1 /* 2 * Copyright (C) 2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include "ctree.h" 22 #include "transaction.h" 23 #include "disk-io.h" 24 #include "locking.h" 25 #include "print-tree.h" 26 #include "compat.h" 27 #include "tree-log.h" 28 29 /* magic values for the inode_only field in btrfs_log_inode: 30 * 31 * LOG_INODE_ALL means to log everything 32 * LOG_INODE_EXISTS means to log just enough to recreate the inode 33 * during log replay 34 */ 35 #define LOG_INODE_ALL 0 36 #define LOG_INODE_EXISTS 1 37 38 /* 39 * directory trouble cases 40 * 41 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync 42 * log, we must force a full commit before doing an fsync of the directory 43 * where the unlink was done. 44 * ---> record transid of last unlink/rename per directory 45 * 46 * mkdir foo/some_dir 47 * normal commit 48 * rename foo/some_dir foo2/some_dir 49 * mkdir foo/some_dir 50 * fsync foo/some_dir/some_file 51 * 52 * The fsync above will unlink the original some_dir without recording 53 * it in its new location (foo2). After a crash, some_dir will be gone 54 * unless the fsync of some_file forces a full commit 55 * 56 * 2) we must log any new names for any file or dir that is in the fsync 57 * log. ---> check inode while renaming/linking. 58 * 59 * 2a) we must log any new names for any file or dir during rename 60 * when the directory they are being removed from was logged. 61 * ---> check inode and old parent dir during rename 62 * 63 * 2a is actually the more important variant. With the extra logging 64 * a crash might unlink the old name without recreating the new one 65 * 66 * 3) after a crash, we must go through any directories with a link count 67 * of zero and redo the rm -rf 68 * 69 * mkdir f1/foo 70 * normal commit 71 * rm -rf f1/foo 72 * fsync(f1) 73 * 74 * The directory f1 was fully removed from the FS, but fsync was never 75 * called on f1, only its parent dir. After a crash the rm -rf must 76 * be replayed. This must be able to recurse down the entire 77 * directory tree. The inode link count fixup code takes care of the 78 * ugly details. 79 */ 80 81 /* 82 * stages for the tree walking. The first 83 * stage (0) is to only pin down the blocks we find 84 * the second stage (1) is to make sure that all the inodes 85 * we find in the log are created in the subvolume. 86 * 87 * The last stage is to deal with directories and links and extents 88 * and all the other fun semantics 89 */ 90 #define LOG_WALK_PIN_ONLY 0 91 #define LOG_WALK_REPLAY_INODES 1 92 #define LOG_WALK_REPLAY_ALL 2 93 94 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 95 struct btrfs_root *root, struct inode *inode, 96 int inode_only); 97 static int link_to_fixup_dir(struct btrfs_trans_handle *trans, 98 struct btrfs_root *root, 99 struct btrfs_path *path, u64 objectid); 100 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 101 struct btrfs_root *root, 102 struct btrfs_root *log, 103 struct btrfs_path *path, 104 u64 dirid, int del_all); 105 106 /* 107 * tree logging is a special write ahead log used to make sure that 108 * fsyncs and O_SYNCs can happen without doing full tree commits. 109 * 110 * Full tree commits are expensive because they require commonly 111 * modified blocks to be recowed, creating many dirty pages in the 112 * extent tree an 4x-6x higher write load than ext3. 113 * 114 * Instead of doing a tree commit on every fsync, we use the 115 * key ranges and transaction ids to find items for a given file or directory 116 * that have changed in this transaction. Those items are copied into 117 * a special tree (one per subvolume root), that tree is written to disk 118 * and then the fsync is considered complete. 119 * 120 * After a crash, items are copied out of the log-tree back into the 121 * subvolume tree. Any file data extents found are recorded in the extent 122 * allocation tree, and the log-tree freed. 123 * 124 * The log tree is read three times, once to pin down all the extents it is 125 * using in ram and once, once to create all the inodes logged in the tree 126 * and once to do all the other items. 127 */ 128 129 /* 130 * start a sub transaction and setup the log tree 131 * this increments the log tree writer count to make the people 132 * syncing the tree wait for us to finish 133 */ 134 static int start_log_trans(struct btrfs_trans_handle *trans, 135 struct btrfs_root *root) 136 { 137 int ret; 138 139 mutex_lock(&root->log_mutex); 140 if (root->log_root) { 141 if (!root->log_start_pid) { 142 root->log_start_pid = current->pid; 143 root->log_multiple_pids = false; 144 } else if (root->log_start_pid != current->pid) { 145 root->log_multiple_pids = true; 146 } 147 148 root->log_batch++; 149 atomic_inc(&root->log_writers); 150 mutex_unlock(&root->log_mutex); 151 return 0; 152 } 153 root->log_multiple_pids = false; 154 root->log_start_pid = current->pid; 155 mutex_lock(&root->fs_info->tree_log_mutex); 156 if (!root->fs_info->log_root_tree) { 157 ret = btrfs_init_log_root_tree(trans, root->fs_info); 158 BUG_ON(ret); 159 } 160 if (!root->log_root) { 161 ret = btrfs_add_log_tree(trans, root); 162 BUG_ON(ret); 163 } 164 mutex_unlock(&root->fs_info->tree_log_mutex); 165 root->log_batch++; 166 atomic_inc(&root->log_writers); 167 mutex_unlock(&root->log_mutex); 168 return 0; 169 } 170 171 /* 172 * returns 0 if there was a log transaction running and we were able 173 * to join, or returns -ENOENT if there were not transactions 174 * in progress 175 */ 176 static int join_running_log_trans(struct btrfs_root *root) 177 { 178 int ret = -ENOENT; 179 180 smp_mb(); 181 if (!root->log_root) 182 return -ENOENT; 183 184 mutex_lock(&root->log_mutex); 185 if (root->log_root) { 186 ret = 0; 187 atomic_inc(&root->log_writers); 188 } 189 mutex_unlock(&root->log_mutex); 190 return ret; 191 } 192 193 /* 194 * This either makes the current running log transaction wait 195 * until you call btrfs_end_log_trans() or it makes any future 196 * log transactions wait until you call btrfs_end_log_trans() 197 */ 198 int btrfs_pin_log_trans(struct btrfs_root *root) 199 { 200 int ret = -ENOENT; 201 202 mutex_lock(&root->log_mutex); 203 atomic_inc(&root->log_writers); 204 mutex_unlock(&root->log_mutex); 205 return ret; 206 } 207 208 /* 209 * indicate we're done making changes to the log tree 210 * and wake up anyone waiting to do a sync 211 */ 212 int btrfs_end_log_trans(struct btrfs_root *root) 213 { 214 if (atomic_dec_and_test(&root->log_writers)) { 215 smp_mb(); 216 if (waitqueue_active(&root->log_writer_wait)) 217 wake_up(&root->log_writer_wait); 218 } 219 return 0; 220 } 221 222 223 /* 224 * the walk control struct is used to pass state down the chain when 225 * processing the log tree. The stage field tells us which part 226 * of the log tree processing we are currently doing. The others 227 * are state fields used for that specific part 228 */ 229 struct walk_control { 230 /* should we free the extent on disk when done? This is used 231 * at transaction commit time while freeing a log tree 232 */ 233 int free; 234 235 /* should we write out the extent buffer? This is used 236 * while flushing the log tree to disk during a sync 237 */ 238 int write; 239 240 /* should we wait for the extent buffer io to finish? Also used 241 * while flushing the log tree to disk for a sync 242 */ 243 int wait; 244 245 /* pin only walk, we record which extents on disk belong to the 246 * log trees 247 */ 248 int pin; 249 250 /* what stage of the replay code we're currently in */ 251 int stage; 252 253 /* the root we are currently replaying */ 254 struct btrfs_root *replay_dest; 255 256 /* the trans handle for the current replay */ 257 struct btrfs_trans_handle *trans; 258 259 /* the function that gets used to process blocks we find in the 260 * tree. Note the extent_buffer might not be up to date when it is 261 * passed in, and it must be checked or read if you need the data 262 * inside it 263 */ 264 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb, 265 struct walk_control *wc, u64 gen); 266 }; 267 268 /* 269 * process_func used to pin down extents, write them or wait on them 270 */ 271 static int process_one_buffer(struct btrfs_root *log, 272 struct extent_buffer *eb, 273 struct walk_control *wc, u64 gen) 274 { 275 if (wc->pin) 276 btrfs_pin_extent(log->fs_info->extent_root, 277 eb->start, eb->len, 0); 278 279 if (btrfs_buffer_uptodate(eb, gen)) { 280 if (wc->write) 281 btrfs_write_tree_block(eb); 282 if (wc->wait) 283 btrfs_wait_tree_block_writeback(eb); 284 } 285 return 0; 286 } 287 288 /* 289 * Item overwrite used by replay and tree logging. eb, slot and key all refer 290 * to the src data we are copying out. 291 * 292 * root is the tree we are copying into, and path is a scratch 293 * path for use in this function (it should be released on entry and 294 * will be released on exit). 295 * 296 * If the key is already in the destination tree the existing item is 297 * overwritten. If the existing item isn't big enough, it is extended. 298 * If it is too large, it is truncated. 299 * 300 * If the key isn't in the destination yet, a new item is inserted. 301 */ 302 static noinline int overwrite_item(struct btrfs_trans_handle *trans, 303 struct btrfs_root *root, 304 struct btrfs_path *path, 305 struct extent_buffer *eb, int slot, 306 struct btrfs_key *key) 307 { 308 int ret; 309 u32 item_size; 310 u64 saved_i_size = 0; 311 int save_old_i_size = 0; 312 unsigned long src_ptr; 313 unsigned long dst_ptr; 314 int overwrite_root = 0; 315 316 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) 317 overwrite_root = 1; 318 319 item_size = btrfs_item_size_nr(eb, slot); 320 src_ptr = btrfs_item_ptr_offset(eb, slot); 321 322 /* look for the key in the destination tree */ 323 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 324 if (ret == 0) { 325 char *src_copy; 326 char *dst_copy; 327 u32 dst_size = btrfs_item_size_nr(path->nodes[0], 328 path->slots[0]); 329 if (dst_size != item_size) 330 goto insert; 331 332 if (item_size == 0) { 333 btrfs_release_path(root, path); 334 return 0; 335 } 336 dst_copy = kmalloc(item_size, GFP_NOFS); 337 src_copy = kmalloc(item_size, GFP_NOFS); 338 339 read_extent_buffer(eb, src_copy, src_ptr, item_size); 340 341 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 342 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr, 343 item_size); 344 ret = memcmp(dst_copy, src_copy, item_size); 345 346 kfree(dst_copy); 347 kfree(src_copy); 348 /* 349 * they have the same contents, just return, this saves 350 * us from cowing blocks in the destination tree and doing 351 * extra writes that may not have been done by a previous 352 * sync 353 */ 354 if (ret == 0) { 355 btrfs_release_path(root, path); 356 return 0; 357 } 358 359 } 360 insert: 361 btrfs_release_path(root, path); 362 /* try to insert the key into the destination tree */ 363 ret = btrfs_insert_empty_item(trans, root, path, 364 key, item_size); 365 366 /* make sure any existing item is the correct size */ 367 if (ret == -EEXIST) { 368 u32 found_size; 369 found_size = btrfs_item_size_nr(path->nodes[0], 370 path->slots[0]); 371 if (found_size > item_size) { 372 btrfs_truncate_item(trans, root, path, item_size, 1); 373 } else if (found_size < item_size) { 374 ret = btrfs_extend_item(trans, root, path, 375 item_size - found_size); 376 BUG_ON(ret); 377 } 378 } else if (ret) { 379 BUG(); 380 } 381 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], 382 path->slots[0]); 383 384 /* don't overwrite an existing inode if the generation number 385 * was logged as zero. This is done when the tree logging code 386 * is just logging an inode to make sure it exists after recovery. 387 * 388 * Also, don't overwrite i_size on directories during replay. 