1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/blkdev.h> 9 #include <linux/list_sort.h> 10 #include <linux/iversion.h> 11 #include "misc.h" 12 #include "ctree.h" 13 #include "tree-log.h" 14 #include "disk-io.h" 15 #include "locking.h" 16 #include "backref.h" 17 #include "compression.h" 18 #include "qgroup.h" 19 #include "block-group.h" 20 #include "space-info.h" 21 #include "inode-item.h" 22 #include "fs.h" 23 #include "accessors.h" 24 #include "extent-tree.h" 25 #include "root-tree.h" 26 #include "dir-item.h" 27 #include "file-item.h" 28 #include "file.h" 29 #include "orphan.h" 30 #include "tree-checker.h" 31 32 #define MAX_CONFLICT_INODES 10 33 34 /* magic values for the inode_only field in btrfs_log_inode: 35 * 36 * LOG_INODE_ALL means to log everything 37 * LOG_INODE_EXISTS means to log just enough to recreate the inode 38 * during log replay 39 */ 40 enum { 41 LOG_INODE_ALL, 42 LOG_INODE_EXISTS, 43 }; 44 45 /* 46 * directory trouble cases 47 * 48 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync 49 * log, we must force a full commit before doing an fsync of the directory 50 * where the unlink was done. 51 * ---> record transid of last unlink/rename per directory 52 * 53 * mkdir foo/some_dir 54 * normal commit 55 * rename foo/some_dir foo2/some_dir 56 * mkdir foo/some_dir 57 * fsync foo/some_dir/some_file 58 * 59 * The fsync above will unlink the original some_dir without recording 60 * it in its new location (foo2). After a crash, some_dir will be gone 61 * unless the fsync of some_file forces a full commit 62 * 63 * 2) we must log any new names for any file or dir that is in the fsync 64 * log. ---> check inode while renaming/linking. 65 * 66 * 2a) we must log any new names for any file or dir during rename 67 * when the directory they are being removed from was logged. 68 * ---> check inode and old parent dir during rename 69 * 70 * 2a is actually the more important variant. With the extra logging 71 * a crash might unlink the old name without recreating the new one 72 * 73 * 3) after a crash, we must go through any directories with a link count 74 * of zero and redo the rm -rf 75 * 76 * mkdir f1/foo 77 * normal commit 78 * rm -rf f1/foo 79 * fsync(f1) 80 * 81 * The directory f1 was fully removed from the FS, but fsync was never 82 * called on f1, only its parent dir. After a crash the rm -rf must 83 * be replayed. This must be able to recurse down the entire 84 * directory tree. The inode link count fixup code takes care of the 85 * ugly details. 86 */ 87 88 /* 89 * stages for the tree walking. The first 90 * stage (0) is to only pin down the blocks we find 91 * the second stage (1) is to make sure that all the inodes 92 * we find in the log are created in the subvolume. 93 * 94 * The last stage is to deal with directories and links and extents 95 * and all the other fun semantics 96 */ 97 enum { 98 LOG_WALK_PIN_ONLY, 99 LOG_WALK_REPLAY_INODES, 100 LOG_WALK_REPLAY_DIR_INDEX, 101 LOG_WALK_REPLAY_ALL, 102 }; 103 104 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 105 struct btrfs_inode *inode, 106 int inode_only, 107 struct btrfs_log_ctx *ctx); 108 static int link_to_fixup_dir(struct btrfs_trans_handle *trans, 109 struct btrfs_root *root, 110 struct btrfs_path *path, u64 objectid); 111 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 112 struct btrfs_root *root, 113 struct btrfs_root *log, 114 struct btrfs_path *path, 115 u64 dirid, bool del_all); 116 static void wait_log_commit(struct btrfs_root *root, int transid); 117 118 /* 119 * tree logging is a special write ahead log used to make sure that 120 * fsyncs and O_SYNCs can happen without doing full tree commits. 121 * 122 * Full tree commits are expensive because they require commonly 123 * modified blocks to be recowed, creating many dirty pages in the 124 * extent tree an 4x-6x higher write load than ext3. 125 * 126 * Instead of doing a tree commit on every fsync, we use the 127 * key ranges and transaction ids to find items for a given file or directory 128 * that have changed in this transaction. Those items are copied into 129 * a special tree (one per subvolume root), that tree is written to disk 130 * and then the fsync is considered complete. 131 * 132 * After a crash, items are copied out of the log-tree back into the 133 * subvolume tree. Any file data extents found are recorded in the extent 134 * allocation tree, and the log-tree freed. 135 * 136 * The log tree is read three times, once to pin down all the extents it is 137 * using in ram and once, once to create all the inodes logged in the tree 138 * and once to do all the other items. 139 */ 140 141 static struct btrfs_inode *btrfs_iget_logging(u64 objectid, struct btrfs_root *root) 142 { 143 unsigned int nofs_flag; 144 struct btrfs_inode *inode; 145 146 /* Only meant to be called for subvolume roots and not for log roots. */ 147 ASSERT(btrfs_is_fstree(btrfs_root_id(root))); 148 149 /* 150 * We're holding a transaction handle whether we are logging or 151 * replaying a log tree, so we must make sure NOFS semantics apply 152 * because btrfs_alloc_inode() may be triggered and it uses GFP_KERNEL 153 * to allocate an inode, which can recurse back into the filesystem and 154 * attempt a transaction commit, resulting in a deadlock. 155 */ 156 nofs_flag = memalloc_nofs_save(); 157 inode = btrfs_iget(objectid, root); 158 memalloc_nofs_restore(nofs_flag); 159 160 return inode; 161 } 162 163 /* 164 * start a sub transaction and setup the log tree 165 * this increments the log tree writer count to make the people 166 * syncing the tree wait for us to finish 167 */ 168 static int start_log_trans(struct btrfs_trans_handle *trans, 169 struct btrfs_root *root, 170 struct btrfs_log_ctx *ctx) 171 { 172 struct btrfs_fs_info *fs_info = root->fs_info; 173 struct btrfs_root *tree_root = fs_info->tree_root; 174 const bool zoned = btrfs_is_zoned(fs_info); 175 int ret = 0; 176 bool created = false; 177 178 /* 179 * First check if the log root tree was already created. If not, create 180 * it before locking the root's log_mutex, just to keep lockdep happy. 181 */ 182 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) { 183 mutex_lock(&tree_root->log_mutex); 184 if (!fs_info->log_root_tree) { 185 ret = btrfs_init_log_root_tree(trans, fs_info); 186 if (!ret) { 187 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state); 188 created = true; 189 } 190 } 191 mutex_unlock(&tree_root->log_mutex); 192 if (ret) 193 return ret; 194 } 195 196 mutex_lock(&root->log_mutex); 197 198 again: 199 if (root->log_root) { 200 int index = (root->log_transid + 1) % 2; 201 202 if (btrfs_need_log_full_commit(trans)) { 203 ret = BTRFS_LOG_FORCE_COMMIT; 204 goto out; 205 } 206 207 if (zoned && atomic_read(&root->log_commit[index])) { 208 wait_log_commit(root, root->log_transid - 1); 209 goto again; 210 } 211 212 if (!root->log_start_pid) { 213 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 214 root->log_start_pid = current->pid; 215 } else if (root->log_start_pid != current->pid) { 216 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 217 } 218 } else { 219 /* 220 * This means fs_info->log_root_tree was already created 221 * for some other FS trees. Do the full commit not to mix 222 * nodes from multiple log transactions to do sequential 223 * writing. 224 */ 225 if (zoned && !created) { 226 ret = BTRFS_LOG_FORCE_COMMIT; 227 goto out; 228 } 229 230 ret = btrfs_add_log_tree(trans, root); 231 if (ret) 232 goto out; 233 234 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state); 235 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 236 root->log_start_pid = current->pid; 237 } 238 239 atomic_inc(&root->log_writers); 240 if (!ctx->logging_new_name) { 241 int index = root->log_transid % 2; 242 list_add_tail(&ctx->list, &root->log_ctxs[index]); 243 ctx->log_transid = root->log_transid; 244 } 245 246 out: 247 mutex_unlock(&root->log_mutex); 248 return ret; 249 } 250 251 /* 252 * returns 0 if there was a log transaction running and we were able 253 * to join, or returns -ENOENT if there were not transactions 254 * in progress 255 */ 256 static int join_running_log_trans(struct btrfs_root *root) 257 { 258 const bool zoned = btrfs_is_zoned(root->fs_info); 259 int ret = -ENOENT; 260 261 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state)) 262 return ret; 263 264 mutex_lock(&root->log_mutex); 265 again: 266 if (root->log_root) { 267 int index = (root->log_transid + 1) % 2; 268 269 ret = 0; 270 if (zoned && atomic_read(&root->log_commit[index])) { 271 wait_log_commit(root, root->log_transid - 1); 272 goto again; 273 } 274 atomic_inc(&root->log_writers); 275 } 276 mutex_unlock(&root->log_mutex); 277 return ret; 278 } 279 280 /* 281 * This either makes the current running log transaction wait 282 * until you call btrfs_end_log_trans() or it makes any future 283 * log transactions wait until you call btrfs_end_log_trans() 284 */ 285 void btrfs_pin_log_trans(struct btrfs_root *root) 286 { 287 atomic_inc(&root->log_writers); 288 } 289 290 /* 291 * indicate we're done making changes to the log tree 292 * and wake up anyone waiting to do a sync 293 */ 294 void btrfs_end_log_trans(struct btrfs_root *root) 295 { 296 if (atomic_dec_and_test(&root->log_writers)) { 297 /* atomic_dec_and_test implies a barrier */ 298 cond_wake_up_nomb(&root->log_writer_wait); 299 } 300 } 301 302 /* 303 * the walk control struct is used to pass state down the chain when 304 * processing the log tree. The stage field tells us which part 305 * of the log tree processing we are currently doing. The others 306 * are state fields used for that specific part 307 */ 308 struct walk_control { 309 /* should we free the extent on disk when done? This is used 310 * at transaction commit time while freeing a log tree 311 */ 312 int free; 313 314 /* pin only walk, we record which extents on disk belong to the 315 * log trees 316 */ 317 int pin; 318 319 /* what stage of the replay code we're currently in */ 320 int stage; 321 322 /* 323 * Ignore any items from the inode currently being processed. Needs 324 * to be set every time we find a BTRFS_INODE_ITEM_KEY. 325 */ 326 bool ignore_cur_inode; 327 328 /* the root we are currently replaying */ 329 struct btrfs_root *replay_dest; 330 331 /* the trans handle for the current replay */ 332 struct btrfs_trans_handle *trans; 333 334 /* the function that gets used to process blocks we find in the 335 * tree. Note the extent_buffer might not be up to date when it is 336 * passed in, and it must be checked or read if you need the data 337 * inside it 338 */ 339 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb, 340 struct walk_control *wc, u64 gen, int level); 341 }; 342 343 /* 344 * process_func used to pin down extents, write them or wait on them 345 */ 346 static int process_one_buffer(struct btrfs_root *log, 347 struct extent_buffer *eb, 348 struct walk_control *wc, u64 gen, int level) 349 { 350 struct btrfs_fs_info *fs_info = log->fs_info; 351 int ret = 0; 352 353 /* 354 * If this fs is mixed then we need to be able to process the leaves to 355 * pin down any logged extents, so we have to read the block. 356 */ 357 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 358 struct btrfs_tree_parent_check check = { 359 .level = level, 360 .transid = gen 361 }; 362 363 ret = btrfs_read_extent_buffer(eb, &check); 364 if (ret) 365 return ret; 366 } 367 368 if (wc->pin) { 369 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb); 370 if (ret) 371 return ret; 372 373 if (btrfs_buffer_uptodate(eb, gen, 0) && 374 btrfs_header_level(eb) == 0) 375 ret = btrfs_exclude_logged_extents(eb); 376 } 377 return ret; 378 } 379 380 /* 381 * Item overwrite used by log replay. The given eb, slot and key all refer to 382 * the source data we are copying out. 383 * 384 * The given root is for the tree we are copying into, and path is a scratch 385 * path for use in this function (it should be released on entry and will be 386 * released on exit). 387 * 388 * If the key is already in the destination tree the existing item is 389 * overwritten. If the existing item isn't big enough, it is extended. 390 * If it is too large, it is truncated. 391 * 392 * If the key isn't in the destination yet, a new item is inserted. 393 */ 394 static int overwrite_item(struct btrfs_trans_handle *trans, 395 struct btrfs_root *root, 396 struct btrfs_path *path, 397 struct extent_buffer *eb, int slot, 398 struct btrfs_key *key) 399 { 400 int ret; 401 u32 item_size; 402 u64 saved_i_size = 0; 403 int save_old_i_size = 0; 404 unsigned long src_ptr; 405 unsigned long dst_ptr; 406 struct extent_buffer *dst_eb; 407 int dst_slot; 408 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY; 409 410 /* 411 * This is only used during log replay, so the root is always from a 412 * fs/subvolume tree. In case we ever need to support a log root, then 413 * we'll have to clone the leaf in the path, release the path and use 414 * the leaf before writing into the log tree. See the comments at 415 * copy_items() for more details. 416 */ 417 ASSERT(btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID); 418 419 item_size = btrfs_item_size(eb, slot); 420 src_ptr = btrfs_item_ptr_offset(eb, slot); 421 422 /* Look for the key in the destination tree. */ 423 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 424 if (ret < 0) 425 return ret; 426 427 dst_eb = path->nodes[0]; 428 dst_slot = path->slots[0]; 429 430 if (ret == 0) { 431 char *src_copy; 432 const u32 dst_size = btrfs_item_size(dst_eb, dst_slot); 433 434 if (dst_size != item_size) 435 goto insert; 436 437 if (item_size == 0) { 438 btrfs_release_path(path); 439 return 0; 440 } 441 src_copy = kmalloc(item_size, GFP_NOFS); 442 if (!src_copy) { 443 btrfs_release_path(path); 444 return -ENOMEM; 445 } 446 447 read_extent_buffer(eb, src_copy, src_ptr, item_size); 448 dst_ptr = btrfs_item_ptr_offset(dst_eb, dst_slot); 449 ret = memcmp_extent_buffer(dst_eb, src_copy, dst_ptr, item_size); 450 451 kfree(src_copy); 452 /* 453 * they have the same contents, just return, this saves 454 * us from cowing blocks in the destination tree and doing 455 * extra writes that may not have been done by a previous 456 * sync 457 */ 458 if (ret == 0) { 459 btrfs_release_path(path); 460 return 0; 461 } 462 463 /* 464 * We need to load the old nbytes into the inode so when we 465 * replay the extents we've logged we get the right nbytes. 466 */ 467 if (inode_item) { 468 struct btrfs_inode_item *item; 469 u64 nbytes; 470 u32 mode; 471 472 item = btrfs_item_ptr(dst_eb, dst_slot, 473 struct btrfs_inode_item); 474 nbytes = btrfs_inode_nbytes(dst_eb, item); 475 item = btrfs_item_ptr(eb, slot, 476 struct btrfs_inode_item); 477 btrfs_set_inode_nbytes(eb, item, nbytes); 478 479 /* 480 * If this is a directory we need to reset the i_size to 481 * 0 so that we can set it up properly when replaying 482 * the rest of the items in this log. 483 */ 484 mode = btrfs_inode_mode(eb, item); 485 if (S_ISDIR(mode)) 486 btrfs_set_inode_size(eb, item, 0); 487 } 488 } else if (inode_item) { 489 struct btrfs_inode_item *item; 490 u32 mode; 491 492 /* 493 * New inode, set nbytes to 0 so that the nbytes comes out 494 * properly when we replay the extents. 495 */ 496 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 497 btrfs_set_inode_nbytes(eb, item, 0); 498 499 /* 500 * If this is a directory we need to reset the i_size to 0 so 501 * that we can set it up properly when replaying the rest of 502 * the items in this log. 503 */ 504 mode = btrfs_inode_mode(eb, item); 505 if (S_ISDIR(mode)) 506 btrfs_set_inode_size(eb, item, 0); 507 } 508 insert: 509 btrfs_release_path(path); 510 /* try to insert the key into the destination tree */ 511 path->skip_release_on_error = 1; 512 ret = btrfs_insert_empty_item(trans, root, path, 513 key, item_size); 514 path->skip_release_on_error = 0; 515 516 dst_eb = path->nodes[0]; 517 dst_slot = path->slots[0]; 518 519 /* make sure any existing item is the correct size */ 520 if (ret == -EEXIST || ret == -EOVERFLOW) { 521 const u32 found_size = btrfs_item_size(dst_eb, dst_slot); 522 523 if (found_size > item_size) 524 btrfs_truncate_item(trans, path, item_size, 1); 525 else if (found_size < item_size) 526 btrfs_extend_item(trans, path, item_size - found_size); 527 } else if (ret) { 528 return ret; 529 } 530 dst_ptr = btrfs_item_ptr_offset(dst_eb, dst_slot); 531 532 /* don't overwrite an existing inode if the generation number 533 * was logged as zero. This is done when the tree logging code 534 * is just logging an inode to make sure it exists after recovery. 535 * 536 * Also, don't overwrite i_size on directories during replay. 537 * log replay inserts and removes directory items based on the 538 * state of the tree found in the subvolume, and i_size is modified 539 * as it goes 540 */ 541 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) { 542 struct btrfs_inode_item *src_item; 543 struct btrfs_inode_item *dst_item; 544 545 src_item = (struct btrfs_inode_item *)src_ptr; 546 dst_item = (struct btrfs_inode_item *)dst_ptr; 547 548 if (btrfs_inode_generation(eb, src_item) == 0) { 549 const u64 ino_size = btrfs_inode_size(eb, src_item); 550 551 /* 552 * For regular files an ino_size == 0 is used only when 553 * logging that an inode exists, as part of a directory 554 * fsync, and the inode wasn't fsynced before. In this 555 * case don't set the size of the inode in the fs/subvol 556 * tree, otherwise we would be throwing valid data away. 557 */ 558 if (S_ISREG(btrfs_inode_mode(eb, src_item)) && 559 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) && 560 ino_size != 0) 561 btrfs_set_inode_size(dst_eb, dst_item, ino_size); 562 goto no_copy; 563 } 564 565 if (S_ISDIR(btrfs_inode_mode(eb, src_item)) && 566 S_ISDIR(btrfs_inode_mode(dst_eb, dst_item))) { 567 save_old_i_size = 1; 568 saved_i_size = btrfs_inode_size(dst_eb, dst_item); 569 } 570 } 571 572 copy_extent_buffer(dst_eb, eb, dst_ptr, src_ptr, item_size); 573 574 if (save_old_i_size) { 575 struct btrfs_inode_item *dst_item; 576 577 dst_item = (struct btrfs_inode_item *)dst_ptr; 578 btrfs_set_inode_size(dst_eb, dst_item, saved_i_size); 579 } 580 581 /* make sure the generation is filled in */ 582 if (key->type == BTRFS_INODE_ITEM_KEY) { 583 struct btrfs_inode_item *dst_item; 584 585 dst_item = (struct btrfs_inode_item *)dst_ptr; 586 if (btrfs_inode_generation(dst_eb, dst_item) == 0) 587 btrfs_set_inode_generation(dst_eb, dst_item, trans->transid); 588 } 589 no_copy: 590 btrfs_release_path(path); 591 return 0; 592 } 593 594 static int read_alloc_one_name(struct extent_buffer *eb, void *start, int len, 595 struct fscrypt_str *name) 596 { 597 char *buf; 598 599 buf = kmalloc(len, GFP_NOFS); 600 if (!buf) 601 return -ENOMEM; 602 603 read_extent_buffer(eb, buf, (unsigned long)start, len); 604 name->name = buf; 605 name->len = len; 606 return 0; 607 } 608 609 /* replays a single extent in 'eb' at 'slot' with 'key' into the 610 * subvolume 'root'. path is released on entry and should be released 611 * on exit. 612 * 613 * extents in the log tree have not been allocated out of the extent 614 * tree yet. So, this completes the allocation, taking a reference 615 * as required if the extent already exists or creating a new extent 616 * if it isn't in the extent allocation tree yet. 617 * 618 * The extent is inserted into the file, dropping any existing extents 619 * from the file that overlap the new one. 620 */ 621 static noinline int replay_one_extent(struct btrfs_trans_handle *trans, 622 struct btrfs_root *root, 623 struct btrfs_path *path, 624 struct extent_buffer *eb, int slot, 625 struct btrfs_key *key) 626 { 627 struct btrfs_drop_extents_args drop_args = { 0 }; 628 struct btrfs_fs_info *fs_info = root->fs_info; 629 int found_type; 630 u64 extent_end; 631 u64 start = key->offset; 632 u64 nbytes = 0; 633 struct btrfs_file_extent_item *item; 634 struct btrfs_inode *inode = NULL; 635 unsigned long size; 636 int ret = 0; 637 638 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 639 found_type = btrfs_file_extent_type(eb, item); 640 641 if (found_type == BTRFS_FILE_EXTENT_REG || 642 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 643 nbytes = btrfs_file_extent_num_bytes(eb, item); 644 extent_end = start + nbytes; 645 646 /* 647 * We don't add to the inodes nbytes if we are prealloc or a 648 * hole. 649 */ 650 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 651 nbytes = 0; 652 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 653 size = btrfs_file_extent_ram_bytes(eb, item); 654 nbytes = btrfs_file_extent_ram_bytes(eb, item); 655 extent_end = ALIGN(start + size, 656 fs_info->sectorsize); 657 } else { 658 btrfs_err(fs_info, 659 "unexpected extent type=%d root=%llu inode=%llu offset=%llu", 660 found_type, btrfs_root_id(root), key->objectid, key->offset); 661 return -EUCLEAN; 662 } 663 664 inode = btrfs_iget_logging(key->objectid, root); 665 if (IS_ERR(inode)) 666 return PTR_ERR(inode); 667 668 /* 669 * first check to see if we already have this extent in the 670 * file. This must be done before the btrfs_drop_extents run 671 * so we don't try to drop this extent. 672 */ 673 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode), start, 0); 674 675 if (ret == 0 && 676 (found_type == BTRFS_FILE_EXTENT_REG || 677 found_type == BTRFS_FILE_EXTENT_PREALLOC)) { 678 struct btrfs_file_extent_item existing; 679 unsigned long ptr; 680 681 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 682 read_extent_buffer(path->nodes[0], &existing, ptr, sizeof(existing)); 683 684 /* 685 * we already have a pointer to this exact extent, 686 * we don't have to do anything 687 */ 688 if (memcmp_extent_buffer(eb, &existing, (unsigned long)item, 689 sizeof(existing)) == 0) { 690 btrfs_release_path(path); 691 goto out; 692 } 693 } 694 btrfs_release_path(path); 695 696 /* drop any overlapping extents */ 697 drop_args.start = start; 698 drop_args.end = extent_end; 699 drop_args.drop_cache = true; 700 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 701 if (ret) 702 goto out; 703 704 if (found_type == BTRFS_FILE_EXTENT_REG || 705 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 706 u64 offset; 707 unsigned long dest_offset; 708 struct btrfs_key ins; 709 710 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 && 711 btrfs_fs_incompat(fs_info, NO_HOLES)) 712 goto update_inode; 713 714 ret = btrfs_insert_empty_item(trans, root, path, key, 715 sizeof(*item)); 716 if (ret) 717 goto out; 718 dest_offset = btrfs_item_ptr_offset(path->nodes[0], 719 path->slots[0]); 720 copy_extent_buffer(path->nodes[0], eb, dest_offset, 721 (unsigned long)item, sizeof(*item)); 722 723 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item); 724 ins.type = BTRFS_EXTENT_ITEM_KEY; 725 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item); 726 offset = key->offset - btrfs_file_extent_offset(eb, item); 727 728 /* 729 * Manually record dirty extent, as here we did a shallow 730 * file extent item copy and skip normal backref update, 731 * but modifying extent tree all by ourselves. 732 * So need to manually record dirty extent for qgroup, 733 * as the owner of the file extent changed from log tree 734 * (doesn't affect qgroup) to fs/file tree(affects qgroup) 735 */ 736 ret = btrfs_qgroup_trace_extent(trans, 737 btrfs_file_extent_disk_bytenr(eb, item), 738 btrfs_file_extent_disk_num_bytes(eb, item)); 739 if (ret < 0) 740 goto out; 741 742 if (ins.objectid > 0) { 743 u64 csum_start; 744 u64 csum_end; 745 LIST_HEAD(ordered_sums); 746 747 /* 748 * is this extent already allocated in the extent 749 * allocation tree? If so, just add a reference 750 */ 751 ret = btrfs_lookup_data_extent(fs_info, ins.objectid, 752 ins.offset); 753 if (ret < 0) { 754 goto out; 755 } else if (ret == 0) { 756 struct btrfs_ref ref = { 757 .action = BTRFS_ADD_DELAYED_REF, 758 .bytenr = ins.objectid, 759 .num_bytes = ins.offset, 760 .owning_root = btrfs_root_id(root), 761 .ref_root = btrfs_root_id(root), 762 }; 763 btrfs_init_data_ref(&ref, key->objectid, offset, 764 0, false); 765 ret = btrfs_inc_extent_ref(trans, &ref); 766 if (ret) 767 goto out; 768 } else { 769 /* 770 * insert the extent pointer in the extent 771 * allocation tree 772 */ 773 ret = btrfs_alloc_logged_file_extent(trans, 774 btrfs_root_id(root), 775 key->objectid, offset, &ins); 776 if (ret) 777 goto out; 778 } 779 btrfs_release_path(path); 780 781 if (btrfs_file_extent_compression(eb, item)) { 782 csum_start = ins.objectid; 783 csum_end = csum_start + ins.offset; 784 } else { 785 csum_start = ins.objectid + 786 btrfs_file_extent_offset(eb, item); 787 csum_end = csum_start + 788 btrfs_file_extent_num_bytes(eb, item); 789 } 790 791 ret = btrfs_lookup_csums_list(root->log_root, 792 csum_start, csum_end - 1, 793 &ordered_sums, false); 794 if (ret < 0) 795 goto out; 796 ret = 0; 797 /* 798 * Now delete all existing cums in the csum root that 799 * cover our range. We do this because we can have an 800 * extent that is completely referenced by one file 801 * extent item and partially referenced by another 802 * file extent item (like after using the clone or 803 * extent_same ioctls). In this case if we end up doing 804 * the replay of the one that partially references the 805 * extent first, and we do not do the csum deletion 806 * below, we can get 2 csum items in the csum tree that 807 * overlap each other. For example, imagine our log has 808 * the two following file extent items: 809 * 810 * key (257 EXTENT_DATA 409600) 811 * extent data disk byte 12845056 nr 102400 812 * extent data offset 20480 nr 20480 ram 102400 813 * 814 * key (257 EXTENT_DATA 819200) 815 * extent data disk byte 12845056 nr 102400 816 * extent data offset 0 nr 102400 ram 102400 817 * 818 * Where the second one fully references the 100K extent 819 * that starts at disk byte 12845056, and the log tree 820 * has a single csum item that covers the entire range 821 * of the extent: 822 * 823 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 824 * 825 * After the first file extent item is replayed, the 826 * csum tree gets the following csum item: 827 * 828 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 829 * 830 * Which covers the 20K sub-range starting at offset 20K 831 * of our extent. Now when we replay the second file 832 * extent item, if we do not delete existing csum items 833 * that cover any of its blocks, we end up getting two 834 * csum items in our csum tree that overlap each other: 835 * 836 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 837 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 838 * 839 * Which is a problem, because after this anyone trying 840 * to lookup up for the checksum of any block of our 841 * extent starting at an offset of 40K or higher, will 842 * end up looking at the second csum item only, which 843 * does not contain the checksum for any block starting 844 * at offset 40K or higher of our extent. 845 */ 846 while (!list_empty(&ordered_sums)) { 847 struct btrfs_ordered_sum *sums; 848 struct btrfs_root *csum_root; 849 850 sums = list_first_entry(&ordered_sums, 851 struct btrfs_ordered_sum, 852 list); 853 csum_root = btrfs_csum_root(fs_info, 854 sums->logical); 855 if (!ret) 856 ret = btrfs_del_csums(trans, csum_root, 857 sums->logical, 858 sums->len); 859 if (!ret) 860 ret = btrfs_csum_file_blocks(trans, 861 csum_root, 862 sums); 863 list_del(&sums->list); 864 kfree(sums); 865 } 866 if (ret) 867 goto out; 868 } else { 869 btrfs_release_path(path); 870 } 871 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 872 /* inline extents are easy, we just overwrite them */ 873 ret = overwrite_item(trans, root, path, eb, slot, key); 874 if (ret) 875 goto out; 876 } 877 878 ret = btrfs_inode_set_file_extent_range(inode, start, extent_end - start); 879 if (ret) 880 goto out; 881 882 update_inode: 883 btrfs_update_inode_bytes(inode, nbytes, drop_args.bytes_found); 884 ret = btrfs_update_inode(trans, inode); 885 out: 886 iput(&inode->vfs_inode); 887 return ret; 888 } 889 890 static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans, 891 struct btrfs_inode *dir, 892 struct btrfs_inode *inode, 893 const struct fscrypt_str *name) 894 { 895 int ret; 896 897 ret = btrfs_unlink_inode(trans, dir, inode, name); 898 if (ret) 899 return ret; 900 /* 901 * Whenever we need to check if a name exists or not, we check the 902 * fs/subvolume tree. So after an unlink we must run delayed items, so 903 * that future checks for a name during log replay see that the name 904 * does not exists anymore. 905 */ 906 return btrfs_run_delayed_items(trans); 907 } 908 909 /* 910 * when cleaning up conflicts between the directory names in the 911 * subvolume, directory names in the log and directory names in the 912 * inode back references, we may have to unlink inodes from directories. 913 * 914 * This is a helper function to do the unlink of a specific directory 915 * item 916 */ 917 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans, 918 struct btrfs_path *path, 919 struct btrfs_inode *dir, 920 struct btrfs_dir_item *di) 921 { 922 struct btrfs_root *root = dir->root; 923 struct btrfs_inode *inode; 924 struct fscrypt_str name; 925 struct extent_buffer *leaf; 926 struct btrfs_key location; 927 int ret; 928 929 leaf = path->nodes[0]; 930 931 btrfs_dir_item_key_to_cpu(leaf, di, &location); 932 ret = read_alloc_one_name(leaf, di + 1, btrfs_dir_name_len(leaf, di), &name); 933 if (ret) 934 return -ENOMEM; 935 936 btrfs_release_path(path); 937 938 inode = btrfs_iget_logging(location.objectid, root); 939 if (IS_ERR(inode)) { 940 ret = PTR_ERR(inode); 941 inode = NULL; 942 goto out; 943 } 944 945 ret = link_to_fixup_dir(trans, root, path, location.objectid); 946 if (ret) 947 goto out; 948 949 ret = unlink_inode_for_log_replay(trans, dir, inode, &name); 950 out: 951 kfree(name.name); 952 if (inode) 953 iput(&inode->vfs_inode); 954 return ret; 955 } 956 957 /* 958 * See if a given name and sequence number found in an inode back reference are 959 * already in a directory and correctly point to this inode. 