizes = (u32 *)ins_data;
3576  		ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32));
3577  		batch.keys = ins_keys;
3578  		batch.data_sizes = ins_sizes;
3579  		batch.total_data_size = 0;
3580  
3581  		for (i = 0; i < count; i++) {
3582  			const int slot = start_slot + i;
3583  
3584  			btrfs_item_key_to_cpu(src, &ins_keys[i], slot);
3585  			ins_sizes[i] = btrfs_item_size(src, slot);
3586  			batch.total_data_size += ins_sizes[i];
3587  		}
3588  	}
3589  
3590  	ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
3591  	if (ret)
3592  		goto out;
3593  
3594  	dst = dst_path->nodes[0];
3595  	/*
3596  	 * Copy all the items in bulk, in a single copy operation. Item data is
3597  	 * organized such that it's placed at the end of a leaf and from right
3598  	 * to left. For example, the data for the second item ends at an offset
3599  	 * that matches the offset where the data for the first item starts, the
3600  	 * data for the third item ends at an offset that matches the offset
3601  	 * where the data of the second items starts, and so on.
3602  	 * Therefore our source and destination start offsets for copy match the
3603  	 * offsets of the last items (highest slots).
3604  	 */
3605  	dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1);
3606  	src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1);
3607  	copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size);
3608  	btrfs_release_path(dst_path);
3609  
3610  	last_index = batch.keys[count - 1].offset;
3611  	ASSERT(last_index > inode->last_dir_index_offset);
3612  
3613  	/*
3614  	 * If for some unexpected reason the last item's index is not greater
3615  	 * than the last index we logged, warn and force a transaction commit.
3616  	 */
3617  	if (WARN_ON(last_index <= inode->last_dir_index_offset))
3618  		ret = BTRFS_LOG_FORCE_COMMIT;
3619  	else
3620  		inode->last_dir_index_offset = last_index;
3621  
3622  	if (btrfs_get_first_dir_index_to_log(inode) == 0)
3623  		btrfs_set_first_dir_index_to_log(inode, batch.keys[0].offset);
3624  out:
3625  	kfree(ins_data);
3626  
3627  	return ret;
3628  }
3629  
3630  static int process_dir_items_leaf(struct btrfs_trans_handle *trans,
3631  				  struct btrfs_inode *inode,
3632  				  struct btrfs_path *path,
3633  				  struct btrfs_path *dst_path,
3634  				  struct btrfs_log_ctx *ctx,
3635  				  u64 *last_old_dentry_offset)
3636  {
3637  	struct btrfs_root *log = inode->root->log_root;
3638  	struct extent_buffer *src;
3639  	const int nritems = btrfs_header_nritems(path->nodes[0]);
3640  	const u64 ino = btrfs_ino(inode);
3641  	bool last_found = false;
3642  	int batch_start = 0;
3643  	int batch_size = 0;
3644  	int i;
3645  
3646  	/*
3647  	 * We need to clone the leaf, release the read lock on it, and use the
3648  	 * clone before modifying the log tree. See the comment at copy_items()
3649  	 * about why we need to do this.
3650  	 */
3651  	src = btrfs_clone_extent_buffer(path->nodes[0]);
3652  	if (!src)
3653  		return -ENOMEM;
3654  
3655  	i = path->slots[0];
3656  	btrfs_release_path(path);
3657  	path->nodes[0] = src;
3658  	path->slots[0] = i;
3659  
3660  	for (; i < nritems; i++) {
3661  		struct btrfs_dir_item *di;
3662  		struct btrfs_key key;
3663  		int ret;
3664  
3665  		btrfs_item_key_to_cpu(src, &key, i);
3666  
3667  		if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) {
3668  			last_found = true;
3669  			break;
3670  		}
3671  
3672  		di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3673  
3674  		/*
3675  		 * Skip ranges of items that consist only of dir item keys created
3676  		 * in past transactions. However if we find a gap, we must log a
3677  		 * dir index range item for that gap, so that index keys in that
3678  		 * gap are deleted during log replay.
3679  		 */
3680  		if (btrfs_dir_transid(src, di) < trans->transid) {
3681  			if (key.offset > *last_old_dentry_offset + 1) {
3682  				ret = insert_dir_log_key(trans, log, dst_path,
3683  						 ino, *last_old_dentry_offset + 1,
3684  						 key.offset - 1);
3685  				if (ret < 0)
3686  					return ret;
3687  			}
3688  
3689  			*last_old_dentry_offset = key.offset;
3690  			continue;
3691  		}
3692  
3693  		/* If we logged this dir index item before, we can skip it. */
3694  		if (key.offset <= inode->last_dir_index_offset)
3695  			continue;
3696  
3697  		/*
3698  		 * We must make sure that when we log a directory entry, the
3699  		 * corresponding inode, after log replay, has a matching link
3700  		 * count. For example:
3701  		 *
3702  		 * touch foo
3703  		 * mkdir mydir
3704  		 * sync
3705  		 * ln foo mydir/bar
3706  		 * xfs_io -c "fsync" mydir
3707  		 * <crash>
3708  		 * <mount fs and log replay>
3709  		 *
3710  		 * Would result in a fsync log that when replayed, our file inode
3711  		 * would have a link count of 1, but we get two directory entries
3712  		 * pointing to the same inode. After removing one of the names,
3713  		 * it would not be possible to remove the other name, which
3714  		 * resulted always in stale file handle errors, and would not be
3715  		 * possible to rmdir the parent directory, since its i_size could
3716  		 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
3717  		 * resulting in -ENOTEMPTY errors.
3718  		 */
3719  		if (!ctx->log_new_dentries) {
3720  			struct btrfs_key di_key;
3721  
3722  			btrfs_dir_item_key_to_cpu(src, di, &di_key);
3723  			if (di_key.type != BTRFS_ROOT_ITEM_KEY)
3724  				ctx->log_new_dentries = true;
3725  		}
3726  
3727  		if (batch_size == 0)
3728  			batch_start = i;
3729  		batch_size++;
3730  	}
3731  
3732  	if (batch_size > 0) {
3733  		int ret;
3734  
3735  		ret = flush_dir_items_batch(trans, inode, src, dst_path,
3736  					    batch_start, batch_size);
3737  		if (ret < 0)
3738  			return ret;
3739  	}
3740  
3741  	return last_found ? 1 : 0;
3742  }
3743  
3744  /*
3745   * log all the items included in the current transaction for a given
3746   * directory.  This also creates the range items in the log tree required
3747   * to replay anything deleted before the fsync
3748   */
3749  static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3750  			  struct btrfs_inode *inode,
3751  			  struct btrfs_path *path,
3752  			  struct btrfs_path *dst_path,
3753  			  struct btrfs_log_ctx *ctx,
3754  			  u64 min_offset, u64 *last_offset_ret)
3755  {
3756  	struct btrfs_key min_key;
3757  	struct btrfs_root *root = inode->root;
3758  	struct btrfs_root *log = root->log_root;
3759  	int ret;
3760  	u64 last_old_dentry_offset = min_offset - 1;
3761  	u64 last_offset = (u64)-1;
3762  	u64 ino = btrfs_ino(inode);
3763  
3764  	min_key.objectid = ino;
3765  	min_key.type = BTRFS_DIR_INDEX_KEY;
3766  	min_key.offset = min_offset;
3767  
3768  	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3769  
3770  	/*
3771  	 * we didn't find anything from this transaction, see if there
3772  	 * is anything at all
3773  	 */
3774  	if (ret != 0 || min_key.objectid != ino ||
3775  	    min_key.type != BTRFS_DIR_INDEX_KEY) {
3776  		min_key.objectid = ino;
3777  		min_key.type = BTRFS_DIR_INDEX_KEY;
3778  		min_key.offset = (u64)-1;
3779  		btrfs_release_path(path);
3780  		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3781  		if (ret < 0) {
3782  			btrfs_release_path(path);
3783  			return ret;
3784  		}
3785  		ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3786  
3787  		/* if ret == 0 there are items for this type,
3788  		 * create a range to tell us the last key of this type.
3789  		 * otherwise, there are no items in this directory after
3790  		 * *min_offset, and we create a range to indicate that.
3791  		 */
3792  		if (ret == 0) {
3793  			struct btrfs_key tmp;
3794  
3795  			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3796  					      path->slots[0]);
3797  			if (tmp.type == BTRFS_DIR_INDEX_KEY)
3798  				last_old_dentry_offset = tmp.offset;
3799  		} else if (ret > 0) {
3800  			ret = 0;
3801  		}
3802  
3803  		goto done;
3804  	}
3805  
3806  	/* go backward to find any previous key */
3807  	ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3808  	if (ret == 0) {
3809  		struct btrfs_key tmp;
3810  
3811  		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3812  		/*
3813  		 * The dir index key before the first one we found that needs to
3814  		 * be logged might be in a previous leaf, and there might be a
3815  		 * gap between these keys, meaning that we had deletions that
3816  		 * happened. So the key range item we log (key type
3817  		 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the
3818  		 * previous key's offset plus 1, so that those deletes are replayed.
3819  		 */
3820  		if (tmp.type == BTRFS_DIR_INDEX_KEY)
3821  			last_old_dentry_offset = tmp.offset;
3822  	} else if (ret < 0) {
3823  		goto done;
3824  	}
3825  
3826  	btrfs_release_path(path);
3827  
3828  	/*
3829  	 * Find the first key from this transaction again or the one we were at
3830  	 * in the loop below in case we had to reschedule. We may be logging the
3831  	 * directory without holding its VFS lock, which happen when logging new
3832  	 * dentries (through log_new_dir_dentries()) or in some cases when we
3833  	 * need to log the parent directory of an inode. This means a dir index
3834  	 * key might be deleted from the inode's root, and therefore we may not
3835  	 * find it anymore. If we can't find it, just move to the next key. We
3836  	 * can not bail out and ignore, because if we do that we will simply
3837  	 * not log dir index keys that come after the one that was just deleted
3838  	 * and we can end up logging a dir index range that ends at (u64)-1
3839  	 * (@last_offset is initialized to that), resulting in removing dir
3840  	 * entries we should not remove at log replay time.
3841  	 */
3842  search:
3843  	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3844  	if (ret > 0) {
3845  		ret = btrfs_next_item(root, path);
3846  		if (ret > 0) {
3847  			/* There are no more keys in the inode's root. */
3848  			ret = 0;
3849  			goto done;
3850  		}
3851  	}
3852  	if (ret < 0)
3853  		goto done;
3854  
3855  	/*
3856  	 * we have a block from this transaction, log every item in it
3857  	 * from our directory
3858  	 */
3859  	while (1) {
3860  		ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx,
3861  					     &last_old_dentry_offset);
3862  		if (ret != 0) {
3863  			if (ret > 0)
3864  				ret = 0;
3865  			goto done;
3866  		}
3867  		path->slots[0] = btrfs_header_nritems(path->nodes[0]);
3868  
3869  		/*
3870  		 * look ahead to the next item and see if it is also
3871  		 * from this directory and from this transaction
3872  		 */
3873  		ret = btrfs_next_leaf(root, path);
3874  		if (ret) {
3875  			if (ret == 1) {
3876  				last_offset = (u64)-1;
3877  				ret = 0;
3878  			}
3879  			goto done;
3880  		}
3881  		btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]);
3882  		if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) {
3883  			last_offset = (u64)-1;
3884  			goto done;
3885  		}
3886  		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3887  			/*
3888  			 * The next leaf was not changed in the current transaction
3889  			 * and has at least one dir index key.
3890  			 * We check for the next key because there might have been
3891  			 * one or more deletions between the last key we logged and
3892  			 * that next key. So the key range item we log (key type
3893  			 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's
3894  			 * offset minus 1, so that those deletes are replayed.
3895  			 */
3896  			last_offset = min_key.offset - 1;
3897  			goto done;
3898  		}
3899  		if (need_resched()) {
3900  			btrfs_release_path(path);
3901  			cond_resched();
3902  			goto search;
3903  		}
3904  	}
3905  done:
3906  	btrfs_release_path(path);
3907  	btrfs_release_path(dst_path);
3908  
3909  	if (ret == 0) {
3910  		*last_offset_ret = last_offset;
3911  		/*
3912  		 * In case the leaf was changed in the current transaction but
3913  		 * all its dir items are from a past transaction, the last item
3914  		 * in the leaf is a dir item and there's no gap between that last
3915  		 * dir item and the first one on the next leaf (which did not
3916  		 * change in the current transaction), then we don't need to log
3917  		 * a range, last_old_dentry_offset is == to last_offset.
3918  		 */
3919  		ASSERT(last_old_dentry_offset <= last_offset);
3920  		if (last_old_dentry_offset < last_offset)
3921  			ret = insert_dir_log_key(trans, log, path, ino,
3922  						 last_old_dentry_offset + 1,
3923  						 last_offset);
3924  	}
3925  
3926  	return ret;
3927  }
3928  
3929  /*
3930   * If the inode was logged before and it was evicted, then its
3931   * last_dir_index_offset is (u64)-1, so we don't the value of the last index
3932   * key offset. If that's the case, search for it and update the inode. This
3933   * is to avoid lookups in the log tree every time we try to insert a dir index
3934   * key from a leaf changed in the current transaction, and to allow us to always
3935   * do batch insertions of dir index keys.
3936   */
3937  static int update_last_dir_index_offset(struct btrfs_inode *inode,
3938  					struct btrfs_path *path,
3939  					const struct btrfs_log_ctx *ctx)
3940  {
3941  	const u64 ino = btrfs_ino(inode);
3942  	struct btrfs_key key;
3943  	int ret;
3944  
3945  	lockdep_assert_held(&inode->log_mutex);
3946  
3947  	if (inode->last_dir_index_offset != (u64)-1)
3948  		return 0;
3949  
3950  	if (!ctx->logged_before) {
3951  		inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
3952  		return 0;
3953  	}
3954  
3955  	key.objectid = ino;
3956  	key.type = BTRFS_DIR_INDEX_KEY;
3957  	key.offset = (u64)-1;
3958  
3959  	ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3960  	/*
3961  	 * An error happened or we actually have an index key with an offset
3962  	 * value of (u64)-1. Bail out, we're done.
3963  	 */
3964  	if (ret <= 0)
3965  		goto out;
3966  
3967  	ret = 0;
3968  	inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
3969  
3970  	/*
3971  	 * No dir index items, bail out and leave last_dir_index_offset with
3972  	 * the value right before the first valid index value.
3973  	 */
3974  	if (path->slots[0] == 0)
3975  		goto out;
3976  
3977  	/*
3978  	 * btrfs_search_slot() left us at one slot beyond the slot with the last
3979  	 * index key, or beyond the last key of the directory that is not an
3980  	 * index key. If we have an index key before, set last_dir_index_offset
3981  	 * to its offset value, otherwise leave it with a value right before the
3982  	 * first valid index value, as it means we have an empty directory.
3983  	 */
3984  	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3985  	if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY)
3986  		inode->last_dir_index_offset = key.offset;
3987  
3988  out:
3989  	btrfs_release_path(path);
3990  
3991  	return ret;
3992  }
3993  
3994  /*
3995   * logging directories is very similar to logging inodes, We find all the items
3996   * from the current transaction and write them to the log.
3997   *
3998   * The recovery code scans the directory in the subvolume, and if it finds a
3999   * key in the range logged that is not present in the log tree, then it means
4000   * that dir entry was unlinked during the transaction.
4001   *
4002   * In order for that scan to work, we must include one key smaller than
4003   * the smallest logged by this transaction and one key larger than the largest
4004   * key logged by this transaction.
4005   */
4006  static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
4007  			  struct btrfs_inode *inode,
4008  			  struct btrfs_path *path,
4009  			  struct btrfs_path *dst_path,
4010  			  struct btrfs_log_ctx *ctx)
4011  {
4012  	u64 min_key;
4013  	u64 max_key;
4014  	int ret;
4015  
4016  	ret = update_last_dir_index_offset(inode, path, ctx);
4017  	if (ret)
4018  		return ret;
4019  
4020  	min_key = BTRFS_DIR_START_INDEX;
4021  	max_key = 0;
4022  
4023  	while (1) {
4024  		ret = log_dir_items(trans, inode, path, dst_path,
4025  				ctx, min_key, &max_key);
4026  		if (ret)
4027  			return ret;
4028  		if (max_key == (u64)-1)
4029  			break;
4030  		min_key = max_key + 1;
4031  	}
4032  
4033  	return 0;
4034  }
4035  
4036  /*
4037   * a helper function to drop items from the log before we relog an
4038   * inode.  max_key_type indicates the highest item type to remove.
4039   * This cannot be run for file data extents because it does not
4040   * free the extents they point to.
4041   */
4042  static int drop_inode_items(struct btrfs_trans_handle *trans,
4043  				  struct btrfs_root *log,
4044  				  struct btrfs_path *path,
4045  				  struct btrfs_inode *inode,
4046  				  int max_key_type)
4047  {
4048  	int ret;
4049  	struct btrfs_key key;
4050  	struct btrfs_key found_key;
4051  	int start_slot;
4052  
4053  	key.objectid = btrfs_ino(inode);
4054  	key.type = max_key_type;
4055  	key.offset = (u64)-1;
4056  
4057  	while (1) {
4058  		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
4059  		if (ret < 0) {
4060  			break;
4061  		} else if (ret > 0) {
4062  			if (path->slots[0] == 0)
4063  				break;
4064  			path->slots[0]--;
4065  		}
4066  
4067  		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4068  				      path->slots[0]);
4069  
4070  		if (found_key.objectid != key.objectid)
4071  			break;
4072  
4073  		found_key.offset = 0;
4074  		found_key.type = 0;
4075  		ret = btrfs_bin_search(path->nodes[0], 0, &found_key, &start_slot);
4076  		if (ret < 0)
4077  			break;
4078  
4079  		ret = btrfs_del_items(trans, log, path, start_slot,
4080  				      path->slots[0] - start_slot + 1);
4081  		/*
4082  		 * If start slot isn't 0 then we don't need to re-search, we've
4083  		 * found the last guy with the objectid in this tree.