389 * log replay inserts and removes directory items based on the 390 * state of the tree found in the subvolume, and i_size is modified 391 * as it goes 392 */ 393 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) { 394 struct btrfs_inode_item *src_item; 395 struct btrfs_inode_item *dst_item; 396 397 src_item = (struct btrfs_inode_item *)src_ptr; 398 dst_item = (struct btrfs_inode_item *)dst_ptr; 399 400 if (btrfs_inode_generation(eb, src_item) == 0) 401 goto no_copy; 402 403 if (overwrite_root && 404 S_ISDIR(btrfs_inode_mode(eb, src_item)) && 405 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) { 406 save_old_i_size = 1; 407 saved_i_size = btrfs_inode_size(path->nodes[0], 408 dst_item); 409 } 410 } 411 412 copy_extent_buffer(path->nodes[0], eb, dst_ptr, 413 src_ptr, item_size); 414 415 if (save_old_i_size) { 416 struct btrfs_inode_item *dst_item; 417 dst_item = (struct btrfs_inode_item *)dst_ptr; 418 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size); 419 } 420 421 /* make sure the generation is filled in */ 422 if (key->type == BTRFS_INODE_ITEM_KEY) { 423 struct btrfs_inode_item *dst_item; 424 dst_item = (struct btrfs_inode_item *)dst_ptr; 425 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) { 426 btrfs_set_inode_generation(path->nodes[0], dst_item, 427 trans->transid); 428 } 429 } 430 no_copy: 431 btrfs_mark_buffer_dirty(path->nodes[0]); 432 btrfs_release_path(root, path); 433 return 0; 434 } 435 436 /* 437 * simple helper to read an inode off the disk from a given root 438 * This can only be called for subvolume roots and not for the log 439 */ 440 static noinline struct inode *read_one_inode(struct btrfs_root *root, 441 u64 objectid) 442 { 443 struct btrfs_key key; 444 struct inode *inode; 445 446 key.objectid = objectid; 447 key.type = BTRFS_INODE_ITEM_KEY; 448 key.offset = 0; 449 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL); 450 if (IS_ERR(inode)) { 451 inode = NULL; 452 } else if (is_bad_inode(inode)) { 453 iput(inode); 454 inode = NULL; 455 } 456 return inode; 457 } 458 459 /* replays a single extent in 'eb' at 'slot' with 'key' into the 460 * subvolume 'root'. path is released on entry and should be released 461 * on exit. 462 * 463 * extents in the log tree have not been allocated out of the extent 464 * tree yet. So, this completes the allocation, taking a reference 465 * as required if the extent already exists or creating a new extent 466 * if it isn't in the extent allocation tree yet. 467 * 468 * The extent is inserted into the file, dropping any existing extents 469 * from the file that overlap the new one. 470 */ 471 static noinline int replay_one_extent(struct btrfs_trans_handle *trans, 472 struct btrfs_root *root, 473 struct btrfs_path *path, 474 struct extent_buffer *eb, int slot, 475 struct btrfs_key *key) 476 { 477 int found_type; 478 u64 mask = root->sectorsize - 1; 479 u64 extent_end; 480 u64 alloc_hint; 481 u64 start = key->offset; 482 u64 saved_nbytes; 483 struct btrfs_file_extent_item *item; 484 struct inode *inode = NULL; 485 unsigned long size; 486 int ret = 0; 487 488 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 489 found_type = btrfs_file_extent_type(eb, item); 490 491 if (found_type == BTRFS_FILE_EXTENT_REG || 492 found_type == BTRFS_FILE_EXTENT_PREALLOC) 493 extent_end = start + btrfs_file_extent_num_bytes(eb, item); 494 else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 495 size = btrfs_file_extent_inline_len(eb, item); 496 extent_end = (start + size + mask) & ~mask; 497 } else { 498 ret = 0; 499 goto out; 500 } 501 502 inode = read_one_inode(root, key->objectid); 503 if (!inode) { 504 ret = -EIO; 505 goto out; 506 } 507 508 /* 509 * first check to see if we already have this extent in the 510 * file. This must be done before the btrfs_drop_extents run 511 * so we don't try to drop this extent. 512 */ 513 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino, 514 start, 0); 515 516 if (ret == 0 && 517 (found_type == BTRFS_FILE_EXTENT_REG || 518 found_type == BTRFS_FILE_EXTENT_PREALLOC)) { 519 struct btrfs_file_extent_item cmp1; 520 struct btrfs_file_extent_item cmp2; 521 struct btrfs_file_extent_item *existing; 522 struct extent_buffer *leaf; 523 524 leaf = path->nodes[0]; 525 existing = btrfs_item_ptr(leaf, path->slots[0], 526 struct btrfs_file_extent_item); 527 528 read_extent_buffer(eb, &cmp1, (unsigned long)item, 529 sizeof(cmp1)); 530 read_extent_buffer(leaf, &cmp2, (unsigned long)existing, 531 sizeof(cmp2)); 532 533 /* 534 * we already have a pointer to this exact extent, 535 * we don't have to do anything 536 */ 537 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) { 538 btrfs_release_path(root, path); 539 goto out; 540 } 541 } 542 btrfs_release_path(root, path); 543 544 saved_nbytes = inode_get_bytes(inode); 545 /* drop any overlapping extents */ 546 ret = btrfs_drop_extents(trans, inode, start, extent_end, 547 &alloc_hint, 1); 548 BUG_ON(ret); 549 550 if (found_type == BTRFS_FILE_EXTENT_REG || 551 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 552 u64 offset; 553 unsigned long dest_offset; 554 struct btrfs_key ins; 555 556 ret = btrfs_insert_empty_item(trans, root, path, key, 557 sizeof(*item)); 558 BUG_ON(ret); 559 dest_offset = btrfs_item_ptr_offset(path->nodes[0], 560 path->slots[0]); 561 copy_extent_buffer(path->nodes[0], eb, dest_offset, 562 (unsigned long)item, sizeof(*item)); 563 564 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item); 565 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item); 566 ins.type = BTRFS_EXTENT_ITEM_KEY; 567 offset = key->offset - btrfs_file_extent_offset(eb, item); 568 569 if (ins.objectid > 0) { 570 u64 csum_start; 571 u64 csum_end; 572 LIST_HEAD(ordered_sums); 573 /* 574 * is this extent already allocated in the extent 575 * allocation tree? If so, just add a reference 576 */ 577 ret = btrfs_lookup_extent(root, ins.objectid, 578 ins.offset); 579 if (ret == 0) { 580 ret = btrfs_inc_extent_ref(trans, root, 581 ins.objectid, ins.offset, 582 0, root->root_key.objectid, 583 key->objectid, offset); 584 } else { 585 /* 586 * insert the extent pointer in the extent 587 * allocation tree 588 */ 589 ret = btrfs_alloc_logged_file_extent(trans, 590 root, root->root_key.objectid, 591 key->objectid, offset, &ins); 592 BUG_ON(ret); 593 } 594 btrfs_release_path(root, path); 595 596 if (btrfs_file_extent_compression(eb, item)) { 597 csum_start = ins.objectid; 598 csum_end = csum_start + ins.offset; 599 } else { 600 csum_start = ins.objectid + 601 btrfs_file_extent_offset(eb, item); 602 csum_end = csum_start + 603 btrfs_file_extent_num_bytes(eb, item); 604 } 605 606 ret = btrfs_lookup_csums_range(root->log_root, 607 csum_start, csum_end - 1, 608 &ordered_sums); 609 BUG_ON(ret); 610 while (!list_empty(&ordered_sums)) { 611 struct btrfs_ordered_sum *sums; 612 sums = list_entry(ordered_sums.next, 613 struct btrfs_ordered_sum, 614 list); 615 ret = btrfs_csum_file_blocks(trans, 616 root->fs_info->csum_root, 617 sums); 618 BUG_ON(ret); 619 list_del(&sums->list); 620 kfree(sums); 621 } 622 } else { 623 btrfs_release_path(root, path); 624 } 625 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 626 /* inline extents are easy, we just overwrite them */ 627 ret = overwrite_item(trans, root, path, eb, slot, key); 628 BUG_ON(ret); 629 } 630 631 inode_set_bytes(inode, saved_nbytes); 632 btrfs_update_inode(trans, root, inode); 633 out: 634 if (inode) 635 iput(inode); 636 return ret; 637 } 638 639 /* 640 * when cleaning up conflicts between the directory names in the 641 * subvolume, directory names in the log and directory names in the 642 * inode back references, we may have to unlink inodes from directories. 643 * 644 * This is a helper function to do the unlink of a specific directory 645 * item 646 */ 647 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans, 648 struct btrfs_root *root, 649 struct btrfs_path *path, 650 struct inode *dir, 651 struct btrfs_dir_item *di) 652 { 653 struct inode *inode; 654 char *name; 655 int name_len; 656 struct extent_buffer *leaf; 657 struct btrfs_key location; 658 int ret; 659 660 leaf = path->nodes[0]; 661 662 btrfs_dir_item_key_to_cpu(leaf, di, &location); 663 name_len = btrfs_dir_name_len(leaf, di); 664 name = kmalloc(name_len, GFP_NOFS); 665 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len); 666 btrfs_release_path(root, path); 667 668 inode = read_one_inode(root, location.objectid); 669 BUG_ON(!inode); 670 671 ret = link_to_fixup_dir(trans, root, path, location.objectid); 672 BUG_ON(ret); 673 674 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 675 BUG_ON(ret); 676 kfree(name); 677 678 iput(inode); 679 return ret; 680 } 681 682 /* 683 * helper function to see if a given name and sequence number found 684 * in an inode back reference are already in a directory and correctly 685 * point to this inode 686 */ 687 static noinline int inode_in_dir(struct btrfs_root *root, 688 struct btrfs_path *path, 689 u64 dirid, u64 objectid, u64 index, 690 const char *name, int name_len) 691 { 692 struct btrfs_dir_item *di; 693 struct btrfs_key location; 694 int match = 0; 695 696 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid, 697 index, name, name_len, 0); 698 if (di && !IS_ERR(di)) { 699 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 700 if (location.objectid != objectid) 701 goto out; 702 } else 703 goto out; 704 btrfs_release_path(root, path); 705 706 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0); 707 if (di && !IS_ERR(di)) { 708 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 709 if (location.objectid != objectid) 710 goto out; 711 } else 712 goto out; 713 match = 1; 714 out: 715 btrfs_release_path(root, path); 716 return match; 717 } 718 719 /* 720 * helper function to check a log tree for a named back reference in 721 * an inode. This is used to decide if a back reference that is 722 * found in the subvolume conflicts with what we find in the log. 723 * 724 * inode backreferences may have multiple refs in a single item, 725 * during replay we process one reference at a time, and we don't 726 * want to delete valid links to a file from the subvolume if that 727 * link is also in the log. 728 */ 729 static noinline int backref_in_log(struct btrfs_root *log, 730 struct btrfs_key *key, 731 char *name, int namelen) 732 { 733 struct btrfs_path *path; 734 struct btrfs_inode_ref *ref; 735 unsigned long ptr; 736 unsigned long ptr_end; 737 unsigned long name_ptr; 738 int found_name_len; 739 int item_size; 740 int ret; 741 int match = 0; 742 743 path = btrfs_alloc_path(); 744 ret = btrfs_search_slot(NULL, log, key, path, 0, 0); 745 if (ret != 0) 746 goto out; 747 748 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 749 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 750 ptr_end = ptr + item_size; 751 while (ptr < ptr_end) { 752 ref = (struct btrfs_inode_ref *)ptr; 753 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref); 754 if (found_name_len == namelen) { 755 name_ptr = (unsigned long)(ref + 1); 756 ret = memcmp_extent_buffer(path->nodes[0], name, 757 name_ptr, namelen); 758 if (ret == 0) { 759 match = 1; 760 goto out; 761 } 762 } 763 ptr = (unsigned long)(ref + 1) + found_name_len; 764 } 765 out: 766 btrfs_free_path(path); 767 return match; 768 } 769 770 771 /* 772 * replay one inode back reference item found in the log tree. 773 * eb, slot and key refer to the buffer and key found in the log tree. 774 * root is the destination we are replaying into, and path is for temp 775 * use by this function. (it should be released on return). 