xref: /linux/fs/btrfs/tree-log.c (revision 64a2ade8f1cb3847dfd4fb1864cece93c9c15fb9)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Copyright (C) 2008 Oracle.  All rights reserved.
4   */
5  
6  #include <linux/sched.h>
7  #include <linux/slab.h>
8  #include <linux/blkdev.h>
9  #include <linux/list_sort.h>
10  #include <linux/iversion.h>
11  #include "misc.h"
12  #include "ctree.h"
13  #include "tree-log.h"
14  #include "disk-io.h"
15  #include "locking.h"
16  #include "backref.h"
17  #include "compression.h"
18  #include "qgroup.h"
19  #include "block-group.h"
20  #include "space-info.h"
21  #include "inode-item.h"
22  #include "fs.h"
23  #include "accessors.h"
24  #include "extent-tree.h"
25  #include "root-tree.h"
26  #include "dir-item.h"
27  #include "file-item.h"
28  #include "file.h"
29  #include "orphan.h"
30  #include "tree-checker.h"
31  
32  #define MAX_CONFLICT_INODES 10
33  
34  /* magic values for the inode_only field in btrfs_log_inode:
35   *
36   * LOG_INODE_ALL means to log everything
37   * LOG_INODE_EXISTS means to log just enough to recreate the inode
38   * during log replay
39   */
40  enum {
41  	LOG_INODE_ALL,
42  	LOG_INODE_EXISTS,
43  };
44  
45  /*
46   * directory trouble cases
47   *
48   * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
49   * log, we must force a full commit before doing an fsync of the directory
50   * where the unlink was done.
51   * ---> record transid of last unlink/rename per directory
52   *
53   * mkdir foo/some_dir
54   * normal commit
55   * rename foo/some_dir foo2/some_dir
56   * mkdir foo/some_dir
57   * fsync foo/some_dir/some_file
58   *
59   * The fsync above will unlink the original some_dir without recording
60   * it in its new location (foo2).  After a crash, some_dir will be gone
61   * unless the fsync of some_file forces a full commit
62   *
63   * 2) we must log any new names for any file or dir that is in the fsync
64   * log. ---> check inode while renaming/linking.
65   *
66   * 2a) we must log any new names for any file or dir during rename
67   * when the directory they are being removed from was logged.
68   * ---> check inode and old parent dir during rename
69   *
70   *  2a is actually the more important variant.  With the extra logging
71   *  a crash might unlink the old name without recreating the new one
72   *
73   * 3) after a crash, we must go through any directories with a link count
74   * of zero and redo the rm -rf
75   *
76   * mkdir f1/foo
77   * normal commit
78   * rm -rf f1/foo
79   * fsync(f1)
80   *
81   * The directory f1 was fully removed from the FS, but fsync was never
82   * called on f1, only its parent dir.  After a crash the rm -rf must
83   * be replayed.  This must be able to recurse down the entire
84   * directory tree.  The inode link count fixup code takes care of the
85   * ugly details.
86   */
87  
88  /*
89   * stages for the tree walking.  The first
90   * stage (0) is to only pin down the blocks we find
91   * the second stage (1) is to make sure that all the inodes
92   * we find in the log are created in the subvolume.
93   *
94   * The last stage is to deal with directories and links and extents
95   * and all the other fun semantics
96   */
97  enum {
98  	LOG_WALK_PIN_ONLY,
99  	LOG_WALK_REPLAY_INODES,
100  	LOG_WALK_REPLAY_DIR_INDEX,
101  	LOG_WALK_REPLAY_ALL,
102  };
103  
104  static int btrfs_log_inode(struct btrfs_trans_handle *trans,
105  			   struct btrfs_inode *inode,
106  			   int inode_only,
107  			   struct btrfs_log_ctx *ctx);
108  static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
109  			     struct btrfs_root *root,
110  			     struct btrfs_path *path, u64 objectid);
111  static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
112  				       struct btrfs_root *root,
113  				       struct btrfs_root *log,
114  				       struct btrfs_path *path,
115  				       u64 dirid, int del_all);
116  static void wait_log_commit(struct btrfs_root *root, int transid);
117  
118  /*
119   * tree logging is a special write ahead log used to make sure that
120   * fsyncs and O_SYNCs can happen without doing full tree commits.
121   *
122   * Full tree commits are expensive because they require commonly
123   * modified blocks to be recowed, creating many dirty pages in the
124   * extent tree an 4x-6x higher write load than ext3.
125   *
126   * Instead of doing a tree commit on every fsync, we use the
127   * key ranges and transaction ids to find items for a given file or directory
128   * that have changed in this transaction.  Those items are copied into
129   * a special tree (one per subvolume root), that tree is written to disk
130   * and then the fsync is considered complete.
131   *
132   * After a crash, items are copied out of the log-tree back into the
133   * subvolume tree.  Any file data extents found are recorded in the extent
134   * allocation tree, and the log-tree freed.
135   *
136   * The log tree is read three times, once to pin down all the extents it is
137   * using in ram and once, once to create all the inodes logged in the tree
138   * and once to do all the other items.
139   */
140  
141  /*
142   * start a sub transaction and setup the log tree
143   * this increments the log tree writer count to make the people
144   * syncing the tree wait for us to finish
145   */
146  static int start_log_trans(struct btrfs_trans_handle *trans,
147  			   struct btrfs_root *root,
148  			   struct btrfs_log_ctx *ctx)
149  {
150  	struct btrfs_fs_info *fs_info = root->fs_info;
151  	struct btrfs_root *tree_root = fs_info->tree_root;
152  	const bool zoned = btrfs_is_zoned(fs_info);
153  	int ret = 0;
154  	bool created = false;
155  
156  	/*
157  	 * First check if the log root tree was already created. If not, create
158  	 * it before locking the root's log_mutex, just to keep lockdep happy.
159  	 */
160  	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
161  		mutex_lock(&tree_root->log_mutex);
162  		if (!fs_info->log_root_tree) {
163  			ret = btrfs_init_log_root_tree(trans, fs_info);
164  			if (!ret) {
165  				set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
166  				created = true;
167  			}
168  		}
169  		mutex_unlock(&tree_root->log_mutex);
170  		if (ret)
171  			return ret;
172  	}
173  
174  	mutex_lock(&root->log_mutex);
175  
176  again:
177  	if (root->log_root) {
178  		int index = (root->log_transid + 1) % 2;
179  
180  		if (btrfs_need_log_full_commit(trans)) {
181  			ret = BTRFS_LOG_FORCE_COMMIT;
182  			goto out;
183  		}
184  
185  		if (zoned && atomic_read(&root->log_commit[index])) {
186  			wait_log_commit(root, root->log_transid - 1);
187  			goto again;
188  		}
189  
190  		if (!root->log_start_pid) {
191  			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
192  			root->log_start_pid = current->pid;
193  		} else if (root->log_start_pid != current->pid) {
194  			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
195  		}
196  	} else {
197  		/*
198  		 * This means fs_info->log_root_tree was already created
199  		 * for some other FS trees. Do the full commit not to mix
200  		 * nodes from multiple log transactions to do sequential
201  		 * writing.
202  		 */
203  		if (zoned && !created) {
204  			ret = BTRFS_LOG_FORCE_COMMIT;
205  			goto out;
206  		}
207  
208  		ret = btrfs_add_log_tree(trans, root);
209  		if (ret)
210  			goto out;
211  
212  		set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
213  		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
214  		root->log_start_pid = current->pid;
215  	}
216  
217  	atomic_inc(&root->log_writers);
218  	if (!ctx->logging_new_name) {
219  		int index = root->log_transid % 2;
220  		list_add_tail(&ctx->list, &root->log_ctxs[index]);
221  		ctx->log_transid = root->log_transid;
222  	}
223  
224  out:
225  	mutex_unlock(&root->log_mutex);
226  	return ret;
227  }
228  
229  /*
230   * returns 0 if there was a log transaction running and we were able
231   * to join, or returns -ENOENT if there were not transactions
232   * in progress
233   */
234  static int join_running_log_trans(struct btrfs_root *root)
235  {
236  	const bool zoned = btrfs_is_zoned(root->fs_info);
237  	int ret = -ENOENT;
238  
239  	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
240  		return ret;
241  
242  	mutex_lock(&root->log_mutex);
243  again:
244  	if (root->log_root) {
245  		int index = (root->log_transid + 1) % 2;
246  
247  		ret = 0;
248  		if (zoned && atomic_read(&root->log_commit[index])) {
249  			wait_log_commit(root, root->log_transid - 1);
250  			goto again;
251  		}
252  		atomic_inc(&root->log_writers);
253  	}
254  	mutex_unlock(&root->log_mutex);
255  	return ret;
256  }
257  
258  /*
259   * This either makes the current running log transaction wait
260   * until you call btrfs_end_log_trans() or it makes any future
261   * log transactions wait until you call btrfs_end_log_trans()
262   */
263  void btrfs_pin_log_trans(struct btrfs_root *root)
264  {
265  	atomic_inc(&root->log_writers);
266  }
267  
268  /*
269   * indicate we're done making changes to the log tree
270   * and wake up anyone waiting to do a sync
271   */
272  void btrfs_end_log_trans(struct btrfs_root *root)
273  {
274  	if (atomic_dec_and_test(&root->log_writers)) {
275  		/* atomic_dec_and_test implies a barrier */
276  		cond_wake_up_nomb(&root->log_writer_wait);
277  	}
278  }
279  
280  /*
281   * the walk control struct is used to pass state down the chain when
282   * processing the log tree.  The stage field tells us which part
283   * of the log tree processing we are currently doing.  The others
284   * are state fields used for that specific part
285   */
286  struct walk_control {
287  	/* should we free the extent on disk when done?  This is used
288  	 * at transaction commit time while freeing a log tree
289  	 */
290  	int free;
291  
292  	/* pin only walk, we record which extents on disk belong to the
293  	 * log trees
294  	 */
295  	int pin;
296  
297  	/* what stage of the replay code we're currently in */
298  	int stage;
299  
300  	/*
301  	 * Ignore any items from the inode currently being processed. Needs
302  	 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
303  	 * the LOG_WALK_REPLAY_INODES stage.
304  	 */
305  	bool ignore_cur_inode;
306  
307  	/* the root we are currently replaying */
308  	struct btrfs_root *replay_dest;
309  
310  	/* the trans handle for the current replay */
311  	struct btrfs_trans_handle *trans;
312  
313  	/* the function that gets used to process blocks we find in the
314  	 * tree.  Note the extent_buffer might not be up to date when it is
315  	 * passed in, and it must be checked or read if you need the data
316  	 * inside it
317  	 */
318  	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
319  			    struct walk_control *wc, u64 gen, int level);
320  };
321  
322  /*
323   * process_func used to pin down extents, write them or wait on them
324   */
325  static int process_one_buffer(struct btrfs_root *log,
326  			      struct extent_buffer *eb,
327  			      struct walk_control *wc, u64 gen, int level)
328  {
329  	struct btrfs_fs_info *fs_info = log->fs_info;
330  	int ret = 0;
331  
332  	/*
333  	 * If this fs is mixed then we need to be able to process the leaves to
334  	 * pin down any logged extents, so we have to read the block.
335  	 */
336  	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
337  		struct btrfs_tree_parent_check check = {
338  			.level = level,
339  			.transid = gen
340  		};
341  
342  		ret = btrfs_read_extent_buffer(eb, &check);
343  		if (ret)
344  			return ret;
345  	}
346  
347  	if (wc->pin) {
348  		ret = btrfs_pin_extent_for_log_replay(wc->trans, eb);
349  		if (ret)
350  			return ret;
351  
352  		if (btrfs_buffer_uptodate(eb, gen, 0) &&
353  		    btrfs_header_level(eb) == 0)
354  			ret = btrfs_exclude_logged_extents(eb);
355  	}
356  	return ret;
357  }
358  
359  /*
360   * Item overwrite used by replay and tree logging.  eb, slot and key all refer
361   * to the src data we are copying out.
362   *
363   * root is the tree we are copying into, and path is a scratch
364   * path for use in this function (it should be released on entry and
365   * will be released on exit).
366   *
367   * If the key is already in the destination tree the existing item is
368   * overwritten.  If the existing item isn't big enough, it is extended.
369   * If it is too large, it is truncated.
370   *
371   * If the key isn't in the destination yet, a new item is inserted.
372   */
373  static int overwrite_item(struct btrfs_trans_handle *trans,
374  			  struct btrfs_root *root,
375  			  struct btrfs_path *path,
376  			  struct extent_buffer *eb, int slot,
377  			  struct btrfs_key *key)
378  {
379  	int ret;
380  	u32 item_size;
381  	u64 saved_i_size = 0;
382  	int save_old_i_size = 0;
383  	unsigned long src_ptr;
384  	unsigned long dst_ptr;
385  	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
386  
387  	/*
388  	 * This is only used during log replay, so the root is always from a
389  	 * fs/subvolume tree. In case we ever need to support a log root, then
390  	 * we'll have to clone the leaf in the path, release the path and use
391  	 * the leaf before writing into the log tree. See the comments at
392  	 * copy_items() for more details.
393  	 */
394  	ASSERT(root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
395  
396  	item_size = btrfs_item_size(eb, slot);
397  	src_ptr = btrfs_item_ptr_offset(eb, slot);
398  
399  	/* Look for the key in the destination tree. */
400  	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
401  	if (ret < 0)
402  		return ret;
403  
404  	if (ret == 0) {
405  		char *src_copy;
406  		char *dst_copy;
407  		u32 dst_size = btrfs_item_size(path->nodes[0],
408  						  path->slots[0]);
409  		if (dst_size != item_size)
410  			goto insert;
411  
412  		if (item_size == 0) {
413  			btrfs_release_path(path);
414  			return 0;
415  		}
416  		dst_copy = kmalloc(item_size, GFP_NOFS);
417  		src_copy = kmalloc(item_size, GFP_NOFS);
418  		if (!dst_copy || !src_copy) {
419  			btrfs_release_path(path);
420  			kfree(dst_copy);
421  			kfree(src_copy);
422  			return -ENOMEM;
423  		}
424  
425  		read_extent_buffer(eb, src_copy, src_ptr, item_size);
426  
427  		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
428  		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
429  				   item_size);
430  		ret = memcmp(dst_copy, src_copy, item_size);
431  
432  		kfree(dst_copy);
433  		kfree(src_copy);
434  		/*
435  		 * they have the same contents, just return, this saves
436  		 * us from cowing blocks in the destination tree and doing
437  		 * extra writes that may not have been done by a previous
438  		 * sync
439  		 */
440  		if (ret == 0) {
441  			btrfs_release_path(path);
442  			return 0;
443  		}
444  
445  		/*
446  		 * We need to load the old nbytes into the inode so when we
447  		 * replay the extents we've logged we get the right nbytes.
448  		 */
449  		if (inode_item) {
450  			struct btrfs_inode_item *item;
451  			u64 nbytes;
452  			u32 mode;
453  
454  			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
455  					      struct btrfs_inode_item);
456  			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
457  			item = btrfs_item_ptr(eb, slot,
458  					      struct btrfs_inode_item);
459  			btrfs_set_inode_nbytes(eb, item, nbytes);
460  
461  			/*
462  			 * If this is a directory we need to reset the i_size to
463  			 * 0 so that we can set it up properly when replaying
464  			 * the rest of the items in this log.
465  			 */
466  			mode = btrfs_inode_mode(eb, item);
467  			if (S_ISDIR(mode))
468  				btrfs_set_inode_size(eb, item, 0);
469  		}
470  	} else if (inode_item) {
471  		struct btrfs_inode_item *item;
472  		u32 mode;
473  
474  		/*
475  		 * New inode, set nbytes to 0 so that the nbytes comes out
476  		 * properly when we replay the extents.
477  		 */
478  		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
479  		btrfs_set_inode_nbytes(eb, item, 0);
480  
481  		/*
482  		 * If this is a directory we need to reset the i_size to 0 so
483  		 * that we can set it up properly when replaying the rest of
484  		 * the items in this log.
485  		 */
486  		mode = btrfs_inode_mode(eb, item);
487  		if (S_ISDIR(mode))
488  			btrfs_set_inode_size(eb, item, 0);
489  	}
490  insert:
491  	btrfs_release_path(path);
492  	/* try to insert the key into the destination tree */
493  	path->skip_release_on_error = 1;
494  	ret = btrfs_insert_empty_item(trans, root, path,
495  				      key, item_size);
496  	path->skip_release_on_error = 0;
497  
498  	/* make sure any existing item is the correct size */
499  	if (ret == -EEXIST || ret == -EOVERFLOW) {
500  		u32 found_size;
501  		found_size = btrfs_item_size(path->nodes[0],
502  						path->slots[0]);
503  		if (found_size > item_size)
504  			btrfs_truncate_item(trans, path, item_size, 1);
505  		else if (found_size < item_size)
506  			btrfs_extend_item(trans, path, item_size - found_size);
507  	} else if (ret) {
508  		return ret;
509  	}
510  	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
511  					path->slots[0]);
512  
513  	/* don't overwrite an existing inode if the generation number
514  	 * was logged as zero.  This is done when the tree logging code
515  	 * is just logging an inode to make sure it exists after recovery.
516  	 *
517  	 * Also, don't overwrite i_size on directories during replay.
518  	 * log replay inserts and removes directory items based on the
519  	 * state of the tree found in the subvolume, and i_size is modified
520  	 * as it goes
521  	 */
522  	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
523  		struct btrfs_inode_item *src_item;
524  		struct btrfs_inode_item *dst_item;
525  
526  		src_item = (struct btrfs_inode_item *)src_ptr;
527  		dst_item = (struct btrfs_inode_item *)dst_ptr;
528  
529  		if (btrfs_inode_generation(eb, src_item) == 0) {
530  			struct extent_buffer *dst_eb = path->nodes[0];
531  			const u64 ino_size = btrfs_inode_size(eb, src_item);
532  
533  			/*
534  			 * For regular files an ino_size == 0 is used only when
535  			 * logging that an inode exists, as part of a directory
536  			 * fsync, and the inode wasn't fsynced before. In this
537  			 * case don't set the size of the inode in the fs/subvol
538  			 * tree, otherwise we would be throwing valid data away.
539  			 */
540  			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
541  			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
542  			    ino_size != 0)
543  				btrfs_set_inode_size(dst_eb, dst_item, ino_size);
544  			goto no_copy;
545  		}
546  
547  		if (S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
548  		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
549  			save_old_i_size = 1;
550  			saved_i_size = btrfs_inode_size(path->nodes[0],
551  							dst_item);
552  		}
553  	}
554  
555  	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
556  			   src_ptr, item_size);
557  
558  	if (save_old_i_size) {
559  		struct btrfs_inode_item *dst_item;
560  		dst_item = (struct btrfs_inode_item *)dst_ptr;
561  		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
562  	}
563  
564  	/* make sure the generation is filled in */
565  	if (key->type == BTRFS_INODE_ITEM_KEY) {
566  		struct btrfs_inode_item *dst_item;
567  		dst_item = (struct btrfs_inode_item *)dst_ptr;
568  		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
569  			btrfs_set_inode_generation(path->nodes[0], dst_item,
570  						   trans->transid);
571  		}
572  	}
573  no_copy:
574  	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
575  	btrfs_release_path(path);
576  	return 0;
577  }
578  
579  static int read_alloc_one_name(struct extent_buffer *eb, void *start, int len,
580  			       struct fscrypt_str *name)
581  {
582  	char *buf;
583  
584  	buf = kmalloc(len, GFP_NOFS);
585  	if (!buf)
586  		return -ENOMEM;
587  
588  	read_extent_buffer(eb, buf, (unsigned long)start, len);
589  	name->name = buf;
590  	name->len = len;
591  	return 0;
592  }
593  
594  /*
595   * simple helper to read an inode off the disk from a given root
596   * This can only be called for subvolume roots and not for the log
597   */
598  static noinline struct inode *read_one_inode(struct btrfs_root *root,
599  					     u64 objectid)
600  {
601  	struct inode *inode;
602  
603  	inode = btrfs_iget(root->fs_info->sb, objectid, root);
604  	if (IS_ERR(inode))
605  		inode = NULL;
606  	return inode;
607  }
608  
609  /* replays a single extent in 'eb' at 'slot' with 'key' into the
610   * subvolume 'root'.  path is released on entry and should be released
611   * on exit.
612   *
613   * extents in the log tree have not been allocated out of the extent
614   * tree yet.  So, this completes the allocation, taking a reference
615   * as required if the extent already exists or creating a new extent
616   * if it isn't in the extent allocation tree yet.
617   *
618   * The extent is inserted into the file, dropping any existing extents
619   * from the file that overlap the new one.
620   */
621  static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
622  				      struct btrfs_root *root,
623  				      struct btrfs_path *path,
624  				      struct extent_buffer *eb, int slot,
625  				      struct btrfs_key *key)
626  {
627  	struct btrfs_drop_extents_args drop_args = { 0 };
628  	struct btrfs_fs_info *fs_info = root->fs_info;
629  	int found_type;
630  	u64 extent_end;
631  	u64 start = key->offset;
632  	u64 nbytes = 0;
633  	struct btrfs_file_extent_item *item;
634  	struct inode *inode = NULL;
635  	unsigned long size;
636  	int ret = 0;
637  
638  	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
639  	found_type = btrfs_file_extent_type(eb, item);
640  
641  	if (found_type == BTRFS_FILE_EXTENT_REG ||
642  	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
643  		nbytes = btrfs_file_extent_num_bytes(eb, item);
644  		extent_end = start + nbytes;
645  
646  		/*
647  		 * We don't add to the inodes nbytes if we are prealloc or a
648  		 * hole.
649  		 */
650  		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
651  			nbytes = 0;
652  	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
653  		size = btrfs_file_extent_ram_bytes(eb, item);
654  		nbytes = btrfs_file_extent_ram_bytes(eb, item);
655  		extent_end = ALIGN(start + size,
656  				   fs_info->sectorsize);
657  	} else {
658  		ret = 0;
659  		goto out;
660  	}
661  
662  	inode = read_one_inode(root, key->objectid);
663  	if (!inode) {
664  		ret = -EIO;
665  		goto out;
666  	}
667  
668  	/*
669  	 * first check to see if we already have this extent in the
670  	 * file.  This must be done before the btrfs_drop_extents run
671  	 * so we don't try to drop this extent.
672  	 */
673  	ret = btrfs_lookup_file_extent(trans, root, path,
674  			btrfs_ino(BTRFS_I(inode)), start, 0);
675  
676  	if (ret == 0 &&
677  	    (found_type == BTRFS_FILE_EXTENT_REG ||
678  	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
679  		struct btrfs_file_extent_item cmp1;
680  		struct btrfs_file_extent_item cmp2;
681  		struct btrfs_file_extent_item *existing;
682  		struct extent_buffer *leaf;
683  
684  		leaf = path->nodes[0];
685  		existing = btrfs_item_ptr(leaf, path->slots[0],
686  					  struct btrfs_file_extent_item);
687  
688  		read_extent_buffer(eb, &cmp1, (unsigned long)item,
689  				   sizeof(cmp1));
690  		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
691  				   sizeof(cmp2));
692  
693  		/*
694  		 * we already have a pointer to this exact extent,
695  		 * we don't have to do anything
696  		 */
697  		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
698  			btrfs_release_path(path);
699  			goto out;
700  		}
701  	}
702  	btrfs_release_path(path);
703  
704  	/* drop any overlapping extents */
705  	drop_args.start = start;
706  	drop_args.end = extent_end;
707  	drop_args.drop_cache = true;
708  	ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
709  	if (ret)
710  		goto out;
711  
712  	if (found_type == BTRFS_FILE_EXTENT_REG ||
713  	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
714  		u64 offset;
715  		unsigned long dest_offset;
716  		struct btrfs_key ins;
717  
718  		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
719  		    btrfs_fs_incompat(fs_info, NO_HOLES))
720  			goto update_inode;
721  
722  		ret = btrfs_insert_empty_item(trans, root, path, key,
723  					      sizeof(*item));
724  		if (ret)
725  			goto out;
726  		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
727  						    path->slots[0]);
728  		copy_extent_buffer(path->nodes[0], eb, dest_offset,
729  				(unsigned long)item,  sizeof(*item));
730  
731  		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
732  		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
733  		ins.type = BTRFS_EXTENT_ITEM_KEY;
734  		offset = key->offset - btrfs_file_extent_offset(eb, item);
735  
736  		/*
737  		 * Manually record dirty extent, as here we did a shallow
738  		 * file extent item copy and skip normal backref update,
739  		 * but modifying extent tree all by ourselves.
740  		 * So need to manually record dirty extent for qgroup,
741  		 * as the owner of the file extent changed from log tree
742  		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
743  		 */
744  		ret = btrfs_qgroup_trace_extent(trans,
745  				btrfs_file_extent_disk_bytenr(eb, item),
746  				btrfs_file_extent_disk_num_bytes(eb, item));
747  		if (ret < 0)
748  			goto out;
749  
750  		if (ins.objectid > 0) {
751  			struct btrfs_ref ref = { 0 };
752  			u64 csum_start;
753  			u64 csum_end;
754  			LIST_HEAD(ordered_sums);
755  
756  			/*
757  			 * is this extent already allocated in the extent
758  			 * allocation tree?  If so, just add a reference
759  			 */
760  			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
761  						ins.offset);
762  			if (ret < 0) {
763  				goto out;
764  			} else if (ret == 0) {
765  				btrfs_init_generic_ref(&ref,
766  						BTRFS_ADD_DELAYED_REF,
767  						ins.objectid, ins.offset, 0,
768  						root->root_key.objectid);
769  				btrfs_init_data_ref(&ref,
770  						root->root_key.objectid,
771  						key->objectid, offset, 0, false);
772  				ret = btrfs_inc_extent_ref(trans, &ref);
773  				if (ret)
774  					goto out;
775  			} else {
776  				/*
777  				 * insert the extent pointer in the extent
778  				 * allocation tree
779  				 */
780  				ret = btrfs_alloc_logged_file_extent(trans,
781  						root->root_key.objectid,
782  						key->objectid, offset, &ins);
783  				if (ret)
784  					goto out;
785  			}
786  			btrfs_release_path(path);
787  
788  			if (btrfs_file_extent_compression(eb, item)) {
789  				csum_start = ins.objectid;
790  				csum_end = csum_start + ins.offset;
791  			} else {
792  				csum_start = ins.objectid +
793  					btrfs_file_extent_offset(eb, item);
794  				csum_end = csum_start +
795  					btrfs_file_extent_num_bytes(eb, item);
796  			}
797  
798  			ret = btrfs_lookup_csums_list(root->log_root,
799  						csum_start, csum_end - 1,
800  						&ordered_sums, 0, false);
801  			if (ret)
802  				goto out;
803  			/*
804  			 * Now delete all existing cums in the csum root that
805  			 * cover our range. We do this because we can have an
806  			 * extent that is completely referenced by one file
807  			 * extent item and partially referenced by another
808  			 * file extent item (like after using the clone or
809  			 * extent_same ioctls). In this case if we end up doing
810  			 * the replay of the one that partially references the
811  			 * extent first, and we do not do the csum deletion
812  			 * below, we can get 2 csum items in the csum tree that
813  			 * overlap each other. For example, imagine our log has
814  			 * the two following file extent items:
815  			 *
816  			 * key (257 EXTENT_DATA 409600)
817  			 *     extent data disk byte 12845056 nr 102400
818  			 *     extent data offset 20480 nr 20480 ram 102400
819  			 *
820  			 * key (257 EXTENT_DATA 819200)
821  			 *     extent data disk byte 12845056 nr 102400
822  			 *     extent data offset 0 nr 102400 ram 102400
823  			 *
824  			 * Where the second one fully references the 100K extent
825  			 * that starts at disk byte 12845056, and the log tree
826  			 * has a single csum item that covers the entire range
827  			 * of the extent:
828  			 *
829  			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
830  			 *
831  			 * After the first file extent item is replayed, the
832  			 * csum tree gets the following csum item:
833  			 *
834  			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
835  			 *
836  			 * Which covers the 20K sub-range starting at offset 20K
837  			 * of our extent. Now when we replay the second file
838  			 * extent item, if we do not delete existing csum items
839  			 * that cover any of its blocks, we end up getting two
840  			 * csum items in our csum tree that overlap each other:
841  			 *
842  			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
843  			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
844  			 *
845  			 * Which is a problem, because after this anyone trying
846  			 * to lookup up for the checksum of any block of our
847  			 * extent starting at an offset of 40K or higher, will
848  			 * end up looking at the second csum item only, which
849  			 * does not contain the checksum for any block starting
850  			 * at offset 40K or higher of our extent.
851  			 */
852  			while (!list_empty(&ordered_sums)) {
853  				struct btrfs_ordered_sum *sums;
854  				struct btrfs_root *csum_root;
855  
856  				sums = list_entry(ordered_sums.next,
857  						struct btrfs_ordered_sum,
858  						list);
859  				csum_root = btrfs_csum_root(fs_info,
860  							    sums->logical);
861  				if (!ret)
862  					ret = btrfs_del_csums(trans, csum_root,
863  							      sums->logical,
864  							      sums->len);
865  				if (!ret)
866  					ret = btrfs_csum_file_blocks(trans,
867  								     csum_root,
868  								     sums);
869  				list_del(&sums->list);
870  				kfree(sums);
871  			}
872  			if (ret)
873  				goto out;
874  		} else {
875  			btrfs_release_path(path);
876  		}
877  	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
878  		/* inline extents are easy, we just overwrite them */
879  		ret = overwrite_item(trans, root, path, eb, slot, key);
880  		if (ret)
881  			goto out;
882  	}
883  
884  	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
885  						extent_end - start);
886  	if (ret)
887  		goto out;
888  
889  update_inode:
890  	btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
891  	ret = btrfs_update_inode(trans, BTRFS_I(inode));
892  out:
893  	iput(inode);
894  	return ret;
895  }
896  
897  static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans,
898  				       struct btrfs_inode *dir,
899  				       struct btrfs_inode *inode,
900  				       const struct fscrypt_str *name)
901  {
902  	int ret;
903  
904  	ret = btrfs_unlink_inode(trans, dir, inode, name);
905  	if (ret)
906  		return ret;
907  	/*
908  	 * Whenever we need to check if a name exists or not, we check the
909  	 * fs/subvolume tree. So after an unlink we must run delayed items, so
910  	 * that future checks for a name during log replay see that the name
911  	 * does not exists anymore.
912  	 */
913  	return btrfs_run_delayed_items(trans);
914  }
915  
916  /*
917   * when cleaning up conflicts between the directory names in the
918   * subvolume, directory names in the log and directory names in the
919   * inode back references, we may have to unlink inodes from directories.
920   *
921   * This is a helper function to do the unlink of a specific directory
922   * item
923   */
924  static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
925  				      struct btrfs_path *path,
926  				      struct btrfs_inode *dir,
927  				      struct btrfs_dir_item *di)
928  {
929  	struct btrfs_root *root = dir->root;
930  	struct inode *inode;
931  	struct fscrypt_str name;
932  	struct extent_buffer *leaf;
933  	struct btrfs_key location;
934  	int ret;
935  
936  	leaf = path->nodes[0];
937  
938  	btrfs_dir_item_key_to_cpu(leaf, di, &location);
939  	ret = read_alloc_one_name(leaf, di + 1, btrfs_dir_name_len(leaf, di), &name);
940  	if (ret)
941  		return -ENOMEM;
942  
943  	btrfs_release_path(path);
944  
945  	inode = read_one_inode(root, location.objectid);
946  	if (!inode) {
947  		ret = -EIO;
948  		goto out;
949  	}
950  
951  	ret = link_to_fixup_dir(trans, root, path, location.objectid);
952  	if (ret)
953  		goto out;
954  
955  	ret = unlink_inode_for_log_replay(trans, dir, BTRFS_I(inode), &name);
956  out:
957  	kfree(name.name);
958  	iput(inode);
959  	return ret;
960  }
961  
962  /*
963   * See if a given name and sequence number found in an inode back reference are
964   * already in a directory and correctly point to this inode.
965   *
966   * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
967   * exists.
968   */
969  static noinline int inode_in_dir(struct btrfs_root *root,
970  				 struct btrfs_path *path,
971  				 u64 dirid, u64 objectid, u64 index,
972  				 struct fscrypt_str *name)
973  {
974  	struct btrfs_dir_item *di;
975  	struct btrfs_key location;
976  	int ret = 0;
977  
978  	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
979  					 index, name, 0);
980  	if (IS_ERR(di)) {
981  		ret = PTR_ERR(di);
982  		goto out;
983  	} else if (di) {
984  		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
985  		if (location.objectid != objectid)
986  			goto out;
987  	} else {
988  		goto out;
989  	}
990  
991  	btrfs_release_path(path);
992  	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, 0);
993  	if (IS_ERR(di)) {
994  		ret = PTR_ERR(di);
995  		goto out;
996  	} else if (di) {
997  		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
998  		if (location.objectid == objectid)
999  			ret = 1;
1000  	}
1001  out:
1002  	btrfs_release_path(path);
1003  	return ret;
1004  }
1005  
1006  /*
1007   * helper function to check a log tree for a named back reference in
1008   * an inode.  This is used to decide if a back reference that is
1009   * found in the subvolume conflicts with what we find in the log.
1010   *
1011   * inode backreferences may have multiple refs in a single item,
1012   * during replay we process one reference at a time, and we don't
1013   * want to delete valid links to a file from the subvolume if that
1014   * link is also in the log.