960 * 961 * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it 962 * exists. 963 */ 964 static noinline int inode_in_dir(struct btrfs_root *root, 965 struct btrfs_path *path, 966 u64 dirid, u64 objectid, u64 index, 967 struct fscrypt_str *name) 968 { 969 struct btrfs_dir_item *di; 970 struct btrfs_key location; 971 int ret = 0; 972 973 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid, 974 index, name, 0); 975 if (IS_ERR(di)) { 976 ret = PTR_ERR(di); 977 goto out; 978 } else if (di) { 979 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 980 if (location.objectid != objectid) 981 goto out; 982 } else { 983 goto out; 984 } 985 986 btrfs_release_path(path); 987 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, 0); 988 if (IS_ERR(di)) { 989 ret = PTR_ERR(di); 990 goto out; 991 } else if (di) { 992 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 993 if (location.objectid == objectid) 994 ret = 1; 995 } 996 out: 997 btrfs_release_path(path); 998 return ret; 999 } 1000 1001 /* 1002 * helper function to check a log tree for a named back reference in 1003 * an inode. This is used to decide if a back reference that is 1004 * found in the subvolume conflicts with what we find in the log. 1005 * 1006 * inode backreferences may have multiple refs in a single item, 1007 * during replay we process one reference at a time, and we don't 1008 * want to delete valid links to a file from the subvolume if that 1009 * link is also in the log. 1010 */ 1011 static noinline int backref_in_log(struct btrfs_root *log, 1012 struct btrfs_key *key, 1013 u64 ref_objectid, 1014 const struct fscrypt_str *name) 1015 { 1016 struct btrfs_path *path; 1017 int ret; 1018 1019 path = btrfs_alloc_path(); 1020 if (!path) 1021 return -ENOMEM; 1022 1023 ret = btrfs_search_slot(NULL, log, key, path, 0, 0); 1024 if (ret < 0) { 1025 goto out; 1026 } else if (ret == 1) { 1027 ret = 0; 1028 goto out; 1029 } 1030 1031 if (key->type == BTRFS_INODE_EXTREF_KEY) 1032 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0], 1033 path->slots[0], 1034 ref_objectid, name); 1035 else 1036 ret = !!btrfs_find_name_in_backref(path->nodes[0], 1037 path->slots[0], name); 1038 out: 1039 btrfs_free_path(path); 1040 return ret; 1041 } 1042 1043 static int unlink_refs_not_in_log(struct btrfs_trans_handle *trans, 1044 struct btrfs_path *path, 1045 struct btrfs_root *log_root, 1046 struct btrfs_key *search_key, 1047 struct btrfs_inode *dir, 1048 struct btrfs_inode *inode, 1049 u64 parent_objectid) 1050 { 1051 struct extent_buffer *leaf = path->nodes[0]; 1052 unsigned long ptr; 1053 unsigned long ptr_end; 1054 1055 /* 1056 * Check all the names in this back reference to see if they are in the 1057 * log. If so, we allow them to stay otherwise they must be unlinked as 1058 * a conflict. 1059 */ 1060 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1061 ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]); 1062 while (ptr < ptr_end) { 1063 struct fscrypt_str victim_name; 1064 struct btrfs_inode_ref *victim_ref; 1065 int ret; 1066 1067 victim_ref = (struct btrfs_inode_ref *)ptr; 1068 ret = read_alloc_one_name(leaf, (victim_ref + 1), 1069 btrfs_inode_ref_name_len(leaf, victim_ref), 1070 &victim_name); 1071 if (ret) 1072 return ret; 1073 1074 ret = backref_in_log(log_root, search_key, parent_objectid, &victim_name); 1075 if (ret) { 1076 kfree(victim_name.name); 1077 if (ret < 0) 1078 return ret; 1079 ptr = (unsigned long)(victim_ref + 1) + victim_name.len; 1080 continue; 1081 } 1082 1083 inc_nlink(&inode->vfs_inode); 1084 btrfs_release_path(path); 1085 1086 ret = unlink_inode_for_log_replay(trans, dir, inode, &victim_name); 1087 kfree(victim_name.name); 1088 if (ret) 1089 return ret; 1090 return -EAGAIN; 1091 } 1092 1093 return 0; 1094 } 1095 1096 static int unlink_extrefs_not_in_log(struct btrfs_trans_handle *trans, 1097 struct btrfs_path *path, 1098 struct btrfs_root *root, 1099 struct btrfs_root *log_root, 1100 struct btrfs_key *search_key, 1101 struct btrfs_inode *inode, 1102 u64 inode_objectid, 1103 u64 parent_objectid) 1104 { 1105 struct extent_buffer *leaf = path->nodes[0]; 1106 const unsigned long base = btrfs_item_ptr_offset(leaf, path->slots[0]); 1107 const u32 item_size = btrfs_item_size(leaf, path->slots[0]); 1108 u32 cur_offset = 0; 1109 1110 while (cur_offset < item_size) { 1111 struct btrfs_inode_extref *extref; 1112 struct btrfs_inode *victim_parent; 1113 struct fscrypt_str victim_name; 1114 int ret; 1115 1116 extref = (struct btrfs_inode_extref *)(base + cur_offset); 1117 victim_name.len = btrfs_inode_extref_name_len(leaf, extref); 1118 1119 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid) 1120 goto next; 1121 1122 ret = read_alloc_one_name(leaf, &extref->name, victim_name.len, 1123 &victim_name); 1124 if (ret) 1125 return ret; 1126 1127 search_key->objectid = inode_objectid; 1128 search_key->type = BTRFS_INODE_EXTREF_KEY; 1129 search_key->offset = btrfs_extref_hash(parent_objectid, 1130 victim_name.name, 1131 victim_name.len); 1132 ret = backref_in_log(log_root, search_key, parent_objectid, &victim_name); 1133 if (ret) { 1134 kfree(victim_name.name); 1135 if (ret < 0) 1136 return ret; 1137 next: 1138 cur_offset += victim_name.len + sizeof(*extref); 1139 continue; 1140 } 1141 1142 victim_parent = btrfs_iget_logging(parent_objectid, root); 1143 if (IS_ERR(victim_parent)) { 1144 kfree(victim_name.name); 1145 return PTR_ERR(victim_parent); 1146 } 1147 1148 inc_nlink(&inode->vfs_inode); 1149 btrfs_release_path(path); 1150 1151 ret = unlink_inode_for_log_replay(trans, victim_parent, inode, 1152 &victim_name); 1153 iput(&victim_parent->vfs_inode); 1154 kfree(victim_name.name); 1155 if (ret) 1156 return ret; 1157 return -EAGAIN; 1158 } 1159 1160 return 0; 1161 } 1162 1163 static inline int __add_inode_ref(struct btrfs_trans_handle *trans, 1164 struct btrfs_root *root, 1165 struct btrfs_path *path, 1166 struct btrfs_root *log_root, 1167 struct btrfs_inode *dir, 1168 struct btrfs_inode *inode, 1169 u64 inode_objectid, u64 parent_objectid, 1170 u64 ref_index, struct fscrypt_str *name) 1171 { 1172 int ret; 1173 struct btrfs_dir_item *di; 1174 struct btrfs_key search_key; 1175 struct btrfs_inode_extref *extref; 1176 1177 again: 1178 /* Search old style refs */ 1179 search_key.objectid = inode_objectid; 1180 search_key.type = BTRFS_INODE_REF_KEY; 1181 search_key.offset = parent_objectid; 1182 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 1183 if (ret < 0) { 1184 return ret; 1185 } else if (ret == 0) { 1186 /* 1187 * Are we trying to overwrite a back ref for the root directory? 1188 * If so, we're done. 1189 */ 1190 if (search_key.objectid == search_key.offset) 1191 return 1; 1192 1193 ret = unlink_refs_not_in_log(trans, path, log_root, &search_key, 1194 dir, inode, parent_objectid); 1195 if (ret == -EAGAIN) 1196 goto again; 1197 else if (ret) 1198 return ret; 1199 } 1200 btrfs_release_path(path); 1201 1202 /* Same search but for extended refs */ 1203 extref = btrfs_lookup_inode_extref(root, path, name, inode_objectid, parent_objectid); 1204 if (IS_ERR(extref)) { 1205 return PTR_ERR(extref); 1206 } else if (extref) { 1207 ret = unlink_extrefs_not_in_log(trans, path, root, log_root, 1208 &search_key, inode, 1209 inode_objectid, parent_objectid); 1210 if (ret == -EAGAIN) 1211 goto again; 1212 else if (ret) 1213 return ret; 1214 } 1215 btrfs_release_path(path); 1216 1217 /* look for a conflicting sequence number */ 1218 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir), 1219 ref_index, name, 0); 1220 if (IS_ERR(di)) { 1221 return PTR_ERR(di); 1222 } else if (di) { 1223 ret = drop_one_dir_item(trans, path, dir, di); 1224 if (ret) 1225 return ret; 1226 } 1227 btrfs_release_path(path); 1228 1229 /* look for a conflicting name */ 1230 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), name, 0); 1231 if (IS_ERR(di)) { 1232 return PTR_ERR(di); 1233 } else if (di) { 1234 ret = drop_one_dir_item(trans, path, dir, di); 1235 if (ret) 1236 return ret; 1237 } 1238 btrfs_release_path(path); 1239 1240 return 0; 1241 } 1242 1243 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1244 struct fscrypt_str *name, u64 *index, 1245 u64 *parent_objectid) 1246 { 1247 struct btrfs_inode_extref *extref; 1248 int ret; 1249 1250 extref = (struct btrfs_inode_extref *)ref_ptr; 1251 1252 ret = read_alloc_one_name(eb, &extref->name, 1253 btrfs_inode_extref_name_len(eb, extref), name); 1254 if (ret) 1255 return ret; 1256 1257 if (index) 1258 *index = btrfs_inode_extref_index(eb, extref); 1259 if (parent_objectid) 1260 *parent_objectid = btrfs_inode_extref_parent(eb, extref); 1261 1262 return 0; 1263 } 1264 1265 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1266 struct fscrypt_str *name, u64 *index) 1267 { 1268 struct btrfs_inode_ref *ref; 1269 int ret; 1270 1271 ref = (struct btrfs_inode_ref *)ref_ptr; 1272 1273 ret = read_alloc_one_name(eb, ref + 1, btrfs_inode_ref_name_len(eb, ref), 1274 name); 1275 if (ret) 1276 return ret; 1277 1278 if (index) 1279 *index = btrfs_inode_ref_index(eb, ref); 1280 1281 return 0; 1282 } 1283 1284 /* 1285 * Take an inode reference item from the log tree and iterate all names from the 1286 * inode reference item in the subvolume tree with the same key (if it exists). 1287 * For any name that is not in the inode reference item from the log tree, do a 1288 * proper unlink of that name (that is, remove its entry from the inode 1289 * reference item and both dir index keys). 1290 */ 1291 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans, 1292 struct btrfs_root *root, 1293 struct btrfs_path *path, 1294 struct btrfs_inode *inode, 1295 struct extent_buffer *log_eb, 1296 int log_slot, 1297 struct btrfs_key *key) 1298 { 1299 int ret; 1300 unsigned long ref_ptr; 1301 unsigned long ref_end; 1302 struct extent_buffer *eb; 1303 1304 again: 1305 btrfs_release_path(path); 1306 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 1307 if (ret > 0) { 1308 ret = 0; 1309 goto out; 1310 } 1311 if (ret < 0) 1312 goto out; 1313 1314 eb = path->nodes[0]; 1315 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]); 1316 ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]); 1317 while (ref_ptr < ref_end) { 1318 struct fscrypt_str name; 1319 u64 parent_id; 1320 1321 if (key->type == BTRFS_INODE_EXTREF_KEY) { 1322 ret = extref_get_fields(eb, ref_ptr, &name, 1323 NULL, &parent_id); 1324 } else { 1325 parent_id = key->offset; 1326 ret = ref_get_fields(eb, ref_ptr, &name, NULL); 1327 } 1328 if (ret) 1329 goto out; 1330 1331 if (key->type == BTRFS_INODE_EXTREF_KEY) 1332 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot, 1333 parent_id, &name); 1334 else 1335 ret = !!btrfs_find_name_in_backref(log_eb, log_slot, &name); 1336 1337 if (!ret) { 1338 struct btrfs_inode *dir; 1339 1340 btrfs_release_path(path); 1341 dir = btrfs_iget_logging(parent_id, root); 1342 if (IS_ERR(dir)) { 1343 ret = PTR_ERR(dir); 1344 kfree(name.name); 1345 goto out; 1346 } 1347 ret = unlink_inode_for_log_replay(trans, dir, inode, &name); 1348 kfree(name.name); 1349 iput(&dir->vfs_inode); 1350 if (ret) 1351 goto out; 1352 goto again; 1353 } 1354 1355 kfree(name.name); 1356 ref_ptr += name.len; 1357 if (key->type == BTRFS_INODE_EXTREF_KEY) 1358 ref_ptr += sizeof(struct btrfs_inode_extref); 1359 else 1360 ref_ptr += sizeof(struct btrfs_inode_ref); 1361 } 1362 ret = 0; 1363 out: 1364 btrfs_release_path(path); 1365 return ret; 1366 } 1367 1368 /* 1369 * replay one inode back reference item found in the log tree. 1370 * eb, slot and key refer to the buffer and key found in the log tree. 1371 * root is the destination we are replaying into, and path is for temp 1372 * use by this function. (it should be released on return). 1373 */ 1374 static noinline int add_inode_ref(struct btrfs_trans_handle *trans, 1375 struct btrfs_root *root, 1376 struct btrfs_root *log, 1377 struct btrfs_path *path, 1378 struct extent_buffer *eb, int slot, 1379 struct btrfs_key *key) 1380 { 1381 struct btrfs_inode *dir = NULL; 1382 struct btrfs_inode *inode = NULL; 1383 unsigned long ref_ptr; 1384 unsigned long ref_end; 1385 struct fscrypt_str name = { 0 }; 1386 int ret; 1387 const bool is_extref_item = (key->type == BTRFS_INODE_EXTREF_KEY); 1388 u64 parent_objectid; 1389 u64 inode_objectid; 1390 u64 ref_index = 0; 1391 int ref_struct_size; 1392 1393 ref_ptr = btrfs_item_ptr_offset(eb, slot); 1394 ref_end = ref_ptr + btrfs_item_size(eb, slot); 1395 1396 if (is_extref_item) { 1397 struct btrfs_inode_extref *r; 1398 1399 ref_struct_size = sizeof(struct btrfs_inode_extref); 1400 r = (struct btrfs_inode_extref *)ref_ptr; 1401 parent_objectid = btrfs_inode_extref_parent(eb, r); 1402 } else { 1403 ref_struct_size = sizeof(struct btrfs_inode_ref); 1404 parent_objectid = key->offset; 1405 } 1406 inode_objectid = key->objectid; 1407 1408 /* 1409 * it is possible that we didn't log all the parent directories 1410 * for a given inode. If we don't find the dir, just don't 1411 * copy the back ref in. The link count fixup code will take 1412 * care of the rest 1413 */ 1414 dir = btrfs_iget_logging(parent_objectid, root); 1415 if (IS_ERR(dir)) { 1416 ret = PTR_ERR(dir); 1417 if (ret == -ENOENT) 1418 ret = 0; 1419 dir = NULL; 1420 goto out; 1421 } 1422 1423 inode = btrfs_iget_logging(inode_objectid, root); 1424 if (IS_ERR(inode)) { 1425 ret = PTR_ERR(inode); 1426 inode = NULL; 1427 goto out; 1428 } 1429 1430 while (ref_ptr < ref_end) { 1431 if (is_extref_item) { 1432 ret = extref_get_fields(eb, ref_ptr, &name, 1433 &ref_index, &parent_objectid); 1434 if (ret) 1435 goto out; 1436 /* 1437 * parent object can change from one array 1438 * item to another. 1439 */ 1440 if (!dir) { 1441 dir = btrfs_iget_logging(parent_objectid, root); 1442 if (IS_ERR(dir)) { 1443 ret = PTR_ERR(dir); 1444 dir = NULL; 1445 /* 1446 * A new parent dir may have not been 1447 * logged and not exist in the subvolume 1448 * tree, see the comment above before 1449 * the loop when getting the first 1450 * parent dir. 1451 */ 1452 if (ret == -ENOENT) { 1453 /* 1454 * The next extref may refer to 1455 * another parent dir that 1456 * exists, so continue. 1457 */ 1458 ret = 0; 1459 goto next; 1460 } 1461 goto out; 1462 } 1463 } 1464 } else { 1465 ret = ref_get_fields(eb, ref_ptr, &name, &ref_index); 1466 if (ret) 1467 goto out; 1468 } 1469 1470 ret = inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode), 1471 ref_index, &name); 1472 if (ret < 0) { 1473 goto out; 1474 } else if (ret == 0) { 1475 /* 1476 * look for a conflicting back reference in the 1477 * metadata. if we find one we have to unlink that name 1478 * of the file before we add our new link. Later on, we 1479 * overwrite any existing back reference, and we don't 1480 * want to create dangling pointers in the directory. 1481 */ 1482 ret = __add_inode_ref(trans, root, path, log, dir, inode, 1483 inode_objectid, parent_objectid, 1484 ref_index, &name); 1485 if (ret) { 1486 if (ret == 1) 1487 ret = 0; 1488 goto out; 1489 } 1490 1491 /* insert our name */ 1492 ret = btrfs_add_link(trans, dir, inode, &name, 0, ref_index); 1493 if (ret) 1494 goto out; 1495 1496 ret = btrfs_update_inode(trans, inode); 1497 if (ret) 1498 goto out; 1499 } 1500 /* Else, ret == 1, we already have a perfect match, we're done. */ 1501 1502 next: 1503 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + name.len; 1504 kfree(name.name); 1505 name.name = NULL; 1506 if (is_extref_item && dir) { 1507 iput(&dir->vfs_inode); 1508 dir = NULL; 1509 } 1510 } 1511 1512 /* 1513 * Before we overwrite the inode reference item in the subvolume tree 1514 * with the item from the log tree, we must unlink all names from the 1515 * parent directory that are in the subvolume's tree inode reference 1516 * item, otherwise we end up with an inconsistent subvolume tree where 1517 * dir index entries exist for a name but there is no inode reference 1518 * item with the same name. 1519 */ 1520 ret = unlink_old_inode_refs(trans, root, path, inode, eb, slot, key); 1521 if (ret) 1522 goto out; 1523 1524 /* finally write the back reference in the inode */ 1525 ret = overwrite_item(trans, root, path, eb, slot, key); 1526 out: 1527 btrfs_release_path(path); 1528 kfree(name.name); 1529 if (dir) 1530 iput(&dir->vfs_inode); 1531 if (inode) 1532 iput(&inode->vfs_inode); 1533 return ret; 1534 } 1535 1536 static int count_inode_extrefs(struct btrfs_inode *inode, struct btrfs_path *path) 1537 { 1538 int ret = 0; 1539 int name_len; 1540 unsigned int nlink = 0; 1541 u32 item_size; 1542 u32 cur_offset = 0; 1543 u64 inode_objectid = btrfs_ino(inode); 1544 u64 offset = 0; 1545 unsigned long ptr; 1546 struct btrfs_inode_extref *extref; 1547 struct extent_buffer *leaf; 1548 1549 while (1) { 1550 ret = btrfs_find_one_extref(inode->root, inode_objectid, offset, 1551 path, &extref, &offset); 1552 if (ret) 1553 break; 1554 1555 leaf = path->nodes[0]; 1556 item_size = btrfs_item_size(leaf, path->slots[0]); 1557 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1558 cur_offset = 0; 1559 1560 while (cur_offset < item_size) { 1561 extref = (struct btrfs_inode_extref *) (ptr + cur_offset); 1562 name_len = btrfs_inode_extref_name_len(leaf, extref); 1563 1564 nlink++; 1565 1566 cur_offset += name_len + sizeof(*extref); 1567 } 1568 1569 offset++; 1570 btrfs_release_path(path); 1571 } 1572 btrfs_release_path(path); 1573 1574 if (ret < 0 && ret != -ENOENT) 1575 return ret; 1576 return nlink; 1577 } 1578 1579 static int count_inode_refs(struct btrfs_inode *inode, struct btrfs_path *path) 1580 { 1581 int ret; 1582 struct btrfs_key key; 1583 unsigned int nlink = 0; 1584 unsigned long ptr; 1585 unsigned long ptr_end; 1586 int name_len; 1587 u64 ino = btrfs_ino(inode); 1588 1589 key.objectid = ino; 1590 key.type = BTRFS_INODE_REF_KEY; 1591 key.offset = (u64)-1; 1592 1593 while (1) { 1594 ret = btrfs_search_slot(NULL, inode->root, &key, path, 0, 0); 1595 if (ret < 0) 1596 break; 1597 if (ret > 0) { 1598 if (path->slots[0] == 0) 1599 break; 1600 path->slots[0]--; 1601 } 1602 process_slot: 1603 btrfs_item_key_to_cpu(path->nodes[0], &key, 1604 path->slots[0]); 1605 if (key.objectid != ino || 1606 key.type != BTRFS_INODE_REF_KEY) 1607 break; 1608 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 1609 ptr_end = ptr + btrfs_item_size(path->nodes[0], 1610 path->slots[0]); 1611 while (ptr < ptr_end) { 1612 struct btrfs_inode_ref *ref; 1613 1614 ref = (struct btrfs_inode_ref *)ptr; 1615 name_len = btrfs_inode_ref_name_len(path->nodes[0], 1616 ref); 1617 ptr = (unsigned long)(ref + 1) + name_len; 1618 nlink++; 1619 } 1620 1621 if (key.offset == 0) 1622 break; 1623 if (path->slots[0] > 0) { 1624 path->slots[0]--; 1625 goto process_slot; 1626 } 1627 key.offset--; 1628 btrfs_release_path(path); 1629 } 1630 btrfs_release_path(path); 1631 1632 return nlink; 1633 } 1634 1635 /* 1636 * There are a few corners where the link count of the file can't 1637 * be properly maintained during replay. So, instead of adding 1638 * lots of complexity to the log code, we just scan the backrefs 1639 * for any file that has been through replay. 1640 * 1641 * The scan will update the link count on the inode to reflect the 1642 * number of back refs found. If it goes down to zero, the iput 1643 * will free the inode. 1644 */ 1645 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans, 1646 struct btrfs_inode *inode) 1647 { 1648 struct btrfs_root *root = inode->root; 1649 struct btrfs_path *path; 1650 int ret; 1651 u64 nlink = 0; 1652 const u64 ino = btrfs_ino(inode); 1653 1654 path = btrfs_alloc_path(); 1655 if (!path) 1656 return -ENOMEM; 1657 1658 ret = count_inode_refs(inode, path); 1659 if (ret < 0) 1660 goto out; 1661 1662 nlink = ret; 1663 1664 ret = count_inode_extrefs(inode, path); 1665 if (ret < 0) 1666 goto out; 1667 1668 nlink += ret; 1669 1670 ret = 0; 1671 1672 if (nlink != inode->vfs_inode.i_nlink) { 1673 set_nlink(&inode->vfs_inode, nlink); 1674 ret = btrfs_update_inode(trans, inode); 1675 if (ret) 1676 goto out; 1677 } 1678 if (S_ISDIR(inode->vfs_inode.i_mode)) 1679 inode->index_cnt = (u64)-1; 1680 1681 if (inode->vfs_inode.i_nlink == 0) { 1682 if (S_ISDIR(inode->vfs_inode.i_mode)) { 1683 ret = replay_dir_deletes(trans, root, NULL, path, ino, true); 1684 if (ret) 1685 goto out; 1686 } 1687 ret = btrfs_insert_orphan_item(trans, root, ino); 1688 if (ret == -EEXIST) 1689 ret = 0; 1690 } 1691 1692 out: 1693 btrfs_free_path(path); 1694 return ret; 1695 } 1696 1697 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans, 1698 struct btrfs_root *root, 1699 struct btrfs_path *path) 1700 { 1701 int ret; 1702 struct btrfs_key key; 1703 1704 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1705 key.type = BTRFS_ORPHAN_ITEM_KEY; 1706 key.offset = (u64)-1; 1707 while (1) { 1708 struct btrfs_inode *inode; 1709 1710 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1711 if (ret < 0) 1712 break; 1713 1714 if (ret == 1) { 1715 ret = 0; 1716 if (path->slots[0] == 0) 1717 break; 1718 path->slots[0]--; 1719 } 1720 1721 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1722 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID || 1723 key.type != BTRFS_ORPHAN_ITEM_KEY) 1724 break; 1725 1726 ret = btrfs_del_item(trans, root, path); 1727 if (ret) 1728 break; 1729 1730 btrfs_release_path(path); 1731 inode = btrfs_iget_logging(key.offset, root); 1732 if (IS_ERR(inode)) { 1733 ret = PTR_ERR(inode); 1734 break; 1735 } 1736 1737 ret = fixup_inode_link_count(trans, inode); 1738 iput(&inode->vfs_inode); 1739 if (ret) 1740 break; 1741 1742 /* 1743 * fixup on a directory may create new entries, 1744 * make sure we always look for the highset possible 1745 * offset 1746 */ 1747 key.offset = (u64)-1; 1748 } 1749 btrfs_release_path(path); 1750 return ret; 1751 } 1752 1753 1754 /* 1755 * record a given inode in the fixup dir so we can check its link 1756 * count when replay is done. The link count is incremented here 1757 * so the inode won't go away until we check it 1758 */ 1759 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans, 1760 struct btrfs_root *root, 1761 struct btrfs_path *path, 1762 u64 objectid) 1763 { 1764 struct btrfs_key key; 1765 int ret = 0; 1766 struct btrfs_inode *inode; 1767 struct inode *vfs_inode; 1768 1769 inode = btrfs_iget_logging(objectid, root); 1770 if (IS_ERR(inode)) 1771 return PTR_ERR(inode); 1772 1773 vfs_inode = &inode->vfs_inode; 1774 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1775 key.type = BTRFS_ORPHAN_ITEM_KEY; 1776 key.offset = objectid; 1777 1778 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1779 1780 btrfs_release_path(path); 1781 if (ret == 0) { 1782 if (!vfs_inode->i_nlink) 1783 set_nlink(vfs_inode, 1); 1784 else 1785 inc_nlink(vfs_inode); 1786 ret = btrfs_update_inode(trans, inode); 1787 } else if (ret == -EEXIST) { 1788 ret = 0; 1789 } 1790 iput(vfs_inode); 1791 1792 return ret; 1793 } 1794 1795 /* 1796 * when replaying the log for a directory, we only insert names 1797 * for inodes that actually exist. This means an fsync on a directory 1798 * does not implicitly fsync all the new files in it 1799 */ 1800 static noinline int insert_one_name(struct btrfs_trans_handle *trans, 1801 struct btrfs_root *root, 1802 u64 dirid, u64 index, 1803 const struct fscrypt_str *name, 1804 struct btrfs_key *location) 1805 { 1806 struct btrfs_inode *inode; 1807 struct btrfs_inode *dir; 1808 int ret; 1809 1810 inode = btrfs_iget_logging(location->objectid, root); 1811 if (IS_ERR(inode)) 1812 return PTR_ERR(inode); 1813 1814 dir = btrfs_iget_logging(dirid, root); 1815 if (IS_ERR(dir)) { 1816 iput(&inode->vfs_inode); 1817 return PTR_ERR(dir); 1818 } 1819 1820 ret = btrfs_add_link(trans, dir, inode, name, 1, index); 1821 1822 /* FIXME, put inode into FIXUP list */ 1823 1824 iput(&inode->vfs_inode); 1825 iput(&dir->vfs_inode); 1826 return ret; 1827 } 1828 1829 static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans, 1830 struct btrfs_inode *dir, 1831 struct btrfs_path *path, 1832 struct btrfs_dir_item *dst_di, 1833 const struct btrfs_key *log_key, 1834 u8 log_flags, 1835 bool exists) 1836 { 1837 struct btrfs_key found_key; 1838 1839 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key); 1840 /* The existing dentry points to the same inode, don't delete it. */ 1841 if (found_key.objectid == log_key->objectid && 1842 found_key.type == log_key->type && 1843 found_key.offset == log_key->offset && 1844 btrfs_dir_flags(path->nodes[0], dst_di) == log_flags) 1845 return 1; 1846 1847 /* 1848 * Don't drop the conflicting directory entry if the inode for the new 1849 * entry doesn't exist. 1850 */ 1851 if (!exists) 1852 return 0; 1853 1854 return drop_one_dir_item(trans, path, dir, dst_di); 1855 } 1856 1857 /* 1858 * take a single entry in a log directory item and replay it into 1859 * the subvolume. 1860 * 1861 * if a conflicting item exists in the subdirectory already, 1862 * the inode it points to is unlinked and put into the link count 1863 * fix up tree. 1864 * 1865 * If a name from the log points to a file or directory that does 1866 * not exist in the FS, it is skipped. fsyncs on directories 1867 * do not force down inodes inside that directory, just changes to the 1868 * names or unlinks in a directory. 1869 * 1870 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a 1871 * non-existing inode) and 1 if the name was replayed. 1872 */ 1873 static noinline int replay_one_name(struct btrfs_trans_handle *trans, 1874 struct btrfs_root *root, 1875 struct btrfs_path *path, 1876 struct extent_buffer *eb, 1877 struct btrfs_dir_item *di, 1878 struct btrfs_key *key) 1879 { 1880 struct fscrypt_str name = { 0 }; 1881 struct btrfs_dir_item *dir_dst_di; 1882 struct btrfs_dir_item *index_dst_di; 1883 bool dir_dst_matches = false; 1884 bool index_dst_matches = false; 1885 struct btrfs_key log_key; 1886 struct btrfs_key search_key; 1887 struct btrfs_inode *dir; 1888 u8 log_flags; 1889 bool exists; 1890 int ret; 1891 bool update_size = true; 1892 bool name_added = false; 1893 1894 dir = btrfs_iget_logging(key->objectid, root); 1895 if (IS_ERR(dir)) 1896 return PTR_ERR(dir); 1897 1898 ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name); 1899 if (ret) 1900 goto out; 1901 1902 log_flags = btrfs_dir_flags(eb, di); 1903 btrfs_dir_item_key_to_cpu(eb, di, &log_key); 1904 ret = btrfs_lookup_inode(trans, root, path, &log_key, 0); 1905 btrfs_release_path(path); 1906 if (ret < 0) 1907 goto out; 1908 exists = (ret == 0); 1909 ret = 0; 1910 1911 dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid, 1912 &name, 1); 1913 if (IS_ERR(dir_dst_di)) { 1914 ret = PTR_ERR(dir_dst_di); 1915 goto out; 1916 } else if (dir_dst_di) { 1917 ret = delete_conflicting_dir_entry(trans, dir, path, dir_dst_di, 1918 &log_key, log_flags, exists); 1919 if (ret < 0) 1920 goto out; 1921 dir_dst_matches = (ret == 1); 1922 } 1923 1924 btrfs_release_path(path); 1925 1926 index_dst_di = btrfs_lookup_dir_index_item(trans, root, path, 1927 key->objectid, key->offset, 1928 &name, 1); 1929 if (IS_ERR(index_dst_di)) { 1930 ret = PTR_ERR(index_dst_di); 1931 goto out; 1932 } else if (index_dst_di) { 1933 ret = delete_conflicting_dir_entry(trans, dir, path, index_dst_di, 1934 &log_key, log_flags, exists); 1935 if (ret < 0) 1936 goto out; 1937 index_dst_matches = (ret == 1); 1938 } 1939 1940 btrfs_release_path(path); 1941 1942 if (dir_dst_matches && index_dst_matches) { 1943 ret = 0; 1944 update_size = false; 1945 goto out; 1946 } 1947 1948 /* 1949 * Check if the inode reference exists in the log for the given name, 1950 * inode and parent inode 1951 */ 1952 search_key.objectid = log_key.objectid; 1953 search_key.type = BTRFS_INODE_REF_KEY; 1954 search_key.offset = key->objectid; 1955 ret = backref_in_log(root->log_root, &search_key, 0, &name); 1956 if (ret < 0) { 1957 goto out; 1958 } else if (ret) { 1959 /* The dentry will be added later. */ 1960 ret = 0; 1961 update_size = false; 1962 goto out; 1963 } 1964 1965 search_key.objectid = log_key.objectid; 1966 search_key.type = BTRFS_INODE_EXTREF_KEY; 1967 search_key.offset = key->objectid; 1968 ret = backref_in_log(root->log_root, &search_key, key->objectid, &name); 1969 if (ret < 0) { 1970 goto out; 1971 } else if (ret) { 1972 /* The dentry will be added later. */ 1973 ret = 0; 1974 update_size = false; 1975 goto out; 1976 } 1977 btrfs_release_path(path); 1978 ret = insert_one_name(trans, root, key->objectid, key->offset, 1979 &name, &log_key); 1980 if (ret && ret != -ENOENT && ret != -EEXIST) 1981 goto out; 1982 if (!ret) 1983 name_added = true; 1984 update_size = false; 1985 ret = 0; 1986 1987 out: 1988 if (!ret && update_size) { 1989 btrfs_i_size_write(dir, dir->vfs_inode.i_size + name.len * 2); 1990 ret = btrfs_update_inode(trans, dir); 1991 } 1992 kfree(name.name); 1993 iput(&dir->vfs_inode); 1994 if (!ret && name_added) 1995 ret = 1; 1996 return ret; 1997 } 1998 1999 /* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */ 2000 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans, 2001 struct btrfs_root *root, 2002 struct btrfs_path *path, 2003 struct extent_buffer *eb, int slot, 2004 struct btrfs_key *key) 2005 { 2006 int ret; 2007 struct btrfs_dir_item *di; 2008 2009 /* We only log dir index keys, which only contain a single dir item. */ 2010 ASSERT(key->type == BTRFS_DIR_INDEX_KEY); 2011 2012 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 2013 ret = replay_one_name(trans, root, path, eb, di, key); 2014 if (ret < 0) 2015 return ret; 2016 2017 /* 2018 * If this entry refers to a non-directory (directories can not have a 2019 * link count > 1) and it was added in the transaction that was not 2020 * committed, make sure we fixup the link count of the inode the entry 2021 * points to. Otherwise something like the following would result in a 2022 * directory pointing to an inode with a wrong link that does not account 2023 * for this dir entry: 2024 * 2025 * mkdir testdir 2026 * touch testdir/foo 2027 * touch testdir/bar 2028 * sync 2029 * 2030 * ln testdir/bar testdir/bar_link 2031 * ln testdir/foo testdir/foo_link 2032 * xfs_io -c "fsync" testdir/bar 2033 * 2034 * <power failure> 2035 * 2036 * mount fs, log replay happens 2037 * 2038 * File foo would remain with a link count of 1 when it has two entries 2039 * pointing to it in the directory testdir. This would make it impossible 2040 * to ever delete the parent directory has it would result in stale 2041 * dentries that can never be deleted. 