xref: /linux/fs/btrfs/tree-log.c (revision 4949009eb8d40a441dcddcd96e101e77d31cf1b2)
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/list_sort.h>
23 #include "tree-log.h"
24 #include "disk-io.h"
25 #include "locking.h"
26 #include "print-tree.h"
27 #include "backref.h"
28 #include "hash.h"
29 
30 /* magic values for the inode_only field in btrfs_log_inode:
31  *
32  * LOG_INODE_ALL means to log everything
33  * LOG_INODE_EXISTS means to log just enough to recreate the inode
34  * during log replay
35  */
36 #define LOG_INODE_ALL 0
37 #define LOG_INODE_EXISTS 1
38 
39 /*
40  * directory trouble cases
41  *
42  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
43  * log, we must force a full commit before doing an fsync of the directory
44  * where the unlink was done.
45  * ---> record transid of last unlink/rename per directory
46  *
47  * mkdir foo/some_dir
48  * normal commit
49  * rename foo/some_dir foo2/some_dir
50  * mkdir foo/some_dir
51  * fsync foo/some_dir/some_file
52  *
53  * The fsync above will unlink the original some_dir without recording
54  * it in its new location (foo2).  After a crash, some_dir will be gone
55  * unless the fsync of some_file forces a full commit
56  *
57  * 2) we must log any new names for any file or dir that is in the fsync
58  * log. ---> check inode while renaming/linking.
59  *
60  * 2a) we must log any new names for any file or dir during rename
61  * when the directory they are being removed from was logged.
62  * ---> check inode and old parent dir during rename
63  *
64  *  2a is actually the more important variant.  With the extra logging
65  *  a crash might unlink the old name without recreating the new one
66  *
67  * 3) after a crash, we must go through any directories with a link count
68  * of zero and redo the rm -rf
69  *
70  * mkdir f1/foo
71  * normal commit
72  * rm -rf f1/foo
73  * fsync(f1)
74  *
75  * The directory f1 was fully removed from the FS, but fsync was never
76  * called on f1, only its parent dir.  After a crash the rm -rf must
77  * be replayed.  This must be able to recurse down the entire
78  * directory tree.  The inode link count fixup code takes care of the
79  * ugly details.
80  */
81 
82 /*
83  * stages for the tree walking.  The first
84  * stage (0) is to only pin down the blocks we find
85  * the second stage (1) is to make sure that all the inodes
86  * we find in the log are created in the subvolume.
87  *
88  * The last stage is to deal with directories and links and extents
89  * and all the other fun semantics
90  */
91 #define LOG_WALK_PIN_ONLY 0
92 #define LOG_WALK_REPLAY_INODES 1
93 #define LOG_WALK_REPLAY_DIR_INDEX 2
94 #define LOG_WALK_REPLAY_ALL 3
95 
96 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
97 			   struct btrfs_root *root, struct inode *inode,
98 			   int inode_only,
99 			   const loff_t start,
100 			   const loff_t end,
101 			   struct btrfs_log_ctx *ctx);
102 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
103 			     struct btrfs_root *root,
104 			     struct btrfs_path *path, u64 objectid);
105 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
106 				       struct btrfs_root *root,
107 				       struct btrfs_root *log,
108 				       struct btrfs_path *path,
109 				       u64 dirid, int del_all);
110 
111 /*
112  * tree logging is a special write ahead log used to make sure that
113  * fsyncs and O_SYNCs can happen without doing full tree commits.
114  *
115  * Full tree commits are expensive because they require commonly
116  * modified blocks to be recowed, creating many dirty pages in the
117  * extent tree an 4x-6x higher write load than ext3.
118  *
119  * Instead of doing a tree commit on every fsync, we use the
120  * key ranges and transaction ids to find items for a given file or directory
121  * that have changed in this transaction.  Those items are copied into
122  * a special tree (one per subvolume root), that tree is written to disk
123  * and then the fsync is considered complete.
124  *
125  * After a crash, items are copied out of the log-tree back into the
126  * subvolume tree.  Any file data extents found are recorded in the extent
127  * allocation tree, and the log-tree freed.
128  *
129  * The log tree is read three times, once to pin down all the extents it is
130  * using in ram and once, once to create all the inodes logged in the tree
131  * and once to do all the other items.
132  */
133 
134 /*
135  * start a sub transaction and setup the log tree
136  * this increments the log tree writer count to make the people
137  * syncing the tree wait for us to finish
138  */
139 static int start_log_trans(struct btrfs_trans_handle *trans,
140 			   struct btrfs_root *root,
141 			   struct btrfs_log_ctx *ctx)
142 {
143 	int index;
144 	int ret;
145 
146 	mutex_lock(&root->log_mutex);
147 	if (root->log_root) {
148 		if (btrfs_need_log_full_commit(root->fs_info, trans)) {
149 			ret = -EAGAIN;
150 			goto out;
151 		}
152 		if (!root->log_start_pid) {
153 			root->log_start_pid = current->pid;
154 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
155 		} else if (root->log_start_pid != current->pid) {
156 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
157 		}
158 
159 		atomic_inc(&root->log_batch);
160 		atomic_inc(&root->log_writers);
161 		if (ctx) {
162 			index = root->log_transid % 2;
163 			list_add_tail(&ctx->list, &root->log_ctxs[index]);
164 			ctx->log_transid = root->log_transid;
165 		}
166 		mutex_unlock(&root->log_mutex);
167 		return 0;
168 	}
169 
170 	ret = 0;
171 	mutex_lock(&root->fs_info->tree_log_mutex);
172 	if (!root->fs_info->log_root_tree)
173 		ret = btrfs_init_log_root_tree(trans, root->fs_info);
174 	mutex_unlock(&root->fs_info->tree_log_mutex);
175 	if (ret)
176 		goto out;
177 
178 	if (!root->log_root) {
179 		ret = btrfs_add_log_tree(trans, root);
180 		if (ret)
181 			goto out;
182 	}
183 	clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
184 	root->log_start_pid = current->pid;
185 	atomic_inc(&root->log_batch);
186 	atomic_inc(&root->log_writers);
187 	if (ctx) {
188 		index = root->log_transid % 2;
189 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
190 		ctx->log_transid = root->log_transid;
191 	}
192 out:
193 	mutex_unlock(&root->log_mutex);
194 	return ret;
195 }
196 
197 /*
198  * returns 0 if there was a log transaction running and we were able
199  * to join, or returns -ENOENT if there were not transactions
200  * in progress
201  */
202 static int join_running_log_trans(struct btrfs_root *root)
203 {
204 	int ret = -ENOENT;
205 
206 	smp_mb();
207 	if (!root->log_root)
208 		return -ENOENT;
209 
210 	mutex_lock(&root->log_mutex);
211 	if (root->log_root) {
212 		ret = 0;
213 		atomic_inc(&root->log_writers);
214 	}
215 	mutex_unlock(&root->log_mutex);
216 	return ret;
217 }
218 
219 /*
220  * This either makes the current running log transaction wait
221  * until you call btrfs_end_log_trans() or it makes any future
222  * log transactions wait until you call btrfs_end_log_trans()
223  */
224 int btrfs_pin_log_trans(struct btrfs_root *root)
225 {
226 	int ret = -ENOENT;
227 
228 	mutex_lock(&root->log_mutex);
229 	atomic_inc(&root->log_writers);
230 	mutex_unlock(&root->log_mutex);
231 	return ret;
232 }
233 
234 /*
235  * indicate we're done making changes to the log tree
236  * and wake up anyone waiting to do a sync
237  */
238 void btrfs_end_log_trans(struct btrfs_root *root)
239 {
240 	if (atomic_dec_and_test(&root->log_writers)) {
241 		smp_mb();
242 		if (waitqueue_active(&root->log_writer_wait))
243 			wake_up(&root->log_writer_wait);
244 	}
245 }
246 
247 
248 /*
249  * the walk control struct is used to pass state down the chain when
250  * processing the log tree.  The stage field tells us which part
251  * of the log tree processing we are currently doing.  The others
252  * are state fields used for that specific part
253  */
254 struct walk_control {
255 	/* should we free the extent on disk when done?  This is used
256 	 * at transaction commit time while freeing a log tree
257 	 */
258 	int free;
259 
260 	/* should we write out the extent buffer?  This is used
261 	 * while flushing the log tree to disk during a sync
262 	 */
263 	int write;
264 
265 	/* should we wait for the extent buffer io to finish?  Also used
266 	 * while flushing the log tree to disk for a sync
267 	 */
268 	int wait;
269 
270 	/* pin only walk, we record which extents on disk belong to the
271 	 * log trees
272 	 */
273 	int pin;
274 
275 	/* what stage of the replay code we're currently in */
276 	int stage;
277 
278 	/* the root we are currently replaying */
279 	struct btrfs_root *replay_dest;
280 
281 	/* the trans handle for the current replay */
282 	struct btrfs_trans_handle *trans;
283 
284 	/* the function that gets used to process blocks we find in the
285 	 * tree.  Note the extent_buffer might not be up to date when it is
286 	 * passed in, and it must be checked or read if you need the data
287 	 * inside it
288 	 */
289 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
290 			    struct walk_control *wc, u64 gen);
291 };
292 
293 /*
294  * process_func used to pin down extents, write them or wait on them
295  */
296 static int process_one_buffer(struct btrfs_root *log,
297 			      struct extent_buffer *eb,
298 			      struct walk_control *wc, u64 gen)
299 {
300 	int ret = 0;
301 
302 	/*
303 	 * If this fs is mixed then we need to be able to process the leaves to
304 	 * pin down any logged extents, so we have to read the block.
305 	 */
306 	if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) {
307 		ret = btrfs_read_buffer(eb, gen);
308 		if (ret)
309 			return ret;
310 	}
311 
312 	if (wc->pin)
313 		ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
314 						      eb->start, eb->len);
315 
316 	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
317 		if (wc->pin && btrfs_header_level(eb) == 0)
318 			ret = btrfs_exclude_logged_extents(log, eb);
319 		if (wc->write)
320 			btrfs_write_tree_block(eb);
321 		if (wc->wait)
322 			btrfs_wait_tree_block_writeback(eb);
323 	}
324 	return ret;
325 }
326 
327 /*
328  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
329  * to the src data we are copying out.