1015   */
1016  static noinline int backref_in_log(struct btrfs_root *log,
1017  				   struct btrfs_key *key,
1018  				   u64 ref_objectid,
1019  				   const struct fscrypt_str *name)
1020  {
1021  	struct btrfs_path *path;
1022  	int ret;
1023  
1024  	path = btrfs_alloc_path();
1025  	if (!path)
1026  		return -ENOMEM;
1027  
1028  	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
1029  	if (ret < 0) {
1030  		goto out;
1031  	} else if (ret == 1) {
1032  		ret = 0;
1033  		goto out;
1034  	}
1035  
1036  	if (key->type == BTRFS_INODE_EXTREF_KEY)
1037  		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1038  						       path->slots[0],
1039  						       ref_objectid, name);
1040  	else
1041  		ret = !!btrfs_find_name_in_backref(path->nodes[0],
1042  						   path->slots[0], name);
1043  out:
1044  	btrfs_free_path(path);
1045  	return ret;
1046  }
1047  
1048  static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1049  				  struct btrfs_root *root,
1050  				  struct btrfs_path *path,
1051  				  struct btrfs_root *log_root,
1052  				  struct btrfs_inode *dir,
1053  				  struct btrfs_inode *inode,
1054  				  u64 inode_objectid, u64 parent_objectid,
1055  				  u64 ref_index, struct fscrypt_str *name)
1056  {
1057  	int ret;
1058  	struct extent_buffer *leaf;
1059  	struct btrfs_dir_item *di;
1060  	struct btrfs_key search_key;
1061  	struct btrfs_inode_extref *extref;
1062  
1063  again:
1064  	/* Search old style refs */
1065  	search_key.objectid = inode_objectid;
1066  	search_key.type = BTRFS_INODE_REF_KEY;
1067  	search_key.offset = parent_objectid;
1068  	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1069  	if (ret == 0) {
1070  		struct btrfs_inode_ref *victim_ref;
1071  		unsigned long ptr;
1072  		unsigned long ptr_end;
1073  
1074  		leaf = path->nodes[0];
1075  
1076  		/* are we trying to overwrite a back ref for the root directory
1077  		 * if so, just jump out, we're done
1078  		 */
1079  		if (search_key.objectid == search_key.offset)
1080  			return 1;
1081  
1082  		/* check all the names in this back reference to see
1083  		 * if they are in the log.  if so, we allow them to stay
1084  		 * otherwise they must be unlinked as a conflict
1085  		 */
1086  		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1087  		ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]);
1088  		while (ptr < ptr_end) {
1089  			struct fscrypt_str victim_name;
1090  
1091  			victim_ref = (struct btrfs_inode_ref *)ptr;
1092  			ret = read_alloc_one_name(leaf, (victim_ref + 1),
1093  				 btrfs_inode_ref_name_len(leaf, victim_ref),
1094  				 &victim_name);
1095  			if (ret)
1096  				return ret;
1097  
1098  			ret = backref_in_log(log_root, &search_key,
1099  					     parent_objectid, &victim_name);
1100  			if (ret < 0) {
1101  				kfree(victim_name.name);
1102  				return ret;
1103  			} else if (!ret) {
1104  				inc_nlink(&inode->vfs_inode);
1105  				btrfs_release_path(path);
1106  
1107  				ret = unlink_inode_for_log_replay(trans, dir, inode,
1108  						&victim_name);
1109  				kfree(victim_name.name);
1110  				if (ret)
1111  					return ret;
1112  				goto again;
1113  			}
1114  			kfree(victim_name.name);
1115  
1116  			ptr = (unsigned long)(victim_ref + 1) + victim_name.len;
1117  		}
1118  	}
1119  	btrfs_release_path(path);
1120  
1121  	/* Same search but for extended refs */
1122  	extref = btrfs_lookup_inode_extref(NULL, root, path, name,
1123  					   inode_objectid, parent_objectid, 0,
1124  					   0);
1125  	if (IS_ERR(extref)) {
1126  		return PTR_ERR(extref);
1127  	} else if (extref) {
1128  		u32 item_size;
1129  		u32 cur_offset = 0;
1130  		unsigned long base;
1131  		struct inode *victim_parent;
1132  
1133  		leaf = path->nodes[0];
1134  
1135  		item_size = btrfs_item_size(leaf, path->slots[0]);
1136  		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1137  
1138  		while (cur_offset < item_size) {
1139  			struct fscrypt_str victim_name;
1140  
1141  			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1142  
1143  			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1144  				goto next;
1145  
1146  			ret = read_alloc_one_name(leaf, &extref->name,
1147  				 btrfs_inode_extref_name_len(leaf, extref),
1148  				 &victim_name);
1149  			if (ret)
1150  				return ret;
1151  
1152  			search_key.objectid = inode_objectid;
1153  			search_key.type = BTRFS_INODE_EXTREF_KEY;
1154  			search_key.offset = btrfs_extref_hash(parent_objectid,
1155  							      victim_name.name,
1156  							      victim_name.len);
1157  			ret = backref_in_log(log_root, &search_key,
1158  					     parent_objectid, &victim_name);
1159  			if (ret < 0) {
1160  				kfree(victim_name.name);
1161  				return ret;
1162  			} else if (!ret) {
1163  				ret = -ENOENT;
1164  				victim_parent = read_one_inode(root,
1165  						parent_objectid);
1166  				if (victim_parent) {
1167  					inc_nlink(&inode->vfs_inode);
1168  					btrfs_release_path(path);
1169  
1170  					ret = unlink_inode_for_log_replay(trans,
1171  							BTRFS_I(victim_parent),
1172  							inode, &victim_name);
1173  				}
1174  				iput(victim_parent);
1175  				kfree(victim_name.name);
1176  				if (ret)
1177  					return ret;
1178  				goto again;
1179  			}
1180  			kfree(victim_name.name);
1181  next:
1182  			cur_offset += victim_name.len + sizeof(*extref);
1183  		}
1184  	}
1185  	btrfs_release_path(path);
1186  
1187  	/* look for a conflicting sequence number */
1188  	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1189  					 ref_index, name, 0);
1190  	if (IS_ERR(di)) {
1191  		return PTR_ERR(di);
1192  	} else if (di) {
1193  		ret = drop_one_dir_item(trans, path, dir, di);
1194  		if (ret)
1195  			return ret;
1196  	}
1197  	btrfs_release_path(path);
1198  
1199  	/* look for a conflicting name */
1200  	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), name, 0);
1201  	if (IS_ERR(di)) {
1202  		return PTR_ERR(di);
1203  	} else if (di) {
1204  		ret = drop_one_dir_item(trans, path, dir, di);
1205  		if (ret)
1206  			return ret;
1207  	}
1208  	btrfs_release_path(path);
1209  
1210  	return 0;
1211  }
1212  
1213  static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1214  			     struct fscrypt_str *name, u64 *index,
1215  			     u64 *parent_objectid)
1216  {
1217  	struct btrfs_inode_extref *extref;
1218  	int ret;
1219  
1220  	extref = (struct btrfs_inode_extref *)ref_ptr;
1221  
1222  	ret = read_alloc_one_name(eb, &extref->name,
1223  				  btrfs_inode_extref_name_len(eb, extref), name);
1224  	if (ret)
1225  		return ret;
1226  
1227  	if (index)
1228  		*index = btrfs_inode_extref_index(eb, extref);
1229  	if (parent_objectid)
1230  		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1231  
1232  	return 0;
1233  }
1234  
1235  static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1236  			  struct fscrypt_str *name, u64 *index)
1237  {
1238  	struct btrfs_inode_ref *ref;
1239  	int ret;
1240  
1241  	ref = (struct btrfs_inode_ref *)ref_ptr;
1242  
1243  	ret = read_alloc_one_name(eb, ref + 1, btrfs_inode_ref_name_len(eb, ref),
1244  				  name);
1245  	if (ret)
1246  		return ret;
1247  
1248  	if (index)
1249  		*index = btrfs_inode_ref_index(eb, ref);
1250  
1251  	return 0;
1252  }
1253  
1254  /*
1255   * Take an inode reference item from the log tree and iterate all names from the
1256   * inode reference item in the subvolume tree with the same key (if it exists).
1257   * For any name that is not in the inode reference item from the log tree, do a
1258   * proper unlink of that name (that is, remove its entry from the inode
1259   * reference item and both dir index keys).
1260   */
1261  static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1262  				 struct btrfs_root *root,
1263  				 struct btrfs_path *path,
1264  				 struct btrfs_inode *inode,
1265  				 struct extent_buffer *log_eb,
1266  				 int log_slot,
1267  				 struct btrfs_key *key)
1268  {
1269  	int ret;
1270  	unsigned long ref_ptr;
1271  	unsigned long ref_end;
1272  	struct extent_buffer *eb;
1273  
1274  again:
1275  	btrfs_release_path(path);
1276  	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1277  	if (ret > 0) {
1278  		ret = 0;
1279  		goto out;
1280  	}
1281  	if (ret < 0)
1282  		goto out;
1283  
1284  	eb = path->nodes[0];
1285  	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1286  	ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]);
1287  	while (ref_ptr < ref_end) {
1288  		struct fscrypt_str name;
1289  		u64 parent_id;
1290  
1291  		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1292  			ret = extref_get_fields(eb, ref_ptr, &name,
1293  						NULL, &parent_id);
1294  		} else {
1295  			parent_id = key->offset;
1296  			ret = ref_get_fields(eb, ref_ptr, &name, NULL);
1297  		}
1298  		if (ret)
1299  			goto out;
1300  
1301  		if (key->type == BTRFS_INODE_EXTREF_KEY)
1302  			ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1303  							       parent_id, &name);
1304  		else
1305  			ret = !!btrfs_find_name_in_backref(log_eb, log_slot, &name);
1306  
1307  		if (!ret) {
1308  			struct inode *dir;
1309  
1310  			btrfs_release_path(path);
1311  			dir = read_one_inode(root, parent_id);
1312  			if (!dir) {
1313  				ret = -ENOENT;
1314  				kfree(name.name);
1315  				goto out;
1316  			}
1317  			ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir),
1318  						 inode, &name);
1319  			kfree(name.name);
1320  			iput(dir);
1321  			if (ret)
1322  				goto out;
1323  			goto again;
1324  		}
1325  
1326  		kfree(name.name);
1327  		ref_ptr += name.len;
1328  		if (key->type == BTRFS_INODE_EXTREF_KEY)
1329  			ref_ptr += sizeof(struct btrfs_inode_extref);
1330  		else
1331  			ref_ptr += sizeof(struct btrfs_inode_ref);
1332  	}
1333  	ret = 0;
1334   out:
1335  	btrfs_release_path(path);
1336  	return ret;
1337  }
1338  
1339  /*
1340   * replay one inode back reference item found in the log tree.
1341   * eb, slot and key refer to the buffer and key found in the log tree.
1342   * root is the destination we are replaying into, and path is for temp
1343   * use by this function.  (it should be released on return).
1344   */
1345  static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1346  				  struct btrfs_root *root,
1347  				  struct btrfs_root *log,
1348  				  struct btrfs_path *path,
1349  				  struct extent_buffer *eb, int slot,
1350  				  struct btrfs_key *key)
1351  {
1352  	struct inode *dir = NULL;
1353  	struct inode *inode = NULL;
1354  	unsigned long ref_ptr;
1355  	unsigned long ref_end;
1356  	struct fscrypt_str name;
1357  	int ret;
1358  	int log_ref_ver = 0;
1359  	u64 parent_objectid;
1360  	u64 inode_objectid;
1361  	u64 ref_index = 0;
1362  	int ref_struct_size;
1363  
1364  	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1365  	ref_end = ref_ptr + btrfs_item_size(eb, slot);
1366  
1367  	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1368  		struct btrfs_inode_extref *r;
1369  
1370  		ref_struct_size = sizeof(struct btrfs_inode_extref);
1371  		log_ref_ver = 1;
1372  		r = (struct btrfs_inode_extref *)ref_ptr;
1373  		parent_objectid = btrfs_inode_extref_parent(eb, r);
1374  	} else {
1375  		ref_struct_size = sizeof(struct btrfs_inode_ref);
1376  		parent_objectid = key->offset;
1377  	}
1378  	inode_objectid = key->objectid;
1379  
1380  	/*
1381  	 * it is possible that we didn't log all the parent directories
1382  	 * for a given inode.  If we don't find the dir, just don't
1383  	 * copy the back ref in.  The link count fixup code will take
1384  	 * care of the rest
1385  	 */
1386  	dir = read_one_inode(root, parent_objectid);
1387  	if (!dir) {
1388  		ret = -ENOENT;
1389  		goto out;
1390  	}
1391  
1392  	inode = read_one_inode(root, inode_objectid);
1393  	if (!inode) {
1394  		ret = -EIO;
1395  		goto out;
1396  	}
1397  
1398  	while (ref_ptr < ref_end) {
1399  		if (log_ref_ver) {
1400  			ret = extref_get_fields(eb, ref_ptr, &name,
1401  						&ref_index, &parent_objectid);
1402  			/*
1403  			 * parent object can change from one array
1404  			 * item to another.
1405  			 */
1406  			if (!dir)
1407  				dir = read_one_inode(root, parent_objectid);
1408  			if (!dir) {
1409  				ret = -ENOENT;
1410  				goto out;
1411  			}
1412  		} else {
1413  			ret = ref_get_fields(eb, ref_ptr, &name, &ref_index);
1414  		}
1415  		if (ret)
1416  			goto out;
1417  
1418  		ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1419  				   btrfs_ino(BTRFS_I(inode)), ref_index, &name);
1420  		if (ret < 0) {
1421  			goto out;
1422  		} else if (ret == 0) {
1423  			/*
1424  			 * look for a conflicting back reference in the
1425  			 * metadata. if we find one we have to unlink that name
1426  			 * of the file before we add our new link.  Later on, we
1427  			 * overwrite any existing back reference, and we don't
1428  			 * want to create dangling pointers in the directory.
1429  			 */
1430  			ret = __add_inode_ref(trans, root, path, log,
1431  					      BTRFS_I(dir), BTRFS_I(inode),
1432  					      inode_objectid, parent_objectid,
1433  					      ref_index, &name);
1434  			if (ret) {
1435  				if (ret == 1)
1436  					ret = 0;
1437  				goto out;
1438  			}
1439  
1440  			/* insert our name */
1441  			ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1442  					     &name, 0, ref_index);
1443  			if (ret)
1444  				goto out;
1445  
1446  			ret = btrfs_update_inode(trans, BTRFS_I(inode));
1447  			if (ret)
1448  				goto out;
1449  		}
1450  		/* Else, ret == 1, we already have a perfect match, we're done. */
1451  
1452  		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + name.len;
1453  		kfree(name.name);
1454  		name.name = NULL;
1455  		if (log_ref_ver) {
1456  			iput(dir);
1457  			dir = NULL;
1458  		}
1459  	}
1460  
1461  	/*
1462  	 * Before we overwrite the inode reference item in the subvolume tree
1463  	 * with the item from the log tree, we must unlink all names from the
1464  	 * parent directory that are in the subvolume's tree inode reference
1465  	 * item, otherwise we end up with an inconsistent subvolume tree where
1466  	 * dir index entries exist for a name but there is no inode reference
1467  	 * item with the same name.
1468  	 */
1469  	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1470  				    key);
1471  	if (ret)
1472  		goto out;
1473  
1474  	/* finally write the back reference in the inode */
1475  	ret = overwrite_item(trans, root, path, eb, slot, key);
1476  out:
1477  	btrfs_release_path(path);
1478  	kfree(name.name);
1479  	iput(dir);
1480  	iput(inode);
1481  	return ret;
1482  }
1483  
1484  static int count_inode_extrefs(struct btrfs_inode *inode, struct btrfs_path *path)
1485  {
1486  	int ret = 0;
1487  	int name_len;
1488  	unsigned int nlink = 0;
1489  	u32 item_size;
1490  	u32 cur_offset = 0;
1491  	u64 inode_objectid = btrfs_ino(inode);
1492  	u64 offset = 0;
1493  	unsigned long ptr;
1494  	struct btrfs_inode_extref *extref;
1495  	struct extent_buffer *leaf;
1496  
1497  	while (1) {
1498  		ret = btrfs_find_one_extref(inode->root, inode_objectid, offset,
1499  					    path, &extref, &offset);
1500  		if (ret)
1501  			break;
1502  
1503  		leaf = path->nodes[0];
1504  		item_size = btrfs_item_size(leaf, path->slots[0]);
1505  		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1506  		cur_offset = 0;
1507  
1508  		while (cur_offset < item_size) {
1509  			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1510  			name_len = btrfs_inode_extref_name_len(leaf, extref);
1511  
1512  			nlink++;
1513  
1514  			cur_offset += name_len + sizeof(*extref);
1515  		}
1516  
1517  		offset++;
1518  		btrfs_release_path(path);
1519  	}
1520  	btrfs_release_path(path);
1521  
1522  	if (ret < 0 && ret != -ENOENT)
1523  		return ret;
1524  	return nlink;
1525  }
1526  
1527  static int count_inode_refs(struct btrfs_inode *inode, struct btrfs_path *path)
1528  {
1529  	int ret;
1530  	struct btrfs_key key;
1531  	unsigned int nlink = 0;
1532  	unsigned long ptr;
1533  	unsigned long ptr_end;
1534  	int name_len;
1535  	u64 ino = btrfs_ino(inode);
1536  
1537  	key.objectid = ino;
1538  	key.type = BTRFS_INODE_REF_KEY;
1539  	key.offset = (u64)-1;
1540  
1541  	while (1) {
1542  		ret = btrfs_search_slot(NULL, inode->root, &key, path, 0, 0);
1543  		if (ret < 0)
1544  			break;
1545  		if (ret > 0) {
1546  			if (path->slots[0] == 0)
1547  				break;
1548  			path->slots[0]--;
1549  		}
1550  process_slot:
1551  		btrfs_item_key_to_cpu(path->nodes[0], &key,
1552  				      path->slots[0]);
1553  		if (key.objectid != ino ||
1554  		    key.type != BTRFS_INODE_REF_KEY)
1555  			break;
1556  		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1557  		ptr_end = ptr + btrfs_item_size(path->nodes[0],
1558  						   path->slots[0]);
1559  		while (ptr < ptr_end) {
1560  			struct btrfs_inode_ref *ref;
1561  
1562  			ref = (struct btrfs_inode_ref *)ptr;
1563  			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1564  							    ref);
1565  			ptr = (unsigned long)(ref + 1) + name_len;
1566  			nlink++;
1567  		}
1568  
1569  		if (key.offset == 0)
1570  			break;
1571  		if (path->slots[0] > 0) {
1572  			path->slots[0]--;
1573  			goto process_slot;
1574  		}
1575  		key.offset--;
1576  		btrfs_release_path(path);
1577  	}
1578  	btrfs_release_path(path);
1579  
1580  	return nlink;
1581  }
1582  
1583  /*
1584   * There are a few corners where the link count of the file can't
1585   * be properly maintained during replay.  So, instead of adding
1586   * lots of complexity to the log code, we just scan the backrefs
1587   * for any file that has been through replay.
1588   *
1589   * The scan will update the link count on the inode to reflect the
1590   * number of back refs found.  If it goes down to zero, the iput
1591   * will free the inode.
1592   */
1593  static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1594  					   struct inode *inode)
1595  {
1596  	struct btrfs_root *root = BTRFS_I(inode)->root;
1597  	struct btrfs_path *path;
1598  	int ret;
1599  	u64 nlink = 0;
1600  	u64 ino = btrfs_ino(BTRFS_I(inode));
1601  
1602  	path = btrfs_alloc_path();
1603  	if (!path)
1604  		return -ENOMEM;
1605  
1606  	ret = count_inode_refs(BTRFS_I(inode), path);
1607  	if (ret < 0)
1608  		goto out;
1609  
1610  	nlink = ret;
1611  
1612  	ret = count_inode_extrefs(BTRFS_I(inode), path);
1613  	if (ret < 0)
1614  		goto out;
1615  
1616  	nlink += ret;
1617  
1618  	ret = 0;
1619  
1620  	if (nlink != inode->i_nlink) {
1621  		set_nlink(inode, nlink);
1622  		ret = btrfs_update_inode(trans, BTRFS_I(inode));
1623  		if (ret)
1624  			goto out;
1625  	}
1626  	BTRFS_I(inode)->index_cnt = (u64)-1;
1627  
1628  	if (inode->i_nlink == 0) {
1629  		if (S_ISDIR(inode->i_mode)) {
1630  			ret = replay_dir_deletes(trans, root, NULL, path,
1631  						 ino, 1);
1632  			if (ret)
1633  				goto out;
1634  		}
1635  		ret = btrfs_insert_orphan_item(trans, root, ino);
1636  		if (ret == -EEXIST)
1637  			ret = 0;
1638  	}
1639  
1640  out:
1641  	btrfs_free_path(path);
1642  	return ret;
1643  }
1644  
1645  static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1646  					    struct btrfs_root *root,
1647  					    struct btrfs_path *path)
1648  {
1649  	int ret;
1650  	struct btrfs_key key;
1651  	struct inode *inode;
1652  
1653  	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1654  	key.type = BTRFS_ORPHAN_ITEM_KEY;
1655  	key.offset = (u64)-1;
1656  	while (1) {
1657  		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1658  		if (ret < 0)
1659  			break;
1660  
1661  		if (ret == 1) {
1662  			ret = 0;
1663  			if (path->slots[0] == 0)
1664  				break;
1665  			path->slots[0]--;
1666  		}
1667  
1668  		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1669  		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1670  		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1671  			break;
1672  
1673  		ret = btrfs_del_item(trans, root, path);
1674  		if (ret)
1675  			break;
1676  
1677  		btrfs_release_path(path);
1678  		inode = read_one_inode(root, key.offset);
1679  		if (!inode) {
1680  			ret = -EIO;
1681  			break;
1682  		}
1683  
1684  		ret = fixup_inode_link_count(trans, inode);
1685  		iput(inode);
1686  		if (ret)
1687  			break;
1688  
1689  		/*
1690  		 * fixup on a directory may create new entries,
1691  		 * make sure we always look for the highset possible
1692  		 * offset
1693  		 */
1694  		key.offset = (u64)-1;
1695  	}
1696  	btrfs_release_path(path);
1697  	return ret;
1698  }
1699  
1700  
1701  /*
1702   * record a given inode in the fixup dir so we can check its link
1703   * count when replay is done.  The link count is incremented here
1704   * so the inode won't go away until we check it
1705   */
1706  static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1707  				      struct btrfs_root *root,
1708  				      struct btrfs_path *path,
1709  				      u64 objectid)
1710  {
1711  	struct btrfs_key key;
1712  	int ret = 0;
1713  	struct inode *inode;
1714  
1715  	inode = read_one_inode(root, objectid);
1716  	if (!inode)
1717  		return -EIO;
1718  
1719  	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1720  	key.type = BTRFS_ORPHAN_ITEM_KEY;
1721  	key.offset = objectid;
1722  
1723  	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1724  
1725  	btrfs_release_path(path);
1726  	if (ret == 0) {
1727  		if (!inode->i_nlink)
1728  			set_nlink(inode, 1);
1729  		else
1730  			inc_nlink(inode);
1731  		ret = btrfs_update_inode(trans, BTRFS_I(inode));
1732  	} else if (ret == -EEXIST) {
1733  		ret = 0;
1734  	}
1735  	iput(inode);
1736  
1737  	return ret;
1738  }
1739  
1740  /*
1741   * when replaying the log for a directory, we only insert names
1742   * for inodes that actually exist.  This means an fsync on a directory
1743   * does not implicitly fsync all the new files in it
1744   */
1745  static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1746  				    struct btrfs_root *root,
1747  				    u64 dirid, u64 index,
1748  				    const struct fscrypt_str *name,
1749  				    struct btrfs_key *location)
1750  {
1751  	struct inode *inode;
1752  	struct inode *dir;
1753  	int ret;
1754  
1755  	inode = read_one_inode(root, location->objectid);
1756  	if (!inode)
1757  		return -ENOENT;
1758  
1759  	dir = read_one_inode(root, dirid);
1760  	if (!dir) {
1761  		iput(inode);
1762  		return -EIO;
1763  	}
1764  
1765  	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1766  			     1, index);
1767  
1768  	/* FIXME, put inode into FIXUP list */
1769  
1770  	iput(inode);
1771  	iput(dir);
1772  	return ret;
1773  }
1774  
1775  static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans,
1776  					struct btrfs_inode *dir,
1777  					struct btrfs_path *path,
1778  					struct btrfs_dir_item *dst_di,
1779  					const struct btrfs_key *log_key,
1780  					u8 log_flags,
1781  					bool exists)
1782  {
1783  	struct btrfs_key found_key;
1784  
1785  	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1786  	/* The existing dentry points to the same inode, don't delete it. */
1787  	if (found_key.objectid == log_key->objectid &&
1788  	    found_key.type == log_key->type &&
1789  	    found_key.offset == log_key->offset &&
1790  	    btrfs_dir_flags(path->nodes[0], dst_di) == log_flags)
1791  		return 1;
1792  
1793  	/*
1794  	 * Don't drop the conflicting directory entry if the inode for the new
1795  	 * entry doesn't exist.
1796  	 */
1797  	if (!exists)
1798  		return 0;
1799  
1800  	return drop_one_dir_item(trans, path, dir, dst_di);
1801  }
1802  
1803  /*
1804   * take a single entry in a log directory item and replay it into
1805   * the subvolume.
1806   *
1807   * if a conflicting item exists in the subdirectory already,
1808   * the inode it points to is unlinked and put into the link count
1809   * fix up tree.
1810   *
1811   * If a name from the log points to a file or directory that does
1812   * not exist in the FS, it is skipped.  fsyncs on directories
1813   * do not force down inodes inside that directory, just changes to the
1814   * names or unlinks in a directory.
1815   *
1816   * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1817   * non-existing inode) and 1 if the name was replayed.
1818   */
1819  static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1820  				    struct btrfs_root *root,
1821  				    struct btrfs_path *path,
1822  				    struct extent_buffer *eb,
1823  				    struct btrfs_dir_item *di,
1824  				    struct btrfs_key *key)
1825  {
1826  	struct fscrypt_str name;
1827  	struct btrfs_dir_item *dir_dst_di;
1828  	struct btrfs_dir_item *index_dst_di;
1829  	bool dir_dst_matches = false;
1830  	bool index_dst_matches = false;
1831  	struct btrfs_key log_key;
1832  	struct btrfs_key search_key;
1833  	struct inode *dir;
1834  	u8 log_flags;
1835  	bool exists;
1836  	int ret;
1837  	bool update_size = true;
1838  	bool name_added = false;
1839  
1840  	dir = read_one_inode(root, key->objectid);
1841  	if (!dir)
1842  		return -EIO;
1843  
1844  	ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
1845  	if (ret)
1846  		goto out;
1847  
1848  	log_flags = btrfs_dir_flags(eb, di);
1849  	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1850  	ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1851  	btrfs_release_path(path);
1852  	if (ret < 0)
1853  		goto out;
1854  	exists = (ret == 0);
1855  	ret = 0;
1856  
1857  	dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1858  					   &name, 1);
1859  	if (IS_ERR(dir_dst_di)) {
1860  		ret = PTR_ERR(dir_dst_di);
1861  		goto out;
1862  	} else if (dir_dst_di) {
1863  		ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1864  						   dir_dst_di, &log_key,
1865  						   log_flags, exists);
1866  		if (ret < 0)
1867  			goto out;
1868  		dir_dst_matches = (ret == 1);
1869  	}
1870  
1871  	btrfs_release_path(path);
1872  
1873  	index_dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1874  						   key->objectid, key->offset,
1875  						   &name, 1);
1876  	if (IS_ERR(index_dst_di)) {
1877  		ret = PTR_ERR(index_dst_di);
1878  		goto out;
1879  	} else if (index_dst_di) {
1880  		ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1881  						   index_dst_di, &log_key,
1882  						   log_flags, exists);
1883  		if (ret < 0)
1884  			goto out;
1885  		index_dst_matches = (ret == 1);
1886  	}
1887  
1888  	btrfs_release_path(path);
1889  
1890  	if (dir_dst_matches && index_dst_matches) {
1891  		ret = 0;
1892  		update_size = false;
1893  		goto out;
1894  	}
1895  
1896  	/*
1897  	 * Check if the inode reference exists in the log for the given name,
1898  	 * inode and parent inode
1899  	 */
1900  	search_key.objectid = log_key.objectid;
1901  	search_key.type = BTRFS_INODE_REF_KEY;
1902  	search_key.offset = key->objectid;
1903  	ret = backref_in_log(root->log_root, &search_key, 0, &name);
1904  	if (ret < 0) {
1905  	        goto out;
1906  	} else if (ret) {
1907  	        /* The dentry will be added later. */
1908  	        ret = 0;
1909  	        update_size = false;
1910  	        goto out;
1911  	}
1912  
1913  	search_key.objectid = log_key.objectid;
1914  	search_key.type = BTRFS_INODE_EXTREF_KEY;
1915  	search_key.offset = key->objectid;
1916  	ret = backref_in_log(root->log_root, &search_key, key->objectid, &name);
1917  	if (ret < 0) {
1918  		goto out;
1919  	} else if (ret) {
1920  		/* The dentry will be added later. */
1921  		ret = 0;
1922  		update_size = false;
1923  		goto out;
1924  	}
1925  	btrfs_release_path(path);
1926  	ret = insert_one_name(trans, root, key->objectid, key->offset,
1927  			      &name, &log_key);
1928  	if (ret && ret != -ENOENT && ret != -EEXIST)
1929  		goto out;
1930  	if (!ret)
1931  		name_added = true;
1932  	update_size = false;
1933  	ret = 0;
1934  
1935  out:
1936  	if (!ret && update_size) {
1937  		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name.len * 2);
1938  		ret = btrfs_update_inode(trans, BTRFS_I(dir));
1939  	}
1940  	kfree(name.name);
1941  	iput(dir);
1942  	if (!ret && name_added)
1943  		ret = 1;
1944  	return ret;
1945  }
1946  
1947  /* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */
1948  static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1949  					struct btrfs_root *root,
1950  					struct btrfs_path *path,
1951  					struct extent_buffer *eb, int slot,
1952  					struct btrfs_key *key)
1953  {
1954  	int ret;
1955  	struct btrfs_dir_item *di;
1956  
1957  	/* We only log dir index keys, which only contain a single dir item. */
1958  	ASSERT(key->type == BTRFS_DIR_INDEX_KEY);
1959  
1960  	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1961  	ret = replay_one_name(trans, root, path, eb, di, key);
1962  	if (ret < 0)
1963  		return ret;
1964  
1965  	/*
1966  	 * If this entry refers to a non-directory (directories can not have a
1967  	 * link count > 1) and it was added in the transaction that was not
1968  	 * committed, make sure we fixup the link count of the inode the entry
1969  	 * points to. Otherwise something like the following would result in a
1970  	 * directory pointing to an inode with a wrong link that does not account
1971  	 * for this dir entry:
1972  	 *
1973  	 * mkdir testdir
1974  	 * touch testdir/foo
1975  	 * touch testdir/bar
1976  	 * sync
1977  	 *
1978  	 * ln testdir/bar testdir/bar_link
1979  	 * ln testdir/foo testdir/foo_link
1980  	 * xfs_io -c "fsync" testdir/bar
1981  	 *
1982  	 * <power failure>
1983  	 *
1984  	 * mount fs, log replay happens
1985  	 *
1986  	 * File foo would remain with a link count of 1 when it has two entries
1987  	 * pointing to it in the directory testdir. This would make it impossible
1988  	 * to ever delete the parent directory has it would result in stale
1989  	 * dentries that can never be deleted.
1990  	 */
1991  	if (ret == 1 && btrfs_dir_ftype(eb, di) != BTRFS_FT_DIR) {
1992  		struct btrfs_path *fixup_path;
1993  		struct btrfs_key di_key;
1994  
1995  		fixup_path = btrfs_alloc_path();
1996  		if (!fixup_path)
1997  			return -ENOMEM;
1998  
1999  		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2000  		ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid);
2001  		btrfs_free_path(fixup_path);
2002  	}
2003  
2004  	return ret;
2005  }
2006  
2007  /*
2008   * directory replay has two parts.  There are the standard directory
2009   * items in the log copied from the subvolume, and range items
2010   * created in the log while the subvolume was logged.
2011   *
2012   * The range items tell us which parts of the key space the log
2013   * is authoritative for.  During replay, if a key in the subvolume
2014   * directory is in a logged range item, but not actually in the log
2015   * that means it was deleted from the directory before the fsync
2016   * and should be removed.