2042 */ 2043 if (ret == 1 && btrfs_dir_ftype(eb, di) != BTRFS_FT_DIR) { 2044 struct btrfs_path *fixup_path; 2045 struct btrfs_key di_key; 2046 2047 fixup_path = btrfs_alloc_path(); 2048 if (!fixup_path) 2049 return -ENOMEM; 2050 2051 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2052 ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid); 2053 btrfs_free_path(fixup_path); 2054 } 2055 2056 return ret; 2057 } 2058 2059 /* 2060 * directory replay has two parts. There are the standard directory 2061 * items in the log copied from the subvolume, and range items 2062 * created in the log while the subvolume was logged. 2063 * 2064 * The range items tell us which parts of the key space the log 2065 * is authoritative for. During replay, if a key in the subvolume 2066 * directory is in a logged range item, but not actually in the log 2067 * that means it was deleted from the directory before the fsync 2068 * and should be removed. 2069 */ 2070 static noinline int find_dir_range(struct btrfs_root *root, 2071 struct btrfs_path *path, 2072 u64 dirid, 2073 u64 *start_ret, u64 *end_ret) 2074 { 2075 struct btrfs_key key; 2076 u64 found_end; 2077 struct btrfs_dir_log_item *item; 2078 int ret; 2079 int nritems; 2080 2081 if (*start_ret == (u64)-1) 2082 return 1; 2083 2084 key.objectid = dirid; 2085 key.type = BTRFS_DIR_LOG_INDEX_KEY; 2086 key.offset = *start_ret; 2087 2088 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2089 if (ret < 0) 2090 goto out; 2091 if (ret > 0) { 2092 if (path->slots[0] == 0) 2093 goto out; 2094 path->slots[0]--; 2095 } 2096 if (ret != 0) 2097 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2098 2099 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) { 2100 ret = 1; 2101 goto next; 2102 } 2103 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2104 struct btrfs_dir_log_item); 2105 found_end = btrfs_dir_log_end(path->nodes[0], item); 2106 2107 if (*start_ret >= key.offset && *start_ret <= found_end) { 2108 ret = 0; 2109 *start_ret = key.offset; 2110 *end_ret = found_end; 2111 goto out; 2112 } 2113 ret = 1; 2114 next: 2115 /* check the next slot in the tree to see if it is a valid item */ 2116 nritems = btrfs_header_nritems(path->nodes[0]); 2117 path->slots[0]++; 2118 if (path->slots[0] >= nritems) { 2119 ret = btrfs_next_leaf(root, path); 2120 if (ret) 2121 goto out; 2122 } 2123 2124 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2125 2126 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) { 2127 ret = 1; 2128 goto out; 2129 } 2130 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2131 struct btrfs_dir_log_item); 2132 found_end = btrfs_dir_log_end(path->nodes[0], item); 2133 *start_ret = key.offset; 2134 *end_ret = found_end; 2135 ret = 0; 2136 out: 2137 btrfs_release_path(path); 2138 return ret; 2139 } 2140 2141 /* 2142 * this looks for a given directory item in the log. If the directory 2143 * item is not in the log, the item is removed and the inode it points 2144 * to is unlinked 2145 */ 2146 static noinline int check_item_in_log(struct btrfs_trans_handle *trans, 2147 struct btrfs_root *log, 2148 struct btrfs_path *path, 2149 struct btrfs_path *log_path, 2150 struct btrfs_inode *dir, 2151 struct btrfs_key *dir_key) 2152 { 2153 struct btrfs_root *root = dir->root; 2154 int ret; 2155 struct extent_buffer *eb; 2156 int slot; 2157 struct btrfs_dir_item *di; 2158 struct fscrypt_str name = { 0 }; 2159 struct btrfs_inode *inode = NULL; 2160 struct btrfs_key location; 2161 2162 /* 2163 * Currently we only log dir index keys. Even if we replay a log created 2164 * by an older kernel that logged both dir index and dir item keys, all 2165 * we need to do is process the dir index keys, we (and our caller) can 2166 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY). 2167 */ 2168 ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY); 2169 2170 eb = path->nodes[0]; 2171 slot = path->slots[0]; 2172 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 2173 ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name); 2174 if (ret) 2175 goto out; 2176 2177 if (log) { 2178 struct btrfs_dir_item *log_di; 2179 2180 log_di = btrfs_lookup_dir_index_item(trans, log, log_path, 2181 dir_key->objectid, 2182 dir_key->offset, &name, 0); 2183 if (IS_ERR(log_di)) { 2184 ret = PTR_ERR(log_di); 2185 goto out; 2186 } else if (log_di) { 2187 /* The dentry exists in the log, we have nothing to do. */ 2188 ret = 0; 2189 goto out; 2190 } 2191 } 2192 2193 btrfs_dir_item_key_to_cpu(eb, di, &location); 2194 btrfs_release_path(path); 2195 btrfs_release_path(log_path); 2196 inode = btrfs_iget_logging(location.objectid, root); 2197 if (IS_ERR(inode)) { 2198 ret = PTR_ERR(inode); 2199 inode = NULL; 2200 goto out; 2201 } 2202 2203 ret = link_to_fixup_dir(trans, root, path, location.objectid); 2204 if (ret) 2205 goto out; 2206 2207 inc_nlink(&inode->vfs_inode); 2208 ret = unlink_inode_for_log_replay(trans, dir, inode, &name); 2209 /* 2210 * Unlike dir item keys, dir index keys can only have one name (entry) in 2211 * them, as there are no key collisions since each key has a unique offset 2212 * (an index number), so we're done. 2213 */ 2214 out: 2215 btrfs_release_path(path); 2216 btrfs_release_path(log_path); 2217 kfree(name.name); 2218 if (inode) 2219 iput(&inode->vfs_inode); 2220 return ret; 2221 } 2222 2223 static int replay_xattr_deletes(struct btrfs_trans_handle *trans, 2224 struct btrfs_root *root, 2225 struct btrfs_root *log, 2226 struct btrfs_path *path, 2227 const u64 ino) 2228 { 2229 struct btrfs_key search_key; 2230 struct btrfs_path *log_path; 2231 int i; 2232 int nritems; 2233 int ret; 2234 2235 log_path = btrfs_alloc_path(); 2236 if (!log_path) 2237 return -ENOMEM; 2238 2239 search_key.objectid = ino; 2240 search_key.type = BTRFS_XATTR_ITEM_KEY; 2241 search_key.offset = 0; 2242 again: 2243 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 2244 if (ret < 0) 2245 goto out; 2246 process_leaf: 2247 nritems = btrfs_header_nritems(path->nodes[0]); 2248 for (i = path->slots[0]; i < nritems; i++) { 2249 struct btrfs_key key; 2250 struct btrfs_dir_item *di; 2251 struct btrfs_dir_item *log_di; 2252 u32 total_size; 2253 u32 cur; 2254 2255 btrfs_item_key_to_cpu(path->nodes[0], &key, i); 2256 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) { 2257 ret = 0; 2258 goto out; 2259 } 2260 2261 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item); 2262 total_size = btrfs_item_size(path->nodes[0], i); 2263 cur = 0; 2264 while (cur < total_size) { 2265 u16 name_len = btrfs_dir_name_len(path->nodes[0], di); 2266 u16 data_len = btrfs_dir_data_len(path->nodes[0], di); 2267 u32 this_len = sizeof(*di) + name_len + data_len; 2268 char *name; 2269 2270 name = kmalloc(name_len, GFP_NOFS); 2271 if (!name) { 2272 ret = -ENOMEM; 2273 goto out; 2274 } 2275 read_extent_buffer(path->nodes[0], name, 2276 (unsigned long)(di + 1), name_len); 2277 2278 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino, 2279 name, name_len, 0); 2280 btrfs_release_path(log_path); 2281 if (!log_di) { 2282 /* Doesn't exist in log tree, so delete it. */ 2283 btrfs_release_path(path); 2284 di = btrfs_lookup_xattr(trans, root, path, ino, 2285 name, name_len, -1); 2286 kfree(name); 2287 if (IS_ERR(di)) { 2288 ret = PTR_ERR(di); 2289 goto out; 2290 } 2291 ASSERT(di); 2292 ret = btrfs_delete_one_dir_name(trans, root, 2293 path, di); 2294 if (ret) 2295 goto out; 2296 btrfs_release_path(path); 2297 search_key = key; 2298 goto again; 2299 } 2300 kfree(name); 2301 if (IS_ERR(log_di)) { 2302 ret = PTR_ERR(log_di); 2303 goto out; 2304 } 2305 cur += this_len; 2306 di = (struct btrfs_dir_item *)((char *)di + this_len); 2307 } 2308 } 2309 ret = btrfs_next_leaf(root, path); 2310 if (ret > 0) 2311 ret = 0; 2312 else if (ret == 0) 2313 goto process_leaf; 2314 out: 2315 btrfs_free_path(log_path); 2316 btrfs_release_path(path); 2317 return ret; 2318 } 2319 2320 2321 /* 2322 * deletion replay happens before we copy any new directory items 2323 * out of the log or out of backreferences from inodes. It 2324 * scans the log to find ranges of keys that log is authoritative for, 2325 * and then scans the directory to find items in those ranges that are 2326 * not present in the log. 2327 * 2328 * Anything we don't find in the log is unlinked and removed from the 2329 * directory. 2330 */ 2331 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 2332 struct btrfs_root *root, 2333 struct btrfs_root *log, 2334 struct btrfs_path *path, 2335 u64 dirid, bool del_all) 2336 { 2337 u64 range_start; 2338 u64 range_end; 2339 int ret = 0; 2340 struct btrfs_key dir_key; 2341 struct btrfs_key found_key; 2342 struct btrfs_path *log_path; 2343 struct btrfs_inode *dir; 2344 2345 dir_key.objectid = dirid; 2346 dir_key.type = BTRFS_DIR_INDEX_KEY; 2347 log_path = btrfs_alloc_path(); 2348 if (!log_path) 2349 return -ENOMEM; 2350 2351 dir = btrfs_iget_logging(dirid, root); 2352 /* 2353 * It isn't an error if the inode isn't there, that can happen because 2354 * we replay the deletes before we copy in the inode item from the log. 2355 */ 2356 if (IS_ERR(dir)) { 2357 btrfs_free_path(log_path); 2358 ret = PTR_ERR(dir); 2359 if (ret == -ENOENT) 2360 ret = 0; 2361 return ret; 2362 } 2363 2364 range_start = 0; 2365 range_end = 0; 2366 while (1) { 2367 if (del_all) 2368 range_end = (u64)-1; 2369 else { 2370 ret = find_dir_range(log, path, dirid, 2371 &range_start, &range_end); 2372 if (ret < 0) 2373 goto out; 2374 else if (ret > 0) 2375 break; 2376 } 2377 2378 dir_key.offset = range_start; 2379 while (1) { 2380 int nritems; 2381 ret = btrfs_search_slot(NULL, root, &dir_key, path, 2382 0, 0); 2383 if (ret < 0) 2384 goto out; 2385 2386 nritems = btrfs_header_nritems(path->nodes[0]); 2387 if (path->slots[0] >= nritems) { 2388 ret = btrfs_next_leaf(root, path); 2389 if (ret == 1) 2390 break; 2391 else if (ret < 0) 2392 goto out; 2393 } 2394 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2395 path->slots[0]); 2396 if (found_key.objectid != dirid || 2397 found_key.type != dir_key.type) { 2398 ret = 0; 2399 goto out; 2400 } 2401 2402 if (found_key.offset > range_end) 2403 break; 2404 2405 ret = check_item_in_log(trans, log, path, 2406 log_path, dir, 2407 &found_key); 2408 if (ret) 2409 goto out; 2410 if (found_key.offset == (u64)-1) 2411 break; 2412 dir_key.offset = found_key.offset + 1; 2413 } 2414 btrfs_release_path(path); 2415 if (range_end == (u64)-1) 2416 break; 2417 range_start = range_end + 1; 2418 } 2419 ret = 0; 2420 out: 2421 btrfs_release_path(path); 2422 btrfs_free_path(log_path); 2423 iput(&dir->vfs_inode); 2424 return ret; 2425 } 2426 2427 /* 2428 * the process_func used to replay items from the log tree. This 2429 * gets called in two different stages. The first stage just looks 2430 * for inodes and makes sure they are all copied into the subvolume. 2431 * 2432 * The second stage copies all the other item types from the log into 2433 * the subvolume. The two stage approach is slower, but gets rid of 2434 * lots of complexity around inodes referencing other inodes that exist 2435 * only in the log (references come from either directory items or inode 2436 * back refs). 2437 */ 2438 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb, 2439 struct walk_control *wc, u64 gen, int level) 2440 { 2441 int nritems; 2442 struct btrfs_tree_parent_check check = { 2443 .transid = gen, 2444 .level = level 2445 }; 2446 struct btrfs_path *path; 2447 struct btrfs_root *root = wc->replay_dest; 2448 struct btrfs_key key; 2449 int i; 2450 int ret; 2451 2452 ret = btrfs_read_extent_buffer(eb, &check); 2453 if (ret) 2454 return ret; 2455 2456 level = btrfs_header_level(eb); 2457 2458 if (level != 0) 2459 return 0; 2460 2461 path = btrfs_alloc_path(); 2462 if (!path) 2463 return -ENOMEM; 2464 2465 nritems = btrfs_header_nritems(eb); 2466 for (i = 0; i < nritems; i++) { 2467 struct btrfs_inode_item *inode_item; 2468 2469 btrfs_item_key_to_cpu(eb, &key, i); 2470 2471 if (key.type == BTRFS_INODE_ITEM_KEY) { 2472 inode_item = btrfs_item_ptr(eb, i, struct btrfs_inode_item); 2473 /* 2474 * An inode with no links is either: 2475 * 2476 * 1) A tmpfile (O_TMPFILE) that got fsync'ed and never 2477 * got linked before the fsync, skip it, as replaying 2478 * it is pointless since it would be deleted later. 2479 * We skip logging tmpfiles, but it's always possible 2480 * we are replaying a log created with a kernel that 2481 * used to log tmpfiles; 2482 * 2483 * 2) A non-tmpfile which got its last link deleted 2484 * while holding an open fd on it and later got 2485 * fsynced through that fd. We always log the 2486 * parent inodes when inode->last_unlink_trans is 2487 * set to the current transaction, so ignore all the 2488 * inode items for this inode. We will delete the 2489 * inode when processing the parent directory with 2490 * replay_dir_deletes(). 2491 */ 2492 if (btrfs_inode_nlink(eb, inode_item) == 0) { 2493 wc->ignore_cur_inode = true; 2494 continue; 2495 } else { 2496 wc->ignore_cur_inode = false; 2497 } 2498 } 2499 2500 /* Inode keys are done during the first stage. */ 2501 if (key.type == BTRFS_INODE_ITEM_KEY && 2502 wc->stage == LOG_WALK_REPLAY_INODES) { 2503 u32 mode; 2504 2505 ret = replay_xattr_deletes(wc->trans, root, log, path, key.objectid); 2506 if (ret) 2507 break; 2508 mode = btrfs_inode_mode(eb, inode_item); 2509 if (S_ISDIR(mode)) { 2510 ret = replay_dir_deletes(wc->trans, root, log, path, 2511 key.objectid, false); 2512 if (ret) 2513 break; 2514 } 2515 ret = overwrite_item(wc->trans, root, path, 2516 eb, i, &key); 2517 if (ret) 2518 break; 2519 2520 /* 2521 * Before replaying extents, truncate the inode to its 2522 * size. We need to do it now and not after log replay 2523 * because before an fsync we can have prealloc extents 2524 * added beyond the inode's i_size. If we did it after, 2525 * through orphan cleanup for example, we would drop 2526 * those prealloc extents just after replaying them. 2527 */ 2528 if (S_ISREG(mode)) { 2529 struct btrfs_drop_extents_args drop_args = { 0 }; 2530 struct btrfs_inode *inode; 2531 u64 from; 2532 2533 inode = btrfs_iget_logging(key.objectid, root); 2534 if (IS_ERR(inode)) { 2535 ret = PTR_ERR(inode); 2536 break; 2537 } 2538 from = ALIGN(i_size_read(&inode->vfs_inode), 2539 root->fs_info->sectorsize); 2540 drop_args.start = from; 2541 drop_args.end = (u64)-1; 2542 drop_args.drop_cache = true; 2543 ret = btrfs_drop_extents(wc->trans, root, inode, 2544 &drop_args); 2545 if (!ret) { 2546 inode_sub_bytes(&inode->vfs_inode, 2547 drop_args.bytes_found); 2548 /* Update the inode's nbytes. */ 2549 ret = btrfs_update_inode(wc->trans, inode); 2550 } 2551 iput(&inode->vfs_inode); 2552 if (ret) 2553 break; 2554 } 2555 2556 ret = link_to_fixup_dir(wc->trans, root, 2557 path, key.objectid); 2558 if (ret) 2559 break; 2560 } 2561 2562 if (wc->ignore_cur_inode) 2563 continue; 2564 2565 if (key.type == BTRFS_DIR_INDEX_KEY && 2566 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) { 2567 ret = replay_one_dir_item(wc->trans, root, path, 2568 eb, i, &key); 2569 if (ret) 2570 break; 2571 } 2572 2573 if (wc->stage < LOG_WALK_REPLAY_ALL) 2574 continue; 2575 2576 /* these keys are simply copied */ 2577 if (key.type == BTRFS_XATTR_ITEM_KEY) { 2578 ret = overwrite_item(wc->trans, root, path, 2579 eb, i, &key); 2580 if (ret) 2581 break; 2582 } else if (key.type == BTRFS_INODE_REF_KEY || 2583 key.type == BTRFS_INODE_EXTREF_KEY) { 2584 ret = add_inode_ref(wc->trans, root, log, path, 2585 eb, i, &key); 2586 if (ret) 2587 break; 2588 } else if (key.type == BTRFS_EXTENT_DATA_KEY) { 2589 ret = replay_one_extent(wc->trans, root, path, 2590 eb, i, &key); 2591 if (ret) 2592 break; 2593 } 2594 /* 2595 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the 2596 * BTRFS_DIR_INDEX_KEY items which we use to derive the 2597 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an 2598 * older kernel with such keys, ignore them. 2599 */ 2600 } 2601 btrfs_free_path(path); 2602 return ret; 2603 } 2604 2605 /* 2606 * Correctly adjust the reserved bytes occupied by a log tree extent buffer 2607 */ 2608 static int unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start) 2609 { 2610 struct btrfs_block_group *cache; 2611 2612 cache = btrfs_lookup_block_group(fs_info, start); 2613 if (!cache) { 2614 btrfs_err(fs_info, "unable to find block group for %llu", start); 2615 return -ENOENT; 2616 } 2617 2618 spin_lock(&cache->space_info->lock); 2619 spin_lock(&cache->lock); 2620 cache->reserved -= fs_info->nodesize; 2621 cache->space_info->bytes_reserved -= fs_info->nodesize; 2622 spin_unlock(&cache->lock); 2623 spin_unlock(&cache->space_info->lock); 2624 2625 btrfs_put_block_group(cache); 2626 2627 return 0; 2628 } 2629 2630 static int clean_log_buffer(struct btrfs_trans_handle *trans, 2631 struct extent_buffer *eb) 2632 { 2633 btrfs_tree_lock(eb); 2634 btrfs_clear_buffer_dirty(trans, eb); 2635 wait_on_extent_buffer_writeback(eb); 2636 btrfs_tree_unlock(eb); 2637 2638 if (trans) 2639 return btrfs_pin_reserved_extent(trans, eb); 2640 2641 return unaccount_log_buffer(eb->fs_info, eb->start); 2642 } 2643 2644 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans, 2645 struct btrfs_root *root, 2646 struct btrfs_path *path, int *level, 2647 struct walk_control *wc) 2648 { 2649 struct btrfs_fs_info *fs_info = root->fs_info; 2650 u64 bytenr; 2651 u64 ptr_gen; 2652 struct extent_buffer *next; 2653 struct extent_buffer *cur; 2654 int ret = 0; 2655 2656 while (*level > 0) { 2657 struct btrfs_tree_parent_check check = { 0 }; 2658 2659 cur = path->nodes[*level]; 2660 2661 WARN_ON(btrfs_header_level(cur) != *level); 2662 2663 if (path->slots[*level] >= 2664 btrfs_header_nritems(cur)) 2665 break; 2666 2667 bytenr = btrfs_node_blockptr(cur, path->slots[*level]); 2668 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); 2669 check.transid = ptr_gen; 2670 check.level = *level - 1; 2671 check.has_first_key = true; 2672 btrfs_node_key_to_cpu(cur, &check.first_key, path->slots[*level]); 2673 2674 next = btrfs_find_create_tree_block(fs_info, bytenr, 2675 btrfs_header_owner(cur), 2676 *level - 1); 2677 if (IS_ERR(next)) 2678 return PTR_ERR(next); 2679 2680 if (*level == 1) { 2681 ret = wc->process_func(root, next, wc, ptr_gen, 2682 *level - 1); 2683 if (ret) { 2684 free_extent_buffer(next); 2685 return ret; 2686 } 2687 2688 path->slots[*level]++; 2689 if (wc->free) { 2690 ret = btrfs_read_extent_buffer(next, &check); 2691 if (ret) { 2692 free_extent_buffer(next); 2693 return ret; 2694 } 2695 2696 ret = clean_log_buffer(trans, next); 2697 if (ret) { 2698 free_extent_buffer(next); 2699 return ret; 2700 } 2701 } 2702 free_extent_buffer(next); 2703 continue; 2704 } 2705 ret = btrfs_read_extent_buffer(next, &check); 2706 if (ret) { 2707 free_extent_buffer(next); 2708 return ret; 2709 } 2710 2711 if (path->nodes[*level-1]) 2712 free_extent_buffer(path->nodes[*level-1]); 2713 path->nodes[*level-1] = next; 2714 *level = btrfs_header_level(next); 2715 path->slots[*level] = 0; 2716 cond_resched(); 2717 } 2718 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]); 2719 2720 cond_resched(); 2721 return 0; 2722 } 2723 2724 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans, 2725 struct btrfs_root *root, 2726 struct btrfs_path *path, int *level, 2727 struct walk_control *wc) 2728 { 2729 int i; 2730 int slot; 2731 int ret; 2732 2733 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { 2734 slot = path->slots[i]; 2735 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) { 2736 path->slots[i]++; 2737 *level = i; 2738 WARN_ON(*level == 0); 2739 return 0; 2740 } else { 2741 ret = wc->process_func(root, path->nodes[*level], wc, 2742 btrfs_header_generation(path->nodes[*level]), 2743 *level); 2744 if (ret) 2745 return ret; 2746 2747 if (wc->free) { 2748 ret = clean_log_buffer(trans, path->nodes[*level]); 2749 if (ret) 2750 return ret; 2751 } 2752 free_extent_buffer(path->nodes[*level]); 2753 path->nodes[*level] = NULL; 2754 *level = i + 1; 2755 } 2756 } 2757 return 1; 2758 } 2759 2760 /* 2761 * drop the reference count on the tree rooted at 'snap'. This traverses 2762 * the tree freeing any blocks that have a ref count of zero after being 2763 * decremented. 2764 */ 2765 static int walk_log_tree(struct btrfs_trans_handle *trans, 2766 struct btrfs_root *log, struct walk_control *wc) 2767 { 2768 int ret = 0; 2769 int wret; 2770 int level; 2771 struct btrfs_path *path; 2772 int orig_level; 2773 2774 path = btrfs_alloc_path(); 2775 if (!path) 2776 return -ENOMEM; 2777 2778 level = btrfs_header_level(log->node); 2779 orig_level = level; 2780 path->nodes[level] = log->node; 2781 refcount_inc(&log->node->refs); 2782 path->slots[level] = 0; 2783 2784 while (1) { 2785 wret = walk_down_log_tree(trans, log, path, &level, wc); 2786 if (wret > 0) 2787 break; 2788 if (wret < 0) { 2789 ret = wret; 2790 goto out; 2791 } 2792 2793 wret = walk_up_log_tree(trans, log, path, &level, wc); 2794 if (wret > 0) 2795 break; 2796 if (wret < 0) { 2797 ret = wret; 2798 goto out; 2799 } 2800 } 2801 2802 /* was the root node processed? if not, catch it here */ 2803 if (path->nodes[orig_level]) { 2804 ret = wc->process_func(log, path->nodes[orig_level], wc, 2805 btrfs_header_generation(path->nodes[orig_level]), 2806 orig_level); 2807 if (ret) 2808 goto out; 2809 if (wc->free) 2810 ret = clean_log_buffer(trans, path->nodes[orig_level]); 2811 } 2812 2813 out: 2814 btrfs_free_path(path); 2815 return ret; 2816 } 2817 2818 /* 2819 * helper function to update the item for a given subvolumes log root 2820 * in the tree of log roots 2821 */ 2822 static int update_log_root(struct btrfs_trans_handle *trans, 2823 struct btrfs_root *log, 2824 struct btrfs_root_item *root_item) 2825 { 2826 struct btrfs_fs_info *fs_info = log->fs_info; 2827 int ret; 2828 2829 if (log->log_transid == 1) { 2830 /* insert root item on the first sync */ 2831 ret = btrfs_insert_root(trans, fs_info->log_root_tree, 2832 &log->root_key, root_item); 2833 } else { 2834 ret = btrfs_update_root(trans, fs_info->log_root_tree, 2835 &log->root_key, root_item); 2836 } 2837 return ret; 2838 } 2839 2840 static void wait_log_commit(struct btrfs_root *root, int transid) 2841 { 2842 DEFINE_WAIT(wait); 2843 int index = transid % 2; 2844 2845 /* 2846 * we only allow two pending log transactions at a time, 2847 * so we know that if ours is more than 2 older than the 2848 * current transaction, we're done 2849 */ 2850 for (;;) { 2851 prepare_to_wait(&root->log_commit_wait[index], 2852 &wait, TASK_UNINTERRUPTIBLE); 2853 2854 if (!(root->log_transid_committed < transid && 2855 atomic_read(&root->log_commit[index]))) 2856 break; 2857 2858 mutex_unlock(&root->log_mutex); 2859 schedule(); 2860 mutex_lock(&root->log_mutex); 2861 } 2862 finish_wait(&root->log_commit_wait[index], &wait); 2863 } 2864 2865 static void wait_for_writer(struct btrfs_root *root) 2866 { 2867 DEFINE_WAIT(wait); 2868 2869 for (;;) { 2870 prepare_to_wait(&root->log_writer_wait, &wait, 2871 TASK_UNINTERRUPTIBLE); 2872 if (!atomic_read(&root->log_writers)) 2873 break; 2874 2875 mutex_unlock(&root->log_mutex); 2876 schedule(); 2877 mutex_lock(&root->log_mutex); 2878 } 2879 finish_wait(&root->log_writer_wait, &wait); 2880 } 2881 2882 void btrfs_init_log_ctx(struct btrfs_log_ctx *ctx, struct btrfs_inode *inode) 2883 { 2884 ctx->log_ret = 0; 2885 ctx->log_transid = 0; 2886 ctx->log_new_dentries = false; 2887 ctx->logging_new_name = false; 2888 ctx->logging_new_delayed_dentries = false; 2889 ctx->logged_before = false; 2890 ctx->inode = inode; 2891 INIT_LIST_HEAD(&ctx->list); 2892 INIT_LIST_HEAD(&ctx->ordered_extents); 2893 INIT_LIST_HEAD(&ctx->conflict_inodes); 2894 ctx->num_conflict_inodes = 0; 2895 ctx->logging_conflict_inodes = false; 2896 ctx->scratch_eb = NULL; 2897 } 2898 2899 void btrfs_init_log_ctx_scratch_eb(struct btrfs_log_ctx *ctx) 2900 { 2901 struct btrfs_inode *inode = ctx->inode; 2902 2903 if (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) && 2904 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags)) 2905 return; 2906 2907 /* 2908 * Don't care about allocation failure. This is just for optimization, 2909 * if we fail to allocate here, we will try again later if needed. 2910 */ 2911 ctx->scratch_eb = alloc_dummy_extent_buffer(inode->root->fs_info, 0); 2912 } 2913 2914 void btrfs_release_log_ctx_extents(struct btrfs_log_ctx *ctx) 2915 { 2916 struct btrfs_ordered_extent *ordered; 2917 struct btrfs_ordered_extent *tmp; 2918 2919 btrfs_assert_inode_locked(ctx->inode); 2920 2921 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) { 2922 list_del_init(&ordered->log_list); 2923 btrfs_put_ordered_extent(ordered); 2924 } 2925 } 2926 2927 2928 static inline void btrfs_remove_log_ctx(struct btrfs_root *root, 2929 struct btrfs_log_ctx *ctx) 2930 { 2931 mutex_lock(&root->log_mutex); 2932 list_del_init(&ctx->list); 2933 mutex_unlock(&root->log_mutex); 2934 } 2935 2936 /* 2937 * Invoked in log mutex context, or be sure there is no other task which 2938 * can access the list. 2939 */ 2940 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root, 2941 int index, int error) 2942 { 2943 struct btrfs_log_ctx *ctx; 2944 struct btrfs_log_ctx *safe; 2945 2946 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) { 2947 list_del_init(&ctx->list); 2948 ctx->log_ret = error; 2949 } 2950 } 2951 2952 /* 2953 * Sends a given tree log down to the disk and updates the super blocks to 2954 * record it. When this call is done, you know that any inodes previously 2955 * logged are safely on disk only if it returns 0. 2956 * 2957 * Any other return value means you need to call btrfs_commit_transaction. 2958 * Some of the edge cases for fsyncing directories that have had unlinks 2959 * or renames done in the past mean that sometimes the only safe 2960 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN, 2961 * that has happened. 2962 */ 2963 int btrfs_sync_log(struct btrfs_trans_handle *trans, 2964 struct btrfs_root *root, struct btrfs_log_ctx *ctx) 2965 { 2966 int index1; 2967 int index2; 2968 int mark; 2969 int ret; 2970 struct btrfs_fs_info *fs_info = root->fs_info; 2971 struct btrfs_root *log = root->log_root; 2972 struct btrfs_root *log_root_tree = fs_info->log_root_tree; 2973 struct btrfs_root_item new_root_item; 2974 int log_transid = 0; 2975 struct btrfs_log_ctx root_log_ctx; 2976 struct blk_plug plug; 2977 u64 log_root_start; 2978 u64 log_root_level; 2979 2980 mutex_lock(&root->log_mutex); 2981 log_transid = ctx->log_transid; 2982 if (root->log_transid_committed >= log_transid) { 2983 mutex_unlock(&root->log_mutex); 2984 return ctx->log_ret; 2985 } 2986 2987 index1 = log_transid % 2; 2988 if (atomic_read(&root->log_commit[index1])) { 2989 wait_log_commit(root, log_transid); 2990 mutex_unlock(&root->log_mutex); 2991 return ctx->log_ret; 2992 } 2993 ASSERT(log_transid == root->log_transid); 2994 atomic_set(&root->log_commit[index1], 1); 2995 2996 /* wait for previous tree log sync to complete */ 2997 if (atomic_read(&root->log_commit[(index1 + 1) % 2])) 2998 wait_log_commit(root, log_transid - 1); 2999 3000 while (1) { 3001 int batch = atomic_read(&root->log_batch); 3002 /* when we're on an ssd, just kick the log commit out */ 3003 if (!btrfs_test_opt(fs_info, SSD) && 3004 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) { 3005 mutex_unlock(&root->log_mutex); 3006 schedule_timeout_uninterruptible(1); 3007 mutex_lock(&root->log_mutex); 3008 } 3009 wait_for_writer(root); 3010 if (batch == atomic_read(&root->log_batch)) 3011 break; 3012 } 3013 3014 /* bail out if we need to do a full commit */ 3015 if (btrfs_need_log_full_commit(trans)) { 3016 ret = BTRFS_LOG_FORCE_COMMIT; 3017 mutex_unlock(&root->log_mutex); 3018 goto out; 3019 } 3020 3021 if (log_transid % 2 == 0) 3022 mark = EXTENT_DIRTY_LOG1; 3023 else 3024 mark = EXTENT_DIRTY_LOG2; 3025 3026 /* we start IO on all the marked extents here, but we don't actually 3027 * wait for them until later. 3028 */ 3029 blk_start_plug(&plug); 3030 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark); 3031 /* 3032 * -EAGAIN happens when someone, e.g., a concurrent transaction 3033 * commit, writes a dirty extent in this tree-log commit. This 3034 * concurrent write will create a hole writing out the extents, 3035 * and we cannot proceed on a zoned filesystem, requiring 3036 * sequential writing. While we can bail out to a full commit 3037 * here, but we can continue hoping the concurrent writing fills 3038 * the hole. 3039 */ 3040 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) 3041 ret = 0; 3042 if (ret) { 3043 blk_finish_plug(&plug); 3044 btrfs_set_log_full_commit(trans); 3045 mutex_unlock(&root->log_mutex); 3046 goto out; 3047 } 3048 3049 /* 3050 * We _must_ update under the root->log_mutex in order to make sure we 3051 * have a consistent view of the log root we are trying to commit at 3052 * this moment. 3053 * 3054 * We _must_ copy this into a local copy, because we are not holding the 3055 * log_root_tree->log_mutex yet. This is important because when we 3056 * commit the log_root_tree we must have a consistent view of the 3057 * log_root_tree when we update the super block to point at the 3058 * log_root_tree bytenr. If we update the log_root_tree here we'll race 3059 * with the commit and possibly point at the new block which we may not 3060 * have written out. 3061 */ 3062 btrfs_set_root_node(&log->root_item, log->node); 3063 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item)); 3064 3065 btrfs_set_root_log_transid(root, root->log_transid + 1); 3066 log->log_transid = root->log_transid; 3067 root->log_start_pid = 0; 3068 /* 3069 * IO has been started, blocks of the log tree have WRITTEN flag set 3070 * in their headers. new modifications of the log will be written to 3071 * new positions. so it's safe to allow log writers to go in. 3072 */ 3073 mutex_unlock(&root->log_mutex); 3074 3075 if (btrfs_is_zoned(fs_info)) { 3076 mutex_lock(&fs_info->tree_root->log_mutex); 3077 if (!log_root_tree->node) { 3078 ret = btrfs_alloc_log_tree_node(trans, log_root_tree); 3079 if (ret) { 3080 mutex_unlock(&fs_info->tree_root->log_mutex); 3081 blk_finish_plug(&plug); 3082 goto out; 3083 } 3084 } 3085 mutex_unlock(&fs_info->tree_root->log_mutex); 3086 } 3087 3088 btrfs_init_log_ctx(&root_log_ctx, NULL); 3089 3090 mutex_lock(&log_root_tree->log_mutex); 3091 3092 index2 = log_root_tree->log_transid % 2; 3093 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]); 3094 root_log_ctx.log_transid = log_root_tree->log_transid; 3095 3096 /* 3097 * Now we are safe to update the log_root_tree because we're under the 3098 * log_mutex, and we're a current writer so we're holding the commit 3099 * open until we drop the log_mutex. 