4084  		 */
4085  		if (ret || start_slot != 0)
4086  			break;
4087  		btrfs_release_path(path);
4088  	}
4089  	btrfs_release_path(path);
4090  	if (ret > 0)
4091  		ret = 0;
4092  	return ret;
4093  }
4094  
4095  static int truncate_inode_items(struct btrfs_trans_handle *trans,
4096  				struct btrfs_root *log_root,
4097  				struct btrfs_inode *inode,
4098  				u64 new_size, u32 min_type)
4099  {
4100  	struct btrfs_truncate_control control = {
4101  		.new_size = new_size,
4102  		.ino = btrfs_ino(inode),
4103  		.min_type = min_type,
4104  		.skip_ref_updates = true,
4105  	};
4106  
4107  	return btrfs_truncate_inode_items(trans, log_root, &control);
4108  }
4109  
4110  static void fill_inode_item(struct btrfs_trans_handle *trans,
4111  			    struct extent_buffer *leaf,
4112  			    struct btrfs_inode_item *item,
4113  			    struct inode *inode, int log_inode_only,
4114  			    u64 logged_isize)
4115  {
4116  	struct btrfs_map_token token;
4117  	u64 flags;
4118  
4119  	btrfs_init_map_token(&token, leaf);
4120  
4121  	if (log_inode_only) {
4122  		/* set the generation to zero so the recover code
4123  		 * can tell the difference between an logging
4124  		 * just to say 'this inode exists' and a logging
4125  		 * to say 'update this inode with these values'
4126  		 */
4127  		btrfs_set_token_inode_generation(&token, item, 0);
4128  		btrfs_set_token_inode_size(&token, item, logged_isize);
4129  	} else {
4130  		btrfs_set_token_inode_generation(&token, item,
4131  						 BTRFS_I(inode)->generation);
4132  		btrfs_set_token_inode_size(&token, item, inode->i_size);
4133  	}
4134  
4135  	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4136  	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4137  	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4138  	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4139  
4140  	btrfs_set_token_timespec_sec(&token, &item->atime,
4141  				     inode->i_atime.tv_sec);
4142  	btrfs_set_token_timespec_nsec(&token, &item->atime,
4143  				      inode->i_atime.tv_nsec);
4144  
4145  	btrfs_set_token_timespec_sec(&token, &item->mtime,
4146  				     inode->i_mtime.tv_sec);
4147  	btrfs_set_token_timespec_nsec(&token, &item->mtime,
4148  				      inode->i_mtime.tv_nsec);
4149  
4150  	btrfs_set_token_timespec_sec(&token, &item->ctime,
4151  				     inode->i_ctime.tv_sec);
4152  	btrfs_set_token_timespec_nsec(&token, &item->ctime,
4153  				      inode->i_ctime.tv_nsec);
4154  
4155  	/*
4156  	 * We do not need to set the nbytes field, in fact during a fast fsync
4157  	 * its value may not even be correct, since a fast fsync does not wait
4158  	 * for ordered extent completion, which is where we update nbytes, it
4159  	 * only waits for writeback to complete. During log replay as we find
4160  	 * file extent items and replay them, we adjust the nbytes field of the
4161  	 * inode item in subvolume tree as needed (see overwrite_item()).
4162  	 */
4163  
4164  	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4165  	btrfs_set_token_inode_transid(&token, item, trans->transid);
4166  	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4167  	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4168  					  BTRFS_I(inode)->ro_flags);
4169  	btrfs_set_token_inode_flags(&token, item, flags);
4170  	btrfs_set_token_inode_block_group(&token, item, 0);
4171  }
4172  
4173  static int log_inode_item(struct btrfs_trans_handle *trans,
4174  			  struct btrfs_root *log, struct btrfs_path *path,
4175  			  struct btrfs_inode *inode, bool inode_item_dropped)
4176  {
4177  	struct btrfs_inode_item *inode_item;
4178  	int ret;
4179  
4180  	/*
4181  	 * If we are doing a fast fsync and the inode was logged before in the
4182  	 * current transaction, then we know the inode was previously logged and
4183  	 * it exists in the log tree. For performance reasons, in this case use
4184  	 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4185  	 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4186  	 * contention in case there are concurrent fsyncs for other inodes of the
4187  	 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4188  	 * already exists can also result in unnecessarily splitting a leaf.
4189  	 */
4190  	if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4191  		ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1);
4192  		ASSERT(ret <= 0);
4193  		if (ret > 0)
4194  			ret = -ENOENT;
4195  	} else {
4196  		/*
4197  		 * This means it is the first fsync in the current transaction,
4198  		 * so the inode item is not in the log and we need to insert it.
4199  		 * We can never get -EEXIST because we are only called for a fast
4200  		 * fsync and in case an inode eviction happens after the inode was
4201  		 * logged before in the current transaction, when we load again
4202  		 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4203  		 * flags and set ->logged_trans to 0.
4204  		 */
4205  		ret = btrfs_insert_empty_item(trans, log, path, &inode->location,
4206  					      sizeof(*inode_item));
4207  		ASSERT(ret != -EEXIST);
4208  	}
4209  	if (ret)
4210  		return ret;
4211  	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4212  				    struct btrfs_inode_item);
4213  	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4214  			0, 0);
4215  	btrfs_release_path(path);
4216  	return 0;
4217  }
4218  
4219  static int log_csums(struct btrfs_trans_handle *trans,
4220  		     struct btrfs_inode *inode,
4221  		     struct btrfs_root *log_root,
4222  		     struct btrfs_ordered_sum *sums)
4223  {
4224  	const u64 lock_end = sums->logical + sums->len - 1;
4225  	struct extent_state *cached_state = NULL;
4226  	int ret;
4227  
4228  	/*
4229  	 * If this inode was not used for reflink operations in the current
4230  	 * transaction with new extents, then do the fast path, no need to
4231  	 * worry about logging checksum items with overlapping ranges.
4232  	 */
4233  	if (inode->last_reflink_trans < trans->transid)
4234  		return btrfs_csum_file_blocks(trans, log_root, sums);
4235  
4236  	/*
4237  	 * Serialize logging for checksums. This is to avoid racing with the
4238  	 * same checksum being logged by another task that is logging another
4239  	 * file which happens to refer to the same extent as well. Such races
4240  	 * can leave checksum items in the log with overlapping ranges.
4241  	 */
4242  	ret = lock_extent(&log_root->log_csum_range, sums->logical, lock_end,
4243  			  &cached_state);
4244  	if (ret)
4245  		return ret;
4246  	/*
4247  	 * Due to extent cloning, we might have logged a csum item that covers a
4248  	 * subrange of a cloned extent, and later we can end up logging a csum
4249  	 * item for a larger subrange of the same extent or the entire range.
4250  	 * This would leave csum items in the log tree that cover the same range
4251  	 * and break the searches for checksums in the log tree, resulting in
4252  	 * some checksums missing in the fs/subvolume tree. So just delete (or
4253  	 * trim and adjust) any existing csum items in the log for this range.
4254  	 */
4255  	ret = btrfs_del_csums(trans, log_root, sums->logical, sums->len);
4256  	if (!ret)
4257  		ret = btrfs_csum_file_blocks(trans, log_root, sums);
4258  
4259  	unlock_extent(&log_root->log_csum_range, sums->logical, lock_end,
4260  		      &cached_state);
4261  
4262  	return ret;
4263  }
4264  
4265  static noinline int copy_items(struct btrfs_trans_handle *trans,
4266  			       struct btrfs_inode *inode,
4267  			       struct btrfs_path *dst_path,
4268  			       struct btrfs_path *src_path,
4269  			       int start_slot, int nr, int inode_only,
4270  			       u64 logged_isize)
4271  {
4272  	struct btrfs_root *log = inode->root->log_root;
4273  	struct btrfs_file_extent_item *extent;
4274  	struct extent_buffer *src;
4275  	int ret = 0;
4276  	struct btrfs_key *ins_keys;
4277  	u32 *ins_sizes;
4278  	struct btrfs_item_batch batch;
4279  	char *ins_data;
4280  	int i;
4281  	int dst_index;
4282  	const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM);
4283  	const u64 i_size = i_size_read(&inode->vfs_inode);
4284  
4285  	/*
4286  	 * To keep lockdep happy and avoid deadlocks, clone the source leaf and
4287  	 * use the clone. This is because otherwise we would be changing the log
4288  	 * tree, to insert items from the subvolume tree or insert csum items,
4289  	 * while holding a read lock on a leaf from the subvolume tree, which
4290  	 * creates a nasty lock dependency when COWing log tree nodes/leaves:
4291  	 *
4292  	 * 1) Modifying the log tree triggers an extent buffer allocation while
4293  	 *    holding a write lock on a parent extent buffer from the log tree.
4294  	 *    Allocating the pages for an extent buffer, or the extent buffer
4295  	 *    struct, can trigger inode eviction and finally the inode eviction
4296  	 *    will trigger a release/remove of a delayed node, which requires
4297  	 *    taking the delayed node's mutex;
4298  	 *
4299  	 * 2) Allocating a metadata extent for a log tree can trigger the async
4300  	 *    reclaim thread and make us wait for it to release enough space and
4301  	 *    unblock our reservation ticket. The reclaim thread can start
4302  	 *    flushing delayed items, and that in turn results in the need to
4303  	 *    lock delayed node mutexes and in the need to write lock extent
4304  	 *    buffers of a subvolume tree - all this while holding a write lock
4305  	 *    on the parent extent buffer in the log tree.
4306  	 *
4307  	 * So one task in scenario 1) running in parallel with another task in
4308  	 * scenario 2) could lead to a deadlock, one wanting to lock a delayed
4309  	 * node mutex while having a read lock on a leaf from the subvolume,
4310  	 * while the other is holding the delayed node's mutex and wants to
4311  	 * write lock the same subvolume leaf for flushing delayed items.
4312  	 */
4313  	src = btrfs_clone_extent_buffer(src_path->nodes[0]);
4314  	if (!src)
4315  		return -ENOMEM;
4316  
4317  	i = src_path->slots[0];
4318  	btrfs_release_path(src_path);
4319  	src_path->nodes[0] = src;
4320  	src_path->slots[0] = i;
4321  
4322  	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4323  			   nr * sizeof(u32), GFP_NOFS);
4324  	if (!ins_data)
4325  		return -ENOMEM;
4326  
4327  	ins_sizes = (u32 *)ins_data;
4328  	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4329  	batch.keys = ins_keys;
4330  	batch.data_sizes = ins_sizes;
4331  	batch.total_data_size = 0;
4332  	batch.nr = 0;
4333  
4334  	dst_index = 0;
4335  	for (i = 0; i < nr; i++) {
4336  		const int src_slot = start_slot + i;
4337  		struct btrfs_root *csum_root;
4338  		struct btrfs_ordered_sum *sums;
4339  		struct btrfs_ordered_sum *sums_next;
4340  		LIST_HEAD(ordered_sums);
4341  		u64 disk_bytenr;
4342  		u64 disk_num_bytes;
4343  		u64 extent_offset;
4344  		u64 extent_num_bytes;
4345  		bool is_old_extent;
4346  
4347  		btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot);
4348  
4349  		if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY)
4350  			goto add_to_batch;
4351  
4352  		extent = btrfs_item_ptr(src, src_slot,
4353  					struct btrfs_file_extent_item);
4354  
4355  		is_old_extent = (btrfs_file_extent_generation(src, extent) <
4356  				 trans->transid);
4357  
4358  		/*
4359  		 * Don't copy extents from past generations. That would make us
4360  		 * log a lot more metadata for common cases like doing only a
4361  		 * few random writes into a file and then fsync it for the first
4362  		 * time or after the full sync flag is set on the inode. We can
4363  		 * get leaves full of extent items, most of which are from past
4364  		 * generations, so we can skip them - as long as the inode has
4365  		 * not been the target of a reflink operation in this transaction,
4366  		 * as in that case it might have had file extent items with old
4367  		 * generations copied into it. We also must always log prealloc
4368  		 * extents that start at or beyond eof, otherwise we would lose
4369  		 * them on log replay.
4370  		 */
4371  		if (is_old_extent &&
4372  		    ins_keys[dst_index].offset < i_size &&
4373  		    inode->last_reflink_trans < trans->transid)
4374  			continue;
4375  
4376  		if (skip_csum)
4377  			goto add_to_batch;
4378  
4379  		/* Only regular extents have checksums. */
4380  		if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG)
4381  			goto add_to_batch;
4382  
4383  		/*
4384  		 * If it's an extent created in a past transaction, then its
4385  		 * checksums are already accessible from the committed csum tree,
4386  		 * no need to log them.
4387  		 */
4388  		if (is_old_extent)
4389  			goto add_to_batch;
4390  
4391  		disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent);
4392  		/* If it's an explicit hole, there are no checksums. */
4393  		if (disk_bytenr == 0)
4394  			goto add_to_batch;
4395  
4396  		disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent);
4397  
4398  		if (btrfs_file_extent_compression(src, extent)) {
4399  			extent_offset = 0;
4400  			extent_num_bytes = disk_num_bytes;
4401  		} else {
4402  			extent_offset = btrfs_file_extent_offset(src, extent);
4403  			extent_num_bytes = btrfs_file_extent_num_bytes(src, extent);
4404  		}
4405  
4406  		csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr);
4407  		disk_bytenr += extent_offset;
4408  		ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4409  					      disk_bytenr + extent_num_bytes - 1,
4410  					      &ordered_sums, 0, false);
4411  		if (ret)
4412  			goto out;
4413  
4414  		list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) {
4415  			if (!ret)
4416  				ret = log_csums(trans, inode, log, sums);
4417  			list_del(&sums->list);
4418  			kfree(sums);
4419  		}
4420  		if (ret)
4421  			goto out;
4422  
4423  add_to_batch:
4424  		ins_sizes[dst_index] = btrfs_item_size(src, src_slot);
4425  		batch.total_data_size += ins_sizes[dst_index];
4426  		batch.nr++;
4427  		dst_index++;
4428  	}
4429  
4430  	/*
4431  	 * We have a leaf full of old extent items that don't need to be logged,
4432  	 * so we don't need to do anything.
4433  	 */
4434  	if (batch.nr == 0)
4435  		goto out;
4436  
4437  	ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
4438  	if (ret)
4439  		goto out;
4440  
4441  	dst_index = 0;
4442  	for (i = 0; i < nr; i++) {
4443  		const int src_slot = start_slot + i;
4444  		const int dst_slot = dst_path->slots[0] + dst_index;
4445  		struct btrfs_key key;
4446  		unsigned long src_offset;
4447  		unsigned long dst_offset;
4448  
4449  		/*
4450  		 * We're done, all the remaining items in the source leaf
4451  		 * correspond to old file extent items.
4452  		 */
4453  		if (dst_index >= batch.nr)
4454  			break;
4455  
4456  		btrfs_item_key_to_cpu(src, &key, src_slot);
4457  
4458  		if (key.type != BTRFS_EXTENT_DATA_KEY)
4459  			goto copy_item;
4460  
4461  		extent = btrfs_item_ptr(src, src_slot,
4462  					struct btrfs_file_extent_item);
4463  
4464  		/* See the comment in the previous loop, same logic. */
4465  		if (btrfs_file_extent_generation(src, extent) < trans->transid &&
4466  		    key.offset < i_size &&
4467  		    inode->last_reflink_trans < trans->transid)
4468  			continue;
4469  
4470  copy_item:
4471  		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot);
4472  		src_offset = btrfs_item_ptr_offset(src, src_slot);
4473  
4474  		if (key.type == BTRFS_INODE_ITEM_KEY) {
4475  			struct btrfs_inode_item *inode_item;
4476  
4477  			inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot,
4478  						    struct btrfs_inode_item);
4479  			fill_inode_item(trans, dst_path->nodes[0], inode_item,
4480  					&inode->vfs_inode,
4481  					inode_only == LOG_INODE_EXISTS,
4482  					logged_isize);
4483  		} else {
4484  			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4485  					   src_offset, ins_sizes[dst_index]);
4486  		}
4487  
4488  		dst_index++;
4489  	}
4490  
4491  	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4492  	btrfs_release_path(dst_path);
4493  out:
4494  	kfree(ins_data);
4495  
4496  	return ret;
4497  }
4498  
4499  static int extent_cmp(void *priv, const struct list_head *a,
4500  		      const struct list_head *b)
4501  {
4502  	const struct extent_map *em1, *em2;
4503  
4504  	em1 = list_entry(a, struct extent_map, list);
4505  	em2 = list_entry(b, struct extent_map, list);
4506  
4507  	if (em1->start < em2->start)
4508  		return -1;
4509  	else if (em1->start > em2->start)
4510  		return 1;
4511  	return 0;
4512  }
4513  
4514  static int log_extent_csums(struct btrfs_trans_handle *trans,
4515  			    struct btrfs_inode *inode,
4516  			    struct btrfs_root *log_root,
4517  			    const struct extent_map *em,
4518  			    struct btrfs_log_ctx *ctx)
4519  {
4520  	struct btrfs_ordered_extent *ordered;
4521  	struct btrfs_root *csum_root;
4522  	u64 csum_offset;
4523  	u64 csum_len;
4524  	u64 mod_start = em->mod_start;
4525  	u64 mod_len = em->mod_len;
4526  	LIST_HEAD(ordered_sums);
4527  	int ret = 0;
4528  
4529  	if (inode->flags & BTRFS_INODE_NODATASUM ||
4530  	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4531  	    em->block_start == EXTENT_MAP_HOLE)
4532  		return 0;
4533  
4534  	list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4535  		const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4536  		const u64 mod_end = mod_start + mod_len;
4537  		struct btrfs_ordered_sum *sums;
4538  
4539  		if (mod_len == 0)
4540  			break;
4541  
4542  		if (ordered_end <= mod_start)
4543  			continue;
4544  		if (mod_end <= ordered->file_offset)
4545  			break;
4546  
4547  		/*
4548  		 * We are going to copy all the csums on this ordered extent, so
4549  		 * go ahead and adjust mod_start and mod_len in case this ordered
4550  		 * extent has already been logged.