2017   */
2018  static noinline int find_dir_range(struct btrfs_root *root,
2019  				   struct btrfs_path *path,
2020  				   u64 dirid,
2021  				   u64 *start_ret, u64 *end_ret)
2022  {
2023  	struct btrfs_key key;
2024  	u64 found_end;
2025  	struct btrfs_dir_log_item *item;
2026  	int ret;
2027  	int nritems;
2028  
2029  	if (*start_ret == (u64)-1)
2030  		return 1;
2031  
2032  	key.objectid = dirid;
2033  	key.type = BTRFS_DIR_LOG_INDEX_KEY;
2034  	key.offset = *start_ret;
2035  
2036  	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2037  	if (ret < 0)
2038  		goto out;
2039  	if (ret > 0) {
2040  		if (path->slots[0] == 0)
2041  			goto out;
2042  		path->slots[0]--;
2043  	}
2044  	if (ret != 0)
2045  		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2046  
2047  	if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2048  		ret = 1;
2049  		goto next;
2050  	}
2051  	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2052  			      struct btrfs_dir_log_item);
2053  	found_end = btrfs_dir_log_end(path->nodes[0], item);
2054  
2055  	if (*start_ret >= key.offset && *start_ret <= found_end) {
2056  		ret = 0;
2057  		*start_ret = key.offset;
2058  		*end_ret = found_end;
2059  		goto out;
2060  	}
2061  	ret = 1;
2062  next:
2063  	/* check the next slot in the tree to see if it is a valid item */
2064  	nritems = btrfs_header_nritems(path->nodes[0]);
2065  	path->slots[0]++;
2066  	if (path->slots[0] >= nritems) {
2067  		ret = btrfs_next_leaf(root, path);
2068  		if (ret)
2069  			goto out;
2070  	}
2071  
2072  	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2073  
2074  	if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2075  		ret = 1;
2076  		goto out;
2077  	}
2078  	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2079  			      struct btrfs_dir_log_item);
2080  	found_end = btrfs_dir_log_end(path->nodes[0], item);
2081  	*start_ret = key.offset;
2082  	*end_ret = found_end;
2083  	ret = 0;
2084  out:
2085  	btrfs_release_path(path);
2086  	return ret;
2087  }
2088  
2089  /*
2090   * this looks for a given directory item in the log.  If the directory
2091   * item is not in the log, the item is removed and the inode it points
2092   * to is unlinked
2093   */
2094  static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2095  				      struct btrfs_root *log,
2096  				      struct btrfs_path *path,
2097  				      struct btrfs_path *log_path,
2098  				      struct inode *dir,
2099  				      struct btrfs_key *dir_key)
2100  {
2101  	struct btrfs_root *root = BTRFS_I(dir)->root;
2102  	int ret;
2103  	struct extent_buffer *eb;
2104  	int slot;
2105  	struct btrfs_dir_item *di;
2106  	struct fscrypt_str name;
2107  	struct inode *inode = NULL;
2108  	struct btrfs_key location;
2109  
2110  	/*
2111  	 * Currently we only log dir index keys. Even if we replay a log created
2112  	 * by an older kernel that logged both dir index and dir item keys, all
2113  	 * we need to do is process the dir index keys, we (and our caller) can
2114  	 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY).
2115  	 */
2116  	ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY);
2117  
2118  	eb = path->nodes[0];
2119  	slot = path->slots[0];
2120  	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2121  	ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
2122  	if (ret)
2123  		goto out;
2124  
2125  	if (log) {
2126  		struct btrfs_dir_item *log_di;
2127  
2128  		log_di = btrfs_lookup_dir_index_item(trans, log, log_path,
2129  						     dir_key->objectid,
2130  						     dir_key->offset, &name, 0);
2131  		if (IS_ERR(log_di)) {
2132  			ret = PTR_ERR(log_di);
2133  			goto out;
2134  		} else if (log_di) {
2135  			/* The dentry exists in the log, we have nothing to do. */
2136  			ret = 0;
2137  			goto out;
2138  		}
2139  	}
2140  
2141  	btrfs_dir_item_key_to_cpu(eb, di, &location);
2142  	btrfs_release_path(path);
2143  	btrfs_release_path(log_path);
2144  	inode = read_one_inode(root, location.objectid);
2145  	if (!inode) {
2146  		ret = -EIO;
2147  		goto out;
2148  	}
2149  
2150  	ret = link_to_fixup_dir(trans, root, path, location.objectid);
2151  	if (ret)
2152  		goto out;
2153  
2154  	inc_nlink(inode);
2155  	ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), BTRFS_I(inode),
2156  					  &name);
2157  	/*
2158  	 * Unlike dir item keys, dir index keys can only have one name (entry) in
2159  	 * them, as there are no key collisions since each key has a unique offset
2160  	 * (an index number), so we're done.
2161  	 */
2162  out:
2163  	btrfs_release_path(path);
2164  	btrfs_release_path(log_path);
2165  	kfree(name.name);
2166  	iput(inode);
2167  	return ret;
2168  }
2169  
2170  static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2171  			      struct btrfs_root *root,
2172  			      struct btrfs_root *log,
2173  			      struct btrfs_path *path,
2174  			      const u64 ino)
2175  {
2176  	struct btrfs_key search_key;
2177  	struct btrfs_path *log_path;
2178  	int i;
2179  	int nritems;
2180  	int ret;
2181  
2182  	log_path = btrfs_alloc_path();
2183  	if (!log_path)
2184  		return -ENOMEM;
2185  
2186  	search_key.objectid = ino;
2187  	search_key.type = BTRFS_XATTR_ITEM_KEY;
2188  	search_key.offset = 0;
2189  again:
2190  	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2191  	if (ret < 0)
2192  		goto out;
2193  process_leaf:
2194  	nritems = btrfs_header_nritems(path->nodes[0]);
2195  	for (i = path->slots[0]; i < nritems; i++) {
2196  		struct btrfs_key key;
2197  		struct btrfs_dir_item *di;
2198  		struct btrfs_dir_item *log_di;
2199  		u32 total_size;
2200  		u32 cur;
2201  
2202  		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2203  		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2204  			ret = 0;
2205  			goto out;
2206  		}
2207  
2208  		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2209  		total_size = btrfs_item_size(path->nodes[0], i);
2210  		cur = 0;
2211  		while (cur < total_size) {
2212  			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2213  			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2214  			u32 this_len = sizeof(*di) + name_len + data_len;
2215  			char *name;
2216  
2217  			name = kmalloc(name_len, GFP_NOFS);
2218  			if (!name) {
2219  				ret = -ENOMEM;
2220  				goto out;
2221  			}
2222  			read_extent_buffer(path->nodes[0], name,
2223  					   (unsigned long)(di + 1), name_len);
2224  
2225  			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2226  						    name, name_len, 0);
2227  			btrfs_release_path(log_path);
2228  			if (!log_di) {
2229  				/* Doesn't exist in log tree, so delete it. */
2230  				btrfs_release_path(path);
2231  				di = btrfs_lookup_xattr(trans, root, path, ino,
2232  							name, name_len, -1);
2233  				kfree(name);
2234  				if (IS_ERR(di)) {
2235  					ret = PTR_ERR(di);
2236  					goto out;
2237  				}
2238  				ASSERT(di);
2239  				ret = btrfs_delete_one_dir_name(trans, root,
2240  								path, di);
2241  				if (ret)
2242  					goto out;
2243  				btrfs_release_path(path);
2244  				search_key = key;
2245  				goto again;
2246  			}
2247  			kfree(name);
2248  			if (IS_ERR(log_di)) {
2249  				ret = PTR_ERR(log_di);
2250  				goto out;
2251  			}
2252  			cur += this_len;
2253  			di = (struct btrfs_dir_item *)((char *)di + this_len);
2254  		}
2255  	}
2256  	ret = btrfs_next_leaf(root, path);
2257  	if (ret > 0)
2258  		ret = 0;
2259  	else if (ret == 0)
2260  		goto process_leaf;
2261  out:
2262  	btrfs_free_path(log_path);
2263  	btrfs_release_path(path);
2264  	return ret;
2265  }
2266  
2267  
2268  /*
2269   * deletion replay happens before we copy any new directory items
2270   * out of the log or out of backreferences from inodes.  It
2271   * scans the log to find ranges of keys that log is authoritative for,
2272   * and then scans the directory to find items in those ranges that are
2273   * not present in the log.
2274   *
2275   * Anything we don't find in the log is unlinked and removed from the
2276   * directory.
2277   */
2278  static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2279  				       struct btrfs_root *root,
2280  				       struct btrfs_root *log,
2281  				       struct btrfs_path *path,
2282  				       u64 dirid, int del_all)
2283  {
2284  	u64 range_start;
2285  	u64 range_end;
2286  	int ret = 0;
2287  	struct btrfs_key dir_key;
2288  	struct btrfs_key found_key;
2289  	struct btrfs_path *log_path;
2290  	struct inode *dir;
2291  
2292  	dir_key.objectid = dirid;
2293  	dir_key.type = BTRFS_DIR_INDEX_KEY;
2294  	log_path = btrfs_alloc_path();
2295  	if (!log_path)
2296  		return -ENOMEM;
2297  
2298  	dir = read_one_inode(root, dirid);
2299  	/* it isn't an error if the inode isn't there, that can happen
2300  	 * because we replay the deletes before we copy in the inode item
2301  	 * from the log
2302  	 */
2303  	if (!dir) {
2304  		btrfs_free_path(log_path);
2305  		return 0;
2306  	}
2307  
2308  	range_start = 0;
2309  	range_end = 0;
2310  	while (1) {
2311  		if (del_all)
2312  			range_end = (u64)-1;
2313  		else {
2314  			ret = find_dir_range(log, path, dirid,
2315  					     &range_start, &range_end);
2316  			if (ret < 0)
2317  				goto out;
2318  			else if (ret > 0)
2319  				break;
2320  		}
2321  
2322  		dir_key.offset = range_start;
2323  		while (1) {
2324  			int nritems;
2325  			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2326  						0, 0);
2327  			if (ret < 0)
2328  				goto out;
2329  
2330  			nritems = btrfs_header_nritems(path->nodes[0]);
2331  			if (path->slots[0] >= nritems) {
2332  				ret = btrfs_next_leaf(root, path);
2333  				if (ret == 1)
2334  					break;
2335  				else if (ret < 0)
2336  					goto out;
2337  			}
2338  			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2339  					      path->slots[0]);
2340  			if (found_key.objectid != dirid ||
2341  			    found_key.type != dir_key.type) {
2342  				ret = 0;
2343  				goto out;
2344  			}
2345  
2346  			if (found_key.offset > range_end)
2347  				break;
2348  
2349  			ret = check_item_in_log(trans, log, path,
2350  						log_path, dir,
2351  						&found_key);
2352  			if (ret)
2353  				goto out;
2354  			if (found_key.offset == (u64)-1)
2355  				break;
2356  			dir_key.offset = found_key.offset + 1;
2357  		}
2358  		btrfs_release_path(path);
2359  		if (range_end == (u64)-1)
2360  			break;
2361  		range_start = range_end + 1;
2362  	}
2363  	ret = 0;
2364  out:
2365  	btrfs_release_path(path);
2366  	btrfs_free_path(log_path);
2367  	iput(dir);
2368  	return ret;
2369  }
2370  
2371  /*
2372   * the process_func used to replay items from the log tree.  This
2373   * gets called in two different stages.  The first stage just looks
2374   * for inodes and makes sure they are all copied into the subvolume.
2375   *
2376   * The second stage copies all the other item types from the log into
2377   * the subvolume.  The two stage approach is slower, but gets rid of
2378   * lots of complexity around inodes referencing other inodes that exist
2379   * only in the log (references come from either directory items or inode
2380   * back refs).
2381   */
2382  static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2383  			     struct walk_control *wc, u64 gen, int level)
2384  {
2385  	int nritems;
2386  	struct btrfs_tree_parent_check check = {
2387  		.transid = gen,
2388  		.level = level
2389  	};
2390  	struct btrfs_path *path;
2391  	struct btrfs_root *root = wc->replay_dest;
2392  	struct btrfs_key key;
2393  	int i;
2394  	int ret;
2395  
2396  	ret = btrfs_read_extent_buffer(eb, &check);
2397  	if (ret)
2398  		return ret;
2399  
2400  	level = btrfs_header_level(eb);
2401  
2402  	if (level != 0)
2403  		return 0;
2404  
2405  	path = btrfs_alloc_path();
2406  	if (!path)
2407  		return -ENOMEM;
2408  
2409  	nritems = btrfs_header_nritems(eb);
2410  	for (i = 0; i < nritems; i++) {
2411  		btrfs_item_key_to_cpu(eb, &key, i);
2412  
2413  		/* inode keys are done during the first stage */
2414  		if (key.type == BTRFS_INODE_ITEM_KEY &&
2415  		    wc->stage == LOG_WALK_REPLAY_INODES) {
2416  			struct btrfs_inode_item *inode_item;
2417  			u32 mode;
2418  
2419  			inode_item = btrfs_item_ptr(eb, i,
2420  					    struct btrfs_inode_item);
2421  			/*
2422  			 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2423  			 * and never got linked before the fsync, skip it, as
2424  			 * replaying it is pointless since it would be deleted
2425  			 * later. We skip logging tmpfiles, but it's always
2426  			 * possible we are replaying a log created with a kernel
2427  			 * that used to log tmpfiles.
2428  			 */
2429  			if (btrfs_inode_nlink(eb, inode_item) == 0) {
2430  				wc->ignore_cur_inode = true;
2431  				continue;
2432  			} else {
2433  				wc->ignore_cur_inode = false;
2434  			}
2435  			ret = replay_xattr_deletes(wc->trans, root, log,
2436  						   path, key.objectid);
2437  			if (ret)
2438  				break;
2439  			mode = btrfs_inode_mode(eb, inode_item);
2440  			if (S_ISDIR(mode)) {
2441  				ret = replay_dir_deletes(wc->trans,
2442  					 root, log, path, key.objectid, 0);
2443  				if (ret)
2444  					break;
2445  			}
2446  			ret = overwrite_item(wc->trans, root, path,
2447  					     eb, i, &key);
2448  			if (ret)
2449  				break;
2450  
2451  			/*
2452  			 * Before replaying extents, truncate the inode to its
2453  			 * size. We need to do it now and not after log replay
2454  			 * because before an fsync we can have prealloc extents
2455  			 * added beyond the inode's i_size. If we did it after,
2456  			 * through orphan cleanup for example, we would drop
2457  			 * those prealloc extents just after replaying them.
2458  			 */
2459  			if (S_ISREG(mode)) {
2460  				struct btrfs_drop_extents_args drop_args = { 0 };
2461  				struct inode *inode;
2462  				u64 from;
2463  
2464  				inode = read_one_inode(root, key.objectid);
2465  				if (!inode) {
2466  					ret = -EIO;
2467  					break;
2468  				}
2469  				from = ALIGN(i_size_read(inode),
2470  					     root->fs_info->sectorsize);
2471  				drop_args.start = from;
2472  				drop_args.end = (u64)-1;
2473  				drop_args.drop_cache = true;
2474  				ret = btrfs_drop_extents(wc->trans, root,
2475  							 BTRFS_I(inode),
2476  							 &drop_args);
2477  				if (!ret) {
2478  					inode_sub_bytes(inode,
2479  							drop_args.bytes_found);
2480  					/* Update the inode's nbytes. */
2481  					ret = btrfs_update_inode(wc->trans,
2482  								 BTRFS_I(inode));
2483  				}
2484  				iput(inode);
2485  				if (ret)
2486  					break;
2487  			}
2488  
2489  			ret = link_to_fixup_dir(wc->trans, root,
2490  						path, key.objectid);
2491  			if (ret)
2492  				break;
2493  		}
2494  
2495  		if (wc->ignore_cur_inode)
2496  			continue;
2497  
2498  		if (key.type == BTRFS_DIR_INDEX_KEY &&
2499  		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2500  			ret = replay_one_dir_item(wc->trans, root, path,
2501  						  eb, i, &key);
2502  			if (ret)
2503  				break;
2504  		}
2505  
2506  		if (wc->stage < LOG_WALK_REPLAY_ALL)
2507  			continue;
2508  
2509  		/* these keys are simply copied */
2510  		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2511  			ret = overwrite_item(wc->trans, root, path,
2512  					     eb, i, &key);
2513  			if (ret)
2514  				break;
2515  		} else if (key.type == BTRFS_INODE_REF_KEY ||
2516  			   key.type == BTRFS_INODE_EXTREF_KEY) {
2517  			ret = add_inode_ref(wc->trans, root, log, path,
2518  					    eb, i, &key);
2519  			if (ret && ret != -ENOENT)
2520  				break;
2521  			ret = 0;
2522  		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2523  			ret = replay_one_extent(wc->trans, root, path,
2524  						eb, i, &key);
2525  			if (ret)
2526  				break;
2527  		}
2528  		/*
2529  		 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the
2530  		 * BTRFS_DIR_INDEX_KEY items which we use to derive the
2531  		 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an
2532  		 * older kernel with such keys, ignore them.
2533  		 */
2534  	}
2535  	btrfs_free_path(path);
2536  	return ret;
2537  }
2538  
2539  /*
2540   * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2541   */
2542  static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2543  {
2544  	struct btrfs_block_group *cache;
2545  
2546  	cache = btrfs_lookup_block_group(fs_info, start);
2547  	if (!cache) {
2548  		btrfs_err(fs_info, "unable to find block group for %llu", start);
2549  		return;
2550  	}
2551  
2552  	spin_lock(&cache->space_info->lock);
2553  	spin_lock(&cache->lock);
2554  	cache->reserved -= fs_info->nodesize;
2555  	cache->space_info->bytes_reserved -= fs_info->nodesize;
2556  	spin_unlock(&cache->lock);
2557  	spin_unlock(&cache->space_info->lock);
2558  
2559  	btrfs_put_block_group(cache);
2560  }
2561  
2562  static int clean_log_buffer(struct btrfs_trans_handle *trans,
2563  			    struct extent_buffer *eb)
2564  {
2565  	int ret;
2566  
2567  	btrfs_tree_lock(eb);
2568  	btrfs_clear_buffer_dirty(trans, eb);
2569  	wait_on_extent_buffer_writeback(eb);
2570  	btrfs_tree_unlock(eb);
2571  
2572  	if (trans) {
2573  		ret = btrfs_pin_reserved_extent(trans, eb);
2574  		if (ret)
2575  			return ret;
2576  	} else {
2577  		unaccount_log_buffer(eb->fs_info, eb->start);
2578  	}
2579  
2580  	return 0;
2581  }
2582  
2583  static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2584  				   struct btrfs_root *root,
2585  				   struct btrfs_path *path, int *level,
2586  				   struct walk_control *wc)
2587  {
2588  	struct btrfs_fs_info *fs_info = root->fs_info;
2589  	u64 bytenr;
2590  	u64 ptr_gen;
2591  	struct extent_buffer *next;
2592  	struct extent_buffer *cur;
2593  	int ret = 0;
2594  
2595  	while (*level > 0) {
2596  		struct btrfs_tree_parent_check check = { 0 };
2597  
2598  		cur = path->nodes[*level];
2599  
2600  		WARN_ON(btrfs_header_level(cur) != *level);
2601  
2602  		if (path->slots[*level] >=
2603  		    btrfs_header_nritems(cur))
2604  			break;
2605  
2606  		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2607  		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2608  		check.transid = ptr_gen;
2609  		check.level = *level - 1;
2610  		check.has_first_key = true;
2611  		btrfs_node_key_to_cpu(cur, &check.first_key, path->slots[*level]);
2612  
2613  		next = btrfs_find_create_tree_block(fs_info, bytenr,
2614  						    btrfs_header_owner(cur),
2615  						    *level - 1);
2616  		if (IS_ERR(next))
2617  			return PTR_ERR(next);
2618  
2619  		if (*level == 1) {
2620  			ret = wc->process_func(root, next, wc, ptr_gen,
2621  					       *level - 1);
2622  			if (ret) {
2623  				free_extent_buffer(next);
2624  				return ret;
2625  			}
2626  
2627  			path->slots[*level]++;
2628  			if (wc->free) {
2629  				ret = btrfs_read_extent_buffer(next, &check);
2630  				if (ret) {
2631  					free_extent_buffer(next);
2632  					return ret;
2633  				}
2634  
2635  				ret = clean_log_buffer(trans, next);
2636  				if (ret) {
2637  					free_extent_buffer(next);
2638  					return ret;
2639  				}
2640  			}
2641  			free_extent_buffer(next);
2642  			continue;
2643  		}
2644  		ret = btrfs_read_extent_buffer(next, &check);
2645  		if (ret) {
2646  			free_extent_buffer(next);
2647  			return ret;
2648  		}
2649  
2650  		if (path->nodes[*level-1])
2651  			free_extent_buffer(path->nodes[*level-1]);
2652  		path->nodes[*level-1] = next;
2653  		*level = btrfs_header_level(next);
2654  		path->slots[*level] = 0;
2655  		cond_resched();
2656  	}
2657  	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2658  
2659  	cond_resched();
2660  	return 0;
2661  }
2662  
2663  static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2664  				 struct btrfs_root *root,
2665  				 struct btrfs_path *path, int *level,
2666  				 struct walk_control *wc)
2667  {
2668  	int i;
2669  	int slot;
2670  	int ret;
2671  
2672  	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2673  		slot = path->slots[i];
2674  		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2675  			path->slots[i]++;
2676  			*level = i;
2677  			WARN_ON(*level == 0);
2678  			return 0;
2679  		} else {
2680  			ret = wc->process_func(root, path->nodes[*level], wc,
2681  				 btrfs_header_generation(path->nodes[*level]),
2682  				 *level);
2683  			if (ret)
2684  				return ret;
2685  
2686  			if (wc->free) {
2687  				ret = clean_log_buffer(trans, path->nodes[*level]);
2688  				if (ret)
2689  					return ret;
2690  			}
2691  			free_extent_buffer(path->nodes[*level]);
2692  			path->nodes[*level] = NULL;
2693  			*level = i + 1;
2694  		}
2695  	}
2696  	return 1;
2697  }
2698  
2699  /*
2700   * drop the reference count on the tree rooted at 'snap'.  This traverses
2701   * the tree freeing any blocks that have a ref count of zero after being
2702   * decremented.
2703   */
2704  static int walk_log_tree(struct btrfs_trans_handle *trans,
2705  			 struct btrfs_root *log, struct walk_control *wc)
2706  {
2707  	int ret = 0;
2708  	int wret;
2709  	int level;
2710  	struct btrfs_path *path;
2711  	int orig_level;
2712  
2713  	path = btrfs_alloc_path();
2714  	if (!path)
2715  		return -ENOMEM;
2716  
2717  	level = btrfs_header_level(log->node);
2718  	orig_level = level;
2719  	path->nodes[level] = log->node;
2720  	atomic_inc(&log->node->refs);
2721  	path->slots[level] = 0;
2722  
2723  	while (1) {
2724  		wret = walk_down_log_tree(trans, log, path, &level, wc);
2725  		if (wret > 0)
2726  			break;
2727  		if (wret < 0) {
2728  			ret = wret;
2729  			goto out;
2730  		}
2731  
2732  		wret = walk_up_log_tree(trans, log, path, &level, wc);
2733  		if (wret > 0)
2734  			break;
2735  		if (wret < 0) {
2736  			ret = wret;
2737  			goto out;
2738  		}
2739  	}
2740  
2741  	/* was the root node processed? if not, catch it here */
2742  	if (path->nodes[orig_level]) {
2743  		ret = wc->process_func(log, path->nodes[orig_level], wc,
2744  			 btrfs_header_generation(path->nodes[orig_level]),
2745  			 orig_level);
2746  		if (ret)
2747  			goto out;
2748  		if (wc->free)
2749  			ret = clean_log_buffer(trans, path->nodes[orig_level]);
2750  	}
2751  
2752  out:
2753  	btrfs_free_path(path);
2754  	return ret;
2755  }
2756  
2757  /*
2758   * helper function to update the item for a given subvolumes log root
2759   * in the tree of log roots
2760   */
2761  static int update_log_root(struct btrfs_trans_handle *trans,
2762  			   struct btrfs_root *log,
2763  			   struct btrfs_root_item *root_item)
2764  {
2765  	struct btrfs_fs_info *fs_info = log->fs_info;
2766  	int ret;
2767  
2768  	if (log->log_transid == 1) {
2769  		/* insert root item on the first sync */
2770  		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2771  				&log->root_key, root_item);
2772  	} else {
2773  		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2774  				&log->root_key, root_item);
2775  	}
2776  	return ret;
2777  }
2778  
2779  static void wait_log_commit(struct btrfs_root *root, int transid)
2780  {
2781  	DEFINE_WAIT(wait);
2782  	int index = transid % 2;
2783  
2784  	/*
2785  	 * we only allow two pending log transactions at a time,
2786  	 * so we know that if ours is more than 2 older than the
2787  	 * current transaction, we're done
2788  	 */
2789  	for (;;) {
2790  		prepare_to_wait(&root->log_commit_wait[index],
2791  				&wait, TASK_UNINTERRUPTIBLE);
2792  
2793  		if (!(root->log_transid_committed < transid &&
2794  		      atomic_read(&root->log_commit[index])))
2795  			break;
2796  
2797  		mutex_unlock(&root->log_mutex);
2798  		schedule();
2799  		mutex_lock(&root->log_mutex);
2800  	}
2801  	finish_wait(&root->log_commit_wait[index], &wait);
2802  }
2803  
2804  static void wait_for_writer(struct btrfs_root *root)
2805  {
2806  	DEFINE_WAIT(wait);
2807  
2808  	for (;;) {
2809  		prepare_to_wait(&root->log_writer_wait, &wait,
2810  				TASK_UNINTERRUPTIBLE);
2811  		if (!atomic_read(&root->log_writers))
2812  			break;
2813  
2814  		mutex_unlock(&root->log_mutex);
2815  		schedule();
2816  		mutex_lock(&root->log_mutex);
2817  	}
2818  	finish_wait(&root->log_writer_wait, &wait);
2819  }
2820  
2821  void btrfs_init_log_ctx(struct btrfs_log_ctx *ctx, struct inode *inode)
2822  {
2823  	ctx->log_ret = 0;
2824  	ctx->log_transid = 0;
2825  	ctx->log_new_dentries = false;
2826  	ctx->logging_new_name = false;
2827  	ctx->logging_new_delayed_dentries = false;
2828  	ctx->logged_before = false;
2829  	ctx->inode = inode;
2830  	INIT_LIST_HEAD(&ctx->list);
2831  	INIT_LIST_HEAD(&ctx->ordered_extents);
2832  	INIT_LIST_HEAD(&ctx->conflict_inodes);
2833  	ctx->num_conflict_inodes = 0;
2834  	ctx->logging_conflict_inodes = false;
2835  	ctx->scratch_eb = NULL;
2836  }
2837  
2838  void btrfs_init_log_ctx_scratch_eb(struct btrfs_log_ctx *ctx)
2839  {
2840  	struct btrfs_inode *inode = BTRFS_I(ctx->inode);
2841  
2842  	if (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
2843  	    !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
2844  		return;
2845  
2846  	/*
2847  	 * Don't care about allocation failure. This is just for optimization,
2848  	 * if we fail to allocate here, we will try again later if needed.
2849  	 */
2850  	ctx->scratch_eb = alloc_dummy_extent_buffer(inode->root->fs_info, 0);
2851  }
2852  
2853  void btrfs_release_log_ctx_extents(struct btrfs_log_ctx *ctx)
2854  {
2855  	struct btrfs_ordered_extent *ordered;
2856  	struct btrfs_ordered_extent *tmp;
2857  
2858  	ASSERT(inode_is_locked(ctx->inode));
2859  
2860  	list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
2861  		list_del_init(&ordered->log_list);
2862  		btrfs_put_ordered_extent(ordered);
2863  	}
2864  }
2865  
2866  
2867  static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2868  					struct btrfs_log_ctx *ctx)
2869  {
2870  	mutex_lock(&root->log_mutex);
2871  	list_del_init(&ctx->list);
2872  	mutex_unlock(&root->log_mutex);
2873  }
2874  
2875  /*
2876   * Invoked in log mutex context, or be sure there is no other task which
2877   * can access the list.
2878   */
2879  static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2880  					     int index, int error)
2881  {
2882  	struct btrfs_log_ctx *ctx;
2883  	struct btrfs_log_ctx *safe;
2884  
2885  	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2886  		list_del_init(&ctx->list);
2887  		ctx->log_ret = error;
2888  	}
2889  }
2890  
2891  /*
2892   * Sends a given tree log down to the disk and updates the super blocks to
2893   * record it.  When this call is done, you know that any inodes previously
2894   * logged are safely on disk only if it returns 0.
2895   *
2896   * Any other return value means you need to call btrfs_commit_transaction.
2897   * Some of the edge cases for fsyncing directories that have had unlinks
2898   * or renames done in the past mean that sometimes the only safe
2899   * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2900   * that has happened.
2901   */
2902  int btrfs_sync_log(struct btrfs_trans_handle *trans,
2903  		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2904  {
2905  	int index1;
2906  	int index2;
2907  	int mark;
2908  	int ret;
2909  	struct btrfs_fs_info *fs_info = root->fs_info;
2910  	struct btrfs_root *log = root->log_root;
2911  	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2912  	struct btrfs_root_item new_root_item;
2913  	int log_transid = 0;
2914  	struct btrfs_log_ctx root_log_ctx;
2915  	struct blk_plug plug;
2916  	u64 log_root_start;
2917  	u64 log_root_level;
2918  
2919  	mutex_lock(&root->log_mutex);
2920  	log_transid = ctx->log_transid;
2921  	if (root->log_transid_committed >= log_transid) {
2922  		mutex_unlock(&root->log_mutex);
2923  		return ctx->log_ret;
2924  	}
2925  
2926  	index1 = log_transid % 2;
2927  	if (atomic_read(&root->log_commit[index1])) {
2928  		wait_log_commit(root, log_transid);
2929  		mutex_unlock(&root->log_mutex);
2930  		return ctx->log_ret;
2931  	}
2932  	ASSERT(log_transid == root->log_transid);
2933  	atomic_set(&root->log_commit[index1], 1);
2934  
2935  	/* wait for previous tree log sync to complete */
2936  	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2937  		wait_log_commit(root, log_transid - 1);
2938  
2939  	while (1) {
2940  		int batch = atomic_read(&root->log_batch);
2941  		/* when we're on an ssd, just kick the log commit out */
2942  		if (!btrfs_test_opt(fs_info, SSD) &&
2943  		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2944  			mutex_unlock(&root->log_mutex);
2945  			schedule_timeout_uninterruptible(1);
2946  			mutex_lock(&root->log_mutex);
2947  		}
2948  		wait_for_writer(root);
2949  		if (batch == atomic_read(&root->log_batch))
2950  			break;
2951  	}
2952  
2953  	/* bail out if we need to do a full commit */
2954  	if (btrfs_need_log_full_commit(trans)) {
2955  		ret = BTRFS_LOG_FORCE_COMMIT;
2956  		mutex_unlock(&root->log_mutex);
2957  		goto out;
2958  	}
2959  
2960  	if (log_transid % 2 == 0)
2961  		mark = EXTENT_DIRTY;
2962  	else
2963  		mark = EXTENT_NEW;
2964  
2965  	/* we start IO on  all the marked extents here, but we don't actually
2966  	 * wait for them until later.
2967  	 */
2968  	blk_start_plug(&plug);
2969  	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
2970  	/*
2971  	 * -EAGAIN happens when someone, e.g., a concurrent transaction
2972  	 *  commit, writes a dirty extent in this tree-log commit. This
2973  	 *  concurrent write will create a hole writing out the extents,
2974  	 *  and we cannot proceed on a zoned filesystem, requiring
2975  	 *  sequential writing. While we can bail out to a full commit
2976  	 *  here, but we can continue hoping the concurrent writing fills
2977  	 *  the hole.
2978  	 */
2979  	if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
2980  		ret = 0;
2981  	if (ret) {
2982  		blk_finish_plug(&plug);
2983  		btrfs_set_log_full_commit(trans);
2984  		mutex_unlock(&root->log_mutex);
2985  		goto out;
2986  	}
2987  
2988  	/*
2989  	 * We _must_ update under the root->log_mutex in order to make sure we
2990  	 * have a consistent view of the log root we are trying to commit at
2991  	 * this moment.
2992  	 *
2993  	 * We _must_ copy this into a local copy, because we are not holding the
2994  	 * log_root_tree->log_mutex yet.  This is important because when we
2995  	 * commit the log_root_tree we must have a consistent view of the
2996  	 * log_root_tree when we update the super block to point at the
2997  	 * log_root_tree bytenr.  If we update the log_root_tree here we'll race
2998  	 * with the commit and possibly point at the new block which we may not
2999  	 * have written out.
3000  	 */
3001  	btrfs_set_root_node(&log->root_item, log->node);
3002  	memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3003  
3004  	btrfs_set_root_log_transid(root, root->log_transid + 1);
3005  	log->log_transid = root->log_transid;
3006  	root->log_start_pid = 0;
3007  	/*
3008  	 * IO has been started, blocks of the log tree have WRITTEN flag set
3009  	 * in their headers. new modifications of the log will be written to
3010  	 * new positions. so it's safe to allow log writers to go in.
3011  	 */
3012  	mutex_unlock(&root->log_mutex);
3013  
3014  	if (btrfs_is_zoned(fs_info)) {
3015  		mutex_lock(&fs_info->tree_root->log_mutex);
3016  		if (!log_root_tree->node) {
3017  			ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3018  			if (ret) {
3019  				mutex_unlock(&fs_info->tree_root->log_mutex);
3020  				blk_finish_plug(&plug);
3021  				goto out;
3022  			}
3023  		}
3024  		mutex_unlock(&fs_info->tree_root->log_mutex);
3025  	}
3026  
3027  	btrfs_init_log_ctx(&root_log_ctx, NULL);
3028  
3029  	mutex_lock(&log_root_tree->log_mutex);
3030  
3031  	index2 = log_root_tree->log_transid % 2;
3032  	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3033  	root_log_ctx.log_transid = log_root_tree->log_transid;
3034  
3035  	/*
3036  	 * Now we are safe to update the log_root_tree because we're under the
3037  	 * log_mutex, and we're a current writer so we're holding the commit
3038  	 * open until we drop the log_mutex.