330  *
331  * root is the tree we are copying into, and path is a scratch
332  * path for use in this function (it should be released on entry and
333  * will be released on exit).
334  *
335  * If the key is already in the destination tree the existing item is
336  * overwritten.  If the existing item isn't big enough, it is extended.
337  * If it is too large, it is truncated.
338  *
339  * If the key isn't in the destination yet, a new item is inserted.
340  */
341 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
342 				   struct btrfs_root *root,
343 				   struct btrfs_path *path,
344 				   struct extent_buffer *eb, int slot,
345 				   struct btrfs_key *key)
346 {
347 	int ret;
348 	u32 item_size;
349 	u64 saved_i_size = 0;
350 	int save_old_i_size = 0;
351 	unsigned long src_ptr;
352 	unsigned long dst_ptr;
353 	int overwrite_root = 0;
354 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
355 
356 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
357 		overwrite_root = 1;
358 
359 	item_size = btrfs_item_size_nr(eb, slot);
360 	src_ptr = btrfs_item_ptr_offset(eb, slot);
361 
362 	/* look for the key in the destination tree */
363 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
364 	if (ret < 0)
365 		return ret;
366 
367 	if (ret == 0) {
368 		char *src_copy;
369 		char *dst_copy;
370 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
371 						  path->slots[0]);
372 		if (dst_size != item_size)
373 			goto insert;
374 
375 		if (item_size == 0) {
376 			btrfs_release_path(path);
377 			return 0;
378 		}
379 		dst_copy = kmalloc(item_size, GFP_NOFS);
380 		src_copy = kmalloc(item_size, GFP_NOFS);
381 		if (!dst_copy || !src_copy) {
382 			btrfs_release_path(path);
383 			kfree(dst_copy);
384 			kfree(src_copy);
385 			return -ENOMEM;
386 		}
387 
388 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
389 
390 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
391 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
392 				   item_size);
393 		ret = memcmp(dst_copy, src_copy, item_size);
394 
395 		kfree(dst_copy);
396 		kfree(src_copy);
397 		/*
398 		 * they have the same contents, just return, this saves
399 		 * us from cowing blocks in the destination tree and doing
400 		 * extra writes that may not have been done by a previous
401 		 * sync
402 		 */
403 		if (ret == 0) {
404 			btrfs_release_path(path);
405 			return 0;
406 		}
407 
408 		/*
409 		 * We need to load the old nbytes into the inode so when we
410 		 * replay the extents we've logged we get the right nbytes.
411 		 */
412 		if (inode_item) {
413 			struct btrfs_inode_item *item;
414 			u64 nbytes;
415 			u32 mode;
416 
417 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
418 					      struct btrfs_inode_item);
419 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
420 			item = btrfs_item_ptr(eb, slot,
421 					      struct btrfs_inode_item);
422 			btrfs_set_inode_nbytes(eb, item, nbytes);
423 
424 			/*
425 			 * If this is a directory we need to reset the i_size to
426 			 * 0 so that we can set it up properly when replaying
427 			 * the rest of the items in this log.
428 			 */
429 			mode = btrfs_inode_mode(eb, item);
430 			if (S_ISDIR(mode))
431 				btrfs_set_inode_size(eb, item, 0);
432 		}
433 	} else if (inode_item) {
434 		struct btrfs_inode_item *item;
435 		u32 mode;
436 
437 		/*
438 		 * New inode, set nbytes to 0 so that the nbytes comes out
439 		 * properly when we replay the extents.
440 		 */
441 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
442 		btrfs_set_inode_nbytes(eb, item, 0);
443 
444 		/*
445 		 * If this is a directory we need to reset the i_size to 0 so
446 		 * that we can set it up properly when replaying the rest of
447 		 * the items in this log.
448 		 */
449 		mode = btrfs_inode_mode(eb, item);
450 		if (S_ISDIR(mode))
451 			btrfs_set_inode_size(eb, item, 0);
452 	}
453 insert:
454 	btrfs_release_path(path);
455 	/* try to insert the key into the destination tree */
456 	ret = btrfs_insert_empty_item(trans, root, path,
457 				      key, item_size);
458 
459 	/* make sure any existing item is the correct size */
460 	if (ret == -EEXIST) {
461 		u32 found_size;
462 		found_size = btrfs_item_size_nr(path->nodes[0],
463 						path->slots[0]);
464 		if (found_size > item_size)
465 			btrfs_truncate_item(root, path, item_size, 1);
466 		else if (found_size < item_size)
467 			btrfs_extend_item(root, path,
468 					  item_size - found_size);
469 	} else if (ret) {
470 		return ret;
471 	}
472 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
473 					path->slots[0]);
474 
475 	/* don't overwrite an existing inode if the generation number
476 	 * was logged as zero.  This is done when the tree logging code
477 	 * is just logging an inode to make sure it exists after recovery.
478 	 *
479 	 * Also, don't overwrite i_size on directories during replay.
480 	 * log replay inserts and removes directory items based on the
481 	 * state of the tree found in the subvolume, and i_size is modified
482 	 * as it goes
483 	 */
484 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
485 		struct btrfs_inode_item *src_item;
486 		struct btrfs_inode_item *dst_item;
487 
488 		src_item = (struct btrfs_inode_item *)src_ptr;
489 		dst_item = (struct btrfs_inode_item *)dst_ptr;
490 
491 		if (btrfs_inode_generation(eb, src_item) == 0)
492 			goto no_copy;
493 
494 		if (overwrite_root &&
495 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
496 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
497 			save_old_i_size = 1;
498 			saved_i_size = btrfs_inode_size(path->nodes[0],
499 							dst_item);
500 		}
501 	}
502 
503 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
504 			   src_ptr, item_size);
505 
506 	if (save_old_i_size) {
507 		struct btrfs_inode_item *dst_item;
508 		dst_item = (struct btrfs_inode_item *)dst_ptr;
509 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
510 	}
511 
512 	/* make sure the generation is filled in */
513 	if (key->type == BTRFS_INODE_ITEM_KEY) {
514 		struct btrfs_inode_item *dst_item;
515 		dst_item = (struct btrfs_inode_item *)dst_ptr;
516 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
517 			btrfs_set_inode_generation(path->nodes[0], dst_item,
518 						   trans->transid);
519 		}
520 	}
521 no_copy:
522 	btrfs_mark_buffer_dirty(path->nodes[0]);
523 	btrfs_release_path(path);
524 	return 0;
525 }
526 
527 /*
528  * simple helper to read an inode off the disk from a given root
529  * This can only be called for subvolume roots and not for the log
530  */
531 static noinline struct inode *read_one_inode(struct btrfs_root *root,
532 					     u64 objectid)
533 {
534 	struct btrfs_key key;
535 	struct inode *inode;
536 
537 	key.objectid = objectid;
538 	key.type = BTRFS_INODE_ITEM_KEY;
539 	key.offset = 0;
540 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
541 	if (IS_ERR(inode)) {
542 		inode = NULL;
543 	} else if (is_bad_inode(inode)) {
544 		iput(inode);
545 		inode = NULL;
546 	}
547 	return inode;
548 }
549 
550 /* replays a single extent in 'eb' at 'slot' with 'key' into the
551  * subvolume 'root'.  path is released on entry and should be released
552  * on exit.
553  *
554  * extents in the log tree have not been allocated out of the extent
555  * tree yet.  So, this completes the allocation, taking a reference
556  * as required if the extent already exists or creating a new extent
557  * if it isn't in the extent allocation tree yet.
558  *
559  * The extent is inserted into the file, dropping any existing extents
560  * from the file that overlap the new one.
561  */
562 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
563 				      struct btrfs_root *root,
564 				      struct btrfs_path *path,
565 				      struct extent_buffer *eb, int slot,
566 				      struct btrfs_key *key)
567 {
568 	int found_type;
569 	u64 extent_end;
570 	u64 start = key->offset;
571 	u64 nbytes = 0;
572 	struct btrfs_file_extent_item *item;
573 	struct inode *inode = NULL;
574 	unsigned long size;
575 	int ret = 0;
576 
577 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
578 	found_type = btrfs_file_extent_type(eb, item);
579 
580 	if (found_type == BTRFS_FILE_EXTENT_REG ||
581 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
582 		nbytes = btrfs_file_extent_num_bytes(eb, item);
583 		extent_end = start + nbytes;
584 
585 		/*
586 		 * We don't add to the inodes nbytes if we are prealloc or a
587 		 * hole.
588 		 */
589 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
590 			nbytes = 0;
591 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
592 		size = btrfs_file_extent_inline_len(eb, slot, item);
593 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
594 		extent_end = ALIGN(start + size, root->sectorsize);
595 	} else {
596 		ret = 0;
597 		goto out;
598 	}
599 
600 	inode = read_one_inode(root, key->objectid);
601 	if (!inode) {
602 		ret = -EIO;
603 		goto out;
604 	}
605 
606 	/*
607 	 * first check to see if we already have this extent in the
608 	 * file.  This must be done before the btrfs_drop_extents run
609 	 * so we don't try to drop this extent.