3100 */ 3101 ret = update_log_root(trans, log, &new_root_item); 3102 if (ret) { 3103 list_del_init(&root_log_ctx.list); 3104 blk_finish_plug(&plug); 3105 btrfs_set_log_full_commit(trans); 3106 if (ret != -ENOSPC) 3107 btrfs_err(fs_info, 3108 "failed to update log for root %llu ret %d", 3109 btrfs_root_id(root), ret); 3110 btrfs_wait_tree_log_extents(log, mark); 3111 mutex_unlock(&log_root_tree->log_mutex); 3112 goto out; 3113 } 3114 3115 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) { 3116 blk_finish_plug(&plug); 3117 list_del_init(&root_log_ctx.list); 3118 mutex_unlock(&log_root_tree->log_mutex); 3119 ret = root_log_ctx.log_ret; 3120 goto out; 3121 } 3122 3123 if (atomic_read(&log_root_tree->log_commit[index2])) { 3124 blk_finish_plug(&plug); 3125 ret = btrfs_wait_tree_log_extents(log, mark); 3126 wait_log_commit(log_root_tree, 3127 root_log_ctx.log_transid); 3128 mutex_unlock(&log_root_tree->log_mutex); 3129 if (!ret) 3130 ret = root_log_ctx.log_ret; 3131 goto out; 3132 } 3133 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid); 3134 atomic_set(&log_root_tree->log_commit[index2], 1); 3135 3136 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) { 3137 wait_log_commit(log_root_tree, 3138 root_log_ctx.log_transid - 1); 3139 } 3140 3141 /* 3142 * now that we've moved on to the tree of log tree roots, 3143 * check the full commit flag again 3144 */ 3145 if (btrfs_need_log_full_commit(trans)) { 3146 blk_finish_plug(&plug); 3147 btrfs_wait_tree_log_extents(log, mark); 3148 mutex_unlock(&log_root_tree->log_mutex); 3149 ret = BTRFS_LOG_FORCE_COMMIT; 3150 goto out_wake_log_root; 3151 } 3152 3153 ret = btrfs_write_marked_extents(fs_info, 3154 &log_root_tree->dirty_log_pages, 3155 EXTENT_DIRTY_LOG1 | EXTENT_DIRTY_LOG2); 3156 blk_finish_plug(&plug); 3157 /* 3158 * As described above, -EAGAIN indicates a hole in the extents. We 3159 * cannot wait for these write outs since the waiting cause a 3160 * deadlock. Bail out to the full commit instead. 3161 */ 3162 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) { 3163 btrfs_set_log_full_commit(trans); 3164 btrfs_wait_tree_log_extents(log, mark); 3165 mutex_unlock(&log_root_tree->log_mutex); 3166 goto out_wake_log_root; 3167 } else if (ret) { 3168 btrfs_set_log_full_commit(trans); 3169 mutex_unlock(&log_root_tree->log_mutex); 3170 goto out_wake_log_root; 3171 } 3172 ret = btrfs_wait_tree_log_extents(log, mark); 3173 if (!ret) 3174 ret = btrfs_wait_tree_log_extents(log_root_tree, 3175 EXTENT_DIRTY_LOG1 | EXTENT_DIRTY_LOG2); 3176 if (ret) { 3177 btrfs_set_log_full_commit(trans); 3178 mutex_unlock(&log_root_tree->log_mutex); 3179 goto out_wake_log_root; 3180 } 3181 3182 log_root_start = log_root_tree->node->start; 3183 log_root_level = btrfs_header_level(log_root_tree->node); 3184 log_root_tree->log_transid++; 3185 mutex_unlock(&log_root_tree->log_mutex); 3186 3187 /* 3188 * Here we are guaranteed that nobody is going to write the superblock 3189 * for the current transaction before us and that neither we do write 3190 * our superblock before the previous transaction finishes its commit 3191 * and writes its superblock, because: 3192 * 3193 * 1) We are holding a handle on the current transaction, so no body 3194 * can commit it until we release the handle; 3195 * 3196 * 2) Before writing our superblock we acquire the tree_log_mutex, so 3197 * if the previous transaction is still committing, and hasn't yet 3198 * written its superblock, we wait for it to do it, because a 3199 * transaction commit acquires the tree_log_mutex when the commit 3200 * begins and releases it only after writing its superblock. 3201 */ 3202 mutex_lock(&fs_info->tree_log_mutex); 3203 3204 /* 3205 * The previous transaction writeout phase could have failed, and thus 3206 * marked the fs in an error state. We must not commit here, as we 3207 * could have updated our generation in the super_for_commit and 3208 * writing the super here would result in transid mismatches. If there 3209 * is an error here just bail. 3210 */ 3211 if (BTRFS_FS_ERROR(fs_info)) { 3212 ret = -EIO; 3213 btrfs_set_log_full_commit(trans); 3214 btrfs_abort_transaction(trans, ret); 3215 mutex_unlock(&fs_info->tree_log_mutex); 3216 goto out_wake_log_root; 3217 } 3218 3219 btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start); 3220 btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level); 3221 ret = write_all_supers(fs_info, 1); 3222 mutex_unlock(&fs_info->tree_log_mutex); 3223 if (ret) { 3224 btrfs_set_log_full_commit(trans); 3225 btrfs_abort_transaction(trans, ret); 3226 goto out_wake_log_root; 3227 } 3228 3229 /* 3230 * We know there can only be one task here, since we have not yet set 3231 * root->log_commit[index1] to 0 and any task attempting to sync the 3232 * log must wait for the previous log transaction to commit if it's 3233 * still in progress or wait for the current log transaction commit if 3234 * someone else already started it. We use <= and not < because the 3235 * first log transaction has an ID of 0. 3236 */ 3237 ASSERT(btrfs_get_root_last_log_commit(root) <= log_transid); 3238 btrfs_set_root_last_log_commit(root, log_transid); 3239 3240 out_wake_log_root: 3241 mutex_lock(&log_root_tree->log_mutex); 3242 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret); 3243 3244 log_root_tree->log_transid_committed++; 3245 atomic_set(&log_root_tree->log_commit[index2], 0); 3246 mutex_unlock(&log_root_tree->log_mutex); 3247 3248 /* 3249 * The barrier before waitqueue_active (in cond_wake_up) is needed so 3250 * all the updates above are seen by the woken threads. It might not be 3251 * necessary, but proving that seems to be hard. 3252 */ 3253 cond_wake_up(&log_root_tree->log_commit_wait[index2]); 3254 out: 3255 mutex_lock(&root->log_mutex); 3256 btrfs_remove_all_log_ctxs(root, index1, ret); 3257 root->log_transid_committed++; 3258 atomic_set(&root->log_commit[index1], 0); 3259 mutex_unlock(&root->log_mutex); 3260 3261 /* 3262 * The barrier before waitqueue_active (in cond_wake_up) is needed so 3263 * all the updates above are seen by the woken threads. It might not be 3264 * necessary, but proving that seems to be hard. 3265 */ 3266 cond_wake_up(&root->log_commit_wait[index1]); 3267 return ret; 3268 } 3269 3270 static void free_log_tree(struct btrfs_trans_handle *trans, 3271 struct btrfs_root *log) 3272 { 3273 int ret; 3274 struct walk_control wc = { 3275 .free = 1, 3276 .process_func = process_one_buffer 3277 }; 3278 3279 if (log->node) { 3280 ret = walk_log_tree(trans, log, &wc); 3281 if (ret) { 3282 /* 3283 * We weren't able to traverse the entire log tree, the 3284 * typical scenario is getting an -EIO when reading an 3285 * extent buffer of the tree, due to a previous writeback 3286 * failure of it. 3287 */ 3288 set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR, 3289 &log->fs_info->fs_state); 3290 3291 /* 3292 * Some extent buffers of the log tree may still be dirty 3293 * and not yet written back to storage, because we may 3294 * have updates to a log tree without syncing a log tree, 3295 * such as during rename and link operations. So flush 3296 * them out and wait for their writeback to complete, so 3297 * that we properly cleanup their state and pages. 3298 */ 3299 btrfs_write_marked_extents(log->fs_info, 3300 &log->dirty_log_pages, 3301 EXTENT_DIRTY_LOG1 | EXTENT_DIRTY_LOG2); 3302 btrfs_wait_tree_log_extents(log, 3303 EXTENT_DIRTY_LOG1 | EXTENT_DIRTY_LOG2); 3304 3305 if (trans) 3306 btrfs_abort_transaction(trans, ret); 3307 else 3308 btrfs_handle_fs_error(log->fs_info, ret, NULL); 3309 } 3310 } 3311 3312 btrfs_extent_io_tree_release(&log->dirty_log_pages); 3313 btrfs_extent_io_tree_release(&log->log_csum_range); 3314 3315 btrfs_put_root(log); 3316 } 3317 3318 /* 3319 * free all the extents used by the tree log. This should be called 3320 * at commit time of the full transaction 3321 */ 3322 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root) 3323 { 3324 if (root->log_root) { 3325 free_log_tree(trans, root->log_root); 3326 root->log_root = NULL; 3327 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state); 3328 } 3329 return 0; 3330 } 3331 3332 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans, 3333 struct btrfs_fs_info *fs_info) 3334 { 3335 if (fs_info->log_root_tree) { 3336 free_log_tree(trans, fs_info->log_root_tree); 3337 fs_info->log_root_tree = NULL; 3338 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state); 3339 } 3340 return 0; 3341 } 3342 3343 static bool mark_inode_as_not_logged(const struct btrfs_trans_handle *trans, 3344 struct btrfs_inode *inode) 3345 { 3346 bool ret = false; 3347 3348 /* 3349 * Do this only if ->logged_trans is still 0 to prevent races with 3350 * concurrent logging as we may see the inode not logged when 3351 * inode_logged() is called but it gets logged after inode_logged() did 3352 * not find it in the log tree and we end up setting ->logged_trans to a 3353 * value less than trans->transid after the concurrent logging task has 3354 * set it to trans->transid. As a consequence, subsequent rename, unlink 3355 * and link operations may end up not logging new names and removing old 3356 * names from the log. 3357 */ 3358 spin_lock(&inode->lock); 3359 if (inode->logged_trans == 0) 3360 inode->logged_trans = trans->transid - 1; 3361 else if (inode->logged_trans == trans->transid) 3362 ret = true; 3363 spin_unlock(&inode->lock); 3364 3365 return ret; 3366 } 3367 3368 /* 3369 * Check if an inode was logged in the current transaction. This correctly deals 3370 * with the case where the inode was logged but has a logged_trans of 0, which 3371 * happens if the inode is evicted and loaded again, as logged_trans is an in 3372 * memory only field (not persisted). 3373 * 3374 * Returns 1 if the inode was logged before in the transaction, 0 if it was not, 3375 * and < 0 on error. 3376 */ 3377 static int inode_logged(const struct btrfs_trans_handle *trans, 3378 struct btrfs_inode *inode, 3379 struct btrfs_path *path_in) 3380 { 3381 struct btrfs_path *path = path_in; 3382 struct btrfs_key key; 3383 int ret; 3384 3385 /* 3386 * Quick lockless call, since once ->logged_trans is set to the current 3387 * transaction, we never set it to a lower value anywhere else. 3388 */ 3389 if (data_race(inode->logged_trans) == trans->transid) 3390 return 1; 3391 3392 /* 3393 * If logged_trans is not 0 and not trans->transid, then we know the 3394 * inode was not logged in this transaction, so we can return false 3395 * right away. We take the lock to avoid a race caused by load/store 3396 * tearing with a concurrent btrfs_log_inode() call or a concurrent task 3397 * in this function further below - an update to trans->transid can be 3398 * teared into two 32 bits updates for example, in which case we could 3399 * see a positive value that is not trans->transid and assume the inode 3400 * was not logged when it was. 3401 */ 3402 spin_lock(&inode->lock); 3403 if (inode->logged_trans == trans->transid) { 3404 spin_unlock(&inode->lock); 3405 return 1; 3406 } else if (inode->logged_trans > 0) { 3407 spin_unlock(&inode->lock); 3408 return 0; 3409 } 3410 spin_unlock(&inode->lock); 3411 3412 /* 3413 * If no log tree was created for this root in this transaction, then 3414 * the inode can not have been logged in this transaction. In that case 3415 * set logged_trans to anything greater than 0 and less than the current 3416 * transaction's ID, to avoid the search below in a future call in case 3417 * a log tree gets created after this. 3418 */ 3419 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) 3420 return mark_inode_as_not_logged(trans, inode); 3421 3422 /* 3423 * We have a log tree and the inode's logged_trans is 0. We can't tell 3424 * for sure if the inode was logged before in this transaction by looking 3425 * only at logged_trans. We could be pessimistic and assume it was, but 3426 * that can lead to unnecessarily logging an inode during rename and link 3427 * operations, and then further updating the log in followup rename and 3428 * link operations, specially if it's a directory, which adds latency 3429 * visible to applications doing a series of rename or link operations. 3430 * 3431 * A logged_trans of 0 here can mean several things: 3432 * 3433 * 1) The inode was never logged since the filesystem was mounted, and may 3434 * or may have not been evicted and loaded again; 3435 * 3436 * 2) The inode was logged in a previous transaction, then evicted and 3437 * then loaded again; 3438 * 3439 * 3) The inode was logged in the current transaction, then evicted and 3440 * then loaded again. 3441 * 3442 * For cases 1) and 2) we don't want to return true, but we need to detect 3443 * case 3) and return true. So we do a search in the log root for the inode 3444 * item. 3445 */ 3446 key.objectid = btrfs_ino(inode); 3447 key.type = BTRFS_INODE_ITEM_KEY; 3448 key.offset = 0; 3449 3450 if (!path) { 3451 path = btrfs_alloc_path(); 3452 if (!path) 3453 return -ENOMEM; 3454 } 3455 3456 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0); 3457 3458 if (path_in) 3459 btrfs_release_path(path); 3460 else 3461 btrfs_free_path(path); 3462 3463 /* 3464 * Logging an inode always results in logging its inode item. So if we 3465 * did not find the item we know the inode was not logged for sure. 3466 */ 3467 if (ret < 0) { 3468 return ret; 3469 } else if (ret > 0) { 3470 /* 3471 * Set logged_trans to a value greater than 0 and less then the 3472 * current transaction to avoid doing the search in future calls. 3473 */ 3474 return mark_inode_as_not_logged(trans, inode); 3475 } 3476 3477 /* 3478 * The inode was previously logged and then evicted, set logged_trans to 3479 * the current transacion's ID, to avoid future tree searches as long as 3480 * the inode is not evicted again. 3481 */ 3482 spin_lock(&inode->lock); 3483 inode->logged_trans = trans->transid; 3484 spin_unlock(&inode->lock); 3485 3486 return 1; 3487 } 3488 3489 /* 3490 * Delete a directory entry from the log if it exists. 3491 * 3492 * Returns < 0 on error 3493 * 1 if the entry does not exists 3494 * 0 if the entry existed and was successfully deleted 3495 */ 3496 static int del_logged_dentry(struct btrfs_trans_handle *trans, 3497 struct btrfs_root *log, 3498 struct btrfs_path *path, 3499 u64 dir_ino, 3500 const struct fscrypt_str *name, 3501 u64 index) 3502 { 3503 struct btrfs_dir_item *di; 3504 3505 /* 3506 * We only log dir index items of a directory, so we don't need to look 3507 * for dir item keys. 3508 */ 3509 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino, 3510 index, name, -1); 3511 if (IS_ERR(di)) 3512 return PTR_ERR(di); 3513 else if (!di) 3514 return 1; 3515 3516 /* 3517 * We do not need to update the size field of the directory's 3518 * inode item because on log replay we update the field to reflect 3519 * all existing entries in the directory (see overwrite_item()). 3520 */ 3521 return btrfs_del_item(trans, log, path); 3522 } 3523 3524 /* 3525 * If both a file and directory are logged, and unlinks or renames are 3526 * mixed in, we have a few interesting corners: 3527 * 3528 * create file X in dir Y 3529 * link file X to X.link in dir Y 3530 * fsync file X 3531 * unlink file X but leave X.link 3532 * fsync dir Y 3533 * 3534 * After a crash we would expect only X.link to exist. But file X 3535 * didn't get fsync'd again so the log has back refs for X and X.link. 3536 * 3537 * We solve this by removing directory entries and inode backrefs from the 3538 * log when a file that was logged in the current transaction is 3539 * unlinked. Any later fsync will include the updated log entries, and 3540 * we'll be able to reconstruct the proper directory items from backrefs. 3541 * 3542 * This optimizations allows us to avoid relogging the entire inode 3543 * or the entire directory. 3544 */ 3545 void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans, 3546 struct btrfs_root *root, 3547 const struct fscrypt_str *name, 3548 struct btrfs_inode *dir, u64 index) 3549 { 3550 struct btrfs_path *path; 3551 int ret; 3552 3553 ret = inode_logged(trans, dir, NULL); 3554 if (ret == 0) 3555 return; 3556 else if (ret < 0) { 3557 btrfs_set_log_full_commit(trans); 3558 return; 3559 } 3560 3561 path = btrfs_alloc_path(); 3562 if (!path) { 3563 btrfs_set_log_full_commit(trans); 3564 return; 3565 } 3566 3567 ret = join_running_log_trans(root); 3568 ASSERT(ret == 0, "join_running_log_trans() ret=%d", ret); 3569 if (WARN_ON(ret)) 3570 goto out; 3571 3572 mutex_lock(&dir->log_mutex); 3573 3574 ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir), 3575 name, index); 3576 mutex_unlock(&dir->log_mutex); 3577 if (ret < 0) 3578 btrfs_set_log_full_commit(trans); 3579 btrfs_end_log_trans(root); 3580 out: 3581 btrfs_free_path(path); 3582 } 3583 3584 /* see comments for btrfs_del_dir_entries_in_log */ 3585 void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans, 3586 struct btrfs_root *root, 3587 const struct fscrypt_str *name, 3588 struct btrfs_inode *inode, u64 dirid) 3589 { 3590 struct btrfs_root *log; 3591 int ret; 3592 3593 ret = inode_logged(trans, inode, NULL); 3594 if (ret == 0) 3595 return; 3596 else if (ret < 0) { 3597 btrfs_set_log_full_commit(trans); 3598 return; 3599 } 3600 3601 ret = join_running_log_trans(root); 3602 ASSERT(ret == 0, "join_running_log_trans() ret=%d", ret); 3603 if (WARN_ON(ret)) 3604 return; 3605 log = root->log_root; 3606 mutex_lock(&inode->log_mutex); 3607 3608 ret = btrfs_del_inode_ref(trans, log, name, btrfs_ino(inode), dirid, NULL); 3609 mutex_unlock(&inode->log_mutex); 3610 if (ret < 0 && ret != -ENOENT) 3611 btrfs_set_log_full_commit(trans); 3612 btrfs_end_log_trans(root); 3613 } 3614 3615 /* 3616 * creates a range item in the log for 'dirid'. first_offset and 3617 * last_offset tell us which parts of the key space the log should 3618 * be considered authoritative for. 3619 */ 3620 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans, 3621 struct btrfs_root *log, 3622 struct btrfs_path *path, 3623 u64 dirid, 3624 u64 first_offset, u64 last_offset) 3625 { 3626 int ret; 3627 struct btrfs_key key; 3628 struct btrfs_dir_log_item *item; 3629 3630 key.objectid = dirid; 3631 key.type = BTRFS_DIR_LOG_INDEX_KEY; 3632 key.offset = first_offset; 3633 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item)); 3634 /* 3635 * -EEXIST is fine and can happen sporadically when we are logging a 3636 * directory and have concurrent insertions in the subvolume's tree for 3637 * items from other inodes and that result in pushing off some dir items 3638 * from one leaf to another in order to accommodate for the new items. 3639 * This results in logging the same dir index range key. 3640 */ 3641 if (ret && ret != -EEXIST) 3642 return ret; 3643 3644 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3645 struct btrfs_dir_log_item); 3646 if (ret == -EEXIST) { 3647 const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item); 3648 3649 /* 3650 * btrfs_del_dir_entries_in_log() might have been called during 3651 * an unlink between the initial insertion of this key and the 3652 * current update, or we might be logging a single entry deletion 3653 * during a rename, so set the new last_offset to the max value. 3654 */ 3655 last_offset = max(last_offset, curr_end); 3656 } 3657 btrfs_set_dir_log_end(path->nodes[0], item, last_offset); 3658 btrfs_release_path(path); 3659 return 0; 3660 } 3661 3662 static int flush_dir_items_batch(struct btrfs_trans_handle *trans, 3663 struct btrfs_inode *inode, 3664 struct extent_buffer *src, 3665 struct btrfs_path *dst_path, 3666 int start_slot, 3667 int count) 3668 { 3669 struct btrfs_root *log = inode->root->log_root; 3670 char *ins_data = NULL; 3671 struct btrfs_item_batch batch; 3672 struct extent_buffer *dst; 3673 unsigned long src_offset; 3674 unsigned long dst_offset; 3675 u64 last_index; 3676 struct btrfs_key key; 3677 u32 item_size; 3678 int ret; 3679 int i; 3680 3681 ASSERT(count > 0); 3682 batch.nr = count; 3683 3684 if (count == 1) { 3685 btrfs_item_key_to_cpu(src, &key, start_slot); 3686 item_size = btrfs_item_size(src, start_slot); 3687 batch.keys = &key; 3688 batch.data_sizes = &item_size; 3689 batch.total_data_size = item_size; 3690 } else { 3691 struct btrfs_key *ins_keys; 3692 u32 *ins_sizes; 3693 3694 ins_data = kmalloc(count * sizeof(u32) + 3695 count * sizeof(struct btrfs_key), GFP_NOFS); 3696 if (!ins_data) 3697 return -ENOMEM; 3698 3699 ins_sizes = (u32 *)ins_data; 3700 ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32)); 3701 batch.keys = ins_keys; 3702 batch.data_sizes = ins_sizes; 3703 batch.total_data_size = 0; 3704 3705 for (i = 0; i < count; i++) { 3706 const int slot = start_slot + i; 3707 3708 btrfs_item_key_to_cpu(src, &ins_keys[i], slot); 3709 ins_sizes[i] = btrfs_item_size(src, slot); 3710 batch.total_data_size += ins_sizes[i]; 3711 } 3712 } 3713 3714 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch); 3715 if (ret) 3716 goto out; 3717 3718 dst = dst_path->nodes[0]; 3719 /* 3720 * Copy all the items in bulk, in a single copy operation. Item data is 3721 * organized such that it's placed at the end of a leaf and from right 3722 * to left. For example, the data for the second item ends at an offset 3723 * that matches the offset where the data for the first item starts, the 3724 * data for the third item ends at an offset that matches the offset 3725 * where the data of the second items starts, and so on. 3726 * Therefore our source and destination start offsets for copy match the 3727 * offsets of the last items (highest slots). 3728 */ 3729 dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1); 3730 src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1); 3731 copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size); 3732 btrfs_release_path(dst_path); 3733 3734 last_index = batch.keys[count - 1].offset; 3735 ASSERT(last_index > inode->last_dir_index_offset); 3736 3737 /* 3738 * If for some unexpected reason the last item's index is not greater 3739 * than the last index we logged, warn and force a transaction commit. 3740 */ 3741 if (WARN_ON(last_index <= inode->last_dir_index_offset)) 3742 ret = BTRFS_LOG_FORCE_COMMIT; 3743 else 3744 inode->last_dir_index_offset = last_index; 3745 3746 if (btrfs_get_first_dir_index_to_log(inode) == 0) 3747 btrfs_set_first_dir_index_to_log(inode, batch.keys[0].offset); 3748 out: 3749 kfree(ins_data); 3750 3751 return ret; 3752 } 3753 3754 static int clone_leaf(struct btrfs_path *path, struct btrfs_log_ctx *ctx) 3755 { 3756 const int slot = path->slots[0]; 3757 3758 if (ctx->scratch_eb) { 3759 copy_extent_buffer_full(ctx->scratch_eb, path->nodes[0]); 3760 } else { 3761 ctx->scratch_eb = btrfs_clone_extent_buffer(path->nodes[0]); 3762 if (!ctx->scratch_eb) 3763 return -ENOMEM; 3764 } 3765 3766 btrfs_release_path(path); 3767 path->nodes[0] = ctx->scratch_eb; 3768 path->slots[0] = slot; 3769 /* 3770 * Add extra ref to scratch eb so that it is not freed when callers 3771 * release the path, so we can reuse it later if needed. 3772 */ 3773 refcount_inc(&ctx->scratch_eb->refs); 3774 3775 return 0; 3776 } 3777 3778 static int process_dir_items_leaf(struct btrfs_trans_handle *trans, 3779 struct btrfs_inode *inode, 3780 struct btrfs_path *path, 3781 struct btrfs_path *dst_path, 3782 struct btrfs_log_ctx *ctx, 3783 u64 *last_old_dentry_offset) 3784 { 3785 struct btrfs_root *log = inode->root->log_root; 3786 struct extent_buffer *src; 3787 const int nritems = btrfs_header_nritems(path->nodes[0]); 3788 const u64 ino = btrfs_ino(inode); 3789 bool last_found = false; 3790 int batch_start = 0; 3791 int batch_size = 0; 3792 int ret; 3793 3794 /* 3795 * We need to clone the leaf, release the read lock on it, and use the 3796 * clone before modifying the log tree. See the comment at copy_items() 3797 * about why we need to do this. 3798 */ 3799 ret = clone_leaf(path, ctx); 3800 if (ret < 0) 3801 return ret; 3802 3803 src = path->nodes[0]; 3804 3805 for (int i = path->slots[0]; i < nritems; i++) { 3806 struct btrfs_dir_item *di; 3807 struct btrfs_key key; 3808 int ret; 3809 3810 btrfs_item_key_to_cpu(src, &key, i); 3811 3812 if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) { 3813 last_found = true; 3814 break; 3815 } 3816 3817 di = btrfs_item_ptr(src, i, struct btrfs_dir_item); 3818 3819 /* 3820 * Skip ranges of items that consist only of dir item keys created 3821 * in past transactions. However if we find a gap, we must log a 3822 * dir index range item for that gap, so that index keys in that 3823 * gap are deleted during log replay. 3824 */ 3825 if (btrfs_dir_transid(src, di) < trans->transid) { 3826 if (key.offset > *last_old_dentry_offset + 1) { 3827 ret = insert_dir_log_key(trans, log, dst_path, 3828 ino, *last_old_dentry_offset + 1, 3829 key.offset - 1); 3830 if (ret < 0) 3831 return ret; 3832 } 3833 3834 *last_old_dentry_offset = key.offset; 3835 continue; 3836 } 3837 3838 /* If we logged this dir index item before, we can skip it. */ 3839 if (key.offset <= inode->last_dir_index_offset) 3840 continue; 3841 3842 /* 3843 * We must make sure that when we log a directory entry, the 3844 * corresponding inode, after log replay, has a matching link 3845 * count. For example: 3846 * 3847 * touch foo 3848 * mkdir mydir 3849 * sync 3850 * ln foo mydir/bar 3851 * xfs_io -c "fsync" mydir 3852 * <crash> 3853 * <mount fs and log replay> 3854 * 3855 * Would result in a fsync log that when replayed, our file inode 3856 * would have a link count of 1, but we get two directory entries 3857 * pointing to the same inode. After removing one of the names, 3858 * it would not be possible to remove the other name, which 3859 * resulted always in stale file handle errors, and would not be 3860 * possible to rmdir the parent directory, since its i_size could 3861 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE, 3862 * resulting in -ENOTEMPTY errors. 3863 */ 3864 if (!ctx->log_new_dentries) { 3865 struct btrfs_key di_key; 3866 3867 btrfs_dir_item_key_to_cpu(src, di, &di_key); 3868 if (di_key.type != BTRFS_ROOT_ITEM_KEY) 3869 ctx->log_new_dentries = true; 3870 } 3871 3872 if (batch_size == 0) 3873 batch_start = i; 3874 batch_size++; 3875 } 3876 3877 if (batch_size > 0) { 3878 int ret; 3879 3880 ret = flush_dir_items_batch(trans, inode, src, dst_path, 3881 batch_start, batch_size); 3882 if (ret < 0) 3883 return ret; 3884 } 3885 3886 return last_found ? 1 : 0; 3887 } 3888 3889 /* 3890 * log all the items included in the current transaction for a given 3891 * directory. This also creates the range items in the log tree required 3892 * to replay anything deleted before the fsync 3893 */ 3894 static noinline int log_dir_items(struct btrfs_trans_handle *trans, 3895 struct btrfs_inode *inode, 3896 struct btrfs_path *path, 3897 struct btrfs_path *dst_path, 3898 struct btrfs_log_ctx *ctx, 3899 u64 min_offset, u64 *last_offset_ret) 3900 { 3901 struct btrfs_key min_key; 3902 struct btrfs_root *root = inode->root; 3903 struct btrfs_root *log = root->log_root; 3904 int ret; 3905 u64 last_old_dentry_offset = min_offset - 1; 3906 u64 last_offset = (u64)-1; 3907 u64 ino = btrfs_ino(inode); 3908 3909 min_key.objectid = ino; 3910 min_key.type = BTRFS_DIR_INDEX_KEY; 3911 min_key.offset = min_offset; 3912 3913 ret = btrfs_search_forward(root, &min_key, path, trans->transid); 3914 3915 /* 3916 * we didn't find anything from this transaction, see if there 3917 * is anything at all 3918 */ 3919 if (ret != 0 || min_key.objectid != ino || 3920 min_key.type != BTRFS_DIR_INDEX_KEY) { 3921 min_key.objectid = ino; 3922 min_key.type = BTRFS_DIR_INDEX_KEY; 3923 min_key.offset = (u64)-1; 3924 btrfs_release_path(path); 3925 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 3926 if (ret < 0) { 3927 btrfs_release_path(path); 3928 return ret; 3929 } 3930 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY); 3931 3932 /* if ret == 0 there are items for this type, 3933 * create a range to tell us the last key of this type. 3934 * otherwise, there are no items in this directory after 3935 * *min_offset, and we create a range to indicate that. 3936 */ 3937 if (ret == 0) { 3938 struct btrfs_key tmp; 3939 3940 btrfs_item_key_to_cpu(path->nodes[0], &tmp, 3941 path->slots[0]); 3942 if (tmp.type == BTRFS_DIR_INDEX_KEY) 3943 last_old_dentry_offset = tmp.offset; 3944 } else if (ret > 0) { 3945 ret = 0; 3946 } 3947 3948 goto done; 3949 } 3950 3951 /* go backward to find any previous key */ 3952 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY); 3953 if (ret == 0) { 3954 struct btrfs_key tmp; 3955 3956 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 3957 /* 3958 * The dir index key before the first one we found that needs to 3959 * be logged might be in a previous leaf, and there might be a 3960 * gap between these keys, meaning that we had deletions that 3961 * happened. So the key range item we log (key type 3962 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the 3963 * previous key's offset plus 1, so that those deletes are replayed. 