3039  	 */
3040  	ret = update_log_root(trans, log, &new_root_item);
3041  	if (ret) {
3042  		list_del_init(&root_log_ctx.list);
3043  		blk_finish_plug(&plug);
3044  		btrfs_set_log_full_commit(trans);
3045  		if (ret != -ENOSPC)
3046  			btrfs_err(fs_info,
3047  				  "failed to update log for root %llu ret %d",
3048  				  root->root_key.objectid, ret);
3049  		btrfs_wait_tree_log_extents(log, mark);
3050  		mutex_unlock(&log_root_tree->log_mutex);
3051  		goto out;
3052  	}
3053  
3054  	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3055  		blk_finish_plug(&plug);
3056  		list_del_init(&root_log_ctx.list);
3057  		mutex_unlock(&log_root_tree->log_mutex);
3058  		ret = root_log_ctx.log_ret;
3059  		goto out;
3060  	}
3061  
3062  	if (atomic_read(&log_root_tree->log_commit[index2])) {
3063  		blk_finish_plug(&plug);
3064  		ret = btrfs_wait_tree_log_extents(log, mark);
3065  		wait_log_commit(log_root_tree,
3066  				root_log_ctx.log_transid);
3067  		mutex_unlock(&log_root_tree->log_mutex);
3068  		if (!ret)
3069  			ret = root_log_ctx.log_ret;
3070  		goto out;
3071  	}
3072  	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3073  	atomic_set(&log_root_tree->log_commit[index2], 1);
3074  
3075  	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3076  		wait_log_commit(log_root_tree,
3077  				root_log_ctx.log_transid - 1);
3078  	}
3079  
3080  	/*
3081  	 * now that we've moved on to the tree of log tree roots,
3082  	 * check the full commit flag again
3083  	 */
3084  	if (btrfs_need_log_full_commit(trans)) {
3085  		blk_finish_plug(&plug);
3086  		btrfs_wait_tree_log_extents(log, mark);
3087  		mutex_unlock(&log_root_tree->log_mutex);
3088  		ret = BTRFS_LOG_FORCE_COMMIT;
3089  		goto out_wake_log_root;
3090  	}
3091  
3092  	ret = btrfs_write_marked_extents(fs_info,
3093  					 &log_root_tree->dirty_log_pages,
3094  					 EXTENT_DIRTY | EXTENT_NEW);
3095  	blk_finish_plug(&plug);
3096  	/*
3097  	 * As described above, -EAGAIN indicates a hole in the extents. We
3098  	 * cannot wait for these write outs since the waiting cause a
3099  	 * deadlock. Bail out to the full commit instead.
3100  	 */
3101  	if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3102  		btrfs_set_log_full_commit(trans);
3103  		btrfs_wait_tree_log_extents(log, mark);
3104  		mutex_unlock(&log_root_tree->log_mutex);
3105  		goto out_wake_log_root;
3106  	} else if (ret) {
3107  		btrfs_set_log_full_commit(trans);
3108  		mutex_unlock(&log_root_tree->log_mutex);
3109  		goto out_wake_log_root;
3110  	}
3111  	ret = btrfs_wait_tree_log_extents(log, mark);
3112  	if (!ret)
3113  		ret = btrfs_wait_tree_log_extents(log_root_tree,
3114  						  EXTENT_NEW | EXTENT_DIRTY);
3115  	if (ret) {
3116  		btrfs_set_log_full_commit(trans);
3117  		mutex_unlock(&log_root_tree->log_mutex);
3118  		goto out_wake_log_root;
3119  	}
3120  
3121  	log_root_start = log_root_tree->node->start;
3122  	log_root_level = btrfs_header_level(log_root_tree->node);
3123  	log_root_tree->log_transid++;
3124  	mutex_unlock(&log_root_tree->log_mutex);
3125  
3126  	/*
3127  	 * Here we are guaranteed that nobody is going to write the superblock
3128  	 * for the current transaction before us and that neither we do write
3129  	 * our superblock before the previous transaction finishes its commit
3130  	 * and writes its superblock, because:
3131  	 *
3132  	 * 1) We are holding a handle on the current transaction, so no body
3133  	 *    can commit it until we release the handle;
3134  	 *
3135  	 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3136  	 *    if the previous transaction is still committing, and hasn't yet
3137  	 *    written its superblock, we wait for it to do it, because a
3138  	 *    transaction commit acquires the tree_log_mutex when the commit
3139  	 *    begins and releases it only after writing its superblock.
3140  	 */
3141  	mutex_lock(&fs_info->tree_log_mutex);
3142  
3143  	/*
3144  	 * The previous transaction writeout phase could have failed, and thus
3145  	 * marked the fs in an error state.  We must not commit here, as we
3146  	 * could have updated our generation in the super_for_commit and
3147  	 * writing the super here would result in transid mismatches.  If there
3148  	 * is an error here just bail.
3149  	 */
3150  	if (BTRFS_FS_ERROR(fs_info)) {
3151  		ret = -EIO;
3152  		btrfs_set_log_full_commit(trans);
3153  		btrfs_abort_transaction(trans, ret);
3154  		mutex_unlock(&fs_info->tree_log_mutex);
3155  		goto out_wake_log_root;
3156  	}
3157  
3158  	btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3159  	btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3160  	ret = write_all_supers(fs_info, 1);
3161  	mutex_unlock(&fs_info->tree_log_mutex);
3162  	if (ret) {
3163  		btrfs_set_log_full_commit(trans);
3164  		btrfs_abort_transaction(trans, ret);
3165  		goto out_wake_log_root;
3166  	}
3167  
3168  	/*
3169  	 * We know there can only be one task here, since we have not yet set
3170  	 * root->log_commit[index1] to 0 and any task attempting to sync the
3171  	 * log must wait for the previous log transaction to commit if it's
3172  	 * still in progress or wait for the current log transaction commit if
3173  	 * someone else already started it. We use <= and not < because the
3174  	 * first log transaction has an ID of 0.
3175  	 */
3176  	ASSERT(btrfs_get_root_last_log_commit(root) <= log_transid);
3177  	btrfs_set_root_last_log_commit(root, log_transid);
3178  
3179  out_wake_log_root:
3180  	mutex_lock(&log_root_tree->log_mutex);
3181  	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3182  
3183  	log_root_tree->log_transid_committed++;
3184  	atomic_set(&log_root_tree->log_commit[index2], 0);
3185  	mutex_unlock(&log_root_tree->log_mutex);
3186  
3187  	/*
3188  	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3189  	 * all the updates above are seen by the woken threads. It might not be
3190  	 * necessary, but proving that seems to be hard.
3191  	 */
3192  	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3193  out:
3194  	mutex_lock(&root->log_mutex);
3195  	btrfs_remove_all_log_ctxs(root, index1, ret);
3196  	root->log_transid_committed++;
3197  	atomic_set(&root->log_commit[index1], 0);
3198  	mutex_unlock(&root->log_mutex);
3199  
3200  	/*
3201  	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3202  	 * all the updates above are seen by the woken threads. It might not be
3203  	 * necessary, but proving that seems to be hard.
3204  	 */
3205  	cond_wake_up(&root->log_commit_wait[index1]);
3206  	return ret;
3207  }
3208  
3209  static void free_log_tree(struct btrfs_trans_handle *trans,
3210  			  struct btrfs_root *log)
3211  {
3212  	int ret;
3213  	struct walk_control wc = {
3214  		.free = 1,
3215  		.process_func = process_one_buffer
3216  	};
3217  
3218  	if (log->node) {
3219  		ret = walk_log_tree(trans, log, &wc);
3220  		if (ret) {
3221  			/*
3222  			 * We weren't able to traverse the entire log tree, the
3223  			 * typical scenario is getting an -EIO when reading an
3224  			 * extent buffer of the tree, due to a previous writeback
3225  			 * failure of it.
3226  			 */
3227  			set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
3228  				&log->fs_info->fs_state);
3229  
3230  			/*
3231  			 * Some extent buffers of the log tree may still be dirty
3232  			 * and not yet written back to storage, because we may
3233  			 * have updates to a log tree without syncing a log tree,
3234  			 * such as during rename and link operations. So flush
3235  			 * them out and wait for their writeback to complete, so
3236  			 * that we properly cleanup their state and pages.
3237  			 */
3238  			btrfs_write_marked_extents(log->fs_info,
3239  						   &log->dirty_log_pages,
3240  						   EXTENT_DIRTY | EXTENT_NEW);
3241  			btrfs_wait_tree_log_extents(log,
3242  						    EXTENT_DIRTY | EXTENT_NEW);
3243  
3244  			if (trans)
3245  				btrfs_abort_transaction(trans, ret);
3246  			else
3247  				btrfs_handle_fs_error(log->fs_info, ret, NULL);
3248  		}
3249  	}
3250  
3251  	extent_io_tree_release(&log->dirty_log_pages);
3252  	extent_io_tree_release(&log->log_csum_range);
3253  
3254  	btrfs_put_root(log);
3255  }
3256  
3257  /*
3258   * free all the extents used by the tree log.  This should be called
3259   * at commit time of the full transaction
3260   */
3261  int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3262  {
3263  	if (root->log_root) {
3264  		free_log_tree(trans, root->log_root);
3265  		root->log_root = NULL;
3266  		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3267  	}
3268  	return 0;
3269  }
3270  
3271  int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3272  			     struct btrfs_fs_info *fs_info)
3273  {
3274  	if (fs_info->log_root_tree) {
3275  		free_log_tree(trans, fs_info->log_root_tree);
3276  		fs_info->log_root_tree = NULL;
3277  		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3278  	}
3279  	return 0;
3280  }
3281  
3282  /*
3283   * Check if an inode was logged in the current transaction. This correctly deals
3284   * with the case where the inode was logged but has a logged_trans of 0, which
3285   * happens if the inode is evicted and loaded again, as logged_trans is an in
3286   * memory only field (not persisted).
3287   *
3288   * Returns 1 if the inode was logged before in the transaction, 0 if it was not,
3289   * and < 0 on error.
3290   */
3291  static int inode_logged(const struct btrfs_trans_handle *trans,
3292  			struct btrfs_inode *inode,
3293  			struct btrfs_path *path_in)
3294  {
3295  	struct btrfs_path *path = path_in;
3296  	struct btrfs_key key;
3297  	int ret;
3298  
3299  	if (inode->logged_trans == trans->transid)
3300  		return 1;
3301  
3302  	/*
3303  	 * If logged_trans is not 0, then we know the inode logged was not logged
3304  	 * in this transaction, so we can return false right away.
3305  	 */
3306  	if (inode->logged_trans > 0)
3307  		return 0;
3308  
3309  	/*
3310  	 * If no log tree was created for this root in this transaction, then
3311  	 * the inode can not have been logged in this transaction. In that case
3312  	 * set logged_trans to anything greater than 0 and less than the current
3313  	 * transaction's ID, to avoid the search below in a future call in case
3314  	 * a log tree gets created after this.
3315  	 */
3316  	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) {
3317  		inode->logged_trans = trans->transid - 1;
3318  		return 0;
3319  	}
3320  
3321  	/*
3322  	 * We have a log tree and the inode's logged_trans is 0. We can't tell
3323  	 * for sure if the inode was logged before in this transaction by looking
3324  	 * only at logged_trans. We could be pessimistic and assume it was, but
3325  	 * that can lead to unnecessarily logging an inode during rename and link
3326  	 * operations, and then further updating the log in followup rename and
3327  	 * link operations, specially if it's a directory, which adds latency
3328  	 * visible to applications doing a series of rename or link operations.
3329  	 *
3330  	 * A logged_trans of 0 here can mean several things:
3331  	 *
3332  	 * 1) The inode was never logged since the filesystem was mounted, and may
3333  	 *    or may have not been evicted and loaded again;
3334  	 *
3335  	 * 2) The inode was logged in a previous transaction, then evicted and
3336  	 *    then loaded again;
3337  	 *
3338  	 * 3) The inode was logged in the current transaction, then evicted and
3339  	 *    then loaded again.
3340  	 *
3341  	 * For cases 1) and 2) we don't want to return true, but we need to detect
3342  	 * case 3) and return true. So we do a search in the log root for the inode
3343  	 * item.
3344  	 */
3345  	key.objectid = btrfs_ino(inode);
3346  	key.type = BTRFS_INODE_ITEM_KEY;
3347  	key.offset = 0;
3348  
3349  	if (!path) {
3350  		path = btrfs_alloc_path();
3351  		if (!path)
3352  			return -ENOMEM;
3353  	}
3354  
3355  	ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3356  
3357  	if (path_in)
3358  		btrfs_release_path(path);
3359  	else
3360  		btrfs_free_path(path);
3361  
3362  	/*
3363  	 * Logging an inode always results in logging its inode item. So if we
3364  	 * did not find the item we know the inode was not logged for sure.
3365  	 */
3366  	if (ret < 0) {
3367  		return ret;
3368  	} else if (ret > 0) {
3369  		/*
3370  		 * Set logged_trans to a value greater than 0 and less then the
3371  		 * current transaction to avoid doing the search in future calls.
3372  		 */
3373  		inode->logged_trans = trans->transid - 1;
3374  		return 0;
3375  	}
3376  
3377  	/*
3378  	 * The inode was previously logged and then evicted, set logged_trans to
3379  	 * the current transacion's ID, to avoid future tree searches as long as
3380  	 * the inode is not evicted again.
3381  	 */
3382  	inode->logged_trans = trans->transid;
3383  
3384  	/*
3385  	 * If it's a directory, then we must set last_dir_index_offset to the
3386  	 * maximum possible value, so that the next attempt to log the inode does
3387  	 * not skip checking if dir index keys found in modified subvolume tree
3388  	 * leaves have been logged before, otherwise it would result in attempts
3389  	 * to insert duplicate dir index keys in the log tree. This must be done
3390  	 * because last_dir_index_offset is an in-memory only field, not persisted
3391  	 * in the inode item or any other on-disk structure, so its value is lost
3392  	 * once the inode is evicted.
3393  	 */
3394  	if (S_ISDIR(inode->vfs_inode.i_mode))
3395  		inode->last_dir_index_offset = (u64)-1;
3396  
3397  	return 1;
3398  }
3399  
3400  /*
3401   * Delete a directory entry from the log if it exists.
3402   *
3403   * Returns < 0 on error
3404   *           1 if the entry does not exists
3405   *           0 if the entry existed and was successfully deleted
3406   */
3407  static int del_logged_dentry(struct btrfs_trans_handle *trans,
3408  			     struct btrfs_root *log,
3409  			     struct btrfs_path *path,
3410  			     u64 dir_ino,
3411  			     const struct fscrypt_str *name,
3412  			     u64 index)
3413  {
3414  	struct btrfs_dir_item *di;
3415  
3416  	/*
3417  	 * We only log dir index items of a directory, so we don't need to look
3418  	 * for dir item keys.
3419  	 */
3420  	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3421  					 index, name, -1);
3422  	if (IS_ERR(di))
3423  		return PTR_ERR(di);
3424  	else if (!di)
3425  		return 1;
3426  
3427  	/*
3428  	 * We do not need to update the size field of the directory's
3429  	 * inode item because on log replay we update the field to reflect
3430  	 * all existing entries in the directory (see overwrite_item()).
3431  	 */
3432  	return btrfs_delete_one_dir_name(trans, log, path, di);
3433  }
3434  
3435  /*
3436   * If both a file and directory are logged, and unlinks or renames are
3437   * mixed in, we have a few interesting corners:
3438   *
3439   * create file X in dir Y
3440   * link file X to X.link in dir Y
3441   * fsync file X
3442   * unlink file X but leave X.link
3443   * fsync dir Y
3444   *
3445   * After a crash we would expect only X.link to exist.  But file X
3446   * didn't get fsync'd again so the log has back refs for X and X.link.
3447   *
3448   * We solve this by removing directory entries and inode backrefs from the
3449   * log when a file that was logged in the current transaction is
3450   * unlinked.  Any later fsync will include the updated log entries, and
3451   * we'll be able to reconstruct the proper directory items from backrefs.
3452   *
3453   * This optimizations allows us to avoid relogging the entire inode
3454   * or the entire directory.
3455   */
3456  void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3457  				  struct btrfs_root *root,
3458  				  const struct fscrypt_str *name,
3459  				  struct btrfs_inode *dir, u64 index)
3460  {
3461  	struct btrfs_path *path;
3462  	int ret;
3463  
3464  	ret = inode_logged(trans, dir, NULL);
3465  	if (ret == 0)
3466  		return;
3467  	else if (ret < 0) {
3468  		btrfs_set_log_full_commit(trans);
3469  		return;
3470  	}
3471  
3472  	ret = join_running_log_trans(root);
3473  	if (ret)
3474  		return;
3475  
3476  	mutex_lock(&dir->log_mutex);
3477  
3478  	path = btrfs_alloc_path();
3479  	if (!path) {
3480  		ret = -ENOMEM;
3481  		goto out_unlock;
3482  	}
3483  
3484  	ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir),
3485  				name, index);
3486  	btrfs_free_path(path);
3487  out_unlock:
3488  	mutex_unlock(&dir->log_mutex);
3489  	if (ret < 0)
3490  		btrfs_set_log_full_commit(trans);
3491  	btrfs_end_log_trans(root);
3492  }
3493  
3494  /* see comments for btrfs_del_dir_entries_in_log */
3495  void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3496  				struct btrfs_root *root,
3497  				const struct fscrypt_str *name,
3498  				struct btrfs_inode *inode, u64 dirid)
3499  {
3500  	struct btrfs_root *log;
3501  	u64 index;
3502  	int ret;
3503  
3504  	ret = inode_logged(trans, inode, NULL);
3505  	if (ret == 0)
3506  		return;
3507  	else if (ret < 0) {
3508  		btrfs_set_log_full_commit(trans);
3509  		return;
3510  	}
3511  
3512  	ret = join_running_log_trans(root);
3513  	if (ret)
3514  		return;
3515  	log = root->log_root;
3516  	mutex_lock(&inode->log_mutex);
3517  
3518  	ret = btrfs_del_inode_ref(trans, log, name, btrfs_ino(inode),
3519  				  dirid, &index);
3520  	mutex_unlock(&inode->log_mutex);
3521  	if (ret < 0 && ret != -ENOENT)
3522  		btrfs_set_log_full_commit(trans);
3523  	btrfs_end_log_trans(root);
3524  }
3525  
3526  /*
3527   * creates a range item in the log for 'dirid'.  first_offset and
3528   * last_offset tell us which parts of the key space the log should
3529   * be considered authoritative for.
3530   */
3531  static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3532  				       struct btrfs_root *log,
3533  				       struct btrfs_path *path,
3534  				       u64 dirid,
3535  				       u64 first_offset, u64 last_offset)
3536  {
3537  	int ret;
3538  	struct btrfs_key key;
3539  	struct btrfs_dir_log_item *item;
3540  
3541  	key.objectid = dirid;
3542  	key.offset = first_offset;
3543  	key.type = BTRFS_DIR_LOG_INDEX_KEY;
3544  	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3545  	/*
3546  	 * -EEXIST is fine and can happen sporadically when we are logging a
3547  	 * directory and have concurrent insertions in the subvolume's tree for
3548  	 * items from other inodes and that result in pushing off some dir items
3549  	 * from one leaf to another in order to accommodate for the new items.
3550  	 * This results in logging the same dir index range key.
3551  	 */
3552  	if (ret && ret != -EEXIST)
3553  		return ret;
3554  
3555  	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3556  			      struct btrfs_dir_log_item);
3557  	if (ret == -EEXIST) {
3558  		const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item);
3559  
3560  		/*
3561  		 * btrfs_del_dir_entries_in_log() might have been called during
3562  		 * an unlink between the initial insertion of this key and the
3563  		 * current update, or we might be logging a single entry deletion
3564  		 * during a rename, so set the new last_offset to the max value.
3565  		 */
3566  		last_offset = max(last_offset, curr_end);
3567  	}
3568  	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3569  	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
3570  	btrfs_release_path(path);
3571  	return 0;
3572  }
3573  
3574  static int flush_dir_items_batch(struct btrfs_trans_handle *trans,
3575  				 struct btrfs_inode *inode,
3576  				 struct extent_buffer *src,
3577  				 struct btrfs_path *dst_path,
3578  				 int start_slot,
3579  				 int count)
3580  {
3581  	struct btrfs_root *log = inode->root->log_root;
3582  	char *ins_data = NULL;
3583  	struct btrfs_item_batch batch;
3584  	struct extent_buffer *dst;
3585  	unsigned long src_offset;
3586  	unsigned long dst_offset;
3587  	u64 last_index;
3588  	struct btrfs_key key;
3589  	u32 item_size;
3590  	int ret;
3591  	int i;
3592  
3593  	ASSERT(count > 0);
3594  	batch.nr = count;
3595  
3596  	if (count == 1) {
3597  		btrfs_item_key_to_cpu(src, &key, start_slot);
3598  		item_size = btrfs_item_size(src, start_slot);
3599  		batch.keys = &key;
3600  		batch.data_sizes = &item_size;
3601  		batch.total_data_size = item_size;
3602  	} else {
3603  		struct btrfs_key *ins_keys;
3604  		u32 *ins_sizes;
3605  
3606  		ins_data = kmalloc(count * sizeof(u32) +
3607  				   count * sizeof(struct btrfs_key), GFP_NOFS);
3608  		if (!ins_data)
3609  			return -ENOMEM;
3610  
3611  		ins_sizes = (u32 *)ins_data;
3612  		ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32));
3613  		batch.keys = ins_keys;
3614  		batch.data_sizes = ins_sizes;
3615  		batch.total_data_size = 0;
3616  
3617  		for (i = 0; i < count; i++) {
3618  			const int slot = start_slot + i;
3619  
3620  			btrfs_item_key_to_cpu(src, &ins_keys[i], slot);
3621  			ins_sizes[i] = btrfs_item_size(src, slot);
3622  			batch.total_data_size += ins_sizes[i];
3623  		}
3624  	}
3625  
3626  	ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
3627  	if (ret)
3628  		goto out;
3629  
3630  	dst = dst_path->nodes[0];
3631  	/*
3632  	 * Copy all the items in bulk, in a single copy operation. Item data is
3633  	 * organized such that it's placed at the end of a leaf and from right
3634  	 * to left. For example, the data for the second item ends at an offset
3635  	 * that matches the offset where the data for the first item starts, the
3636  	 * data for the third item ends at an offset that matches the offset
3637  	 * where the data of the second items starts, and so on.
3638  	 * Therefore our source and destination start offsets for copy match the
3639  	 * offsets of the last items (highest slots).
3640  	 */
3641  	dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1);
3642  	src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1);
3643  	copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size);
3644  	btrfs_release_path(dst_path);
3645  
3646  	last_index = batch.keys[count - 1].offset;
3647  	ASSERT(last_index > inode->last_dir_index_offset);
3648  
3649  	/*
3650  	 * If for some unexpected reason the last item's index is not greater
3651  	 * than the last index we logged, warn and force a transaction commit.
3652  	 */
3653  	if (WARN_ON(last_index <= inode->last_dir_index_offset))
3654  		ret = BTRFS_LOG_FORCE_COMMIT;
3655  	else
3656  		inode->last_dir_index_offset = last_index;
3657  
3658  	if (btrfs_get_first_dir_index_to_log(inode) == 0)
3659  		btrfs_set_first_dir_index_to_log(inode, batch.keys[0].offset);
3660  out:
3661  	kfree(ins_data);
3662  
3663  	return ret;
3664  }
3665  
3666  static int clone_leaf(struct btrfs_path *path, struct btrfs_log_ctx *ctx)
3667  {
3668  	const int slot = path->slots[0];
3669  
3670  	if (ctx->scratch_eb) {
3671  		copy_extent_buffer_full(ctx->scratch_eb, path->nodes[0]);
3672  	} else {
3673  		ctx->scratch_eb = btrfs_clone_extent_buffer(path->nodes[0]);
3674  		if (!ctx->scratch_eb)
3675  			return -ENOMEM;
3676  	}
3677  
3678  	btrfs_release_path(path);
3679  	path->nodes[0] = ctx->scratch_eb;
3680  	path->slots[0] = slot;
3681  	/*
3682  	 * Add extra ref to scratch eb so that it is not freed when callers
3683  	 * release the path, so we can reuse it later if needed.
3684  	 */
3685  	atomic_inc(&ctx->scratch_eb->refs);
3686  
3687  	return 0;
3688  }
3689  
3690  static int process_dir_items_leaf(struct btrfs_trans_handle *trans,
3691  				  struct btrfs_inode *inode,
3692  				  struct btrfs_path *path,
3693  				  struct btrfs_path *dst_path,
3694  				  struct btrfs_log_ctx *ctx,
3695  				  u64 *last_old_dentry_offset)
3696  {
3697  	struct btrfs_root *log = inode->root->log_root;
3698  	struct extent_buffer *src;
3699  	const int nritems = btrfs_header_nritems(path->nodes[0]);
3700  	const u64 ino = btrfs_ino(inode);
3701  	bool last_found = false;
3702  	int batch_start = 0;
3703  	int batch_size = 0;
3704  	int ret;
3705  
3706  	/*
3707  	 * We need to clone the leaf, release the read lock on it, and use the
3708  	 * clone before modifying the log tree. See the comment at copy_items()
3709  	 * about why we need to do this.
3710  	 */
3711  	ret = clone_leaf(path, ctx);
3712  	if (ret < 0)
3713  		return ret;
3714  
3715  	src = path->nodes[0];
3716  
3717  	for (int i = path->slots[0]; i < nritems; i++) {
3718  		struct btrfs_dir_item *di;
3719  		struct btrfs_key key;
3720  		int ret;
3721  
3722  		btrfs_item_key_to_cpu(src, &key, i);
3723  
3724  		if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) {
3725  			last_found = true;
3726  			break;
3727  		}
3728  
3729  		di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3730  
3731  		/*
3732  		 * Skip ranges of items that consist only of dir item keys created
3733  		 * in past transactions. However if we find a gap, we must log a
3734  		 * dir index range item for that gap, so that index keys in that
3735  		 * gap are deleted during log replay.
3736  		 */
3737  		if (btrfs_dir_transid(src, di) < trans->transid) {
3738  			if (key.offset > *last_old_dentry_offset + 1) {
3739  				ret = insert_dir_log_key(trans, log, dst_path,
3740  						 ino, *last_old_dentry_offset + 1,
3741  						 key.offset - 1);
3742  				if (ret < 0)
3743  					return ret;
3744  			}
3745  
3746  			*last_old_dentry_offset = key.offset;
3747  			continue;
3748  		}
3749  
3750  		/* If we logged this dir index item before, we can skip it. */
3751  		if (key.offset <= inode->last_dir_index_offset)
3752  			continue;
3753  
3754  		/*
3755  		 * We must make sure that when we log a directory entry, the
3756  		 * corresponding inode, after log replay, has a matching link
3757  		 * count. For example:
3758  		 *
3759  		 * touch foo
3760  		 * mkdir mydir
3761  		 * sync
3762  		 * ln foo mydir/bar
3763  		 * xfs_io -c "fsync" mydir
3764  		 * <crash>
3765  		 * <mount fs and log replay>
3766  		 *
3767  		 * Would result in a fsync log that when replayed, our file inode
3768  		 * would have a link count of 1, but we get two directory entries
3769  		 * pointing to the same inode. After removing one of the names,
3770  		 * it would not be possible to remove the other name, which
3771  		 * resulted always in stale file handle errors, and would not be
3772  		 * possible to rmdir the parent directory, since its i_size could
3773  		 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
3774  		 * resulting in -ENOTEMPTY errors.
3775  		 */
3776  		if (!ctx->log_new_dentries) {
3777  			struct btrfs_key di_key;
3778  
3779  			btrfs_dir_item_key_to_cpu(src, di, &di_key);
3780  			if (di_key.type != BTRFS_ROOT_ITEM_KEY)
3781  				ctx->log_new_dentries = true;
3782  		}
3783  
3784  		if (batch_size == 0)
3785  			batch_start = i;
3786  		batch_size++;
3787  	}
3788  
3789  	if (batch_size > 0) {
3790  		int ret;
3791  
3792  		ret = flush_dir_items_batch(trans, inode, src, dst_path,
3793  					    batch_start, batch_size);
3794  		if (ret < 0)
3795  			return ret;
3796  	}
3797  
3798  	return last_found ? 1 : 0;
3799  }
3800  
3801  /*
3802   * log all the items included in the current transaction for a given
3803   * directory.  This also creates the range items in the log tree required
3804   * to replay anything deleted before the fsync
3805   */
3806  static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3807  			  struct btrfs_inode *inode,
3808  			  struct btrfs_path *path,
3809  			  struct btrfs_path *dst_path,
3810  			  struct btrfs_log_ctx *ctx,
3811  			  u64 min_offset, u64 *last_offset_ret)
3812  {
3813  	struct btrfs_key min_key;
3814  	struct btrfs_root *root = inode->root;
3815  	struct btrfs_root *log = root->log_root;
3816  	int ret;
3817  	u64 last_old_dentry_offset = min_offset - 1;
3818  	u64 last_offset = (u64)-1;
3819  	u64 ino = btrfs_ino(inode);
3820  
3821  	min_key.objectid = ino;
3822  	min_key.type = BTRFS_DIR_INDEX_KEY;
3823  	min_key.offset = min_offset;
3824  
3825  	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3826  
3827  	/*
3828  	 * we didn't find anything from this transaction, see if there
3829  	 * is anything at all
3830  	 */
3831  	if (ret != 0 || min_key.objectid != ino ||
3832  	    min_key.type != BTRFS_DIR_INDEX_KEY) {
3833  		min_key.objectid = ino;
3834  		min_key.type = BTRFS_DIR_INDEX_KEY;
3835  		min_key.offset = (u64)-1;
3836  		btrfs_release_path(path);
3837  		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3838  		if (ret < 0) {
3839  			btrfs_release_path(path);
3840  			return ret;
3841  		}
3842  		ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3843  
3844  		/* if ret == 0 there are items for this type,
3845  		 * create a range to tell us the last key of this type.
3846  		 * otherwise, there are no items in this directory after
3847  		 * *min_offset, and we create a range to indicate that.
3848  		 */
3849  		if (ret == 0) {
3850  			struct btrfs_key tmp;
3851  
3852  			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3853  					      path->slots[0]);
3854  			if (tmp.type == BTRFS_DIR_INDEX_KEY)
3855  				last_old_dentry_offset = tmp.offset;
3856  		} else if (ret > 0) {
3857  			ret = 0;
3858  		}
3859  
3860  		goto done;
3861  	}
3862  
3863  	/* go backward to find any previous key */
3864  	ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3865  	if (ret == 0) {
3866  		struct btrfs_key tmp;
3867  
3868  		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3869  		/*
3870  		 * The dir index key before the first one we found that needs to
3871  		 * be logged might be in a previous leaf, and there might be a
3872  		 * gap between these keys, meaning that we had deletions that
3873  		 * happened. So the key range item we log (key type
3874  		 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the
3875  		 * previous key's offset plus 1, so that those deletes are replayed.
3876  		 */
3877  		if (tmp.type == BTRFS_DIR_INDEX_KEY)
3878  			last_old_dentry_offset = tmp.offset;
3879  	} else if (ret < 0) {
3880  		goto done;
3881  	}
3882  
3883  	btrfs_release_path(path);
3884  
3885  	/*
3886  	 * Find the first key from this transaction again or the one we were at
3887  	 * in the loop below in case we had to reschedule. We may be logging the
3888  	 * directory without holding its VFS lock, which happen when logging new
3889  	 * dentries (through log_new_dir_dentries()) or in some cases when we
3890  	 * need to log the parent directory of an inode. This means a dir index
3891  	 * key might be deleted from the inode's root, and therefore we may not
3892  	 * find it anymore. If we can't find it, just move to the next key. We
3893  	 * can not bail out and ignore, because if we do that we will simply
3894  	 * not log dir index keys that come after the one that was just deleted
3895  	 * and we can end up logging a dir index range that ends at (u64)-1
3896  	 * (@last_offset is initialized to that), resulting in removing dir
3897  	 * entries we should not remove at log replay time.
3898  	 */
3899  search:
3900  	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3901  	if (ret > 0) {
3902  		ret = btrfs_next_item(root, path);
3903  		if (ret > 0) {
3904  			/* There are no more keys in the inode's root. */
3905  			ret = 0;
3906  			goto done;
3907  		}
3908  	}
3909  	if (ret < 0)
3910  		goto done;
3911  
3912  	/*
3913  	 * we have a block from this transaction, log every item in it
3914  	 * from our directory
3915  	 */
3916  	while (1) {
3917  		ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx,
3918  					     &last_old_dentry_offset);
3919  		if (ret != 0) {
3920  			if (ret > 0)
3921  				ret = 0;
3922  			goto done;
3923  		}
3924  		path->slots[0] = btrfs_header_nritems(path->nodes[0]);
3925  
3926  		/*
3927  		 * look ahead to the next item and see if it is also
3928  		 * from this directory and from this transaction
3929  		 */
3930  		ret = btrfs_next_leaf(root, path);
3931  		if (ret) {
3932  			if (ret == 1) {
3933  				last_offset = (u64)-1;
3934  				ret = 0;
3935  			}
3936  			goto done;
3937  		}
3938  		btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]);
3939  		if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) {
3940  			last_offset = (u64)-1;
3941  			goto done;
3942  		}
3943  		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3944  			/*
3945  			 * The next leaf was not changed in the current transaction
3946  			 * and has at least one dir index key.