776 */ 777 static noinline int add_inode_ref(struct btrfs_trans_handle *trans, 778 struct btrfs_root *root, 779 struct btrfs_root *log, 780 struct btrfs_path *path, 781 struct extent_buffer *eb, int slot, 782 struct btrfs_key *key) 783 { 784 struct inode *dir; 785 int ret; 786 struct btrfs_key location; 787 struct btrfs_inode_ref *ref; 788 struct btrfs_dir_item *di; 789 struct inode *inode; 790 char *name; 791 int namelen; 792 unsigned long ref_ptr; 793 unsigned long ref_end; 794 795 location.objectid = key->objectid; 796 location.type = BTRFS_INODE_ITEM_KEY; 797 location.offset = 0; 798 799 /* 800 * it is possible that we didn't log all the parent directories 801 * for a given inode. If we don't find the dir, just don't 802 * copy the back ref in. The link count fixup code will take 803 * care of the rest 804 */ 805 dir = read_one_inode(root, key->offset); 806 if (!dir) 807 return -ENOENT; 808 809 inode = read_one_inode(root, key->objectid); 810 BUG_ON(!inode); 811 812 ref_ptr = btrfs_item_ptr_offset(eb, slot); 813 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot); 814 815 again: 816 ref = (struct btrfs_inode_ref *)ref_ptr; 817 818 namelen = btrfs_inode_ref_name_len(eb, ref); 819 name = kmalloc(namelen, GFP_NOFS); 820 BUG_ON(!name); 821 822 read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen); 823 824 /* if we already have a perfect match, we're done */ 825 if (inode_in_dir(root, path, dir->i_ino, inode->i_ino, 826 btrfs_inode_ref_index(eb, ref), 827 name, namelen)) { 828 goto out; 829 } 830 831 /* 832 * look for a conflicting back reference in the metadata. 833 * if we find one we have to unlink that name of the file 834 * before we add our new link. Later on, we overwrite any 835 * existing back reference, and we don't want to create 836 * dangling pointers in the directory. 837 */ 838 conflict_again: 839 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 840 if (ret == 0) { 841 char *victim_name; 842 int victim_name_len; 843 struct btrfs_inode_ref *victim_ref; 844 unsigned long ptr; 845 unsigned long ptr_end; 846 struct extent_buffer *leaf = path->nodes[0]; 847 848 /* are we trying to overwrite a back ref for the root directory 849 * if so, just jump out, we're done 850 */ 851 if (key->objectid == key->offset) 852 goto out_nowrite; 853 854 /* check all the names in this back reference to see 855 * if they are in the log. if so, we allow them to stay 856 * otherwise they must be unlinked as a conflict 857 */ 858 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 859 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]); 860 while (ptr < ptr_end) { 861 victim_ref = (struct btrfs_inode_ref *)ptr; 862 victim_name_len = btrfs_inode_ref_name_len(leaf, 863 victim_ref); 864 victim_name = kmalloc(victim_name_len, GFP_NOFS); 865 BUG_ON(!victim_name); 866 867 read_extent_buffer(leaf, victim_name, 868 (unsigned long)(victim_ref + 1), 869 victim_name_len); 870 871 if (!backref_in_log(log, key, victim_name, 872 victim_name_len)) { 873 btrfs_inc_nlink(inode); 874 btrfs_release_path(root, path); 875 876 ret = btrfs_unlink_inode(trans, root, dir, 877 inode, victim_name, 878 victim_name_len); 879 kfree(victim_name); 880 btrfs_release_path(root, path); 881 goto conflict_again; 882 } 883 kfree(victim_name); 884 ptr = (unsigned long)(victim_ref + 1) + victim_name_len; 885 } 886 BUG_ON(ret); 887 } 888 btrfs_release_path(root, path); 889 890 /* look for a conflicting sequence number */ 891 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, 892 btrfs_inode_ref_index(eb, ref), 893 name, namelen, 0); 894 if (di && !IS_ERR(di)) { 895 ret = drop_one_dir_item(trans, root, path, dir, di); 896 BUG_ON(ret); 897 } 898 btrfs_release_path(root, path); 899 900 901 /* look for a conflicting name */ 902 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino, 903 name, namelen, 0); 904 if (di && !IS_ERR(di)) { 905 ret = drop_one_dir_item(trans, root, path, dir, di); 906 BUG_ON(ret); 907 } 908 btrfs_release_path(root, path); 909 910 /* insert our name */ 911 ret = btrfs_add_link(trans, dir, inode, name, namelen, 0, 912 btrfs_inode_ref_index(eb, ref)); 913 BUG_ON(ret); 914 915 btrfs_update_inode(trans, root, inode); 916 917 out: 918 ref_ptr = (unsigned long)(ref + 1) + namelen; 919 kfree(name); 920 if (ref_ptr < ref_end) 921 goto again; 922 923 /* finally write the back reference in the inode */ 924 ret = overwrite_item(trans, root, path, eb, slot, key); 925 BUG_ON(ret); 926 927 out_nowrite: 928 btrfs_release_path(root, path); 929 iput(dir); 930 iput(inode); 931 return 0; 932 } 933 934 static int insert_orphan_item(struct btrfs_trans_handle *trans, 935 struct btrfs_root *root, u64 offset) 936 { 937 int ret; 938 ret = btrfs_find_orphan_item(root, offset); 939 if (ret > 0) 940 ret = btrfs_insert_orphan_item(trans, root, offset); 941 return ret; 942 } 943 944 945 /* 946 * There are a few corners where the link count of the file can't 947 * be properly maintained during replay. So, instead of adding 948 * lots of complexity to the log code, we just scan the backrefs 949 * for any file that has been through replay. 950 * 951 * The scan will update the link count on the inode to reflect the 952 * number of back refs found. If it goes down to zero, the iput 953 * will free the inode. 954 */ 955 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans, 956 struct btrfs_root *root, 957 struct inode *inode) 958 { 959 struct btrfs_path *path; 960 int ret; 961 struct btrfs_key key; 962 u64 nlink = 0; 963 unsigned long ptr; 964 unsigned long ptr_end; 965 int name_len; 966 967 key.objectid = inode->i_ino; 968 key.type = BTRFS_INODE_REF_KEY; 969 key.offset = (u64)-1; 970 971 path = btrfs_alloc_path(); 972 973 while (1) { 974 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 975 if (ret < 0) 976 break; 977 if (ret > 0) { 978 if (path->slots[0] == 0) 979 break; 980 path->slots[0]--; 981 } 982 btrfs_item_key_to_cpu(path->nodes[0], &key, 983 path->slots[0]); 984 if (key.objectid != inode->i_ino || 985 key.type != BTRFS_INODE_REF_KEY) 986 break; 987 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 988 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0], 989 path->slots[0]); 990 while (ptr < ptr_end) { 991 struct btrfs_inode_ref *ref; 992 993 ref = (struct btrfs_inode_ref *)ptr; 994 name_len = btrfs_inode_ref_name_len(path->nodes[0], 995 ref); 996 ptr = (unsigned long)(ref + 1) + name_len; 997 nlink++; 998 } 999 1000 if (key.offset == 0) 1001 break; 1002 key.offset--; 1003 btrfs_release_path(root, path); 1004 } 1005 btrfs_release_path(root, path); 1006 if (nlink != inode->i_nlink) { 1007 inode->i_nlink = nlink; 1008 btrfs_update_inode(trans, root, inode); 1009 } 1010 BTRFS_I(inode)->index_cnt = (u64)-1; 1011 1012 if (inode->i_nlink == 0) { 1013 if (S_ISDIR(inode->i_mode)) { 1014 ret = replay_dir_deletes(trans, root, NULL, path, 1015 inode->i_ino, 1); 1016 BUG_ON(ret); 1017 } 1018 ret = insert_orphan_item(trans, root, inode->i_ino); 1019 BUG_ON(ret); 1020 } 1021 btrfs_free_path(path); 1022 1023 return 0; 1024 } 1025 1026 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans, 1027 struct btrfs_root *root, 1028 struct btrfs_path *path) 1029 { 1030 int ret; 1031 struct btrfs_key key; 1032 struct inode *inode; 1033 1034 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1035 key.type = BTRFS_ORPHAN_ITEM_KEY; 1036 key.offset = (u64)-1; 1037 while (1) { 1038 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1039 if (ret < 0) 1040 break; 1041 1042 if (ret == 1) { 1043 if (path->slots[0] == 0) 1044 break; 1045 path->slots[0]--; 1046 } 1047 1048 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1049 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID || 1050 key.type != BTRFS_ORPHAN_ITEM_KEY) 1051 break; 1052 1053 ret = btrfs_del_item(trans, root, path); 1054 BUG_ON(ret); 1055 1056 btrfs_release_path(root, path); 1057 inode = read_one_inode(root, key.offset); 1058 BUG_ON(!inode); 1059 1060 ret = fixup_inode_link_count(trans, root, inode); 1061 BUG_ON(ret); 1062 1063 iput(inode); 1064 1065 /* 1066 * fixup on a directory may create new entries, 1067 * make sure we always look for the highset possible 1068 * offset 1069 */ 1070 key.offset = (u64)-1; 1071 } 1072 btrfs_release_path(root, path); 1073 return 0; 1074 } 1075 1076 1077 /* 1078 * record a given inode in the fixup dir so we can check its link 1079 * count when replay is done. The link count is incremented here 1080 * so the inode won't go away until we check it 1081 */ 1082 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans, 1083 struct btrfs_root *root, 1084 struct btrfs_path *path, 1085 u64 objectid) 1086 { 1087 struct btrfs_key key; 1088 int ret = 0; 1089 struct inode *inode; 1090 1091 inode = read_one_inode(root, objectid); 1092 BUG_ON(!inode); 1093 1094 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1095 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); 1096 key.offset = objectid; 1097 1098 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1099 1100 btrfs_release_path(root, path); 1101 if (ret == 0) { 1102 btrfs_inc_nlink(inode); 1103 btrfs_update_inode(trans, root, inode); 1104 } else if (ret == -EEXIST) { 1105 ret = 0; 1106 } else { 1107 BUG(); 1108 } 1109 iput(inode); 1110 1111 return ret; 1112 } 1113 1114 /* 1115 * when replaying the log for a directory, we only insert names 1116 * for inodes that actually exist. This means an fsync on a directory 1117 * does not implicitly fsync all the new files in it 1118 */ 1119 static noinline int insert_one_name(struct btrfs_trans_handle *trans, 1120 struct btrfs_root *root, 1121 struct btrfs_path *path, 1122 u64 dirid, u64 index, 1123 char *name, int name_len, u8 type, 1124 struct btrfs_key *location) 1125 { 1126 struct inode *inode; 1127 struct inode *dir; 1128 int ret; 1129 1130 inode = read_one_inode(root, location->objectid); 1131 if (!inode) 1132 return -ENOENT; 1133 1134 dir = read_one_inode(root, dirid); 1135 if (!dir) { 1136 iput(inode); 1137 return -EIO; 1138 } 1139 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index); 1140 1141 /* FIXME, put inode into FIXUP list */ 1142 1143 iput(inode); 1144 iput(dir); 1145 return ret; 1146 } 1147 1148 /* 1149 * take a single entry in a log directory item and replay it into 1150 * the subvolume. 1151 * 1152 * if a conflicting item exists in the subdirectory already, 1153 * the inode it points to is unlinked and put into the link count 1154 * fix up tree. 1155 * 1156 * If a name from the log points to a file or directory that does 1157 * not exist in the FS, it is skipped. fsyncs on directories 1158 * do not force down inodes inside that directory, just changes to the 1159 * names or unlinks in a directory. 