4551  		 */
4552  		if (ordered->file_offset > mod_start) {
4553  			if (ordered_end >= mod_end)
4554  				mod_len = ordered->file_offset - mod_start;
4555  			/*
4556  			 * If we have this case
4557  			 *
4558  			 * |--------- logged extent ---------|
4559  			 *       |----- ordered extent ----|
4560  			 *
4561  			 * Just don't mess with mod_start and mod_len, we'll
4562  			 * just end up logging more csums than we need and it
4563  			 * will be ok.
4564  			 */
4565  		} else {
4566  			if (ordered_end < mod_end) {
4567  				mod_len = mod_end - ordered_end;
4568  				mod_start = ordered_end;
4569  			} else {
4570  				mod_len = 0;
4571  			}
4572  		}
4573  
4574  		/*
4575  		 * To keep us from looping for the above case of an ordered
4576  		 * extent that falls inside of the logged extent.
4577  		 */
4578  		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4579  			continue;
4580  
4581  		list_for_each_entry(sums, &ordered->list, list) {
4582  			ret = log_csums(trans, inode, log_root, sums);
4583  			if (ret)
4584  				return ret;
4585  		}
4586  	}
4587  
4588  	/* We're done, found all csums in the ordered extents. */
4589  	if (mod_len == 0)
4590  		return 0;
4591  
4592  	/* If we're compressed we have to save the entire range of csums. */
4593  	if (em->compress_type) {
4594  		csum_offset = 0;
4595  		csum_len = max(em->block_len, em->orig_block_len);
4596  	} else {
4597  		csum_offset = mod_start - em->start;
4598  		csum_len = mod_len;
4599  	}
4600  
4601  	/* block start is already adjusted for the file extent offset. */
4602  	csum_root = btrfs_csum_root(trans->fs_info, em->block_start);
4603  	ret = btrfs_lookup_csums_list(csum_root, em->block_start + csum_offset,
4604  				      em->block_start + csum_offset +
4605  				      csum_len - 1, &ordered_sums, 0, false);
4606  	if (ret)
4607  		return ret;
4608  
4609  	while (!list_empty(&ordered_sums)) {
4610  		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4611  						   struct btrfs_ordered_sum,
4612  						   list);
4613  		if (!ret)
4614  			ret = log_csums(trans, inode, log_root, sums);
4615  		list_del(&sums->list);
4616  		kfree(sums);
4617  	}
4618  
4619  	return ret;
4620  }
4621  
4622  static int log_one_extent(struct btrfs_trans_handle *trans,
4623  			  struct btrfs_inode *inode,
4624  			  const struct extent_map *em,
4625  			  struct btrfs_path *path,
4626  			  struct btrfs_log_ctx *ctx)
4627  {
4628  	struct btrfs_drop_extents_args drop_args = { 0 };
4629  	struct btrfs_root *log = inode->root->log_root;
4630  	struct btrfs_file_extent_item fi = { 0 };
4631  	struct extent_buffer *leaf;
4632  	struct btrfs_key key;
4633  	u64 extent_offset = em->start - em->orig_start;
4634  	u64 block_len;
4635  	int ret;
4636  
4637  	btrfs_set_stack_file_extent_generation(&fi, trans->transid);
4638  	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4639  		btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC);
4640  	else
4641  		btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG);
4642  
4643  	block_len = max(em->block_len, em->orig_block_len);
4644  	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4645  		btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start);
4646  		btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4647  	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4648  		btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start -
4649  							extent_offset);
4650  		btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4651  	}
4652  
4653  	btrfs_set_stack_file_extent_offset(&fi, extent_offset);
4654  	btrfs_set_stack_file_extent_num_bytes(&fi, em->len);
4655  	btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes);
4656  	btrfs_set_stack_file_extent_compression(&fi, em->compress_type);
4657  
4658  	ret = log_extent_csums(trans, inode, log, em, ctx);
4659  	if (ret)
4660  		return ret;
4661  
4662  	/*
4663  	 * If this is the first time we are logging the inode in the current
4664  	 * transaction, we can avoid btrfs_drop_extents(), which is expensive
4665  	 * because it does a deletion search, which always acquires write locks
4666  	 * for extent buffers at levels 2, 1 and 0. This not only wastes time
4667  	 * but also adds significant contention in a log tree, since log trees
4668  	 * are small, with a root at level 2 or 3 at most, due to their short
4669  	 * life span.
4670  	 */
4671  	if (ctx->logged_before) {
4672  		drop_args.path = path;
4673  		drop_args.start = em->start;
4674  		drop_args.end = em->start + em->len;
4675  		drop_args.replace_extent = true;
4676  		drop_args.extent_item_size = sizeof(fi);
4677  		ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4678  		if (ret)
4679  			return ret;
4680  	}
4681  
4682  	if (!drop_args.extent_inserted) {
4683  		key.objectid = btrfs_ino(inode);
4684  		key.type = BTRFS_EXTENT_DATA_KEY;
4685  		key.offset = em->start;
4686  
4687  		ret = btrfs_insert_empty_item(trans, log, path, &key,
4688  					      sizeof(fi));
4689  		if (ret)
4690  			return ret;
4691  	}
4692  	leaf = path->nodes[0];
4693  	write_extent_buffer(leaf, &fi,
4694  			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4695  			    sizeof(fi));
4696  	btrfs_mark_buffer_dirty(leaf);
4697  
4698  	btrfs_release_path(path);
4699  
4700  	return ret;
4701  }
4702  
4703  /*
4704   * Log all prealloc extents beyond the inode's i_size to make sure we do not
4705   * lose them after doing a full/fast fsync and replaying the log. We scan the
4706   * subvolume's root instead of iterating the inode's extent map tree because
4707   * otherwise we can log incorrect extent items based on extent map conversion.
4708   * That can happen due to the fact that extent maps are merged when they
4709   * are not in the extent map tree's list of modified extents.
4710   */
4711  static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4712  				      struct btrfs_inode *inode,
4713  				      struct btrfs_path *path)
4714  {
4715  	struct btrfs_root *root = inode->root;
4716  	struct btrfs_key key;
4717  	const u64 i_size = i_size_read(&inode->vfs_inode);
4718  	const u64 ino = btrfs_ino(inode);
4719  	struct btrfs_path *dst_path = NULL;
4720  	bool dropped_extents = false;
4721  	u64 truncate_offset = i_size;
4722  	struct extent_buffer *leaf;
4723  	int slot;
4724  	int ins_nr = 0;
4725  	int start_slot;
4726  	int ret;
4727  
4728  	if (!(inode->flags & BTRFS_INODE_PREALLOC))
4729  		return 0;
4730  
4731  	key.objectid = ino;
4732  	key.type = BTRFS_EXTENT_DATA_KEY;
4733  	key.offset = i_size;
4734  	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4735  	if (ret < 0)
4736  		goto out;
4737  
4738  	/*
4739  	 * We must check if there is a prealloc extent that starts before the
4740  	 * i_size and crosses the i_size boundary. This is to ensure later we
4741  	 * truncate down to the end of that extent and not to the i_size, as
4742  	 * otherwise we end up losing part of the prealloc extent after a log
4743  	 * replay and with an implicit hole if there is another prealloc extent
4744  	 * that starts at an offset beyond i_size.
4745  	 */
4746  	ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4747  	if (ret < 0)
4748  		goto out;
4749  
4750  	if (ret == 0) {
4751  		struct btrfs_file_extent_item *ei;
4752  
4753  		leaf = path->nodes[0];
4754  		slot = path->slots[0];
4755  		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4756  
4757  		if (btrfs_file_extent_type(leaf, ei) ==
4758  		    BTRFS_FILE_EXTENT_PREALLOC) {
4759  			u64 extent_end;
4760  
4761  			btrfs_item_key_to_cpu(leaf, &key, slot);
4762  			extent_end = key.offset +
4763  				btrfs_file_extent_num_bytes(leaf, ei);
4764  
4765  			if (extent_end > i_size)
4766  				truncate_offset = extent_end;
4767  		}
4768  	} else {
4769  		ret = 0;
4770  	}
4771  
4772  	while (true) {
4773  		leaf = path->nodes[0];
4774  		slot = path->slots[0];
4775  
4776  		if (slot >= btrfs_header_nritems(leaf)) {
4777  			if (ins_nr > 0) {
4778  				ret = copy_items(trans, inode, dst_path, path,
4779  						 start_slot, ins_nr, 1, 0);
4780  				if (ret < 0)
4781  					goto out;
4782  				ins_nr = 0;
4783  			}
4784  			ret = btrfs_next_leaf(root, path);
4785  			if (ret < 0)
4786  				goto out;
4787  			if (ret > 0) {
4788  				ret = 0;
4789  				break;
4790  			}
4791  			continue;
4792  		}
4793  
4794  		btrfs_item_key_to_cpu(leaf, &key, slot);
4795  		if (key.objectid > ino)
4796  			break;
4797  		if (WARN_ON_ONCE(key.objectid < ino) ||
4798  		    key.type < BTRFS_EXTENT_DATA_KEY ||
4799  		    key.offset < i_size) {
4800  			path->slots[0]++;
4801  			continue;
4802  		}
4803  		if (!dropped_extents) {
4804  			/*
4805  			 * Avoid logging extent items logged in past fsync calls
4806  			 * and leading to duplicate keys in the log tree.
4807  			 */
4808  			ret = truncate_inode_items(trans, root->log_root, inode,
4809  						   truncate_offset,
4810  						   BTRFS_EXTENT_DATA_KEY);
4811  			if (ret)
4812  				goto out;
4813  			dropped_extents = true;
4814  		}
4815  		if (ins_nr == 0)
4816  			start_slot = slot;
4817  		ins_nr++;
4818  		path->slots[0]++;
4819  		if (!dst_path) {
4820  			dst_path = btrfs_alloc_path();
4821  			if (!dst_path) {
4822  				ret = -ENOMEM;
4823  				goto out;
4824  			}
4825  		}
4826  	}
4827  	if (ins_nr > 0)
4828  		ret = copy_items(trans, inode, dst_path, path,
4829  				 start_slot, ins_nr, 1, 0);
4830  out:
4831  	btrfs_release_path(path);
4832  	btrfs_free_path(dst_path);
4833  	return ret;
4834  }
4835  
4836  static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4837  				     struct btrfs_inode *inode,
4838  				     struct btrfs_path *path,
4839  				     struct btrfs_log_ctx *ctx)
4840  {
4841  	struct btrfs_ordered_extent *ordered;
4842  	struct btrfs_ordered_extent *tmp;
4843  	struct extent_map *em, *n;
4844  	struct list_head extents;
4845  	struct extent_map_tree *tree = &inode->extent_tree;
4846  	int ret = 0;
4847  	int num = 0;
4848  
4849  	INIT_LIST_HEAD(&extents);
4850  
4851  	write_lock(&tree->lock);
4852  
4853  	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4854  		list_del_init(&em->list);
4855  		/*
4856  		 * Just an arbitrary number, this can be really CPU intensive
4857  		 * once we start getting a lot of extents, and really once we
4858  		 * have a bunch of extents we just want to commit since it will
4859  		 * be faster.
4860  		 */
4861  		if (++num > 32768) {
4862  			list_del_init(&tree->modified_extents);
4863  			ret = -EFBIG;
4864  			goto process;
4865  		}
4866  
4867  		if (em->generation < trans->transid)
4868  			continue;
4869  
4870  		/* We log prealloc extents beyond eof later. */
4871  		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4872  		    em->start >= i_size_read(&inode->vfs_inode))
4873  			continue;
4874  
4875  		/* Need a ref to keep it from getting evicted from cache */
4876  		refcount_inc(&em->refs);
4877  		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4878  		list_add_tail(&em->list, &extents);
4879  		num++;
4880  	}
4881  
4882  	list_sort(NULL, &extents, extent_cmp);
4883  process:
4884  	while (!list_empty(&extents)) {
4885  		em = list_entry(extents.next, struct extent_map, list);
4886  
4887  		list_del_init(&em->list);
4888  
4889  		/*
4890  		 * If we had an error we just need to delete everybody from our
4891  		 * private list.
4892  		 */
4893  		if (ret) {
4894  			clear_em_logging(tree, em);
4895  			free_extent_map(em);
4896  			continue;
4897  		}
4898  
4899  		write_unlock(&tree->lock);
4900  
4901  		ret = log_one_extent(trans, inode, em, path, ctx);
4902  		write_lock(&tree->lock);
4903  		clear_em_logging(tree, em);
4904  		free_extent_map(em);
4905  	}
4906  	WARN_ON(!list_empty(&extents));
4907  	write_unlock(&tree->lock);
4908  
4909  	if (!ret)
4910  		ret = btrfs_log_prealloc_extents(trans, inode, path);
4911  	if (ret)
4912  		return ret;
4913  
4914  	/*
4915  	 * We have logged all extents successfully, now make sure the commit of
4916  	 * the current transaction waits for the ordered extents to complete
4917  	 * before it commits and wipes out the log trees, otherwise we would
4918  	 * lose data if an ordered extents completes after the transaction
4919  	 * commits and a power failure happens after the transaction commit.
4920  	 */
4921  	list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4922  		list_del_init(&ordered->log_list);
4923  		set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4924  
4925  		if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4926  			spin_lock_irq(&inode->ordered_tree.lock);
4927  			if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4928  				set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4929  				atomic_inc(&trans->transaction->pending_ordered);
4930  			}
4931  			spin_unlock_irq(&inode->ordered_tree.lock);
4932  		}
4933  		btrfs_put_ordered_extent(ordered);
4934  	}
4935  
4936  	return 0;
4937  }
4938  
4939  static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4940  			     struct btrfs_path *path, u64 *size_ret)
4941  {
4942  	struct btrfs_key key;
4943  	int ret;
4944  
4945  	key.objectid = btrfs_ino(inode);
4946  	key.type = BTRFS_INODE_ITEM_KEY;
4947  	key.offset = 0;
4948  
4949  	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4950  	if (ret < 0) {
4951  		return ret;
4952  	} else if (ret > 0) {
4953  		*size_ret = 0;
4954  	} else {
4955  		struct btrfs_inode_item *item;
4956  
4957  		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4958  				      struct btrfs_inode_item);
4959  		*size_ret = btrfs_inode_size(path->nodes[0], item);
4960  		/*
4961  		 * If the in-memory inode's i_size is smaller then the inode
4962  		 * size stored in the btree, return the inode's i_size, so
4963  		 * that we get a correct inode size after replaying the log
4964  		 * when before a power failure we had a shrinking truncate
4965  		 * followed by addition of a new name (rename / new hard link).
4966  		 * Otherwise return the inode size from the btree, to avoid
4967  		 * data loss when replaying a log due to previously doing a
4968  		 * write that expands the inode's size and logging a new name
4969  		 * immediately after.
4970  		 */
4971  		if (*size_ret > inode->vfs_inode.i_size)
4972  			*size_ret = inode->vfs_inode.i_size;
4973  	}
4974  
4975  	btrfs_release_path(path);
4976  	return 0;
4977  }
4978  
4979  /*
4980   * At the moment we always log all xattrs. This is to figure out at log replay
4981   * time which xattrs must have their deletion replayed. If a xattr is missing
4982   * in the log tree and exists in the fs/subvol tree, we delete it. This is
4983   * because if a xattr is deleted, the inode is fsynced and a power failure
4984   * happens, causing the log to be replayed the next time the fs is mounted,
4985   * we want the xattr to not exist anymore (same behaviour as other filesystems
4986   * with a journal, ext3/4, xfs, f2fs, etc).
4987   */
4988  static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4989  				struct btrfs_inode *inode,
4990  				struct btrfs_path *path,
4991  				struct btrfs_path *dst_path)
4992  {
4993  	struct btrfs_root *root = inode->root;
4994  	int ret;
4995  	struct btrfs_key key;
4996  	const u64 ino = btrfs_ino(inode);
4997  	int ins_nr = 0;
4998  	int start_slot = 0;
4999  	bool found_xattrs = false;
5000  
5001  	if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
5002  		return 0;
5003  
5004  	key.objectid = ino;
5005  	key.type = BTRFS_XATTR_ITEM_KEY;
5006  	key.offset = 0;
5007  
5008  	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5009  	if (ret < 0)
5010  		return ret;
5011  
5012  	while (true) {
5013  		int slot = path->slots[0];
5014  		struct extent_buffer *leaf = path->nodes[0];
5015  		int nritems = btrfs_header_nritems(leaf);
5016  
5017  		if (slot >= nritems) {
5018  			if (ins_nr > 0) {
5019  				ret = copy_items(trans, inode, dst_path, path,
5020  						 start_slot, ins_nr, 1, 0);
5021  				if (ret < 0)
5022  					return ret;
5023  				ins_nr = 0;
5024  			}
5025  			ret = btrfs_next_leaf(root, path);
5026  			if (ret < 0)
5027  				return ret;
5028  			else if (ret > 0)
5029  				break;
5030  			continue;
5031  		}
5032  
5033  		btrfs_item_key_to_cpu(leaf, &key, slot);
5034  		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
5035  			break;
5036  
5037  		if (ins_nr == 0)
5038  			start_slot = slot;
5039  		ins_nr++;
5040  		path->slots[0]++;
5041  		found_xattrs = true;
5042  		cond_resched();
5043  	}
5044  	if (ins_nr > 0) {
5045  		ret = copy_items(trans, inode, dst_path, path,
5046  				 start_slot, ins_nr, 1, 0);
5047  		if (ret < 0)
5048  			return ret;
5049  	}
5050  
5051  	if (!found_xattrs)
5052  		set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
5053  
5054  	return 0;
5055  }
5056  
5057  /*
5058   * When using the NO_HOLES feature if we punched a hole that causes the
5059   * deletion of entire leafs or all the extent items of the first leaf (the one
5060   * that contains the inode item and references) we may end up not processing
5061   * any extents, because there are no leafs with a generation matching the
5062   * current transaction that have extent items for our inode. So we need to find
5063   * if any holes exist and then log them. We also need to log holes after any
5064   * truncate operation that changes the inode's size.