3964 */ 3965 if (tmp.type == BTRFS_DIR_INDEX_KEY) 3966 last_old_dentry_offset = tmp.offset; 3967 } else if (ret < 0) { 3968 goto done; 3969 } 3970 3971 btrfs_release_path(path); 3972 3973 /* 3974 * Find the first key from this transaction again or the one we were at 3975 * in the loop below in case we had to reschedule. We may be logging the 3976 * directory without holding its VFS lock, which happen when logging new 3977 * dentries (through log_new_dir_dentries()) or in some cases when we 3978 * need to log the parent directory of an inode. This means a dir index 3979 * key might be deleted from the inode's root, and therefore we may not 3980 * find it anymore. If we can't find it, just move to the next key. We 3981 * can not bail out and ignore, because if we do that we will simply 3982 * not log dir index keys that come after the one that was just deleted 3983 * and we can end up logging a dir index range that ends at (u64)-1 3984 * (@last_offset is initialized to that), resulting in removing dir 3985 * entries we should not remove at log replay time. 3986 */ 3987 search: 3988 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 3989 if (ret > 0) { 3990 ret = btrfs_next_item(root, path); 3991 if (ret > 0) { 3992 /* There are no more keys in the inode's root. */ 3993 ret = 0; 3994 goto done; 3995 } 3996 } 3997 if (ret < 0) 3998 goto done; 3999 4000 /* 4001 * we have a block from this transaction, log every item in it 4002 * from our directory 4003 */ 4004 while (1) { 4005 ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx, 4006 &last_old_dentry_offset); 4007 if (ret != 0) { 4008 if (ret > 0) 4009 ret = 0; 4010 goto done; 4011 } 4012 path->slots[0] = btrfs_header_nritems(path->nodes[0]); 4013 4014 /* 4015 * look ahead to the next item and see if it is also 4016 * from this directory and from this transaction 4017 */ 4018 ret = btrfs_next_leaf(root, path); 4019 if (ret) { 4020 if (ret == 1) { 4021 last_offset = (u64)-1; 4022 ret = 0; 4023 } 4024 goto done; 4025 } 4026 btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]); 4027 if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) { 4028 last_offset = (u64)-1; 4029 goto done; 4030 } 4031 if (btrfs_header_generation(path->nodes[0]) != trans->transid) { 4032 /* 4033 * The next leaf was not changed in the current transaction 4034 * and has at least one dir index key. 4035 * We check for the next key because there might have been 4036 * one or more deletions between the last key we logged and 4037 * that next key. So the key range item we log (key type 4038 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's 4039 * offset minus 1, so that those deletes are replayed. 4040 */ 4041 last_offset = min_key.offset - 1; 4042 goto done; 4043 } 4044 if (need_resched()) { 4045 btrfs_release_path(path); 4046 cond_resched(); 4047 goto search; 4048 } 4049 } 4050 done: 4051 btrfs_release_path(path); 4052 btrfs_release_path(dst_path); 4053 4054 if (ret == 0) { 4055 *last_offset_ret = last_offset; 4056 /* 4057 * In case the leaf was changed in the current transaction but 4058 * all its dir items are from a past transaction, the last item 4059 * in the leaf is a dir item and there's no gap between that last 4060 * dir item and the first one on the next leaf (which did not 4061 * change in the current transaction), then we don't need to log 4062 * a range, last_old_dentry_offset is == to last_offset. 4063 */ 4064 ASSERT(last_old_dentry_offset <= last_offset); 4065 if (last_old_dentry_offset < last_offset) 4066 ret = insert_dir_log_key(trans, log, path, ino, 4067 last_old_dentry_offset + 1, 4068 last_offset); 4069 } 4070 4071 return ret; 4072 } 4073 4074 /* 4075 * If the inode was logged before and it was evicted, then its 4076 * last_dir_index_offset is 0, so we don't know the value of the last index 4077 * key offset. If that's the case, search for it and update the inode. This 4078 * is to avoid lookups in the log tree every time we try to insert a dir index 4079 * key from a leaf changed in the current transaction, and to allow us to always 4080 * do batch insertions of dir index keys. 4081 */ 4082 static int update_last_dir_index_offset(struct btrfs_inode *inode, 4083 struct btrfs_path *path, 4084 const struct btrfs_log_ctx *ctx) 4085 { 4086 const u64 ino = btrfs_ino(inode); 4087 struct btrfs_key key; 4088 int ret; 4089 4090 lockdep_assert_held(&inode->log_mutex); 4091 4092 if (inode->last_dir_index_offset != 0) 4093 return 0; 4094 4095 if (!ctx->logged_before) { 4096 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1; 4097 return 0; 4098 } 4099 4100 key.objectid = ino; 4101 key.type = BTRFS_DIR_INDEX_KEY; 4102 key.offset = (u64)-1; 4103 4104 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0); 4105 /* 4106 * An error happened or we actually have an index key with an offset 4107 * value of (u64)-1. Bail out, we're done. 4108 */ 4109 if (ret <= 0) 4110 goto out; 4111 4112 ret = 0; 4113 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1; 4114 4115 /* 4116 * No dir index items, bail out and leave last_dir_index_offset with 4117 * the value right before the first valid index value. 4118 */ 4119 if (path->slots[0] == 0) 4120 goto out; 4121 4122 /* 4123 * btrfs_search_slot() left us at one slot beyond the slot with the last 4124 * index key, or beyond the last key of the directory that is not an 4125 * index key. If we have an index key before, set last_dir_index_offset 4126 * to its offset value, otherwise leave it with a value right before the 4127 * first valid index value, as it means we have an empty directory. 4128 */ 4129 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 4130 if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY) 4131 inode->last_dir_index_offset = key.offset; 4132 4133 out: 4134 btrfs_release_path(path); 4135 4136 return ret; 4137 } 4138 4139 /* 4140 * logging directories is very similar to logging inodes, We find all the items 4141 * from the current transaction and write them to the log. 4142 * 4143 * The recovery code scans the directory in the subvolume, and if it finds a 4144 * key in the range logged that is not present in the log tree, then it means 4145 * that dir entry was unlinked during the transaction. 4146 * 4147 * In order for that scan to work, we must include one key smaller than 4148 * the smallest logged by this transaction and one key larger than the largest 4149 * key logged by this transaction. 4150 */ 4151 static noinline int log_directory_changes(struct btrfs_trans_handle *trans, 4152 struct btrfs_inode *inode, 4153 struct btrfs_path *path, 4154 struct btrfs_path *dst_path, 4155 struct btrfs_log_ctx *ctx) 4156 { 4157 u64 min_key; 4158 u64 max_key; 4159 int ret; 4160 4161 ret = update_last_dir_index_offset(inode, path, ctx); 4162 if (ret) 4163 return ret; 4164 4165 min_key = BTRFS_DIR_START_INDEX; 4166 max_key = 0; 4167 4168 while (1) { 4169 ret = log_dir_items(trans, inode, path, dst_path, 4170 ctx, min_key, &max_key); 4171 if (ret) 4172 return ret; 4173 if (max_key == (u64)-1) 4174 break; 4175 min_key = max_key + 1; 4176 } 4177 4178 return 0; 4179 } 4180 4181 /* 4182 * a helper function to drop items from the log before we relog an 4183 * inode. max_key_type indicates the highest item type to remove. 4184 * This cannot be run for file data extents because it does not 4185 * free the extents they point to. 4186 */ 4187 static int drop_inode_items(struct btrfs_trans_handle *trans, 4188 struct btrfs_root *log, 4189 struct btrfs_path *path, 4190 struct btrfs_inode *inode, 4191 int max_key_type) 4192 { 4193 int ret; 4194 struct btrfs_key key; 4195 struct btrfs_key found_key; 4196 int start_slot; 4197 4198 key.objectid = btrfs_ino(inode); 4199 key.type = max_key_type; 4200 key.offset = (u64)-1; 4201 4202 while (1) { 4203 ret = btrfs_search_slot(trans, log, &key, path, -1, 1); 4204 if (ret < 0) { 4205 break; 4206 } else if (ret > 0) { 4207 if (path->slots[0] == 0) 4208 break; 4209 path->slots[0]--; 4210 } 4211 4212 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 4213 path->slots[0]); 4214 4215 if (found_key.objectid != key.objectid) 4216 break; 4217 4218 found_key.offset = 0; 4219 found_key.type = 0; 4220 ret = btrfs_bin_search(path->nodes[0], 0, &found_key, &start_slot); 4221 if (ret < 0) 4222 break; 4223 4224 ret = btrfs_del_items(trans, log, path, start_slot, 4225 path->slots[0] - start_slot + 1); 4226 /* 4227 * If start slot isn't 0 then we don't need to re-search, we've 4228 * found the last guy with the objectid in this tree. 4229 */ 4230 if (ret || start_slot != 0) 4231 break; 4232 btrfs_release_path(path); 4233 } 4234 btrfs_release_path(path); 4235 if (ret > 0) 4236 ret = 0; 4237 return ret; 4238 } 4239 4240 static int truncate_inode_items(struct btrfs_trans_handle *trans, 4241 struct btrfs_root *log_root, 4242 struct btrfs_inode *inode, 4243 u64 new_size, u32 min_type) 4244 { 4245 struct btrfs_truncate_control control = { 4246 .new_size = new_size, 4247 .ino = btrfs_ino(inode), 4248 .min_type = min_type, 4249 .skip_ref_updates = true, 4250 }; 4251 4252 return btrfs_truncate_inode_items(trans, log_root, &control); 4253 } 4254 4255 static void fill_inode_item(struct btrfs_trans_handle *trans, 4256 struct extent_buffer *leaf, 4257 struct btrfs_inode_item *item, 4258 struct inode *inode, int log_inode_only, 4259 u64 logged_isize) 4260 { 4261 u64 flags; 4262 4263 if (log_inode_only) { 4264 /* set the generation to zero so the recover code 4265 * can tell the difference between an logging 4266 * just to say 'this inode exists' and a logging 4267 * to say 'update this inode with these values' 4268 */ 4269 btrfs_set_inode_generation(leaf, item, 0); 4270 btrfs_set_inode_size(leaf, item, logged_isize); 4271 } else { 4272 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation); 4273 btrfs_set_inode_size(leaf, item, inode->i_size); 4274 } 4275 4276 btrfs_set_inode_uid(leaf, item, i_uid_read(inode)); 4277 btrfs_set_inode_gid(leaf, item, i_gid_read(inode)); 4278 btrfs_set_inode_mode(leaf, item, inode->i_mode); 4279 btrfs_set_inode_nlink(leaf, item, inode->i_nlink); 4280 4281 btrfs_set_timespec_sec(leaf, &item->atime, inode_get_atime_sec(inode)); 4282 btrfs_set_timespec_nsec(leaf, &item->atime, inode_get_atime_nsec(inode)); 4283 4284 btrfs_set_timespec_sec(leaf, &item->mtime, inode_get_mtime_sec(inode)); 4285 btrfs_set_timespec_nsec(leaf, &item->mtime, inode_get_mtime_nsec(inode)); 4286 4287 btrfs_set_timespec_sec(leaf, &item->ctime, inode_get_ctime_sec(inode)); 4288 btrfs_set_timespec_nsec(leaf, &item->ctime, inode_get_ctime_nsec(inode)); 4289 4290 btrfs_set_timespec_sec(leaf, &item->otime, BTRFS_I(inode)->i_otime_sec); 4291 btrfs_set_timespec_nsec(leaf, &item->otime, BTRFS_I(inode)->i_otime_nsec); 4292 4293 /* 4294 * We do not need to set the nbytes field, in fact during a fast fsync 4295 * its value may not even be correct, since a fast fsync does not wait 4296 * for ordered extent completion, which is where we update nbytes, it 4297 * only waits for writeback to complete. During log replay as we find 4298 * file extent items and replay them, we adjust the nbytes field of the 4299 * inode item in subvolume tree as needed (see overwrite_item()). 4300 */ 4301 4302 btrfs_set_inode_sequence(leaf, item, inode_peek_iversion(inode)); 4303 btrfs_set_inode_transid(leaf, item, trans->transid); 4304 btrfs_set_inode_rdev(leaf, item, inode->i_rdev); 4305 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 4306 BTRFS_I(inode)->ro_flags); 4307 btrfs_set_inode_flags(leaf, item, flags); 4308 btrfs_set_inode_block_group(leaf, item, 0); 4309 } 4310 4311 static int log_inode_item(struct btrfs_trans_handle *trans, 4312 struct btrfs_root *log, struct btrfs_path *path, 4313 struct btrfs_inode *inode, bool inode_item_dropped) 4314 { 4315 struct btrfs_inode_item *inode_item; 4316 struct btrfs_key key; 4317 int ret; 4318 4319 btrfs_get_inode_key(inode, &key); 4320 /* 4321 * If we are doing a fast fsync and the inode was logged before in the 4322 * current transaction, then we know the inode was previously logged and 4323 * it exists in the log tree. For performance reasons, in this case use 4324 * btrfs_search_slot() directly with ins_len set to 0 so that we never 4325 * attempt a write lock on the leaf's parent, which adds unnecessary lock 4326 * contention in case there are concurrent fsyncs for other inodes of the 4327 * same subvolume. Using btrfs_insert_empty_item() when the inode item 4328 * already exists can also result in unnecessarily splitting a leaf. 4329 */ 4330 if (!inode_item_dropped && inode->logged_trans == trans->transid) { 4331 ret = btrfs_search_slot(trans, log, &key, path, 0, 1); 4332 ASSERT(ret <= 0); 4333 if (ret > 0) 4334 ret = -ENOENT; 4335 } else { 4336 /* 4337 * This means it is the first fsync in the current transaction, 4338 * so the inode item is not in the log and we need to insert it. 4339 * We can never get -EEXIST because we are only called for a fast 4340 * fsync and in case an inode eviction happens after the inode was 4341 * logged before in the current transaction, when we load again 4342 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime 4343 * flags and set ->logged_trans to 0. 4344 */ 4345 ret = btrfs_insert_empty_item(trans, log, path, &key, 4346 sizeof(*inode_item)); 4347 ASSERT(ret != -EEXIST); 4348 } 4349 if (ret) 4350 return ret; 4351 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4352 struct btrfs_inode_item); 4353 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode, 4354 0, 0); 4355 btrfs_release_path(path); 4356 return 0; 4357 } 4358 4359 static int log_csums(struct btrfs_trans_handle *trans, 4360 struct btrfs_inode *inode, 4361 struct btrfs_root *log_root, 4362 struct btrfs_ordered_sum *sums) 4363 { 4364 const u64 lock_end = sums->logical + sums->len - 1; 4365 struct extent_state *cached_state = NULL; 4366 int ret; 4367 4368 /* 4369 * If this inode was not used for reflink operations in the current 4370 * transaction with new extents, then do the fast path, no need to 4371 * worry about logging checksum items with overlapping ranges. 4372 */ 4373 if (inode->last_reflink_trans < trans->transid) 4374 return btrfs_csum_file_blocks(trans, log_root, sums); 4375 4376 /* 4377 * Serialize logging for checksums. This is to avoid racing with the 4378 * same checksum being logged by another task that is logging another 4379 * file which happens to refer to the same extent as well. Such races 4380 * can leave checksum items in the log with overlapping ranges. 4381 */ 4382 ret = btrfs_lock_extent(&log_root->log_csum_range, sums->logical, lock_end, 4383 &cached_state); 4384 if (ret) 4385 return ret; 4386 /* 4387 * Due to extent cloning, we might have logged a csum item that covers a 4388 * subrange of a cloned extent, and later we can end up logging a csum 4389 * item for a larger subrange of the same extent or the entire range. 4390 * This would leave csum items in the log tree that cover the same range 4391 * and break the searches for checksums in the log tree, resulting in 4392 * some checksums missing in the fs/subvolume tree. So just delete (or 4393 * trim and adjust) any existing csum items in the log for this range. 4394 */ 4395 ret = btrfs_del_csums(trans, log_root, sums->logical, sums->len); 4396 if (!ret) 4397 ret = btrfs_csum_file_blocks(trans, log_root, sums); 4398 4399 btrfs_unlock_extent(&log_root->log_csum_range, sums->logical, lock_end, 4400 &cached_state); 4401 4402 return ret; 4403 } 4404 4405 static noinline int copy_items(struct btrfs_trans_handle *trans, 4406 struct btrfs_inode *inode, 4407 struct btrfs_path *dst_path, 4408 struct btrfs_path *src_path, 4409 int start_slot, int nr, int inode_only, 4410 u64 logged_isize, struct btrfs_log_ctx *ctx) 4411 { 4412 struct btrfs_root *log = inode->root->log_root; 4413 struct btrfs_file_extent_item *extent; 4414 struct extent_buffer *src; 4415 int ret; 4416 struct btrfs_key *ins_keys; 4417 u32 *ins_sizes; 4418 struct btrfs_item_batch batch; 4419 char *ins_data; 4420 int dst_index; 4421 const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM); 4422 const u64 i_size = i_size_read(&inode->vfs_inode); 4423 4424 /* 4425 * To keep lockdep happy and avoid deadlocks, clone the source leaf and 4426 * use the clone. This is because otherwise we would be changing the log 4427 * tree, to insert items from the subvolume tree or insert csum items, 4428 * while holding a read lock on a leaf from the subvolume tree, which 4429 * creates a nasty lock dependency when COWing log tree nodes/leaves: 4430 * 4431 * 1) Modifying the log tree triggers an extent buffer allocation while 4432 * holding a write lock on a parent extent buffer from the log tree. 4433 * Allocating the pages for an extent buffer, or the extent buffer 4434 * struct, can trigger inode eviction and finally the inode eviction 4435 * will trigger a release/remove of a delayed node, which requires 4436 * taking the delayed node's mutex; 4437 * 4438 * 2) Allocating a metadata extent for a log tree can trigger the async 4439 * reclaim thread and make us wait for it to release enough space and 4440 * unblock our reservation ticket. The reclaim thread can start 4441 * flushing delayed items, and that in turn results in the need to 4442 * lock delayed node mutexes and in the need to write lock extent 4443 * buffers of a subvolume tree - all this while holding a write lock 4444 * on the parent extent buffer in the log tree. 4445 * 4446 * So one task in scenario 1) running in parallel with another task in 4447 * scenario 2) could lead to a deadlock, one wanting to lock a delayed 4448 * node mutex while having a read lock on a leaf from the subvolume, 4449 * while the other is holding the delayed node's mutex and wants to 4450 * write lock the same subvolume leaf for flushing delayed items. 4451 */ 4452 ret = clone_leaf(src_path, ctx); 4453 if (ret < 0) 4454 return ret; 4455 4456 src = src_path->nodes[0]; 4457 4458 ins_data = kmalloc(nr * sizeof(struct btrfs_key) + 4459 nr * sizeof(u32), GFP_NOFS); 4460 if (!ins_data) 4461 return -ENOMEM; 4462 4463 ins_sizes = (u32 *)ins_data; 4464 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32)); 4465 batch.keys = ins_keys; 4466 batch.data_sizes = ins_sizes; 4467 batch.total_data_size = 0; 4468 batch.nr = 0; 4469 4470 dst_index = 0; 4471 for (int i = 0; i < nr; i++) { 4472 const int src_slot = start_slot + i; 4473 struct btrfs_root *csum_root; 4474 struct btrfs_ordered_sum *sums; 4475 struct btrfs_ordered_sum *sums_next; 4476 LIST_HEAD(ordered_sums); 4477 u64 disk_bytenr; 4478 u64 disk_num_bytes; 4479 u64 extent_offset; 4480 u64 extent_num_bytes; 4481 bool is_old_extent; 4482 4483 btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot); 4484 4485 if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY) 4486 goto add_to_batch; 4487 4488 extent = btrfs_item_ptr(src, src_slot, 4489 struct btrfs_file_extent_item); 4490 4491 is_old_extent = (btrfs_file_extent_generation(src, extent) < 4492 trans->transid); 4493 4494 /* 4495 * Don't copy extents from past generations. That would make us 4496 * log a lot more metadata for common cases like doing only a 4497 * few random writes into a file and then fsync it for the first 4498 * time or after the full sync flag is set on the inode. We can 4499 * get leaves full of extent items, most of which are from past 4500 * generations, so we can skip them - as long as the inode has 4501 * not been the target of a reflink operation in this transaction, 4502 * as in that case it might have had file extent items with old 4503 * generations copied into it. We also must always log prealloc 4504 * extents that start at or beyond eof, otherwise we would lose 4505 * them on log replay. 4506 */ 4507 if (is_old_extent && 4508 ins_keys[dst_index].offset < i_size && 4509 inode->last_reflink_trans < trans->transid) 4510 continue; 4511 4512 if (skip_csum) 4513 goto add_to_batch; 4514 4515 /* Only regular extents have checksums. */ 4516 if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG) 4517 goto add_to_batch; 4518 4519 /* 4520 * If it's an extent created in a past transaction, then its 4521 * checksums are already accessible from the committed csum tree, 4522 * no need to log them. 4523 */ 4524 if (is_old_extent) 4525 goto add_to_batch; 4526 4527 disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent); 4528 /* If it's an explicit hole, there are no checksums. */ 4529 if (disk_bytenr == 0) 4530 goto add_to_batch; 4531 4532 disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent); 4533 4534 if (btrfs_file_extent_compression(src, extent)) { 4535 extent_offset = 0; 4536 extent_num_bytes = disk_num_bytes; 4537 } else { 4538 extent_offset = btrfs_file_extent_offset(src, extent); 4539 extent_num_bytes = btrfs_file_extent_num_bytes(src, extent); 4540 } 4541 4542 csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr); 4543 disk_bytenr += extent_offset; 4544 ret = btrfs_lookup_csums_list(csum_root, disk_bytenr, 4545 disk_bytenr + extent_num_bytes - 1, 4546 &ordered_sums, false); 4547 if (ret < 0) 4548 goto out; 4549 ret = 0; 4550 4551 list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) { 4552 if (!ret) 4553 ret = log_csums(trans, inode, log, sums); 4554 list_del(&sums->list); 4555 kfree(sums); 4556 } 4557 if (ret) 4558 goto out; 4559 4560 add_to_batch: 4561 ins_sizes[dst_index] = btrfs_item_size(src, src_slot); 4562 batch.total_data_size += ins_sizes[dst_index]; 4563 batch.nr++; 4564 dst_index++; 4565 } 4566 4567 /* 4568 * We have a leaf full of old extent items that don't need to be logged, 4569 * so we don't need to do anything. 4570 */ 4571 if (batch.nr == 0) 4572 goto out; 4573 4574 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch); 4575 if (ret) 4576 goto out; 4577 4578 dst_index = 0; 4579 for (int i = 0; i < nr; i++) { 4580 const int src_slot = start_slot + i; 4581 const int dst_slot = dst_path->slots[0] + dst_index; 4582 struct btrfs_key key; 4583 unsigned long src_offset; 4584 unsigned long dst_offset; 4585 4586 /* 4587 * We're done, all the remaining items in the source leaf 4588 * correspond to old file extent items. 4589 */ 4590 if (dst_index >= batch.nr) 4591 break; 4592 4593 btrfs_item_key_to_cpu(src, &key, src_slot); 4594 4595 if (key.type != BTRFS_EXTENT_DATA_KEY) 4596 goto copy_item; 4597 4598 extent = btrfs_item_ptr(src, src_slot, 4599 struct btrfs_file_extent_item); 4600 4601 /* See the comment in the previous loop, same logic. */ 4602 if (btrfs_file_extent_generation(src, extent) < trans->transid && 4603 key.offset < i_size && 4604 inode->last_reflink_trans < trans->transid) 4605 continue; 4606 4607 copy_item: 4608 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot); 4609 src_offset = btrfs_item_ptr_offset(src, src_slot); 4610 4611 if (key.type == BTRFS_INODE_ITEM_KEY) { 4612 struct btrfs_inode_item *inode_item; 4613 4614 inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot, 4615 struct btrfs_inode_item); 4616 fill_inode_item(trans, dst_path->nodes[0], inode_item, 4617 &inode->vfs_inode, 4618 inode_only == LOG_INODE_EXISTS, 4619 logged_isize); 4620 } else { 4621 copy_extent_buffer(dst_path->nodes[0], src, dst_offset, 4622 src_offset, ins_sizes[dst_index]); 4623 } 4624 4625 dst_index++; 4626 } 4627 4628 btrfs_release_path(dst_path); 4629 out: 4630 kfree(ins_data); 4631 4632 return ret; 4633 } 4634 4635 static int extent_cmp(void *priv, const struct list_head *a, 4636 const struct list_head *b) 4637 { 4638 const struct extent_map *em1, *em2; 4639 4640 em1 = list_entry(a, struct extent_map, list); 4641 em2 = list_entry(b, struct extent_map, list); 4642 4643 if (em1->start < em2->start) 4644 return -1; 4645 else if (em1->start > em2->start) 4646 return 1; 4647 return 0; 4648 } 4649 4650 static int log_extent_csums(struct btrfs_trans_handle *trans, 4651 struct btrfs_inode *inode, 4652 struct btrfs_root *log_root, 4653 const struct extent_map *em, 4654 struct btrfs_log_ctx *ctx) 4655 { 4656 struct btrfs_ordered_extent *ordered; 4657 struct btrfs_root *csum_root; 4658 u64 block_start; 4659 u64 csum_offset; 4660 u64 csum_len; 4661 u64 mod_start = em->start; 4662 u64 mod_len = em->len; 4663 LIST_HEAD(ordered_sums); 4664 int ret = 0; 4665 4666 if (inode->flags & BTRFS_INODE_NODATASUM || 4667 (em->flags & EXTENT_FLAG_PREALLOC) || 4668 em->disk_bytenr == EXTENT_MAP_HOLE) 4669 return 0; 4670 4671 list_for_each_entry(ordered, &ctx->ordered_extents, log_list) { 4672 const u64 ordered_end = ordered->file_offset + ordered->num_bytes; 4673 const u64 mod_end = mod_start + mod_len; 4674 struct btrfs_ordered_sum *sums; 4675 4676 if (mod_len == 0) 4677 break; 4678 4679 if (ordered_end <= mod_start) 4680 continue; 4681 if (mod_end <= ordered->file_offset) 4682 break; 4683 4684 /* 4685 * We are going to copy all the csums on this ordered extent, so 4686 * go ahead and adjust mod_start and mod_len in case this ordered 4687 * extent has already been logged. 4688 */ 4689 if (ordered->file_offset > mod_start) { 4690 if (ordered_end >= mod_end) 4691 mod_len = ordered->file_offset - mod_start; 4692 /* 4693 * If we have this case 4694 * 4695 * |--------- logged extent ---------| 4696 * |----- ordered extent ----| 4697 * 4698 * Just don't mess with mod_start and mod_len, we'll 4699 * just end up logging more csums than we need and it 4700 * will be ok. 4701 */ 4702 } else { 4703 if (ordered_end < mod_end) { 4704 mod_len = mod_end - ordered_end; 4705 mod_start = ordered_end; 4706 } else { 4707 mod_len = 0; 4708 } 4709 } 4710 4711 /* 4712 * To keep us from looping for the above case of an ordered 4713 * extent that falls inside of the logged extent. 4714 */ 4715 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags)) 4716 continue; 4717 4718 list_for_each_entry(sums, &ordered->list, list) { 4719 ret = log_csums(trans, inode, log_root, sums); 4720 if (ret) 4721 return ret; 4722 } 4723 } 4724 4725 /* We're done, found all csums in the ordered extents. */ 4726 if (mod_len == 0) 4727 return 0; 4728 4729 /* If we're compressed we have to save the entire range of csums. */ 4730 if (btrfs_extent_map_is_compressed(em)) { 4731 csum_offset = 0; 4732 csum_len = em->disk_num_bytes; 4733 } else { 4734 csum_offset = mod_start - em->start; 4735 csum_len = mod_len; 4736 } 4737 4738 /* block start is already adjusted for the file extent offset. */ 4739 block_start = btrfs_extent_map_block_start(em); 4740 csum_root = btrfs_csum_root(trans->fs_info, block_start); 4741 ret = btrfs_lookup_csums_list(csum_root, block_start + csum_offset, 4742 block_start + csum_offset + csum_len - 1, 4743 &ordered_sums, false); 4744 if (ret < 0) 4745 return ret; 4746 ret = 0; 4747 4748 while (!list_empty(&ordered_sums)) { 4749 struct btrfs_ordered_sum *sums = list_first_entry(&ordered_sums, 4750 struct btrfs_ordered_sum, 4751 list); 4752 if (!ret) 4753 ret = log_csums(trans, inode, log_root, sums); 4754 list_del(&sums->list); 4755 kfree(sums); 4756 } 4757 4758 return ret; 4759 } 4760 4761 static int log_one_extent(struct btrfs_trans_handle *trans, 4762 struct btrfs_inode *inode, 4763 const struct extent_map *em, 4764 struct btrfs_path *path, 4765 struct btrfs_log_ctx *ctx) 4766 { 4767 struct btrfs_drop_extents_args drop_args = { 0 }; 4768 struct btrfs_root *log = inode->root->log_root; 4769 struct btrfs_file_extent_item fi = { 0 }; 4770 struct extent_buffer *leaf; 4771 struct btrfs_key key; 4772 enum btrfs_compression_type compress_type; 4773 u64 extent_offset = em->offset; 4774 u64 block_start = btrfs_extent_map_block_start(em); 4775 u64 block_len; 4776 int ret; 4777 4778 btrfs_set_stack_file_extent_generation(&fi, trans->transid); 4779 if (em->flags & EXTENT_FLAG_PREALLOC) 4780 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC); 4781 else 4782 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG); 4783 4784 block_len = em->disk_num_bytes; 4785 compress_type = btrfs_extent_map_compression(em); 4786 if (compress_type != BTRFS_COMPRESS_NONE) { 4787 btrfs_set_stack_file_extent_disk_bytenr(&fi, block_start); 4788 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len); 4789 } else if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) { 4790 btrfs_set_stack_file_extent_disk_bytenr(&fi, block_start - extent_offset); 4791 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len); 4792 } 4793 4794 btrfs_set_stack_file_extent_offset(&fi, extent_offset); 4795 btrfs_set_stack_file_extent_num_bytes(&fi, em->len); 4796 btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes); 4797 btrfs_set_stack_file_extent_compression(&fi, compress_type); 4798 4799 ret = log_extent_csums(trans, inode, log, em, ctx); 4800 if (ret) 4801 return ret; 4802 4803 /* 4804 * If this is the first time we are logging the inode in the current 4805 * transaction, we can avoid btrfs_drop_extents(), which is expensive 4806 * because it does a deletion search, which always acquires write locks 4807 * for extent buffers at levels 2, 1 and 0. This not only wastes time 4808 * but also adds significant contention in a log tree, since log trees 4809 * are small, with a root at level 2 or 3 at most, due to their short 4810 * life span. 4811 */ 4812 if (ctx->logged_before) { 4813 drop_args.path = path; 4814 drop_args.start = em->start; 4815 drop_args.end = em->start + em->len; 4816 drop_args.replace_extent = true; 4817 drop_args.extent_item_size = sizeof(fi); 4818 ret = btrfs_drop_extents(trans, log, inode, &drop_args); 4819 if (ret) 4820 return ret; 4821 } 4822 4823 if (!drop_args.extent_inserted) { 4824 key.objectid = btrfs_ino(inode); 4825 key.type = BTRFS_EXTENT_DATA_KEY; 4826 key.offset = em->start; 4827 4828 ret = btrfs_insert_empty_item(trans, log, path, &key, 4829 sizeof(fi)); 4830 if (ret) 4831 return ret; 4832 } 4833 leaf = path->nodes[0]; 4834 write_extent_buffer(leaf, &fi, 4835 btrfs_item_ptr_offset(leaf, path->slots[0]), 4836 sizeof(fi)); 4837 4838 btrfs_release_path(path); 4839 4840 return ret; 4841 } 4842 4843 /* 4844 * Log all prealloc extents beyond the inode's i_size to make sure we do not 4845 * lose them after doing a full/fast fsync and replaying the log. We scan the 4846 * subvolume's root instead of iterating the inode's extent map tree because 4847 * otherwise we can log incorrect extent items based on extent map conversion. 4848 * That can happen due to the fact that extent maps are merged when they 4849 * are not in the extent map tree's list of modified extents. 