3947  			 * We check for the next key because there might have been
3948  			 * one or more deletions between the last key we logged and
3949  			 * that next key. So the key range item we log (key type
3950  			 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's
3951  			 * offset minus 1, so that those deletes are replayed.
3952  			 */
3953  			last_offset = min_key.offset - 1;
3954  			goto done;
3955  		}
3956  		if (need_resched()) {
3957  			btrfs_release_path(path);
3958  			cond_resched();
3959  			goto search;
3960  		}
3961  	}
3962  done:
3963  	btrfs_release_path(path);
3964  	btrfs_release_path(dst_path);
3965  
3966  	if (ret == 0) {
3967  		*last_offset_ret = last_offset;
3968  		/*
3969  		 * In case the leaf was changed in the current transaction but
3970  		 * all its dir items are from a past transaction, the last item
3971  		 * in the leaf is a dir item and there's no gap between that last
3972  		 * dir item and the first one on the next leaf (which did not
3973  		 * change in the current transaction), then we don't need to log
3974  		 * a range, last_old_dentry_offset is == to last_offset.
3975  		 */
3976  		ASSERT(last_old_dentry_offset <= last_offset);
3977  		if (last_old_dentry_offset < last_offset)
3978  			ret = insert_dir_log_key(trans, log, path, ino,
3979  						 last_old_dentry_offset + 1,
3980  						 last_offset);
3981  	}
3982  
3983  	return ret;
3984  }
3985  
3986  /*
3987   * If the inode was logged before and it was evicted, then its
3988   * last_dir_index_offset is (u64)-1, so we don't the value of the last index
3989   * key offset. If that's the case, search for it and update the inode. This
3990   * is to avoid lookups in the log tree every time we try to insert a dir index
3991   * key from a leaf changed in the current transaction, and to allow us to always
3992   * do batch insertions of dir index keys.
3993   */
3994  static int update_last_dir_index_offset(struct btrfs_inode *inode,
3995  					struct btrfs_path *path,
3996  					const struct btrfs_log_ctx *ctx)
3997  {
3998  	const u64 ino = btrfs_ino(inode);
3999  	struct btrfs_key key;
4000  	int ret;
4001  
4002  	lockdep_assert_held(&inode->log_mutex);
4003  
4004  	if (inode->last_dir_index_offset != (u64)-1)
4005  		return 0;
4006  
4007  	if (!ctx->logged_before) {
4008  		inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
4009  		return 0;
4010  	}
4011  
4012  	key.objectid = ino;
4013  	key.type = BTRFS_DIR_INDEX_KEY;
4014  	key.offset = (u64)-1;
4015  
4016  	ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
4017  	/*
4018  	 * An error happened or we actually have an index key with an offset
4019  	 * value of (u64)-1. Bail out, we're done.
4020  	 */
4021  	if (ret <= 0)
4022  		goto out;
4023  
4024  	ret = 0;
4025  	inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
4026  
4027  	/*
4028  	 * No dir index items, bail out and leave last_dir_index_offset with
4029  	 * the value right before the first valid index value.
4030  	 */
4031  	if (path->slots[0] == 0)
4032  		goto out;
4033  
4034  	/*
4035  	 * btrfs_search_slot() left us at one slot beyond the slot with the last
4036  	 * index key, or beyond the last key of the directory that is not an
4037  	 * index key. If we have an index key before, set last_dir_index_offset
4038  	 * to its offset value, otherwise leave it with a value right before the
4039  	 * first valid index value, as it means we have an empty directory.
4040  	 */
4041  	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4042  	if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY)
4043  		inode->last_dir_index_offset = key.offset;
4044  
4045  out:
4046  	btrfs_release_path(path);
4047  
4048  	return ret;
4049  }
4050  
4051  /*
4052   * logging directories is very similar to logging inodes, We find all the items
4053   * from the current transaction and write them to the log.
4054   *
4055   * The recovery code scans the directory in the subvolume, and if it finds a
4056   * key in the range logged that is not present in the log tree, then it means
4057   * that dir entry was unlinked during the transaction.
4058   *
4059   * In order for that scan to work, we must include one key smaller than
4060   * the smallest logged by this transaction and one key larger than the largest
4061   * key logged by this transaction.
4062   */
4063  static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
4064  			  struct btrfs_inode *inode,
4065  			  struct btrfs_path *path,
4066  			  struct btrfs_path *dst_path,
4067  			  struct btrfs_log_ctx *ctx)
4068  {
4069  	u64 min_key;
4070  	u64 max_key;
4071  	int ret;
4072  
4073  	ret = update_last_dir_index_offset(inode, path, ctx);
4074  	if (ret)
4075  		return ret;
4076  
4077  	min_key = BTRFS_DIR_START_INDEX;
4078  	max_key = 0;
4079  
4080  	while (1) {
4081  		ret = log_dir_items(trans, inode, path, dst_path,
4082  				ctx, min_key, &max_key);
4083  		if (ret)
4084  			return ret;
4085  		if (max_key == (u64)-1)
4086  			break;
4087  		min_key = max_key + 1;
4088  	}
4089  
4090  	return 0;
4091  }
4092  
4093  /*
4094   * a helper function to drop items from the log before we relog an
4095   * inode.  max_key_type indicates the highest item type to remove.
4096   * This cannot be run for file data extents because it does not
4097   * free the extents they point to.
4098   */
4099  static int drop_inode_items(struct btrfs_trans_handle *trans,
4100  				  struct btrfs_root *log,
4101  				  struct btrfs_path *path,
4102  				  struct btrfs_inode *inode,
4103  				  int max_key_type)
4104  {
4105  	int ret;
4106  	struct btrfs_key key;
4107  	struct btrfs_key found_key;
4108  	int start_slot;
4109  
4110  	key.objectid = btrfs_ino(inode);
4111  	key.type = max_key_type;
4112  	key.offset = (u64)-1;
4113  
4114  	while (1) {
4115  		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
4116  		if (ret < 0) {
4117  			break;
4118  		} else if (ret > 0) {
4119  			if (path->slots[0] == 0)
4120  				break;
4121  			path->slots[0]--;
4122  		}
4123  
4124  		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4125  				      path->slots[0]);
4126  
4127  		if (found_key.objectid != key.objectid)
4128  			break;
4129  
4130  		found_key.offset = 0;
4131  		found_key.type = 0;
4132  		ret = btrfs_bin_search(path->nodes[0], 0, &found_key, &start_slot);
4133  		if (ret < 0)
4134  			break;
4135  
4136  		ret = btrfs_del_items(trans, log, path, start_slot,
4137  				      path->slots[0] - start_slot + 1);
4138  		/*
4139  		 * If start slot isn't 0 then we don't need to re-search, we've
4140  		 * found the last guy with the objectid in this tree.
4141  		 */
4142  		if (ret || start_slot != 0)
4143  			break;
4144  		btrfs_release_path(path);
4145  	}
4146  	btrfs_release_path(path);
4147  	if (ret > 0)
4148  		ret = 0;
4149  	return ret;
4150  }
4151  
4152  static int truncate_inode_items(struct btrfs_trans_handle *trans,
4153  				struct btrfs_root *log_root,
4154  				struct btrfs_inode *inode,
4155  				u64 new_size, u32 min_type)
4156  {
4157  	struct btrfs_truncate_control control = {
4158  		.new_size = new_size,
4159  		.ino = btrfs_ino(inode),
4160  		.min_type = min_type,
4161  		.skip_ref_updates = true,
4162  	};
4163  
4164  	return btrfs_truncate_inode_items(trans, log_root, &control);
4165  }
4166  
4167  static void fill_inode_item(struct btrfs_trans_handle *trans,
4168  			    struct extent_buffer *leaf,
4169  			    struct btrfs_inode_item *item,
4170  			    struct inode *inode, int log_inode_only,
4171  			    u64 logged_isize)
4172  {
4173  	struct btrfs_map_token token;
4174  	u64 flags;
4175  
4176  	btrfs_init_map_token(&token, leaf);
4177  
4178  	if (log_inode_only) {
4179  		/* set the generation to zero so the recover code
4180  		 * can tell the difference between an logging
4181  		 * just to say 'this inode exists' and a logging
4182  		 * to say 'update this inode with these values'
4183  		 */
4184  		btrfs_set_token_inode_generation(&token, item, 0);
4185  		btrfs_set_token_inode_size(&token, item, logged_isize);
4186  	} else {
4187  		btrfs_set_token_inode_generation(&token, item,
4188  						 BTRFS_I(inode)->generation);
4189  		btrfs_set_token_inode_size(&token, item, inode->i_size);
4190  	}
4191  
4192  	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4193  	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4194  	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4195  	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4196  
4197  	btrfs_set_token_timespec_sec(&token, &item->atime,
4198  				     inode_get_atime_sec(inode));
4199  	btrfs_set_token_timespec_nsec(&token, &item->atime,
4200  				      inode_get_atime_nsec(inode));
4201  
4202  	btrfs_set_token_timespec_sec(&token, &item->mtime,
4203  				     inode_get_mtime_sec(inode));
4204  	btrfs_set_token_timespec_nsec(&token, &item->mtime,
4205  				      inode_get_mtime_nsec(inode));
4206  
4207  	btrfs_set_token_timespec_sec(&token, &item->ctime,
4208  				     inode_get_ctime_sec(inode));
4209  	btrfs_set_token_timespec_nsec(&token, &item->ctime,
4210  				      inode_get_ctime_nsec(inode));
4211  
4212  	/*
4213  	 * We do not need to set the nbytes field, in fact during a fast fsync
4214  	 * its value may not even be correct, since a fast fsync does not wait
4215  	 * for ordered extent completion, which is where we update nbytes, it
4216  	 * only waits for writeback to complete. During log replay as we find
4217  	 * file extent items and replay them, we adjust the nbytes field of the
4218  	 * inode item in subvolume tree as needed (see overwrite_item()).
4219  	 */
4220  
4221  	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4222  	btrfs_set_token_inode_transid(&token, item, trans->transid);
4223  	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4224  	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4225  					  BTRFS_I(inode)->ro_flags);
4226  	btrfs_set_token_inode_flags(&token, item, flags);
4227  	btrfs_set_token_inode_block_group(&token, item, 0);
4228  }
4229  
4230  static int log_inode_item(struct btrfs_trans_handle *trans,
4231  			  struct btrfs_root *log, struct btrfs_path *path,
4232  			  struct btrfs_inode *inode, bool inode_item_dropped)
4233  {
4234  	struct btrfs_inode_item *inode_item;
4235  	int ret;
4236  
4237  	/*
4238  	 * If we are doing a fast fsync and the inode was logged before in the
4239  	 * current transaction, then we know the inode was previously logged and
4240  	 * it exists in the log tree. For performance reasons, in this case use
4241  	 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4242  	 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4243  	 * contention in case there are concurrent fsyncs for other inodes of the
4244  	 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4245  	 * already exists can also result in unnecessarily splitting a leaf.
4246  	 */
4247  	if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4248  		ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1);
4249  		ASSERT(ret <= 0);
4250  		if (ret > 0)
4251  			ret = -ENOENT;
4252  	} else {
4253  		/*
4254  		 * This means it is the first fsync in the current transaction,
4255  		 * so the inode item is not in the log and we need to insert it.
4256  		 * We can never get -EEXIST because we are only called for a fast
4257  		 * fsync and in case an inode eviction happens after the inode was
4258  		 * logged before in the current transaction, when we load again
4259  		 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4260  		 * flags and set ->logged_trans to 0.
4261  		 */
4262  		ret = btrfs_insert_empty_item(trans, log, path, &inode->location,
4263  					      sizeof(*inode_item));
4264  		ASSERT(ret != -EEXIST);
4265  	}
4266  	if (ret)
4267  		return ret;
4268  	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4269  				    struct btrfs_inode_item);
4270  	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4271  			0, 0);
4272  	btrfs_release_path(path);
4273  	return 0;
4274  }
4275  
4276  static int log_csums(struct btrfs_trans_handle *trans,
4277  		     struct btrfs_inode *inode,
4278  		     struct btrfs_root *log_root,
4279  		     struct btrfs_ordered_sum *sums)
4280  {
4281  	const u64 lock_end = sums->logical + sums->len - 1;
4282  	struct extent_state *cached_state = NULL;
4283  	int ret;
4284  
4285  	/*
4286  	 * If this inode was not used for reflink operations in the current
4287  	 * transaction with new extents, then do the fast path, no need to
4288  	 * worry about logging checksum items with overlapping ranges.
4289  	 */
4290  	if (inode->last_reflink_trans < trans->transid)
4291  		return btrfs_csum_file_blocks(trans, log_root, sums);
4292  
4293  	/*
4294  	 * Serialize logging for checksums. This is to avoid racing with the
4295  	 * same checksum being logged by another task that is logging another
4296  	 * file which happens to refer to the same extent as well. Such races
4297  	 * can leave checksum items in the log with overlapping ranges.
4298  	 */
4299  	ret = lock_extent(&log_root->log_csum_range, sums->logical, lock_end,
4300  			  &cached_state);
4301  	if (ret)
4302  		return ret;
4303  	/*
4304  	 * Due to extent cloning, we might have logged a csum item that covers a
4305  	 * subrange of a cloned extent, and later we can end up logging a csum
4306  	 * item for a larger subrange of the same extent or the entire range.
4307  	 * This would leave csum items in the log tree that cover the same range
4308  	 * and break the searches for checksums in the log tree, resulting in
4309  	 * some checksums missing in the fs/subvolume tree. So just delete (or
4310  	 * trim and adjust) any existing csum items in the log for this range.
4311  	 */
4312  	ret = btrfs_del_csums(trans, log_root, sums->logical, sums->len);
4313  	if (!ret)
4314  		ret = btrfs_csum_file_blocks(trans, log_root, sums);
4315  
4316  	unlock_extent(&log_root->log_csum_range, sums->logical, lock_end,
4317  		      &cached_state);
4318  
4319  	return ret;
4320  }
4321  
4322  static noinline int copy_items(struct btrfs_trans_handle *trans,
4323  			       struct btrfs_inode *inode,
4324  			       struct btrfs_path *dst_path,
4325  			       struct btrfs_path *src_path,
4326  			       int start_slot, int nr, int inode_only,
4327  			       u64 logged_isize, struct btrfs_log_ctx *ctx)
4328  {
4329  	struct btrfs_root *log = inode->root->log_root;
4330  	struct btrfs_file_extent_item *extent;
4331  	struct extent_buffer *src;
4332  	int ret;
4333  	struct btrfs_key *ins_keys;
4334  	u32 *ins_sizes;
4335  	struct btrfs_item_batch batch;
4336  	char *ins_data;
4337  	int dst_index;
4338  	const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM);
4339  	const u64 i_size = i_size_read(&inode->vfs_inode);
4340  
4341  	/*
4342  	 * To keep lockdep happy and avoid deadlocks, clone the source leaf and
4343  	 * use the clone. This is because otherwise we would be changing the log
4344  	 * tree, to insert items from the subvolume tree or insert csum items,
4345  	 * while holding a read lock on a leaf from the subvolume tree, which
4346  	 * creates a nasty lock dependency when COWing log tree nodes/leaves:
4347  	 *
4348  	 * 1) Modifying the log tree triggers an extent buffer allocation while
4349  	 *    holding a write lock on a parent extent buffer from the log tree.
4350  	 *    Allocating the pages for an extent buffer, or the extent buffer
4351  	 *    struct, can trigger inode eviction and finally the inode eviction
4352  	 *    will trigger a release/remove of a delayed node, which requires
4353  	 *    taking the delayed node's mutex;
4354  	 *
4355  	 * 2) Allocating a metadata extent for a log tree can trigger the async
4356  	 *    reclaim thread and make us wait for it to release enough space and
4357  	 *    unblock our reservation ticket. The reclaim thread can start
4358  	 *    flushing delayed items, and that in turn results in the need to
4359  	 *    lock delayed node mutexes and in the need to write lock extent
4360  	 *    buffers of a subvolume tree - all this while holding a write lock
4361  	 *    on the parent extent buffer in the log tree.
4362  	 *
4363  	 * So one task in scenario 1) running in parallel with another task in
4364  	 * scenario 2) could lead to a deadlock, one wanting to lock a delayed
4365  	 * node mutex while having a read lock on a leaf from the subvolume,
4366  	 * while the other is holding the delayed node's mutex and wants to
4367  	 * write lock the same subvolume leaf for flushing delayed items.
4368  	 */
4369  	ret = clone_leaf(src_path, ctx);
4370  	if (ret < 0)
4371  		return ret;
4372  
4373  	src = src_path->nodes[0];
4374  
4375  	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4376  			   nr * sizeof(u32), GFP_NOFS);
4377  	if (!ins_data)
4378  		return -ENOMEM;
4379  
4380  	ins_sizes = (u32 *)ins_data;
4381  	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4382  	batch.keys = ins_keys;
4383  	batch.data_sizes = ins_sizes;
4384  	batch.total_data_size = 0;
4385  	batch.nr = 0;
4386  
4387  	dst_index = 0;
4388  	for (int i = 0; i < nr; i++) {
4389  		const int src_slot = start_slot + i;
4390  		struct btrfs_root *csum_root;
4391  		struct btrfs_ordered_sum *sums;
4392  		struct btrfs_ordered_sum *sums_next;
4393  		LIST_HEAD(ordered_sums);
4394  		u64 disk_bytenr;
4395  		u64 disk_num_bytes;
4396  		u64 extent_offset;
4397  		u64 extent_num_bytes;
4398  		bool is_old_extent;
4399  
4400  		btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot);
4401  
4402  		if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY)
4403  			goto add_to_batch;
4404  
4405  		extent = btrfs_item_ptr(src, src_slot,
4406  					struct btrfs_file_extent_item);
4407  
4408  		is_old_extent = (btrfs_file_extent_generation(src, extent) <
4409  				 trans->transid);
4410  
4411  		/*
4412  		 * Don't copy extents from past generations. That would make us
4413  		 * log a lot more metadata for common cases like doing only a
4414  		 * few random writes into a file and then fsync it for the first
4415  		 * time or after the full sync flag is set on the inode. We can
4416  		 * get leaves full of extent items, most of which are from past
4417  		 * generations, so we can skip them - as long as the inode has
4418  		 * not been the target of a reflink operation in this transaction,
4419  		 * as in that case it might have had file extent items with old
4420  		 * generations copied into it. We also must always log prealloc
4421  		 * extents that start at or beyond eof, otherwise we would lose
4422  		 * them on log replay.
4423  		 */
4424  		if (is_old_extent &&
4425  		    ins_keys[dst_index].offset < i_size &&
4426  		    inode->last_reflink_trans < trans->transid)
4427  			continue;
4428  
4429  		if (skip_csum)
4430  			goto add_to_batch;
4431  
4432  		/* Only regular extents have checksums. */
4433  		if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG)
4434  			goto add_to_batch;
4435  
4436  		/*
4437  		 * If it's an extent created in a past transaction, then its
4438  		 * checksums are already accessible from the committed csum tree,
4439  		 * no need to log them.
4440  		 */
4441  		if (is_old_extent)
4442  			goto add_to_batch;
4443  
4444  		disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent);
4445  		/* If it's an explicit hole, there are no checksums. */
4446  		if (disk_bytenr == 0)
4447  			goto add_to_batch;
4448  
4449  		disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent);
4450  
4451  		if (btrfs_file_extent_compression(src, extent)) {
4452  			extent_offset = 0;
4453  			extent_num_bytes = disk_num_bytes;
4454  		} else {
4455  			extent_offset = btrfs_file_extent_offset(src, extent);
4456  			extent_num_bytes = btrfs_file_extent_num_bytes(src, extent);
4457  		}
4458  
4459  		csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr);
4460  		disk_bytenr += extent_offset;
4461  		ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4462  					      disk_bytenr + extent_num_bytes - 1,
4463  					      &ordered_sums, 0, false);
4464  		if (ret)
4465  			goto out;
4466  
4467  		list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) {
4468  			if (!ret)
4469  				ret = log_csums(trans, inode, log, sums);
4470  			list_del(&sums->list);
4471  			kfree(sums);
4472  		}
4473  		if (ret)
4474  			goto out;
4475  
4476  add_to_batch:
4477  		ins_sizes[dst_index] = btrfs_item_size(src, src_slot);
4478  		batch.total_data_size += ins_sizes[dst_index];
4479  		batch.nr++;
4480  		dst_index++;
4481  	}
4482  
4483  	/*
4484  	 * We have a leaf full of old extent items that don't need to be logged,
4485  	 * so we don't need to do anything.
4486  	 */
4487  	if (batch.nr == 0)
4488  		goto out;
4489  
4490  	ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
4491  	if (ret)
4492  		goto out;
4493  
4494  	dst_index = 0;
4495  	for (int i = 0; i < nr; i++) {
4496  		const int src_slot = start_slot + i;
4497  		const int dst_slot = dst_path->slots[0] + dst_index;
4498  		struct btrfs_key key;
4499  		unsigned long src_offset;
4500  		unsigned long dst_offset;
4501  
4502  		/*
4503  		 * We're done, all the remaining items in the source leaf
4504  		 * correspond to old file extent items.
4505  		 */
4506  		if (dst_index >= batch.nr)
4507  			break;
4508  
4509  		btrfs_item_key_to_cpu(src, &key, src_slot);
4510  
4511  		if (key.type != BTRFS_EXTENT_DATA_KEY)
4512  			goto copy_item;
4513  
4514  		extent = btrfs_item_ptr(src, src_slot,
4515  					struct btrfs_file_extent_item);
4516  
4517  		/* See the comment in the previous loop, same logic. */
4518  		if (btrfs_file_extent_generation(src, extent) < trans->transid &&
4519  		    key.offset < i_size &&
4520  		    inode->last_reflink_trans < trans->transid)
4521  			continue;
4522  
4523  copy_item:
4524  		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot);
4525  		src_offset = btrfs_item_ptr_offset(src, src_slot);
4526  
4527  		if (key.type == BTRFS_INODE_ITEM_KEY) {
4528  			struct btrfs_inode_item *inode_item;
4529  
4530  			inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot,
4531  						    struct btrfs_inode_item);
4532  			fill_inode_item(trans, dst_path->nodes[0], inode_item,
4533  					&inode->vfs_inode,
4534  					inode_only == LOG_INODE_EXISTS,
4535  					logged_isize);
4536  		} else {
4537  			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4538  					   src_offset, ins_sizes[dst_index]);
4539  		}
4540  
4541  		dst_index++;
4542  	}
4543  
4544  	btrfs_mark_buffer_dirty(trans, dst_path->nodes[0]);
4545  	btrfs_release_path(dst_path);
4546  out:
4547  	kfree(ins_data);
4548  
4549  	return ret;
4550  }
4551  
4552  static int extent_cmp(void *priv, const struct list_head *a,
4553  		      const struct list_head *b)
4554  {
4555  	const struct extent_map *em1, *em2;
4556  
4557  	em1 = list_entry(a, struct extent_map, list);
4558  	em2 = list_entry(b, struct extent_map, list);
4559  
4560  	if (em1->start < em2->start)
4561  		return -1;
4562  	else if (em1->start > em2->start)
4563  		return 1;
4564  	return 0;
4565  }
4566  
4567  static int log_extent_csums(struct btrfs_trans_handle *trans,
4568  			    struct btrfs_inode *inode,
4569  			    struct btrfs_root *log_root,
4570  			    const struct extent_map *em,
4571  			    struct btrfs_log_ctx *ctx)
4572  {
4573  	struct btrfs_ordered_extent *ordered;
4574  	struct btrfs_root *csum_root;
4575  	u64 csum_offset;
4576  	u64 csum_len;
4577  	u64 mod_start = em->mod_start;
4578  	u64 mod_len = em->mod_len;
4579  	LIST_HEAD(ordered_sums);
4580  	int ret = 0;
4581  
4582  	if (inode->flags & BTRFS_INODE_NODATASUM ||
4583  	    (em->flags & EXTENT_FLAG_PREALLOC) ||
4584  	    em->block_start == EXTENT_MAP_HOLE)
4585  		return 0;
4586  
4587  	list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4588  		const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4589  		const u64 mod_end = mod_start + mod_len;
4590  		struct btrfs_ordered_sum *sums;
4591  
4592  		if (mod_len == 0)
4593  			break;
4594  
4595  		if (ordered_end <= mod_start)
4596  			continue;
4597  		if (mod_end <= ordered->file_offset)
4598  			break;
4599  
4600  		/*
4601  		 * We are going to copy all the csums on this ordered extent, so
4602  		 * go ahead and adjust mod_start and mod_len in case this ordered
4603  		 * extent has already been logged.
4604  		 */
4605  		if (ordered->file_offset > mod_start) {
4606  			if (ordered_end >= mod_end)
4607  				mod_len = ordered->file_offset - mod_start;
4608  			/*
4609  			 * If we have this case
4610  			 *
4611  			 * |--------- logged extent ---------|
4612  			 *       |----- ordered extent ----|
4613  			 *
4614  			 * Just don't mess with mod_start and mod_len, we'll
4615  			 * just end up logging more csums than we need and it
4616  			 * will be ok.
4617  			 */
4618  		} else {
4619  			if (ordered_end < mod_end) {
4620  				mod_len = mod_end - ordered_end;
4621  				mod_start = ordered_end;
4622  			} else {
4623  				mod_len = 0;
4624  			}
4625  		}
4626  
4627  		/*
4628  		 * To keep us from looping for the above case of an ordered
4629  		 * extent that falls inside of the logged extent.
4630  		 */
4631  		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4632  			continue;
4633  
4634  		list_for_each_entry(sums, &ordered->list, list) {
4635  			ret = log_csums(trans, inode, log_root, sums);
4636  			if (ret)
4637  				return ret;
4638  		}
4639  	}
4640  
4641  	/* We're done, found all csums in the ordered extents. */
4642  	if (mod_len == 0)
4643  		return 0;
4644  
4645  	/* If we're compressed we have to save the entire range of csums. */
4646  	if (extent_map_is_compressed(em)) {
4647  		csum_offset = 0;
4648  		csum_len = max(em->block_len, em->orig_block_len);
4649  	} else {
4650  		csum_offset = mod_start - em->start;
4651  		csum_len = mod_len;
4652  	}
4653  
4654  	/* block start is already adjusted for the file extent offset. */
4655  	csum_root = btrfs_csum_root(trans->fs_info, em->block_start);
4656  	ret = btrfs_lookup_csums_list(csum_root, em->block_start + csum_offset,
4657  				      em->block_start + csum_offset +
4658  				      csum_len - 1, &ordered_sums, 0, false);
4659  	if (ret)
4660  		return ret;
4661  
4662  	while (!list_empty(&ordered_sums)) {
4663  		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4664  						   struct btrfs_ordered_sum,
4665  						   list);
4666  		if (!ret)
4667  			ret = log_csums(trans, inode, log_root, sums);
4668  		list_del(&sums->list);
4669  		kfree(sums);
4670  	}
4671  
4672  	return ret;
4673  }
4674  
4675  static int log_one_extent(struct btrfs_trans_handle *trans,
4676  			  struct btrfs_inode *inode,
4677  			  const struct extent_map *em,
4678  			  struct btrfs_path *path,
4679  			  struct btrfs_log_ctx *ctx)
4680  {
4681  	struct btrfs_drop_extents_args drop_args = { 0 };
4682  	struct btrfs_root *log = inode->root->log_root;
4683  	struct btrfs_file_extent_item fi = { 0 };
4684  	struct extent_buffer *leaf;
4685  	struct btrfs_key key;
4686  	enum btrfs_compression_type compress_type;
4687  	u64 extent_offset = em->start - em->orig_start;
4688  	u64 block_len;
4689  	int ret;
4690  
4691  	btrfs_set_stack_file_extent_generation(&fi, trans->transid);
4692  	if (em->flags & EXTENT_FLAG_PREALLOC)
4693  		btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC);
4694  	else
4695  		btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG);
4696  
4697  	block_len = max(em->block_len, em->orig_block_len);
4698  	compress_type = extent_map_compression(em);
4699  	if (compress_type != BTRFS_COMPRESS_NONE) {
4700  		btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start);
4701  		btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4702  	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4703  		btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start -
4704  							extent_offset);
4705  		btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4706  	}
4707  
4708  	btrfs_set_stack_file_extent_offset(&fi, extent_offset);
4709  	btrfs_set_stack_file_extent_num_bytes(&fi, em->len);
4710  	btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes);
4711  	btrfs_set_stack_file_extent_compression(&fi, compress_type);
4712  
4713  	ret = log_extent_csums(trans, inode, log, em, ctx);
4714  	if (ret)
4715  		return ret;
4716  
4717  	/*
4718  	 * If this is the first time we are logging the inode in the current
4719  	 * transaction, we can avoid btrfs_drop_extents(), which is expensive
4720  	 * because it does a deletion search, which always acquires write locks
4721  	 * for extent buffers at levels 2, 1 and 0. This not only wastes time
4722  	 * but also adds significant contention in a log tree, since log trees
4723  	 * are small, with a root at level 2 or 3 at most, due to their short
4724  	 * life span.
4725  	 */
4726  	if (ctx->logged_before) {
4727  		drop_args.path = path;
4728  		drop_args.start = em->start;
4729  		drop_args.end = em->start + em->len;
4730  		drop_args.replace_extent = true;
4731  		drop_args.extent_item_size = sizeof(fi);
4732  		ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4733  		if (ret)
4734  			return ret;
4735  	}
4736  
4737  	if (!drop_args.extent_inserted) {
4738  		key.objectid = btrfs_ino(inode);
4739  		key.type = BTRFS_EXTENT_DATA_KEY;
4740  		key.offset = em->start;
4741  
4742  		ret = btrfs_insert_empty_item(trans, log, path, &key,
4743  					      sizeof(fi));
4744  		if (ret)
4745  			return ret;
4746  	}
4747  	leaf = path->nodes[0];
4748  	write_extent_buffer(leaf, &fi,
4749  			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4750  			    sizeof(fi));
4751  	btrfs_mark_buffer_dirty(trans, leaf);
4752  
4753  	btrfs_release_path(path);
4754  
4755  	return ret;
4756  }
4757  
4758  /*
4759   * Log all prealloc extents beyond the inode's i_size to make sure we do not
4760   * lose them after doing a full/fast fsync and replaying the log. We scan the
4761   * subvolume's root instead of iterating the inode's extent map tree because
4762   * otherwise we can log incorrect extent items based on extent map conversion.
4763   * That can happen due to the fact that extent maps are merged when they
4764   * are not in the extent map tree's list of modified extents.
4765   */
4766  static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4767  				      struct btrfs_inode *inode,
4768  				      struct btrfs_path *path,
4769  				      struct btrfs_log_ctx *ctx)
4770  {
4771  	struct btrfs_root *root = inode->root;
4772  	struct btrfs_key key;
4773  	const u64 i_size = i_size_read(&inode->vfs_inode);
4774  	const u64 ino = btrfs_ino(inode);
4775  	struct btrfs_path *dst_path = NULL;
4776  	bool dropped_extents = false;
4777  	u64 truncate_offset = i_size;
4778  	struct extent_buffer *leaf;
4779  	int slot;
4780  	int ins_nr = 0;
4781  	int start_slot = 0;
4782  	int ret;
4783  
4784  	if (!(inode->flags & BTRFS_INODE_PREALLOC))
4785  		return 0;
4786  
4787  	key.objectid = ino;
4788  	key.type = BTRFS_EXTENT_DATA_KEY;
4789  	key.offset = i_size;
4790  	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4791  	if (ret < 0)
4792  		goto out;
4793  
4794  	/*
4795  	 * We must check if there is a prealloc extent that starts before the
4796  	 * i_size and crosses the i_size boundary. This is to ensure later we
4797  	 * truncate down to the end of that extent and not to the i_size, as
4798  	 * otherwise we end up losing part of the prealloc extent after a log
4799  	 * replay and with an implicit hole if there is another prealloc extent
4800  	 * that starts at an offset beyond i_size.
4801  	 */
4802  	ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4803  	if (ret < 0)
4804  		goto out;
4805  
4806  	if (ret == 0) {
4807  		struct btrfs_file_extent_item *ei;
4808  
4809  		leaf = path->nodes[0];
4810  		slot = path->slots[0];
4811  		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4812  
4813  		if (btrfs_file_extent_type(leaf, ei) ==
4814  		    BTRFS_FILE_EXTENT_PREALLOC) {
4815  			u64 extent_end;
4816  
4817  			btrfs_item_key_to_cpu(leaf, &key, slot);
4818  			extent_end = key.offset +
4819  				btrfs_file_extent_num_bytes(leaf, ei);
4820  
4821  			if (extent_end > i_size)
4822  				truncate_offset = extent_end;
4823  		}
4824  	} else {
4825  		ret = 0;
4826  	}
4827  
4828  	while (true) {
4829  		leaf = path->nodes[0];
4830  		slot = path->slots[0];
4831  
4832  		if (slot >= btrfs_header_nritems(leaf)) {
4833  			if (ins_nr > 0) {
4834  				ret = copy_items(trans, inode, dst_path, path,
4835  						 start_slot, ins_nr, 1, 0, ctx);
4836  				if (ret < 0)
4837  					goto out;
4838  				ins_nr = 0;
4839  			}
4840  			ret = btrfs_next_leaf(root, path);
4841  			if (ret < 0)
4842  				goto out;
4843  			if (ret > 0) {
4844  				ret = 0;
4845  				break;
4846  			}
4847  			continue;
4848  		}
4849  
4850  		btrfs_item_key_to_cpu(leaf, &key, slot);
4851  		if (key.objectid > ino)
4852  			break;
4853  		if (WARN_ON_ONCE(key.objectid < ino) ||
4854  		    key.type < BTRFS_EXTENT_DATA_KEY ||
4855  		    key.offset < i_size) {
4856  			path->slots[0]++;
4857  			continue;
4858  		}
4859  		if (!dropped_extents) {
4860  			/*
4861  			 * Avoid logging extent items logged in past fsync calls
4862  			 * and leading to duplicate keys in the log tree.