1160 */ 1161 static noinline int replay_one_name(struct btrfs_trans_handle *trans, 1162 struct btrfs_root *root, 1163 struct btrfs_path *path, 1164 struct extent_buffer *eb, 1165 struct btrfs_dir_item *di, 1166 struct btrfs_key *key) 1167 { 1168 char *name; 1169 int name_len; 1170 struct btrfs_dir_item *dst_di; 1171 struct btrfs_key found_key; 1172 struct btrfs_key log_key; 1173 struct inode *dir; 1174 u8 log_type; 1175 int exists; 1176 int ret; 1177 1178 dir = read_one_inode(root, key->objectid); 1179 BUG_ON(!dir); 1180 1181 name_len = btrfs_dir_name_len(eb, di); 1182 name = kmalloc(name_len, GFP_NOFS); 1183 log_type = btrfs_dir_type(eb, di); 1184 read_extent_buffer(eb, name, (unsigned long)(di + 1), 1185 name_len); 1186 1187 btrfs_dir_item_key_to_cpu(eb, di, &log_key); 1188 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0); 1189 if (exists == 0) 1190 exists = 1; 1191 else 1192 exists = 0; 1193 btrfs_release_path(root, path); 1194 1195 if (key->type == BTRFS_DIR_ITEM_KEY) { 1196 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid, 1197 name, name_len, 1); 1198 } else if (key->type == BTRFS_DIR_INDEX_KEY) { 1199 dst_di = btrfs_lookup_dir_index_item(trans, root, path, 1200 key->objectid, 1201 key->offset, name, 1202 name_len, 1); 1203 } else { 1204 BUG(); 1205 } 1206 if (!dst_di || IS_ERR(dst_di)) { 1207 /* we need a sequence number to insert, so we only 1208 * do inserts for the BTRFS_DIR_INDEX_KEY types 1209 */ 1210 if (key->type != BTRFS_DIR_INDEX_KEY) 1211 goto out; 1212 goto insert; 1213 } 1214 1215 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key); 1216 /* the existing item matches the logged item */ 1217 if (found_key.objectid == log_key.objectid && 1218 found_key.type == log_key.type && 1219 found_key.offset == log_key.offset && 1220 btrfs_dir_type(path->nodes[0], dst_di) == log_type) { 1221 goto out; 1222 } 1223 1224 /* 1225 * don't drop the conflicting directory entry if the inode 1226 * for the new entry doesn't exist 1227 */ 1228 if (!exists) 1229 goto out; 1230 1231 ret = drop_one_dir_item(trans, root, path, dir, dst_di); 1232 BUG_ON(ret); 1233 1234 if (key->type == BTRFS_DIR_INDEX_KEY) 1235 goto insert; 1236 out: 1237 btrfs_release_path(root, path); 1238 kfree(name); 1239 iput(dir); 1240 return 0; 1241 1242 insert: 1243 btrfs_release_path(root, path); 1244 ret = insert_one_name(trans, root, path, key->objectid, key->offset, 1245 name, name_len, log_type, &log_key); 1246 1247 BUG_ON(ret && ret != -ENOENT); 1248 goto out; 1249 } 1250 1251 /* 1252 * find all the names in a directory item and reconcile them into 1253 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than 1254 * one name in a directory item, but the same code gets used for 1255 * both directory index types 1256 */ 1257 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans, 1258 struct btrfs_root *root, 1259 struct btrfs_path *path, 1260 struct extent_buffer *eb, int slot, 1261 struct btrfs_key *key) 1262 { 1263 int ret; 1264 u32 item_size = btrfs_item_size_nr(eb, slot); 1265 struct btrfs_dir_item *di; 1266 int name_len; 1267 unsigned long ptr; 1268 unsigned long ptr_end; 1269 1270 ptr = btrfs_item_ptr_offset(eb, slot); 1271 ptr_end = ptr + item_size; 1272 while (ptr < ptr_end) { 1273 di = (struct btrfs_dir_item *)ptr; 1274 name_len = btrfs_dir_name_len(eb, di); 1275 ret = replay_one_name(trans, root, path, eb, di, key); 1276 BUG_ON(ret); 1277 ptr = (unsigned long)(di + 1); 1278 ptr += name_len; 1279 } 1280 return 0; 1281 } 1282 1283 /* 1284 * directory replay has two parts. There are the standard directory 1285 * items in the log copied from the subvolume, and range items 1286 * created in the log while the subvolume was logged. 1287 * 1288 * The range items tell us which parts of the key space the log 1289 * is authoritative for. During replay, if a key in the subvolume 1290 * directory is in a logged range item, but not actually in the log 1291 * that means it was deleted from the directory before the fsync 1292 * and should be removed. 1293 */ 1294 static noinline int find_dir_range(struct btrfs_root *root, 1295 struct btrfs_path *path, 1296 u64 dirid, int key_type, 1297 u64 *start_ret, u64 *end_ret) 1298 { 1299 struct btrfs_key key; 1300 u64 found_end; 1301 struct btrfs_dir_log_item *item; 1302 int ret; 1303 int nritems; 1304 1305 if (*start_ret == (u64)-1) 1306 return 1; 1307 1308 key.objectid = dirid; 1309 key.type = key_type; 1310 key.offset = *start_ret; 1311 1312 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1313 if (ret < 0) 1314 goto out; 1315 if (ret > 0) { 1316 if (path->slots[0] == 0) 1317 goto out; 1318 path->slots[0]--; 1319 } 1320 if (ret != 0) 1321 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1322 1323 if (key.type != key_type || key.objectid != dirid) { 1324 ret = 1; 1325 goto next; 1326 } 1327 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 1328 struct btrfs_dir_log_item); 1329 found_end = btrfs_dir_log_end(path->nodes[0], item); 1330 1331 if (*start_ret >= key.offset && *start_ret <= found_end) { 1332 ret = 0; 1333 *start_ret = key.offset; 1334 *end_ret = found_end; 1335 goto out; 1336 } 1337 ret = 1; 1338 next: 1339 /* check the next slot in the tree to see if it is a valid item */ 1340 nritems = btrfs_header_nritems(path->nodes[0]); 1341 if (path->slots[0] >= nritems) { 1342 ret = btrfs_next_leaf(root, path); 1343 if (ret) 1344 goto out; 1345 } else { 1346 path->slots[0]++; 1347 } 1348 1349 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1350 1351 if (key.type != key_type || key.objectid != dirid) { 1352 ret = 1; 1353 goto out; 1354 } 1355 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 1356 struct btrfs_dir_log_item); 1357 found_end = btrfs_dir_log_end(path->nodes[0], item); 1358 *start_ret = key.offset; 1359 *end_ret = found_end; 1360 ret = 0; 1361 out: 1362 btrfs_release_path(root, path); 1363 return ret; 1364 } 1365 1366 /* 1367 * this looks for a given directory item in the log. If the directory 1368 * item is not in the log, the item is removed and the inode it points 1369 * to is unlinked 1370 */ 1371 static noinline int check_item_in_log(struct btrfs_trans_handle *trans, 1372 struct btrfs_root *root, 1373 struct btrfs_root *log, 1374 struct btrfs_path *path, 1375 struct btrfs_path *log_path, 1376 struct inode *dir, 1377 struct btrfs_key *dir_key) 1378 { 1379 int ret; 1380 struct extent_buffer *eb; 1381 int slot; 1382 u32 item_size; 1383 struct btrfs_dir_item *di; 1384 struct btrfs_dir_item *log_di; 1385 int name_len; 1386 unsigned long ptr; 1387 unsigned long ptr_end; 1388 char *name; 1389 struct inode *inode; 1390 struct btrfs_key location; 1391 1392 again: 1393 eb = path->nodes[0]; 1394 slot = path->slots[0]; 1395 item_size = btrfs_item_size_nr(eb, slot); 1396 ptr = btrfs_item_ptr_offset(eb, slot); 1397 ptr_end = ptr + item_size; 1398 while (ptr < ptr_end) { 1399 di = (struct btrfs_dir_item *)ptr; 1400 name_len = btrfs_dir_name_len(eb, di); 1401 name = kmalloc(name_len, GFP_NOFS); 1402 if (!name) { 1403 ret = -ENOMEM; 1404 goto out; 1405 } 1406 read_extent_buffer(eb, name, (unsigned long)(di + 1), 1407 name_len); 1408 log_di = NULL; 1409 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) { 1410 log_di = btrfs_lookup_dir_item(trans, log, log_path, 1411 dir_key->objectid, 1412 name, name_len, 0); 1413 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) { 1414 log_di = btrfs_lookup_dir_index_item(trans, log, 1415 log_path, 1416 dir_key->objectid, 1417 dir_key->offset, 1418 name, name_len, 0); 1419 } 1420 if (!log_di || IS_ERR(log_di)) { 1421 btrfs_dir_item_key_to_cpu(eb, di, &location); 1422 btrfs_release_path(root, path); 1423 btrfs_release_path(log, log_path); 1424 inode = read_one_inode(root, location.objectid); 1425 BUG_ON(!inode); 1426 1427 ret = link_to_fixup_dir(trans, root, 1428 path, location.objectid); 1429 BUG_ON(ret); 1430 btrfs_inc_nlink(inode); 1431 ret = btrfs_unlink_inode(trans, root, dir, inode, 1432 name, name_len); 1433 BUG_ON(ret); 1434 kfree(name); 1435 iput(inode); 1436 1437 /* there might still be more names under this key 1438 * check and repeat if required 1439 */ 1440 ret = btrfs_search_slot(NULL, root, dir_key, path, 1441 0, 0); 1442 if (ret == 0) 1443 goto again; 1444 ret = 0; 1445 goto out; 1446 } 1447 btrfs_release_path(log, log_path); 1448 kfree(name); 1449 1450 ptr = (unsigned long)(di + 1); 1451 ptr += name_len; 1452 } 1453 ret = 0; 1454 out: 1455 btrfs_release_path(root, path); 1456 btrfs_release_path(log, log_path); 1457 return ret; 1458 } 1459 1460 /* 1461 * deletion replay happens before we copy any new directory items 1462 * out of the log or out of backreferences from inodes. It 1463 * scans the log to find ranges of keys that log is authoritative for, 1464 * and then scans the directory to find items in those ranges that are 1465 * not present in the log. 1466 * 1467 * Anything we don't find in the log is unlinked and removed from the 1468 * directory. 1469 */ 1470 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 1471 struct btrfs_root *root, 1472 struct btrfs_root *log, 1473 struct btrfs_path *path, 1474 u64 dirid, int del_all) 1475 { 1476 u64 range_start; 1477 u64 range_end; 1478 int key_type = BTRFS_DIR_LOG_ITEM_KEY; 1479 int ret = 0; 1480 struct btrfs_key dir_key; 1481 struct btrfs_key found_key; 1482 struct btrfs_path *log_path; 1483 struct inode *dir; 1484 1485 dir_key.objectid = dirid; 1486 dir_key.type = BTRFS_DIR_ITEM_KEY; 1487 log_path = btrfs_alloc_path(); 1488 if (!log_path) 1489 return -ENOMEM; 1490 1491 dir = read_one_inode(root, dirid); 1492 /* it isn't an error if the inode isn't there, that can happen 1493 * because we replay the deletes before we copy in the inode item 1494 * from the log 1495 */ 1496 if (!dir) { 1497 btrfs_free_path(log_path); 1498 return 0; 1499 } 1500 again: 1501 range_start = 0; 1502 range_end = 0; 1503 while (1) { 1504 if (del_all) 1505 range_end = (u64)-1; 1506 else { 1507 ret = find_dir_range(log, path, dirid, key_type, 1508 &range_start, &range_end); 1509 if (ret != 0) 1510 break; 1511 } 1512 1513 dir_key.offset = range_start; 1514 while (1) { 1515 int nritems; 1516 ret = btrfs_search_slot(NULL, root, &dir_key, path, 1517 0, 0); 1518 if (ret < 0) 1519 goto out; 1520 1521 nritems = btrfs_header_nritems(path->nodes[0]); 1522 if (path->slots[0] >= nritems) { 1523 ret = btrfs_next_leaf(root, path); 1524 if (ret) 1525 break; 1526 } 1527 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1528 path->slots[0]); 1529 if (found_key.objectid != dirid || 1530 found_key.type != dir_key.type) 1531 goto next_type; 1532 1533 if (found_key.offset > range_end) 1534 break; 1535 1536 ret = check_item_in_log(trans, root, log, path, 1537 log_path, dir, 1538 &found_key); 1539 BUG_ON(ret); 1540 if (found_key.offset == (u64)-1) 1541 break; 1542 dir_key.offset = found_key.offset + 1; 1543 } 1544 btrfs_release_path(root, path); 1545 if (range_end == (u64)-1) 1546 break; 1547 range_start = range_end + 1; 1548 } 1549 1550 next_type: 1551 ret = 0; 1552 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) { 1553 key_type = BTRFS_DIR_LOG_INDEX_KEY; 1554 dir_key.type = BTRFS_DIR_INDEX_KEY; 1555 btrfs_release_path(root, path); 1556 goto again; 1557 } 1558 out: 1559 btrfs_release_path(root, path); 1560 btrfs_free_path(log_path); 1561 iput(dir); 1562 return ret; 1563 } 1564 1565 /* 1566 * the process_func used to replay items from the log tree. This 1567 * gets called in two different stages. The first stage just looks 1568 * for inodes and makes sure they are all copied into the subvolume. 1569 * 1570 * The second stage copies all the other item types from the log into 1571 * the subvolume. The two stage approach is slower, but gets rid of 1572 * lots of complexity around inodes referencing other inodes that exist 1573 * only in the log (references come from either directory items or inode 1574 * back refs). 1575 */ 1576 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb, 1577 struct walk_control *wc, u64 gen) 1578 { 1579 int nritems; 1580 struct btrfs_path *path; 1581 struct btrfs_root *root = wc->replay_dest; 1582 struct btrfs_key key; 1583 u32 item_size; 1584 int level; 1585 int i; 1586 int ret; 1587 1588 btrfs_read_buffer(eb, gen); 1589 1590 level = btrfs_header_level(eb); 1591 1592 if (level != 0) 1593 return 0; 1594 1595 path = btrfs_alloc_path(); 1596 BUG_ON(!path); 1597 1598 nritems = btrfs_header_nritems(eb); 1599 for (i = 0; i < nritems; i++) { 1600 btrfs_item_key_to_cpu(eb, &key, i); 1601 item_size = btrfs_item_size_nr(eb, i); 1602 1603 /* inode keys are done during the first stage */ 1604 if (key.type == BTRFS_INODE_ITEM_KEY && 1605 wc->stage == LOG_WALK_REPLAY_INODES) { 1606 struct btrfs_inode_item *inode_item; 1607 u32 mode; 1608 1609 inode_item = btrfs_item_ptr(eb, i, 1610 struct btrfs_inode_item); 1611 mode = btrfs_inode_mode(eb, inode_item); 1612 if (S_ISDIR(mode)) { 1613 ret = replay_dir_deletes(wc->trans, 1614 root, log, path, key.objectid, 0); 1615 BUG_ON(ret); 1616 } 1617 ret = overwrite_item(wc->trans, root, path, 1618 eb, i, &key); 1619 BUG_ON(ret); 1620 1621 /* for regular files, make sure corresponding 1622 * orhpan item exist. extents past the new EOF 1623 * will be truncated later by orphan cleanup. 