610 	 */
611 	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
612 				       start, 0);
613 
614 	if (ret == 0 &&
615 	    (found_type == BTRFS_FILE_EXTENT_REG ||
616 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
617 		struct btrfs_file_extent_item cmp1;
618 		struct btrfs_file_extent_item cmp2;
619 		struct btrfs_file_extent_item *existing;
620 		struct extent_buffer *leaf;
621 
622 		leaf = path->nodes[0];
623 		existing = btrfs_item_ptr(leaf, path->slots[0],
624 					  struct btrfs_file_extent_item);
625 
626 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
627 				   sizeof(cmp1));
628 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
629 				   sizeof(cmp2));
630 
631 		/*
632 		 * we already have a pointer to this exact extent,
633 		 * we don't have to do anything
634 		 */
635 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
636 			btrfs_release_path(path);
637 			goto out;
638 		}
639 	}
640 	btrfs_release_path(path);
641 
642 	/* drop any overlapping extents */
643 	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
644 	if (ret)
645 		goto out;
646 
647 	if (found_type == BTRFS_FILE_EXTENT_REG ||
648 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
649 		u64 offset;
650 		unsigned long dest_offset;
651 		struct btrfs_key ins;
652 
653 		ret = btrfs_insert_empty_item(trans, root, path, key,
654 					      sizeof(*item));
655 		if (ret)
656 			goto out;
657 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
658 						    path->slots[0]);
659 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
660 				(unsigned long)item,  sizeof(*item));
661 
662 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
663 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
664 		ins.type = BTRFS_EXTENT_ITEM_KEY;
665 		offset = key->offset - btrfs_file_extent_offset(eb, item);
666 
667 		if (ins.objectid > 0) {
668 			u64 csum_start;
669 			u64 csum_end;
670 			LIST_HEAD(ordered_sums);
671 			/*
672 			 * is this extent already allocated in the extent
673 			 * allocation tree?  If so, just add a reference
674 			 */
675 			ret = btrfs_lookup_data_extent(root, ins.objectid,
676 						ins.offset);
677 			if (ret == 0) {
678 				ret = btrfs_inc_extent_ref(trans, root,
679 						ins.objectid, ins.offset,
680 						0, root->root_key.objectid,
681 						key->objectid, offset, 0);
682 				if (ret)
683 					goto out;
684 			} else {
685 				/*
686 				 * insert the extent pointer in the extent
687 				 * allocation tree
688 				 */
689 				ret = btrfs_alloc_logged_file_extent(trans,
690 						root, root->root_key.objectid,
691 						key->objectid, offset, &ins);
692 				if (ret)
693 					goto out;
694 			}
695 			btrfs_release_path(path);
696 
697 			if (btrfs_file_extent_compression(eb, item)) {
698 				csum_start = ins.objectid;
699 				csum_end = csum_start + ins.offset;
700 			} else {
701 				csum_start = ins.objectid +
702 					btrfs_file_extent_offset(eb, item);
703 				csum_end = csum_start +
704 					btrfs_file_extent_num_bytes(eb, item);
705 			}
706 
707 			ret = btrfs_lookup_csums_range(root->log_root,
708 						csum_start, csum_end - 1,
709 						&ordered_sums, 0);
710 			if (ret)
711 				goto out;
712 			while (!list_empty(&ordered_sums)) {
713 				struct btrfs_ordered_sum *sums;
714 				sums = list_entry(ordered_sums.next,
715 						struct btrfs_ordered_sum,
716 						list);
717 				if (!ret)
718 					ret = btrfs_csum_file_blocks(trans,
719 						root->fs_info->csum_root,
720 						sums);
721 				list_del(&sums->list);
722 				kfree(sums);
723 			}
724 			if (ret)
725 				goto out;
726 		} else {
727 			btrfs_release_path(path);
728 		}
729 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
730 		/* inline extents are easy, we just overwrite them */
731 		ret = overwrite_item(trans, root, path, eb, slot, key);
732 		if (ret)
733 			goto out;
734 	}
735 
736 	inode_add_bytes(inode, nbytes);
737 	ret = btrfs_update_inode(trans, root, inode);
738 out:
739 	if (inode)
740 		iput(inode);
741 	return ret;
742 }
743 
744 /*
745  * when cleaning up conflicts between the directory names in the
746  * subvolume, directory names in the log and directory names in the
747  * inode back references, we may have to unlink inodes from directories.
748  *
749  * This is a helper function to do the unlink of a specific directory
750  * item
751  */
752 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
753 				      struct btrfs_root *root,
754 				      struct btrfs_path *path,
755 				      struct inode *dir,
756 				      struct btrfs_dir_item *di)
757 {
758 	struct inode *inode;
759 	char *name;
760 	int name_len;
761 	struct extent_buffer *leaf;
762 	struct btrfs_key location;
763 	int ret;
764 
765 	leaf = path->nodes[0];
766 
767 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
768 	name_len = btrfs_dir_name_len(leaf, di);
769 	name = kmalloc(name_len, GFP_NOFS);
770 	if (!name)
771 		return -ENOMEM;
772 
773 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
774 	btrfs_release_path(path);
775 
776 	inode = read_one_inode(root, location.objectid);
777 	if (!inode) {
778 		ret = -EIO;
779 		goto out;
780 	}
781 
782 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
783 	if (ret)
784 		goto out;
785 
786 	ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
787 	if (ret)
788 		goto out;
789 	else
790 		ret = btrfs_run_delayed_items(trans, root);
791 out:
792 	kfree(name);
793 	iput(inode);
794 	return ret;
795 }
796 
797 /*
798  * helper function to see if a given name and sequence number found
799  * in an inode back reference are already in a directory and correctly
800  * point to this inode
801  */
802 static noinline int inode_in_dir(struct btrfs_root *root,
803 				 struct btrfs_path *path,
804 				 u64 dirid, u64 objectid, u64 index,
805 				 const char *name, int name_len)
806 {
807 	struct btrfs_dir_item *di;
808 	struct btrfs_key location;
809 	int match = 0;
810 
811 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
812 					 index, name, name_len, 0);
813 	if (di && !IS_ERR(di)) {
814 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
815 		if (location.objectid != objectid)
816 			goto out;
817 	} else
818 		goto out;
819 	btrfs_release_path(path);
820 
821 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
822 	if (di && !IS_ERR(di)) {
823 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
824 		if (location.objectid != objectid)
825 			goto out;
826 	} else
827 		goto out;
828 	match = 1;
829 out:
830 	btrfs_release_path(path);
831 	return match;
832 }
833 
834 /*
835  * helper function to check a log tree for a named back reference in
836  * an inode.  This is used to decide if a back reference that is
837  * found in the subvolume conflicts with what we find in the log.
838  *
839  * inode backreferences may have multiple refs in a single item,
840  * during replay we process one reference at a time, and we don't
841  * want to delete valid links to a file from the subvolume if that
842  * link is also in the log.
843  */
844 static noinline int backref_in_log(struct btrfs_root *log,
845 				   struct btrfs_key *key,
846 				   u64 ref_objectid,
847 				   char *name, int namelen)
848 {
849 	struct btrfs_path *path;
850 	struct btrfs_inode_ref *ref;
851 	unsigned long ptr;
852 	unsigned long ptr_end;
853 	unsigned long name_ptr;
854 	int found_name_len;
855 	int item_size;
856 	int ret;
857 	int match = 0;
858 
859 	path = btrfs_alloc_path();
860 	if (!path)
861 		return -ENOMEM;
862 
863 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
864 	if (ret != 0)
865 		goto out;
866 
867 	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
868 
869 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
870 		if (btrfs_find_name_in_ext_backref(path, ref_objectid,
871 						   name, namelen, NULL))
872 			match = 1;
873 
874 		goto out;
875 	}
876 
877 	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
878 	ptr_end = ptr + item_size;
879 	while (ptr < ptr_end) {
880 		ref = (struct btrfs_inode_ref *)ptr;
881 		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
882 		if (found_name_len == namelen) {
883 			name_ptr = (unsigned long)(ref + 1);
884 			ret = memcmp_extent_buffer(path->nodes[0], name,
885 						   name_ptr, namelen);
886 			if (ret == 0) {
887 				match = 1;
888 				goto out;
889 			}
890 		}
891 		ptr = (unsigned long)(ref + 1) + found_name_len;
892 	}
893 out:
894 	btrfs_free_path(path);
895 	return match;
896 }
897 
898 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
899 				  struct btrfs_root *root,
900 				  struct btrfs_path *path,
901 				  struct btrfs_root *log_root,
902 				  struct inode *dir, struct inode *inode,
903 				  struct extent_buffer *eb,
904 				  u64 inode_objectid, u64 parent_objectid,
905 				  u64 ref_index, char *name, int namelen,
906 				  int *search_done)
907 {
908 	int ret;
909 	char *victim_name;
910 	int victim_name_len;
911 	struct extent_buffer *leaf;
912 	struct btrfs_dir_item *di;
913 	struct btrfs_key search_key;
914 	struct btrfs_inode_extref *extref;
915 
916 again:
917 	/* Search old style refs */
918 	search_key.objectid = inode_objectid;
919 	search_key.type = BTRFS_INODE_REF_KEY;
920 	search_key.offset = parent_objectid;
921 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
922 	if (ret == 0) {
923 		struct btrfs_inode_ref *victim_ref;
924 		unsigned long ptr;
925 		unsigned long ptr_end;
926 
927 		leaf = path->nodes[0];
928 
929 		/* are we trying to overwrite a back ref for the root directory
930 		 * if so, just jump out, we're done
931 		 */
932 		if (search_key.objectid == search_key.offset)
933 			return 1;
934 
935 		/* check all the names in this back reference to see
936 		 * if they are in the log.  if so, we allow them to stay
937 		 * otherwise they must be unlinked as a conflict
938 		 */
939 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
940 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
941 		while (ptr < ptr_end) {
942 			victim_ref = (struct btrfs_inode_ref *)ptr;
943 			victim_name_len = btrfs_inode_ref_name_len(leaf,
944 								   victim_ref);
945 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
946 			if (!victim_name)
947 				return -ENOMEM;
948 
949 			read_extent_buffer(leaf, victim_name,
950 					   (unsigned long)(victim_ref + 1),
951 					   victim_name_len);
952 
953 			if (!backref_in_log(log_root, &search_key,
954 					    parent_objectid,
955 					    victim_name,
956 					    victim_name_len)) {
957 				inc_nlink(inode);
958 				btrfs_release_path(path);
959 
960 				ret = btrfs_unlink_inode(trans, root, dir,
961 							 inode, victim_name,
962 							 victim_name_len);
963 				kfree(victim_name);
964 				if (ret)
965 					return ret;
966 				ret = btrfs_run_delayed_items(trans, root);
967 				if (ret)
968 					return ret;
969 				*search_done = 1;
970 				goto again;
971 			}
972 			kfree(victim_name);
973 
974 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
975 		}
976 
977 		/*
978 		 * NOTE: we have searched root tree and checked the
979 		 * coresponding ref, it does not need to check again.