5065   */
5066  static int btrfs_log_holes(struct btrfs_trans_handle *trans,
5067  			   struct btrfs_inode *inode,
5068  			   struct btrfs_path *path)
5069  {
5070  	struct btrfs_root *root = inode->root;
5071  	struct btrfs_fs_info *fs_info = root->fs_info;
5072  	struct btrfs_key key;
5073  	const u64 ino = btrfs_ino(inode);
5074  	const u64 i_size = i_size_read(&inode->vfs_inode);
5075  	u64 prev_extent_end = 0;
5076  	int ret;
5077  
5078  	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
5079  		return 0;
5080  
5081  	key.objectid = ino;
5082  	key.type = BTRFS_EXTENT_DATA_KEY;
5083  	key.offset = 0;
5084  
5085  	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5086  	if (ret < 0)
5087  		return ret;
5088  
5089  	while (true) {
5090  		struct extent_buffer *leaf = path->nodes[0];
5091  
5092  		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
5093  			ret = btrfs_next_leaf(root, path);
5094  			if (ret < 0)
5095  				return ret;
5096  			if (ret > 0) {
5097  				ret = 0;
5098  				break;
5099  			}
5100  			leaf = path->nodes[0];
5101  		}
5102  
5103  		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5104  		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
5105  			break;
5106  
5107  		/* We have a hole, log it. */
5108  		if (prev_extent_end < key.offset) {
5109  			const u64 hole_len = key.offset - prev_extent_end;
5110  
5111  			/*
5112  			 * Release the path to avoid deadlocks with other code
5113  			 * paths that search the root while holding locks on
5114  			 * leafs from the log root.
5115  			 */
5116  			btrfs_release_path(path);
5117  			ret = btrfs_insert_hole_extent(trans, root->log_root,
5118  						       ino, prev_extent_end,
5119  						       hole_len);
5120  			if (ret < 0)
5121  				return ret;
5122  
5123  			/*
5124  			 * Search for the same key again in the root. Since it's
5125  			 * an extent item and we are holding the inode lock, the
5126  			 * key must still exist. If it doesn't just emit warning
5127  			 * and return an error to fall back to a transaction
5128  			 * commit.
5129  			 */
5130  			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5131  			if (ret < 0)
5132  				return ret;
5133  			if (WARN_ON(ret > 0))
5134  				return -ENOENT;
5135  			leaf = path->nodes[0];
5136  		}
5137  
5138  		prev_extent_end = btrfs_file_extent_end(path);
5139  		path->slots[0]++;
5140  		cond_resched();
5141  	}
5142  
5143  	if (prev_extent_end < i_size) {
5144  		u64 hole_len;
5145  
5146  		btrfs_release_path(path);
5147  		hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
5148  		ret = btrfs_insert_hole_extent(trans, root->log_root, ino,
5149  					       prev_extent_end, hole_len);
5150  		if (ret < 0)
5151  			return ret;
5152  	}
5153  
5154  	return 0;
5155  }
5156  
5157  /*
5158   * When we are logging a new inode X, check if it doesn't have a reference that
5159   * matches the reference from some other inode Y created in a past transaction
5160   * and that was renamed in the current transaction. If we don't do this, then at
5161   * log replay time we can lose inode Y (and all its files if it's a directory):
5162   *
5163   * mkdir /mnt/x
5164   * echo "hello world" > /mnt/x/foobar
5165   * sync
5166   * mv /mnt/x /mnt/y
5167   * mkdir /mnt/x                 # or touch /mnt/x
5168   * xfs_io -c fsync /mnt/x
5169   * <power fail>
5170   * mount fs, trigger log replay
5171   *
5172   * After the log replay procedure, we would lose the first directory and all its
5173   * files (file foobar).
5174   * For the case where inode Y is not a directory we simply end up losing it:
5175   *
5176   * echo "123" > /mnt/foo
5177   * sync
5178   * mv /mnt/foo /mnt/bar
5179   * echo "abc" > /mnt/foo
5180   * xfs_io -c fsync /mnt/foo
5181   * <power fail>
5182   *
5183   * We also need this for cases where a snapshot entry is replaced by some other
5184   * entry (file or directory) otherwise we end up with an unreplayable log due to
5185   * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5186   * if it were a regular entry:
5187   *
5188   * mkdir /mnt/x
5189   * btrfs subvolume snapshot /mnt /mnt/x/snap
5190   * btrfs subvolume delete /mnt/x/snap
5191   * rmdir /mnt/x
5192   * mkdir /mnt/x
5193   * fsync /mnt/x or fsync some new file inside it
5194   * <power fail>
5195   *
5196   * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5197   * the same transaction.
5198   */
5199  static int btrfs_check_ref_name_override(struct extent_buffer *eb,
5200  					 const int slot,
5201  					 const struct btrfs_key *key,
5202  					 struct btrfs_inode *inode,
5203  					 u64 *other_ino, u64 *other_parent)
5204  {
5205  	int ret;
5206  	struct btrfs_path *search_path;
5207  	char *name = NULL;
5208  	u32 name_len = 0;
5209  	u32 item_size = btrfs_item_size(eb, slot);
5210  	u32 cur_offset = 0;
5211  	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
5212  
5213  	search_path = btrfs_alloc_path();
5214  	if (!search_path)
5215  		return -ENOMEM;
5216  	search_path->search_commit_root = 1;
5217  	search_path->skip_locking = 1;
5218  
5219  	while (cur_offset < item_size) {
5220  		u64 parent;
5221  		u32 this_name_len;
5222  		u32 this_len;
5223  		unsigned long name_ptr;
5224  		struct btrfs_dir_item *di;
5225  		struct fscrypt_str name_str;
5226  
5227  		if (key->type == BTRFS_INODE_REF_KEY) {
5228  			struct btrfs_inode_ref *iref;
5229  
5230  			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
5231  			parent = key->offset;
5232  			this_name_len = btrfs_inode_ref_name_len(eb, iref);
5233  			name_ptr = (unsigned long)(iref + 1);
5234  			this_len = sizeof(*iref) + this_name_len;
5235  		} else {
5236  			struct btrfs_inode_extref *extref;
5237  
5238  			extref = (struct btrfs_inode_extref *)(ptr +
5239  							       cur_offset);
5240  			parent = btrfs_inode_extref_parent(eb, extref);
5241  			this_name_len = btrfs_inode_extref_name_len(eb, extref);
5242  			name_ptr = (unsigned long)&extref->name;
5243  			this_len = sizeof(*extref) + this_name_len;
5244  		}
5245  
5246  		if (this_name_len > name_len) {
5247  			char *new_name;
5248  
5249  			new_name = krealloc(name, this_name_len, GFP_NOFS);
5250  			if (!new_name) {
5251  				ret = -ENOMEM;
5252  				goto out;
5253  			}
5254  			name_len = this_name_len;
5255  			name = new_name;
5256  		}
5257  
5258  		read_extent_buffer(eb, name, name_ptr, this_name_len);
5259  
5260  		name_str.name = name;
5261  		name_str.len = this_name_len;
5262  		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
5263  				parent, &name_str, 0);
5264  		if (di && !IS_ERR(di)) {
5265  			struct btrfs_key di_key;
5266  
5267  			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
5268  						  di, &di_key);
5269  			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
5270  				if (di_key.objectid != key->objectid) {
5271  					ret = 1;
5272  					*other_ino = di_key.objectid;
5273  					*other_parent = parent;
5274  				} else {
5275  					ret = 0;
5276  				}
5277  			} else {
5278  				ret = -EAGAIN;
5279  			}
5280  			goto out;
5281  		} else if (IS_ERR(di)) {
5282  			ret = PTR_ERR(di);
5283  			goto out;
5284  		}
5285  		btrfs_release_path(search_path);
5286  
5287  		cur_offset += this_len;
5288  	}
5289  	ret = 0;
5290  out:
5291  	btrfs_free_path(search_path);
5292  	kfree(name);
5293  	return ret;
5294  }
5295  
5296  /*
5297   * Check if we need to log an inode. This is used in contexts where while
5298   * logging an inode we need to log another inode (either that it exists or in
5299   * full mode). This is used instead of btrfs_inode_in_log() because the later
5300   * requires the inode to be in the log and have the log transaction committed,
5301   * while here we do not care if the log transaction was already committed - our
5302   * caller will commit the log later - and we want to avoid logging an inode
5303   * multiple times when multiple tasks have joined the same log transaction.
5304   */
5305  static bool need_log_inode(const struct btrfs_trans_handle *trans,
5306  			   struct btrfs_inode *inode)
5307  {
5308  	/*
5309  	 * If a directory was not modified, no dentries added or removed, we can
5310  	 * and should avoid logging it.
5311  	 */
5312  	if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
5313  		return false;
5314  
5315  	/*
5316  	 * If this inode does not have new/updated/deleted xattrs since the last
5317  	 * time it was logged and is flagged as logged in the current transaction,
5318  	 * we can skip logging it. As for new/deleted names, those are updated in
5319  	 * the log by link/unlink/rename operations.
5320  	 * In case the inode was logged and then evicted and reloaded, its
5321  	 * logged_trans will be 0, in which case we have to fully log it since
5322  	 * logged_trans is a transient field, not persisted.
5323  	 */
5324  	if (inode_logged(trans, inode, NULL) == 1 &&
5325  	    !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5326  		return false;
5327  
5328  	return true;
5329  }
5330  
5331  struct btrfs_dir_list {
5332  	u64 ino;
5333  	struct list_head list;
5334  };
5335  
5336  /*
5337   * Log the inodes of the new dentries of a directory.
5338   * See process_dir_items_leaf() for details about why it is needed.
5339   * This is a recursive operation - if an existing dentry corresponds to a
5340   * directory, that directory's new entries are logged too (same behaviour as
5341   * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5342   * the dentries point to we do not acquire their VFS lock, otherwise lockdep
5343   * complains about the following circular lock dependency / possible deadlock:
5344   *
5345   *        CPU0                                        CPU1
5346   *        ----                                        ----
5347   * lock(&type->i_mutex_dir_key#3/2);
5348   *                                            lock(sb_internal#2);
5349   *                                            lock(&type->i_mutex_dir_key#3/2);
5350   * lock(&sb->s_type->i_mutex_key#14);
5351   *
5352   * Where sb_internal is the lock (a counter that works as a lock) acquired by
5353   * sb_start_intwrite() in btrfs_start_transaction().
5354   * Not acquiring the VFS lock of the inodes is still safe because:
5355   *
5356   * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5357   *    that while logging the inode new references (names) are added or removed
5358   *    from the inode, leaving the logged inode item with a link count that does
5359   *    not match the number of logged inode reference items. This is fine because
5360   *    at log replay time we compute the real number of links and correct the
5361   *    link count in the inode item (see replay_one_buffer() and
5362   *    link_to_fixup_dir());
5363   *
5364   * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5365   *    while logging the inode's items new index items (key type
5366   *    BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item
5367   *    has a size that doesn't match the sum of the lengths of all the logged
5368   *    names - this is ok, not a problem, because at log replay time we set the
5369   *    directory's i_size to the correct value (see replay_one_name() and
5370   *    overwrite_item()).
5371   */
5372  static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5373  				struct btrfs_inode *start_inode,
5374  				struct btrfs_log_ctx *ctx)
5375  {
5376  	struct btrfs_root *root = start_inode->root;
5377  	struct btrfs_fs_info *fs_info = root->fs_info;
5378  	struct btrfs_path *path;
5379  	LIST_HEAD(dir_list);
5380  	struct btrfs_dir_list *dir_elem;
5381  	u64 ino = btrfs_ino(start_inode);
5382  	struct btrfs_inode *curr_inode = start_inode;
5383  	int ret = 0;
5384  
5385  	/*
5386  	 * If we are logging a new name, as part of a link or rename operation,
5387  	 * don't bother logging new dentries, as we just want to log the names
5388  	 * of an inode and that any new parents exist.
5389  	 */
5390  	if (ctx->logging_new_name)
5391  		return 0;
5392  
5393  	path = btrfs_alloc_path();
5394  	if (!path)
5395  		return -ENOMEM;
5396  
5397  	/* Pairs with btrfs_add_delayed_iput below. */
5398  	ihold(&curr_inode->vfs_inode);
5399  
5400  	while (true) {
5401  		struct inode *vfs_inode;
5402  		struct btrfs_key key;
5403  		struct btrfs_key found_key;
5404  		u64 next_index;
5405  		bool continue_curr_inode = true;
5406  		int iter_ret;
5407  
5408  		key.objectid = ino;
5409  		key.type = BTRFS_DIR_INDEX_KEY;
5410  		key.offset = btrfs_get_first_dir_index_to_log(curr_inode);
5411  		next_index = key.offset;
5412  again:
5413  		btrfs_for_each_slot(root->log_root, &key, &found_key, path, iter_ret) {
5414  			struct extent_buffer *leaf = path->nodes[0];
5415  			struct btrfs_dir_item *di;
5416  			struct btrfs_key di_key;
5417  			struct inode *di_inode;
5418  			int log_mode = LOG_INODE_EXISTS;
5419  			int type;
5420  
5421  			if (found_key.objectid != ino ||
5422  			    found_key.type != BTRFS_DIR_INDEX_KEY) {
5423  				continue_curr_inode = false;
5424  				break;
5425  			}
5426  
5427  			next_index = found_key.offset + 1;
5428  
5429  			di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5430  			type = btrfs_dir_ftype(leaf, di);
5431  			if (btrfs_dir_transid(leaf, di) < trans->transid)
5432  				continue;
5433  			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5434  			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5435  				continue;
5436  
5437  			btrfs_release_path(path);
5438  			di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5439  			if (IS_ERR(di_inode)) {
5440  				ret = PTR_ERR(di_inode);
5441  				goto out;
5442  			}
5443  
5444  			if (!need_log_inode(trans, BTRFS_I(di_inode))) {
5445  				btrfs_add_delayed_iput(BTRFS_I(di_inode));
5446  				break;
5447  			}
5448  
5449  			ctx->log_new_dentries = false;
5450  			if (type == BTRFS_FT_DIR)
5451  				log_mode = LOG_INODE_ALL;
5452  			ret = btrfs_log_inode(trans, BTRFS_I(di_inode),
5453  					      log_mode, ctx);
5454  			btrfs_add_delayed_iput(BTRFS_I(di_inode));
5455  			if (ret)
5456  				goto out;
5457  			if (ctx->log_new_dentries) {
5458  				dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5459  				if (!dir_elem) {
5460  					ret = -ENOMEM;
5461  					goto out;
5462  				}
5463  				dir_elem->ino = di_key.objectid;
5464  				list_add_tail(&dir_elem->list, &dir_list);
5465  			}
5466  			break;
5467  		}
5468  
5469  		btrfs_release_path(path);
5470  
5471  		if (iter_ret < 0) {
5472  			ret = iter_ret;
5473  			goto out;
5474  		} else if (iter_ret > 0) {
5475  			continue_curr_inode = false;
5476  		} else {
5477  			key = found_key;
5478  		}
5479  
5480  		if (continue_curr_inode && key.offset < (u64)-1) {
5481  			key.offset++;
5482  			goto again;
5483  		}
5484  
5485  		btrfs_set_first_dir_index_to_log(curr_inode, next_index);
5486  
5487  		if (list_empty(&dir_list))
5488  			break;
5489  
5490  		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list);
5491  		ino = dir_elem->ino;
5492  		list_del(&dir_elem->list);
5493  		kfree(dir_elem);
5494  
5495  		btrfs_add_delayed_iput(curr_inode);
5496  		curr_inode = NULL;
5497  
5498  		vfs_inode = btrfs_iget(fs_info->sb, ino, root);
5499  		if (IS_ERR(vfs_inode)) {
5500  			ret = PTR_ERR(vfs_inode);
5501  			break;
5502  		}
5503  		curr_inode = BTRFS_I(vfs_inode);
5504  	}
5505  out:
5506  	btrfs_free_path(path);
5507  	if (curr_inode)
5508  		btrfs_add_delayed_iput(curr_inode);
5509  
5510  	if (ret) {
5511  		struct btrfs_dir_list *next;
5512  
5513  		list_for_each_entry_safe(dir_elem, next, &dir_list, list)
5514  			kfree(dir_elem);
5515  	}
5516  
5517  	return ret;
5518  }
5519  
5520  struct btrfs_ino_list {
5521  	u64 ino;
5522  	u64 parent;
5523  	struct list_head list;
5524  };
5525  
5526  static void free_conflicting_inodes(struct btrfs_log_ctx *ctx)
5527  {
5528  	struct btrfs_ino_list *curr;
5529  	struct btrfs_ino_list *next;
5530  
5531  	list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) {
5532  		list_del(&curr->list);
5533  		kfree(curr);
5534  	}
5535  }
5536  
5537  static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino,
5538  				    struct btrfs_path *path)
5539  {
5540  	struct btrfs_key key;
5541  	int ret;
5542  
5543  	key.objectid = ino;
5544  	key.type = BTRFS_INODE_ITEM_KEY;
5545  	key.offset = 0;
5546  
5547  	path->search_commit_root = 1;
5548  	path->skip_locking = 1;
5549  
5550  	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5551  	if (WARN_ON_ONCE(ret > 0)) {
5552  		/*
5553  		 * We have previously found the inode through the commit root
5554  		 * so this should not happen. If it does, just error out and
5555  		 * fallback to a transaction commit.
5556  		 */
5557  		ret = -ENOENT;
5558  	} else if (ret == 0) {
5559  		struct btrfs_inode_item *item;
5560  
5561  		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5562  				      struct btrfs_inode_item);
5563  		if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item)))
5564  			ret = 1;
5565  	}
5566  
5567  	btrfs_release_path(path);
5568  	path->search_commit_root = 0;
5569  	path->skip_locking = 0;
5570  
5571  	return ret;
5572  }
5573  
5574  static int add_conflicting_inode(struct btrfs_trans_handle *trans,
5575  				 struct btrfs_root *root,
5576  				 struct btrfs_path *path,
5577  				 u64 ino, u64 parent,
5578  				 struct btrfs_log_ctx *ctx)
5579  {
5580  	struct btrfs_ino_list *ino_elem;
5581  	struct inode *inode;
5582  
5583  	/*
5584  	 * It's rare to have a lot of conflicting inodes, in practice it is not
5585  	 * common to have more than 1 or 2. We don't want to collect too many,
5586  	 * as we could end up logging too many inodes (even if only in
5587  	 * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction
5588  	 * commits.