1624 */ 1625 if (S_ISREG(mode)) { 1626 ret = insert_orphan_item(wc->trans, root, 1627 key.objectid); 1628 BUG_ON(ret); 1629 } 1630 1631 ret = link_to_fixup_dir(wc->trans, root, 1632 path, key.objectid); 1633 BUG_ON(ret); 1634 } 1635 if (wc->stage < LOG_WALK_REPLAY_ALL) 1636 continue; 1637 1638 /* these keys are simply copied */ 1639 if (key.type == BTRFS_XATTR_ITEM_KEY) { 1640 ret = overwrite_item(wc->trans, root, path, 1641 eb, i, &key); 1642 BUG_ON(ret); 1643 } else if (key.type == BTRFS_INODE_REF_KEY) { 1644 ret = add_inode_ref(wc->trans, root, log, path, 1645 eb, i, &key); 1646 BUG_ON(ret && ret != -ENOENT); 1647 } else if (key.type == BTRFS_EXTENT_DATA_KEY) { 1648 ret = replay_one_extent(wc->trans, root, path, 1649 eb, i, &key); 1650 BUG_ON(ret); 1651 } else if (key.type == BTRFS_DIR_ITEM_KEY || 1652 key.type == BTRFS_DIR_INDEX_KEY) { 1653 ret = replay_one_dir_item(wc->trans, root, path, 1654 eb, i, &key); 1655 BUG_ON(ret); 1656 } 1657 } 1658 btrfs_free_path(path); 1659 return 0; 1660 } 1661 1662 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans, 1663 struct btrfs_root *root, 1664 struct btrfs_path *path, int *level, 1665 struct walk_control *wc) 1666 { 1667 u64 root_owner; 1668 u64 root_gen; 1669 u64 bytenr; 1670 u64 ptr_gen; 1671 struct extent_buffer *next; 1672 struct extent_buffer *cur; 1673 struct extent_buffer *parent; 1674 u32 blocksize; 1675 int ret = 0; 1676 1677 WARN_ON(*level < 0); 1678 WARN_ON(*level >= BTRFS_MAX_LEVEL); 1679 1680 while (*level > 0) { 1681 WARN_ON(*level < 0); 1682 WARN_ON(*level >= BTRFS_MAX_LEVEL); 1683 cur = path->nodes[*level]; 1684 1685 if (btrfs_header_level(cur) != *level) 1686 WARN_ON(1); 1687 1688 if (path->slots[*level] >= 1689 btrfs_header_nritems(cur)) 1690 break; 1691 1692 bytenr = btrfs_node_blockptr(cur, path->slots[*level]); 1693 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); 1694 blocksize = btrfs_level_size(root, *level - 1); 1695 1696 parent = path->nodes[*level]; 1697 root_owner = btrfs_header_owner(parent); 1698 root_gen = btrfs_header_generation(parent); 1699 1700 next = btrfs_find_create_tree_block(root, bytenr, blocksize); 1701 1702 wc->process_func(root, next, wc, ptr_gen); 1703 1704 if (*level == 1) { 1705 path->slots[*level]++; 1706 if (wc->free) { 1707 btrfs_read_buffer(next, ptr_gen); 1708 1709 btrfs_tree_lock(next); 1710 clean_tree_block(trans, root, next); 1711 btrfs_set_lock_blocking(next); 1712 btrfs_wait_tree_block_writeback(next); 1713 btrfs_tree_unlock(next); 1714 1715 WARN_ON(root_owner != 1716 BTRFS_TREE_LOG_OBJECTID); 1717 ret = btrfs_free_reserved_extent(root, 1718 bytenr, blocksize); 1719 BUG_ON(ret); 1720 } 1721 free_extent_buffer(next); 1722 continue; 1723 } 1724 btrfs_read_buffer(next, ptr_gen); 1725 1726 WARN_ON(*level <= 0); 1727 if (path->nodes[*level-1]) 1728 free_extent_buffer(path->nodes[*level-1]); 1729 path->nodes[*level-1] = next; 1730 *level = btrfs_header_level(next); 1731 path->slots[*level] = 0; 1732 cond_resched(); 1733 } 1734 WARN_ON(*level < 0); 1735 WARN_ON(*level >= BTRFS_MAX_LEVEL); 1736 1737 if (path->nodes[*level] == root->node) 1738 parent = path->nodes[*level]; 1739 else 1740 parent = path->nodes[*level + 1]; 1741 1742 bytenr = path->nodes[*level]->start; 1743 1744 blocksize = btrfs_level_size(root, *level); 1745 root_owner = btrfs_header_owner(parent); 1746 root_gen = btrfs_header_generation(parent); 1747 1748 wc->process_func(root, path->nodes[*level], wc, 1749 btrfs_header_generation(path->nodes[*level])); 1750 1751 if (wc->free) { 1752 next = path->nodes[*level]; 1753 btrfs_tree_lock(next); 1754 clean_tree_block(trans, root, next); 1755 btrfs_set_lock_blocking(next); 1756 btrfs_wait_tree_block_writeback(next); 1757 btrfs_tree_unlock(next); 1758 1759 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID); 1760 ret = btrfs_free_reserved_extent(root, bytenr, blocksize); 1761 BUG_ON(ret); 1762 } 1763 free_extent_buffer(path->nodes[*level]); 1764 path->nodes[*level] = NULL; 1765 *level += 1; 1766 1767 cond_resched(); 1768 return 0; 1769 } 1770 1771 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans, 1772 struct btrfs_root *root, 1773 struct btrfs_path *path, int *level, 1774 struct walk_control *wc) 1775 { 1776 u64 root_owner; 1777 u64 root_gen; 1778 int i; 1779 int slot; 1780 int ret; 1781 1782 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { 1783 slot = path->slots[i]; 1784 if (slot < btrfs_header_nritems(path->nodes[i]) - 1) { 1785 struct extent_buffer *node; 1786 node = path->nodes[i]; 1787 path->slots[i]++; 1788 *level = i; 1789 WARN_ON(*level == 0); 1790 return 0; 1791 } else { 1792 struct extent_buffer *parent; 1793 if (path->nodes[*level] == root->node) 1794 parent = path->nodes[*level]; 1795 else 1796 parent = path->nodes[*level + 1]; 1797 1798 root_owner = btrfs_header_owner(parent); 1799 root_gen = btrfs_header_generation(parent); 1800 wc->process_func(root, path->nodes[*level], wc, 1801 btrfs_header_generation(path->nodes[*level])); 1802 if (wc->free) { 1803 struct extent_buffer *next; 1804 1805 next = path->nodes[*level]; 1806 1807 btrfs_tree_lock(next); 1808 clean_tree_block(trans, root, next); 1809 btrfs_set_lock_blocking(next); 1810 btrfs_wait_tree_block_writeback(next); 1811 btrfs_tree_unlock(next); 1812 1813 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID); 1814 ret = btrfs_free_reserved_extent(root, 1815 path->nodes[*level]->start, 1816 path->nodes[*level]->len); 1817 BUG_ON(ret); 1818 } 1819 free_extent_buffer(path->nodes[*level]); 1820 path->nodes[*level] = NULL; 1821 *level = i + 1; 1822 } 1823 } 1824 return 1; 1825 } 1826 1827 /* 1828 * drop the reference count on the tree rooted at 'snap'. This traverses 1829 * the tree freeing any blocks that have a ref count of zero after being 1830 * decremented. 1831 */ 1832 static int walk_log_tree(struct btrfs_trans_handle *trans, 1833 struct btrfs_root *log, struct walk_control *wc) 1834 { 1835 int ret = 0; 1836 int wret; 1837 int level; 1838 struct btrfs_path *path; 1839 int i; 1840 int orig_level; 1841 1842 path = btrfs_alloc_path(); 1843 BUG_ON(!path); 1844 1845 level = btrfs_header_level(log->node); 1846 orig_level = level; 1847 path->nodes[level] = log->node; 1848 extent_buffer_get(log->node); 1849 path->slots[level] = 0; 1850 1851 while (1) { 1852 wret = walk_down_log_tree(trans, log, path, &level, wc); 1853 if (wret > 0) 1854 break; 1855 if (wret < 0) 1856 ret = wret; 1857 1858 wret = walk_up_log_tree(trans, log, path, &level, wc); 1859 if (wret > 0) 1860 break; 1861 if (wret < 0) 1862 ret = wret; 1863 } 1864 1865 /* was the root node processed? if not, catch it here */ 1866 if (path->nodes[orig_level]) { 1867 wc->process_func(log, path->nodes[orig_level], wc, 1868 btrfs_header_generation(path->nodes[orig_level])); 1869 if (wc->free) { 1870 struct extent_buffer *next; 1871 1872 next = path->nodes[orig_level]; 1873 1874 btrfs_tree_lock(next); 1875 clean_tree_block(trans, log, next); 1876 btrfs_set_lock_blocking(next); 1877 btrfs_wait_tree_block_writeback(next); 1878 btrfs_tree_unlock(next); 1879 1880 WARN_ON(log->root_key.objectid != 1881 BTRFS_TREE_LOG_OBJECTID); 1882 ret = btrfs_free_reserved_extent(log, next->start, 1883 next->len); 1884 BUG_ON(ret); 1885 } 1886 } 1887 1888 for (i = 0; i <= orig_level; i++) { 1889 if (path->nodes[i]) { 1890 free_extent_buffer(path->nodes[i]); 1891 path->nodes[i] = NULL; 1892 } 1893 } 1894 btrfs_free_path(path); 1895 return ret; 1896 } 1897 1898 /* 1899 * helper function to update the item for a given subvolumes log root 1900 * in the tree of log roots 1901 */ 1902 static int update_log_root(struct btrfs_trans_handle *trans, 1903 struct btrfs_root *log) 1904 { 1905 int ret; 1906 1907 if (log->log_transid == 1) { 1908 /* insert root item on the first sync */ 1909 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree, 1910 &log->root_key, &log->root_item); 1911 } else { 1912 ret = btrfs_update_root(trans, log->fs_info->log_root_tree, 1913 &log->root_key, &log->root_item); 1914 } 1915 return ret; 1916 } 1917 1918 static int wait_log_commit(struct btrfs_trans_handle *trans, 1919 struct btrfs_root *root, unsigned long transid) 1920 { 1921 DEFINE_WAIT(wait); 1922 int index = transid % 2; 1923 1924 /* 1925 * we only allow two pending log transactions at a time, 1926 * so we know that if ours is more than 2 older than the 1927 * current transaction, we're done 1928 */ 1929 do { 1930 prepare_to_wait(&root->log_commit_wait[index], 1931 &wait, TASK_UNINTERRUPTIBLE); 1932 mutex_unlock(&root->log_mutex); 1933 1934 if (root->fs_info->last_trans_log_full_commit != 1935 trans->transid && root->log_transid < transid + 2 && 1936 atomic_read(&root->log_commit[index])) 1937 schedule(); 1938 1939 finish_wait(&root->log_commit_wait[index], &wait); 1940 mutex_lock(&root->log_mutex); 1941 } while (root->log_transid < transid + 2 && 1942 atomic_read(&root->log_commit[index])); 1943 return 0; 1944 } 1945 1946 static int wait_for_writer(struct btrfs_trans_handle *trans, 1947 struct btrfs_root *root) 1948 { 1949 DEFINE_WAIT(wait); 1950 while (atomic_read(&root->log_writers)) { 1951 prepare_to_wait(&root->log_writer_wait, 1952 &wait, TASK_UNINTERRUPTIBLE); 1953 mutex_unlock(&root->log_mutex); 1954 if (root->fs_info->last_trans_log_full_commit != 1955 trans->transid && atomic_read(&root->log_writers)) 1956 schedule(); 1957 mutex_lock(&root->log_mutex); 1958 finish_wait(&root->log_writer_wait, &wait); 1959 } 1960 return 0; 1961 } 1962 1963 /* 1964 * btrfs_sync_log does sends a given tree log down to the disk and 1965 * updates the super blocks to record it. When this call is done, 1966 * you know that any inodes previously logged are safely on disk only 1967 * if it returns 0. 1968 * 1969 * Any other return value means you need to call btrfs_commit_transaction. 1970 * Some of the edge cases for fsyncing directories that have had unlinks 1971 * or renames done in the past mean that sometimes the only safe 1972 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN, 1973 * that has happened. 1974 */ 1975 int btrfs_sync_log(struct btrfs_trans_handle *trans, 1976 struct btrfs_root *root) 1977 { 1978 int index1; 1979 int index2; 1980 int mark; 1981 int ret; 1982 struct btrfs_root *log = root->log_root; 1983 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree; 1984 unsigned long log_transid = 0; 1985 1986 mutex_lock(&root->log_mutex); 1987 index1 = root->log_transid % 2; 1988 if (atomic_read(&root->log_commit[index1])) { 1989 wait_log_commit(trans, root, root->log_transid); 1990 mutex_unlock(&root->log_mutex); 1991 return 0; 1992 } 1993 atomic_set(&root->log_commit[index1], 1); 1994 1995 /* wait for previous tree log sync to complete */ 1996 if (atomic_read(&root->log_commit[(index1 + 1) % 2])) 1997 wait_log_commit(trans, root, root->log_transid - 1); 1998 1999 while (1) { 2000 unsigned long batch = root->log_batch; 2001 if (root->log_multiple_pids) { 2002 mutex_unlock(&root->log_mutex); 2003 schedule_timeout_uninterruptible(1); 2004 mutex_lock(&root->log_mutex); 2005 } 2006 wait_for_writer(trans, root); 2007 if (batch == root->log_batch) 2008 break; 2009 } 2010 2011 /* bail out if we need to do a full commit */ 2012 if (root->fs_info->last_trans_log_full_commit == trans->transid) { 2013 ret = -EAGAIN; 2014 mutex_unlock(&root->log_mutex); 2015 goto out; 2016 } 2017 2018 log_transid = root->log_transid; 2019 if (log_transid % 2 == 0) 2020 mark = EXTENT_DIRTY; 2021 else 2022 mark = EXTENT_NEW; 2023 2024 /* we start IO on all the marked extents here, but we don't actually 2025 * wait for them until later. 