980 		 */
981 		*search_done = 1;
982 	}
983 	btrfs_release_path(path);
984 
985 	/* Same search but for extended refs */
986 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
987 					   inode_objectid, parent_objectid, 0,
988 					   0);
989 	if (!IS_ERR_OR_NULL(extref)) {
990 		u32 item_size;
991 		u32 cur_offset = 0;
992 		unsigned long base;
993 		struct inode *victim_parent;
994 
995 		leaf = path->nodes[0];
996 
997 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
998 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
999 
1000 		while (cur_offset < item_size) {
1001 			extref = (struct btrfs_inode_extref *)base + cur_offset;
1002 
1003 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1004 
1005 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1006 				goto next;
1007 
1008 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1009 			if (!victim_name)
1010 				return -ENOMEM;
1011 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1012 					   victim_name_len);
1013 
1014 			search_key.objectid = inode_objectid;
1015 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1016 			search_key.offset = btrfs_extref_hash(parent_objectid,
1017 							      victim_name,
1018 							      victim_name_len);
1019 			ret = 0;
1020 			if (!backref_in_log(log_root, &search_key,
1021 					    parent_objectid, victim_name,
1022 					    victim_name_len)) {
1023 				ret = -ENOENT;
1024 				victim_parent = read_one_inode(root,
1025 							       parent_objectid);
1026 				if (victim_parent) {
1027 					inc_nlink(inode);
1028 					btrfs_release_path(path);
1029 
1030 					ret = btrfs_unlink_inode(trans, root,
1031 								 victim_parent,
1032 								 inode,
1033 								 victim_name,
1034 								 victim_name_len);
1035 					if (!ret)
1036 						ret = btrfs_run_delayed_items(
1037 								  trans, root);
1038 				}
1039 				iput(victim_parent);
1040 				kfree(victim_name);
1041 				if (ret)
1042 					return ret;
1043 				*search_done = 1;
1044 				goto again;
1045 			}
1046 			kfree(victim_name);
1047 			if (ret)
1048 				return ret;
1049 next:
1050 			cur_offset += victim_name_len + sizeof(*extref);
1051 		}
1052 		*search_done = 1;
1053 	}
1054 	btrfs_release_path(path);
1055 
1056 	/* look for a conflicting sequence number */
1057 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1058 					 ref_index, name, namelen, 0);
1059 	if (di && !IS_ERR(di)) {
1060 		ret = drop_one_dir_item(trans, root, path, dir, di);
1061 		if (ret)
1062 			return ret;
1063 	}
1064 	btrfs_release_path(path);
1065 
1066 	/* look for a conflicing name */
1067 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1068 				   name, namelen, 0);
1069 	if (di && !IS_ERR(di)) {
1070 		ret = drop_one_dir_item(trans, root, path, dir, di);
1071 		if (ret)
1072 			return ret;
1073 	}
1074 	btrfs_release_path(path);
1075 
1076 	return 0;
1077 }
1078 
1079 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1080 			     u32 *namelen, char **name, u64 *index,
1081 			     u64 *parent_objectid)
1082 {
1083 	struct btrfs_inode_extref *extref;
1084 
1085 	extref = (struct btrfs_inode_extref *)ref_ptr;
1086 
1087 	*namelen = btrfs_inode_extref_name_len(eb, extref);
1088 	*name = kmalloc(*namelen, GFP_NOFS);
1089 	if (*name == NULL)
1090 		return -ENOMEM;
1091 
1092 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1093 			   *namelen);
1094 
1095 	*index = btrfs_inode_extref_index(eb, extref);
1096 	if (parent_objectid)
1097 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1098 
1099 	return 0;
1100 }
1101 
1102 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1103 			  u32 *namelen, char **name, u64 *index)
1104 {
1105 	struct btrfs_inode_ref *ref;
1106 
1107 	ref = (struct btrfs_inode_ref *)ref_ptr;
1108 
1109 	*namelen = btrfs_inode_ref_name_len(eb, ref);
1110 	*name = kmalloc(*namelen, GFP_NOFS);
1111 	if (*name == NULL)
1112 		return -ENOMEM;
1113 
1114 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1115 
1116 	*index = btrfs_inode_ref_index(eb, ref);
1117 
1118 	return 0;
1119 }
1120 
1121 /*
1122  * replay one inode back reference item found in the log tree.
1123  * eb, slot and key refer to the buffer and key found in the log tree.
1124  * root is the destination we are replaying into, and path is for temp
1125  * use by this function.  (it should be released on return).
1126  */
1127 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1128 				  struct btrfs_root *root,
1129 				  struct btrfs_root *log,
1130 				  struct btrfs_path *path,
1131 				  struct extent_buffer *eb, int slot,
1132 				  struct btrfs_key *key)
1133 {
1134 	struct inode *dir = NULL;
1135 	struct inode *inode = NULL;
1136 	unsigned long ref_ptr;
1137 	unsigned long ref_end;
1138 	char *name = NULL;
1139 	int namelen;
1140 	int ret;
1141 	int search_done = 0;
1142 	int log_ref_ver = 0;
1143 	u64 parent_objectid;
1144 	u64 inode_objectid;
1145 	u64 ref_index = 0;
1146 	int ref_struct_size;
1147 
1148 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1149 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1150 
1151 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1152 		struct btrfs_inode_extref *r;
1153 
1154 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1155 		log_ref_ver = 1;
1156 		r = (struct btrfs_inode_extref *)ref_ptr;
1157 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1158 	} else {
1159 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1160 		parent_objectid = key->offset;
1161 	}
1162 	inode_objectid = key->objectid;
1163 
1164 	/*
1165 	 * it is possible that we didn't log all the parent directories
1166 	 * for a given inode.  If we don't find the dir, just don't
1167 	 * copy the back ref in.  The link count fixup code will take
1168 	 * care of the rest
1169 	 */
1170 	dir = read_one_inode(root, parent_objectid);
1171 	if (!dir) {
1172 		ret = -ENOENT;
1173 		goto out;
1174 	}
1175 
1176 	inode = read_one_inode(root, inode_objectid);
1177 	if (!inode) {
1178 		ret = -EIO;
1179 		goto out;
1180 	}
1181 
1182 	while (ref_ptr < ref_end) {
1183 		if (log_ref_ver) {
1184 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1185 						&ref_index, &parent_objectid);
1186 			/*
1187 			 * parent object can change from one array
1188 			 * item to another.
1189 			 */
1190 			if (!dir)
1191 				dir = read_one_inode(root, parent_objectid);
1192 			if (!dir) {
1193 				ret = -ENOENT;
1194 				goto out;
1195 			}
1196 		} else {
1197 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1198 					     &ref_index);
1199 		}
1200 		if (ret)
1201 			goto out;
1202 
1203 		/* if we already have a perfect match, we're done */
1204 		if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1205 				  ref_index, name, namelen)) {
1206 			/*
1207 			 * look for a conflicting back reference in the
1208 			 * metadata. if we find one we have to unlink that name
1209 			 * of the file before we add our new link.  Later on, we
1210 			 * overwrite any existing back reference, and we don't
1211 			 * want to create dangling pointers in the directory.
1212 			 */
1213 
1214 			if (!search_done) {
1215 				ret = __add_inode_ref(trans, root, path, log,
1216 						      dir, inode, eb,
1217 						      inode_objectid,
1218 						      parent_objectid,
1219 						      ref_index, name, namelen,
1220 						      &search_done);
1221 				if (ret) {
1222 					if (ret == 1)
1223 						ret = 0;
1224 					goto out;
1225 				}
1226 			}
1227 
1228 			/* insert our name */
1229 			ret = btrfs_add_link(trans, dir, inode, name, namelen,
1230 					     0, ref_index);
1231 			if (ret)
1232 				goto out;
1233 
1234 			btrfs_update_inode(trans, root, inode);
1235 		}
1236 
1237 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1238 		kfree(name);
1239 		name = NULL;
1240 		if (log_ref_ver) {
1241 			iput(dir);
1242 			dir = NULL;
1243 		}
1244 	}
1245 
1246 	/* finally write the back reference in the inode */
1247 	ret = overwrite_item(trans, root, path, eb, slot, key);
1248 out:
1249 	btrfs_release_path(path);
1250 	kfree(name);
1251 	iput(dir);
1252 	iput(inode);
1253 	return ret;
1254 }
1255 
1256 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1257 			      struct btrfs_root *root, u64 offset)
1258 {
1259 	int ret;
1260 	ret = btrfs_find_item(root, NULL, BTRFS_ORPHAN_OBJECTID,
1261 			offset, BTRFS_ORPHAN_ITEM_KEY, NULL);
1262 	if (ret > 0)
1263 		ret = btrfs_insert_orphan_item(trans, root, offset);
1264 	return ret;
1265 }
1266 
1267 static int count_inode_extrefs(struct btrfs_root *root,
1268 			       struct inode *inode, struct btrfs_path *path)
1269 {
1270 	int ret = 0;
1271 	int name_len;
1272 	unsigned int nlink = 0;
1273 	u32 item_size;
1274 	u32 cur_offset = 0;
1275 	u64 inode_objectid = btrfs_ino(inode);
1276 	u64 offset = 0;
1277 	unsigned long ptr;
1278 	struct btrfs_inode_extref *extref;
1279 	struct extent_buffer *leaf;
1280 
1281 	while (1) {
1282 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1283 					    &extref, &offset);
1284 		if (ret)
1285 			break;
1286 
1287 		leaf = path->nodes[0];
1288 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1289 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1290 
1291 		while (cur_offset < item_size) {
1292 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1293 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1294 
1295 			nlink++;
1296 
1297 			cur_offset += name_len + sizeof(*extref);
1298 		}
1299 
1300 		offset++;
1301 		btrfs_release_path(path);
1302 	}
1303 	btrfs_release_path(path);
1304 
1305 	if (ret < 0)
1306 		return ret;
1307 	return nlink;
1308 }
1309 
1310 static int count_inode_refs(struct btrfs_root *root,
1311 			       struct inode *inode, struct btrfs_path *path)
1312 {
1313 	int ret;
1314 	struct btrfs_key key;
1315 	unsigned int nlink = 0;
1316 	unsigned long ptr;
1317 	unsigned long ptr_end;
1318 	int name_len;
1319 	u64 ino = btrfs_ino(inode);
1320 
1321 	key.objectid = ino;
1322 	key.type = BTRFS_INODE_REF_KEY;
1323 	key.offset = (u64)-1;
1324 
1325 	while (1) {
1326 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1327 		if (ret < 0)
1328 			break;
1329 		if (ret > 0) {
1330 			if (path->slots[0] == 0)
1331 				break;
1332 			path->slots[0]--;
1333 		}
1334 process_slot:
1335 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1336 				      path->slots[0]);
1337 		if (key.objectid != ino ||
1338 		    key.type != BTRFS_INODE_REF_KEY)
1339 			break;
1340 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1341 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1342 						   path->slots[0]);
1343 		while (ptr < ptr_end) {
1344 			struct btrfs_inode_ref *ref;
1345 
1346 			ref = (struct btrfs_inode_ref *)ptr;
1347 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1348 							    ref);
1349 			ptr = (unsigned long)(ref + 1) + name_len;
1350 			nlink++;
1351 		}
1352 
1353 		if (key.offset == 0)
1354 			break;
1355 		if (path->slots[0] > 0) {
1356 			path->slots[0]--;
1357 			goto process_slot;
1358 		}
1359 		key.offset--;
1360 		btrfs_release_path(path);
1361 	}
1362 	btrfs_release_path(path);
1363 
1364 	return nlink;
1365 }
1366 
1367 /*
1368  * There are a few corners where the link count of the file can't
1369  * be properly maintained during replay.  So, instead of adding
1370  * lots of complexity to the log code, we just scan the backrefs
1371  * for any file that has been through replay.