4850 */ 4851 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans, 4852 struct btrfs_inode *inode, 4853 struct btrfs_path *path, 4854 struct btrfs_log_ctx *ctx) 4855 { 4856 struct btrfs_root *root = inode->root; 4857 struct btrfs_key key; 4858 const u64 i_size = i_size_read(&inode->vfs_inode); 4859 const u64 ino = btrfs_ino(inode); 4860 struct btrfs_path *dst_path = NULL; 4861 bool dropped_extents = false; 4862 u64 truncate_offset = i_size; 4863 struct extent_buffer *leaf; 4864 int slot; 4865 int ins_nr = 0; 4866 int start_slot = 0; 4867 int ret; 4868 4869 if (!(inode->flags & BTRFS_INODE_PREALLOC)) 4870 return 0; 4871 4872 key.objectid = ino; 4873 key.type = BTRFS_EXTENT_DATA_KEY; 4874 key.offset = i_size; 4875 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4876 if (ret < 0) 4877 goto out; 4878 4879 /* 4880 * We must check if there is a prealloc extent that starts before the 4881 * i_size and crosses the i_size boundary. This is to ensure later we 4882 * truncate down to the end of that extent and not to the i_size, as 4883 * otherwise we end up losing part of the prealloc extent after a log 4884 * replay and with an implicit hole if there is another prealloc extent 4885 * that starts at an offset beyond i_size. 4886 */ 4887 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY); 4888 if (ret < 0) 4889 goto out; 4890 4891 if (ret == 0) { 4892 struct btrfs_file_extent_item *ei; 4893 4894 leaf = path->nodes[0]; 4895 slot = path->slots[0]; 4896 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 4897 4898 if (btrfs_file_extent_type(leaf, ei) == 4899 BTRFS_FILE_EXTENT_PREALLOC) { 4900 u64 extent_end; 4901 4902 btrfs_item_key_to_cpu(leaf, &key, slot); 4903 extent_end = key.offset + 4904 btrfs_file_extent_num_bytes(leaf, ei); 4905 4906 if (extent_end > i_size) 4907 truncate_offset = extent_end; 4908 } 4909 } else { 4910 ret = 0; 4911 } 4912 4913 while (true) { 4914 leaf = path->nodes[0]; 4915 slot = path->slots[0]; 4916 4917 if (slot >= btrfs_header_nritems(leaf)) { 4918 if (ins_nr > 0) { 4919 ret = copy_items(trans, inode, dst_path, path, 4920 start_slot, ins_nr, 1, 0, ctx); 4921 if (ret < 0) 4922 goto out; 4923 ins_nr = 0; 4924 } 4925 ret = btrfs_next_leaf(root, path); 4926 if (ret < 0) 4927 goto out; 4928 if (ret > 0) { 4929 ret = 0; 4930 break; 4931 } 4932 continue; 4933 } 4934 4935 btrfs_item_key_to_cpu(leaf, &key, slot); 4936 if (key.objectid > ino) 4937 break; 4938 if (WARN_ON_ONCE(key.objectid < ino) || 4939 key.type < BTRFS_EXTENT_DATA_KEY || 4940 key.offset < i_size) { 4941 path->slots[0]++; 4942 continue; 4943 } 4944 /* 4945 * Avoid overlapping items in the log tree. The first time we 4946 * get here, get rid of everything from a past fsync. After 4947 * that, if the current extent starts before the end of the last 4948 * extent we copied, truncate the last one. This can happen if 4949 * an ordered extent completion modifies the subvolume tree 4950 * while btrfs_next_leaf() has the tree unlocked. 4951 */ 4952 if (!dropped_extents || key.offset < truncate_offset) { 4953 ret = truncate_inode_items(trans, root->log_root, inode, 4954 min(key.offset, truncate_offset), 4955 BTRFS_EXTENT_DATA_KEY); 4956 if (ret) 4957 goto out; 4958 dropped_extents = true; 4959 } 4960 truncate_offset = btrfs_file_extent_end(path); 4961 if (ins_nr == 0) 4962 start_slot = slot; 4963 ins_nr++; 4964 path->slots[0]++; 4965 if (!dst_path) { 4966 dst_path = btrfs_alloc_path(); 4967 if (!dst_path) { 4968 ret = -ENOMEM; 4969 goto out; 4970 } 4971 } 4972 } 4973 if (ins_nr > 0) 4974 ret = copy_items(trans, inode, dst_path, path, 4975 start_slot, ins_nr, 1, 0, ctx); 4976 out: 4977 btrfs_release_path(path); 4978 btrfs_free_path(dst_path); 4979 return ret; 4980 } 4981 4982 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans, 4983 struct btrfs_inode *inode, 4984 struct btrfs_path *path, 4985 struct btrfs_log_ctx *ctx) 4986 { 4987 struct btrfs_ordered_extent *ordered; 4988 struct btrfs_ordered_extent *tmp; 4989 struct extent_map *em, *n; 4990 LIST_HEAD(extents); 4991 struct extent_map_tree *tree = &inode->extent_tree; 4992 int ret = 0; 4993 int num = 0; 4994 4995 write_lock(&tree->lock); 4996 4997 list_for_each_entry_safe(em, n, &tree->modified_extents, list) { 4998 list_del_init(&em->list); 4999 /* 5000 * Just an arbitrary number, this can be really CPU intensive 5001 * once we start getting a lot of extents, and really once we 5002 * have a bunch of extents we just want to commit since it will 5003 * be faster. 5004 */ 5005 if (++num > 32768) { 5006 list_del_init(&tree->modified_extents); 5007 ret = -EFBIG; 5008 goto process; 5009 } 5010 5011 if (em->generation < trans->transid) 5012 continue; 5013 5014 /* We log prealloc extents beyond eof later. */ 5015 if ((em->flags & EXTENT_FLAG_PREALLOC) && 5016 em->start >= i_size_read(&inode->vfs_inode)) 5017 continue; 5018 5019 /* Need a ref to keep it from getting evicted from cache */ 5020 refcount_inc(&em->refs); 5021 em->flags |= EXTENT_FLAG_LOGGING; 5022 list_add_tail(&em->list, &extents); 5023 num++; 5024 } 5025 5026 list_sort(NULL, &extents, extent_cmp); 5027 process: 5028 while (!list_empty(&extents)) { 5029 em = list_first_entry(&extents, struct extent_map, list); 5030 5031 list_del_init(&em->list); 5032 5033 /* 5034 * If we had an error we just need to delete everybody from our 5035 * private list. 5036 */ 5037 if (ret) { 5038 btrfs_clear_em_logging(inode, em); 5039 btrfs_free_extent_map(em); 5040 continue; 5041 } 5042 5043 write_unlock(&tree->lock); 5044 5045 ret = log_one_extent(trans, inode, em, path, ctx); 5046 write_lock(&tree->lock); 5047 btrfs_clear_em_logging(inode, em); 5048 btrfs_free_extent_map(em); 5049 } 5050 WARN_ON(!list_empty(&extents)); 5051 write_unlock(&tree->lock); 5052 5053 if (!ret) 5054 ret = btrfs_log_prealloc_extents(trans, inode, path, ctx); 5055 if (ret) 5056 return ret; 5057 5058 /* 5059 * We have logged all extents successfully, now make sure the commit of 5060 * the current transaction waits for the ordered extents to complete 5061 * before it commits and wipes out the log trees, otherwise we would 5062 * lose data if an ordered extents completes after the transaction 5063 * commits and a power failure happens after the transaction commit. 5064 */ 5065 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) { 5066 list_del_init(&ordered->log_list); 5067 set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags); 5068 5069 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) { 5070 spin_lock_irq(&inode->ordered_tree_lock); 5071 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) { 5072 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags); 5073 atomic_inc(&trans->transaction->pending_ordered); 5074 } 5075 spin_unlock_irq(&inode->ordered_tree_lock); 5076 } 5077 btrfs_put_ordered_extent(ordered); 5078 } 5079 5080 return 0; 5081 } 5082 5083 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode, 5084 struct btrfs_path *path, u64 *size_ret) 5085 { 5086 struct btrfs_key key; 5087 int ret; 5088 5089 key.objectid = btrfs_ino(inode); 5090 key.type = BTRFS_INODE_ITEM_KEY; 5091 key.offset = 0; 5092 5093 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0); 5094 if (ret < 0) { 5095 return ret; 5096 } else if (ret > 0) { 5097 *size_ret = 0; 5098 } else { 5099 struct btrfs_inode_item *item; 5100 5101 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 5102 struct btrfs_inode_item); 5103 *size_ret = btrfs_inode_size(path->nodes[0], item); 5104 /* 5105 * If the in-memory inode's i_size is smaller then the inode 5106 * size stored in the btree, return the inode's i_size, so 5107 * that we get a correct inode size after replaying the log 5108 * when before a power failure we had a shrinking truncate 5109 * followed by addition of a new name (rename / new hard link). 5110 * Otherwise return the inode size from the btree, to avoid 5111 * data loss when replaying a log due to previously doing a 5112 * write that expands the inode's size and logging a new name 5113 * immediately after. 5114 */ 5115 if (*size_ret > inode->vfs_inode.i_size) 5116 *size_ret = inode->vfs_inode.i_size; 5117 } 5118 5119 btrfs_release_path(path); 5120 return 0; 5121 } 5122 5123 /* 5124 * At the moment we always log all xattrs. This is to figure out at log replay 5125 * time which xattrs must have their deletion replayed. If a xattr is missing 5126 * in the log tree and exists in the fs/subvol tree, we delete it. This is 5127 * because if a xattr is deleted, the inode is fsynced and a power failure 5128 * happens, causing the log to be replayed the next time the fs is mounted, 5129 * we want the xattr to not exist anymore (same behaviour as other filesystems 5130 * with a journal, ext3/4, xfs, f2fs, etc). 5131 */ 5132 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans, 5133 struct btrfs_inode *inode, 5134 struct btrfs_path *path, 5135 struct btrfs_path *dst_path, 5136 struct btrfs_log_ctx *ctx) 5137 { 5138 struct btrfs_root *root = inode->root; 5139 int ret; 5140 struct btrfs_key key; 5141 const u64 ino = btrfs_ino(inode); 5142 int ins_nr = 0; 5143 int start_slot = 0; 5144 bool found_xattrs = false; 5145 5146 if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags)) 5147 return 0; 5148 5149 key.objectid = ino; 5150 key.type = BTRFS_XATTR_ITEM_KEY; 5151 key.offset = 0; 5152 5153 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5154 if (ret < 0) 5155 return ret; 5156 5157 while (true) { 5158 int slot = path->slots[0]; 5159 struct extent_buffer *leaf = path->nodes[0]; 5160 int nritems = btrfs_header_nritems(leaf); 5161 5162 if (slot >= nritems) { 5163 if (ins_nr > 0) { 5164 ret = copy_items(trans, inode, dst_path, path, 5165 start_slot, ins_nr, 1, 0, ctx); 5166 if (ret < 0) 5167 return ret; 5168 ins_nr = 0; 5169 } 5170 ret = btrfs_next_leaf(root, path); 5171 if (ret < 0) 5172 return ret; 5173 else if (ret > 0) 5174 break; 5175 continue; 5176 } 5177 5178 btrfs_item_key_to_cpu(leaf, &key, slot); 5179 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) 5180 break; 5181 5182 if (ins_nr == 0) 5183 start_slot = slot; 5184 ins_nr++; 5185 path->slots[0]++; 5186 found_xattrs = true; 5187 cond_resched(); 5188 } 5189 if (ins_nr > 0) { 5190 ret = copy_items(trans, inode, dst_path, path, 5191 start_slot, ins_nr, 1, 0, ctx); 5192 if (ret < 0) 5193 return ret; 5194 } 5195 5196 if (!found_xattrs) 5197 set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags); 5198 5199 return 0; 5200 } 5201 5202 /* 5203 * When using the NO_HOLES feature if we punched a hole that causes the 5204 * deletion of entire leafs or all the extent items of the first leaf (the one 5205 * that contains the inode item and references) we may end up not processing 5206 * any extents, because there are no leafs with a generation matching the 5207 * current transaction that have extent items for our inode. So we need to find 5208 * if any holes exist and then log them. We also need to log holes after any 5209 * truncate operation that changes the inode's size. 5210 */ 5211 static int btrfs_log_holes(struct btrfs_trans_handle *trans, 5212 struct btrfs_inode *inode, 5213 struct btrfs_path *path) 5214 { 5215 struct btrfs_root *root = inode->root; 5216 struct btrfs_fs_info *fs_info = root->fs_info; 5217 struct btrfs_key key; 5218 const u64 ino = btrfs_ino(inode); 5219 const u64 i_size = i_size_read(&inode->vfs_inode); 5220 u64 prev_extent_end = 0; 5221 int ret; 5222 5223 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0) 5224 return 0; 5225 5226 key.objectid = ino; 5227 key.type = BTRFS_EXTENT_DATA_KEY; 5228 key.offset = 0; 5229 5230 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5231 if (ret < 0) 5232 return ret; 5233 5234 while (true) { 5235 struct extent_buffer *leaf = path->nodes[0]; 5236 5237 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 5238 ret = btrfs_next_leaf(root, path); 5239 if (ret < 0) 5240 return ret; 5241 if (ret > 0) { 5242 ret = 0; 5243 break; 5244 } 5245 leaf = path->nodes[0]; 5246 } 5247 5248 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 5249 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 5250 break; 5251 5252 /* We have a hole, log it. */ 5253 if (prev_extent_end < key.offset) { 5254 const u64 hole_len = key.offset - prev_extent_end; 5255 5256 /* 5257 * Release the path to avoid deadlocks with other code 5258 * paths that search the root while holding locks on 5259 * leafs from the log root. 5260 */ 5261 btrfs_release_path(path); 5262 ret = btrfs_insert_hole_extent(trans, root->log_root, 5263 ino, prev_extent_end, 5264 hole_len); 5265 if (ret < 0) 5266 return ret; 5267 5268 /* 5269 * Search for the same key again in the root. Since it's 5270 * an extent item and we are holding the inode lock, the 5271 * key must still exist. If it doesn't just emit warning 5272 * and return an error to fall back to a transaction 5273 * commit. 5274 */ 5275 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5276 if (ret < 0) 5277 return ret; 5278 if (WARN_ON(ret > 0)) 5279 return -ENOENT; 5280 leaf = path->nodes[0]; 5281 } 5282 5283 prev_extent_end = btrfs_file_extent_end(path); 5284 path->slots[0]++; 5285 cond_resched(); 5286 } 5287 5288 if (prev_extent_end < i_size) { 5289 u64 hole_len; 5290 5291 btrfs_release_path(path); 5292 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize); 5293 ret = btrfs_insert_hole_extent(trans, root->log_root, ino, 5294 prev_extent_end, hole_len); 5295 if (ret < 0) 5296 return ret; 5297 } 5298 5299 return 0; 5300 } 5301 5302 /* 5303 * When we are logging a new inode X, check if it doesn't have a reference that 5304 * matches the reference from some other inode Y created in a past transaction 5305 * and that was renamed in the current transaction. If we don't do this, then at 5306 * log replay time we can lose inode Y (and all its files if it's a directory): 5307 * 5308 * mkdir /mnt/x 5309 * echo "hello world" > /mnt/x/foobar 5310 * sync 5311 * mv /mnt/x /mnt/y 5312 * mkdir /mnt/x # or touch /mnt/x 5313 * xfs_io -c fsync /mnt/x 5314 * <power fail> 5315 * mount fs, trigger log replay 5316 * 5317 * After the log replay procedure, we would lose the first directory and all its 5318 * files (file foobar). 5319 * For the case where inode Y is not a directory we simply end up losing it: 5320 * 5321 * echo "123" > /mnt/foo 5322 * sync 5323 * mv /mnt/foo /mnt/bar 5324 * echo "abc" > /mnt/foo 5325 * xfs_io -c fsync /mnt/foo 5326 * <power fail> 5327 * 5328 * We also need this for cases where a snapshot entry is replaced by some other 5329 * entry (file or directory) otherwise we end up with an unreplayable log due to 5330 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as 5331 * if it were a regular entry: 5332 * 5333 * mkdir /mnt/x 5334 * btrfs subvolume snapshot /mnt /mnt/x/snap 5335 * btrfs subvolume delete /mnt/x/snap 5336 * rmdir /mnt/x 5337 * mkdir /mnt/x 5338 * fsync /mnt/x or fsync some new file inside it 5339 * <power fail> 5340 * 5341 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in 5342 * the same transaction. 5343 */ 5344 static int btrfs_check_ref_name_override(struct extent_buffer *eb, 5345 const int slot, 5346 const struct btrfs_key *key, 5347 struct btrfs_inode *inode, 5348 u64 *other_ino, u64 *other_parent) 5349 { 5350 int ret; 5351 struct btrfs_path *search_path; 5352 char *name = NULL; 5353 u32 name_len = 0; 5354 u32 item_size = btrfs_item_size(eb, slot); 5355 u32 cur_offset = 0; 5356 unsigned long ptr = btrfs_item_ptr_offset(eb, slot); 5357 5358 search_path = btrfs_alloc_path(); 5359 if (!search_path) 5360 return -ENOMEM; 5361 search_path->search_commit_root = 1; 5362 search_path->skip_locking = 1; 5363 5364 while (cur_offset < item_size) { 5365 u64 parent; 5366 u32 this_name_len; 5367 u32 this_len; 5368 unsigned long name_ptr; 5369 struct btrfs_dir_item *di; 5370 struct fscrypt_str name_str; 5371 5372 if (key->type == BTRFS_INODE_REF_KEY) { 5373 struct btrfs_inode_ref *iref; 5374 5375 iref = (struct btrfs_inode_ref *)(ptr + cur_offset); 5376 parent = key->offset; 5377 this_name_len = btrfs_inode_ref_name_len(eb, iref); 5378 name_ptr = (unsigned long)(iref + 1); 5379 this_len = sizeof(*iref) + this_name_len; 5380 } else { 5381 struct btrfs_inode_extref *extref; 5382 5383 extref = (struct btrfs_inode_extref *)(ptr + 5384 cur_offset); 5385 parent = btrfs_inode_extref_parent(eb, extref); 5386 this_name_len = btrfs_inode_extref_name_len(eb, extref); 5387 name_ptr = (unsigned long)&extref->name; 5388 this_len = sizeof(*extref) + this_name_len; 5389 } 5390 5391 if (this_name_len > name_len) { 5392 char *new_name; 5393 5394 new_name = krealloc(name, this_name_len, GFP_NOFS); 5395 if (!new_name) { 5396 ret = -ENOMEM; 5397 goto out; 5398 } 5399 name_len = this_name_len; 5400 name = new_name; 5401 } 5402 5403 read_extent_buffer(eb, name, name_ptr, this_name_len); 5404 5405 name_str.name = name; 5406 name_str.len = this_name_len; 5407 di = btrfs_lookup_dir_item(NULL, inode->root, search_path, 5408 parent, &name_str, 0); 5409 if (di && !IS_ERR(di)) { 5410 struct btrfs_key di_key; 5411 5412 btrfs_dir_item_key_to_cpu(search_path->nodes[0], 5413 di, &di_key); 5414 if (di_key.type == BTRFS_INODE_ITEM_KEY) { 5415 if (di_key.objectid != key->objectid) { 5416 ret = 1; 5417 *other_ino = di_key.objectid; 5418 *other_parent = parent; 5419 } else { 5420 ret = 0; 5421 } 5422 } else { 5423 ret = -EAGAIN; 5424 } 5425 goto out; 5426 } else if (IS_ERR(di)) { 5427 ret = PTR_ERR(di); 5428 goto out; 5429 } 5430 btrfs_release_path(search_path); 5431 5432 cur_offset += this_len; 5433 } 5434 ret = 0; 5435 out: 5436 btrfs_free_path(search_path); 5437 kfree(name); 5438 return ret; 5439 } 5440 5441 /* 5442 * Check if we need to log an inode. This is used in contexts where while 5443 * logging an inode we need to log another inode (either that it exists or in 5444 * full mode). This is used instead of btrfs_inode_in_log() because the later 5445 * requires the inode to be in the log and have the log transaction committed, 5446 * while here we do not care if the log transaction was already committed - our 5447 * caller will commit the log later - and we want to avoid logging an inode 5448 * multiple times when multiple tasks have joined the same log transaction. 5449 */ 5450 static bool need_log_inode(const struct btrfs_trans_handle *trans, 5451 struct btrfs_inode *inode) 5452 { 5453 /* 5454 * If a directory was not modified, no dentries added or removed, we can 5455 * and should avoid logging it. 5456 */ 5457 if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid) 5458 return false; 5459 5460 /* 5461 * If this inode does not have new/updated/deleted xattrs since the last 5462 * time it was logged and is flagged as logged in the current transaction, 5463 * we can skip logging it. As for new/deleted names, those are updated in 5464 * the log by link/unlink/rename operations. 5465 * In case the inode was logged and then evicted and reloaded, its 5466 * logged_trans will be 0, in which case we have to fully log it since 5467 * logged_trans is a transient field, not persisted. 5468 */ 5469 if (inode_logged(trans, inode, NULL) == 1 && 5470 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags)) 5471 return false; 5472 5473 return true; 5474 } 5475 5476 struct btrfs_dir_list { 5477 u64 ino; 5478 struct list_head list; 5479 }; 5480 5481 /* 5482 * Log the inodes of the new dentries of a directory. 5483 * See process_dir_items_leaf() for details about why it is needed. 5484 * This is a recursive operation - if an existing dentry corresponds to a 5485 * directory, that directory's new entries are logged too (same behaviour as 5486 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes 5487 * the dentries point to we do not acquire their VFS lock, otherwise lockdep 5488 * complains about the following circular lock dependency / possible deadlock: 5489 * 5490 * CPU0 CPU1 5491 * ---- ---- 5492 * lock(&type->i_mutex_dir_key#3/2); 5493 * lock(sb_internal#2); 5494 * lock(&type->i_mutex_dir_key#3/2); 5495 * lock(&sb->s_type->i_mutex_key#14); 5496 * 5497 * Where sb_internal is the lock (a counter that works as a lock) acquired by 5498 * sb_start_intwrite() in btrfs_start_transaction(). 5499 * Not acquiring the VFS lock of the inodes is still safe because: 5500 * 5501 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible 5502 * that while logging the inode new references (names) are added or removed 5503 * from the inode, leaving the logged inode item with a link count that does 5504 * not match the number of logged inode reference items. This is fine because 5505 * at log replay time we compute the real number of links and correct the 5506 * link count in the inode item (see replay_one_buffer() and 5507 * link_to_fixup_dir()); 5508 * 5509 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that 5510 * while logging the inode's items new index items (key type 5511 * BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item 5512 * has a size that doesn't match the sum of the lengths of all the logged 5513 * names - this is ok, not a problem, because at log replay time we set the 5514 * directory's i_size to the correct value (see replay_one_name() and 5515 * overwrite_item()). 5516 */ 5517 static int log_new_dir_dentries(struct btrfs_trans_handle *trans, 5518 struct btrfs_inode *start_inode, 5519 struct btrfs_log_ctx *ctx) 5520 { 5521 struct btrfs_root *root = start_inode->root; 5522 struct btrfs_path *path; 5523 LIST_HEAD(dir_list); 5524 struct btrfs_dir_list *dir_elem; 5525 u64 ino = btrfs_ino(start_inode); 5526 struct btrfs_inode *curr_inode = start_inode; 5527 int ret = 0; 5528 5529 /* 5530 * If we are logging a new name, as part of a link or rename operation, 5531 * don't bother logging new dentries, as we just want to log the names 5532 * of an inode and that any new parents exist. 5533 */ 5534 if (ctx->logging_new_name) 5535 return 0; 5536 5537 path = btrfs_alloc_path(); 5538 if (!path) 5539 return -ENOMEM; 5540 5541 /* Pairs with btrfs_add_delayed_iput below. */ 5542 ihold(&curr_inode->vfs_inode); 5543 5544 while (true) { 5545 struct btrfs_key key; 5546 struct btrfs_key found_key; 5547 u64 next_index; 5548 bool continue_curr_inode = true; 5549 int iter_ret; 5550 5551 key.objectid = ino; 5552 key.type = BTRFS_DIR_INDEX_KEY; 5553 key.offset = btrfs_get_first_dir_index_to_log(curr_inode); 5554 next_index = key.offset; 5555 again: 5556 btrfs_for_each_slot(root->log_root, &key, &found_key, path, iter_ret) { 5557 struct extent_buffer *leaf = path->nodes[0]; 5558 struct btrfs_dir_item *di; 5559 struct btrfs_key di_key; 5560 struct btrfs_inode *di_inode; 5561 int log_mode = LOG_INODE_EXISTS; 5562 int type; 5563 5564 if (found_key.objectid != ino || 5565 found_key.type != BTRFS_DIR_INDEX_KEY) { 5566 continue_curr_inode = false; 5567 break; 5568 } 5569 5570 next_index = found_key.offset + 1; 5571 5572 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item); 5573 type = btrfs_dir_ftype(leaf, di); 5574 if (btrfs_dir_transid(leaf, di) < trans->transid) 5575 continue; 5576 btrfs_dir_item_key_to_cpu(leaf, di, &di_key); 5577 if (di_key.type == BTRFS_ROOT_ITEM_KEY) 5578 continue; 5579 5580 btrfs_release_path(path); 5581 di_inode = btrfs_iget_logging(di_key.objectid, root); 5582 if (IS_ERR(di_inode)) { 5583 ret = PTR_ERR(di_inode); 5584 goto out; 5585 } 5586 5587 if (!need_log_inode(trans, di_inode)) { 5588 btrfs_add_delayed_iput(di_inode); 5589 break; 5590 } 5591 5592 ctx->log_new_dentries = false; 5593 if (type == BTRFS_FT_DIR) 5594 log_mode = LOG_INODE_ALL; 5595 ret = btrfs_log_inode(trans, di_inode, log_mode, ctx); 5596 btrfs_add_delayed_iput(di_inode); 5597 if (ret) 5598 goto out; 5599 if (ctx->log_new_dentries) { 5600 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS); 5601 if (!dir_elem) { 5602 ret = -ENOMEM; 5603 goto out; 5604 } 5605 dir_elem->ino = di_key.objectid; 5606 list_add_tail(&dir_elem->list, &dir_list); 5607 } 5608 break; 5609 } 5610 5611 btrfs_release_path(path); 5612 5613 if (iter_ret < 0) { 5614 ret = iter_ret; 5615 goto out; 5616 } else if (iter_ret > 0) { 5617 continue_curr_inode = false; 5618 } else { 5619 key = found_key; 5620 } 5621 5622 if (continue_curr_inode && key.offset < (u64)-1) { 5623 key.offset++; 5624 goto again; 5625 } 5626 5627 btrfs_set_first_dir_index_to_log(curr_inode, next_index); 5628 5629 if (list_empty(&dir_list)) 5630 break; 5631 5632 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list); 5633 ino = dir_elem->ino; 5634 list_del(&dir_elem->list); 5635 kfree(dir_elem); 5636 5637 btrfs_add_delayed_iput(curr_inode); 5638 5639 curr_inode = btrfs_iget_logging(ino, root); 5640 if (IS_ERR(curr_inode)) { 5641 ret = PTR_ERR(curr_inode); 5642 curr_inode = NULL; 5643 break; 5644 } 5645 } 5646 out: 5647 btrfs_free_path(path); 5648 if (curr_inode) 5649 btrfs_add_delayed_iput(curr_inode); 5650 5651 if (ret) { 5652 struct btrfs_dir_list *next; 5653 5654 list_for_each_entry_safe(dir_elem, next, &dir_list, list) 5655 kfree(dir_elem); 5656 } 5657 5658 return ret; 5659 } 5660 5661 struct btrfs_ino_list { 5662 u64 ino; 5663 u64 parent; 5664 struct list_head list; 5665 }; 5666 5667 static void free_conflicting_inodes(struct btrfs_log_ctx *ctx) 5668 { 5669 struct btrfs_ino_list *curr; 5670 struct btrfs_ino_list *next; 5671 5672 list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) { 5673 list_del(&curr->list); 5674 kfree(curr); 5675 } 5676 } 5677 5678 static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino, 5679 struct btrfs_path *path) 5680 { 5681 struct btrfs_key key; 5682 int ret; 5683 5684 key.objectid = ino; 5685 key.type = BTRFS_INODE_ITEM_KEY; 5686 key.offset = 0; 5687 5688 path->search_commit_root = 1; 5689 path->skip_locking = 1; 5690 5691 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5692 if (WARN_ON_ONCE(ret > 0)) { 5693 /* 5694 * We have previously found the inode through the commit root 5695 * so this should not happen. If it does, just error out and 5696 * fallback to a transaction commit. 5697 */ 5698 ret = -ENOENT; 5699 } else if (ret == 0) { 5700 struct btrfs_inode_item *item; 5701 5702 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 5703 struct btrfs_inode_item); 5704 if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item))) 5705 ret = 1; 5706 } 5707 5708 btrfs_release_path(path); 5709 path->search_commit_root = 0; 5710 path->skip_locking = 0; 5711 5712 return ret; 5713 } 5714 5715 static int add_conflicting_inode(struct btrfs_trans_handle *trans, 5716 struct btrfs_root *root, 5717 struct btrfs_path *path, 5718 u64 ino, u64 parent, 5719 struct btrfs_log_ctx *ctx) 5720 { 5721 struct btrfs_ino_list *ino_elem; 5722 struct btrfs_inode *inode; 5723 5724 /* 5725 * It's rare to have a lot of conflicting inodes, in practice it is not 5726 * common to have more than 1 or 2. We don't want to collect too many, 5727 * as we could end up logging too many inodes (even if only in 5728 * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction 5729 * commits. 5730 */ 5731 if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES) 5732 return BTRFS_LOG_FORCE_COMMIT; 5733 5734 inode = btrfs_iget_logging(ino, root); 5735 /* 5736 * If the other inode that had a conflicting dir entry was deleted in 5737 * the current transaction then we either: 5738 * 5739 * 1) Log the parent directory (later after adding it to the list) if 5740 * the inode is a directory. This is because it may be a deleted 5741 * subvolume/snapshot or it may be a regular directory that had 5742 * deleted subvolumes/snapshots (or subdirectories that had them), 5743 * and at the moment we can't deal with dropping subvolumes/snapshots 5744 * during log replay. So we just log the parent, which will result in 5745 * a fallback to a transaction commit if we are dealing with those 5746 * cases (last_unlink_trans will match the current transaction); 5747 * 5748 * 2) Do nothing if it's not a directory. During log replay we simply 5749 * unlink the conflicting dentry from the parent directory and then 5750 * add the dentry for our inode. Like this we can avoid logging the 5751 * parent directory (and maybe fallback to a transaction commit in 5752 * case it has a last_unlink_trans == trans->transid, due to moving 5753 * some inode from it to some other directory). 5754 */ 5755 if (IS_ERR(inode)) { 5756 int ret = PTR_ERR(inode); 5757 5758 if (ret != -ENOENT) 5759 return ret; 5760 5761 ret = conflicting_inode_is_dir(root, ino, path); 5762 /* Not a directory or we got an error. */ 5763 if (ret <= 0) 5764 return ret; 5765 5766 /* Conflicting inode is a directory, so we'll log its parent. */ 5767 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS); 5768 if (!ino_elem) 5769 return -ENOMEM; 5770 ino_elem->ino = ino; 5771 ino_elem->parent = parent; 5772 list_add_tail(&ino_elem->list, &ctx->conflict_inodes); 5773 ctx->num_conflict_inodes++; 5774 5775 return 0; 5776 } 5777 5778 /* 5779 * If the inode was already logged skip it - otherwise we can hit an 5780 * infinite loop. Example: 5781 * 5782 * From the commit root (previous transaction) we have the following 5783 * inodes: 5784 * 5785 * inode 257 a directory 5786 * inode 258 with references "zz" and "zz_link" on inode 257 5787 * inode 259 with reference "a" on inode 257 5788 * 5789 * And in the current (uncommitted) transaction we have: 5790 * 5791 * inode 257 a directory, unchanged 5792 * inode 258 with references "a" and "a2" on inode 257 5793 * inode 259 with reference "zz_link" on inode 257 5794 * inode 261 with reference "zz" on inode 257 5795 * 5796 * When logging inode 261 the following infinite loop could 5797 * happen if we don't skip already logged inodes: 5798 * 5799 * - we detect inode 258 as a conflicting inode, with inode 261 5800 * on reference "zz", and log it; 5801 * 5802 * - we detect inode 259 as a conflicting inode, with inode 258 5803 * on reference "a", and log it; 5804 * 5805 * - we detect inode 258 as a conflicting inode, with inode 259 5806 * on reference "zz_link", and log it - again! After this we 5807 * repeat the above steps forever. 