2026 */ 2027 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark); 2028 BUG_ON(ret); 2029 2030 btrfs_set_root_node(&log->root_item, log->node); 2031 2032 root->log_batch = 0; 2033 root->log_transid++; 2034 log->log_transid = root->log_transid; 2035 root->log_start_pid = 0; 2036 smp_mb(); 2037 /* 2038 * IO has been started, blocks of the log tree have WRITTEN flag set 2039 * in their headers. new modifications of the log will be written to 2040 * new positions. so it's safe to allow log writers to go in. 2041 */ 2042 mutex_unlock(&root->log_mutex); 2043 2044 mutex_lock(&log_root_tree->log_mutex); 2045 log_root_tree->log_batch++; 2046 atomic_inc(&log_root_tree->log_writers); 2047 mutex_unlock(&log_root_tree->log_mutex); 2048 2049 ret = update_log_root(trans, log); 2050 BUG_ON(ret); 2051 2052 mutex_lock(&log_root_tree->log_mutex); 2053 if (atomic_dec_and_test(&log_root_tree->log_writers)) { 2054 smp_mb(); 2055 if (waitqueue_active(&log_root_tree->log_writer_wait)) 2056 wake_up(&log_root_tree->log_writer_wait); 2057 } 2058 2059 index2 = log_root_tree->log_transid % 2; 2060 if (atomic_read(&log_root_tree->log_commit[index2])) { 2061 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark); 2062 wait_log_commit(trans, log_root_tree, 2063 log_root_tree->log_transid); 2064 mutex_unlock(&log_root_tree->log_mutex); 2065 goto out; 2066 } 2067 atomic_set(&log_root_tree->log_commit[index2], 1); 2068 2069 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) { 2070 wait_log_commit(trans, log_root_tree, 2071 log_root_tree->log_transid - 1); 2072 } 2073 2074 wait_for_writer(trans, log_root_tree); 2075 2076 /* 2077 * now that we've moved on to the tree of log tree roots, 2078 * check the full commit flag again 2079 */ 2080 if (root->fs_info->last_trans_log_full_commit == trans->transid) { 2081 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark); 2082 mutex_unlock(&log_root_tree->log_mutex); 2083 ret = -EAGAIN; 2084 goto out_wake_log_root; 2085 } 2086 2087 ret = btrfs_write_and_wait_marked_extents(log_root_tree, 2088 &log_root_tree->dirty_log_pages, 2089 EXTENT_DIRTY | EXTENT_NEW); 2090 BUG_ON(ret); 2091 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark); 2092 2093 btrfs_set_super_log_root(&root->fs_info->super_for_commit, 2094 log_root_tree->node->start); 2095 btrfs_set_super_log_root_level(&root->fs_info->super_for_commit, 2096 btrfs_header_level(log_root_tree->node)); 2097 2098 log_root_tree->log_batch = 0; 2099 log_root_tree->log_transid++; 2100 smp_mb(); 2101 2102 mutex_unlock(&log_root_tree->log_mutex); 2103 2104 /* 2105 * nobody else is going to jump in and write the the ctree 2106 * super here because the log_commit atomic below is protecting 2107 * us. We must be called with a transaction handle pinning 2108 * the running transaction open, so a full commit can't hop 2109 * in and cause problems either. 2110 */ 2111 write_ctree_super(trans, root->fs_info->tree_root, 1); 2112 ret = 0; 2113 2114 mutex_lock(&root->log_mutex); 2115 if (root->last_log_commit < log_transid) 2116 root->last_log_commit = log_transid; 2117 mutex_unlock(&root->log_mutex); 2118 2119 out_wake_log_root: 2120 atomic_set(&log_root_tree->log_commit[index2], 0); 2121 smp_mb(); 2122 if (waitqueue_active(&log_root_tree->log_commit_wait[index2])) 2123 wake_up(&log_root_tree->log_commit_wait[index2]); 2124 out: 2125 atomic_set(&root->log_commit[index1], 0); 2126 smp_mb(); 2127 if (waitqueue_active(&root->log_commit_wait[index1])) 2128 wake_up(&root->log_commit_wait[index1]); 2129 return 0; 2130 } 2131 2132 /* 2133 * free all the extents used by the tree log. This should be called 2134 * at commit time of the full transaction 2135 */ 2136 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root) 2137 { 2138 int ret; 2139 struct btrfs_root *log; 2140 struct key; 2141 u64 start; 2142 u64 end; 2143 struct walk_control wc = { 2144 .free = 1, 2145 .process_func = process_one_buffer 2146 }; 2147 2148 if (!root->log_root || root->fs_info->log_root_recovering) 2149 return 0; 2150 2151 log = root->log_root; 2152 ret = walk_log_tree(trans, log, &wc); 2153 BUG_ON(ret); 2154 2155 while (1) { 2156 ret = find_first_extent_bit(&log->dirty_log_pages, 2157 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW); 2158 if (ret) 2159 break; 2160 2161 clear_extent_bits(&log->dirty_log_pages, start, end, 2162 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS); 2163 } 2164 2165 if (log->log_transid > 0) { 2166 ret = btrfs_del_root(trans, root->fs_info->log_root_tree, 2167 &log->root_key); 2168 BUG_ON(ret); 2169 } 2170 root->log_root = NULL; 2171 free_extent_buffer(log->node); 2172 kfree(log); 2173 return 0; 2174 } 2175 2176 /* 2177 * If both a file and directory are logged, and unlinks or renames are 2178 * mixed in, we have a few interesting corners: 2179 * 2180 * create file X in dir Y 2181 * link file X to X.link in dir Y 2182 * fsync file X 2183 * unlink file X but leave X.link 2184 * fsync dir Y 2185 * 2186 * After a crash we would expect only X.link to exist. But file X 2187 * didn't get fsync'd again so the log has back refs for X and X.link. 2188 * 2189 * We solve this by removing directory entries and inode backrefs from the 2190 * log when a file that was logged in the current transaction is 2191 * unlinked. Any later fsync will include the updated log entries, and 2192 * we'll be able to reconstruct the proper directory items from backrefs. 2193 * 2194 * This optimizations allows us to avoid relogging the entire inode 2195 * or the entire directory. 2196 */ 2197 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans, 2198 struct btrfs_root *root, 2199 const char *name, int name_len, 2200 struct inode *dir, u64 index) 2201 { 2202 struct btrfs_root *log; 2203 struct btrfs_dir_item *di; 2204 struct btrfs_path *path; 2205 int ret; 2206 int bytes_del = 0; 2207 2208 if (BTRFS_I(dir)->logged_trans < trans->transid) 2209 return 0; 2210 2211 ret = join_running_log_trans(root); 2212 if (ret) 2213 return 0; 2214 2215 mutex_lock(&BTRFS_I(dir)->log_mutex); 2216 2217 log = root->log_root; 2218 path = btrfs_alloc_path(); 2219 di = btrfs_lookup_dir_item(trans, log, path, dir->i_ino, 2220 name, name_len, -1); 2221 if (di && !IS_ERR(di)) { 2222 ret = btrfs_delete_one_dir_name(trans, log, path, di); 2223 bytes_del += name_len; 2224 BUG_ON(ret); 2225 } 2226 btrfs_release_path(log, path); 2227 di = btrfs_lookup_dir_index_item(trans, log, path, dir->i_ino, 2228 index, name, name_len, -1); 2229 if (di && !IS_ERR(di)) { 2230 ret = btrfs_delete_one_dir_name(trans, log, path, di); 2231 bytes_del += name_len; 2232 BUG_ON(ret); 2233 } 2234 2235 /* update the directory size in the log to reflect the names 2236 * we have removed 2237 */ 2238 if (bytes_del) { 2239 struct btrfs_key key; 2240 2241 key.objectid = dir->i_ino; 2242 key.offset = 0; 2243 key.type = BTRFS_INODE_ITEM_KEY; 2244 btrfs_release_path(log, path); 2245 2246 ret = btrfs_search_slot(trans, log, &key, path, 0, 1); 2247 if (ret == 0) { 2248 struct btrfs_inode_item *item; 2249 u64 i_size; 2250 2251 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2252 struct btrfs_inode_item); 2253 i_size = btrfs_inode_size(path->nodes[0], item); 2254 if (i_size > bytes_del) 2255 i_size -= bytes_del; 2256 else 2257 i_size = 0; 2258 btrfs_set_inode_size(path->nodes[0], item, i_size); 2259 btrfs_mark_buffer_dirty(path->nodes[0]); 2260 } else 2261 ret = 0; 2262 btrfs_release_path(log, path); 2263 } 2264 2265 btrfs_free_path(path); 2266 mutex_unlock(&BTRFS_I(dir)->log_mutex); 2267 btrfs_end_log_trans(root); 2268 2269 return 0; 2270 } 2271 2272 /* see comments for btrfs_del_dir_entries_in_log */ 2273 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans, 2274 struct btrfs_root *root, 2275 const char *name, int name_len, 2276 struct inode *inode, u64 dirid) 2277 { 2278 struct btrfs_root *log; 2279 u64 index; 2280 int ret; 2281 2282 if (BTRFS_I(inode)->logged_trans < trans->transid) 2283 return 0; 2284 2285 ret = join_running_log_trans(root); 2286 if (ret) 2287 return 0; 2288 log = root->log_root; 2289 mutex_lock(&BTRFS_I(inode)->log_mutex); 2290 2291 ret = btrfs_del_inode_ref(trans, log, name, name_len, inode->i_ino, 2292 dirid, &index); 2293 mutex_unlock(&BTRFS_I(inode)->log_mutex); 2294 btrfs_end_log_trans(root); 2295 2296 return ret; 2297 } 2298 2299 /* 2300 * creates a range item in the log for 'dirid'. first_offset and 2301 * last_offset tell us which parts of the key space the log should 2302 * be considered authoritative for. 2303 */ 2304 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans, 2305 struct btrfs_root *log, 2306 struct btrfs_path *path, 2307 int key_type, u64 dirid, 2308 u64 first_offset, u64 last_offset) 2309 { 2310 int ret; 2311 struct btrfs_key key; 2312 struct btrfs_dir_log_item *item; 2313 2314 key.objectid = dirid; 2315 key.offset = first_offset; 2316 if (key_type == BTRFS_DIR_ITEM_KEY) 2317 key.type = BTRFS_DIR_LOG_ITEM_KEY; 2318 else 2319 key.type = BTRFS_DIR_LOG_INDEX_KEY; 2320 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item)); 2321 BUG_ON(ret); 2322 2323 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2324 struct btrfs_dir_log_item); 2325 btrfs_set_dir_log_end(path->nodes[0], item, last_offset); 2326 btrfs_mark_buffer_dirty(path->nodes[0]); 2327 btrfs_release_path(log, path); 2328 return 0; 2329 } 2330 2331 /* 2332 * log all the items included in the current transaction for a given 2333 * directory. This also creates the range items in the log tree required 2334 * to replay anything deleted before the fsync 2335 */ 2336 static noinline int log_dir_items(struct btrfs_trans_handle *trans, 2337 struct btrfs_root *root, struct inode *inode, 2338 struct btrfs_path *path, 2339 struct btrfs_path *dst_path, int key_type, 2340 u64 min_offset, u64 *last_offset_ret) 2341 { 2342 struct btrfs_key min_key; 2343 struct btrfs_key max_key; 2344 struct btrfs_root *log = root->log_root; 2345 struct extent_buffer *src; 2346 int ret; 2347 int i; 2348 int nritems; 2349 u64 first_offset = min_offset; 2350 u64 last_offset = (u64)-1; 2351 2352 log = root->log_root; 2353 max_key.objectid = inode->i_ino; 2354 max_key.offset = (u64)-1; 2355 max_key.type = key_type; 2356 2357 min_key.objectid = inode->i_ino; 2358 min_key.type = key_type; 2359 min_key.offset = min_offset; 2360 2361 path->keep_locks = 1; 2362 2363 ret = btrfs_search_forward(root, &min_key, &max_key, 2364 path, 0, trans->transid); 2365 2366 /* 2367 * we didn't find anything from this transaction, see if there 2368 * is anything at all 2369 */ 2370 if (ret != 0 || min_key.objectid != inode->i_ino || 2371 min_key.type != key_type) { 2372 min_key.objectid = inode->i_ino; 2373 min_key.type = key_type; 2374 min_key.offset = (u64)-1; 2375 btrfs_release_path(root, path); 2376 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 2377 if (ret < 0) { 2378 btrfs_release_path(root, path); 2379 return ret; 2380 } 2381 ret = btrfs_previous_item(root, path, inode->i_ino, key_type); 2382 2383 /* if ret == 0 there are items for this type, 2384 * create a range to tell us the last key of this type. 2385 * otherwise, there are no items in this directory after 2386 * *min_offset, and we create a range to indicate that. 2387 */ 2388 if (ret == 0) { 2389 struct btrfs_key tmp; 2390 btrfs_item_key_to_cpu(path->nodes[0], &tmp, 2391 path->slots[0]); 2392 if (key_type == tmp.type) 2393 first_offset = max(min_offset, tmp.offset) + 