1372  *
1373  * The scan will update the link count on the inode to reflect the
1374  * number of back refs found.  If it goes down to zero, the iput
1375  * will free the inode.
1376  */
1377 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1378 					   struct btrfs_root *root,
1379 					   struct inode *inode)
1380 {
1381 	struct btrfs_path *path;
1382 	int ret;
1383 	u64 nlink = 0;
1384 	u64 ino = btrfs_ino(inode);
1385 
1386 	path = btrfs_alloc_path();
1387 	if (!path)
1388 		return -ENOMEM;
1389 
1390 	ret = count_inode_refs(root, inode, path);
1391 	if (ret < 0)
1392 		goto out;
1393 
1394 	nlink = ret;
1395 
1396 	ret = count_inode_extrefs(root, inode, path);
1397 	if (ret == -ENOENT)
1398 		ret = 0;
1399 
1400 	if (ret < 0)
1401 		goto out;
1402 
1403 	nlink += ret;
1404 
1405 	ret = 0;
1406 
1407 	if (nlink != inode->i_nlink) {
1408 		set_nlink(inode, nlink);
1409 		btrfs_update_inode(trans, root, inode);
1410 	}
1411 	BTRFS_I(inode)->index_cnt = (u64)-1;
1412 
1413 	if (inode->i_nlink == 0) {
1414 		if (S_ISDIR(inode->i_mode)) {
1415 			ret = replay_dir_deletes(trans, root, NULL, path,
1416 						 ino, 1);
1417 			if (ret)
1418 				goto out;
1419 		}
1420 		ret = insert_orphan_item(trans, root, ino);
1421 	}
1422 
1423 out:
1424 	btrfs_free_path(path);
1425 	return ret;
1426 }
1427 
1428 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1429 					    struct btrfs_root *root,
1430 					    struct btrfs_path *path)
1431 {
1432 	int ret;
1433 	struct btrfs_key key;
1434 	struct inode *inode;
1435 
1436 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1437 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1438 	key.offset = (u64)-1;
1439 	while (1) {
1440 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1441 		if (ret < 0)
1442 			break;
1443 
1444 		if (ret == 1) {
1445 			if (path->slots[0] == 0)
1446 				break;
1447 			path->slots[0]--;
1448 		}
1449 
1450 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1451 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1452 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1453 			break;
1454 
1455 		ret = btrfs_del_item(trans, root, path);
1456 		if (ret)
1457 			goto out;
1458 
1459 		btrfs_release_path(path);
1460 		inode = read_one_inode(root, key.offset);
1461 		if (!inode)
1462 			return -EIO;
1463 
1464 		ret = fixup_inode_link_count(trans, root, inode);
1465 		iput(inode);
1466 		if (ret)
1467 			goto out;
1468 
1469 		/*
1470 		 * fixup on a directory may create new entries,
1471 		 * make sure we always look for the highset possible
1472 		 * offset
1473 		 */
1474 		key.offset = (u64)-1;
1475 	}
1476 	ret = 0;
1477 out:
1478 	btrfs_release_path(path);
1479 	return ret;
1480 }
1481 
1482 
1483 /*
1484  * record a given inode in the fixup dir so we can check its link
1485  * count when replay is done.  The link count is incremented here
1486  * so the inode won't go away until we check it
1487  */
1488 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1489 				      struct btrfs_root *root,
1490 				      struct btrfs_path *path,
1491 				      u64 objectid)
1492 {
1493 	struct btrfs_key key;
1494 	int ret = 0;
1495 	struct inode *inode;
1496 
1497 	inode = read_one_inode(root, objectid);
1498 	if (!inode)
1499 		return -EIO;
1500 
1501 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1502 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1503 	key.offset = objectid;
1504 
1505 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1506 
1507 	btrfs_release_path(path);
1508 	if (ret == 0) {
1509 		if (!inode->i_nlink)
1510 			set_nlink(inode, 1);
1511 		else
1512 			inc_nlink(inode);
1513 		ret = btrfs_update_inode(trans, root, inode);
1514 	} else if (ret == -EEXIST) {
1515 		ret = 0;
1516 	} else {
1517 		BUG(); /* Logic Error */
1518 	}
1519 	iput(inode);
1520 
1521 	return ret;
1522 }
1523 
1524 /*
1525  * when replaying the log for a directory, we only insert names
1526  * for inodes that actually exist.  This means an fsync on a directory
1527  * does not implicitly fsync all the new files in it
1528  */
1529 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1530 				    struct btrfs_root *root,
1531 				    struct btrfs_path *path,
1532 				    u64 dirid, u64 index,
1533 				    char *name, int name_len, u8 type,
1534 				    struct btrfs_key *location)
1535 {
1536 	struct inode *inode;
1537 	struct inode *dir;
1538 	int ret;
1539 
1540 	inode = read_one_inode(root, location->objectid);
1541 	if (!inode)
1542 		return -ENOENT;
1543 
1544 	dir = read_one_inode(root, dirid);
1545 	if (!dir) {
1546 		iput(inode);
1547 		return -EIO;
1548 	}
1549 
1550 	ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1551 
1552 	/* FIXME, put inode into FIXUP list */
1553 
1554 	iput(inode);
1555 	iput(dir);
1556 	return ret;
1557 }
1558 
1559 /*
1560  * take a single entry in a log directory item and replay it into
1561  * the subvolume.
1562  *
1563  * if a conflicting item exists in the subdirectory already,
1564  * the inode it points to is unlinked and put into the link count
1565  * fix up tree.
1566  *
1567  * If a name from the log points to a file or directory that does
1568  * not exist in the FS, it is skipped.  fsyncs on directories
1569  * do not force down inodes inside that directory, just changes to the
1570  * names or unlinks in a directory.
1571  */
1572 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1573 				    struct btrfs_root *root,
1574 				    struct btrfs_path *path,
1575 				    struct extent_buffer *eb,
1576 				    struct btrfs_dir_item *di,
1577 				    struct btrfs_key *key)
1578 {
1579 	char *name;
1580 	int name_len;
1581 	struct btrfs_dir_item *dst_di;
1582 	struct btrfs_key found_key;
1583 	struct btrfs_key log_key;
1584 	struct inode *dir;
1585 	u8 log_type;
1586 	int exists;
1587 	int ret = 0;
1588 	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1589 
1590 	dir = read_one_inode(root, key->objectid);
1591 	if (!dir)
1592 		return -EIO;
1593 
1594 	name_len = btrfs_dir_name_len(eb, di);
1595 	name = kmalloc(name_len, GFP_NOFS);
1596 	if (!name) {
1597 		ret = -ENOMEM;
1598 		goto out;
1599 	}
1600 
1601 	log_type = btrfs_dir_type(eb, di);
1602 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1603 		   name_len);
1604 
1605 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1606 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1607 	if (exists == 0)
1608 		exists = 1;
1609 	else
1610 		exists = 0;
1611 	btrfs_release_path(path);
1612 
1613 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1614 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1615 				       name, name_len, 1);
1616 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1617 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1618 						     key->objectid,
1619 						     key->offset, name,
1620 						     name_len, 1);
1621 	} else {
1622 		/* Corruption */
1623 		ret = -EINVAL;
1624 		goto out;
1625 	}
1626 	if (IS_ERR_OR_NULL(dst_di)) {
1627 		/* we need a sequence number to insert, so we only
1628 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1629 		 */
1630 		if (key->type != BTRFS_DIR_INDEX_KEY)
1631 			goto out;
1632 		goto insert;
1633 	}
1634 
1635 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1636 	/* the existing item matches the logged item */
1637 	if (found_key.objectid == log_key.objectid &&
1638 	    found_key.type == log_key.type &&
1639 	    found_key.offset == log_key.offset &&
1640 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1641 		update_size = false;
1642 		goto out;
1643 	}
1644 
1645 	/*
1646 	 * don't drop the conflicting directory entry if the inode
1647 	 * for the new entry doesn't exist
1648 	 */
1649 	if (!exists)
1650 		goto out;
1651 
1652 	ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1653 	if (ret)
1654 		goto out;
1655 
1656 	if (key->type == BTRFS_DIR_INDEX_KEY)
1657 		goto insert;
1658 out:
1659 	btrfs_release_path(path);
1660 	if (!ret && update_size) {
1661 		btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1662 		ret = btrfs_update_inode(trans, root, dir);
1663 	}
1664 	kfree(name);
1665 	iput(dir);
1666 	return ret;
1667 
1668 insert:
1669 	btrfs_release_path(path);
1670 	ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1671 			      name, name_len, log_type, &log_key);
1672 	if (ret && ret != -ENOENT)
1673 		goto out;
1674 	update_size = false;
1675 	ret = 0;
1676 	goto out;
1677 }
1678 
1679 /*
1680  * find all the names in a directory item and reconcile them into
1681  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1682  * one name in a directory item, but the same code gets used for
1683  * both directory index types
1684  */
1685 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1686 					struct btrfs_root *root,
1687 					struct btrfs_path *path,
1688 					struct extent_buffer *eb, int slot,
1689 					struct btrfs_key *key)
1690 {
1691 	int ret;
1692 	u32 item_size = btrfs_item_size_nr(eb, slot);
1693 	struct btrfs_dir_item *di;
1694 	int name_len;
1695 	unsigned long ptr;
1696 	unsigned long ptr_end;
1697 
1698 	ptr = btrfs_item_ptr_offset(eb, slot);
1699 	ptr_end = ptr + item_size;
1700 	while (ptr < ptr_end) {
1701 		di = (struct btrfs_dir_item *)ptr;
1702 		if (verify_dir_item(root, eb, di))
1703 			return -EIO;
1704 		name_len = btrfs_dir_name_len(eb, di);
1705 		ret = replay_one_name(trans, root, path, eb, di, key);
1706 		if (ret)
1707 			return ret;
1708 		ptr = (unsigned long)(di + 1);
1709 		ptr += name_len;
1710 	}
1711 	return 0;
1712 }
1713 
1714 /*
1715  * directory replay has two parts.  There are the standard directory
1716  * items in the log copied from the subvolume, and range items
1717  * created in the log while the subvolume was logged.