5808 * 5809 * Here we can use need_log_inode() because we only need to log the 5810 * inode in LOG_INODE_EXISTS mode and rename operations update the log, 5811 * so that the log ends up with the new name and without the old name. 5812 */ 5813 if (!need_log_inode(trans, inode)) { 5814 btrfs_add_delayed_iput(inode); 5815 return 0; 5816 } 5817 5818 btrfs_add_delayed_iput(inode); 5819 5820 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS); 5821 if (!ino_elem) 5822 return -ENOMEM; 5823 ino_elem->ino = ino; 5824 ino_elem->parent = parent; 5825 list_add_tail(&ino_elem->list, &ctx->conflict_inodes); 5826 ctx->num_conflict_inodes++; 5827 5828 return 0; 5829 } 5830 5831 static int log_conflicting_inodes(struct btrfs_trans_handle *trans, 5832 struct btrfs_root *root, 5833 struct btrfs_log_ctx *ctx) 5834 { 5835 int ret = 0; 5836 5837 /* 5838 * Conflicting inodes are logged by the first call to btrfs_log_inode(), 5839 * otherwise we could have unbounded recursion of btrfs_log_inode() 5840 * calls. This check guarantees we can have only 1 level of recursion. 5841 */ 5842 if (ctx->logging_conflict_inodes) 5843 return 0; 5844 5845 ctx->logging_conflict_inodes = true; 5846 5847 /* 5848 * New conflicting inodes may be found and added to the list while we 5849 * are logging a conflicting inode, so keep iterating while the list is 5850 * not empty. 5851 */ 5852 while (!list_empty(&ctx->conflict_inodes)) { 5853 struct btrfs_ino_list *curr; 5854 struct btrfs_inode *inode; 5855 u64 ino; 5856 u64 parent; 5857 5858 curr = list_first_entry(&ctx->conflict_inodes, 5859 struct btrfs_ino_list, list); 5860 ino = curr->ino; 5861 parent = curr->parent; 5862 list_del(&curr->list); 5863 kfree(curr); 5864 5865 inode = btrfs_iget_logging(ino, root); 5866 /* 5867 * If the other inode that had a conflicting dir entry was 5868 * deleted in the current transaction, we need to log its parent 5869 * directory. See the comment at add_conflicting_inode(). 5870 */ 5871 if (IS_ERR(inode)) { 5872 ret = PTR_ERR(inode); 5873 if (ret != -ENOENT) 5874 break; 5875 5876 inode = btrfs_iget_logging(parent, root); 5877 if (IS_ERR(inode)) { 5878 ret = PTR_ERR(inode); 5879 break; 5880 } 5881 5882 /* 5883 * Always log the directory, we cannot make this 5884 * conditional on need_log_inode() because the directory 5885 * might have been logged in LOG_INODE_EXISTS mode or 5886 * the dir index of the conflicting inode is not in a 5887 * dir index key range logged for the directory. So we 5888 * must make sure the deletion is recorded. 5889 */ 5890 ret = btrfs_log_inode(trans, inode, LOG_INODE_ALL, ctx); 5891 btrfs_add_delayed_iput(inode); 5892 if (ret) 5893 break; 5894 continue; 5895 } 5896 5897 /* 5898 * Here we can use need_log_inode() because we only need to log 5899 * the inode in LOG_INODE_EXISTS mode and rename operations 5900 * update the log, so that the log ends up with the new name and 5901 * without the old name. 5902 * 5903 * We did this check at add_conflicting_inode(), but here we do 5904 * it again because if some other task logged the inode after 5905 * that, we can avoid doing it again. 5906 */ 5907 if (!need_log_inode(trans, inode)) { 5908 btrfs_add_delayed_iput(inode); 5909 continue; 5910 } 5911 5912 /* 5913 * We are safe logging the other inode without acquiring its 5914 * lock as long as we log with the LOG_INODE_EXISTS mode. We 5915 * are safe against concurrent renames of the other inode as 5916 * well because during a rename we pin the log and update the 5917 * log with the new name before we unpin it. 5918 */ 5919 ret = btrfs_log_inode(trans, inode, LOG_INODE_EXISTS, ctx); 5920 btrfs_add_delayed_iput(inode); 5921 if (ret) 5922 break; 5923 } 5924 5925 ctx->logging_conflict_inodes = false; 5926 if (ret) 5927 free_conflicting_inodes(ctx); 5928 5929 return ret; 5930 } 5931 5932 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans, 5933 struct btrfs_inode *inode, 5934 struct btrfs_key *min_key, 5935 const struct btrfs_key *max_key, 5936 struct btrfs_path *path, 5937 struct btrfs_path *dst_path, 5938 const u64 logged_isize, 5939 const int inode_only, 5940 struct btrfs_log_ctx *ctx, 5941 bool *need_log_inode_item) 5942 { 5943 const u64 i_size = i_size_read(&inode->vfs_inode); 5944 struct btrfs_root *root = inode->root; 5945 int ins_start_slot = 0; 5946 int ins_nr = 0; 5947 int ret; 5948 5949 while (1) { 5950 ret = btrfs_search_forward(root, min_key, path, trans->transid); 5951 if (ret < 0) 5952 return ret; 5953 if (ret > 0) { 5954 ret = 0; 5955 break; 5956 } 5957 again: 5958 /* Note, ins_nr might be > 0 here, cleanup outside the loop */ 5959 if (min_key->objectid != max_key->objectid) 5960 break; 5961 if (min_key->type > max_key->type) 5962 break; 5963 5964 if (min_key->type == BTRFS_INODE_ITEM_KEY) { 5965 *need_log_inode_item = false; 5966 } else if (min_key->type == BTRFS_EXTENT_DATA_KEY && 5967 min_key->offset >= i_size) { 5968 /* 5969 * Extents at and beyond eof are logged with 5970 * btrfs_log_prealloc_extents(). 5971 * Only regular files have BTRFS_EXTENT_DATA_KEY keys, 5972 * and no keys greater than that, so bail out. 5973 */ 5974 break; 5975 } else if ((min_key->type == BTRFS_INODE_REF_KEY || 5976 min_key->type == BTRFS_INODE_EXTREF_KEY) && 5977 (inode->generation == trans->transid || 5978 ctx->logging_conflict_inodes)) { 5979 u64 other_ino = 0; 5980 u64 other_parent = 0; 5981 5982 ret = btrfs_check_ref_name_override(path->nodes[0], 5983 path->slots[0], min_key, inode, 5984 &other_ino, &other_parent); 5985 if (ret < 0) { 5986 return ret; 5987 } else if (ret > 0 && 5988 other_ino != btrfs_ino(ctx->inode)) { 5989 if (ins_nr > 0) { 5990 ins_nr++; 5991 } else { 5992 ins_nr = 1; 5993 ins_start_slot = path->slots[0]; 5994 } 5995 ret = copy_items(trans, inode, dst_path, path, 5996 ins_start_slot, ins_nr, 5997 inode_only, logged_isize, ctx); 5998 if (ret < 0) 5999 return ret; 6000 ins_nr = 0; 6001 6002 btrfs_release_path(path); 6003 ret = add_conflicting_inode(trans, root, path, 6004 other_ino, 6005 other_parent, ctx); 6006 if (ret) 6007 return ret; 6008 goto next_key; 6009 } 6010 } else if (min_key->type == BTRFS_XATTR_ITEM_KEY) { 6011 /* Skip xattrs, logged later with btrfs_log_all_xattrs() */ 6012 if (ins_nr == 0) 6013 goto next_slot; 6014 ret = copy_items(trans, inode, dst_path, path, 6015 ins_start_slot, 6016 ins_nr, inode_only, logged_isize, ctx); 6017 if (ret < 0) 6018 return ret; 6019 ins_nr = 0; 6020 goto next_slot; 6021 } 6022 6023 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) { 6024 ins_nr++; 6025 goto next_slot; 6026 } else if (!ins_nr) { 6027 ins_start_slot = path->slots[0]; 6028 ins_nr = 1; 6029 goto next_slot; 6030 } 6031 6032 ret = copy_items(trans, inode, dst_path, path, ins_start_slot, 6033 ins_nr, inode_only, logged_isize, ctx); 6034 if (ret < 0) 6035 return ret; 6036 ins_nr = 1; 6037 ins_start_slot = path->slots[0]; 6038 next_slot: 6039 path->slots[0]++; 6040 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) { 6041 btrfs_item_key_to_cpu(path->nodes[0], min_key, 6042 path->slots[0]); 6043 goto again; 6044 } 6045 if (ins_nr) { 6046 ret = copy_items(trans, inode, dst_path, path, 6047 ins_start_slot, ins_nr, inode_only, 6048 logged_isize, ctx); 6049 if (ret < 0) 6050 return ret; 6051 ins_nr = 0; 6052 } 6053 btrfs_release_path(path); 6054 next_key: 6055 if (min_key->offset < (u64)-1) { 6056 min_key->offset++; 6057 } else if (min_key->type < max_key->type) { 6058 min_key->type++; 6059 min_key->offset = 0; 6060 } else { 6061 break; 6062 } 6063 6064 /* 6065 * We may process many leaves full of items for our inode, so 6066 * avoid monopolizing a cpu for too long by rescheduling while 6067 * not holding locks on any tree. 6068 */ 6069 cond_resched(); 6070 } 6071 if (ins_nr) { 6072 ret = copy_items(trans, inode, dst_path, path, ins_start_slot, 6073 ins_nr, inode_only, logged_isize, ctx); 6074 if (ret) 6075 return ret; 6076 } 6077 6078 if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) { 6079 /* 6080 * Release the path because otherwise we might attempt to double 6081 * lock the same leaf with btrfs_log_prealloc_extents() below. 6082 */ 6083 btrfs_release_path(path); 6084 ret = btrfs_log_prealloc_extents(trans, inode, dst_path, ctx); 6085 } 6086 6087 return ret; 6088 } 6089 6090 static int insert_delayed_items_batch(struct btrfs_trans_handle *trans, 6091 struct btrfs_root *log, 6092 struct btrfs_path *path, 6093 const struct btrfs_item_batch *batch, 6094 const struct btrfs_delayed_item *first_item) 6095 { 6096 const struct btrfs_delayed_item *curr = first_item; 6097 int ret; 6098 6099 ret = btrfs_insert_empty_items(trans, log, path, batch); 6100 if (ret) 6101 return ret; 6102 6103 for (int i = 0; i < batch->nr; i++) { 6104 char *data_ptr; 6105 6106 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char); 6107 write_extent_buffer(path->nodes[0], &curr->data, 6108 (unsigned long)data_ptr, curr->data_len); 6109 curr = list_next_entry(curr, log_list); 6110 path->slots[0]++; 6111 } 6112 6113 btrfs_release_path(path); 6114 6115 return 0; 6116 } 6117 6118 static int log_delayed_insertion_items(struct btrfs_trans_handle *trans, 6119 struct btrfs_inode *inode, 6120 struct btrfs_path *path, 6121 const struct list_head *delayed_ins_list, 6122 struct btrfs_log_ctx *ctx) 6123 { 6124 /* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */ 6125 const int max_batch_size = 195; 6126 const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info); 6127 const u64 ino = btrfs_ino(inode); 6128 struct btrfs_root *log = inode->root->log_root; 6129 struct btrfs_item_batch batch = { 6130 .nr = 0, 6131 .total_data_size = 0, 6132 }; 6133 const struct btrfs_delayed_item *first = NULL; 6134 const struct btrfs_delayed_item *curr; 6135 char *ins_data; 6136 struct btrfs_key *ins_keys; 6137 u32 *ins_sizes; 6138 u64 curr_batch_size = 0; 6139 int batch_idx = 0; 6140 int ret; 6141 6142 /* We are adding dir index items to the log tree. */ 6143 lockdep_assert_held(&inode->log_mutex); 6144 6145 /* 6146 * We collect delayed items before copying index keys from the subvolume 6147 * to the log tree. However just after we collected them, they may have 6148 * been flushed (all of them or just some of them), and therefore we 6149 * could have copied them from the subvolume tree to the log tree. 6150 * So find the first delayed item that was not yet logged (they are 6151 * sorted by index number). 6152 */ 6153 list_for_each_entry(curr, delayed_ins_list, log_list) { 6154 if (curr->index > inode->last_dir_index_offset) { 6155 first = curr; 6156 break; 6157 } 6158 } 6159 6160 /* Empty list or all delayed items were already logged. */ 6161 if (!first) 6162 return 0; 6163 6164 ins_data = kmalloc(max_batch_size * sizeof(u32) + 6165 max_batch_size * sizeof(struct btrfs_key), GFP_NOFS); 6166 if (!ins_data) 6167 return -ENOMEM; 6168 ins_sizes = (u32 *)ins_data; 6169 batch.data_sizes = ins_sizes; 6170 ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32)); 6171 batch.keys = ins_keys; 6172 6173 curr = first; 6174 while (!list_entry_is_head(curr, delayed_ins_list, log_list)) { 6175 const u32 curr_size = curr->data_len + sizeof(struct btrfs_item); 6176 6177 if (curr_batch_size + curr_size > leaf_data_size || 6178 batch.nr == max_batch_size) { 6179 ret = insert_delayed_items_batch(trans, log, path, 6180 &batch, first); 6181 if (ret) 6182 goto out; 6183 batch_idx = 0; 6184 batch.nr = 0; 6185 batch.total_data_size = 0; 6186 curr_batch_size = 0; 6187 first = curr; 6188 } 6189 6190 ins_sizes[batch_idx] = curr->data_len; 6191 ins_keys[batch_idx].objectid = ino; 6192 ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY; 6193 ins_keys[batch_idx].offset = curr->index; 6194 curr_batch_size += curr_size; 6195 batch.total_data_size += curr->data_len; 6196 batch.nr++; 6197 batch_idx++; 6198 curr = list_next_entry(curr, log_list); 6199 } 6200 6201 ASSERT(batch.nr >= 1); 6202 ret = insert_delayed_items_batch(trans, log, path, &batch, first); 6203 6204 curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item, 6205 log_list); 6206 inode->last_dir_index_offset = curr->index; 6207 out: 6208 kfree(ins_data); 6209 6210 return ret; 6211 } 6212 6213 static int log_delayed_deletions_full(struct btrfs_trans_handle *trans, 6214 struct btrfs_inode *inode, 6215 struct btrfs_path *path, 6216 const struct list_head *delayed_del_list, 6217 struct btrfs_log_ctx *ctx) 6218 { 6219 const u64 ino = btrfs_ino(inode); 6220 const struct btrfs_delayed_item *curr; 6221 6222 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item, 6223 log_list); 6224 6225 while (!list_entry_is_head(curr, delayed_del_list, log_list)) { 6226 u64 first_dir_index = curr->index; 6227 u64 last_dir_index; 6228 const struct btrfs_delayed_item *next; 6229 int ret; 6230 6231 /* 6232 * Find a range of consecutive dir index items to delete. Like 6233 * this we log a single dir range item spanning several contiguous 6234 * dir items instead of logging one range item per dir index item. 6235 */ 6236 next = list_next_entry(curr, log_list); 6237 while (!list_entry_is_head(next, delayed_del_list, log_list)) { 6238 if (next->index != curr->index + 1) 6239 break; 6240 curr = next; 6241 next = list_next_entry(next, log_list); 6242 } 6243 6244 last_dir_index = curr->index; 6245 ASSERT(last_dir_index >= first_dir_index); 6246 6247 ret = insert_dir_log_key(trans, inode->root->log_root, path, 6248 ino, first_dir_index, last_dir_index); 6249 if (ret) 6250 return ret; 6251 curr = list_next_entry(curr, log_list); 6252 } 6253 6254 return 0; 6255 } 6256 6257 static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans, 6258 struct btrfs_inode *inode, 6259 struct btrfs_path *path, 6260 const struct list_head *delayed_del_list, 6261 const struct btrfs_delayed_item *first, 6262 const struct btrfs_delayed_item **last_ret) 6263 { 6264 const struct btrfs_delayed_item *next; 6265 struct extent_buffer *leaf = path->nodes[0]; 6266 const int last_slot = btrfs_header_nritems(leaf) - 1; 6267 int slot = path->slots[0] + 1; 6268 const u64 ino = btrfs_ino(inode); 6269 6270 next = list_next_entry(first, log_list); 6271 6272 while (slot < last_slot && 6273 !list_entry_is_head(next, delayed_del_list, log_list)) { 6274 struct btrfs_key key; 6275 6276 btrfs_item_key_to_cpu(leaf, &key, slot); 6277 if (key.objectid != ino || 6278 key.type != BTRFS_DIR_INDEX_KEY || 6279 key.offset != next->index) 6280 break; 6281 6282 slot++; 6283 *last_ret = next; 6284 next = list_next_entry(next, log_list); 6285 } 6286 6287 return btrfs_del_items(trans, inode->root->log_root, path, 6288 path->slots[0], slot - path->slots[0]); 6289 } 6290 6291 static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans, 6292 struct btrfs_inode *inode, 6293 struct btrfs_path *path, 6294 const struct list_head *delayed_del_list, 6295 struct btrfs_log_ctx *ctx) 6296 { 6297 struct btrfs_root *log = inode->root->log_root; 6298 const struct btrfs_delayed_item *curr; 6299 u64 last_range_start = 0; 6300 u64 last_range_end = 0; 6301 struct btrfs_key key; 6302 6303 key.objectid = btrfs_ino(inode); 6304 key.type = BTRFS_DIR_INDEX_KEY; 6305 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item, 6306 log_list); 6307 6308 while (!list_entry_is_head(curr, delayed_del_list, log_list)) { 6309 const struct btrfs_delayed_item *last = curr; 6310 u64 first_dir_index = curr->index; 6311 u64 last_dir_index; 6312 bool deleted_items = false; 6313 int ret; 6314 6315 key.offset = curr->index; 6316 ret = btrfs_search_slot(trans, log, &key, path, -1, 1); 6317 if (ret < 0) { 6318 return ret; 6319 } else if (ret == 0) { 6320 ret = batch_delete_dir_index_items(trans, inode, path, 6321 delayed_del_list, curr, 6322 &last); 6323 if (ret) 6324 return ret; 6325 deleted_items = true; 6326 } 6327 6328 btrfs_release_path(path); 6329 6330 /* 6331 * If we deleted items from the leaf, it means we have a range 6332 * item logging their range, so no need to add one or update an 6333 * existing one. Otherwise we have to log a dir range item. 6334 */ 6335 if (deleted_items) 6336 goto next_batch; 6337 6338 last_dir_index = last->index; 6339 ASSERT(last_dir_index >= first_dir_index); 6340 /* 6341 * If this range starts right after where the previous one ends, 6342 * then we want to reuse the previous range item and change its 6343 * end offset to the end of this range. This is just to minimize 6344 * leaf space usage, by avoiding adding a new range item. 6345 */ 6346 if (last_range_end != 0 && first_dir_index == last_range_end + 1) 6347 first_dir_index = last_range_start; 6348 6349 ret = insert_dir_log_key(trans, log, path, key.objectid, 6350 first_dir_index, last_dir_index); 6351 if (ret) 6352 return ret; 6353 6354 last_range_start = first_dir_index; 6355 last_range_end = last_dir_index; 6356 next_batch: 6357 curr = list_next_entry(last, log_list); 6358 } 6359 6360 return 0; 6361 } 6362 6363 static int log_delayed_deletion_items(struct btrfs_trans_handle *trans, 6364 struct btrfs_inode *inode, 6365 struct btrfs_path *path, 6366 const struct list_head *delayed_del_list, 6367 struct btrfs_log_ctx *ctx) 6368 { 6369 /* 6370 * We are deleting dir index items from the log tree or adding range 6371 * items to it. 6372 */ 6373 lockdep_assert_held(&inode->log_mutex); 6374 6375 if (list_empty(delayed_del_list)) 6376 return 0; 6377 6378 if (ctx->logged_before) 6379 return log_delayed_deletions_incremental(trans, inode, path, 6380 delayed_del_list, ctx); 6381 6382 return log_delayed_deletions_full(trans, inode, path, delayed_del_list, 6383 ctx); 6384 } 6385 6386 /* 6387 * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed 6388 * items instead of the subvolume tree. 6389 */ 6390 static int log_new_delayed_dentries(struct btrfs_trans_handle *trans, 6391 struct btrfs_inode *inode, 6392 const struct list_head *delayed_ins_list, 6393 struct btrfs_log_ctx *ctx) 6394 { 6395 const bool orig_log_new_dentries = ctx->log_new_dentries; 6396 struct btrfs_delayed_item *item; 6397 int ret = 0; 6398 6399 /* 6400 * No need for the log mutex, plus to avoid potential deadlocks or 6401 * lockdep annotations due to nesting of delayed inode mutexes and log 6402 * mutexes. 6403 */ 6404 lockdep_assert_not_held(&inode->log_mutex); 6405 6406 ASSERT(!ctx->logging_new_delayed_dentries); 6407 ctx->logging_new_delayed_dentries = true; 6408 6409 list_for_each_entry(item, delayed_ins_list, log_list) { 6410 struct btrfs_dir_item *dir_item; 6411 struct btrfs_inode *di_inode; 6412 struct btrfs_key key; 6413 int log_mode = LOG_INODE_EXISTS; 6414 6415 dir_item = (struct btrfs_dir_item *)item->data; 6416 btrfs_disk_key_to_cpu(&key, &dir_item->location); 6417 6418 if (key.type == BTRFS_ROOT_ITEM_KEY) 6419 continue; 6420 6421 di_inode = btrfs_iget_logging(key.objectid, inode->root); 6422 if (IS_ERR(di_inode)) { 6423 ret = PTR_ERR(di_inode); 6424 break; 6425 } 6426 6427 if (!need_log_inode(trans, di_inode)) { 6428 btrfs_add_delayed_iput(di_inode); 6429 continue; 6430 } 6431 6432 if (btrfs_stack_dir_ftype(dir_item) == BTRFS_FT_DIR) 6433 log_mode = LOG_INODE_ALL; 6434 6435 ctx->log_new_dentries = false; 6436 ret = btrfs_log_inode(trans, di_inode, log_mode, ctx); 6437 6438 if (!ret && ctx->log_new_dentries) 6439 ret = log_new_dir_dentries(trans, di_inode, ctx); 6440 6441 btrfs_add_delayed_iput(di_inode); 6442 6443 if (ret) 6444 break; 6445 } 6446 6447 ctx->log_new_dentries = orig_log_new_dentries; 6448 ctx->logging_new_delayed_dentries = false; 6449 6450 return ret; 6451 } 6452 6453 /* log a single inode in the tree log. 6454 * At least one parent directory for this inode must exist in the tree 6455 * or be logged already. 6456 * 6457 * Any items from this inode changed by the current transaction are copied 6458 * to the log tree. An extra reference is taken on any extents in this 6459 * file, allowing us to avoid a whole pile of corner cases around logging 6460 * blocks that have been removed from the tree. 6461 * 6462 * See LOG_INODE_ALL and related defines for a description of what inode_only 6463 * does. 6464 * 6465 * This handles both files and directories. 6466 */ 6467 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 6468 struct btrfs_inode *inode, 6469 int inode_only, 6470 struct btrfs_log_ctx *ctx) 6471 { 6472 struct btrfs_path *path; 6473 struct btrfs_path *dst_path; 6474 struct btrfs_key min_key; 6475 struct btrfs_key max_key; 6476 struct btrfs_root *log = inode->root->log_root; 6477 int ret; 6478 bool fast_search = false; 6479 u64 ino = btrfs_ino(inode); 6480 struct extent_map_tree *em_tree = &inode->extent_tree; 6481 u64 logged_isize = 0; 6482 bool need_log_inode_item = true; 6483 bool xattrs_logged = false; 6484 bool inode_item_dropped = true; 6485 bool full_dir_logging = false; 6486 LIST_HEAD(delayed_ins_list); 6487 LIST_HEAD(delayed_del_list); 6488 6489 path = btrfs_alloc_path(); 6490 if (!path) 6491 return -ENOMEM; 6492 dst_path = btrfs_alloc_path(); 6493 if (!dst_path) { 6494 btrfs_free_path(path); 6495 return -ENOMEM; 6496 } 6497 6498 min_key.objectid = ino; 6499 min_key.type = BTRFS_INODE_ITEM_KEY; 6500 min_key.offset = 0; 6501 6502 max_key.objectid = ino; 6503 6504 6505 /* today the code can only do partial logging of directories */ 6506 if (S_ISDIR(inode->vfs_inode.i_mode) || 6507 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 6508 &inode->runtime_flags) && 6509 inode_only >= LOG_INODE_EXISTS)) 6510 max_key.type = BTRFS_XATTR_ITEM_KEY; 6511 else 6512 max_key.type = (u8)-1; 6513 max_key.offset = (u64)-1; 6514 6515 if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL) 6516 full_dir_logging = true; 6517 6518 /* 6519 * If we are logging a directory while we are logging dentries of the 6520 * delayed items of some other inode, then we need to flush the delayed 6521 * items of this directory and not log the delayed items directly. This 6522 * is to prevent more than one level of recursion into btrfs_log_inode() 6523 * by having something like this: 6524 * 6525 * $ mkdir -p a/b/c/d/e/f/g/h/... 6526 * $ xfs_io -c "fsync" a 6527 * 6528 * Where all directories in the path did not exist before and are 6529 * created in the current transaction. 6530 * So in such a case we directly log the delayed items of the main 6531 * directory ("a") without flushing them first, while for each of its 6532 * subdirectories we flush their delayed items before logging them. 6533 * This prevents a potential unbounded recursion like this: 6534 * 6535 * btrfs_log_inode() 6536 * log_new_delayed_dentries() 6537 * btrfs_log_inode() 6538 * log_new_delayed_dentries() 6539 * btrfs_log_inode() 6540 * log_new_delayed_dentries() 6541 * (...) 6542 * 6543 * We have thresholds for the maximum number of delayed items to have in 6544 * memory, and once they are hit, the items are flushed asynchronously. 6545 * However the limit is quite high, so lets prevent deep levels of 6546 * recursion to happen by limiting the maximum depth to be 1. 6547 */ 6548 if (full_dir_logging && ctx->logging_new_delayed_dentries) { 6549 ret = btrfs_commit_inode_delayed_items(trans, inode); 6550 if (ret) 6551 goto out; 6552 } 6553 6554 mutex_lock(&inode->log_mutex); 6555 6556 /* 6557 * For symlinks, we must always log their content, which is stored in an 6558 * inline extent, otherwise we could end up with an empty symlink after 6559 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if 6560 * one attempts to create an empty symlink). 6561 * We don't need to worry about flushing delalloc, because when we create 6562 * the inline extent when the symlink is created (we never have delalloc 6563 * for symlinks). 6564 */ 6565 if (S_ISLNK(inode->vfs_inode.i_mode)) 6566 inode_only = LOG_INODE_ALL; 6567 6568 /* 6569 * Before logging the inode item, cache the value returned by 6570 * inode_logged(), because after that we have the need to figure out if 6571 * the inode was previously logged in this transaction. 6572 */ 6573 ret = inode_logged(trans, inode, path); 6574 if (ret < 0) 6575 goto out_unlock; 6576 ctx->logged_before = (ret == 1); 6577 ret = 0; 6578 6579 /* 6580 * This is for cases where logging a directory could result in losing a 6581 * a file after replaying the log. For example, if we move a file from a 6582 * directory A to a directory B, then fsync directory A, we have no way 6583 * to known the file was moved from A to B, so logging just A would 6584 * result in losing the file after a log replay. 6585 */ 6586 if (full_dir_logging && inode->last_unlink_trans >= trans->transid) { 6587 ret = BTRFS_LOG_FORCE_COMMIT; 6588 goto out_unlock; 6589 } 6590 6591 /* 6592 * a brute force approach to making sure we get the most uptodate 6593 * copies of everything. 6594 */ 6595 if (S_ISDIR(inode->vfs_inode.i_mode)) { 6596 clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags); 6597 if (ctx->logged_before) 6598 ret = drop_inode_items(trans, log, path, inode, 6599 BTRFS_XATTR_ITEM_KEY); 6600 } else { 6601 if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) { 6602 /* 6603 * Make sure the new inode item we write to the log has 6604 * the same isize as the current one (if it exists). 6605 * This is necessary to prevent data loss after log 6606 * replay, and also to prevent doing a wrong expanding 6607 * truncate - for e.g. create file, write 4K into offset 6608 * 0, fsync, write 4K into offset 4096, add hard link, 6609 * fsync some other file (to sync log), power fail - if 6610 * we use the inode's current i_size, after log replay 6611 * we get a 8Kb file, with the last 4Kb extent as a hole 6612 * (zeroes), as if an expanding truncate happened, 6613 * instead of getting a file of 4Kb only. 6614 */ 6615 ret = logged_inode_size(log, inode, path, &logged_isize); 6616 if (ret) 6617 goto out_unlock; 6618 } 6619 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 6620 &inode->runtime_flags)) { 6621 if (inode_only == LOG_INODE_EXISTS) { 6622 max_key.type = BTRFS_XATTR_ITEM_KEY; 6623 if (ctx->logged_before) 6624 ret = drop_inode_items(trans, log, path, 6625 inode, max_key.type); 6626 } else { 6627 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 6628 &inode->runtime_flags); 6629 clear_bit(BTRFS_INODE_COPY_EVERYTHING, 6630 &inode->runtime_flags); 6631 if (ctx->logged_before) 6632 ret = truncate_inode_items(trans, log, 6633 inode, 0, 0); 6634 } 6635 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING, 6636 &inode->runtime_flags) || 6637 inode_only == LOG_INODE_EXISTS) { 6638 if (inode_only == LOG_INODE_ALL) 6639 fast_search = true; 6640 max_key.type = BTRFS_XATTR_ITEM_KEY; 6641 if (ctx->logged_before) 6642 ret = drop_inode_items(trans, log, path, inode, 6643 max_key.type); 6644 } else { 6645 if (inode_only == LOG_INODE_ALL) 6646 fast_search = true; 6647 inode_item_dropped = false; 6648 goto log_extents; 6649 } 6650 6651 } 6652 if (ret) 6653 goto out_unlock; 6654 6655 /* 6656 * If we are logging a directory in full mode, collect the delayed items 6657 * before iterating the subvolume tree, so that we don't miss any new 6658 * dir index items in case they get flushed while or right after we are 6659 * iterating the subvolume tree. 6660 */ 6661 if (full_dir_logging && !ctx->logging_new_delayed_dentries) 6662 btrfs_log_get_delayed_items(inode, &delayed_ins_list, 6663 &delayed_del_list); 6664 6665 /* 6666 * If we are fsyncing a file with 0 hard links, then commit the delayed 6667 * inode because the last inode ref (or extref) item may still be in the 6668 * subvolume tree and if we log it the file will still exist after a log 6669 * replay. So commit the delayed inode to delete that last ref and we 6670 * skip logging it. 6671 */ 6672 if (inode->vfs_inode.i_nlink == 0) { 6673 ret = btrfs_commit_inode_delayed_inode(inode); 6674 if (ret) 6675 goto out_unlock; 6676 } 6677 6678 ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key, 6679 path, dst_path, logged_isize, 6680 inode_only, ctx, 6681 &need_log_inode_item); 6682 if (ret) 6683 goto out_unlock; 6684 6685 btrfs_release_path(path); 6686 btrfs_release_path(dst_path); 6687 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx); 6688 if (ret) 6689 goto out_unlock; 6690 xattrs_logged = true; 6691 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) { 6692 btrfs_release_path(path); 6693 btrfs_release_path(dst_path); 6694 ret = btrfs_log_holes(trans, inode, path); 6695 if (ret) 6696 goto out_unlock; 6697 } 6698 log_extents: 6699 btrfs_release_path(path); 6700 btrfs_release_path(dst_path); 6701 if (need_log_inode_item) { 6702 ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped); 6703 if (ret) 6704 goto out_unlock; 6705 /* 6706 * If we are doing a fast fsync and the inode was logged before 6707 * in this transaction, we don't need to log the xattrs because 6708 * they were logged before. If xattrs were added, changed or 6709 * deleted since the last time we logged the inode, then we have 6710 * already logged them because the inode had the runtime flag 6711 * BTRFS_INODE_COPY_EVERYTHING set. 6712 */ 6713 if (!xattrs_logged && inode->logged_trans < trans->transid) { 6714 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx); 6715 if (ret) 6716 goto out_unlock; 6717 btrfs_release_path(path); 6718 } 6719 } 6720 if (fast_search) { 6721 ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx); 6722 if (ret) 6723 goto out_unlock; 6724 } else if (inode_only == LOG_INODE_ALL) { 6725 struct extent_map *em, *n; 6726 6727 write_lock(&em_tree->lock); 6728 list_for_each_entry_safe(em, n, &em_tree->modified_extents, list) 6729 list_del_init(&em->list); 6730 write_unlock(&em_tree->lock); 6731 } 6732 6733 if (full_dir_logging) { 6734 ret = log_directory_changes(trans, inode, path, dst_path, ctx); 6735 if (ret) 6736 goto out_unlock; 6737 ret = log_delayed_insertion_items(trans, inode, path, 6738 &delayed_ins_list, ctx); 6739 if (ret) 6740 goto out_unlock; 6741 ret = log_delayed_deletion_items(trans, inode, path, 6742 &delayed_del_list, ctx); 6743 if (ret) 6744 goto out_unlock; 6745 } 6746 6747 spin_lock(&inode->lock); 6748 inode->logged_trans = trans->transid; 6749 /* 6750 * Don't update last_log_commit if we logged that an inode exists. 