1; 2394 } 2395 goto done; 2396 } 2397 2398 /* go backward to find any previous key */ 2399 ret = btrfs_previous_item(root, path, inode->i_ino, key_type); 2400 if (ret == 0) { 2401 struct btrfs_key tmp; 2402 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 2403 if (key_type == tmp.type) { 2404 first_offset = tmp.offset; 2405 ret = overwrite_item(trans, log, dst_path, 2406 path->nodes[0], path->slots[0], 2407 &tmp); 2408 } 2409 } 2410 btrfs_release_path(root, path); 2411 2412 /* find the first key from this transaction again */ 2413 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 2414 if (ret != 0) { 2415 WARN_ON(1); 2416 goto done; 2417 } 2418 2419 /* 2420 * we have a block from this transaction, log every item in it 2421 * from our directory 2422 */ 2423 while (1) { 2424 struct btrfs_key tmp; 2425 src = path->nodes[0]; 2426 nritems = btrfs_header_nritems(src); 2427 for (i = path->slots[0]; i < nritems; i++) { 2428 btrfs_item_key_to_cpu(src, &min_key, i); 2429 2430 if (min_key.objectid != inode->i_ino || 2431 min_key.type != key_type) 2432 goto done; 2433 ret = overwrite_item(trans, log, dst_path, src, i, 2434 &min_key); 2435 BUG_ON(ret); 2436 } 2437 path->slots[0] = nritems; 2438 2439 /* 2440 * look ahead to the next item and see if it is also 2441 * from this directory and from this transaction 2442 */ 2443 ret = btrfs_next_leaf(root, path); 2444 if (ret == 1) { 2445 last_offset = (u64)-1; 2446 goto done; 2447 } 2448 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 2449 if (tmp.objectid != inode->i_ino || tmp.type != key_type) { 2450 last_offset = (u64)-1; 2451 goto done; 2452 } 2453 if (btrfs_header_generation(path->nodes[0]) != trans->transid) { 2454 ret = overwrite_item(trans, log, dst_path, 2455 path->nodes[0], path->slots[0], 2456 &tmp); 2457 2458 BUG_ON(ret); 2459 last_offset = tmp.offset; 2460 goto done; 2461 } 2462 } 2463 done: 2464 *last_offset_ret = last_offset; 2465 btrfs_release_path(root, path); 2466 btrfs_release_path(log, dst_path); 2467 2468 /* insert the log range keys to indicate where the log is valid */ 2469 ret = insert_dir_log_key(trans, log, path, key_type, inode->i_ino, 2470 first_offset, last_offset); 2471 BUG_ON(ret); 2472 return 0; 2473 } 2474 2475 /* 2476 * logging directories is very similar to logging inodes, We find all the items 2477 * from the current transaction and write them to the log. 2478 * 2479 * The recovery code scans the directory in the subvolume, and if it finds a 2480 * key in the range logged that is not present in the log tree, then it means 2481 * that dir entry was unlinked during the transaction. 2482 * 2483 * In order for that scan to work, we must include one key smaller than 2484 * the smallest logged by this transaction and one key larger than the largest 2485 * key logged by this transaction. 2486 */ 2487 static noinline int log_directory_changes(struct btrfs_trans_handle *trans, 2488 struct btrfs_root *root, struct inode *inode, 2489 struct btrfs_path *path, 2490 struct btrfs_path *dst_path) 2491 { 2492 u64 min_key; 2493 u64 max_key; 2494 int ret; 2495 int key_type = BTRFS_DIR_ITEM_KEY; 2496 2497 again: 2498 min_key = 0; 2499 max_key = 0; 2500 while (1) { 2501 ret = log_dir_items(trans, root, inode, path, 2502 dst_path, key_type, min_key, 2503 &max_key); 2504 BUG_ON(ret); 2505 if (max_key == (u64)-1) 2506 break; 2507 min_key = max_key + 1; 2508 } 2509 2510 if (key_type == BTRFS_DIR_ITEM_KEY) { 2511 key_type = BTRFS_DIR_INDEX_KEY; 2512 goto again; 2513 } 2514 return 0; 2515 } 2516 2517 /* 2518 * a helper function to drop items from the log before we relog an 2519 * inode. max_key_type indicates the highest item type to remove. 2520 * This cannot be run for file data extents because it does not 2521 * free the extents they point to. 2522 */ 2523 static int drop_objectid_items(struct btrfs_trans_handle *trans, 2524 struct btrfs_root *log, 2525 struct btrfs_path *path, 2526 u64 objectid, int max_key_type) 2527 { 2528 int ret; 2529 struct btrfs_key key; 2530 struct btrfs_key found_key; 2531 2532 key.objectid = objectid; 2533 key.type = max_key_type; 2534 key.offset = (u64)-1; 2535 2536 while (1) { 2537 ret = btrfs_search_slot(trans, log, &key, path, -1, 1); 2538 2539 if (ret != 1) 2540 break; 2541 2542 if (path->slots[0] == 0) 2543 break; 2544 2545 path->slots[0]--; 2546 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2547 path->slots[0]); 2548 2549 if (found_key.objectid != objectid) 2550 break; 2551 2552 ret = btrfs_del_item(trans, log, path); 2553 BUG_ON(ret); 2554 btrfs_release_path(log, path); 2555 } 2556 btrfs_release_path(log, path); 2557 return 0; 2558 } 2559 2560 static noinline int copy_items(struct btrfs_trans_handle *trans, 2561 struct btrfs_root *log, 2562 struct btrfs_path *dst_path, 2563 struct extent_buffer *src, 2564 int start_slot, int nr, int inode_only) 2565 { 2566 unsigned long src_offset; 2567 unsigned long dst_offset; 2568 struct btrfs_file_extent_item *extent; 2569 struct btrfs_inode_item *inode_item; 2570 int ret; 2571 struct btrfs_key *ins_keys; 2572 u32 *ins_sizes; 2573 char *ins_data; 2574 int i; 2575 struct list_head ordered_sums; 2576 2577 INIT_LIST_HEAD(&ordered_sums); 2578 2579 ins_data = kmalloc(nr * sizeof(struct btrfs_key) + 2580 nr * sizeof(u32), GFP_NOFS); 2581 ins_sizes = (u32 *)ins_data; 2582 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32)); 2583 2584 for (i = 0; i < nr; i++) { 2585 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot); 2586 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot); 2587 } 2588 ret = btrfs_insert_empty_items(trans, log, dst_path, 2589 ins_keys, ins_sizes, nr); 2590 BUG_ON(ret); 2591 2592 for (i = 0; i < nr; i++, dst_path->slots[0]++) { 2593 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], 2594 dst_path->slots[0]); 2595 2596 src_offset = btrfs_item_ptr_offset(src, start_slot + i); 2597 2598 copy_extent_buffer(dst_path->nodes[0], src, dst_offset, 2599 src_offset, ins_sizes[i]); 2600 2601 if (inode_only == LOG_INODE_EXISTS && 2602 ins_keys[i].type == BTRFS_INODE_ITEM_KEY) { 2603 inode_item = btrfs_item_ptr(dst_path->nodes[0], 2604 dst_path->slots[0], 2605 struct btrfs_inode_item); 2606 btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0); 2607 2608 /* set the generation to zero so the recover code 2609 * can tell the difference between an logging 2610 * just to say 'this inode exists' and a logging 2611 * to say 'update this inode with these values' 2612 */ 2613 btrfs_set_inode_generation(dst_path->nodes[0], 2614 inode_item, 0); 2615 } 2616 /* take a reference on file data extents so that truncates 2617 * or deletes of this inode don't have to relog the inode 2618 * again 2619 */ 2620 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) { 2621 int found_type; 2622 extent = btrfs_item_ptr(src, start_slot + i, 2623 struct btrfs_file_extent_item); 2624 2625 found_type = btrfs_file_extent_type(src, extent); 2626 if (found_type == BTRFS_FILE_EXTENT_REG || 2627 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 2628 u64 ds, dl, cs, cl; 2629 ds = btrfs_file_extent_disk_bytenr(src, 2630 extent); 2631 /* ds == 0 is a hole */ 2632 if (ds == 0) 2633 continue; 2634 2635 dl = btrfs_file_extent_disk_num_bytes(src, 2636 extent); 2637 cs = btrfs_file_extent_offset(src, extent); 2638 cl = btrfs_file_extent_num_bytes(src, 2639 extent); 2640 if (btrfs_file_extent_compression(src, 2641 extent)) { 2642 cs = 0; 2643 cl = dl; 2644 } 2645 2646 ret = btrfs_lookup_csums_range( 2647 log->fs_info->csum_root, 2648 ds + cs, ds + cs + cl - 1, 2649 &ordered_sums); 2650 BUG_ON(ret); 2651 } 2652 } 2653 } 2654 2655 btrfs_mark_buffer_dirty(dst_path->nodes[0]); 2656 btrfs_release_path(log, dst_path); 2657 kfree(ins_data); 2658 2659 /* 2660 * we have to do this after the loop above to avoid changing the 2661 * log tree while trying to change the log tree. 2662 */ 2663 while (!list_empty(&ordered_sums)) { 2664 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, 2665 struct btrfs_ordered_sum, 2666 list); 2667 ret = btrfs_csum_file_blocks(trans, log, sums); 2668 BUG_ON(ret); 2669 list_del(&sums->list); 2670 kfree(sums); 2671 } 2672 return 0; 2673 } 2674 2675 /* log a single inode in the tree log. 2676 * At least one parent directory for this inode must exist in the tree 2677 * or be logged already. 2678 * 2679 * Any items from this inode changed by the current transaction are copied 2680 * to the log tree. An extra reference is taken on any extents in this 2681 * file, allowing us to avoid a whole pile of corner cases around logging 2682 * blocks that have been removed from the tree. 2683 * 2684 * See LOG_INODE_ALL and related defines for a description of what inode_only 2685 * does. 2686 * 2687 * This handles both files and directories. 2688 */ 2689 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 2690 struct btrfs_root *root, struct inode *inode, 2691 int inode_only) 2692 { 2693 struct btrfs_path *path; 2694 struct btrfs_path *dst_path; 2695 struct btrfs_key min_key; 2696 struct btrfs_key max_key; 2697 struct btrfs_root *log = root->log_root; 2698 struct extent_buffer *src = NULL; 2699 u32 size; 2700 int ret; 2701 int nritems; 2702 int ins_start_slot = 0; 2703 int ins_nr; 2704 2705 log = root->log_root; 2706 2707 path = btrfs_alloc_path(); 2708 dst_path = btrfs_alloc_path(); 2709 2710 min_key.objectid = inode->i_ino; 2711 min_key.type = BTRFS_INODE_ITEM_KEY; 2712 min_key.offset = 0; 2713 2714 max_key.objectid = inode->i_ino; 2715 2716 /* today the code can only do partial logging of directories */ 2717 if (!S_ISDIR(inode->i_mode)) 2718 inode_only = LOG_INODE_ALL; 2719 2720 if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode)) 2721 max_key.type = BTRFS_XATTR_ITEM_KEY; 2722 else 2723 max_key.type = (u8)-1; 2724 max_key.offset = (u64)-1; 2725 2726 mutex_lock(&BTRFS_I(inode)->log_mutex); 2727 2728 /* 2729 * a brute force approach to making sure we get the most uptodate 2730 * copies of everything. 2731 */ 2732 if (S_ISDIR(inode->i_mode)) { 2733 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY; 2734 2735 if (inode_only == LOG_INODE_EXISTS) 2736 max_key_type = BTRFS_XATTR_ITEM_KEY; 2737 ret = drop_objectid_items(trans, log, path, 2738 inode->i_ino, max_key_type); 2739 } else { 2740 ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0); 2741 } 2742 BUG_ON(ret); 2743 path->keep_locks = 1; 2744 2745 while (1) { 2746 ins_nr = 0; 2747 ret = btrfs_search_forward(root, &min_key, &max_key, 2748 path, 0, trans->transid); 2749 if (ret != 0) 2750 break; 2751 again: 2752 /* note, ins_nr might be > 0 here, cleanup outside the loop */ 2753 if (min_key.objectid != inode->i_ino) 2754 break; 2755 if (min_key.type > max_key.type) 2756 break; 2757 2758 src = path->nodes[0]; 2759 size = btrfs_item_size_nr(src, path->slots[0]); 2760 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) { 2761 ins_nr++; 2762 goto next_slot; 2763 } else if (!ins_nr) { 2764 ins_start_slot = path->slots[0]; 2765 ins_nr = 1; 2766 goto next_slot; 2767 } 2768 2769 ret = copy_items(trans, log, dst_path, src, ins_start_slot, 2770 ins_nr, inode_only); 2771 BUG_ON(ret); 2772 ins_nr = 1; 2773 ins_start_slot = path->slots[0]; 2774 next_slot: 2775 2776 nritems = btrfs_header_nritems(path->nodes[0]); 2777 path->slots[0]++; 2778 if (path->slots[0] < nritems) { 2779 btrfs_item_key_to_cpu(path->nodes[0], &min_key, 2780 path->slots[0]); 2781 goto again; 2782 } 2783 if (ins_nr) { 2784 ret = copy_items(trans, log, dst_path, src, 2785 ins_start_slot, 2786 ins_nr, inode_only); 2787 BUG_ON(ret); 2788 ins_nr = 0; 2789 } 2790 btrfs_release_path(root, path); 2791 2792 if (min_key.offset < (u64)-1) 2793 min_key.offset++; 2794 else if (min_key.type < (u8)-1) 2795 min_key.type++; 2796 else if (min_key.objectid < (u64)-1) 2797 min_key.objectid++; 2798 else 2799 break; 2800 } 2801 if (ins_nr) { 2802 ret = copy_items(trans, log, dst_path, src, 2803 ins_start_slot, 2804 ins_nr, inode_only); 2805 BUG_ON(ret); 2806 ins_nr = 0; 2807 } 2808 WARN_ON(ins_nr); 2809 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) { 2810 btrfs_release_path(root, path); 2811 btrfs_release_path(log, dst_path); 2812 ret = log_directory_changes(trans, root, inode, path, dst_path); 2813 BUG_ON(ret); 2814 } 2815 BTRFS_I(inode)->logged_trans = trans->transid; 2816 mutex_unlock(&BTRFS_I(inode)->log_mutex); 2817 2818 btrfs_free_path(path); 2819 btrfs_free_path(dst_path); 2820 return 0; 2821 } 2822 2823 /* 2824 * follow the dentry parent pointers up the chain and see if any 2825 * of the directories in it require a full commit before they can 2826 * be logged. Returns zero if nothing special needs to be done or 1 if 2827 * a full commit is required. 