5589  	 */
5590  	if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES)
5591  		return BTRFS_LOG_FORCE_COMMIT;
5592  
5593  	inode = btrfs_iget(root->fs_info->sb, ino, root);
5594  	/*
5595  	 * If the other inode that had a conflicting dir entry was deleted in
5596  	 * the current transaction then we either:
5597  	 *
5598  	 * 1) Log the parent directory (later after adding it to the list) if
5599  	 *    the inode is a directory. This is because it may be a deleted
5600  	 *    subvolume/snapshot or it may be a regular directory that had
5601  	 *    deleted subvolumes/snapshots (or subdirectories that had them),
5602  	 *    and at the moment we can't deal with dropping subvolumes/snapshots
5603  	 *    during log replay. So we just log the parent, which will result in
5604  	 *    a fallback to a transaction commit if we are dealing with those
5605  	 *    cases (last_unlink_trans will match the current transaction);
5606  	 *
5607  	 * 2) Do nothing if it's not a directory. During log replay we simply
5608  	 *    unlink the conflicting dentry from the parent directory and then
5609  	 *    add the dentry for our inode. Like this we can avoid logging the
5610  	 *    parent directory (and maybe fallback to a transaction commit in
5611  	 *    case it has a last_unlink_trans == trans->transid, due to moving
5612  	 *    some inode from it to some other directory).
5613  	 */
5614  	if (IS_ERR(inode)) {
5615  		int ret = PTR_ERR(inode);
5616  
5617  		if (ret != -ENOENT)
5618  			return ret;
5619  
5620  		ret = conflicting_inode_is_dir(root, ino, path);
5621  		/* Not a directory or we got an error. */
5622  		if (ret <= 0)
5623  			return ret;
5624  
5625  		/* Conflicting inode is a directory, so we'll log its parent. */
5626  		ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5627  		if (!ino_elem)
5628  			return -ENOMEM;
5629  		ino_elem->ino = ino;
5630  		ino_elem->parent = parent;
5631  		list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5632  		ctx->num_conflict_inodes++;
5633  
5634  		return 0;
5635  	}
5636  
5637  	/*
5638  	 * If the inode was already logged skip it - otherwise we can hit an
5639  	 * infinite loop. Example:
5640  	 *
5641  	 * From the commit root (previous transaction) we have the following
5642  	 * inodes:
5643  	 *
5644  	 * inode 257 a directory
5645  	 * inode 258 with references "zz" and "zz_link" on inode 257
5646  	 * inode 259 with reference "a" on inode 257
5647  	 *
5648  	 * And in the current (uncommitted) transaction we have:
5649  	 *
5650  	 * inode 257 a directory, unchanged
5651  	 * inode 258 with references "a" and "a2" on inode 257
5652  	 * inode 259 with reference "zz_link" on inode 257
5653  	 * inode 261 with reference "zz" on inode 257
5654  	 *
5655  	 * When logging inode 261 the following infinite loop could
5656  	 * happen if we don't skip already logged inodes:
5657  	 *
5658  	 * - we detect inode 258 as a conflicting inode, with inode 261
5659  	 *   on reference "zz", and log it;
5660  	 *
5661  	 * - we detect inode 259 as a conflicting inode, with inode 258
5662  	 *   on reference "a", and log it;
5663  	 *
5664  	 * - we detect inode 258 as a conflicting inode, with inode 259
5665  	 *   on reference "zz_link", and log it - again! After this we
5666  	 *   repeat the above steps forever.
5667  	 *
5668  	 * Here we can use need_log_inode() because we only need to log the
5669  	 * inode in LOG_INODE_EXISTS mode and rename operations update the log,
5670  	 * so that the log ends up with the new name and without the old name.
5671  	 */
5672  	if (!need_log_inode(trans, BTRFS_I(inode))) {
5673  		btrfs_add_delayed_iput(BTRFS_I(inode));
5674  		return 0;
5675  	}
5676  
5677  	btrfs_add_delayed_iput(BTRFS_I(inode));
5678  
5679  	ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5680  	if (!ino_elem)
5681  		return -ENOMEM;
5682  	ino_elem->ino = ino;
5683  	ino_elem->parent = parent;
5684  	list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5685  	ctx->num_conflict_inodes++;
5686  
5687  	return 0;
5688  }
5689  
5690  static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5691  				  struct btrfs_root *root,
5692  				  struct btrfs_log_ctx *ctx)
5693  {
5694  	struct btrfs_fs_info *fs_info = root->fs_info;
5695  	int ret = 0;
5696  
5697  	/*
5698  	 * Conflicting inodes are logged by the first call to btrfs_log_inode(),
5699  	 * otherwise we could have unbounded recursion of btrfs_log_inode()
5700  	 * calls. This check guarantees we can have only 1 level of recursion.
5701  	 */
5702  	if (ctx->logging_conflict_inodes)
5703  		return 0;
5704  
5705  	ctx->logging_conflict_inodes = true;
5706  
5707  	/*
5708  	 * New conflicting inodes may be found and added to the list while we
5709  	 * are logging a conflicting inode, so keep iterating while the list is
5710  	 * not empty.
5711  	 */
5712  	while (!list_empty(&ctx->conflict_inodes)) {
5713  		struct btrfs_ino_list *curr;
5714  		struct inode *inode;
5715  		u64 ino;
5716  		u64 parent;
5717  
5718  		curr = list_first_entry(&ctx->conflict_inodes,
5719  					struct btrfs_ino_list, list);
5720  		ino = curr->ino;
5721  		parent = curr->parent;
5722  		list_del(&curr->list);
5723  		kfree(curr);
5724  
5725  		inode = btrfs_iget(fs_info->sb, ino, root);
5726  		/*
5727  		 * If the other inode that had a conflicting dir entry was
5728  		 * deleted in the current transaction, we need to log its parent
5729  		 * directory. See the comment at add_conflicting_inode().
5730  		 */
5731  		if (IS_ERR(inode)) {
5732  			ret = PTR_ERR(inode);
5733  			if (ret != -ENOENT)
5734  				break;
5735  
5736  			inode = btrfs_iget(fs_info->sb, parent, root);
5737  			if (IS_ERR(inode)) {
5738  				ret = PTR_ERR(inode);
5739  				break;
5740  			}
5741  
5742  			/*
5743  			 * Always log the directory, we cannot make this
5744  			 * conditional on need_log_inode() because the directory
5745  			 * might have been logged in LOG_INODE_EXISTS mode or
5746  			 * the dir index of the conflicting inode is not in a
5747  			 * dir index key range logged for the directory. So we
5748  			 * must make sure the deletion is recorded.
5749  			 */
5750  			ret = btrfs_log_inode(trans, BTRFS_I(inode),
5751  					      LOG_INODE_ALL, ctx);
5752  			btrfs_add_delayed_iput(BTRFS_I(inode));
5753  			if (ret)
5754  				break;
5755  			continue;
5756  		}
5757  
5758  		/*
5759  		 * Here we can use need_log_inode() because we only need to log
5760  		 * the inode in LOG_INODE_EXISTS mode and rename operations
5761  		 * update the log, so that the log ends up with the new name and
5762  		 * without the old name.
5763  		 *
5764  		 * We did this check at add_conflicting_inode(), but here we do
5765  		 * it again because if some other task logged the inode after
5766  		 * that, we can avoid doing it again.
5767  		 */
5768  		if (!need_log_inode(trans, BTRFS_I(inode))) {
5769  			btrfs_add_delayed_iput(BTRFS_I(inode));
5770  			continue;
5771  		}
5772  
5773  		/*
5774  		 * We are safe logging the other inode without acquiring its
5775  		 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5776  		 * are safe against concurrent renames of the other inode as
5777  		 * well because during a rename we pin the log and update the
5778  		 * log with the new name before we unpin it.
5779  		 */
5780  		ret = btrfs_log_inode(trans, BTRFS_I(inode), LOG_INODE_EXISTS, ctx);
5781  		btrfs_add_delayed_iput(BTRFS_I(inode));
5782  		if (ret)
5783  			break;
5784  	}
5785  
5786  	ctx->logging_conflict_inodes = false;
5787  	if (ret)
5788  		free_conflicting_inodes(ctx);
5789  
5790  	return ret;
5791  }
5792  
5793  static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5794  				   struct btrfs_inode *inode,
5795  				   struct btrfs_key *min_key,
5796  				   const struct btrfs_key *max_key,
5797  				   struct btrfs_path *path,
5798  				   struct btrfs_path *dst_path,
5799  				   const u64 logged_isize,
5800  				   const int inode_only,
5801  				   struct btrfs_log_ctx *ctx,
5802  				   bool *need_log_inode_item)
5803  {
5804  	const u64 i_size = i_size_read(&inode->vfs_inode);
5805  	struct btrfs_root *root = inode->root;
5806  	int ins_start_slot = 0;
5807  	int ins_nr = 0;
5808  	int ret;
5809  
5810  	while (1) {
5811  		ret = btrfs_search_forward(root, min_key, path, trans->transid);
5812  		if (ret < 0)
5813  			return ret;
5814  		if (ret > 0) {
5815  			ret = 0;
5816  			break;
5817  		}
5818  again:
5819  		/* Note, ins_nr might be > 0 here, cleanup outside the loop */
5820  		if (min_key->objectid != max_key->objectid)
5821  			break;
5822  		if (min_key->type > max_key->type)
5823  			break;
5824  
5825  		if (min_key->type == BTRFS_INODE_ITEM_KEY) {
5826  			*need_log_inode_item = false;
5827  		} else if (min_key->type == BTRFS_EXTENT_DATA_KEY &&
5828  			   min_key->offset >= i_size) {
5829  			/*
5830  			 * Extents at and beyond eof are logged with
5831  			 * btrfs_log_prealloc_extents().
5832  			 * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
5833  			 * and no keys greater than that, so bail out.
5834  			 */
5835  			break;
5836  		} else if ((min_key->type == BTRFS_INODE_REF_KEY ||
5837  			    min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5838  			   (inode->generation == trans->transid ||
5839  			    ctx->logging_conflict_inodes)) {
5840  			u64 other_ino = 0;
5841  			u64 other_parent = 0;
5842  
5843  			ret = btrfs_check_ref_name_override(path->nodes[0],
5844  					path->slots[0], min_key, inode,
5845  					&other_ino, &other_parent);
5846  			if (ret < 0) {
5847  				return ret;
5848  			} else if (ret > 0 &&
5849  				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5850  				if (ins_nr > 0) {
5851  					ins_nr++;
5852  				} else {
5853  					ins_nr = 1;
5854  					ins_start_slot = path->slots[0];
5855  				}
5856  				ret = copy_items(trans, inode, dst_path, path,
5857  						 ins_start_slot, ins_nr,
5858  						 inode_only, logged_isize);
5859  				if (ret < 0)
5860  					return ret;
5861  				ins_nr = 0;
5862  
5863  				btrfs_release_path(path);
5864  				ret = add_conflicting_inode(trans, root, path,
5865  							    other_ino,
5866  							    other_parent, ctx);
5867  				if (ret)
5868  					return ret;
5869  				goto next_key;
5870  			}
5871  		} else if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5872  			/* Skip xattrs, logged later with btrfs_log_all_xattrs() */
5873  			if (ins_nr == 0)
5874  				goto next_slot;
5875  			ret = copy_items(trans, inode, dst_path, path,
5876  					 ins_start_slot,
5877  					 ins_nr, inode_only, logged_isize);
5878  			if (ret < 0)
5879  				return ret;
5880  			ins_nr = 0;
5881  			goto next_slot;
5882  		}
5883  
5884  		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5885  			ins_nr++;
5886  			goto next_slot;
5887  		} else if (!ins_nr) {
5888  			ins_start_slot = path->slots[0];
5889  			ins_nr = 1;
5890  			goto next_slot;
5891  		}
5892  
5893  		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5894  				 ins_nr, inode_only, logged_isize);
5895  		if (ret < 0)
5896  			return ret;
5897  		ins_nr = 1;
5898  		ins_start_slot = path->slots[0];
5899  next_slot:
5900  		path->slots[0]++;
5901  		if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5902  			btrfs_item_key_to_cpu(path->nodes[0], min_key,
5903  					      path->slots[0]);
5904  			goto again;
5905  		}
5906  		if (ins_nr) {
5907  			ret = copy_items(trans, inode, dst_path, path,
5908  					 ins_start_slot, ins_nr, inode_only,
5909  					 logged_isize);
5910  			if (ret < 0)
5911  				return ret;
5912  			ins_nr = 0;
5913  		}
5914  		btrfs_release_path(path);
5915  next_key:
5916  		if (min_key->offset < (u64)-1) {
5917  			min_key->offset++;
5918  		} else if (min_key->type < max_key->type) {
5919  			min_key->type++;
5920  			min_key->offset = 0;
5921  		} else {
5922  			break;
5923  		}
5924  
5925  		/*
5926  		 * We may process many leaves full of items for our inode, so
5927  		 * avoid monopolizing a cpu for too long by rescheduling while
5928  		 * not holding locks on any tree.
5929  		 */
5930  		cond_resched();
5931  	}
5932  	if (ins_nr) {
5933  		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5934  				 ins_nr, inode_only, logged_isize);
5935  		if (ret)
5936  			return ret;
5937  	}
5938  
5939  	if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) {
5940  		/*
5941  		 * Release the path because otherwise we might attempt to double
5942  		 * lock the same leaf with btrfs_log_prealloc_extents() below.
5943  		 */
5944  		btrfs_release_path(path);
5945  		ret = btrfs_log_prealloc_extents(trans, inode, dst_path);
5946  	}
5947  
5948  	return ret;
5949  }
5950  
5951  static int insert_delayed_items_batch(struct btrfs_trans_handle *trans,
5952  				      struct btrfs_root *log,
5953  				      struct btrfs_path *path,
5954  				      const struct btrfs_item_batch *batch,
5955  				      const struct btrfs_delayed_item *first_item)
5956  {
5957  	const struct btrfs_delayed_item *curr = first_item;
5958  	int ret;
5959  
5960  	ret = btrfs_insert_empty_items(trans, log, path, batch);
5961  	if (ret)
5962  		return ret;
5963  
5964  	for (int i = 0; i < batch->nr; i++) {
5965  		char *data_ptr;
5966  
5967  		data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
5968  		write_extent_buffer(path->nodes[0], &curr->data,
5969  				    (unsigned long)data_ptr, curr->data_len);
5970  		curr = list_next_entry(curr, log_list);
5971  		path->slots[0]++;
5972  	}
5973  
5974  	btrfs_release_path(path);
5975  
5976  	return 0;
5977  }
5978  
5979  static int log_delayed_insertion_items(struct btrfs_trans_handle *trans,
5980  				       struct btrfs_inode *inode,
5981  				       struct btrfs_path *path,
5982  				       const struct list_head *delayed_ins_list,
5983  				       struct btrfs_log_ctx *ctx)
5984  {
5985  	/* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */
5986  	const int max_batch_size = 195;
5987  	const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info);
5988  	const u64 ino = btrfs_ino(inode);
5989  	struct btrfs_root *log = inode->root->log_root;
5990  	struct btrfs_item_batch batch = {
5991  		.nr = 0,
5992  		.total_data_size = 0,
5993  	};
5994  	const struct btrfs_delayed_item *first = NULL;
5995  	const struct btrfs_delayed_item *curr;
5996  	char *ins_data;
5997  	struct btrfs_key *ins_keys;
5998  	u32 *ins_sizes;
5999  	u64 curr_batch_size = 0;
6000  	int batch_idx = 0;
6001  	int ret;
6002  
6003  	/* We are adding dir index items to the log tree. */
6004  	lockdep_assert_held(&inode->log_mutex);
6005  
6006  	/*
6007  	 * We collect delayed items before copying index keys from the subvolume
6008  	 * to the log tree. However just after we collected them, they may have
6009  	 * been flushed (all of them or just some of them), and therefore we
6010  	 * could have copied them from the subvolume tree to the log tree.
6011  	 * So find the first delayed item that was not yet logged (they are
6012  	 * sorted by index number).
6013  	 */
6014  	list_for_each_entry(curr, delayed_ins_list, log_list) {
6015  		if (curr->index > inode->last_dir_index_offset) {
6016  			first = curr;
6017  			break;
6018  		}
6019  	}
6020  
6021  	/* Empty list or all delayed items were already logged. */
6022  	if (!first)
6023  		return 0;
6024  
6025  	ins_data = kmalloc(max_batch_size * sizeof(u32) +
6026  			   max_batch_size * sizeof(struct btrfs_key), GFP_NOFS);
6027  	if (!ins_data)
6028  		return -ENOMEM;
6029  	ins_sizes = (u32 *)ins_data;
6030  	batch.data_sizes = ins_sizes;
6031  	ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32));
6032  	batch.keys = ins_keys;
6033  
6034  	curr = first;
6035  	while (!list_entry_is_head(curr, delayed_ins_list, log_list)) {
6036  		const u32 curr_size = curr->data_len + sizeof(struct btrfs_item);
6037  
6038  		if (curr_batch_size + curr_size > leaf_data_size ||
6039  		    batch.nr == max_batch_size) {
6040  			ret = insert_delayed_items_batch(trans, log, path,
6041  							 &batch, first);
6042  			if (ret)
6043  				goto out;
6044  			batch_idx = 0;
6045  			batch.nr = 0;
6046  			batch.total_data_size = 0;
6047  			curr_batch_size = 0;
6048  			first = curr;
6049  		}
6050  
6051  		ins_sizes[batch_idx] = curr->data_len;
6052  		ins_keys[batch_idx].objectid = ino;
6053  		ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY;
6054  		ins_keys[batch_idx].offset = curr->index;
6055  		curr_batch_size += curr_size;
6056  		batch.total_data_size += curr->data_len;
6057  		batch.nr++;
6058  		batch_idx++;
6059  		curr = list_next_entry(curr, log_list);
6060  	}
6061  
6062  	ASSERT(batch.nr >= 1);
6063  	ret = insert_delayed_items_batch(trans, log, path, &batch, first);
6064  
6065  	curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item,
6066  			       log_list);
6067  	inode->last_dir_index_offset = curr->index;
6068  out:
6069  	kfree(ins_data);
6070  
6071  	return ret;
6072  }
6073  
6074  static int log_delayed_deletions_full(struct btrfs_trans_handle *trans,
6075  				      struct btrfs_inode *inode,
6076  				      struct btrfs_path *path,
6077  				      const struct list_head *delayed_del_list,
6078  				      struct btrfs_log_ctx *ctx)
6079  {
6080  	const u64 ino = btrfs_ino(inode);
6081  	const struct btrfs_delayed_item *curr;
6082  
6083  	curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6084  				log_list);
6085  
6086  	while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6087  		u64 first_dir_index = curr->index;
6088  		u64 last_dir_index;
6089  		const struct btrfs_delayed_item *next;
6090  		int ret;
6091  
6092  		/*
6093  		 * Find a range of consecutive dir index items to delete. Like
6094  		 * this we log a single dir range item spanning several contiguous
6095  		 * dir items instead of logging one range item per dir index item.