6751 * We do this for three reasons: 6752 * 6753 * 1) We might have had buffered writes to this inode that were 6754 * flushed and had their ordered extents completed in this 6755 * transaction, but we did not previously log the inode with 6756 * LOG_INODE_ALL. Later the inode was evicted and after that 6757 * it was loaded again and this LOG_INODE_EXISTS log operation 6758 * happened. We must make sure that if an explicit fsync against 6759 * the inode is performed later, it logs the new extents, an 6760 * updated inode item, etc, and syncs the log. The same logic 6761 * applies to direct IO writes instead of buffered writes. 6762 * 6763 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item 6764 * is logged with an i_size of 0 or whatever value was logged 6765 * before. If later the i_size of the inode is increased by a 6766 * truncate operation, the log is synced through an fsync of 6767 * some other inode and then finally an explicit fsync against 6768 * this inode is made, we must make sure this fsync logs the 6769 * inode with the new i_size, the hole between old i_size and 6770 * the new i_size, and syncs the log. 6771 * 6772 * 3) If we are logging that an ancestor inode exists as part of 6773 * logging a new name from a link or rename operation, don't update 6774 * its last_log_commit - otherwise if an explicit fsync is made 6775 * against an ancestor, the fsync considers the inode in the log 6776 * and doesn't sync the log, resulting in the ancestor missing after 6777 * a power failure unless the log was synced as part of an fsync 6778 * against any other unrelated inode. 6779 */ 6780 if (inode_only != LOG_INODE_EXISTS) 6781 inode->last_log_commit = inode->last_sub_trans; 6782 spin_unlock(&inode->lock); 6783 6784 /* 6785 * Reset the last_reflink_trans so that the next fsync does not need to 6786 * go through the slower path when logging extents and their checksums. 6787 */ 6788 if (inode_only == LOG_INODE_ALL) 6789 inode->last_reflink_trans = 0; 6790 6791 out_unlock: 6792 mutex_unlock(&inode->log_mutex); 6793 out: 6794 btrfs_free_path(path); 6795 btrfs_free_path(dst_path); 6796 6797 if (ret) 6798 free_conflicting_inodes(ctx); 6799 else 6800 ret = log_conflicting_inodes(trans, inode->root, ctx); 6801 6802 if (full_dir_logging && !ctx->logging_new_delayed_dentries) { 6803 if (!ret) 6804 ret = log_new_delayed_dentries(trans, inode, 6805 &delayed_ins_list, ctx); 6806 6807 btrfs_log_put_delayed_items(inode, &delayed_ins_list, 6808 &delayed_del_list); 6809 } 6810 6811 return ret; 6812 } 6813 6814 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans, 6815 struct btrfs_inode *inode, 6816 struct btrfs_log_ctx *ctx) 6817 { 6818 int ret; 6819 struct btrfs_path *path; 6820 struct btrfs_key key; 6821 struct btrfs_root *root = inode->root; 6822 const u64 ino = btrfs_ino(inode); 6823 6824 path = btrfs_alloc_path(); 6825 if (!path) 6826 return -ENOMEM; 6827 path->skip_locking = 1; 6828 path->search_commit_root = 1; 6829 6830 key.objectid = ino; 6831 key.type = BTRFS_INODE_REF_KEY; 6832 key.offset = 0; 6833 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6834 if (ret < 0) 6835 goto out; 6836 6837 while (true) { 6838 struct extent_buffer *leaf = path->nodes[0]; 6839 int slot = path->slots[0]; 6840 u32 cur_offset = 0; 6841 u32 item_size; 6842 unsigned long ptr; 6843 6844 if (slot >= btrfs_header_nritems(leaf)) { 6845 ret = btrfs_next_leaf(root, path); 6846 if (ret < 0) 6847 goto out; 6848 else if (ret > 0) 6849 break; 6850 continue; 6851 } 6852 6853 btrfs_item_key_to_cpu(leaf, &key, slot); 6854 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */ 6855 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY) 6856 break; 6857 6858 item_size = btrfs_item_size(leaf, slot); 6859 ptr = btrfs_item_ptr_offset(leaf, slot); 6860 while (cur_offset < item_size) { 6861 struct btrfs_key inode_key; 6862 struct btrfs_inode *dir_inode; 6863 6864 inode_key.type = BTRFS_INODE_ITEM_KEY; 6865 inode_key.offset = 0; 6866 6867 if (key.type == BTRFS_INODE_EXTREF_KEY) { 6868 struct btrfs_inode_extref *extref; 6869 6870 extref = (struct btrfs_inode_extref *) 6871 (ptr + cur_offset); 6872 inode_key.objectid = btrfs_inode_extref_parent( 6873 leaf, extref); 6874 cur_offset += sizeof(*extref); 6875 cur_offset += btrfs_inode_extref_name_len(leaf, 6876 extref); 6877 } else { 6878 inode_key.objectid = key.offset; 6879 cur_offset = item_size; 6880 } 6881 6882 dir_inode = btrfs_iget_logging(inode_key.objectid, root); 6883 /* 6884 * If the parent inode was deleted, return an error to 6885 * fallback to a transaction commit. This is to prevent 6886 * getting an inode that was moved from one parent A to 6887 * a parent B, got its former parent A deleted and then 6888 * it got fsync'ed, from existing at both parents after 6889 * a log replay (and the old parent still existing). 6890 * Example: 6891 * 6892 * mkdir /mnt/A 6893 * mkdir /mnt/B 6894 * touch /mnt/B/bar 6895 * sync 6896 * mv /mnt/B/bar /mnt/A/bar 6897 * mv -T /mnt/A /mnt/B 6898 * fsync /mnt/B/bar 6899 * <power fail> 6900 * 6901 * If we ignore the old parent B which got deleted, 6902 * after a log replay we would have file bar linked 6903 * at both parents and the old parent B would still 6904 * exist. 6905 */ 6906 if (IS_ERR(dir_inode)) { 6907 ret = PTR_ERR(dir_inode); 6908 goto out; 6909 } 6910 6911 if (!need_log_inode(trans, dir_inode)) { 6912 btrfs_add_delayed_iput(dir_inode); 6913 continue; 6914 } 6915 6916 ctx->log_new_dentries = false; 6917 ret = btrfs_log_inode(trans, dir_inode, LOG_INODE_ALL, ctx); 6918 if (!ret && ctx->log_new_dentries) 6919 ret = log_new_dir_dentries(trans, dir_inode, ctx); 6920 btrfs_add_delayed_iput(dir_inode); 6921 if (ret) 6922 goto out; 6923 } 6924 path->slots[0]++; 6925 } 6926 ret = 0; 6927 out: 6928 btrfs_free_path(path); 6929 return ret; 6930 } 6931 6932 static int log_new_ancestors(struct btrfs_trans_handle *trans, 6933 struct btrfs_root *root, 6934 struct btrfs_path *path, 6935 struct btrfs_log_ctx *ctx) 6936 { 6937 struct btrfs_key found_key; 6938 6939 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 6940 6941 while (true) { 6942 struct extent_buffer *leaf; 6943 int slot; 6944 struct btrfs_key search_key; 6945 struct btrfs_inode *inode; 6946 u64 ino; 6947 int ret = 0; 6948 6949 btrfs_release_path(path); 6950 6951 ino = found_key.offset; 6952 6953 search_key.objectid = found_key.offset; 6954 search_key.type = BTRFS_INODE_ITEM_KEY; 6955 search_key.offset = 0; 6956 inode = btrfs_iget_logging(ino, root); 6957 if (IS_ERR(inode)) 6958 return PTR_ERR(inode); 6959 6960 if (inode->generation >= trans->transid && 6961 need_log_inode(trans, inode)) 6962 ret = btrfs_log_inode(trans, inode, LOG_INODE_EXISTS, ctx); 6963 btrfs_add_delayed_iput(inode); 6964 if (ret) 6965 return ret; 6966 6967 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID) 6968 break; 6969 6970 search_key.type = BTRFS_INODE_REF_KEY; 6971 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 6972 if (ret < 0) 6973 return ret; 6974 6975 leaf = path->nodes[0]; 6976 slot = path->slots[0]; 6977 if (slot >= btrfs_header_nritems(leaf)) { 6978 ret = btrfs_next_leaf(root, path); 6979 if (ret < 0) 6980 return ret; 6981 else if (ret > 0) 6982 return -ENOENT; 6983 leaf = path->nodes[0]; 6984 slot = path->slots[0]; 6985 } 6986 6987 btrfs_item_key_to_cpu(leaf, &found_key, slot); 6988 if (found_key.objectid != search_key.objectid || 6989 found_key.type != BTRFS_INODE_REF_KEY) 6990 return -ENOENT; 6991 } 6992 return 0; 6993 } 6994 6995 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans, 6996 struct btrfs_inode *inode, 6997 struct dentry *parent, 6998 struct btrfs_log_ctx *ctx) 6999 { 7000 struct btrfs_root *root = inode->root; 7001 struct dentry *old_parent = NULL; 7002 struct super_block *sb = inode->vfs_inode.i_sb; 7003 int ret = 0; 7004 7005 while (true) { 7006 if (!parent || d_really_is_negative(parent) || 7007 sb != parent->d_sb) 7008 break; 7009 7010 inode = BTRFS_I(d_inode(parent)); 7011 if (root != inode->root) 7012 break; 7013 7014 if (inode->generation >= trans->transid && 7015 need_log_inode(trans, inode)) { 7016 ret = btrfs_log_inode(trans, inode, 7017 LOG_INODE_EXISTS, ctx); 7018 if (ret) 7019 break; 7020 } 7021 if (IS_ROOT(parent)) 7022 break; 7023 7024 parent = dget_parent(parent); 7025 dput(old_parent); 7026 old_parent = parent; 7027 } 7028 dput(old_parent); 7029 7030 return ret; 7031 } 7032 7033 static int log_all_new_ancestors(struct btrfs_trans_handle *trans, 7034 struct btrfs_inode *inode, 7035 struct dentry *parent, 7036 struct btrfs_log_ctx *ctx) 7037 { 7038 struct btrfs_root *root = inode->root; 7039 const u64 ino = btrfs_ino(inode); 7040 struct btrfs_path *path; 7041 struct btrfs_key search_key; 7042 int ret; 7043 7044 /* 7045 * For a single hard link case, go through a fast path that does not 7046 * need to iterate the fs/subvolume tree. 7047 */ 7048 if (inode->vfs_inode.i_nlink < 2) 7049 return log_new_ancestors_fast(trans, inode, parent, ctx); 7050 7051 path = btrfs_alloc_path(); 7052 if (!path) 7053 return -ENOMEM; 7054 7055 search_key.objectid = ino; 7056 search_key.type = BTRFS_INODE_REF_KEY; 7057 search_key.offset = 0; 7058 again: 7059 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 7060 if (ret < 0) 7061 goto out; 7062 if (ret == 0) 7063 path->slots[0]++; 7064 7065 while (true) { 7066 struct extent_buffer *leaf = path->nodes[0]; 7067 int slot = path->slots[0]; 7068 struct btrfs_key found_key; 7069 7070 if (slot >= btrfs_header_nritems(leaf)) { 7071 ret = btrfs_next_leaf(root, path); 7072 if (ret < 0) 7073 goto out; 7074 else if (ret > 0) 7075 break; 7076 continue; 7077 } 7078 7079 btrfs_item_key_to_cpu(leaf, &found_key, slot); 7080 if (found_key.objectid != ino || 7081 found_key.type > BTRFS_INODE_EXTREF_KEY) 7082 break; 7083 7084 /* 7085 * Don't deal with extended references because they are rare 7086 * cases and too complex to deal with (we would need to keep 7087 * track of which subitem we are processing for each item in 7088 * this loop, etc). So just return some error to fallback to 7089 * a transaction commit. 7090 */ 7091 if (found_key.type == BTRFS_INODE_EXTREF_KEY) { 7092 ret = -EMLINK; 7093 goto out; 7094 } 7095 7096 /* 7097 * Logging ancestors needs to do more searches on the fs/subvol 7098 * tree, so it releases the path as needed to avoid deadlocks. 7099 * Keep track of the last inode ref key and resume from that key 7100 * after logging all new ancestors for the current hard link. 7101 */ 7102 memcpy(&search_key, &found_key, sizeof(search_key)); 7103 7104 ret = log_new_ancestors(trans, root, path, ctx); 7105 if (ret) 7106 goto out; 7107 btrfs_release_path(path); 7108 goto again; 7109 } 7110 ret = 0; 7111 out: 7112 btrfs_free_path(path); 7113 return ret; 7114 } 7115 7116 /* 7117 * helper function around btrfs_log_inode to make sure newly created 7118 * parent directories also end up in the log. A minimal inode and backref 7119 * only logging is done of any parent directories that are older than 7120 * the last committed transaction 7121 */ 7122 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans, 7123 struct btrfs_inode *inode, 7124 struct dentry *parent, 7125 int inode_only, 7126 struct btrfs_log_ctx *ctx) 7127 { 7128 struct btrfs_root *root = inode->root; 7129 struct btrfs_fs_info *fs_info = root->fs_info; 7130 int ret = 0; 7131 bool log_dentries; 7132 7133 if (btrfs_test_opt(fs_info, NOTREELOG)) 7134 return BTRFS_LOG_FORCE_COMMIT; 7135 7136 if (btrfs_root_refs(&root->root_item) == 0) 7137 return BTRFS_LOG_FORCE_COMMIT; 7138 7139 /* 7140 * If we're logging an inode from a subvolume created in the current 7141 * transaction we must force a commit since the root is not persisted. 7142 */ 7143 if (btrfs_root_generation(&root->root_item) == trans->transid) 7144 return BTRFS_LOG_FORCE_COMMIT; 7145 7146 /* Skip already logged inodes and without new extents. */ 7147 if (btrfs_inode_in_log(inode, trans->transid) && 7148 list_empty(&ctx->ordered_extents)) 7149 return BTRFS_NO_LOG_SYNC; 7150 7151 ret = start_log_trans(trans, root, ctx); 7152 if (ret) 7153 return ret; 7154 7155 ret = btrfs_log_inode(trans, inode, inode_only, ctx); 7156 if (ret) 7157 goto end_trans; 7158 7159 /* 7160 * for regular files, if its inode is already on disk, we don't 7161 * have to worry about the parents at all. This is because 7162 * we can use the last_unlink_trans field to record renames 7163 * and other fun in this file. 7164 */ 7165 if (S_ISREG(inode->vfs_inode.i_mode) && 7166 inode->generation < trans->transid && 7167 inode->last_unlink_trans < trans->transid) { 7168 ret = 0; 7169 goto end_trans; 7170 } 7171 7172 /* 7173 * Track if we need to log dentries because ctx->log_new_dentries can 7174 * be modified in the call chains below. 7175 */ 7176 log_dentries = ctx->log_new_dentries; 7177 7178 /* 7179 * On unlink we must make sure all our current and old parent directory 7180 * inodes are fully logged. This is to prevent leaving dangling 7181 * directory index entries in directories that were our parents but are 7182 * not anymore. Not doing this results in old parent directory being 7183 * impossible to delete after log replay (rmdir will always fail with 7184 * error -ENOTEMPTY). 7185 * 7186 * Example 1: 7187 * 7188 * mkdir testdir 7189 * touch testdir/foo 7190 * ln testdir/foo testdir/bar 7191 * sync 7192 * unlink testdir/bar 7193 * xfs_io -c fsync testdir/foo 7194 * <power failure> 7195 * mount fs, triggers log replay 7196 * 7197 * If we don't log the parent directory (testdir), after log replay the 7198 * directory still has an entry pointing to the file inode using the bar 7199 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and 7200 * the file inode has a link count of 1. 7201 * 7202 * Example 2: 7203 * 7204 * mkdir testdir 7205 * touch foo 7206 * ln foo testdir/foo2 7207 * ln foo testdir/foo3 7208 * sync 7209 * unlink testdir/foo3 7210 * xfs_io -c fsync foo 7211 * <power failure> 7212 * mount fs, triggers log replay 7213 * 7214 * Similar as the first example, after log replay the parent directory 7215 * testdir still has an entry pointing to the inode file with name foo3 7216 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item 7217 * and has a link count of 2. 7218 */ 7219 if (inode->last_unlink_trans >= trans->transid) { 7220 ret = btrfs_log_all_parents(trans, inode, ctx); 7221 if (ret) 7222 goto end_trans; 7223 } 7224 7225 ret = log_all_new_ancestors(trans, inode, parent, ctx); 7226 if (ret) 7227 goto end_trans; 7228 7229 if (log_dentries) 7230 ret = log_new_dir_dentries(trans, inode, ctx); 7231 end_trans: 7232 if (ret < 0) { 7233 btrfs_set_log_full_commit(trans); 7234 ret = BTRFS_LOG_FORCE_COMMIT; 7235 } 7236 7237 if (ret) 7238 btrfs_remove_log_ctx(root, ctx); 7239 btrfs_end_log_trans(root); 7240 7241 return ret; 7242 } 7243 7244 /* 7245 * it is not safe to log dentry if the chunk root has added new 7246 * chunks. This returns 0 if the dentry was logged, and 1 otherwise. 7247 * If this returns 1, you must commit the transaction to safely get your 7248 * data on disk. 7249 */ 7250 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans, 7251 struct dentry *dentry, 7252 struct btrfs_log_ctx *ctx) 7253 { 7254 struct dentry *parent = dget_parent(dentry); 7255 int ret; 7256 7257 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent, 7258 LOG_INODE_ALL, ctx); 7259 dput(parent); 7260 7261 return ret; 7262 } 7263 7264 /* 7265 * should be called during mount to recover any replay any log trees 7266 * from the FS 7267 */ 7268 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree) 7269 { 7270 int ret; 7271 struct btrfs_path *path; 7272 struct btrfs_trans_handle *trans; 7273 struct btrfs_key key; 7274 struct btrfs_fs_info *fs_info = log_root_tree->fs_info; 7275 struct walk_control wc = { 7276 .process_func = process_one_buffer, 7277 .stage = LOG_WALK_PIN_ONLY, 7278 }; 7279 7280 path = btrfs_alloc_path(); 7281 if (!path) 7282 return -ENOMEM; 7283 7284 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 7285 7286 trans = btrfs_start_transaction(fs_info->tree_root, 0); 7287 if (IS_ERR(trans)) { 7288 ret = PTR_ERR(trans); 7289 goto error; 7290 } 7291 7292 wc.trans = trans; 7293 wc.pin = 1; 7294 7295 ret = walk_log_tree(trans, log_root_tree, &wc); 7296 if (ret) { 7297 btrfs_abort_transaction(trans, ret); 7298 goto error; 7299 } 7300 7301 again: 7302 key.objectid = BTRFS_TREE_LOG_OBJECTID; 7303 key.type = BTRFS_ROOT_ITEM_KEY; 7304 key.offset = (u64)-1; 7305 7306 while (1) { 7307 struct btrfs_root *log; 7308 struct btrfs_key found_key; 7309 7310 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0); 7311 7312 if (ret < 0) { 7313 btrfs_abort_transaction(trans, ret); 7314 goto error; 7315 } 7316 if (ret > 0) { 7317 if (path->slots[0] == 0) 7318 break; 7319 path->slots[0]--; 7320 } 7321 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 7322 path->slots[0]); 7323 btrfs_release_path(path); 7324 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID) 7325 break; 7326 7327 log = btrfs_read_tree_root(log_root_tree, &found_key); 7328 if (IS_ERR(log)) { 7329 ret = PTR_ERR(log); 7330 btrfs_abort_transaction(trans, ret); 7331 goto error; 7332 } 7333 7334 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset, 7335 true); 7336 if (IS_ERR(wc.replay_dest)) { 7337 ret = PTR_ERR(wc.replay_dest); 7338 wc.replay_dest = NULL; 7339 if (ret != -ENOENT) { 7340 btrfs_put_root(log); 7341 btrfs_abort_transaction(trans, ret); 7342 goto error; 7343 } 7344 7345 /* 7346 * We didn't find the subvol, likely because it was 7347 * deleted. This is ok, simply skip this log and go to 7348 * the next one. 7349 * 7350 * We need to exclude the root because we can't have 7351 * other log replays overwriting this log as we'll read 7352 * it back in a few more times. This will keep our 7353 * block from being modified, and we'll just bail for 7354 * each subsequent pass. 7355 */ 7356 ret = btrfs_pin_extent_for_log_replay(trans, log->node); 7357 if (ret) { 7358 btrfs_put_root(log); 7359 btrfs_abort_transaction(trans, ret); 7360 goto error; 7361 } 7362 goto next; 7363 } 7364 7365 wc.replay_dest->log_root = log; 7366 ret = btrfs_record_root_in_trans(trans, wc.replay_dest); 7367 if (ret) { 7368 btrfs_abort_transaction(trans, ret); 7369 goto next; 7370 } 7371 7372 ret = walk_log_tree(trans, log, &wc); 7373 if (ret) { 7374 btrfs_abort_transaction(trans, ret); 7375 goto next; 7376 } 7377 7378 if (wc.stage == LOG_WALK_REPLAY_ALL) { 7379 struct btrfs_root *root = wc.replay_dest; 7380 7381 ret = fixup_inode_link_counts(trans, wc.replay_dest, path); 7382 if (ret) { 7383 btrfs_abort_transaction(trans, ret); 7384 goto next; 7385 } 7386 /* 7387 * We have just replayed everything, and the highest 7388 * objectid of fs roots probably has changed in case 7389 * some inode_item's got replayed. 7390 * 7391 * root->objectid_mutex is not acquired as log replay 7392 * could only happen during mount. 7393 */ 7394 ret = btrfs_init_root_free_objectid(root); 7395 if (ret) { 7396 btrfs_abort_transaction(trans, ret); 7397 goto next; 7398 } 7399 } 7400 next: 7401 if (wc.replay_dest) { 7402 wc.replay_dest->log_root = NULL; 7403 btrfs_put_root(wc.replay_dest); 7404 } 7405 btrfs_put_root(log); 7406 7407 if (ret) 7408 goto error; 7409 if (found_key.offset == 0) 7410 break; 7411 key.offset = found_key.offset - 1; 7412 } 7413 btrfs_release_path(path); 7414 7415 /* step one is to pin it all, step two is to replay just inodes */ 7416 if (wc.pin) { 7417 wc.pin = 0; 7418 wc.process_func = replay_one_buffer; 7419 wc.stage = LOG_WALK_REPLAY_INODES; 7420 goto again; 7421 } 7422 /* step three is to replay everything */ 7423 if (wc.stage < LOG_WALK_REPLAY_ALL) { 7424 wc.stage++; 7425 goto again; 7426 } 7427 7428 btrfs_free_path(path); 7429 7430 /* step 4: commit the transaction, which also unpins the blocks */ 7431 ret = btrfs_commit_transaction(trans); 7432 if (ret) 7433 return ret; 7434 7435 log_root_tree->log_root = NULL; 7436 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 7437 btrfs_put_root(log_root_tree); 7438 7439 return 0; 7440 error: 7441 if (wc.trans) 7442 btrfs_end_transaction(wc.trans); 7443 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 7444 btrfs_free_path(path); 7445 return ret; 7446 } 7447 7448 /* 7449 * there are some corner cases where we want to force a full 7450 * commit instead of allowing a directory to be logged. 7451 * 7452 * They revolve around files there were unlinked from the directory, and 7453 * this function updates the parent directory so that a full commit is 7454 * properly done if it is fsync'd later after the unlinks are done. 7455 * 7456 * Must be called before the unlink operations (updates to the subvolume tree, 7457 * inodes, etc) are done. 7458 */ 7459 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans, 7460 struct btrfs_inode *dir, struct btrfs_inode *inode, 7461 bool for_rename) 7462 { 7463 /* 7464 * when we're logging a file, if it hasn't been renamed 7465 * or unlinked, and its inode is fully committed on disk, 7466 * we don't have to worry about walking up the directory chain 7467 * to log its parents. 7468 * 7469 * So, we use the last_unlink_trans field to put this transid 7470 * into the file. When the file is logged we check it and 7471 * don't log the parents if the file is fully on disk. 7472 */ 7473 mutex_lock(&inode->log_mutex); 7474 inode->last_unlink_trans = trans->transid; 7475 mutex_unlock(&inode->log_mutex); 7476 7477 if (!for_rename) 7478 return; 7479 7480 /* 7481 * If this directory was already logged, any new names will be logged 7482 * with btrfs_log_new_name() and old names will be deleted from the log 7483 * tree with btrfs_del_dir_entries_in_log() or with 7484 * btrfs_del_inode_ref_in_log(). 7485 */ 7486 if (inode_logged(trans, dir, NULL) == 1) 7487 return; 7488 7489 /* 7490 * If the inode we're about to unlink was logged before, the log will be 7491 * properly updated with the new name with btrfs_log_new_name() and the 7492 * old name removed with btrfs_del_dir_entries_in_log() or with 7493 * btrfs_del_inode_ref_in_log(). 7494 */ 7495 if (inode_logged(trans, inode, NULL) == 1) 7496 return; 7497 7498 /* 7499 * when renaming files across directories, if the directory 7500 * there we're unlinking from gets fsync'd later on, there's 7501 * no way to find the destination directory later and fsync it 7502 * properly. So, we have to be conservative and force commits 7503 * so the new name gets discovered. 7504 */ 7505 mutex_lock(&dir->log_mutex); 7506 dir->last_unlink_trans = trans->transid; 7507 mutex_unlock(&dir->log_mutex); 7508 } 7509 7510 /* 7511 * Make sure that if someone attempts to fsync the parent directory of a deleted 7512 * snapshot, it ends up triggering a transaction commit. This is to guarantee 7513 * that after replaying the log tree of the parent directory's root we will not 7514 * see the snapshot anymore and at log replay time we will not see any log tree 7515 * corresponding to the deleted snapshot's root, which could lead to replaying 7516 * it after replaying the log tree of the parent directory (which would replay 7517 * the snapshot delete operation). 7518 * 7519 * Must be called before the actual snapshot destroy operation (updates to the 7520 * parent root and tree of tree roots trees, etc) are done. 7521 */ 7522 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans, 7523 struct btrfs_inode *dir) 7524 { 7525 mutex_lock(&dir->log_mutex); 7526 dir->last_unlink_trans = trans->transid; 7527 mutex_unlock(&dir->log_mutex); 7528 } 7529 7530 /* 7531 * Call this when creating a subvolume in a directory. 7532 * Because we don't commit a transaction when creating a subvolume, we can't 7533 * allow the directory pointing to the subvolume to be logged with an entry that 7534 * points to an unpersisted root if we are still in the transaction used to 7535 * create the subvolume, so make any attempt to log the directory to result in a 7536 * full log sync. 7537 * Also we don't need to worry with renames, since btrfs_rename() marks the log 7538 * for full commit when renaming a subvolume. 7539 * 7540 * Must be called before creating the subvolume entry in its parent directory. 7541 */ 7542 void btrfs_record_new_subvolume(const struct btrfs_trans_handle *trans, 7543 struct btrfs_inode *dir) 7544 { 7545 mutex_lock(&dir->log_mutex); 7546 dir->last_unlink_trans = trans->transid; 7547 mutex_unlock(&dir->log_mutex); 7548 } 7549 7550 /* 7551 * Update the log after adding a new name for an inode. 7552 * 7553 * @trans: Transaction handle. 7554 * @old_dentry: The dentry associated with the old name and the old 7555 * parent directory. 7556 * @old_dir: The inode of the previous parent directory for the case 7557 * of a rename. For a link operation, it must be NULL. 7558 * @old_dir_index: The index number associated with the old name, meaningful 7559 * only for rename operations (when @old_dir is not NULL). 7560 * Ignored for link operations. 7561 * @parent: The dentry associated with the directory under which the 7562 * new name is located. 7563 * 7564 * Call this after adding a new name for an inode, as a result of a link or 7565 * rename operation, and it will properly update the log to reflect the new name. 7566 */ 7567 void btrfs_log_new_name(struct btrfs_trans_handle *trans, 7568 struct dentry *old_dentry, struct btrfs_inode *old_dir, 7569 u64 old_dir_index, struct dentry *parent) 7570 { 7571 struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry)); 7572 struct btrfs_root *root = inode->root; 7573 struct btrfs_log_ctx ctx; 7574 bool log_pinned = false; 7575 int ret; 7576 7577 btrfs_init_log_ctx(&ctx, inode); 7578 ctx.logging_new_name = true; 7579 7580 /* 7581 * this will force the logging code to walk the dentry chain 7582 * up for the file 7583 */ 7584 if (!S_ISDIR(inode->vfs_inode.i_mode)) 7585 inode->last_unlink_trans = trans->transid; 7586 7587 /* 7588 * if this inode hasn't been logged and directory we're renaming it 7589 * from hasn't been logged, we don't need to log it 7590 */ 7591 ret = inode_logged(trans, inode, NULL); 7592 if (ret < 0) { 7593 goto out; 7594 } else if (ret == 0) { 7595 if (!old_dir) 7596 return; 7597 /* 7598 * If the inode was not logged and we are doing a rename (old_dir is not 7599 * NULL), check if old_dir was logged - if it was not we can return and 7600 * do nothing. 7601 */ 7602 ret = inode_logged(trans, old_dir, NULL); 7603 if (ret < 0) 7604 goto out; 7605 else if (ret == 0) 7606 return; 7607 } 7608 ret = 0; 7609 7610 /* 7611 * Now that we know we need to update the log, allocate the scratch eb 7612 * for the context before joining a log transaction below, as this can 7613 * take time and therefore we could delay log commits from other tasks. 7614 */ 7615 btrfs_init_log_ctx_scratch_eb(&ctx); 7616 7617 /* 7618 * If we are doing a rename (old_dir is not NULL) from a directory that 7619 * was previously logged, make sure that on log replay we get the old 7620 * dir entry deleted. This is needed because we will also log the new 7621 * name of the renamed inode, so we need to make sure that after log 7622 * replay we don't end up with both the new and old dir entries existing. 7623 */ 7624 if (old_dir && old_dir->logged_trans == trans->transid) { 7625 struct btrfs_root *log = old_dir->root->log_root; 7626 struct btrfs_path *path; 7627 struct fscrypt_name fname; 7628 7629 ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX); 7630 7631 ret = fscrypt_setup_filename(&old_dir->vfs_inode, 7632 &old_dentry->d_name, 0, &fname); 7633 if (ret) 7634 goto out; 7635 7636 path = btrfs_alloc_path(); 7637 if (!path) { 7638 ret = -ENOMEM; 7639 fscrypt_free_filename(&fname); 7640 goto out; 7641 } 7642 7643 /* 7644 * We have two inodes to update in the log, the old directory and 7645 * the inode that got renamed, so we must pin the log to prevent 7646 * anyone from syncing the log until we have updated both inodes 7647 * in the log. 7648 */ 7649 ret = join_running_log_trans(root); 7650 /* 7651 * At least one of the inodes was logged before, so this should 7652 * not fail, but if it does, it's not serious, just bail out and 7653 * mark the log for a full commit. 7654 */ 7655 if (WARN_ON_ONCE(ret < 0)) { 7656 btrfs_free_path(path); 7657 fscrypt_free_filename(&fname); 7658 goto out; 7659 } 7660 7661 log_pinned = true; 7662 7663 /* 7664 * Other concurrent task might be logging the old directory, 7665 * as it can be triggered when logging other inode that had or 7666 * still has a dentry in the old directory. We lock the old 7667 * directory's log_mutex to ensure the deletion of the old 7668 * name is persisted, because during directory logging we 7669 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of 7670 * the old name's dir index item is in the delayed items, so 7671 * it could be missed by an in progress directory logging. 7672 */ 7673 mutex_lock(&old_dir->log_mutex); 7674 ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir), 7675 &fname.disk_name, old_dir_index); 7676 if (ret > 0) { 7677 /* 7678 * The dentry does not exist in the log, so record its 7679 * deletion. 7680 */ 7681 btrfs_release_path(path); 7682 ret = insert_dir_log_key(trans, log, path, 7683 btrfs_ino(old_dir), 7684 old_dir_index, old_dir_index); 7685 } 7686 mutex_unlock(&old_dir->log_mutex); 7687 7688 btrfs_free_path(path); 7689 fscrypt_free_filename(&fname); 7690 if (ret < 0) 7691 goto out; 7692 } 7693 7694 /* 7695 * We don't care about the return value. If we fail to log the new name 7696 * then we know the next attempt to sync the log will fallback to a full 7697 * transaction commit (due to a call to btrfs_set_log_full_commit()), so 7698 * we don't need to worry about getting a log committed that has an 7699 * inconsistent state after a rename operation. 7700 */ 7701 btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx); 7702 ASSERT(list_empty(&ctx.conflict_inodes)); 7703 out: 7704 /* 7705 * If an error happened mark the log for a full commit because it's not 7706 * consistent and up to date or we couldn't find out if one of the 7707 * inodes was logged before in this transaction. Do it before unpinning 7708 * the log, to avoid any races with someone else trying to commit it. 7709 */ 7710 if (ret < 0) 7711 btrfs_set_log_full_commit(trans); 7712 if (log_pinned) 7713 btrfs_end_log_trans(root); 7714 free_extent_buffer(ctx.scratch_eb); 7715 } 7716 7717