2828 */ 2829 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans, 2830 struct inode *inode, 2831 struct dentry *parent, 2832 struct super_block *sb, 2833 u64 last_committed) 2834 { 2835 int ret = 0; 2836 struct btrfs_root *root; 2837 2838 /* 2839 * for regular files, if its inode is already on disk, we don't 2840 * have to worry about the parents at all. This is because 2841 * we can use the last_unlink_trans field to record renames 2842 * and other fun in this file. 2843 */ 2844 if (S_ISREG(inode->i_mode) && 2845 BTRFS_I(inode)->generation <= last_committed && 2846 BTRFS_I(inode)->last_unlink_trans <= last_committed) 2847 goto out; 2848 2849 if (!S_ISDIR(inode->i_mode)) { 2850 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb) 2851 goto out; 2852 inode = parent->d_inode; 2853 } 2854 2855 while (1) { 2856 BTRFS_I(inode)->logged_trans = trans->transid; 2857 smp_mb(); 2858 2859 if (BTRFS_I(inode)->last_unlink_trans > last_committed) { 2860 root = BTRFS_I(inode)->root; 2861 2862 /* 2863 * make sure any commits to the log are forced 2864 * to be full commits 2865 */ 2866 root->fs_info->last_trans_log_full_commit = 2867 trans->transid; 2868 ret = 1; 2869 break; 2870 } 2871 2872 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb) 2873 break; 2874 2875 if (IS_ROOT(parent)) 2876 break; 2877 2878 parent = parent->d_parent; 2879 inode = parent->d_inode; 2880 2881 } 2882 out: 2883 return ret; 2884 } 2885 2886 static int inode_in_log(struct btrfs_trans_handle *trans, 2887 struct inode *inode) 2888 { 2889 struct btrfs_root *root = BTRFS_I(inode)->root; 2890 int ret = 0; 2891 2892 mutex_lock(&root->log_mutex); 2893 if (BTRFS_I(inode)->logged_trans == trans->transid && 2894 BTRFS_I(inode)->last_sub_trans <= root->last_log_commit) 2895 ret = 1; 2896 mutex_unlock(&root->log_mutex); 2897 return ret; 2898 } 2899 2900 2901 /* 2902 * helper function around btrfs_log_inode to make sure newly created 2903 * parent directories also end up in the log. A minimal inode and backref 2904 * only logging is done of any parent directories that are older than 2905 * the last committed transaction 2906 */ 2907 int btrfs_log_inode_parent(struct btrfs_trans_handle *trans, 2908 struct btrfs_root *root, struct inode *inode, 2909 struct dentry *parent, int exists_only) 2910 { 2911 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL; 2912 struct super_block *sb; 2913 int ret = 0; 2914 u64 last_committed = root->fs_info->last_trans_committed; 2915 2916 sb = inode->i_sb; 2917 2918 if (btrfs_test_opt(root, NOTREELOG)) { 2919 ret = 1; 2920 goto end_no_trans; 2921 } 2922 2923 if (root->fs_info->last_trans_log_full_commit > 2924 root->fs_info->last_trans_committed) { 2925 ret = 1; 2926 goto end_no_trans; 2927 } 2928 2929 if (root != BTRFS_I(inode)->root || 2930 btrfs_root_refs(&root->root_item) == 0) { 2931 ret = 1; 2932 goto end_no_trans; 2933 } 2934 2935 ret = check_parent_dirs_for_sync(trans, inode, parent, 2936 sb, last_committed); 2937 if (ret) 2938 goto end_no_trans; 2939 2940 if (inode_in_log(trans, inode)) { 2941 ret = BTRFS_NO_LOG_SYNC; 2942 goto end_no_trans; 2943 } 2944 2945 start_log_trans(trans, root); 2946 2947 ret = btrfs_log_inode(trans, root, inode, inode_only); 2948 BUG_ON(ret); 2949 2950 /* 2951 * for regular files, if its inode is already on disk, we don't 2952 * have to worry about the parents at all. This is because 2953 * we can use the last_unlink_trans field to record renames 2954 * and other fun in this file. 2955 */ 2956 if (S_ISREG(inode->i_mode) && 2957 BTRFS_I(inode)->generation <= last_committed && 2958 BTRFS_I(inode)->last_unlink_trans <= last_committed) 2959 goto no_parent; 2960 2961 inode_only = LOG_INODE_EXISTS; 2962 while (1) { 2963 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb) 2964 break; 2965 2966 inode = parent->d_inode; 2967 if (root != BTRFS_I(inode)->root) 2968 break; 2969 2970 if (BTRFS_I(inode)->generation > 2971 root->fs_info->last_trans_committed) { 2972 ret = btrfs_log_inode(trans, root, inode, inode_only); 2973 BUG_ON(ret); 2974 } 2975 if (IS_ROOT(parent)) 2976 break; 2977 2978 parent = parent->d_parent; 2979 } 2980 no_parent: 2981 ret = 0; 2982 btrfs_end_log_trans(root); 2983 end_no_trans: 2984 return ret; 2985 } 2986 2987 /* 2988 * it is not safe to log dentry if the chunk root has added new 2989 * chunks. This returns 0 if the dentry was logged, and 1 otherwise. 2990 * If this returns 1, you must commit the transaction to safely get your 2991 * data on disk. 2992 */ 2993 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans, 2994 struct btrfs_root *root, struct dentry *dentry) 2995 { 2996 return btrfs_log_inode_parent(trans, root, dentry->d_inode, 2997 dentry->d_parent, 0); 2998 } 2999 3000 /* 3001 * should be called during mount to recover any replay any log trees 3002 * from the FS 3003 */ 3004 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree) 3005 { 3006 int ret; 3007 struct btrfs_path *path; 3008 struct btrfs_trans_handle *trans; 3009 struct btrfs_key key; 3010 struct btrfs_key found_key; 3011 struct btrfs_key tmp_key; 3012 struct btrfs_root *log; 3013 struct btrfs_fs_info *fs_info = log_root_tree->fs_info; 3014 struct walk_control wc = { 3015 .process_func = process_one_buffer, 3016 .stage = 0, 3017 }; 3018 3019 fs_info->log_root_recovering = 1; 3020 path = btrfs_alloc_path(); 3021 BUG_ON(!path); 3022 3023 trans = btrfs_start_transaction(fs_info->tree_root, 1); 3024 3025 wc.trans = trans; 3026 wc.pin = 1; 3027 3028 walk_log_tree(trans, log_root_tree, &wc); 3029 3030 again: 3031 key.objectid = BTRFS_TREE_LOG_OBJECTID; 3032 key.offset = (u64)-1; 3033 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); 3034 3035 while (1) { 3036 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0); 3037 if (ret < 0) 3038 break; 3039 if (ret > 0) { 3040 if (path->slots[0] == 0) 3041 break; 3042 path->slots[0]--; 3043 } 3044 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 3045 path->slots[0]); 3046 btrfs_release_path(log_root_tree, path); 3047 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID) 3048 break; 3049 3050 log = btrfs_read_fs_root_no_radix(log_root_tree, 3051 &found_key); 3052 BUG_ON(!log); 3053 3054 3055 tmp_key.objectid = found_key.offset; 3056 tmp_key.type = BTRFS_ROOT_ITEM_KEY; 3057 tmp_key.offset = (u64)-1; 3058 3059 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key); 3060 BUG_ON(!wc.replay_dest); 3061 3062 wc.replay_dest->log_root = log; 3063 btrfs_record_root_in_trans(trans, wc.replay_dest); 3064 ret = walk_log_tree(trans, log, &wc); 3065 BUG_ON(ret); 3066 3067 if (wc.stage == LOG_WALK_REPLAY_ALL) { 3068 ret = fixup_inode_link_counts(trans, wc.replay_dest, 3069 path); 3070 BUG_ON(ret); 3071 } 3072 3073 key.offset = found_key.offset - 1; 3074 wc.replay_dest->log_root = NULL; 3075 free_extent_buffer(log->node); 3076 free_extent_buffer(log->commit_root); 3077 kfree(log); 3078 3079 if (found_key.offset == 0) 3080 break; 3081 } 3082 btrfs_release_path(log_root_tree, path); 3083 3084 /* step one is to pin it all, step two is to replay just inodes */ 3085 if (wc.pin) { 3086 wc.pin = 0; 3087 wc.process_func = replay_one_buffer; 3088 wc.stage = LOG_WALK_REPLAY_INODES; 3089 goto again; 3090 } 3091 /* step three is to replay everything */ 3092 if (wc.stage < LOG_WALK_REPLAY_ALL) { 3093 wc.stage++; 3094 goto again; 3095 } 3096 3097 btrfs_free_path(path); 3098 3099 free_extent_buffer(log_root_tree->node); 3100 log_root_tree->log_root = NULL; 3101 fs_info->log_root_recovering = 0; 3102 3103 /* step 4: commit the transaction, which also unpins the blocks */ 3104 btrfs_commit_transaction(trans, fs_info->tree_root); 3105 3106 kfree(log_root_tree); 3107 return 0; 3108 } 3109 3110 /* 3111 * there are some corner cases where we want to force a full 3112 * commit instead of allowing a directory to be logged. 3113 * 3114 * They revolve around files there were unlinked from the directory, and 3115 * this function updates the parent directory so that a full commit is 3116 * properly done if it is fsync'd later after the unlinks are done. 3117 */ 3118 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans, 3119 struct inode *dir, struct inode *inode, 3120 int for_rename) 3121 { 3122 /* 3123 * when we're logging a file, if it hasn't been renamed 3124 * or unlinked, and its inode is fully committed on disk, 3125 * we don't have to worry about walking up the directory chain 3126 * to log its parents. 3127 * 3128 * So, we use the last_unlink_trans field to put this transid 3129 * into the file. When the file is logged we check it and 3130 * don't log the parents if the file is fully on disk. 3131 */ 3132 if (S_ISREG(inode->i_mode)) 3133 BTRFS_I(inode)->last_unlink_trans = trans->transid; 3134 3135 /* 3136 * if this directory was already logged any new 3137 * names for this file/dir will get recorded 3138 */ 3139 smp_mb(); 3140 if (BTRFS_I(dir)->logged_trans == trans->transid) 3141 return; 3142 3143 /* 3144 * if the inode we're about to unlink was logged, 3145 * the log will be properly updated for any new names 3146 */ 3147 if (BTRFS_I(inode)->logged_trans == trans->transid) 3148 return; 3149 3150 /* 3151 * when renaming files across directories, if the directory 3152 * there we're unlinking from gets fsync'd later on, there's 3153 * no way to find the destination directory later and fsync it 3154 * properly. So, we have to be conservative and force commits 3155 * so the new name gets discovered. 3156 */ 3157 if (for_rename) 3158 goto record; 3159 3160 /* we can safely do the unlink without any special recording */ 3161 return; 3162 3163 record: 3164 BTRFS_I(dir)->last_unlink_trans = trans->transid; 3165 } 3166 3167 /* 3168 * Call this after adding a new name for a file and it will properly 3169 * update the log to reflect the new name. 3170 * 3171 * It will return zero if all goes well, and it will return 1 if a 3172 * full transaction commit is required. 3173 */ 3174 int btrfs_log_new_name(struct btrfs_trans_handle *trans, 3175 struct inode *inode, struct inode *old_dir, 3176 struct dentry *parent) 3177 { 3178 struct btrfs_root * root = BTRFS_I(inode)->root; 3179 3180 /* 3181 * this will force the logging code to walk the dentry chain 3182 * up for the file 3183 */ 3184 if (S_ISREG(inode->i_mode)) 3185 BTRFS_I(inode)->last_unlink_trans = trans->transid; 3186 3187 /* 3188 * if this inode hasn't been logged and directory we're renaming it 3189 * from hasn't been logged, we don't need to log it 3190 */ 3191 if (BTRFS_I(inode)->logged_trans <= 3192 root->fs_info->last_trans_committed && 3193 (!old_dir || BTRFS_I(old_dir)->logged_trans <= 3194 root->fs_info->last_trans_committed)) 3195 return 0; 3196 3197 return btrfs_log_inode_parent(trans, root, inode, parent, 1); 3198 } 3199 3200