6096  		 */
6097  		next = list_next_entry(curr, log_list);
6098  		while (!list_entry_is_head(next, delayed_del_list, log_list)) {
6099  			if (next->index != curr->index + 1)
6100  				break;
6101  			curr = next;
6102  			next = list_next_entry(next, log_list);
6103  		}
6104  
6105  		last_dir_index = curr->index;
6106  		ASSERT(last_dir_index >= first_dir_index);
6107  
6108  		ret = insert_dir_log_key(trans, inode->root->log_root, path,
6109  					 ino, first_dir_index, last_dir_index);
6110  		if (ret)
6111  			return ret;
6112  		curr = list_next_entry(curr, log_list);
6113  	}
6114  
6115  	return 0;
6116  }
6117  
6118  static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans,
6119  					struct btrfs_inode *inode,
6120  					struct btrfs_path *path,
6121  					struct btrfs_log_ctx *ctx,
6122  					const struct list_head *delayed_del_list,
6123  					const struct btrfs_delayed_item *first,
6124  					const struct btrfs_delayed_item **last_ret)
6125  {
6126  	const struct btrfs_delayed_item *next;
6127  	struct extent_buffer *leaf = path->nodes[0];
6128  	const int last_slot = btrfs_header_nritems(leaf) - 1;
6129  	int slot = path->slots[0] + 1;
6130  	const u64 ino = btrfs_ino(inode);
6131  
6132  	next = list_next_entry(first, log_list);
6133  
6134  	while (slot < last_slot &&
6135  	       !list_entry_is_head(next, delayed_del_list, log_list)) {
6136  		struct btrfs_key key;
6137  
6138  		btrfs_item_key_to_cpu(leaf, &key, slot);
6139  		if (key.objectid != ino ||
6140  		    key.type != BTRFS_DIR_INDEX_KEY ||
6141  		    key.offset != next->index)
6142  			break;
6143  
6144  		slot++;
6145  		*last_ret = next;
6146  		next = list_next_entry(next, log_list);
6147  	}
6148  
6149  	return btrfs_del_items(trans, inode->root->log_root, path,
6150  			       path->slots[0], slot - path->slots[0]);
6151  }
6152  
6153  static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans,
6154  					     struct btrfs_inode *inode,
6155  					     struct btrfs_path *path,
6156  					     const struct list_head *delayed_del_list,
6157  					     struct btrfs_log_ctx *ctx)
6158  {
6159  	struct btrfs_root *log = inode->root->log_root;
6160  	const struct btrfs_delayed_item *curr;
6161  	u64 last_range_start = 0;
6162  	u64 last_range_end = 0;
6163  	struct btrfs_key key;
6164  
6165  	key.objectid = btrfs_ino(inode);
6166  	key.type = BTRFS_DIR_INDEX_KEY;
6167  	curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6168  				log_list);
6169  
6170  	while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6171  		const struct btrfs_delayed_item *last = curr;
6172  		u64 first_dir_index = curr->index;
6173  		u64 last_dir_index;
6174  		bool deleted_items = false;
6175  		int ret;
6176  
6177  		key.offset = curr->index;
6178  		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
6179  		if (ret < 0) {
6180  			return ret;
6181  		} else if (ret == 0) {
6182  			ret = batch_delete_dir_index_items(trans, inode, path, ctx,
6183  							   delayed_del_list, curr,
6184  							   &last);
6185  			if (ret)
6186  				return ret;
6187  			deleted_items = true;
6188  		}
6189  
6190  		btrfs_release_path(path);
6191  
6192  		/*
6193  		 * If we deleted items from the leaf, it means we have a range
6194  		 * item logging their range, so no need to add one or update an
6195  		 * existing one. Otherwise we have to log a dir range item.
6196  		 */
6197  		if (deleted_items)
6198  			goto next_batch;
6199  
6200  		last_dir_index = last->index;
6201  		ASSERT(last_dir_index >= first_dir_index);
6202  		/*
6203  		 * If this range starts right after where the previous one ends,
6204  		 * then we want to reuse the previous range item and change its
6205  		 * end offset to the end of this range. This is just to minimize
6206  		 * leaf space usage, by avoiding adding a new range item.
6207  		 */
6208  		if (last_range_end != 0 && first_dir_index == last_range_end + 1)
6209  			first_dir_index = last_range_start;
6210  
6211  		ret = insert_dir_log_key(trans, log, path, key.objectid,
6212  					 first_dir_index, last_dir_index);
6213  		if (ret)
6214  			return ret;
6215  
6216  		last_range_start = first_dir_index;
6217  		last_range_end = last_dir_index;
6218  next_batch:
6219  		curr = list_next_entry(last, log_list);
6220  	}
6221  
6222  	return 0;
6223  }
6224  
6225  static int log_delayed_deletion_items(struct btrfs_trans_handle *trans,
6226  				      struct btrfs_inode *inode,
6227  				      struct btrfs_path *path,
6228  				      const struct list_head *delayed_del_list,
6229  				      struct btrfs_log_ctx *ctx)
6230  {
6231  	/*
6232  	 * We are deleting dir index items from the log tree or adding range
6233  	 * items to it.
6234  	 */
6235  	lockdep_assert_held(&inode->log_mutex);
6236  
6237  	if (list_empty(delayed_del_list))
6238  		return 0;
6239  
6240  	if (ctx->logged_before)
6241  		return log_delayed_deletions_incremental(trans, inode, path,
6242  							 delayed_del_list, ctx);
6243  
6244  	return log_delayed_deletions_full(trans, inode, path, delayed_del_list,
6245  					  ctx);
6246  }
6247  
6248  /*
6249   * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed
6250   * items instead of the subvolume tree.
6251   */
6252  static int log_new_delayed_dentries(struct btrfs_trans_handle *trans,
6253  				    struct btrfs_inode *inode,
6254  				    const struct list_head *delayed_ins_list,
6255  				    struct btrfs_log_ctx *ctx)
6256  {
6257  	const bool orig_log_new_dentries = ctx->log_new_dentries;
6258  	struct btrfs_fs_info *fs_info = trans->fs_info;
6259  	struct btrfs_delayed_item *item;
6260  	int ret = 0;
6261  
6262  	/*
6263  	 * No need for the log mutex, plus to avoid potential deadlocks or
6264  	 * lockdep annotations due to nesting of delayed inode mutexes and log
6265  	 * mutexes.
6266  	 */
6267  	lockdep_assert_not_held(&inode->log_mutex);
6268  
6269  	ASSERT(!ctx->logging_new_delayed_dentries);
6270  	ctx->logging_new_delayed_dentries = true;
6271  
6272  	list_for_each_entry(item, delayed_ins_list, log_list) {
6273  		struct btrfs_dir_item *dir_item;
6274  		struct inode *di_inode;
6275  		struct btrfs_key key;
6276  		int log_mode = LOG_INODE_EXISTS;
6277  
6278  		dir_item = (struct btrfs_dir_item *)item->data;
6279  		btrfs_disk_key_to_cpu(&key, &dir_item->location);
6280  
6281  		if (key.type == BTRFS_ROOT_ITEM_KEY)
6282  			continue;
6283  
6284  		di_inode = btrfs_iget(fs_info->sb, key.objectid, inode->root);
6285  		if (IS_ERR(di_inode)) {
6286  			ret = PTR_ERR(di_inode);
6287  			break;
6288  		}
6289  
6290  		if (!need_log_inode(trans, BTRFS_I(di_inode))) {
6291  			btrfs_add_delayed_iput(BTRFS_I(di_inode));
6292  			continue;
6293  		}
6294  
6295  		if (btrfs_stack_dir_ftype(dir_item) == BTRFS_FT_DIR)
6296  			log_mode = LOG_INODE_ALL;
6297  
6298  		ctx->log_new_dentries = false;
6299  		ret = btrfs_log_inode(trans, BTRFS_I(di_inode), log_mode, ctx);
6300  
6301  		if (!ret && ctx->log_new_dentries)
6302  			ret = log_new_dir_dentries(trans, BTRFS_I(di_inode), ctx);
6303  
6304  		btrfs_add_delayed_iput(BTRFS_I(di_inode));
6305  
6306  		if (ret)
6307  			break;
6308  	}
6309  
6310  	ctx->log_new_dentries = orig_log_new_dentries;
6311  	ctx->logging_new_delayed_dentries = false;
6312  
6313  	return ret;
6314  }
6315  
6316  /* log a single inode in the tree log.
6317   * At least one parent directory for this inode must exist in the tree
6318   * or be logged already.
6319   *
6320   * Any items from this inode changed by the current transaction are copied
6321   * to the log tree.  An extra reference is taken on any extents in this
6322   * file, allowing us to avoid a whole pile of corner cases around logging
6323   * blocks that have been removed from the tree.
6324   *
6325   * See LOG_INODE_ALL and related defines for a description of what inode_only
6326   * does.
6327   *
6328   * This handles both files and directories.
6329   */
6330  static int btrfs_log_inode(struct btrfs_trans_handle *trans,
6331  			   struct btrfs_inode *inode,
6332  			   int inode_only,
6333  			   struct btrfs_log_ctx *ctx)
6334  {
6335  	struct btrfs_path *path;
6336  	struct btrfs_path *dst_path;
6337  	struct btrfs_key min_key;
6338  	struct btrfs_key max_key;
6339  	struct btrfs_root *log = inode->root->log_root;
6340  	int ret;
6341  	bool fast_search = false;
6342  	u64 ino = btrfs_ino(inode);
6343  	struct extent_map_tree *em_tree = &inode->extent_tree;
6344  	u64 logged_isize = 0;
6345  	bool need_log_inode_item = true;
6346  	bool xattrs_logged = false;
6347  	bool inode_item_dropped = true;
6348  	bool full_dir_logging = false;
6349  	LIST_HEAD(delayed_ins_list);
6350  	LIST_HEAD(delayed_del_list);
6351  
6352  	path = btrfs_alloc_path();
6353  	if (!path)
6354  		return -ENOMEM;
6355  	dst_path = btrfs_alloc_path();
6356  	if (!dst_path) {
6357  		btrfs_free_path(path);
6358  		return -ENOMEM;
6359  	}
6360  
6361  	min_key.objectid = ino;
6362  	min_key.type = BTRFS_INODE_ITEM_KEY;
6363  	min_key.offset = 0;
6364  
6365  	max_key.objectid = ino;
6366  
6367  
6368  	/* today the code can only do partial logging of directories */
6369  	if (S_ISDIR(inode->vfs_inode.i_mode) ||
6370  	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6371  		       &inode->runtime_flags) &&
6372  	     inode_only >= LOG_INODE_EXISTS))
6373  		max_key.type = BTRFS_XATTR_ITEM_KEY;
6374  	else
6375  		max_key.type = (u8)-1;
6376  	max_key.offset = (u64)-1;
6377  
6378  	if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL)
6379  		full_dir_logging = true;
6380  
6381  	/*
6382  	 * If we are logging a directory while we are logging dentries of the
6383  	 * delayed items of some other inode, then we need to flush the delayed
6384  	 * items of this directory and not log the delayed items directly. This
6385  	 * is to prevent more than one level of recursion into btrfs_log_inode()
6386  	 * by having something like this:
6387  	 *
6388  	 *     $ mkdir -p a/b/c/d/e/f/g/h/...
6389  	 *     $ xfs_io -c "fsync" a
6390  	 *
6391  	 * Where all directories in the path did not exist before and are
6392  	 * created in the current transaction.
6393  	 * So in such a case we directly log the delayed items of the main
6394  	 * directory ("a") without flushing them first, while for each of its
6395  	 * subdirectories we flush their delayed items before logging them.
6396  	 * This prevents a potential unbounded recursion like this:
6397  	 *
6398  	 * btrfs_log_inode()
6399  	 *   log_new_delayed_dentries()
6400  	 *      btrfs_log_inode()
6401  	 *        log_new_delayed_dentries()
6402  	 *          btrfs_log_inode()
6403  	 *            log_new_delayed_dentries()
6404  	 *              (...)
6405  	 *
6406  	 * We have thresholds for the maximum number of delayed items to have in
6407  	 * memory, and once they are hit, the items are flushed asynchronously.
6408  	 * However the limit is quite high, so lets prevent deep levels of
6409  	 * recursion to happen by limiting the maximum depth to be 1.
6410  	 */
6411  	if (full_dir_logging && ctx->logging_new_delayed_dentries) {
6412  		ret = btrfs_commit_inode_delayed_items(trans, inode);
6413  		if (ret)
6414  			goto out;
6415  	}
6416  
6417  	mutex_lock(&inode->log_mutex);
6418  
6419  	/*
6420  	 * For symlinks, we must always log their content, which is stored in an
6421  	 * inline extent, otherwise we could end up with an empty symlink after
6422  	 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if
6423  	 * one attempts to create an empty symlink).
6424  	 * We don't need to worry about flushing delalloc, because when we create
6425  	 * the inline extent when the symlink is created (we never have delalloc
6426  	 * for symlinks).
6427  	 */
6428  	if (S_ISLNK(inode->vfs_inode.i_mode))
6429  		inode_only = LOG_INODE_ALL;
6430  
6431  	/*
6432  	 * Before logging the inode item, cache the value returned by
6433  	 * inode_logged(), because after that we have the need to figure out if
6434  	 * the inode was previously logged in this transaction.
6435  	 */
6436  	ret = inode_logged(trans, inode, path);
6437  	if (ret < 0)
6438  		goto out_unlock;
6439  	ctx->logged_before = (ret == 1);
6440  	ret = 0;
6441  
6442  	/*
6443  	 * This is for cases where logging a directory could result in losing a
6444  	 * a file after replaying the log. For example, if we move a file from a
6445  	 * directory A to a directory B, then fsync directory A, we have no way
6446  	 * to known the file was moved from A to B, so logging just A would
6447  	 * result in losing the file after a log replay.
6448  	 */
6449  	if (full_dir_logging && inode->last_unlink_trans >= trans->transid) {
6450  		ret = BTRFS_LOG_FORCE_COMMIT;
6451  		goto out_unlock;
6452  	}
6453  
6454  	/*
6455  	 * a brute force approach to making sure we get the most uptodate
6456  	 * copies of everything.
6457  	 */
6458  	if (S_ISDIR(inode->vfs_inode.i_mode)) {
6459  		clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
6460  		if (ctx->logged_before)
6461  			ret = drop_inode_items(trans, log, path, inode,
6462  					       BTRFS_XATTR_ITEM_KEY);
6463  	} else {
6464  		if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) {
6465  			/*
6466  			 * Make sure the new inode item we write to the log has
6467  			 * the same isize as the current one (if it exists).
6468  			 * This is necessary to prevent data loss after log
6469  			 * replay, and also to prevent doing a wrong expanding
6470  			 * truncate - for e.g. create file, write 4K into offset
6471  			 * 0, fsync, write 4K into offset 4096, add hard link,
6472  			 * fsync some other file (to sync log), power fail - if
6473  			 * we use the inode's current i_size, after log replay
6474  			 * we get a 8Kb file, with the last 4Kb extent as a hole
6475  			 * (zeroes), as if an expanding truncate happened,
6476  			 * instead of getting a file of 4Kb only.
6477  			 */
6478  			ret = logged_inode_size(log, inode, path, &logged_isize);
6479  			if (ret)
6480  				goto out_unlock;
6481  		}
6482  		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6483  			     &inode->runtime_flags)) {
6484  			if (inode_only == LOG_INODE_EXISTS) {
6485  				max_key.type = BTRFS_XATTR_ITEM_KEY;
6486  				if (ctx->logged_before)
6487  					ret = drop_inode_items(trans, log, path,
6488  							       inode, max_key.type);
6489  			} else {
6490  				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6491  					  &inode->runtime_flags);
6492  				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6493  					  &inode->runtime_flags);
6494  				if (ctx->logged_before)
6495  					ret = truncate_inode_items(trans, log,
6496  								   inode, 0, 0);
6497  			}
6498  		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6499  					      &inode->runtime_flags) ||
6500  			   inode_only == LOG_INODE_EXISTS) {
6501  			if (inode_only == LOG_INODE_ALL)
6502  				fast_search = true;
6503  			max_key.type = BTRFS_XATTR_ITEM_KEY;
6504  			if (ctx->logged_before)
6505  				ret = drop_inode_items(trans, log, path, inode,
6506  						       max_key.type);
6507  		} else {
6508  			if (inode_only == LOG_INODE_ALL)
6509  				fast_search = true;
6510  			inode_item_dropped = false;
6511  			goto log_extents;
6512  		}
6513  
6514  	}
6515  	if (ret)
6516  		goto out_unlock;
6517  
6518  	/*
6519  	 * If we are logging a directory in full mode, collect the delayed items
6520  	 * before iterating the subvolume tree, so that we don't miss any new
6521  	 * dir index items in case they get flushed while or right after we are
6522  	 * iterating the subvolume tree.