1718  *
1719  * The range items tell us which parts of the key space the log
1720  * is authoritative for.  During replay, if a key in the subvolume
1721  * directory is in a logged range item, but not actually in the log
1722  * that means it was deleted from the directory before the fsync
1723  * and should be removed.
1724  */
1725 static noinline int find_dir_range(struct btrfs_root *root,
1726 				   struct btrfs_path *path,
1727 				   u64 dirid, int key_type,
1728 				   u64 *start_ret, u64 *end_ret)
1729 {
1730 	struct btrfs_key key;
1731 	u64 found_end;
1732 	struct btrfs_dir_log_item *item;
1733 	int ret;
1734 	int nritems;
1735 
1736 	if (*start_ret == (u64)-1)
1737 		return 1;
1738 
1739 	key.objectid = dirid;
1740 	key.type = key_type;
1741 	key.offset = *start_ret;
1742 
1743 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1744 	if (ret < 0)
1745 		goto out;
1746 	if (ret > 0) {
1747 		if (path->slots[0] == 0)
1748 			goto out;
1749 		path->slots[0]--;
1750 	}
1751 	if (ret != 0)
1752 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1753 
1754 	if (key.type != key_type || key.objectid != dirid) {
1755 		ret = 1;
1756 		goto next;
1757 	}
1758 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1759 			      struct btrfs_dir_log_item);
1760 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1761 
1762 	if (*start_ret >= key.offset && *start_ret <= found_end) {
1763 		ret = 0;
1764 		*start_ret = key.offset;
1765 		*end_ret = found_end;
1766 		goto out;
1767 	}
1768 	ret = 1;
1769 next:
1770 	/* check the next slot in the tree to see if it is a valid item */
1771 	nritems = btrfs_header_nritems(path->nodes[0]);
1772 	if (path->slots[0] >= nritems) {
1773 		ret = btrfs_next_leaf(root, path);
1774 		if (ret)
1775 			goto out;
1776 	} else {
1777 		path->slots[0]++;
1778 	}
1779 
1780 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1781 
1782 	if (key.type != key_type || key.objectid != dirid) {
1783 		ret = 1;
1784 		goto out;
1785 	}
1786 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1787 			      struct btrfs_dir_log_item);
1788 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1789 	*start_ret = key.offset;
1790 	*end_ret = found_end;
1791 	ret = 0;
1792 out:
1793 	btrfs_release_path(path);
1794 	return ret;
1795 }
1796 
1797 /*
1798  * this looks for a given directory item in the log.  If the directory
1799  * item is not in the log, the item is removed and the inode it points
1800  * to is unlinked
1801  */
1802 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1803 				      struct btrfs_root *root,
1804 				      struct btrfs_root *log,
1805 				      struct btrfs_path *path,
1806 				      struct btrfs_path *log_path,
1807 				      struct inode *dir,
1808 				      struct btrfs_key *dir_key)
1809 {
1810 	int ret;
1811 	struct extent_buffer *eb;
1812 	int slot;
1813 	u32 item_size;
1814 	struct btrfs_dir_item *di;
1815 	struct btrfs_dir_item *log_di;
1816 	int name_len;
1817 	unsigned long ptr;
1818 	unsigned long ptr_end;
1819 	char *name;
1820 	struct inode *inode;
1821 	struct btrfs_key location;
1822 
1823 again:
1824 	eb = path->nodes[0];
1825 	slot = path->slots[0];
1826 	item_size = btrfs_item_size_nr(eb, slot);
1827 	ptr = btrfs_item_ptr_offset(eb, slot);
1828 	ptr_end = ptr + item_size;
1829 	while (ptr < ptr_end) {
1830 		di = (struct btrfs_dir_item *)ptr;
1831 		if (verify_dir_item(root, eb, di)) {
1832 			ret = -EIO;
1833 			goto out;
1834 		}
1835 
1836 		name_len = btrfs_dir_name_len(eb, di);
1837 		name = kmalloc(name_len, GFP_NOFS);
1838 		if (!name) {
1839 			ret = -ENOMEM;
1840 			goto out;
1841 		}
1842 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
1843 				  name_len);
1844 		log_di = NULL;
1845 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1846 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
1847 						       dir_key->objectid,
1848 						       name, name_len, 0);
1849 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1850 			log_di = btrfs_lookup_dir_index_item(trans, log,
1851 						     log_path,
1852 						     dir_key->objectid,
1853 						     dir_key->offset,
1854 						     name, name_len, 0);
1855 		}
1856 		if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
1857 			btrfs_dir_item_key_to_cpu(eb, di, &location);
1858 			btrfs_release_path(path);
1859 			btrfs_release_path(log_path);
1860 			inode = read_one_inode(root, location.objectid);
1861 			if (!inode) {
1862 				kfree(name);
1863 				return -EIO;
1864 			}
1865 
1866 			ret = link_to_fixup_dir(trans, root,
1867 						path, location.objectid);
1868 			if (ret) {
1869 				kfree(name);
1870 				iput(inode);
1871 				goto out;
1872 			}
1873 
1874 			inc_nlink(inode);
1875 			ret = btrfs_unlink_inode(trans, root, dir, inode,
1876 						 name, name_len);
1877 			if (!ret)
1878 				ret = btrfs_run_delayed_items(trans, root);
1879 			kfree(name);
1880 			iput(inode);
1881 			if (ret)
1882 				goto out;
1883 
1884 			/* there might still be more names under this key
1885 			 * check and repeat if required
1886 			 */
1887 			ret = btrfs_search_slot(NULL, root, dir_key, path,
1888 						0, 0);
1889 			if (ret == 0)
1890 				goto again;
1891 			ret = 0;
1892 			goto out;
1893 		} else if (IS_ERR(log_di)) {
1894 			kfree(name);
1895 			return PTR_ERR(log_di);
1896 		}
1897 		btrfs_release_path(log_path);
1898 		kfree(name);
1899 
1900 		ptr = (unsigned long)(di + 1);
1901 		ptr += name_len;
1902 	}
1903 	ret = 0;
1904 out:
1905 	btrfs_release_path(path);
1906 	btrfs_release_path(log_path);
1907 	return ret;
1908 }
1909 
1910 /*
1911  * deletion replay happens before we copy any new directory items
1912  * out of the log or out of backreferences from inodes.  It
1913  * scans the log to find ranges of keys that log is authoritative for,
1914  * and then scans the directory to find items in those ranges that are
1915  * not present in the log.
1916  *
1917  * Anything we don't find in the log is unlinked and removed from the
1918  * directory.
1919  */
1920 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1921 				       struct btrfs_root *root,
1922 				       struct btrfs_root *log,
1923 				       struct btrfs_path *path,
1924 				       u64 dirid, int del_all)
1925 {
1926 	u64 range_start;
1927 	u64 range_end;
1928 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1929 	int ret = 0;
1930 	struct btrfs_key dir_key;
1931 	struct btrfs_key found_key;
1932 	struct btrfs_path *log_path;
1933 	struct inode *dir;
1934 
1935 	dir_key.objectid = dirid;
1936 	dir_key.type = BTRFS_DIR_ITEM_KEY;
1937 	log_path = btrfs_alloc_path();
1938 	if (!log_path)
1939 		return -ENOMEM;
1940 
1941 	dir = read_one_inode(root, dirid);
1942 	/* it isn't an error if the inode isn't there, that can happen
1943 	 * because we replay the deletes before we copy in the inode item
1944 	 * from the log
1945 	 */
1946 	if (!dir) {
1947 		btrfs_free_path(log_path);
1948 		return 0;
1949 	}
1950 again:
1951 	range_start = 0;
1952 	range_end = 0;
1953 	while (1) {
1954 		if (del_all)
1955 			range_end = (u64)-1;
1956 		else {
1957 			ret = find_dir_range(log, path, dirid, key_type,
1958 					     &range_start, &range_end);
1959 			if (ret != 0)
1960 				break;
1961 		}
1962 
1963 		dir_key.offset = range_start;
1964 		while (1) {
1965 			int nritems;
1966 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
1967 						0, 0);
1968 			if (ret < 0)
1969 				goto out;
1970 
1971 			nritems = btrfs_header_nritems(path->nodes[0]);
1972 			if (path->slots[0] >= nritems) {
1973 				ret = btrfs_next_leaf(root, path);
1974 				if (ret)
1975 					break;
1976 			}
1977 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1978 					      path->slots[0]);
1979 			if (found_key.objectid != dirid ||
1980 			    found_key.type != dir_key.type)
1981 				goto next_type;
1982 
1983 			if (found_key.offset > range_end)
1984 				break;
1985 
1986 			ret = check_item_in_log(trans, root, log, path,
1987 						log_path, dir,
1988 						&found_key);
1989 			if (ret)
1990 				goto out;
1991 			if (found_key.offset == (u64)-1)
1992 				break;
1993 			dir_key.offset = found_key.offset + 1;
1994 		}
1995 		btrfs_release_path(path);
1996 		if (range_end == (u64)-1)
1997 			break;
1998 		range_start = range_end + 1;
1999 	}
2000 
2001 next_type:
2002 	ret = 0;
2003 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2004 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2005 		dir_key.type = BTRFS_DIR_INDEX_KEY;
2006 		btrfs_release_path(path);
2007 		goto again;
2008 	}
2009 out:
2010 	btrfs_release_path(path);
2011 	btrfs_free_path(log_path);
2012 	iput(dir);
2013 	return ret;
2014 }
2015 
2016 /*
2017  * the process_func used to replay items from the log tree.  This
2018  * gets called in two different stages.  The first stage just looks
2019  * for inodes and makes sure they are all copied into the subvolume.