4863  			 */
4864  			ret = truncate_inode_items(trans, root->log_root, inode,
4865  						   truncate_offset,
4866  						   BTRFS_EXTENT_DATA_KEY);
4867  			if (ret)
4868  				goto out;
4869  			dropped_extents = true;
4870  		}
4871  		if (ins_nr == 0)
4872  			start_slot = slot;
4873  		ins_nr++;
4874  		path->slots[0]++;
4875  		if (!dst_path) {
4876  			dst_path = btrfs_alloc_path();
4877  			if (!dst_path) {
4878  				ret = -ENOMEM;
4879  				goto out;
4880  			}
4881  		}
4882  	}
4883  	if (ins_nr > 0)
4884  		ret = copy_items(trans, inode, dst_path, path,
4885  				 start_slot, ins_nr, 1, 0, ctx);
4886  out:
4887  	btrfs_release_path(path);
4888  	btrfs_free_path(dst_path);
4889  	return ret;
4890  }
4891  
4892  static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4893  				     struct btrfs_inode *inode,
4894  				     struct btrfs_path *path,
4895  				     struct btrfs_log_ctx *ctx)
4896  {
4897  	struct btrfs_ordered_extent *ordered;
4898  	struct btrfs_ordered_extent *tmp;
4899  	struct extent_map *em, *n;
4900  	LIST_HEAD(extents);
4901  	struct extent_map_tree *tree = &inode->extent_tree;
4902  	int ret = 0;
4903  	int num = 0;
4904  
4905  	write_lock(&tree->lock);
4906  
4907  	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4908  		list_del_init(&em->list);
4909  		/*
4910  		 * Just an arbitrary number, this can be really CPU intensive
4911  		 * once we start getting a lot of extents, and really once we
4912  		 * have a bunch of extents we just want to commit since it will
4913  		 * be faster.
4914  		 */
4915  		if (++num > 32768) {
4916  			list_del_init(&tree->modified_extents);
4917  			ret = -EFBIG;
4918  			goto process;
4919  		}
4920  
4921  		if (em->generation < trans->transid)
4922  			continue;
4923  
4924  		/* We log prealloc extents beyond eof later. */
4925  		if ((em->flags & EXTENT_FLAG_PREALLOC) &&
4926  		    em->start >= i_size_read(&inode->vfs_inode))
4927  			continue;
4928  
4929  		/* Need a ref to keep it from getting evicted from cache */
4930  		refcount_inc(&em->refs);
4931  		em->flags |= EXTENT_FLAG_LOGGING;
4932  		list_add_tail(&em->list, &extents);
4933  		num++;
4934  	}
4935  
4936  	list_sort(NULL, &extents, extent_cmp);
4937  process:
4938  	while (!list_empty(&extents)) {
4939  		em = list_entry(extents.next, struct extent_map, list);
4940  
4941  		list_del_init(&em->list);
4942  
4943  		/*
4944  		 * If we had an error we just need to delete everybody from our
4945  		 * private list.
4946  		 */
4947  		if (ret) {
4948  			clear_em_logging(tree, em);
4949  			free_extent_map(em);
4950  			continue;
4951  		}
4952  
4953  		write_unlock(&tree->lock);
4954  
4955  		ret = log_one_extent(trans, inode, em, path, ctx);
4956  		write_lock(&tree->lock);
4957  		clear_em_logging(tree, em);
4958  		free_extent_map(em);
4959  	}
4960  	WARN_ON(!list_empty(&extents));
4961  	write_unlock(&tree->lock);
4962  
4963  	if (!ret)
4964  		ret = btrfs_log_prealloc_extents(trans, inode, path, ctx);
4965  	if (ret)
4966  		return ret;
4967  
4968  	/*
4969  	 * We have logged all extents successfully, now make sure the commit of
4970  	 * the current transaction waits for the ordered extents to complete
4971  	 * before it commits and wipes out the log trees, otherwise we would
4972  	 * lose data if an ordered extents completes after the transaction
4973  	 * commits and a power failure happens after the transaction commit.
4974  	 */
4975  	list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4976  		list_del_init(&ordered->log_list);
4977  		set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4978  
4979  		if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4980  			spin_lock_irq(&inode->ordered_tree_lock);
4981  			if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4982  				set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4983  				atomic_inc(&trans->transaction->pending_ordered);
4984  			}
4985  			spin_unlock_irq(&inode->ordered_tree_lock);
4986  		}
4987  		btrfs_put_ordered_extent(ordered);
4988  	}
4989  
4990  	return 0;
4991  }
4992  
4993  static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4994  			     struct btrfs_path *path, u64 *size_ret)
4995  {
4996  	struct btrfs_key key;
4997  	int ret;
4998  
4999  	key.objectid = btrfs_ino(inode);
5000  	key.type = BTRFS_INODE_ITEM_KEY;
5001  	key.offset = 0;
5002  
5003  	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
5004  	if (ret < 0) {
5005  		return ret;
5006  	} else if (ret > 0) {
5007  		*size_ret = 0;
5008  	} else {
5009  		struct btrfs_inode_item *item;
5010  
5011  		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5012  				      struct btrfs_inode_item);
5013  		*size_ret = btrfs_inode_size(path->nodes[0], item);
5014  		/*
5015  		 * If the in-memory inode's i_size is smaller then the inode
5016  		 * size stored in the btree, return the inode's i_size, so
5017  		 * that we get a correct inode size after replaying the log
5018  		 * when before a power failure we had a shrinking truncate
5019  		 * followed by addition of a new name (rename / new hard link).
5020  		 * Otherwise return the inode size from the btree, to avoid
5021  		 * data loss when replaying a log due to previously doing a
5022  		 * write that expands the inode's size and logging a new name
5023  		 * immediately after.
5024  		 */
5025  		if (*size_ret > inode->vfs_inode.i_size)
5026  			*size_ret = inode->vfs_inode.i_size;
5027  	}
5028  
5029  	btrfs_release_path(path);
5030  	return 0;
5031  }
5032  
5033  /*
5034   * At the moment we always log all xattrs. This is to figure out at log replay
5035   * time which xattrs must have their deletion replayed. If a xattr is missing
5036   * in the log tree and exists in the fs/subvol tree, we delete it. This is
5037   * because if a xattr is deleted, the inode is fsynced and a power failure
5038   * happens, causing the log to be replayed the next time the fs is mounted,
5039   * we want the xattr to not exist anymore (same behaviour as other filesystems
5040   * with a journal, ext3/4, xfs, f2fs, etc).
5041   */
5042  static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
5043  				struct btrfs_inode *inode,
5044  				struct btrfs_path *path,
5045  				struct btrfs_path *dst_path,
5046  				struct btrfs_log_ctx *ctx)
5047  {
5048  	struct btrfs_root *root = inode->root;
5049  	int ret;
5050  	struct btrfs_key key;
5051  	const u64 ino = btrfs_ino(inode);
5052  	int ins_nr = 0;
5053  	int start_slot = 0;
5054  	bool found_xattrs = false;
5055  
5056  	if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
5057  		return 0;
5058  
5059  	key.objectid = ino;
5060  	key.type = BTRFS_XATTR_ITEM_KEY;
5061  	key.offset = 0;
5062  
5063  	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5064  	if (ret < 0)
5065  		return ret;
5066  
5067  	while (true) {
5068  		int slot = path->slots[0];
5069  		struct extent_buffer *leaf = path->nodes[0];
5070  		int nritems = btrfs_header_nritems(leaf);
5071  
5072  		if (slot >= nritems) {
5073  			if (ins_nr > 0) {
5074  				ret = copy_items(trans, inode, dst_path, path,
5075  						 start_slot, ins_nr, 1, 0, ctx);
5076  				if (ret < 0)
5077  					return ret;
5078  				ins_nr = 0;
5079  			}
5080  			ret = btrfs_next_leaf(root, path);
5081  			if (ret < 0)
5082  				return ret;
5083  			else if (ret > 0)
5084  				break;
5085  			continue;
5086  		}
5087  
5088  		btrfs_item_key_to_cpu(leaf, &key, slot);
5089  		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
5090  			break;
5091  
5092  		if (ins_nr == 0)
5093  			start_slot = slot;
5094  		ins_nr++;
5095  		path->slots[0]++;
5096  		found_xattrs = true;
5097  		cond_resched();
5098  	}
5099  	if (ins_nr > 0) {
5100  		ret = copy_items(trans, inode, dst_path, path,
5101  				 start_slot, ins_nr, 1, 0, ctx);
5102  		if (ret < 0)
5103  			return ret;
5104  	}
5105  
5106  	if (!found_xattrs)
5107  		set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
5108  
5109  	return 0;
5110  }
5111  
5112  /*
5113   * When using the NO_HOLES feature if we punched a hole that causes the
5114   * deletion of entire leafs or all the extent items of the first leaf (the one
5115   * that contains the inode item and references) we may end up not processing
5116   * any extents, because there are no leafs with a generation matching the
5117   * current transaction that have extent items for our inode. So we need to find
5118   * if any holes exist and then log them. We also need to log holes after any
5119   * truncate operation that changes the inode's size.
5120   */
5121  static int btrfs_log_holes(struct btrfs_trans_handle *trans,
5122  			   struct btrfs_inode *inode,
5123  			   struct btrfs_path *path)
5124  {
5125  	struct btrfs_root *root = inode->root;
5126  	struct btrfs_fs_info *fs_info = root->fs_info;
5127  	struct btrfs_key key;
5128  	const u64 ino = btrfs_ino(inode);
5129  	const u64 i_size = i_size_read(&inode->vfs_inode);
5130  	u64 prev_extent_end = 0;
5131  	int ret;
5132  
5133  	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
5134  		return 0;
5135  
5136  	key.objectid = ino;
5137  	key.type = BTRFS_EXTENT_DATA_KEY;
5138  	key.offset = 0;
5139  
5140  	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5141  	if (ret < 0)
5142  		return ret;
5143  
5144  	while (true) {
5145  		struct extent_buffer *leaf = path->nodes[0];
5146  
5147  		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
5148  			ret = btrfs_next_leaf(root, path);
5149  			if (ret < 0)
5150  				return ret;
5151  			if (ret > 0) {
5152  				ret = 0;
5153  				break;
5154  			}
5155  			leaf = path->nodes[0];
5156  		}
5157  
5158  		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5159  		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
5160  			break;
5161  
5162  		/* We have a hole, log it. */
5163  		if (prev_extent_end < key.offset) {
5164  			const u64 hole_len = key.offset - prev_extent_end;
5165  
5166  			/*
5167  			 * Release the path to avoid deadlocks with other code
5168  			 * paths that search the root while holding locks on
5169  			 * leafs from the log root.
5170  			 */
5171  			btrfs_release_path(path);
5172  			ret = btrfs_insert_hole_extent(trans, root->log_root,
5173  						       ino, prev_extent_end,
5174  						       hole_len);
5175  			if (ret < 0)
5176  				return ret;
5177  
5178  			/*
5179  			 * Search for the same key again in the root. Since it's
5180  			 * an extent item and we are holding the inode lock, the
5181  			 * key must still exist. If it doesn't just emit warning
5182  			 * and return an error to fall back to a transaction
5183  			 * commit.
5184  			 */
5185  			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5186  			if (ret < 0)
5187  				return ret;
5188  			if (WARN_ON(ret > 0))
5189  				return -ENOENT;
5190  			leaf = path->nodes[0];
5191  		}
5192  
5193  		prev_extent_end = btrfs_file_extent_end(path);
5194  		path->slots[0]++;
5195  		cond_resched();
5196  	}
5197  
5198  	if (prev_extent_end < i_size) {
5199  		u64 hole_len;
5200  
5201  		btrfs_release_path(path);
5202  		hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
5203  		ret = btrfs_insert_hole_extent(trans, root->log_root, ino,
5204  					       prev_extent_end, hole_len);
5205  		if (ret < 0)
5206  			return ret;
5207  	}
5208  
5209  	return 0;
5210  }
5211  
5212  /*
5213   * When we are logging a new inode X, check if it doesn't have a reference that
5214   * matches the reference from some other inode Y created in a past transaction
5215   * and that was renamed in the current transaction. If we don't do this, then at
5216   * log replay time we can lose inode Y (and all its files if it's a directory):
5217   *
5218   * mkdir /mnt/x
5219   * echo "hello world" > /mnt/x/foobar
5220   * sync
5221   * mv /mnt/x /mnt/y
5222   * mkdir /mnt/x                 # or touch /mnt/x
5223   * xfs_io -c fsync /mnt/x
5224   * <power fail>
5225   * mount fs, trigger log replay
5226   *
5227   * After the log replay procedure, we would lose the first directory and all its
5228   * files (file foobar).
5229   * For the case where inode Y is not a directory we simply end up losing it:
5230   *
5231   * echo "123" > /mnt/foo
5232   * sync
5233   * mv /mnt/foo /mnt/bar
5234   * echo "abc" > /mnt/foo
5235   * xfs_io -c fsync /mnt/foo
5236   * <power fail>
5237   *
5238   * We also need this for cases where a snapshot entry is replaced by some other
5239   * entry (file or directory) otherwise we end up with an unreplayable log due to
5240   * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5241   * if it were a regular entry:
5242   *
5243   * mkdir /mnt/x
5244   * btrfs subvolume snapshot /mnt /mnt/x/snap
5245   * btrfs subvolume delete /mnt/x/snap
5246   * rmdir /mnt/x
5247   * mkdir /mnt/x
5248   * fsync /mnt/x or fsync some new file inside it
5249   * <power fail>
5250   *
5251   * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5252   * the same transaction.
5253   */
5254  static int btrfs_check_ref_name_override(struct extent_buffer *eb,
5255  					 const int slot,
5256  					 const struct btrfs_key *key,
5257  					 struct btrfs_inode *inode,
5258  					 u64 *other_ino, u64 *other_parent)
5259  {
5260  	int ret;
5261  	struct btrfs_path *search_path;
5262  	char *name = NULL;
5263  	u32 name_len = 0;
5264  	u32 item_size = btrfs_item_size(eb, slot);
5265  	u32 cur_offset = 0;
5266  	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
5267  
5268  	search_path = btrfs_alloc_path();
5269  	if (!search_path)
5270  		return -ENOMEM;
5271  	search_path->search_commit_root = 1;
5272  	search_path->skip_locking = 1;
5273  
5274  	while (cur_offset < item_size) {
5275  		u64 parent;
5276  		u32 this_name_len;
5277  		u32 this_len;
5278  		unsigned long name_ptr;
5279  		struct btrfs_dir_item *di;
5280  		struct fscrypt_str name_str;
5281  
5282  		if (key->type == BTRFS_INODE_REF_KEY) {
5283  			struct btrfs_inode_ref *iref;
5284  
5285  			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
5286  			parent = key->offset;
5287  			this_name_len = btrfs_inode_ref_name_len(eb, iref);
5288  			name_ptr = (unsigned long)(iref + 1);
5289  			this_len = sizeof(*iref) + this_name_len;
5290  		} else {
5291  			struct btrfs_inode_extref *extref;
5292  
5293  			extref = (struct btrfs_inode_extref *)(ptr +
5294  							       cur_offset);
5295  			parent = btrfs_inode_extref_parent(eb, extref);
5296  			this_name_len = btrfs_inode_extref_name_len(eb, extref);
5297  			name_ptr = (unsigned long)&extref->name;
5298  			this_len = sizeof(*extref) + this_name_len;
5299  		}
5300  
5301  		if (this_name_len > name_len) {
5302  			char *new_name;
5303  
5304  			new_name = krealloc(name, this_name_len, GFP_NOFS);
5305  			if (!new_name) {
5306  				ret = -ENOMEM;
5307  				goto out;
5308  			}
5309  			name_len = this_name_len;
5310  			name = new_name;
5311  		}
5312  
5313  		read_extent_buffer(eb, name, name_ptr, this_name_len);
5314  
5315  		name_str.name = name;
5316  		name_str.len = this_name_len;
5317  		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
5318  				parent, &name_str, 0);
5319  		if (di && !IS_ERR(di)) {
5320  			struct btrfs_key di_key;
5321  
5322  			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
5323  						  di, &di_key);
5324  			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
5325  				if (di_key.objectid != key->objectid) {
5326  					ret = 1;
5327  					*other_ino = di_key.objectid;
5328  					*other_parent = parent;
5329  				} else {
5330  					ret = 0;
5331  				}
5332  			} else {
5333  				ret = -EAGAIN;
5334  			}
5335  			goto out;
5336  		} else if (IS_ERR(di)) {
5337  			ret = PTR_ERR(di);
5338  			goto out;
5339  		}
5340  		btrfs_release_path(search_path);
5341  
5342  		cur_offset += this_len;
5343  	}
5344  	ret = 0;
5345  out:
5346  	btrfs_free_path(search_path);
5347  	kfree(name);
5348  	return ret;
5349  }
5350  
5351  /*
5352   * Check if we need to log an inode. This is used in contexts where while
5353   * logging an inode we need to log another inode (either that it exists or in
5354   * full mode). This is used instead of btrfs_inode_in_log() because the later
5355   * requires the inode to be in the log and have the log transaction committed,
5356   * while here we do not care if the log transaction was already committed - our
5357   * caller will commit the log later - and we want to avoid logging an inode
5358   * multiple times when multiple tasks have joined the same log transaction.
5359   */
5360  static bool need_log_inode(const struct btrfs_trans_handle *trans,
5361  			   struct btrfs_inode *inode)
5362  {
5363  	/*
5364  	 * If a directory was not modified, no dentries added or removed, we can
5365  	 * and should avoid logging it.
5366  	 */
5367  	if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
5368  		return false;
5369  
5370  	/*
5371  	 * If this inode does not have new/updated/deleted xattrs since the last
5372  	 * time it was logged and is flagged as logged in the current transaction,
5373  	 * we can skip logging it. As for new/deleted names, those are updated in
5374  	 * the log by link/unlink/rename operations.
5375  	 * In case the inode was logged and then evicted and reloaded, its
5376  	 * logged_trans will be 0, in which case we have to fully log it since
5377  	 * logged_trans is a transient field, not persisted.
5378  	 */
5379  	if (inode_logged(trans, inode, NULL) == 1 &&
5380  	    !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5381  		return false;
5382  
5383  	return true;
5384  }
5385  
5386  struct btrfs_dir_list {
5387  	u64 ino;
5388  	struct list_head list;
5389  };
5390  
5391  /*
5392   * Log the inodes of the new dentries of a directory.
5393   * See process_dir_items_leaf() for details about why it is needed.
5394   * This is a recursive operation - if an existing dentry corresponds to a
5395   * directory, that directory's new entries are logged too (same behaviour as
5396   * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5397   * the dentries point to we do not acquire their VFS lock, otherwise lockdep
5398   * complains about the following circular lock dependency / possible deadlock:
5399   *
5400   *        CPU0                                        CPU1
5401   *        ----                                        ----
5402   * lock(&type->i_mutex_dir_key#3/2);
5403   *                                            lock(sb_internal#2);
5404   *                                            lock(&type->i_mutex_dir_key#3/2);
5405   * lock(&sb->s_type->i_mutex_key#14);
5406   *
5407   * Where sb_internal is the lock (a counter that works as a lock) acquired by
5408   * sb_start_intwrite() in btrfs_start_transaction().
5409   * Not acquiring the VFS lock of the inodes is still safe because:
5410   *
5411   * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5412   *    that while logging the inode new references (names) are added or removed
5413   *    from the inode, leaving the logged inode item with a link count that does
5414   *    not match the number of logged inode reference items. This is fine because
5415   *    at log replay time we compute the real number of links and correct the
5416   *    link count in the inode item (see replay_one_buffer() and
5417   *    link_to_fixup_dir());
5418   *
5419   * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5420   *    while logging the inode's items new index items (key type
5421   *    BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item
5422   *    has a size that doesn't match the sum of the lengths of all the logged
5423   *    names - this is ok, not a problem, because at log replay time we set the
5424   *    directory's i_size to the correct value (see replay_one_name() and
5425   *    overwrite_item()).
5426   */
5427  static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5428  				struct btrfs_inode *start_inode,
5429  				struct btrfs_log_ctx *ctx)
5430  {
5431  	struct btrfs_root *root = start_inode->root;
5432  	struct btrfs_fs_info *fs_info = root->fs_info;
5433  	struct btrfs_path *path;
5434  	LIST_HEAD(dir_list);
5435  	struct btrfs_dir_list *dir_elem;
5436  	u64 ino = btrfs_ino(start_inode);
5437  	struct btrfs_inode *curr_inode = start_inode;
5438  	int ret = 0;
5439  
5440  	/*
5441  	 * If we are logging a new name, as part of a link or rename operation,
5442  	 * don't bother logging new dentries, as we just want to log the names
5443  	 * of an inode and that any new parents exist.
5444  	 */
5445  	if (ctx->logging_new_name)
5446  		return 0;
5447  
5448  	path = btrfs_alloc_path();
5449  	if (!path)
5450  		return -ENOMEM;
5451  
5452  	/* Pairs with btrfs_add_delayed_iput below. */
5453  	ihold(&curr_inode->vfs_inode);
5454  
5455  	while (true) {
5456  		struct inode *vfs_inode;
5457  		struct btrfs_key key;
5458  		struct btrfs_key found_key;
5459  		u64 next_index;
5460  		bool continue_curr_inode = true;
5461  		int iter_ret;
5462  
5463  		key.objectid = ino;
5464  		key.type = BTRFS_DIR_INDEX_KEY;
5465  		key.offset = btrfs_get_first_dir_index_to_log(curr_inode);
5466  		next_index = key.offset;
5467  again:
5468  		btrfs_for_each_slot(root->log_root, &key, &found_key, path, iter_ret) {
5469  			struct extent_buffer *leaf = path->nodes[0];
5470  			struct btrfs_dir_item *di;
5471  			struct btrfs_key di_key;
5472  			struct inode *di_inode;
5473  			int log_mode = LOG_INODE_EXISTS;
5474  			int type;
5475  
5476  			if (found_key.objectid != ino ||
5477  			    found_key.type != BTRFS_DIR_INDEX_KEY) {
5478  				continue_curr_inode = false;
5479  				break;
5480  			}
5481  
5482  			next_index = found_key.offset + 1;
5483  
5484  			di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5485  			type = btrfs_dir_ftype(leaf, di);
5486  			if (btrfs_dir_transid(leaf, di) < trans->transid)
5487  				continue;
5488  			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5489  			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5490  				continue;
5491  
5492  			btrfs_release_path(path);
5493  			di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5494  			if (IS_ERR(di_inode)) {
5495  				ret = PTR_ERR(di_inode);
5496  				goto out;
5497  			}
5498  
5499  			if (!need_log_inode(trans, BTRFS_I(di_inode))) {
5500  				btrfs_add_delayed_iput(BTRFS_I(di_inode));
5501  				break;
5502  			}
5503  
5504  			ctx->log_new_dentries = false;
5505  			if (type == BTRFS_FT_DIR)
5506  				log_mode = LOG_INODE_ALL;
5507  			ret = btrfs_log_inode(trans, BTRFS_I(di_inode),
5508  					      log_mode, ctx);
5509  			btrfs_add_delayed_iput(BTRFS_I(di_inode));
5510  			if (ret)
5511  				goto out;
5512  			if (ctx->log_new_dentries) {
5513  				dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5514  				if (!dir_elem) {
5515  					ret = -ENOMEM;
5516  					goto out;
5517  				}
5518  				dir_elem->ino = di_key.objectid;
5519  				list_add_tail(&dir_elem->list, &dir_list);
5520  			}
5521  			break;
5522  		}
5523  
5524  		btrfs_release_path(path);
5525  
5526  		if (iter_ret < 0) {
5527  			ret = iter_ret;
5528  			goto out;
5529  		} else if (iter_ret > 0) {
5530  			continue_curr_inode = false;
5531  		} else {
5532  			key = found_key;
5533  		}
5534  
5535  		if (continue_curr_inode && key.offset < (u64)-1) {
5536  			key.offset++;
5537  			goto again;
5538  		}
5539  
5540  		btrfs_set_first_dir_index_to_log(curr_inode, next_index);
5541  
5542  		if (list_empty(&dir_list))
5543  			break;
5544  
5545  		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list);
5546  		ino = dir_elem->ino;
5547  		list_del(&dir_elem->list);
5548  		kfree(dir_elem);
5549  
5550  		btrfs_add_delayed_iput(curr_inode);
5551  		curr_inode = NULL;
5552  
5553  		vfs_inode = btrfs_iget(fs_info->sb, ino, root);
5554  		if (IS_ERR(vfs_inode)) {
5555  			ret = PTR_ERR(vfs_inode);
5556  			break;
5557  		}
5558  		curr_inode = BTRFS_I(vfs_inode);
5559  	}
5560  out:
5561  	btrfs_free_path(path);
5562  	if (curr_inode)
5563  		btrfs_add_delayed_iput(curr_inode);
5564  
5565  	if (ret) {
5566  		struct btrfs_dir_list *next;
5567  
5568  		list_for_each_entry_safe(dir_elem, next, &dir_list, list)
5569  			kfree(dir_elem);
5570  	}
5571  
5572  	return ret;
5573  }
5574  
5575  struct btrfs_ino_list {
5576  	u64 ino;
5577  	u64 parent;
5578  	struct list_head list;
5579  };
5580  
5581  static void free_conflicting_inodes(struct btrfs_log_ctx *ctx)
5582  {
5583  	struct btrfs_ino_list *curr;
5584  	struct btrfs_ino_list *next;
5585  
5586  	list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) {
5587  		list_del(&curr->list);
5588  		kfree(curr);
5589  	}
5590  }
5591  
5592  static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino,
5593  				    struct btrfs_path *path)
5594  {
5595  	struct btrfs_key key;
5596  	int ret;
5597  
5598  	key.objectid = ino;
5599  	key.type = BTRFS_INODE_ITEM_KEY;
5600  	key.offset = 0;
5601  
5602  	path->search_commit_root = 1;
5603  	path->skip_locking = 1;
5604  
5605  	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5606  	if (WARN_ON_ONCE(ret > 0)) {
5607  		/*
5608  		 * We have previously found the inode through the commit root
5609  		 * so this should not happen. If it does, just error out and
5610  		 * fallback to a transaction commit.
5611  		 */
5612  		ret = -ENOENT;
5613  	} else if (ret == 0) {
5614  		struct btrfs_inode_item *item;
5615  
5616  		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5617  				      struct btrfs_inode_item);
5618  		if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item)))
5619  			ret = 1;
5620  	}
5621  
5622  	btrfs_release_path(path);
5623  	path->search_commit_root = 0;
5624  	path->skip_locking = 0;
5625  
5626  	return ret;
5627  }
5628  
5629  static int add_conflicting_inode(struct btrfs_trans_handle *trans,
5630  				 struct btrfs_root *root,
5631  				 struct btrfs_path *path,
5632  				 u64 ino, u64 parent,
5633  				 struct btrfs_log_ctx *ctx)
5634  {
5635  	struct btrfs_ino_list *ino_elem;
5636  	struct inode *inode;
5637  
5638  	/*
5639  	 * It's rare to have a lot of conflicting inodes, in practice it is not
5640  	 * common to have more than 1 or 2. We don't want to collect too many,
5641  	 * as we could end up logging too many inodes (even if only in
5642  	 * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction
5643  	 * commits.
5644  	 */
5645  	if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES)
5646  		return BTRFS_LOG_FORCE_COMMIT;
5647  
5648  	inode = btrfs_iget(root->fs_info->sb, ino, root);
5649  	/*
5650  	 * If the other inode that had a conflicting dir entry was deleted in
5651  	 * the current transaction then we either:
5652  	 *
5653  	 * 1) Log the parent directory (later after adding it to the list) if
5654  	 *    the inode is a directory. This is because it may be a deleted
5655  	 *    subvolume/snapshot or it may be a regular directory that had
5656  	 *    deleted subvolumes/snapshots (or subdirectories that had them),
5657  	 *    and at the moment we can't deal with dropping subvolumes/snapshots
5658  	 *    during log replay. So we just log the parent, which will result in
5659  	 *    a fallback to a transaction commit if we are dealing with those
5660  	 *    cases (last_unlink_trans will match the current transaction);
5661  	 *
5662  	 * 2) Do nothing if it's not a directory. During log replay we simply
5663  	 *    unlink the conflicting dentry from the parent directory and then
5664  	 *    add the dentry for our inode. Like this we can avoid logging the
5665  	 *    parent directory (and maybe fallback to a transaction commit in
5666  	 *    case it has a last_unlink_trans == trans->transid, due to moving
5667  	 *    some inode from it to some other directory).
5668  	 */
5669  	if (IS_ERR(inode)) {
5670  		int ret = PTR_ERR(inode);
5671  
5672  		if (ret != -ENOENT)
5673  			return ret;
5674  
5675  		ret = conflicting_inode_is_dir(root, ino, path);
5676  		/* Not a directory or we got an error. */
5677  		if (ret <= 0)
5678  			return ret;
5679  
5680  		/* Conflicting inode is a directory, so we'll log its parent. */
5681  		ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5682  		if (!ino_elem)
5683  			return -ENOMEM;
5684  		ino_elem->ino = ino;
5685  		ino_elem->parent = parent;
5686  		list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5687  		ctx->num_conflict_inodes++;
5688  
5689  		return 0;
5690  	}
5691  
5692  	/*
5693  	 * If the inode was already logged skip it - otherwise we can hit an
5694  	 * infinite loop. Example:
5695  	 *
5696  	 * From the commit root (previous transaction) we have the following
5697  	 * inodes:
5698  	 *
5699  	 * inode 257 a directory
5700  	 * inode 258 with references "zz" and "zz_link" on inode 257
5701  	 * inode 259 with reference "a" on inode 257
5702  	 *
5703  	 * And in the current (uncommitted) transaction we have:
5704  	 *
5705  	 * inode 257 a directory, unchanged
5706  	 * inode 258 with references "a" and "a2" on inode 257
5707  	 * inode 259 with reference "zz_link" on inode 257
5708  	 * inode 261 with reference "zz" on inode 257
5709  	 *
5710  	 * When logging inode 261 the following infinite loop could
5711  	 * happen if we don't skip already logged inodes:
5712  	 *
5713  	 * - we detect inode 258 as a conflicting inode, with inode 261
5714  	 *   on reference "zz", and log it;
5715  	 *
5716  	 * - we detect inode 259 as a conflicting inode, with inode 258
5717  	 *   on reference "a", and log it;
5718  	 *
5719  	 * - we detect inode 258 as a conflicting inode, with inode 259
5720  	 *   on reference "zz_link", and log it - again! After this we
5721  	 *   repeat the above steps forever.
5722  	 *
5723  	 * Here we can use need_log_inode() because we only need to log the
5724  	 * inode in LOG_INODE_EXISTS mode and rename operations update the log,
5725  	 * so that the log ends up with the new name and without the old name.
5726  	 */
5727  	if (!need_log_inode(trans, BTRFS_I(inode))) {
5728  		btrfs_add_delayed_iput(BTRFS_I(inode));
5729  		return 0;
5730  	}
5731  
5732  	btrfs_add_delayed_iput(BTRFS_I(inode));
5733  
5734  	ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5735  	if (!ino_elem)
5736  		return -ENOMEM;
5737  	ino_elem->ino = ino;
5738  	ino_elem->parent = parent;
5739  	list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5740  	ctx->num_conflict_inodes++;
5741  
5742  	return 0;
5743  }
5744  
5745  static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5746  				  struct btrfs_root *root,
5747  				  struct btrfs_log_ctx *ctx)
5748  {
5749  	struct btrfs_fs_info *fs_info = root->fs_info;
5750  	int ret = 0;
5751  
5752  	/*
5753  	 * Conflicting inodes are logged by the first call to btrfs_log_inode(),
5754  	 * otherwise we could have unbounded recursion of btrfs_log_inode()
5755  	 * calls. This check guarantees we can have only 1 level of recursion.
5756  	 */
5757  	if (ctx->logging_conflict_inodes)
5758  		return 0;
5759  
5760  	ctx->logging_conflict_inodes = true;
5761  
5762  	/*
5763  	 * New conflicting inodes may be found and added to the list while we
5764  	 * are logging a conflicting inode, so keep iterating while the list is
5765  	 * not empty.
5766  	 */
5767  	while (!list_empty(&ctx->conflict_inodes)) {
5768  		struct btrfs_ino_list *curr;
5769  		struct inode *inode;
5770  		u64 ino;
5771  		u64 parent;
5772  
5773  		curr = list_first_entry(&ctx->conflict_inodes,
5774  					struct btrfs_ino_list, list);
5775  		ino = curr->ino;
5776  		parent = curr->parent;
5777  		list_del(&curr->list);
5778  		kfree(curr);
5779  
5780  		inode = btrfs_iget(fs_info->sb, ino, root);
5781  		/*
5782  		 * If the other inode that had a conflicting dir entry was
5783  		 * deleted in the current transaction, we need to log its parent
5784  		 * directory. See the comment at add_conflicting_inode().