6523  	 */
6524  	if (full_dir_logging && !ctx->logging_new_delayed_dentries)
6525  		btrfs_log_get_delayed_items(inode, &delayed_ins_list,
6526  					    &delayed_del_list);
6527  
6528  	ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
6529  				      path, dst_path, logged_isize,
6530  				      inode_only, ctx,
6531  				      &need_log_inode_item);
6532  	if (ret)
6533  		goto out_unlock;
6534  
6535  	btrfs_release_path(path);
6536  	btrfs_release_path(dst_path);
6537  	ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
6538  	if (ret)
6539  		goto out_unlock;
6540  	xattrs_logged = true;
6541  	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
6542  		btrfs_release_path(path);
6543  		btrfs_release_path(dst_path);
6544  		ret = btrfs_log_holes(trans, inode, path);
6545  		if (ret)
6546  			goto out_unlock;
6547  	}
6548  log_extents:
6549  	btrfs_release_path(path);
6550  	btrfs_release_path(dst_path);
6551  	if (need_log_inode_item) {
6552  		ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
6553  		if (ret)
6554  			goto out_unlock;
6555  		/*
6556  		 * If we are doing a fast fsync and the inode was logged before
6557  		 * in this transaction, we don't need to log the xattrs because
6558  		 * they were logged before. If xattrs were added, changed or
6559  		 * deleted since the last time we logged the inode, then we have
6560  		 * already logged them because the inode had the runtime flag
6561  		 * BTRFS_INODE_COPY_EVERYTHING set.
6562  		 */
6563  		if (!xattrs_logged && inode->logged_trans < trans->transid) {
6564  			ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
6565  			if (ret)
6566  				goto out_unlock;
6567  			btrfs_release_path(path);
6568  		}
6569  	}
6570  	if (fast_search) {
6571  		ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx);
6572  		if (ret)
6573  			goto out_unlock;
6574  	} else if (inode_only == LOG_INODE_ALL) {
6575  		struct extent_map *em, *n;
6576  
6577  		write_lock(&em_tree->lock);
6578  		list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
6579  			list_del_init(&em->list);
6580  		write_unlock(&em_tree->lock);
6581  	}
6582  
6583  	if (full_dir_logging) {
6584  		ret = log_directory_changes(trans, inode, path, dst_path, ctx);
6585  		if (ret)
6586  			goto out_unlock;
6587  		ret = log_delayed_insertion_items(trans, inode, path,
6588  						  &delayed_ins_list, ctx);
6589  		if (ret)
6590  			goto out_unlock;
6591  		ret = log_delayed_deletion_items(trans, inode, path,
6592  						 &delayed_del_list, ctx);
6593  		if (ret)
6594  			goto out_unlock;
6595  	}
6596  
6597  	spin_lock(&inode->lock);
6598  	inode->logged_trans = trans->transid;
6599  	/*
6600  	 * Don't update last_log_commit if we logged that an inode exists.
6601  	 * We do this for three reasons:
6602  	 *
6603  	 * 1) We might have had buffered writes to this inode that were
6604  	 *    flushed and had their ordered extents completed in this
6605  	 *    transaction, but we did not previously log the inode with
6606  	 *    LOG_INODE_ALL. Later the inode was evicted and after that
6607  	 *    it was loaded again and this LOG_INODE_EXISTS log operation
6608  	 *    happened. We must make sure that if an explicit fsync against
6609  	 *    the inode is performed later, it logs the new extents, an
6610  	 *    updated inode item, etc, and syncs the log. The same logic
6611  	 *    applies to direct IO writes instead of buffered writes.
6612  	 *
6613  	 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
6614  	 *    is logged with an i_size of 0 or whatever value was logged
6615  	 *    before. If later the i_size of the inode is increased by a
6616  	 *    truncate operation, the log is synced through an fsync of
6617  	 *    some other inode and then finally an explicit fsync against
6618  	 *    this inode is made, we must make sure this fsync logs the
6619  	 *    inode with the new i_size, the hole between old i_size and
6620  	 *    the new i_size, and syncs the log.
6621  	 *
6622  	 * 3) If we are logging that an ancestor inode exists as part of
6623  	 *    logging a new name from a link or rename operation, don't update
6624  	 *    its last_log_commit - otherwise if an explicit fsync is made
6625  	 *    against an ancestor, the fsync considers the inode in the log
6626  	 *    and doesn't sync the log, resulting in the ancestor missing after
6627  	 *    a power failure unless the log was synced as part of an fsync
6628  	 *    against any other unrelated inode.
6629  	 */
6630  	if (inode_only != LOG_INODE_EXISTS)
6631  		inode->last_log_commit = inode->last_sub_trans;
6632  	spin_unlock(&inode->lock);
6633  
6634  	/*
6635  	 * Reset the last_reflink_trans so that the next fsync does not need to
6636  	 * go through the slower path when logging extents and their checksums.
6637  	 */
6638  	if (inode_only == LOG_INODE_ALL)
6639  		inode->last_reflink_trans = 0;
6640  
6641  out_unlock:
6642  	mutex_unlock(&inode->log_mutex);
6643  out:
6644  	btrfs_free_path(path);
6645  	btrfs_free_path(dst_path);
6646  
6647  	if (ret)
6648  		free_conflicting_inodes(ctx);
6649  	else
6650  		ret = log_conflicting_inodes(trans, inode->root, ctx);
6651  
6652  	if (full_dir_logging && !ctx->logging_new_delayed_dentries) {
6653  		if (!ret)
6654  			ret = log_new_delayed_dentries(trans, inode,
6655  						       &delayed_ins_list, ctx);
6656  
6657  		btrfs_log_put_delayed_items(inode, &delayed_ins_list,
6658  					    &delayed_del_list);
6659  	}
6660  
6661  	return ret;
6662  }
6663  
6664  static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
6665  				 struct btrfs_inode *inode,
6666  				 struct btrfs_log_ctx *ctx)
6667  {
6668  	struct btrfs_fs_info *fs_info = trans->fs_info;
6669  	int ret;
6670  	struct btrfs_path *path;
6671  	struct btrfs_key key;
6672  	struct btrfs_root *root = inode->root;
6673  	const u64 ino = btrfs_ino(inode);
6674  
6675  	path = btrfs_alloc_path();
6676  	if (!path)
6677  		return -ENOMEM;
6678  	path->skip_locking = 1;
6679  	path->search_commit_root = 1;
6680  
6681  	key.objectid = ino;
6682  	key.type = BTRFS_INODE_REF_KEY;
6683  	key.offset = 0;
6684  	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6685  	if (ret < 0)
6686  		goto out;
6687  
6688  	while (true) {
6689  		struct extent_buffer *leaf = path->nodes[0];
6690  		int slot = path->slots[0];
6691  		u32 cur_offset = 0;
6692  		u32 item_size;
6693  		unsigned long ptr;
6694  
6695  		if (slot >= btrfs_header_nritems(leaf)) {
6696  			ret = btrfs_next_leaf(root, path);
6697  			if (ret < 0)
6698  				goto out;
6699  			else if (ret > 0)
6700  				break;
6701  			continue;
6702  		}
6703  
6704  		btrfs_item_key_to_cpu(leaf, &key, slot);
6705  		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
6706  		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
6707  			break;
6708  
6709  		item_size = btrfs_item_size(leaf, slot);
6710  		ptr = btrfs_item_ptr_offset(leaf, slot);
6711  		while (cur_offset < item_size) {
6712  			struct btrfs_key inode_key;
6713  			struct inode *dir_inode;
6714  
6715  			inode_key.type = BTRFS_INODE_ITEM_KEY;
6716  			inode_key.offset = 0;
6717  
6718  			if (key.type == BTRFS_INODE_EXTREF_KEY) {
6719  				struct btrfs_inode_extref *extref;
6720  
6721  				extref = (struct btrfs_inode_extref *)
6722  					(ptr + cur_offset);
6723  				inode_key.objectid = btrfs_inode_extref_parent(
6724  					leaf, extref);
6725  				cur_offset += sizeof(*extref);
6726  				cur_offset += btrfs_inode_extref_name_len(leaf,
6727  					extref);
6728  			} else {
6729  				inode_key.objectid = key.offset;
6730  				cur_offset = item_size;
6731  			}
6732  
6733  			dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
6734  					       root);
6735  			/*
6736  			 * If the parent inode was deleted, return an error to
6737  			 * fallback to a transaction commit. This is to prevent
6738  			 * getting an inode that was moved from one parent A to
6739  			 * a parent B, got its former parent A deleted and then
6740  			 * it got fsync'ed, from existing at both parents after
6741  			 * a log replay (and the old parent still existing).
6742  			 * Example:
6743  			 *
6744  			 * mkdir /mnt/A
6745  			 * mkdir /mnt/B
6746  			 * touch /mnt/B/bar
6747  			 * sync
6748  			 * mv /mnt/B/bar /mnt/A/bar
6749  			 * mv -T /mnt/A /mnt/B
6750  			 * fsync /mnt/B/bar
6751  			 * <power fail>
6752  			 *
6753  			 * If we ignore the old parent B which got deleted,
6754  			 * after a log replay we would have file bar linked
6755  			 * at both parents and the old parent B would still
6756  			 * exist.
6757  			 */
6758  			if (IS_ERR(dir_inode)) {
6759  				ret = PTR_ERR(dir_inode);
6760  				goto out;
6761  			}
6762  
6763  			if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
6764  				btrfs_add_delayed_iput(BTRFS_I(dir_inode));
6765  				continue;
6766  			}
6767  
6768  			ctx->log_new_dentries = false;
6769  			ret = btrfs_log_inode(trans, BTRFS_I(dir_inode),
6770  					      LOG_INODE_ALL, ctx);
6771  			if (!ret && ctx->log_new_dentries)
6772  				ret = log_new_dir_dentries(trans,
6773  						   BTRFS_I(dir_inode), ctx);
6774  			btrfs_add_delayed_iput(BTRFS_I(dir_inode));
6775  			if (ret)
6776  				goto out;
6777  		}
6778  		path->slots[0]++;
6779  	}
6780  	ret = 0;
6781  out:
6782  	btrfs_free_path(path);
6783  	return ret;
6784  }
6785  
6786  static int log_new_ancestors(struct btrfs_trans_handle *trans,
6787  			     struct btrfs_root *root,
6788  			     struct btrfs_path *path,
6789  			     struct btrfs_log_ctx *ctx)
6790  {
6791  	struct btrfs_key found_key;
6792  
6793  	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
6794  
6795  	while (true) {
6796  		struct btrfs_fs_info *fs_info = root->fs_info;
6797  		struct extent_buffer *leaf = path->nodes[0];
6798  		int slot = path->slots[0];
6799  		struct btrfs_key search_key;
6800  		struct inode *inode;
6801  		u64 ino;
6802  		int ret = 0;
6803  
6804  		btrfs_release_path(path);
6805  
6806  		ino = found_key.offset;
6807  
6808  		search_key.objectid = found_key.offset;
6809  		search_key.type = BTRFS_INODE_ITEM_KEY;
6810  		search_key.offset = 0;
6811  		inode = btrfs_iget(fs_info->sb, ino, root);
6812  		if (IS_ERR(inode))
6813  			return PTR_ERR(inode);
6814  
6815  		if (BTRFS_I(inode)->generation >= trans->transid &&
6816  		    need_log_inode(trans, BTRFS_I(inode)))
6817  			ret = btrfs_log_inode(trans, BTRFS_I(inode),
6818  					      LOG_INODE_EXISTS, ctx);
6819  		btrfs_add_delayed_iput(BTRFS_I(inode));
6820  		if (ret)
6821  			return ret;
6822  
6823  		if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
6824  			break;
6825  
6826  		search_key.type = BTRFS_INODE_REF_KEY;
6827  		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6828  		if (ret < 0)
6829  			return ret;
6830  
6831  		leaf = path->nodes[0];
6832  		slot = path->slots[0];
6833  		if (slot >= btrfs_header_nritems(leaf)) {
6834  			ret = btrfs_next_leaf(root, path);
6835  			if (ret < 0)
6836  				return ret;
6837  			else if (ret > 0)
6838  				return -ENOENT;
6839  			leaf = path->nodes[0];
6840  			slot = path->slots[0];
6841  		}
6842  
6843  		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6844  		if (found_key.objectid != search_key.objectid ||
6845  		    found_key.type != BTRFS_INODE_REF_KEY)
6846  			return -ENOENT;
6847  	}
6848  	return 0;
6849  }
6850  
6851  static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6852  				  struct btrfs_inode *inode,
6853  				  struct dentry *parent,
6854  				  struct btrfs_log_ctx *ctx)
6855  {
6856  	struct btrfs_root *root = inode->root;
6857  	struct dentry *old_parent = NULL;
6858  	struct super_block *sb = inode->vfs_inode.i_sb;
6859  	int ret = 0;
6860  
6861  	while (true) {
6862  		if (!parent || d_really_is_negative(parent) ||
6863  		    sb != parent->d_sb)
6864  			break;
6865  
6866  		inode = BTRFS_I(d_inode(parent));
6867  		if (root != inode->root)
6868  			break;
6869  
6870  		if (inode->generation >= trans->transid &&
6871  		    need_log_inode(trans, inode)) {
6872  			ret = btrfs_log_inode(trans, inode,
6873  					      LOG_INODE_EXISTS, ctx);
6874  			if (ret)
6875  				break;
6876  		}
6877  		if (IS_ROOT(parent))
6878  			break;
6879  
6880  		parent = dget_parent(parent);
6881  		dput(old_parent);
6882  		old_parent = parent;
6883  	}
6884  	dput(old_parent);
6885  
6886  	return ret;
6887  }
6888  
6889  static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6890  				 struct btrfs_inode *inode,
6891  				 struct dentry *parent,
6892  				 struct btrfs_log_ctx *ctx)
6893  {
6894  	struct btrfs_root *root = inode->root;
6895  	const u64 ino = btrfs_ino(inode);
6896  	struct btrfs_path *path;
6897  	struct btrfs_key search_key;
6898  	int ret;
6899  
6900  	/*
6901  	 * For a single hard link case, go through a fast path that does not
6902  	 * need to iterate the fs/subvolume tree.
6903  	 */
6904  	if (inode->vfs_inode.i_nlink < 2)
6905  		return log_new_ancestors_fast(trans, inode, parent, ctx);
6906  
6907  	path = btrfs_alloc_path();
6908  	if (!path)
6909  		return -ENOMEM;
6910  
6911  	search_key.objectid = ino;
6912  	search_key.type = BTRFS_INODE_REF_KEY;
6913  	search_key.offset = 0;
6914  again:
6915  	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6916  	if (ret < 0)
6917  		goto out;
6918  	if (ret == 0)
6919  		path->slots[0]++;
6920  
6921  	while (true) {
6922  		struct extent_buffer *leaf = path->nodes[0];
6923  		int slot = path->slots[0];
6924  		struct btrfs_key found_key;
6925  
6926  		if (slot >= btrfs_header_nritems(leaf)) {
6927  			ret = btrfs_next_leaf(root, path);
6928  			if (ret < 0)
6929  				goto out;
6930  			else if (ret > 0)
6931  				break;
6932  			continue;
6933  		}
6934  
6935  		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6936  		if (found_key.objectid != ino ||
6937  		    found_key.type > BTRFS_INODE_EXTREF_KEY)
6938  			break;
6939  
6940  		/*
6941  		 * Don't deal with extended references because they are rare
6942  		 * cases and too complex to deal with (we would need to keep
6943  		 * track of which subitem we are processing for each item in
6944  		 * this loop, etc). So just return some error to fallback to
6945  		 * a transaction commit.
6946  		 */
6947  		if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6948  			ret = -EMLINK;
6949  			goto out;
6950  		}
6951  
6952  		/*
6953  		 * Logging ancestors needs to do more searches on the fs/subvol
6954  		 * tree, so it releases the path as needed to avoid deadlocks.
6955  		 * Keep track of the last inode ref key and resume from that key
6956  		 * after logging all new ancestors for the current hard link.
6957  		 */
6958  		memcpy(&search_key, &found_key, sizeof(search_key));
6959  
6960  		ret = log_new_ancestors(trans, root, path, ctx);
6961  		if (ret)
6962  			goto out;
6963  		btrfs_release_path(path);
6964  		goto again;
6965  	}
6966  	ret = 0;
6967  out:
6968  	btrfs_free_path(path);
6969  	return ret;
6970  }
6971  
6972  /*
6973   * helper function around btrfs_log_inode to make sure newly created
6974   * parent directories also end up in the log.  A minimal inode and backref
6975   * only logging is done of any parent directories that are older than
6976   * the last committed transaction
6977   */
6978  static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
6979  				  struct btrfs_inode *inode,
6980  				  struct dentry *parent,
6981  				  int inode_only,
6982  				  struct btrfs_log_ctx *ctx)
6983  {
6984  	struct btrfs_root *root = inode->root;
6985  	struct btrfs_fs_info *fs_info = root->fs_info;
6986  	int ret = 0;
6987  	bool log_dentries = false;
6988  
6989  	if (btrfs_test_opt(fs_info, NOTREELOG)) {
6990  		ret = BTRFS_LOG_FORCE_COMMIT;
6991  		goto end_no_trans;
6992  	}
6993  
6994  	if (btrfs_root_refs(&root->root_item) == 0) {
6995  		ret = BTRFS_LOG_FORCE_COMMIT;
6996  		goto end_no_trans;
6997  	}
6998  
6999  	/*
7000  	 * Skip already logged inodes or inodes corresponding to tmpfiles
7001  	 * (since logging them is pointless, a link count of 0 means they
7002  	 * will never be accessible).
7003  	 */
7004  	if ((btrfs_inode_in_log(inode, trans->transid) &&
7005  	     list_empty(&ctx->ordered_extents)) ||
7006  	    inode->vfs_inode.i_nlink == 0) {
7007  		ret = BTRFS_NO_LOG_SYNC;
7008  		goto end_no_trans;
7009  	}
7010  
7011  	ret = start_log_trans(trans, root, ctx);
7012  	if (ret)
7013  		goto end_no_trans;
7014  
7015  	ret = btrfs_log_inode(trans, inode, inode_only, ctx);
7016  	if (ret)
7017  		goto end_trans;
7018  
7019  	/*
7020  	 * for regular files, if its inode is already on disk, we don't
7021  	 * have to worry about the parents at all.  This is because
7022  	 * we can use the last_unlink_trans field to record renames
7023  	 * and other fun in this file.