2020  *
2021  * The second stage copies all the other item types from the log into
2022  * the subvolume.  The two stage approach is slower, but gets rid of
2023  * lots of complexity around inodes referencing other inodes that exist
2024  * only in the log (references come from either directory items or inode
2025  * back refs).
2026  */
2027 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2028 			     struct walk_control *wc, u64 gen)
2029 {
2030 	int nritems;
2031 	struct btrfs_path *path;
2032 	struct btrfs_root *root = wc->replay_dest;
2033 	struct btrfs_key key;
2034 	int level;
2035 	int i;
2036 	int ret;
2037 
2038 	ret = btrfs_read_buffer(eb, gen);
2039 	if (ret)
2040 		return ret;
2041 
2042 	level = btrfs_header_level(eb);
2043 
2044 	if (level != 0)
2045 		return 0;
2046 
2047 	path = btrfs_alloc_path();
2048 	if (!path)
2049 		return -ENOMEM;
2050 
2051 	nritems = btrfs_header_nritems(eb);
2052 	for (i = 0; i < nritems; i++) {
2053 		btrfs_item_key_to_cpu(eb, &key, i);
2054 
2055 		/* inode keys are done during the first stage */
2056 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2057 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2058 			struct btrfs_inode_item *inode_item;
2059 			u32 mode;
2060 
2061 			inode_item = btrfs_item_ptr(eb, i,
2062 					    struct btrfs_inode_item);
2063 			mode = btrfs_inode_mode(eb, inode_item);
2064 			if (S_ISDIR(mode)) {
2065 				ret = replay_dir_deletes(wc->trans,
2066 					 root, log, path, key.objectid, 0);
2067 				if (ret)
2068 					break;
2069 			}
2070 			ret = overwrite_item(wc->trans, root, path,
2071 					     eb, i, &key);
2072 			if (ret)
2073 				break;
2074 
2075 			/* for regular files, make sure corresponding
2076 			 * orhpan item exist. extents past the new EOF
2077 			 * will be truncated later by orphan cleanup.
2078 			 */
2079 			if (S_ISREG(mode)) {
2080 				ret = insert_orphan_item(wc->trans, root,
2081 							 key.objectid);
2082 				if (ret)
2083 					break;
2084 			}
2085 
2086 			ret = link_to_fixup_dir(wc->trans, root,
2087 						path, key.objectid);
2088 			if (ret)
2089 				break;
2090 		}
2091 
2092 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2093 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2094 			ret = replay_one_dir_item(wc->trans, root, path,
2095 						  eb, i, &key);
2096 			if (ret)
2097 				break;
2098 		}
2099 
2100 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2101 			continue;
2102 
2103 		/* these keys are simply copied */
2104 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2105 			ret = overwrite_item(wc->trans, root, path,
2106 					     eb, i, &key);
2107 			if (ret)
2108 				break;
2109 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2110 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2111 			ret = add_inode_ref(wc->trans, root, log, path,
2112 					    eb, i, &key);
2113 			if (ret && ret != -ENOENT)
2114 				break;
2115 			ret = 0;
2116 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2117 			ret = replay_one_extent(wc->trans, root, path,
2118 						eb, i, &key);
2119 			if (ret)
2120 				break;
2121 		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2122 			ret = replay_one_dir_item(wc->trans, root, path,
2123 						  eb, i, &key);
2124 			if (ret)
2125 				break;
2126 		}
2127 	}
2128 	btrfs_free_path(path);
2129 	return ret;
2130 }
2131 
2132 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2133 				   struct btrfs_root *root,
2134 				   struct btrfs_path *path, int *level,
2135 				   struct walk_control *wc)
2136 {
2137 	u64 root_owner;
2138 	u64 bytenr;
2139 	u64 ptr_gen;
2140 	struct extent_buffer *next;
2141 	struct extent_buffer *cur;
2142 	struct extent_buffer *parent;
2143 	u32 blocksize;
2144 	int ret = 0;
2145 
2146 	WARN_ON(*level < 0);
2147 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2148 
2149 	while (*level > 0) {
2150 		WARN_ON(*level < 0);
2151 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
2152 		cur = path->nodes[*level];
2153 
2154 		WARN_ON(btrfs_header_level(cur) != *level);
2155 
2156 		if (path->slots[*level] >=
2157 		    btrfs_header_nritems(cur))
2158 			break;
2159 
2160 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2161 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2162 		blocksize = root->nodesize;
2163 
2164 		parent = path->nodes[*level];
2165 		root_owner = btrfs_header_owner(parent);
2166 
2167 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
2168 		if (!next)
2169 			return -ENOMEM;
2170 
2171 		if (*level == 1) {
2172 			ret = wc->process_func(root, next, wc, ptr_gen);
2173 			if (ret) {
2174 				free_extent_buffer(next);
2175 				return ret;
2176 			}
2177 
2178 			path->slots[*level]++;
2179 			if (wc->free) {
2180 				ret = btrfs_read_buffer(next, ptr_gen);
2181 				if (ret) {
2182 					free_extent_buffer(next);
2183 					return ret;
2184 				}
2185 
2186 				if (trans) {
2187 					btrfs_tree_lock(next);
2188 					btrfs_set_lock_blocking(next);
2189 					clean_tree_block(trans, root, next);
2190 					btrfs_wait_tree_block_writeback(next);
2191 					btrfs_tree_unlock(next);
2192 				}
2193 
2194 				WARN_ON(root_owner !=
2195 					BTRFS_TREE_LOG_OBJECTID);
2196 				ret = btrfs_free_and_pin_reserved_extent(root,
2197 							 bytenr, blocksize);
2198 				if (ret) {
2199 					free_extent_buffer(next);
2200 					return ret;
2201 				}
2202 			}
2203 			free_extent_buffer(next);
2204 			continue;
2205 		}
2206 		ret = btrfs_read_buffer(next, ptr_gen);
2207 		if (ret) {
2208 			free_extent_buffer(next);
2209 			return ret;
2210 		}
2211 
2212 		WARN_ON(*level <= 0);
2213 		if (path->nodes[*level-1])
2214 			free_extent_buffer(path->nodes[*level-1]);
2215 		path->nodes[*level-1] = next;
2216 		*level = btrfs_header_level(next);
2217 		path->slots[*level] = 0;
2218 		cond_resched();
2219 	}
2220 	WARN_ON(*level < 0);
2221 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2222 
2223 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2224 
2225 	cond_resched();
2226 	return 0;
2227 }
2228 
2229 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2230 				 struct btrfs_root *root,
2231 				 struct btrfs_path *path, int *level,
2232 				 struct walk_control *wc)
2233 {
2234 	u64 root_owner;
2235 	int i;
2236 	int slot;
2237 	int ret;
2238 
2239 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2240 		slot = path->slots[i];
2241 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2242 			path->slots[i]++;
2243 			*level = i;
2244 			WARN_ON(*level == 0);
2245 			return 0;
2246 		} else {
2247 			struct extent_buffer *parent;
2248 			if (path->nodes[*level] == root->node)
2249 				parent = path->nodes[*level];
2250 			else
2251 				parent = path->nodes[*level + 1];
2252 
2253 			root_owner = btrfs_header_owner(parent);
2254 			ret = wc->process_func(root, path->nodes[*level], wc,
2255 				 btrfs_header_generation(path->nodes[*level]));
2256 			if (ret)
2257 				return ret;
2258 
2259 			if (wc->free) {
2260 				struct extent_buffer *next;
2261 
2262 				next = path->nodes[*level];
2263 
2264 				if (trans) {
2265 					btrfs_tree_lock(next);
2266 					btrfs_set_lock_blocking(next);
2267 					clean_tree_block(trans, root, next);
2268 					btrfs_wait_tree_block_writeback(next);
2269 					btrfs_tree_unlock(next);
2270 				}
2271 
2272 				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2273 				ret = btrfs_free_and_pin_reserved_extent(root,
2274 						path->nodes[*level]->start,
2275 						path->nodes[*level]->len);
2276 				if (ret)
2277 					return ret;
2278 			}
2279 			free_extent_buffer(path->nodes[*level]);
2280 			path->nodes[*level] = NULL;
2281 			*level = i + 1;
2282 		}
2283 	}
2284 	return 1;
2285 }
2286 
2287 /*
2288  * drop the reference count on the tree rooted at 'snap'.  This traverses
2289  * the tree freeing any blocks that have a ref count of zero after being
2290  * decremented.