5785  		 */
5786  		if (IS_ERR(inode)) {
5787  			ret = PTR_ERR(inode);
5788  			if (ret != -ENOENT)
5789  				break;
5790  
5791  			inode = btrfs_iget(fs_info->sb, parent, root);
5792  			if (IS_ERR(inode)) {
5793  				ret = PTR_ERR(inode);
5794  				break;
5795  			}
5796  
5797  			/*
5798  			 * Always log the directory, we cannot make this
5799  			 * conditional on need_log_inode() because the directory
5800  			 * might have been logged in LOG_INODE_EXISTS mode or
5801  			 * the dir index of the conflicting inode is not in a
5802  			 * dir index key range logged for the directory. So we
5803  			 * must make sure the deletion is recorded.
5804  			 */
5805  			ret = btrfs_log_inode(trans, BTRFS_I(inode),
5806  					      LOG_INODE_ALL, ctx);
5807  			btrfs_add_delayed_iput(BTRFS_I(inode));
5808  			if (ret)
5809  				break;
5810  			continue;
5811  		}
5812  
5813  		/*
5814  		 * Here we can use need_log_inode() because we only need to log
5815  		 * the inode in LOG_INODE_EXISTS mode and rename operations
5816  		 * update the log, so that the log ends up with the new name and
5817  		 * without the old name.
5818  		 *
5819  		 * We did this check at add_conflicting_inode(), but here we do
5820  		 * it again because if some other task logged the inode after
5821  		 * that, we can avoid doing it again.
5822  		 */
5823  		if (!need_log_inode(trans, BTRFS_I(inode))) {
5824  			btrfs_add_delayed_iput(BTRFS_I(inode));
5825  			continue;
5826  		}
5827  
5828  		/*
5829  		 * We are safe logging the other inode without acquiring its
5830  		 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5831  		 * are safe against concurrent renames of the other inode as
5832  		 * well because during a rename we pin the log and update the
5833  		 * log with the new name before we unpin it.
5834  		 */
5835  		ret = btrfs_log_inode(trans, BTRFS_I(inode), LOG_INODE_EXISTS, ctx);
5836  		btrfs_add_delayed_iput(BTRFS_I(inode));
5837  		if (ret)
5838  			break;
5839  	}
5840  
5841  	ctx->logging_conflict_inodes = false;
5842  	if (ret)
5843  		free_conflicting_inodes(ctx);
5844  
5845  	return ret;
5846  }
5847  
5848  static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5849  				   struct btrfs_inode *inode,
5850  				   struct btrfs_key *min_key,
5851  				   const struct btrfs_key *max_key,
5852  				   struct btrfs_path *path,
5853  				   struct btrfs_path *dst_path,
5854  				   const u64 logged_isize,
5855  				   const int inode_only,
5856  				   struct btrfs_log_ctx *ctx,
5857  				   bool *need_log_inode_item)
5858  {
5859  	const u64 i_size = i_size_read(&inode->vfs_inode);
5860  	struct btrfs_root *root = inode->root;
5861  	int ins_start_slot = 0;
5862  	int ins_nr = 0;
5863  	int ret;
5864  
5865  	while (1) {
5866  		ret = btrfs_search_forward(root, min_key, path, trans->transid);
5867  		if (ret < 0)
5868  			return ret;
5869  		if (ret > 0) {
5870  			ret = 0;
5871  			break;
5872  		}
5873  again:
5874  		/* Note, ins_nr might be > 0 here, cleanup outside the loop */
5875  		if (min_key->objectid != max_key->objectid)
5876  			break;
5877  		if (min_key->type > max_key->type)
5878  			break;
5879  
5880  		if (min_key->type == BTRFS_INODE_ITEM_KEY) {
5881  			*need_log_inode_item = false;
5882  		} else if (min_key->type == BTRFS_EXTENT_DATA_KEY &&
5883  			   min_key->offset >= i_size) {
5884  			/*
5885  			 * Extents at and beyond eof are logged with
5886  			 * btrfs_log_prealloc_extents().
5887  			 * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
5888  			 * and no keys greater than that, so bail out.
5889  			 */
5890  			break;
5891  		} else if ((min_key->type == BTRFS_INODE_REF_KEY ||
5892  			    min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5893  			   (inode->generation == trans->transid ||
5894  			    ctx->logging_conflict_inodes)) {
5895  			u64 other_ino = 0;
5896  			u64 other_parent = 0;
5897  
5898  			ret = btrfs_check_ref_name_override(path->nodes[0],
5899  					path->slots[0], min_key, inode,
5900  					&other_ino, &other_parent);
5901  			if (ret < 0) {
5902  				return ret;
5903  			} else if (ret > 0 &&
5904  				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5905  				if (ins_nr > 0) {
5906  					ins_nr++;
5907  				} else {
5908  					ins_nr = 1;
5909  					ins_start_slot = path->slots[0];
5910  				}
5911  				ret = copy_items(trans, inode, dst_path, path,
5912  						 ins_start_slot, ins_nr,
5913  						 inode_only, logged_isize, ctx);
5914  				if (ret < 0)
5915  					return ret;
5916  				ins_nr = 0;
5917  
5918  				btrfs_release_path(path);
5919  				ret = add_conflicting_inode(trans, root, path,
5920  							    other_ino,
5921  							    other_parent, ctx);
5922  				if (ret)
5923  					return ret;
5924  				goto next_key;
5925  			}
5926  		} else if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5927  			/* Skip xattrs, logged later with btrfs_log_all_xattrs() */
5928  			if (ins_nr == 0)
5929  				goto next_slot;
5930  			ret = copy_items(trans, inode, dst_path, path,
5931  					 ins_start_slot,
5932  					 ins_nr, inode_only, logged_isize, ctx);
5933  			if (ret < 0)
5934  				return ret;
5935  			ins_nr = 0;
5936  			goto next_slot;
5937  		}
5938  
5939  		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5940  			ins_nr++;
5941  			goto next_slot;
5942  		} else if (!ins_nr) {
5943  			ins_start_slot = path->slots[0];
5944  			ins_nr = 1;
5945  			goto next_slot;
5946  		}
5947  
5948  		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5949  				 ins_nr, inode_only, logged_isize, ctx);
5950  		if (ret < 0)
5951  			return ret;
5952  		ins_nr = 1;
5953  		ins_start_slot = path->slots[0];
5954  next_slot:
5955  		path->slots[0]++;
5956  		if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5957  			btrfs_item_key_to_cpu(path->nodes[0], min_key,
5958  					      path->slots[0]);
5959  			goto again;
5960  		}
5961  		if (ins_nr) {
5962  			ret = copy_items(trans, inode, dst_path, path,
5963  					 ins_start_slot, ins_nr, inode_only,
5964  					 logged_isize, ctx);
5965  			if (ret < 0)
5966  				return ret;
5967  			ins_nr = 0;
5968  		}
5969  		btrfs_release_path(path);
5970  next_key:
5971  		if (min_key->offset < (u64)-1) {
5972  			min_key->offset++;
5973  		} else if (min_key->type < max_key->type) {
5974  			min_key->type++;
5975  			min_key->offset = 0;
5976  		} else {
5977  			break;
5978  		}
5979  
5980  		/*
5981  		 * We may process many leaves full of items for our inode, so
5982  		 * avoid monopolizing a cpu for too long by rescheduling while
5983  		 * not holding locks on any tree.
5984  		 */
5985  		cond_resched();
5986  	}
5987  	if (ins_nr) {
5988  		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5989  				 ins_nr, inode_only, logged_isize, ctx);
5990  		if (ret)
5991  			return ret;
5992  	}
5993  
5994  	if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) {
5995  		/*
5996  		 * Release the path because otherwise we might attempt to double
5997  		 * lock the same leaf with btrfs_log_prealloc_extents() below.
5998  		 */
5999  		btrfs_release_path(path);
6000  		ret = btrfs_log_prealloc_extents(trans, inode, dst_path, ctx);
6001  	}
6002  
6003  	return ret;
6004  }
6005  
6006  static int insert_delayed_items_batch(struct btrfs_trans_handle *trans,
6007  				      struct btrfs_root *log,
6008  				      struct btrfs_path *path,
6009  				      const struct btrfs_item_batch *batch,
6010  				      const struct btrfs_delayed_item *first_item)
6011  {
6012  	const struct btrfs_delayed_item *curr = first_item;
6013  	int ret;
6014  
6015  	ret = btrfs_insert_empty_items(trans, log, path, batch);
6016  	if (ret)
6017  		return ret;
6018  
6019  	for (int i = 0; i < batch->nr; i++) {
6020  		char *data_ptr;
6021  
6022  		data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
6023  		write_extent_buffer(path->nodes[0], &curr->data,
6024  				    (unsigned long)data_ptr, curr->data_len);
6025  		curr = list_next_entry(curr, log_list);
6026  		path->slots[0]++;
6027  	}
6028  
6029  	btrfs_release_path(path);
6030  
6031  	return 0;
6032  }
6033  
6034  static int log_delayed_insertion_items(struct btrfs_trans_handle *trans,
6035  				       struct btrfs_inode *inode,
6036  				       struct btrfs_path *path,
6037  				       const struct list_head *delayed_ins_list,
6038  				       struct btrfs_log_ctx *ctx)
6039  {
6040  	/* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */
6041  	const int max_batch_size = 195;
6042  	const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info);
6043  	const u64 ino = btrfs_ino(inode);
6044  	struct btrfs_root *log = inode->root->log_root;
6045  	struct btrfs_item_batch batch = {
6046  		.nr = 0,
6047  		.total_data_size = 0,
6048  	};
6049  	const struct btrfs_delayed_item *first = NULL;
6050  	const struct btrfs_delayed_item *curr;
6051  	char *ins_data;
6052  	struct btrfs_key *ins_keys;
6053  	u32 *ins_sizes;
6054  	u64 curr_batch_size = 0;
6055  	int batch_idx = 0;
6056  	int ret;
6057  
6058  	/* We are adding dir index items to the log tree. */
6059  	lockdep_assert_held(&inode->log_mutex);
6060  
6061  	/*
6062  	 * We collect delayed items before copying index keys from the subvolume
6063  	 * to the log tree. However just after we collected them, they may have
6064  	 * been flushed (all of them or just some of them), and therefore we
6065  	 * could have copied them from the subvolume tree to the log tree.
6066  	 * So find the first delayed item that was not yet logged (they are
6067  	 * sorted by index number).
6068  	 */
6069  	list_for_each_entry(curr, delayed_ins_list, log_list) {
6070  		if (curr->index > inode->last_dir_index_offset) {
6071  			first = curr;
6072  			break;
6073  		}
6074  	}
6075  
6076  	/* Empty list or all delayed items were already logged. */
6077  	if (!first)
6078  		return 0;
6079  
6080  	ins_data = kmalloc(max_batch_size * sizeof(u32) +
6081  			   max_batch_size * sizeof(struct btrfs_key), GFP_NOFS);
6082  	if (!ins_data)
6083  		return -ENOMEM;
6084  	ins_sizes = (u32 *)ins_data;
6085  	batch.data_sizes = ins_sizes;
6086  	ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32));
6087  	batch.keys = ins_keys;
6088  
6089  	curr = first;
6090  	while (!list_entry_is_head(curr, delayed_ins_list, log_list)) {
6091  		const u32 curr_size = curr->data_len + sizeof(struct btrfs_item);
6092  
6093  		if (curr_batch_size + curr_size > leaf_data_size ||
6094  		    batch.nr == max_batch_size) {
6095  			ret = insert_delayed_items_batch(trans, log, path,
6096  							 &batch, first);
6097  			if (ret)
6098  				goto out;
6099  			batch_idx = 0;
6100  			batch.nr = 0;
6101  			batch.total_data_size = 0;
6102  			curr_batch_size = 0;
6103  			first = curr;
6104  		}
6105  
6106  		ins_sizes[batch_idx] = curr->data_len;
6107  		ins_keys[batch_idx].objectid = ino;
6108  		ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY;
6109  		ins_keys[batch_idx].offset = curr->index;
6110  		curr_batch_size += curr_size;
6111  		batch.total_data_size += curr->data_len;
6112  		batch.nr++;
6113  		batch_idx++;
6114  		curr = list_next_entry(curr, log_list);
6115  	}
6116  
6117  	ASSERT(batch.nr >= 1);
6118  	ret = insert_delayed_items_batch(trans, log, path, &batch, first);
6119  
6120  	curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item,
6121  			       log_list);
6122  	inode->last_dir_index_offset = curr->index;
6123  out:
6124  	kfree(ins_data);
6125  
6126  	return ret;
6127  }
6128  
6129  static int log_delayed_deletions_full(struct btrfs_trans_handle *trans,
6130  				      struct btrfs_inode *inode,
6131  				      struct btrfs_path *path,
6132  				      const struct list_head *delayed_del_list,
6133  				      struct btrfs_log_ctx *ctx)
6134  {
6135  	const u64 ino = btrfs_ino(inode);
6136  	const struct btrfs_delayed_item *curr;
6137  
6138  	curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6139  				log_list);
6140  
6141  	while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6142  		u64 first_dir_index = curr->index;
6143  		u64 last_dir_index;
6144  		const struct btrfs_delayed_item *next;
6145  		int ret;
6146  
6147  		/*
6148  		 * Find a range of consecutive dir index items to delete. Like
6149  		 * this we log a single dir range item spanning several contiguous
6150  		 * dir items instead of logging one range item per dir index item.
6151  		 */
6152  		next = list_next_entry(curr, log_list);
6153  		while (!list_entry_is_head(next, delayed_del_list, log_list)) {
6154  			if (next->index != curr->index + 1)
6155  				break;
6156  			curr = next;
6157  			next = list_next_entry(next, log_list);
6158  		}
6159  
6160  		last_dir_index = curr->index;
6161  		ASSERT(last_dir_index >= first_dir_index);
6162  
6163  		ret = insert_dir_log_key(trans, inode->root->log_root, path,
6164  					 ino, first_dir_index, last_dir_index);
6165  		if (ret)
6166  			return ret;
6167  		curr = list_next_entry(curr, log_list);
6168  	}
6169  
6170  	return 0;
6171  }
6172  
6173  static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans,
6174  					struct btrfs_inode *inode,
6175  					struct btrfs_path *path,
6176  					struct btrfs_log_ctx *ctx,
6177  					const struct list_head *delayed_del_list,
6178  					const struct btrfs_delayed_item *first,
6179  					const struct btrfs_delayed_item **last_ret)
6180  {
6181  	const struct btrfs_delayed_item *next;
6182  	struct extent_buffer *leaf = path->nodes[0];
6183  	const int last_slot = btrfs_header_nritems(leaf) - 1;
6184  	int slot = path->slots[0] + 1;
6185  	const u64 ino = btrfs_ino(inode);
6186  
6187  	next = list_next_entry(first, log_list);
6188  
6189  	while (slot < last_slot &&
6190  	       !list_entry_is_head(next, delayed_del_list, log_list)) {
6191  		struct btrfs_key key;
6192  
6193  		btrfs_item_key_to_cpu(leaf, &key, slot);
6194  		if (key.objectid != ino ||
6195  		    key.type != BTRFS_DIR_INDEX_KEY ||
6196  		    key.offset != next->index)
6197  			break;
6198  
6199  		slot++;
6200  		*last_ret = next;
6201  		next = list_next_entry(next, log_list);
6202  	}
6203  
6204  	return btrfs_del_items(trans, inode->root->log_root, path,
6205  			       path->slots[0], slot - path->slots[0]);
6206  }
6207  
6208  static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans,
6209  					     struct btrfs_inode *inode,
6210  					     struct btrfs_path *path,
6211  					     const struct list_head *delayed_del_list,
6212  					     struct btrfs_log_ctx *ctx)
6213  {
6214  	struct btrfs_root *log = inode->root->log_root;
6215  	const struct btrfs_delayed_item *curr;
6216  	u64 last_range_start = 0;
6217  	u64 last_range_end = 0;
6218  	struct btrfs_key key;
6219  
6220  	key.objectid = btrfs_ino(inode);
6221  	key.type = BTRFS_DIR_INDEX_KEY;
6222  	curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6223  				log_list);
6224  
6225  	while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6226  		const struct btrfs_delayed_item *last = curr;
6227  		u64 first_dir_index = curr->index;
6228  		u64 last_dir_index;
6229  		bool deleted_items = false;
6230  		int ret;
6231  
6232  		key.offset = curr->index;
6233  		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
6234  		if (ret < 0) {
6235  			return ret;
6236  		} else if (ret == 0) {
6237  			ret = batch_delete_dir_index_items(trans, inode, path, ctx,
6238  							   delayed_del_list, curr,
6239  							   &last);
6240  			if (ret)
6241  				return ret;
6242  			deleted_items = true;
6243  		}
6244  
6245  		btrfs_release_path(path);
6246  
6247  		/*
6248  		 * If we deleted items from the leaf, it means we have a range
6249  		 * item logging their range, so no need to add one or update an
6250  		 * existing one. Otherwise we have to log a dir range item.
6251  		 */
6252  		if (deleted_items)
6253  			goto next_batch;
6254  
6255  		last_dir_index = last->index;
6256  		ASSERT(last_dir_index >= first_dir_index);
6257  		/*
6258  		 * If this range starts right after where the previous one ends,
6259  		 * then we want to reuse the previous range item and change its
6260  		 * end offset to the end of this range. This is just to minimize
6261  		 * leaf space usage, by avoiding adding a new range item.
6262  		 */
6263  		if (last_range_end != 0 && first_dir_index == last_range_end + 1)
6264  			first_dir_index = last_range_start;
6265  
6266  		ret = insert_dir_log_key(trans, log, path, key.objectid,
6267  					 first_dir_index, last_dir_index);
6268  		if (ret)
6269  			return ret;
6270  
6271  		last_range_start = first_dir_index;
6272  		last_range_end = last_dir_index;
6273  next_batch:
6274  		curr = list_next_entry(last, log_list);
6275  	}
6276  
6277  	return 0;
6278  }
6279  
6280  static int log_delayed_deletion_items(struct btrfs_trans_handle *trans,
6281  				      struct btrfs_inode *inode,
6282  				      struct btrfs_path *path,
6283  				      const struct list_head *delayed_del_list,
6284  				      struct btrfs_log_ctx *ctx)
6285  {
6286  	/*
6287  	 * We are deleting dir index items from the log tree or adding range
6288  	 * items to it.
6289  	 */
6290  	lockdep_assert_held(&inode->log_mutex);
6291  
6292  	if (list_empty(delayed_del_list))
6293  		return 0;
6294  
6295  	if (ctx->logged_before)
6296  		return log_delayed_deletions_incremental(trans, inode, path,
6297  							 delayed_del_list, ctx);
6298  
6299  	return log_delayed_deletions_full(trans, inode, path, delayed_del_list,
6300  					  ctx);
6301  }
6302  
6303  /*
6304   * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed
6305   * items instead of the subvolume tree.
6306   */
6307  static int log_new_delayed_dentries(struct btrfs_trans_handle *trans,
6308  				    struct btrfs_inode *inode,
6309  				    const struct list_head *delayed_ins_list,
6310  				    struct btrfs_log_ctx *ctx)
6311  {
6312  	const bool orig_log_new_dentries = ctx->log_new_dentries;
6313  	struct btrfs_fs_info *fs_info = trans->fs_info;
6314  	struct btrfs_delayed_item *item;
6315  	int ret = 0;
6316  
6317  	/*
6318  	 * No need for the log mutex, plus to avoid potential deadlocks or
6319  	 * lockdep annotations due to nesting of delayed inode mutexes and log
6320  	 * mutexes.
6321  	 */
6322  	lockdep_assert_not_held(&inode->log_mutex);
6323  
6324  	ASSERT(!ctx->logging_new_delayed_dentries);
6325  	ctx->logging_new_delayed_dentries = true;
6326  
6327  	list_for_each_entry(item, delayed_ins_list, log_list) {
6328  		struct btrfs_dir_item *dir_item;
6329  		struct inode *di_inode;
6330  		struct btrfs_key key;
6331  		int log_mode = LOG_INODE_EXISTS;
6332  
6333  		dir_item = (struct btrfs_dir_item *)item->data;
6334  		btrfs_disk_key_to_cpu(&key, &dir_item->location);
6335  
6336  		if (key.type == BTRFS_ROOT_ITEM_KEY)
6337  			continue;
6338  
6339  		di_inode = btrfs_iget(fs_info->sb, key.objectid, inode->root);
6340  		if (IS_ERR(di_inode)) {
6341  			ret = PTR_ERR(di_inode);
6342  			break;
6343  		}
6344  
6345  		if (!need_log_inode(trans, BTRFS_I(di_inode))) {
6346  			btrfs_add_delayed_iput(BTRFS_I(di_inode));
6347  			continue;
6348  		}
6349  
6350  		if (btrfs_stack_dir_ftype(dir_item) == BTRFS_FT_DIR)
6351  			log_mode = LOG_INODE_ALL;
6352  
6353  		ctx->log_new_dentries = false;
6354  		ret = btrfs_log_inode(trans, BTRFS_I(di_inode), log_mode, ctx);
6355  
6356  		if (!ret && ctx->log_new_dentries)
6357  			ret = log_new_dir_dentries(trans, BTRFS_I(di_inode), ctx);
6358  
6359  		btrfs_add_delayed_iput(BTRFS_I(di_inode));
6360  
6361  		if (ret)
6362  			break;
6363  	}
6364  
6365  	ctx->log_new_dentries = orig_log_new_dentries;
6366  	ctx->logging_new_delayed_dentries = false;
6367  
6368  	return ret;
6369  }
6370  
6371  /* log a single inode in the tree log.
6372   * At least one parent directory for this inode must exist in the tree
6373   * or be logged already.
6374   *
6375   * Any items from this inode changed by the current transaction are copied
6376   * to the log tree.  An extra reference is taken on any extents in this
6377   * file, allowing us to avoid a whole pile of corner cases around logging
6378   * blocks that have been removed from the tree.
6379   *
6380   * See LOG_INODE_ALL and related defines for a description of what inode_only
6381   * does.
6382   *
6383   * This handles both files and directories.
6384   */
6385  static int btrfs_log_inode(struct btrfs_trans_handle *trans,
6386  			   struct btrfs_inode *inode,
6387  			   int inode_only,
6388  			   struct btrfs_log_ctx *ctx)
6389  {
6390  	struct btrfs_path *path;
6391  	struct btrfs_path *dst_path;
6392  	struct btrfs_key min_key;
6393  	struct btrfs_key max_key;
6394  	struct btrfs_root *log = inode->root->log_root;
6395  	int ret;
6396  	bool fast_search = false;
6397  	u64 ino = btrfs_ino(inode);
6398  	struct extent_map_tree *em_tree = &inode->extent_tree;
6399  	u64 logged_isize = 0;
6400  	bool need_log_inode_item = true;
6401  	bool xattrs_logged = false;
6402  	bool inode_item_dropped = true;
6403  	bool full_dir_logging = false;
6404  	LIST_HEAD(delayed_ins_list);
6405  	LIST_HEAD(delayed_del_list);
6406  
6407  	path = btrfs_alloc_path();
6408  	if (!path)
6409  		return -ENOMEM;
6410  	dst_path = btrfs_alloc_path();
6411  	if (!dst_path) {
6412  		btrfs_free_path(path);
6413  		return -ENOMEM;
6414  	}
6415  
6416  	min_key.objectid = ino;
6417  	min_key.type = BTRFS_INODE_ITEM_KEY;
6418  	min_key.offset = 0;
6419  
6420  	max_key.objectid = ino;
6421  
6422  
6423  	/* today the code can only do partial logging of directories */
6424  	if (S_ISDIR(inode->vfs_inode.i_mode) ||
6425  	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6426  		       &inode->runtime_flags) &&
6427  	     inode_only >= LOG_INODE_EXISTS))
6428  		max_key.type = BTRFS_XATTR_ITEM_KEY;
6429  	else
6430  		max_key.type = (u8)-1;
6431  	max_key.offset = (u64)-1;
6432  
6433  	if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL)
6434  		full_dir_logging = true;
6435  
6436  	/*
6437  	 * If we are logging a directory while we are logging dentries of the
6438  	 * delayed items of some other inode, then we need to flush the delayed
6439  	 * items of this directory and not log the delayed items directly. This
6440  	 * is to prevent more than one level of recursion into btrfs_log_inode()
6441  	 * by having something like this:
6442  	 *
6443  	 *     $ mkdir -p a/b/c/d/e/f/g/h/...
6444  	 *     $ xfs_io -c "fsync" a
6445  	 *
6446  	 * Where all directories in the path did not exist before and are
6447  	 * created in the current transaction.
6448  	 * So in such a case we directly log the delayed items of the main
6449  	 * directory ("a") without flushing them first, while for each of its
6450  	 * subdirectories we flush their delayed items before logging them.
6451  	 * This prevents a potential unbounded recursion like this:
6452  	 *
6453  	 * btrfs_log_inode()
6454  	 *   log_new_delayed_dentries()
6455  	 *      btrfs_log_inode()
6456  	 *        log_new_delayed_dentries()
6457  	 *          btrfs_log_inode()
6458  	 *            log_new_delayed_dentries()
6459  	 *              (...)
6460  	 *
6461  	 * We have thresholds for the maximum number of delayed items to have in
6462  	 * memory, and once they are hit, the items are flushed asynchronously.
6463  	 * However the limit is quite high, so lets prevent deep levels of
6464  	 * recursion to happen by limiting the maximum depth to be 1.
6465  	 */
6466  	if (full_dir_logging && ctx->logging_new_delayed_dentries) {
6467  		ret = btrfs_commit_inode_delayed_items(trans, inode);
6468  		if (ret)
6469  			goto out;
6470  	}
6471  
6472  	mutex_lock(&inode->log_mutex);
6473  
6474  	/*
6475  	 * For symlinks, we must always log their content, which is stored in an
6476  	 * inline extent, otherwise we could end up with an empty symlink after
6477  	 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if
6478  	 * one attempts to create an empty symlink).
6479  	 * We don't need to worry about flushing delalloc, because when we create
6480  	 * the inline extent when the symlink is created (we never have delalloc
6481  	 * for symlinks).
6482  	 */
6483  	if (S_ISLNK(inode->vfs_inode.i_mode))
6484  		inode_only = LOG_INODE_ALL;
6485  
6486  	/*
6487  	 * Before logging the inode item, cache the value returned by
6488  	 * inode_logged(), because after that we have the need to figure out if
6489  	 * the inode was previously logged in this transaction.
6490  	 */
6491  	ret = inode_logged(trans, inode, path);
6492  	if (ret < 0)
6493  		goto out_unlock;
6494  	ctx->logged_before = (ret == 1);
6495  	ret = 0;
6496  
6497  	/*
6498  	 * This is for cases where logging a directory could result in losing a
6499  	 * a file after replaying the log. For example, if we move a file from a
6500  	 * directory A to a directory B, then fsync directory A, we have no way
6501  	 * to known the file was moved from A to B, so logging just A would
6502  	 * result in losing the file after a log replay.
6503  	 */
6504  	if (full_dir_logging && inode->last_unlink_trans >= trans->transid) {
6505  		ret = BTRFS_LOG_FORCE_COMMIT;
6506  		goto out_unlock;
6507  	}
6508  
6509  	/*
6510  	 * a brute force approach to making sure we get the most uptodate
6511  	 * copies of everything.
6512  	 */
6513  	if (S_ISDIR(inode->vfs_inode.i_mode)) {
6514  		clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
6515  		if (ctx->logged_before)
6516  			ret = drop_inode_items(trans, log, path, inode,
6517  					       BTRFS_XATTR_ITEM_KEY);
6518  	} else {
6519  		if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) {
6520  			/*
6521  			 * Make sure the new inode item we write to the log has
6522  			 * the same isize as the current one (if it exists).
6523  			 * This is necessary to prevent data loss after log
6524  			 * replay, and also to prevent doing a wrong expanding
6525  			 * truncate - for e.g. create file, write 4K into offset
6526  			 * 0, fsync, write 4K into offset 4096, add hard link,
6527  			 * fsync some other file (to sync log), power fail - if
6528  			 * we use the inode's current i_size, after log replay
6529  			 * we get a 8Kb file, with the last 4Kb extent as a hole
6530  			 * (zeroes), as if an expanding truncate happened,
6531  			 * instead of getting a file of 4Kb only.
6532  			 */
6533  			ret = logged_inode_size(log, inode, path, &logged_isize);
6534  			if (ret)
6535  				goto out_unlock;
6536  		}
6537  		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6538  			     &inode->runtime_flags)) {
6539  			if (inode_only == LOG_INODE_EXISTS) {
6540  				max_key.type = BTRFS_XATTR_ITEM_KEY;
6541  				if (ctx->logged_before)
6542  					ret = drop_inode_items(trans, log, path,
6543  							       inode, max_key.type);
6544  			} else {
6545  				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6546  					  &inode->runtime_flags);
6547  				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6548  					  &inode->runtime_flags);
6549  				if (ctx->logged_before)
6550  					ret = truncate_inode_items(trans, log,
6551  								   inode, 0, 0);
6552  			}
6553  		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6554  					      &inode->runtime_flags) ||
6555  			   inode_only == LOG_INODE_EXISTS) {
6556  			if (inode_only == LOG_INODE_ALL)
6557  				fast_search = true;
6558  			max_key.type = BTRFS_XATTR_ITEM_KEY;
6559  			if (ctx->logged_before)
6560  				ret = drop_inode_items(trans, log, path, inode,
6561  						       max_key.type);
6562  		} else {
6563  			if (inode_only == LOG_INODE_ALL)
6564  				fast_search = true;
6565  			inode_item_dropped = false;
6566  			goto log_extents;
6567  		}
6568  
6569  	}
6570  	if (ret)
6571  		goto out_unlock;
6572  
6573  	/*
6574  	 * If we are logging a directory in full mode, collect the delayed items
6575  	 * before iterating the subvolume tree, so that we don't miss any new
6576  	 * dir index items in case they get flushed while or right after we are
6577  	 * iterating the subvolume tree.
6578  	 */
6579  	if (full_dir_logging && !ctx->logging_new_delayed_dentries)
6580  		btrfs_log_get_delayed_items(inode, &delayed_ins_list,
6581  					    &delayed_del_list);
6582  
6583  	ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
6584  				      path, dst_path, logged_isize,
6585  				      inode_only, ctx,
6586  				      &need_log_inode_item);
6587  	if (ret)
6588  		goto out_unlock;
6589  
6590  	btrfs_release_path(path);
6591  	btrfs_release_path(dst_path);
6592  	ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx);
6593  	if (ret)
6594  		goto out_unlock;
6595  	xattrs_logged = true;
6596  	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
6597  		btrfs_release_path(path);
6598  		btrfs_release_path(dst_path);
6599  		ret = btrfs_log_holes(trans, inode, path);
6600  		if (ret)
6601  			goto out_unlock;
6602  	}
6603  log_extents:
6604  	btrfs_release_path(path);
6605  	btrfs_release_path(dst_path);
6606  	if (need_log_inode_item) {
6607  		ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
6608  		if (ret)
6609  			goto out_unlock;
6610  		/*
6611  		 * If we are doing a fast fsync and the inode was logged before
6612  		 * in this transaction, we don't need to log the xattrs because
6613  		 * they were logged before. If xattrs were added, changed or
6614  		 * deleted since the last time we logged the inode, then we have
6615  		 * already logged them because the inode had the runtime flag
6616  		 * BTRFS_INODE_COPY_EVERYTHING set.
6617  		 */
6618  		if (!xattrs_logged && inode->logged_trans < trans->transid) {
6619  			ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx);
6620  			if (ret)
6621  				goto out_unlock;
6622  			btrfs_release_path(path);
6623  		}
6624  	}
6625  	if (fast_search) {
6626  		ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx);
6627  		if (ret)
6628  			goto out_unlock;
6629  	} else if (inode_only == LOG_INODE_ALL) {
6630  		struct extent_map *em, *n;
6631  
6632  		write_lock(&em_tree->lock);
6633  		list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
6634  			list_del_init(&em->list);
6635  		write_unlock(&em_tree->lock);
6636  	}
6637  
6638  	if (full_dir_logging) {
6639  		ret = log_directory_changes(trans, inode, path, dst_path, ctx);
6640  		if (ret)
6641  			goto out_unlock;
6642  		ret = log_delayed_insertion_items(trans, inode, path,
6643  						  &delayed_ins_list, ctx);
6644  		if (ret)
6645  			goto out_unlock;
6646  		ret = log_delayed_deletion_items(trans, inode, path,
6647  						 &delayed_del_list, ctx);
6648  		if (ret)
6649  			goto out_unlock;
6650  	}
6651  
6652  	spin_lock(&inode->lock);
6653  	inode->logged_trans = trans->transid;
6654  	/*
6655  	 * Don't update last_log_commit if we logged that an inode exists.
6656  	 * We do this for three reasons:
6657  	 *
6658  	 * 1) We might have had buffered writes to this inode that were
6659  	 *    flushed and had their ordered extents completed in this
6660  	 *    transaction, but we did not previously log the inode with
6661  	 *    LOG_INODE_ALL. Later the inode was evicted and after that
6662  	 *    it was loaded again and this LOG_INODE_EXISTS log operation
6663  	 *    happened. We must make sure that if an explicit fsync against
6664  	 *    the inode is performed later, it logs the new extents, an
6665  	 *    updated inode item, etc, and syncs the log. The same logic
6666  	 *    applies to direct IO writes instead of buffered writes.