7024  	 */
7025  	if (S_ISREG(inode->vfs_inode.i_mode) &&
7026  	    inode->generation < trans->transid &&
7027  	    inode->last_unlink_trans < trans->transid) {
7028  		ret = 0;
7029  		goto end_trans;
7030  	}
7031  
7032  	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries)
7033  		log_dentries = true;
7034  
7035  	/*
7036  	 * On unlink we must make sure all our current and old parent directory
7037  	 * inodes are fully logged. This is to prevent leaving dangling
7038  	 * directory index entries in directories that were our parents but are
7039  	 * not anymore. Not doing this results in old parent directory being
7040  	 * impossible to delete after log replay (rmdir will always fail with
7041  	 * error -ENOTEMPTY).
7042  	 *
7043  	 * Example 1:
7044  	 *
7045  	 * mkdir testdir
7046  	 * touch testdir/foo
7047  	 * ln testdir/foo testdir/bar
7048  	 * sync
7049  	 * unlink testdir/bar
7050  	 * xfs_io -c fsync testdir/foo
7051  	 * <power failure>
7052  	 * mount fs, triggers log replay
7053  	 *
7054  	 * If we don't log the parent directory (testdir), after log replay the
7055  	 * directory still has an entry pointing to the file inode using the bar
7056  	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
7057  	 * the file inode has a link count of 1.
7058  	 *
7059  	 * Example 2:
7060  	 *
7061  	 * mkdir testdir
7062  	 * touch foo
7063  	 * ln foo testdir/foo2
7064  	 * ln foo testdir/foo3
7065  	 * sync
7066  	 * unlink testdir/foo3
7067  	 * xfs_io -c fsync foo
7068  	 * <power failure>
7069  	 * mount fs, triggers log replay
7070  	 *
7071  	 * Similar as the first example, after log replay the parent directory
7072  	 * testdir still has an entry pointing to the inode file with name foo3
7073  	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
7074  	 * and has a link count of 2.
7075  	 */
7076  	if (inode->last_unlink_trans >= trans->transid) {
7077  		ret = btrfs_log_all_parents(trans, inode, ctx);
7078  		if (ret)
7079  			goto end_trans;
7080  	}
7081  
7082  	ret = log_all_new_ancestors(trans, inode, parent, ctx);
7083  	if (ret)
7084  		goto end_trans;
7085  
7086  	if (log_dentries)
7087  		ret = log_new_dir_dentries(trans, inode, ctx);
7088  	else
7089  		ret = 0;
7090  end_trans:
7091  	if (ret < 0) {
7092  		btrfs_set_log_full_commit(trans);
7093  		ret = BTRFS_LOG_FORCE_COMMIT;
7094  	}
7095  
7096  	if (ret)
7097  		btrfs_remove_log_ctx(root, ctx);
7098  	btrfs_end_log_trans(root);
7099  end_no_trans:
7100  	return ret;
7101  }
7102  
7103  /*
7104   * it is not safe to log dentry if the chunk root has added new
7105   * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
7106   * If this returns 1, you must commit the transaction to safely get your
7107   * data on disk.
7108   */
7109  int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
7110  			  struct dentry *dentry,
7111  			  struct btrfs_log_ctx *ctx)
7112  {
7113  	struct dentry *parent = dget_parent(dentry);
7114  	int ret;
7115  
7116  	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
7117  				     LOG_INODE_ALL, ctx);
7118  	dput(parent);
7119  
7120  	return ret;
7121  }
7122  
7123  /*
7124   * should be called during mount to recover any replay any log trees
7125   * from the FS
7126   */
7127  int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
7128  {
7129  	int ret;
7130  	struct btrfs_path *path;
7131  	struct btrfs_trans_handle *trans;
7132  	struct btrfs_key key;
7133  	struct btrfs_key found_key;
7134  	struct btrfs_root *log;
7135  	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
7136  	struct walk_control wc = {
7137  		.process_func = process_one_buffer,
7138  		.stage = LOG_WALK_PIN_ONLY,
7139  	};
7140  
7141  	path = btrfs_alloc_path();
7142  	if (!path)
7143  		return -ENOMEM;
7144  
7145  	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7146  
7147  	trans = btrfs_start_transaction(fs_info->tree_root, 0);
7148  	if (IS_ERR(trans)) {
7149  		ret = PTR_ERR(trans);
7150  		goto error;
7151  	}
7152  
7153  	wc.trans = trans;
7154  	wc.pin = 1;
7155  
7156  	ret = walk_log_tree(trans, log_root_tree, &wc);
7157  	if (ret) {
7158  		btrfs_abort_transaction(trans, ret);
7159  		goto error;
7160  	}
7161  
7162  again:
7163  	key.objectid = BTRFS_TREE_LOG_OBJECTID;
7164  	key.offset = (u64)-1;
7165  	key.type = BTRFS_ROOT_ITEM_KEY;
7166  
7167  	while (1) {
7168  		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
7169  
7170  		if (ret < 0) {
7171  			btrfs_abort_transaction(trans, ret);
7172  			goto error;
7173  		}
7174  		if (ret > 0) {
7175  			if (path->slots[0] == 0)
7176  				break;
7177  			path->slots[0]--;
7178  		}
7179  		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
7180  				      path->slots[0]);
7181  		btrfs_release_path(path);
7182  		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7183  			break;
7184  
7185  		log = btrfs_read_tree_root(log_root_tree, &found_key);
7186  		if (IS_ERR(log)) {
7187  			ret = PTR_ERR(log);
7188  			btrfs_abort_transaction(trans, ret);
7189  			goto error;
7190  		}
7191  
7192  		wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
7193  						   true);
7194  		if (IS_ERR(wc.replay_dest)) {
7195  			ret = PTR_ERR(wc.replay_dest);
7196  
7197  			/*
7198  			 * We didn't find the subvol, likely because it was
7199  			 * deleted.  This is ok, simply skip this log and go to
7200  			 * the next one.
7201  			 *
7202  			 * We need to exclude the root because we can't have
7203  			 * other log replays overwriting this log as we'll read
7204  			 * it back in a few more times.  This will keep our
7205  			 * block from being modified, and we'll just bail for
7206  			 * each subsequent pass.
7207  			 */
7208  			if (ret == -ENOENT)
7209  				ret = btrfs_pin_extent_for_log_replay(trans,
7210  							log->node->start,
7211  							log->node->len);
7212  			btrfs_put_root(log);
7213  
7214  			if (!ret)
7215  				goto next;
7216  			btrfs_abort_transaction(trans, ret);
7217  			goto error;
7218  		}
7219  
7220  		wc.replay_dest->log_root = log;
7221  		ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
7222  		if (ret)
7223  			/* The loop needs to continue due to the root refs */
7224  			btrfs_abort_transaction(trans, ret);
7225  		else
7226  			ret = walk_log_tree(trans, log, &wc);
7227  
7228  		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7229  			ret = fixup_inode_link_counts(trans, wc.replay_dest,
7230  						      path);
7231  			if (ret)
7232  				btrfs_abort_transaction(trans, ret);
7233  		}
7234  
7235  		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7236  			struct btrfs_root *root = wc.replay_dest;
7237  
7238  			btrfs_release_path(path);
7239  
7240  			/*
7241  			 * We have just replayed everything, and the highest
7242  			 * objectid of fs roots probably has changed in case
7243  			 * some inode_item's got replayed.
7244  			 *
7245  			 * root->objectid_mutex is not acquired as log replay
7246  			 * could only happen during mount.
7247  			 */
7248  			ret = btrfs_init_root_free_objectid(root);
7249  			if (ret)
7250  				btrfs_abort_transaction(trans, ret);
7251  		}
7252  
7253  		wc.replay_dest->log_root = NULL;
7254  		btrfs_put_root(wc.replay_dest);
7255  		btrfs_put_root(log);
7256  
7257  		if (ret)
7258  			goto error;
7259  next:
7260  		if (found_key.offset == 0)
7261  			break;
7262  		key.offset = found_key.offset - 1;
7263  	}
7264  	btrfs_release_path(path);
7265  
7266  	/* step one is to pin it all, step two is to replay just inodes */
7267  	if (wc.pin) {
7268  		wc.pin = 0;
7269  		wc.process_func = replay_one_buffer;
7270  		wc.stage = LOG_WALK_REPLAY_INODES;
7271  		goto again;
7272  	}
7273  	/* step three is to replay everything */
7274  	if (wc.stage < LOG_WALK_REPLAY_ALL) {
7275  		wc.stage++;
7276  		goto again;
7277  	}
7278  
7279  	btrfs_free_path(path);
7280  
7281  	/* step 4: commit the transaction, which also unpins the blocks */
7282  	ret = btrfs_commit_transaction(trans);
7283  	if (ret)
7284  		return ret;
7285  
7286  	log_root_tree->log_root = NULL;
7287  	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7288  	btrfs_put_root(log_root_tree);
7289  
7290  	return 0;
7291  error:
7292  	if (wc.trans)
7293  		btrfs_end_transaction(wc.trans);
7294  	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7295  	btrfs_free_path(path);
7296  	return ret;
7297  }
7298  
7299  /*
7300   * there are some corner cases where we want to force a full
7301   * commit instead of allowing a directory to be logged.
7302   *
7303   * They revolve around files there were unlinked from the directory, and
7304   * this function updates the parent directory so that a full commit is
7305   * properly done if it is fsync'd later after the unlinks are done.
7306   *
7307   * Must be called before the unlink operations (updates to the subvolume tree,
7308   * inodes, etc) are done.
7309   */
7310  void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
7311  			     struct btrfs_inode *dir, struct btrfs_inode *inode,
7312  			     bool for_rename)
7313  {
7314  	/*
7315  	 * when we're logging a file, if it hasn't been renamed
7316  	 * or unlinked, and its inode is fully committed on disk,
7317  	 * we don't have to worry about walking up the directory chain
7318  	 * to log its parents.
7319  	 *
7320  	 * So, we use the last_unlink_trans field to put this transid
7321  	 * into the file.  When the file is logged we check it and
7322  	 * don't log the parents if the file is fully on disk.
7323  	 */
7324  	mutex_lock(&inode->log_mutex);
7325  	inode->last_unlink_trans = trans->transid;
7326  	mutex_unlock(&inode->log_mutex);
7327  
7328  	if (!for_rename)
7329  		return;
7330  
7331  	/*
7332  	 * If this directory was already logged, any new names will be logged
7333  	 * with btrfs_log_new_name() and old names will be deleted from the log
7334  	 * tree with btrfs_del_dir_entries_in_log() or with
7335  	 * btrfs_del_inode_ref_in_log().
7336  	 */
7337  	if (inode_logged(trans, dir, NULL) == 1)
7338  		return;
7339  
7340  	/*
7341  	 * If the inode we're about to unlink was logged before, the log will be
7342  	 * properly updated with the new name with btrfs_log_new_name() and the
7343  	 * old name removed with btrfs_del_dir_entries_in_log() or with
7344  	 * btrfs_del_inode_ref_in_log().
7345  	 */
7346  	if (inode_logged(trans, inode, NULL) == 1)
7347  		return;
7348  
7349  	/*
7350  	 * when renaming files across directories, if the directory
7351  	 * there we're unlinking from gets fsync'd later on, there's
7352  	 * no way to find the destination directory later and fsync it
7353  	 * properly.  So, we have to be conservative and force commits
7354  	 * so the new name gets discovered.
7355  	 */
7356  	mutex_lock(&dir->log_mutex);
7357  	dir->last_unlink_trans = trans->transid;
7358  	mutex_unlock(&dir->log_mutex);
7359  }
7360  
7361  /*
7362   * Make sure that if someone attempts to fsync the parent directory of a deleted
7363   * snapshot, it ends up triggering a transaction commit. This is to guarantee
7364   * that after replaying the log tree of the parent directory's root we will not
7365   * see the snapshot anymore and at log replay time we will not see any log tree
7366   * corresponding to the deleted snapshot's root, which could lead to replaying
7367   * it after replaying the log tree of the parent directory (which would replay
7368   * the snapshot delete operation).
7369   *
7370   * Must be called before the actual snapshot destroy operation (updates to the
7371   * parent root and tree of tree roots trees, etc) are done.
7372   */
7373  void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
7374  				   struct btrfs_inode *dir)
7375  {
7376  	mutex_lock(&dir->log_mutex);
7377  	dir->last_unlink_trans = trans->transid;
7378  	mutex_unlock(&dir->log_mutex);
7379  }
7380  
7381  /*
7382   * Update the log after adding a new name for an inode.
7383   *
7384   * @trans:              Transaction handle.
7385   * @old_dentry:         The dentry associated with the old name and the old
7386   *                      parent directory.
7387   * @old_dir:            The inode of the previous parent directory for the case
7388   *                      of a rename. For a link operation, it must be NULL.
7389   * @old_dir_index:      The index number associated with the old name, meaningful
7390   *                      only for rename operations (when @old_dir is not NULL).
7391   *                      Ignored for link operations.
7392   * @parent:             The dentry associated with the directory under which the
7393   *                      new name is located.
7394   *
7395   * Call this after adding a new name for an inode, as a result of a link or
7396   * rename operation, and it will properly update the log to reflect the new name.
7397   */
7398  void btrfs_log_new_name(struct btrfs_trans_handle *trans,
7399  			struct dentry *old_dentry, struct btrfs_inode *old_dir,
7400  			u64 old_dir_index, struct dentry *parent)
7401  {
7402  	struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry));
7403  	struct btrfs_root *root = inode->root;
7404  	struct btrfs_log_ctx ctx;
7405  	bool log_pinned = false;
7406  	int ret;
7407  
7408  	/*
7409  	 * this will force the logging code to walk the dentry chain
7410  	 * up for the file
7411  	 */
7412  	if (!S_ISDIR(inode->vfs_inode.i_mode))
7413  		inode->last_unlink_trans = trans->transid;
7414  
7415  	/*
7416  	 * if this inode hasn't been logged and directory we're renaming it
7417  	 * from hasn't been logged, we don't need to log it
7418  	 */
7419  	ret = inode_logged(trans, inode, NULL);
7420  	if (ret < 0) {
7421  		goto out;
7422  	} else if (ret == 0) {
7423  		if (!old_dir)
7424  			return;
7425  		/*
7426  		 * If the inode was not logged and we are doing a rename (old_dir is not
7427  		 * NULL), check if old_dir was logged - if it was not we can return and
7428  		 * do nothing.
7429  		 */
7430  		ret = inode_logged(trans, old_dir, NULL);
7431  		if (ret < 0)
7432  			goto out;
7433  		else if (ret == 0)
7434  			return;
7435  	}
7436  	ret = 0;
7437  
7438  	/*
7439  	 * If we are doing a rename (old_dir is not NULL) from a directory that
7440  	 * was previously logged, make sure that on log replay we get the old
7441  	 * dir entry deleted. This is needed because we will also log the new
7442  	 * name of the renamed inode, so we need to make sure that after log
7443  	 * replay we don't end up with both the new and old dir entries existing.
7444  	 */
7445  	if (old_dir && old_dir->logged_trans == trans->transid) {
7446  		struct btrfs_root *log = old_dir->root->log_root;
7447  		struct btrfs_path *path;
7448  		struct fscrypt_name fname;
7449  
7450  		ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX);
7451  
7452  		ret = fscrypt_setup_filename(&old_dir->vfs_inode,
7453  					     &old_dentry->d_name, 0, &fname);
7454  		if (ret)
7455  			goto out;
7456  		/*
7457  		 * We have two inodes to update in the log, the old directory and
7458  		 * the inode that got renamed, so we must pin the log to prevent
7459  		 * anyone from syncing the log until we have updated both inodes
7460  		 * in the log.
7461  		 */
7462  		ret = join_running_log_trans(root);
7463  		/*
7464  		 * At least one of the inodes was logged before, so this should
7465  		 * not fail, but if it does, it's not serious, just bail out and
7466  		 * mark the log for a full commit.
7467  		 */
7468  		if (WARN_ON_ONCE(ret < 0)) {
7469  			fscrypt_free_filename(&fname);
7470  			goto out;
7471  		}
7472  
7473  		log_pinned = true;
7474  
7475  		path = btrfs_alloc_path();
7476  		if (!path) {
7477  			ret = -ENOMEM;
7478  			fscrypt_free_filename(&fname);
7479  			goto out;
7480  		}
7481  
7482  		/*
7483  		 * Other concurrent task might be logging the old directory,
7484  		 * as it can be triggered when logging other inode that had or
7485  		 * still has a dentry in the old directory. We lock the old
7486  		 * directory's log_mutex to ensure the deletion of the old
7487  		 * name is persisted, because during directory logging we
7488  		 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of
7489  		 * the old name's dir index item is in the delayed items, so
7490  		 * it could be missed by an in progress directory logging.
7491  		 */
7492  		mutex_lock(&old_dir->log_mutex);
7493  		ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir),
7494  					&fname.disk_name, old_dir_index);
7495  		if (ret > 0) {
7496  			/*
7497  			 * The dentry does not exist in the log, so record its
7498  			 * deletion.
7499  			 */
7500  			btrfs_release_path(path);
7501  			ret = insert_dir_log_key(trans, log, path,
7502  						 btrfs_ino(old_dir),
7503  						 old_dir_index, old_dir_index);
7504  		}
7505  		mutex_unlock(&old_dir->log_mutex);
7506  
7507  		btrfs_free_path(path);
7508  		fscrypt_free_filename(&fname);
7509  		if (ret < 0)
7510  			goto out;
7511  	}
7512  
7513  	btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
7514  	ctx.logging_new_name = true;
7515  	/*
7516  	 * We don't care about the return value. If we fail to log the new name
7517  	 * then we know the next attempt to sync the log will fallback to a full
7518  	 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
7519  	 * we don't need to worry about getting a log committed that has an
7520  	 * inconsistent state after a rename operation.
7521  	 */
7522  	btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
7523  	ASSERT(list_empty(&ctx.conflict_inodes));
7524  out:
7525  	/*
7526  	 * If an error happened mark the log for a full commit because it's not
7527  	 * consistent and up to date or we couldn't find out if one of the
7528  	 * inodes was logged before in this transaction. Do it before unpinning
7529  	 * the log, to avoid any races with someone else trying to commit it.
7530  	 */
7531  	if (ret < 0)
7532  		btrfs_set_log_full_commit(trans);
7533  	if (log_pinned)
7534  		btrfs_end_log_trans(root);
7535  }
7536  
7537