6667  	 *
6668  	 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
6669  	 *    is logged with an i_size of 0 or whatever value was logged
6670  	 *    before. If later the i_size of the inode is increased by a
6671  	 *    truncate operation, the log is synced through an fsync of
6672  	 *    some other inode and then finally an explicit fsync against
6673  	 *    this inode is made, we must make sure this fsync logs the
6674  	 *    inode with the new i_size, the hole between old i_size and
6675  	 *    the new i_size, and syncs the log.
6676  	 *
6677  	 * 3) If we are logging that an ancestor inode exists as part of
6678  	 *    logging a new name from a link or rename operation, don't update
6679  	 *    its last_log_commit - otherwise if an explicit fsync is made
6680  	 *    against an ancestor, the fsync considers the inode in the log
6681  	 *    and doesn't sync the log, resulting in the ancestor missing after
6682  	 *    a power failure unless the log was synced as part of an fsync
6683  	 *    against any other unrelated inode.
6684  	 */
6685  	if (inode_only != LOG_INODE_EXISTS)
6686  		inode->last_log_commit = inode->last_sub_trans;
6687  	spin_unlock(&inode->lock);
6688  
6689  	/*
6690  	 * Reset the last_reflink_trans so that the next fsync does not need to
6691  	 * go through the slower path when logging extents and their checksums.
6692  	 */
6693  	if (inode_only == LOG_INODE_ALL)
6694  		inode->last_reflink_trans = 0;
6695  
6696  out_unlock:
6697  	mutex_unlock(&inode->log_mutex);
6698  out:
6699  	btrfs_free_path(path);
6700  	btrfs_free_path(dst_path);
6701  
6702  	if (ret)
6703  		free_conflicting_inodes(ctx);
6704  	else
6705  		ret = log_conflicting_inodes(trans, inode->root, ctx);
6706  
6707  	if (full_dir_logging && !ctx->logging_new_delayed_dentries) {
6708  		if (!ret)
6709  			ret = log_new_delayed_dentries(trans, inode,
6710  						       &delayed_ins_list, ctx);
6711  
6712  		btrfs_log_put_delayed_items(inode, &delayed_ins_list,
6713  					    &delayed_del_list);
6714  	}
6715  
6716  	return ret;
6717  }
6718  
6719  static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
6720  				 struct btrfs_inode *inode,
6721  				 struct btrfs_log_ctx *ctx)
6722  {
6723  	struct btrfs_fs_info *fs_info = trans->fs_info;
6724  	int ret;
6725  	struct btrfs_path *path;
6726  	struct btrfs_key key;
6727  	struct btrfs_root *root = inode->root;
6728  	const u64 ino = btrfs_ino(inode);
6729  
6730  	path = btrfs_alloc_path();
6731  	if (!path)
6732  		return -ENOMEM;
6733  	path->skip_locking = 1;
6734  	path->search_commit_root = 1;
6735  
6736  	key.objectid = ino;
6737  	key.type = BTRFS_INODE_REF_KEY;
6738  	key.offset = 0;
6739  	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6740  	if (ret < 0)
6741  		goto out;
6742  
6743  	while (true) {
6744  		struct extent_buffer *leaf = path->nodes[0];
6745  		int slot = path->slots[0];
6746  		u32 cur_offset = 0;
6747  		u32 item_size;
6748  		unsigned long ptr;
6749  
6750  		if (slot >= btrfs_header_nritems(leaf)) {
6751  			ret = btrfs_next_leaf(root, path);
6752  			if (ret < 0)
6753  				goto out;
6754  			else if (ret > 0)
6755  				break;
6756  			continue;
6757  		}
6758  
6759  		btrfs_item_key_to_cpu(leaf, &key, slot);
6760  		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
6761  		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
6762  			break;
6763  
6764  		item_size = btrfs_item_size(leaf, slot);
6765  		ptr = btrfs_item_ptr_offset(leaf, slot);
6766  		while (cur_offset < item_size) {
6767  			struct btrfs_key inode_key;
6768  			struct inode *dir_inode;
6769  
6770  			inode_key.type = BTRFS_INODE_ITEM_KEY;
6771  			inode_key.offset = 0;
6772  
6773  			if (key.type == BTRFS_INODE_EXTREF_KEY) {
6774  				struct btrfs_inode_extref *extref;
6775  
6776  				extref = (struct btrfs_inode_extref *)
6777  					(ptr + cur_offset);
6778  				inode_key.objectid = btrfs_inode_extref_parent(
6779  					leaf, extref);
6780  				cur_offset += sizeof(*extref);
6781  				cur_offset += btrfs_inode_extref_name_len(leaf,
6782  					extref);
6783  			} else {
6784  				inode_key.objectid = key.offset;
6785  				cur_offset = item_size;
6786  			}
6787  
6788  			dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
6789  					       root);
6790  			/*
6791  			 * If the parent inode was deleted, return an error to
6792  			 * fallback to a transaction commit. This is to prevent
6793  			 * getting an inode that was moved from one parent A to
6794  			 * a parent B, got its former parent A deleted and then
6795  			 * it got fsync'ed, from existing at both parents after
6796  			 * a log replay (and the old parent still existing).
6797  			 * Example:
6798  			 *
6799  			 * mkdir /mnt/A
6800  			 * mkdir /mnt/B
6801  			 * touch /mnt/B/bar
6802  			 * sync
6803  			 * mv /mnt/B/bar /mnt/A/bar
6804  			 * mv -T /mnt/A /mnt/B
6805  			 * fsync /mnt/B/bar
6806  			 * <power fail>
6807  			 *
6808  			 * If we ignore the old parent B which got deleted,
6809  			 * after a log replay we would have file bar linked
6810  			 * at both parents and the old parent B would still
6811  			 * exist.
6812  			 */
6813  			if (IS_ERR(dir_inode)) {
6814  				ret = PTR_ERR(dir_inode);
6815  				goto out;
6816  			}
6817  
6818  			if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
6819  				btrfs_add_delayed_iput(BTRFS_I(dir_inode));
6820  				continue;
6821  			}
6822  
6823  			ctx->log_new_dentries = false;
6824  			ret = btrfs_log_inode(trans, BTRFS_I(dir_inode),
6825  					      LOG_INODE_ALL, ctx);
6826  			if (!ret && ctx->log_new_dentries)
6827  				ret = log_new_dir_dentries(trans,
6828  						   BTRFS_I(dir_inode), ctx);
6829  			btrfs_add_delayed_iput(BTRFS_I(dir_inode));
6830  			if (ret)
6831  				goto out;
6832  		}
6833  		path->slots[0]++;
6834  	}
6835  	ret = 0;
6836  out:
6837  	btrfs_free_path(path);
6838  	return ret;
6839  }
6840  
6841  static int log_new_ancestors(struct btrfs_trans_handle *trans,
6842  			     struct btrfs_root *root,
6843  			     struct btrfs_path *path,
6844  			     struct btrfs_log_ctx *ctx)
6845  {
6846  	struct btrfs_key found_key;
6847  
6848  	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
6849  
6850  	while (true) {
6851  		struct btrfs_fs_info *fs_info = root->fs_info;
6852  		struct extent_buffer *leaf;
6853  		int slot;
6854  		struct btrfs_key search_key;
6855  		struct inode *inode;
6856  		u64 ino;
6857  		int ret = 0;
6858  
6859  		btrfs_release_path(path);
6860  
6861  		ino = found_key.offset;
6862  
6863  		search_key.objectid = found_key.offset;
6864  		search_key.type = BTRFS_INODE_ITEM_KEY;
6865  		search_key.offset = 0;
6866  		inode = btrfs_iget(fs_info->sb, ino, root);
6867  		if (IS_ERR(inode))
6868  			return PTR_ERR(inode);
6869  
6870  		if (BTRFS_I(inode)->generation >= trans->transid &&
6871  		    need_log_inode(trans, BTRFS_I(inode)))
6872  			ret = btrfs_log_inode(trans, BTRFS_I(inode),
6873  					      LOG_INODE_EXISTS, ctx);
6874  		btrfs_add_delayed_iput(BTRFS_I(inode));
6875  		if (ret)
6876  			return ret;
6877  
6878  		if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
6879  			break;
6880  
6881  		search_key.type = BTRFS_INODE_REF_KEY;
6882  		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6883  		if (ret < 0)
6884  			return ret;
6885  
6886  		leaf = path->nodes[0];
6887  		slot = path->slots[0];
6888  		if (slot >= btrfs_header_nritems(leaf)) {
6889  			ret = btrfs_next_leaf(root, path);
6890  			if (ret < 0)
6891  				return ret;
6892  			else if (ret > 0)
6893  				return -ENOENT;
6894  			leaf = path->nodes[0];
6895  			slot = path->slots[0];
6896  		}
6897  
6898  		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6899  		if (found_key.objectid != search_key.objectid ||
6900  		    found_key.type != BTRFS_INODE_REF_KEY)
6901  			return -ENOENT;
6902  	}
6903  	return 0;
6904  }
6905  
6906  static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6907  				  struct btrfs_inode *inode,
6908  				  struct dentry *parent,
6909  				  struct btrfs_log_ctx *ctx)
6910  {
6911  	struct btrfs_root *root = inode->root;
6912  	struct dentry *old_parent = NULL;
6913  	struct super_block *sb = inode->vfs_inode.i_sb;
6914  	int ret = 0;
6915  
6916  	while (true) {
6917  		if (!parent || d_really_is_negative(parent) ||
6918  		    sb != parent->d_sb)
6919  			break;
6920  
6921  		inode = BTRFS_I(d_inode(parent));
6922  		if (root != inode->root)
6923  			break;
6924  
6925  		if (inode->generation >= trans->transid &&
6926  		    need_log_inode(trans, inode)) {
6927  			ret = btrfs_log_inode(trans, inode,
6928  					      LOG_INODE_EXISTS, ctx);
6929  			if (ret)
6930  				break;
6931  		}
6932  		if (IS_ROOT(parent))
6933  			break;
6934  
6935  		parent = dget_parent(parent);
6936  		dput(old_parent);
6937  		old_parent = parent;
6938  	}
6939  	dput(old_parent);
6940  
6941  	return ret;
6942  }
6943  
6944  static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6945  				 struct btrfs_inode *inode,
6946  				 struct dentry *parent,
6947  				 struct btrfs_log_ctx *ctx)
6948  {
6949  	struct btrfs_root *root = inode->root;
6950  	const u64 ino = btrfs_ino(inode);
6951  	struct btrfs_path *path;
6952  	struct btrfs_key search_key;
6953  	int ret;
6954  
6955  	/*
6956  	 * For a single hard link case, go through a fast path that does not
6957  	 * need to iterate the fs/subvolume tree.
6958  	 */
6959  	if (inode->vfs_inode.i_nlink < 2)
6960  		return log_new_ancestors_fast(trans, inode, parent, ctx);
6961  
6962  	path = btrfs_alloc_path();
6963  	if (!path)
6964  		return -ENOMEM;
6965  
6966  	search_key.objectid = ino;
6967  	search_key.type = BTRFS_INODE_REF_KEY;
6968  	search_key.offset = 0;
6969  again:
6970  	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6971  	if (ret < 0)
6972  		goto out;
6973  	if (ret == 0)
6974  		path->slots[0]++;
6975  
6976  	while (true) {
6977  		struct extent_buffer *leaf = path->nodes[0];
6978  		int slot = path->slots[0];
6979  		struct btrfs_key found_key;
6980  
6981  		if (slot >= btrfs_header_nritems(leaf)) {
6982  			ret = btrfs_next_leaf(root, path);
6983  			if (ret < 0)
6984  				goto out;
6985  			else if (ret > 0)
6986  				break;
6987  			continue;
6988  		}
6989  
6990  		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6991  		if (found_key.objectid != ino ||
6992  		    found_key.type > BTRFS_INODE_EXTREF_KEY)
6993  			break;
6994  
6995  		/*
6996  		 * Don't deal with extended references because they are rare
6997  		 * cases and too complex to deal with (we would need to keep
6998  		 * track of which subitem we are processing for each item in
6999  		 * this loop, etc). So just return some error to fallback to
7000  		 * a transaction commit.
7001  		 */
7002  		if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
7003  			ret = -EMLINK;
7004  			goto out;
7005  		}
7006  
7007  		/*
7008  		 * Logging ancestors needs to do more searches on the fs/subvol
7009  		 * tree, so it releases the path as needed to avoid deadlocks.
7010  		 * Keep track of the last inode ref key and resume from that key
7011  		 * after logging all new ancestors for the current hard link.
7012  		 */
7013  		memcpy(&search_key, &found_key, sizeof(search_key));
7014  
7015  		ret = log_new_ancestors(trans, root, path, ctx);
7016  		if (ret)
7017  			goto out;
7018  		btrfs_release_path(path);
7019  		goto again;
7020  	}
7021  	ret = 0;
7022  out:
7023  	btrfs_free_path(path);
7024  	return ret;
7025  }
7026  
7027  /*
7028   * helper function around btrfs_log_inode to make sure newly created
7029   * parent directories also end up in the log.  A minimal inode and backref
7030   * only logging is done of any parent directories that are older than
7031   * the last committed transaction
7032   */
7033  static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
7034  				  struct btrfs_inode *inode,
7035  				  struct dentry *parent,
7036  				  int inode_only,
7037  				  struct btrfs_log_ctx *ctx)
7038  {
7039  	struct btrfs_root *root = inode->root;
7040  	struct btrfs_fs_info *fs_info = root->fs_info;
7041  	int ret = 0;
7042  	bool log_dentries = false;
7043  
7044  	if (btrfs_test_opt(fs_info, NOTREELOG)) {
7045  		ret = BTRFS_LOG_FORCE_COMMIT;
7046  		goto end_no_trans;
7047  	}
7048  
7049  	if (btrfs_root_refs(&root->root_item) == 0) {
7050  		ret = BTRFS_LOG_FORCE_COMMIT;
7051  		goto end_no_trans;
7052  	}
7053  
7054  	/*
7055  	 * Skip already logged inodes or inodes corresponding to tmpfiles
7056  	 * (since logging them is pointless, a link count of 0 means they
7057  	 * will never be accessible).
7058  	 */
7059  	if ((btrfs_inode_in_log(inode, trans->transid) &&
7060  	     list_empty(&ctx->ordered_extents)) ||
7061  	    inode->vfs_inode.i_nlink == 0) {
7062  		ret = BTRFS_NO_LOG_SYNC;
7063  		goto end_no_trans;
7064  	}
7065  
7066  	ret = start_log_trans(trans, root, ctx);
7067  	if (ret)
7068  		goto end_no_trans;
7069  
7070  	ret = btrfs_log_inode(trans, inode, inode_only, ctx);
7071  	if (ret)
7072  		goto end_trans;
7073  
7074  	/*
7075  	 * for regular files, if its inode is already on disk, we don't
7076  	 * have to worry about the parents at all.  This is because
7077  	 * we can use the last_unlink_trans field to record renames
7078  	 * and other fun in this file.
7079  	 */
7080  	if (S_ISREG(inode->vfs_inode.i_mode) &&
7081  	    inode->generation < trans->transid &&
7082  	    inode->last_unlink_trans < trans->transid) {
7083  		ret = 0;
7084  		goto end_trans;
7085  	}
7086  
7087  	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries)
7088  		log_dentries = true;
7089  
7090  	/*
7091  	 * On unlink we must make sure all our current and old parent directory
7092  	 * inodes are fully logged. This is to prevent leaving dangling
7093  	 * directory index entries in directories that were our parents but are
7094  	 * not anymore. Not doing this results in old parent directory being
7095  	 * impossible to delete after log replay (rmdir will always fail with
7096  	 * error -ENOTEMPTY).
7097  	 *
7098  	 * Example 1:
7099  	 *
7100  	 * mkdir testdir
7101  	 * touch testdir/foo
7102  	 * ln testdir/foo testdir/bar
7103  	 * sync
7104  	 * unlink testdir/bar
7105  	 * xfs_io -c fsync testdir/foo
7106  	 * <power failure>
7107  	 * mount fs, triggers log replay
7108  	 *
7109  	 * If we don't log the parent directory (testdir), after log replay the
7110  	 * directory still has an entry pointing to the file inode using the bar
7111  	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
7112  	 * the file inode has a link count of 1.
7113  	 *
7114  	 * Example 2:
7115  	 *
7116  	 * mkdir testdir
7117  	 * touch foo
7118  	 * ln foo testdir/foo2
7119  	 * ln foo testdir/foo3
7120  	 * sync
7121  	 * unlink testdir/foo3
7122  	 * xfs_io -c fsync foo
7123  	 * <power failure>
7124  	 * mount fs, triggers log replay
7125  	 *
7126  	 * Similar as the first example, after log replay the parent directory
7127  	 * testdir still has an entry pointing to the inode file with name foo3
7128  	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
7129  	 * and has a link count of 2.
7130  	 */
7131  	if (inode->last_unlink_trans >= trans->transid) {
7132  		ret = btrfs_log_all_parents(trans, inode, ctx);
7133  		if (ret)
7134  			goto end_trans;
7135  	}
7136  
7137  	ret = log_all_new_ancestors(trans, inode, parent, ctx);
7138  	if (ret)
7139  		goto end_trans;
7140  
7141  	if (log_dentries)
7142  		ret = log_new_dir_dentries(trans, inode, ctx);
7143  	else
7144  		ret = 0;
7145  end_trans:
7146  	if (ret < 0) {
7147  		btrfs_set_log_full_commit(trans);
7148  		ret = BTRFS_LOG_FORCE_COMMIT;
7149  	}
7150  
7151  	if (ret)
7152  		btrfs_remove_log_ctx(root, ctx);
7153  	btrfs_end_log_trans(root);
7154  end_no_trans:
7155  	return ret;
7156  }
7157  
7158  /*
7159   * it is not safe to log dentry if the chunk root has added new
7160   * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
7161   * If this returns 1, you must commit the transaction to safely get your
7162   * data on disk.
7163   */
7164  int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
7165  			  struct dentry *dentry,
7166  			  struct btrfs_log_ctx *ctx)
7167  {
7168  	struct dentry *parent = dget_parent(dentry);
7169  	int ret;
7170  
7171  	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
7172  				     LOG_INODE_ALL, ctx);
7173  	dput(parent);
7174  
7175  	return ret;
7176  }
7177  
7178  /*
7179   * should be called during mount to recover any replay any log trees
7180   * from the FS
7181   */
7182  int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
7183  {
7184  	int ret;
7185  	struct btrfs_path *path;
7186  	struct btrfs_trans_handle *trans;
7187  	struct btrfs_key key;
7188  	struct btrfs_key found_key;
7189  	struct btrfs_root *log;
7190  	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
7191  	struct walk_control wc = {
7192  		.process_func = process_one_buffer,
7193  		.stage = LOG_WALK_PIN_ONLY,
7194  	};
7195  
7196  	path = btrfs_alloc_path();
7197  	if (!path)
7198  		return -ENOMEM;
7199  
7200  	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7201  
7202  	trans = btrfs_start_transaction(fs_info->tree_root, 0);
7203  	if (IS_ERR(trans)) {
7204  		ret = PTR_ERR(trans);
7205  		goto error;
7206  	}
7207  
7208  	wc.trans = trans;
7209  	wc.pin = 1;
7210  
7211  	ret = walk_log_tree(trans, log_root_tree, &wc);
7212  	if (ret) {
7213  		btrfs_abort_transaction(trans, ret);
7214  		goto error;
7215  	}
7216  
7217  again:
7218  	key.objectid = BTRFS_TREE_LOG_OBJECTID;
7219  	key.offset = (u64)-1;
7220  	key.type = BTRFS_ROOT_ITEM_KEY;
7221  
7222  	while (1) {
7223  		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
7224  
7225  		if (ret < 0) {
7226  			btrfs_abort_transaction(trans, ret);
7227  			goto error;
7228  		}
7229  		if (ret > 0) {
7230  			if (path->slots[0] == 0)
7231  				break;
7232  			path->slots[0]--;
7233  		}
7234  		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
7235  				      path->slots[0]);
7236  		btrfs_release_path(path);
7237  		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7238  			break;
7239  
7240  		log = btrfs_read_tree_root(log_root_tree, &found_key);
7241  		if (IS_ERR(log)) {
7242  			ret = PTR_ERR(log);
7243  			btrfs_abort_transaction(trans, ret);
7244  			goto error;
7245  		}
7246  
7247  		wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
7248  						   true);
7249  		if (IS_ERR(wc.replay_dest)) {
7250  			ret = PTR_ERR(wc.replay_dest);
7251  
7252  			/*
7253  			 * We didn't find the subvol, likely because it was
7254  			 * deleted.  This is ok, simply skip this log and go to
7255  			 * the next one.
7256  			 *
7257  			 * We need to exclude the root because we can't have
7258  			 * other log replays overwriting this log as we'll read
7259  			 * it back in a few more times.  This will keep our
7260  			 * block from being modified, and we'll just bail for
7261  			 * each subsequent pass.
7262  			 */
7263  			if (ret == -ENOENT)
7264  				ret = btrfs_pin_extent_for_log_replay(trans, log->node);
7265  			btrfs_put_root(log);
7266  
7267  			if (!ret)
7268  				goto next;
7269  			btrfs_abort_transaction(trans, ret);
7270  			goto error;
7271  		}
7272  
7273  		wc.replay_dest->log_root = log;
7274  		ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
7275  		if (ret)
7276  			/* The loop needs to continue due to the root refs */
7277  			btrfs_abort_transaction(trans, ret);
7278  		else
7279  			ret = walk_log_tree(trans, log, &wc);
7280  
7281  		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7282  			ret = fixup_inode_link_counts(trans, wc.replay_dest,
7283  						      path);
7284  			if (ret)
7285  				btrfs_abort_transaction(trans, ret);
7286  		}
7287  
7288  		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7289  			struct btrfs_root *root = wc.replay_dest;
7290  
7291  			btrfs_release_path(path);
7292  
7293  			/*
7294  			 * We have just replayed everything, and the highest
7295  			 * objectid of fs roots probably has changed in case
7296  			 * some inode_item's got replayed.
7297  			 *
7298  			 * root->objectid_mutex is not acquired as log replay
7299  			 * could only happen during mount.
7300  			 */
7301  			ret = btrfs_init_root_free_objectid(root);
7302  			if (ret)
7303  				btrfs_abort_transaction(trans, ret);
7304  		}
7305  
7306  		wc.replay_dest->log_root = NULL;
7307  		btrfs_put_root(wc.replay_dest);
7308  		btrfs_put_root(log);
7309  
7310  		if (ret)
7311  			goto error;
7312  next:
7313  		if (found_key.offset == 0)
7314  			break;
7315  		key.offset = found_key.offset - 1;
7316  	}
7317  	btrfs_release_path(path);
7318  
7319  	/* step one is to pin it all, step two is to replay just inodes */
7320  	if (wc.pin) {
7321  		wc.pin = 0;
7322  		wc.process_func = replay_one_buffer;
7323  		wc.stage = LOG_WALK_REPLAY_INODES;
7324  		goto again;
7325  	}
7326  	/* step three is to replay everything */
7327  	if (wc.stage < LOG_WALK_REPLAY_ALL) {
7328  		wc.stage++;
7329  		goto again;
7330  	}
7331  
7332  	btrfs_free_path(path);
7333  
7334  	/* step 4: commit the transaction, which also unpins the blocks */
7335  	ret = btrfs_commit_transaction(trans);
7336  	if (ret)
7337  		return ret;
7338  
7339  	log_root_tree->log_root = NULL;
7340  	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7341  	btrfs_put_root(log_root_tree);
7342  
7343  	return 0;
7344  error:
7345  	if (wc.trans)
7346  		btrfs_end_transaction(wc.trans);
7347  	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7348  	btrfs_free_path(path);
7349  	return ret;
7350  }
7351  
7352  /*
7353   * there are some corner cases where we want to force a full
7354   * commit instead of allowing a directory to be logged.
7355   *
7356   * They revolve around files there were unlinked from the directory, and
7357   * this function updates the parent directory so that a full commit is
7358   * properly done if it is fsync'd later after the unlinks are done.
7359   *
7360   * Must be called before the unlink operations (updates to the subvolume tree,
7361   * inodes, etc) are done.
7362   */
7363  void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
7364  			     struct btrfs_inode *dir, struct btrfs_inode *inode,
7365  			     bool for_rename)
7366  {
7367  	/*
7368  	 * when we're logging a file, if it hasn't been renamed
7369  	 * or unlinked, and its inode is fully committed on disk,
7370  	 * we don't have to worry about walking up the directory chain
7371  	 * to log its parents.
7372  	 *
7373  	 * So, we use the last_unlink_trans field to put this transid
7374  	 * into the file.  When the file is logged we check it and
7375  	 * don't log the parents if the file is fully on disk.
7376  	 */
7377  	mutex_lock(&inode->log_mutex);
7378  	inode->last_unlink_trans = trans->transid;
7379  	mutex_unlock(&inode->log_mutex);
7380  
7381  	if (!for_rename)
7382  		return;
7383  
7384  	/*
7385  	 * If this directory was already logged, any new names will be logged
7386  	 * with btrfs_log_new_name() and old names will be deleted from the log
7387  	 * tree with btrfs_del_dir_entries_in_log() or with
7388  	 * btrfs_del_inode_ref_in_log().
7389  	 */
7390  	if (inode_logged(trans, dir, NULL) == 1)
7391  		return;
7392  
7393  	/*
7394  	 * If the inode we're about to unlink was logged before, the log will be
7395  	 * properly updated with the new name with btrfs_log_new_name() and the
7396  	 * old name removed with btrfs_del_dir_entries_in_log() or with
7397  	 * btrfs_del_inode_ref_in_log().
7398  	 */
7399  	if (inode_logged(trans, inode, NULL) == 1)
7400  		return;
7401  
7402  	/*
7403  	 * when renaming files across directories, if the directory
7404  	 * there we're unlinking from gets fsync'd later on, there's
7405  	 * no way to find the destination directory later and fsync it
7406  	 * properly.  So, we have to be conservative and force commits
7407  	 * so the new name gets discovered.
7408  	 */
7409  	mutex_lock(&dir->log_mutex);
7410  	dir->last_unlink_trans = trans->transid;
7411  	mutex_unlock(&dir->log_mutex);
7412  }
7413  
7414  /*
7415   * Make sure that if someone attempts to fsync the parent directory of a deleted
7416   * snapshot, it ends up triggering a transaction commit. This is to guarantee
7417   * that after replaying the log tree of the parent directory's root we will not
7418   * see the snapshot anymore and at log replay time we will not see any log tree
7419   * corresponding to the deleted snapshot's root, which could lead to replaying
7420   * it after replaying the log tree of the parent directory (which would replay
7421   * the snapshot delete operation).
7422   *
7423   * Must be called before the actual snapshot destroy operation (updates to the
7424   * parent root and tree of tree roots trees, etc) are done.
7425   */
7426  void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
7427  				   struct btrfs_inode *dir)
7428  {
7429  	mutex_lock(&dir->log_mutex);
7430  	dir->last_unlink_trans = trans->transid;
7431  	mutex_unlock(&dir->log_mutex);
7432  }
7433  
7434  /*
7435   * Update the log after adding a new name for an inode.
7436   *
7437   * @trans:              Transaction handle.
7438   * @old_dentry:         The dentry associated with the old name and the old
7439   *                      parent directory.
7440   * @old_dir:            The inode of the previous parent directory for the case
7441   *                      of a rename. For a link operation, it must be NULL.
7442   * @old_dir_index:      The index number associated with the old name, meaningful
7443   *                      only for rename operations (when @old_dir is not NULL).
7444   *                      Ignored for link operations.
7445   * @parent:             The dentry associated with the directory under which the
7446   *                      new name is located.
7447   *
7448   * Call this after adding a new name for an inode, as a result of a link or
7449   * rename operation, and it will properly update the log to reflect the new name.
7450   */
7451  void btrfs_log_new_name(struct btrfs_trans_handle *trans,
7452  			struct dentry *old_dentry, struct btrfs_inode *old_dir,
7453  			u64 old_dir_index, struct dentry *parent)
7454  {
7455  	struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry));
7456  	struct btrfs_root *root = inode->root;
7457  	struct btrfs_log_ctx ctx;
7458  	bool log_pinned = false;
7459  	int ret;
7460  
7461  	/*
7462  	 * this will force the logging code to walk the dentry chain
7463  	 * up for the file
7464  	 */
7465  	if (!S_ISDIR(inode->vfs_inode.i_mode))
7466  		inode->last_unlink_trans = trans->transid;
7467  
7468  	/*
7469  	 * if this inode hasn't been logged and directory we're renaming it
7470  	 * from hasn't been logged, we don't need to log it
7471  	 */
7472  	ret = inode_logged(trans, inode, NULL);
7473  	if (ret < 0) {
7474  		goto out;
7475  	} else if (ret == 0) {
7476  		if (!old_dir)
7477  			return;
7478  		/*
7479  		 * If the inode was not logged and we are doing a rename (old_dir is not
7480  		 * NULL), check if old_dir was logged - if it was not we can return and
7481  		 * do nothing.
7482  		 */
7483  		ret = inode_logged(trans, old_dir, NULL);
7484  		if (ret < 0)
7485  			goto out;
7486  		else if (ret == 0)
7487  			return;
7488  	}
7489  	ret = 0;
7490  
7491  	/*
7492  	 * If we are doing a rename (old_dir is not NULL) from a directory that
7493  	 * was previously logged, make sure that on log replay we get the old
7494  	 * dir entry deleted. This is needed because we will also log the new
7495  	 * name of the renamed inode, so we need to make sure that after log
7496  	 * replay we don't end up with both the new and old dir entries existing.
7497  	 */
7498  	if (old_dir && old_dir->logged_trans == trans->transid) {
7499  		struct btrfs_root *log = old_dir->root->log_root;
7500  		struct btrfs_path *path;
7501  		struct fscrypt_name fname;
7502  
7503  		ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX);
7504  
7505  		ret = fscrypt_setup_filename(&old_dir->vfs_inode,
7506  					     &old_dentry->d_name, 0, &fname);
7507  		if (ret)
7508  			goto out;
7509  		/*
7510  		 * We have two inodes to update in the log, the old directory and
7511  		 * the inode that got renamed, so we must pin the log to prevent
7512  		 * anyone from syncing the log until we have updated both inodes
7513  		 * in the log.
7514  		 */
7515  		ret = join_running_log_trans(root);
7516  		/*
7517  		 * At least one of the inodes was logged before, so this should
7518  		 * not fail, but if it does, it's not serious, just bail out and
7519  		 * mark the log for a full commit.
7520  		 */
7521  		if (WARN_ON_ONCE(ret < 0)) {
7522  			fscrypt_free_filename(&fname);
7523  			goto out;
7524  		}
7525  
7526  		log_pinned = true;
7527  
7528  		path = btrfs_alloc_path();
7529  		if (!path) {
7530  			ret = -ENOMEM;
7531  			fscrypt_free_filename(&fname);
7532  			goto out;
7533  		}
7534  
7535  		/*
7536  		 * Other concurrent task might be logging the old directory,
7537  		 * as it can be triggered when logging other inode that had or
7538  		 * still has a dentry in the old directory. We lock the old
7539  		 * directory's log_mutex to ensure the deletion of the old
7540  		 * name is persisted, because during directory logging we
7541  		 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of
7542  		 * the old name's dir index item is in the delayed items, so
7543  		 * it could be missed by an in progress directory logging.
7544  		 */
7545  		mutex_lock(&old_dir->log_mutex);
7546  		ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir),
7547  					&fname.disk_name, old_dir_index);
7548  		if (ret > 0) {
7549  			/*
7550  			 * The dentry does not exist in the log, so record its
7551  			 * deletion.
7552  			 */
7553  			btrfs_release_path(path);
7554  			ret = insert_dir_log_key(trans, log, path,
7555  						 btrfs_ino(old_dir),
7556  						 old_dir_index, old_dir_index);
7557  		}
7558  		mutex_unlock(&old_dir->log_mutex);
7559  
7560  		btrfs_free_path(path);
7561  		fscrypt_free_filename(&fname);
7562  		if (ret < 0)
7563  			goto out;
7564  	}
7565  
7566  	btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
7567  	ctx.logging_new_name = true;
7568  	btrfs_init_log_ctx_scratch_eb(&ctx);
7569  	/*
7570  	 * We don't care about the return value. If we fail to log the new name
7571  	 * then we know the next attempt to sync the log will fallback to a full
7572  	 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
7573  	 * we don't need to worry about getting a log committed that has an
7574  	 * inconsistent state after a rename operation.
7575  	 */
7576  	btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
7577  	free_extent_buffer(ctx.scratch_eb);
7578  	ASSERT(list_empty(&ctx.conflict_inodes));
7579  out:
7580  	/*
7581  	 * If an error happened mark the log for a full commit because it's not
7582  	 * consistent and up to date or we couldn't find out if one of the
7583  	 * inodes was logged before in this transaction. Do it before unpinning
7584  	 * the log, to avoid any races with someone else trying to commit it.
7585  	 */
7586  	if (ret < 0)
7587  		btrfs_set_log_full_commit(trans);
7588  	if (log_pinned)
7589  		btrfs_end_log_trans(root);
7590  }
7591  
7592