2291  */
2292 static int walk_log_tree(struct btrfs_trans_handle *trans,
2293 			 struct btrfs_root *log, struct walk_control *wc)
2294 {
2295 	int ret = 0;
2296 	int wret;
2297 	int level;
2298 	struct btrfs_path *path;
2299 	int orig_level;
2300 
2301 	path = btrfs_alloc_path();
2302 	if (!path)
2303 		return -ENOMEM;
2304 
2305 	level = btrfs_header_level(log->node);
2306 	orig_level = level;
2307 	path->nodes[level] = log->node;
2308 	extent_buffer_get(log->node);
2309 	path->slots[level] = 0;
2310 
2311 	while (1) {
2312 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2313 		if (wret > 0)
2314 			break;
2315 		if (wret < 0) {
2316 			ret = wret;
2317 			goto out;
2318 		}
2319 
2320 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2321 		if (wret > 0)
2322 			break;
2323 		if (wret < 0) {
2324 			ret = wret;
2325 			goto out;
2326 		}
2327 	}
2328 
2329 	/* was the root node processed? if not, catch it here */
2330 	if (path->nodes[orig_level]) {
2331 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2332 			 btrfs_header_generation(path->nodes[orig_level]));
2333 		if (ret)
2334 			goto out;
2335 		if (wc->free) {
2336 			struct extent_buffer *next;
2337 
2338 			next = path->nodes[orig_level];
2339 
2340 			if (trans) {
2341 				btrfs_tree_lock(next);
2342 				btrfs_set_lock_blocking(next);
2343 				clean_tree_block(trans, log, next);
2344 				btrfs_wait_tree_block_writeback(next);
2345 				btrfs_tree_unlock(next);
2346 			}
2347 
2348 			WARN_ON(log->root_key.objectid !=
2349 				BTRFS_TREE_LOG_OBJECTID);
2350 			ret = btrfs_free_and_pin_reserved_extent(log, next->start,
2351 							 next->len);
2352 			if (ret)
2353 				goto out;
2354 		}
2355 	}
2356 
2357 out:
2358 	btrfs_free_path(path);
2359 	return ret;
2360 }
2361 
2362 /*
2363  * helper function to update the item for a given subvolumes log root
2364  * in the tree of log roots
2365  */
2366 static int update_log_root(struct btrfs_trans_handle *trans,
2367 			   struct btrfs_root *log)
2368 {
2369 	int ret;
2370 
2371 	if (log->log_transid == 1) {
2372 		/* insert root item on the first sync */
2373 		ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2374 				&log->root_key, &log->root_item);
2375 	} else {
2376 		ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2377 				&log->root_key, &log->root_item);
2378 	}
2379 	return ret;
2380 }
2381 
2382 static void wait_log_commit(struct btrfs_trans_handle *trans,
2383 			    struct btrfs_root *root, int transid)
2384 {
2385 	DEFINE_WAIT(wait);
2386 	int index = transid % 2;
2387 
2388 	/*
2389 	 * we only allow two pending log transactions at a time,
2390 	 * so we know that if ours is more than 2 older than the
2391 	 * current transaction, we're done
2392 	 */
2393 	do {
2394 		prepare_to_wait(&root->log_commit_wait[index],
2395 				&wait, TASK_UNINTERRUPTIBLE);
2396 		mutex_unlock(&root->log_mutex);
2397 
2398 		if (root->log_transid_committed < transid &&
2399 		    atomic_read(&root->log_commit[index]))
2400 			schedule();
2401 
2402 		finish_wait(&root->log_commit_wait[index], &wait);
2403 		mutex_lock(&root->log_mutex);
2404 	} while (root->log_transid_committed < transid &&
2405 		 atomic_read(&root->log_commit[index]));
2406 }
2407 
2408 static void wait_for_writer(struct btrfs_trans_handle *trans,
2409 			    struct btrfs_root *root)
2410 {
2411 	DEFINE_WAIT(wait);
2412 
2413 	while (atomic_read(&root->log_writers)) {
2414 		prepare_to_wait(&root->log_writer_wait,
2415 				&wait, TASK_UNINTERRUPTIBLE);
2416 		mutex_unlock(&root->log_mutex);
2417 		if (atomic_read(&root->log_writers))
2418 			schedule();
2419 		mutex_lock(&root->log_mutex);
2420 		finish_wait(&root->log_writer_wait, &wait);
2421 	}
2422 }
2423 
2424 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2425 					struct btrfs_log_ctx *ctx)
2426 {
2427 	if (!ctx)
2428 		return;
2429 
2430 	mutex_lock(&root->log_mutex);
2431 	list_del_init(&ctx->list);
2432 	mutex_unlock(&root->log_mutex);
2433 }
2434 
2435 /*
2436  * Invoked in log mutex context, or be sure there is no other task which
2437  * can access the list.
2438  */
2439 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2440 					     int index, int error)
2441 {
2442 	struct btrfs_log_ctx *ctx;
2443 
2444 	if (!error) {
2445 		INIT_LIST_HEAD(&root->log_ctxs[index]);
2446 		return;
2447 	}
2448 
2449 	list_for_each_entry(ctx, &root->log_ctxs[index], list)
2450 		ctx->log_ret = error;
2451 
2452 	INIT_LIST_HEAD(&root->log_ctxs[index]);
2453 }
2454 
2455 /*
2456  * btrfs_sync_log does sends a given tree log down to the disk and
2457  * updates the super blocks to record it.  When this call is done,
2458  * you know that any inodes previously logged are safely on disk only
2459  * if it returns 0.
2460  *
2461  * Any other return value means you need to call btrfs_commit_transaction.
2462  * Some of the edge cases for fsyncing directories that have had unlinks
2463  * or renames done in the past mean that sometimes the only safe
2464  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2465  * that has happened.
2466  */
2467 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2468 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2469 {
2470 	int index1;
2471 	int index2;
2472 	int mark;
2473 	int ret;
2474 	struct btrfs_root *log = root->log_root;
2475 	struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2476 	int log_transid = 0;
2477 	struct btrfs_log_ctx root_log_ctx;
2478 	struct blk_plug plug;
2479 
2480 	mutex_lock(&root->log_mutex);
2481 	log_transid = ctx->log_transid;
2482 	if (root->log_transid_committed >= log_transid) {
2483 		mutex_unlock(&root->log_mutex);
2484 		return ctx->log_ret;
2485 	}
2486 
2487 	index1 = log_transid % 2;
2488 	if (atomic_read(&root->log_commit[index1])) {
2489 		wait_log_commit(trans, root, log_transid);
2490 		mutex_unlock(&root->log_mutex);
2491 		return ctx->log_ret;
2492 	}
2493 	ASSERT(log_transid == root->log_transid);
2494 	atomic_set(&root->log_commit[index1], 1);
2495 
2496 	/* wait for previous tree log sync to complete */
2497 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2498 		wait_log_commit(trans, root, log_transid - 1);
2499 
2500 	while (1) {
2501 		int batch = atomic_read(&root->log_batch);
2502 		/* when we're on an ssd, just kick the log commit out */
2503 		if (!btrfs_test_opt(root, SSD) &&
2504 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2505 			mutex_unlock(&root->log_mutex);
2506 			schedule_timeout_uninterruptible(1);
2507 			mutex_lock(&root->log_mutex);
2508 		}
2509 		wait_for_writer(trans, root);
2510 		if (batch == atomic_read(&root->log_batch))
2511 			break;
2512 	}
2513 
2514 	/* bail out if we need to do a full commit */
2515 	if (btrfs_need_log_full_commit(root->fs_info, trans)) {
2516 		ret = -EAGAIN;
2517 		btrfs_free_logged_extents(log, log_transid);
2518 		mutex_unlock(&root->log_mutex);
2519 		goto out;
2520 	}
2521 
2522 	if (log_transid % 2 == 0)
2523 		mark = EXTENT_DIRTY;
2524 	else
2525 		mark = EXTENT_NEW;
2526 
2527 	/* we start IO on  all the marked extents here, but we don't actually
2528 	 * wait for them until later.
2529 	 */
2530 	blk_start_plug(&plug);
2531 	ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2532 	if (ret) {
2533 		blk_finish_plug(&plug);
2534 		btrfs_abort_transaction(trans, root, ret);
2535 		btrfs_free_logged_extents(log, log_transid);
2536 		btrfs_set_log_full_commit(root->fs_info, trans);
2537 		mutex_unlock(&root->log_mutex);
2538 		goto out;
2539 	}
2540 
2541 	btrfs_set_root_node(&log->root_item, log->node);
2542 
2543 	root->log_transid++;
2544 	log->log_transid = root->log_transid;
2545 	root->log_start_pid = 0;
2546 	/*
2547 	 * IO has been started, blocks of the log tree have WRITTEN flag set
2548 	 * in their headers. new modifications of the log will be written to
2549 	 * new positions. so it's safe to allow log writers to go in.
2550 	 */
2551 	mutex_unlock(&root->log_mutex);
2552 
2553 	btrfs_init_log_ctx(&root_log_ctx);
2554 
2555 	mutex_lock(&log_root_tree->log_mutex);
2556 	atomic_inc(&log_root_tree->log_batch);
2557 	atomic_inc(&log_root_tree->log_writers);
2558 
2559 	index2 = log_root_tree->log_transid % 2;
2560 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2561 	root_log_ctx.log_transid = log_root_tree->log_transid;
2562 
2563 	mutex_unlock(&log_root_tree->log_mutex);
2564 
2565 	ret = update_log_root(trans, log);
2566 
2567 	mutex_lock(&log_root_tree->log_mutex);
2568 	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2569 		smp_mb();
2570 		if (waitqueue_active(&log_root_tree->log_writer_wait))
2571 			wake_up(&log_root_tree->log_writer_wait);
2572 	}
2573 
2574 	if (ret) {
2575 		if (!list_empty(&root_log_ctx.list))
2576 			list_del_init(&root_log_ctx.list);
2577 
2578 		blk_finish_plug(&plug);
2579 		btrfs_set_log_full_commit(root->fs_info, trans);
2580 
2581 		if (ret != -ENOSPC) {
2582 			btrfs_abort_transaction(trans, root, ret);
2583 			mutex_unlock(&log_root_tree->log_mutex);
2584 			goto out;
2585 		}
2586 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2587 		btrfs_free_logged_extents(log, log_transid);
2588 		mutex_unlock(&log_root_tree->log_mutex);
2589 		ret = -EAGAIN;
2590 		goto out;
2591 	}
2592 
2593 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
2594 		blk_finish_plug(&plug);
2595 		mutex_unlock(&log_root_tree->log_mutex);
2596 		ret = root_log_ctx.log_ret;
2597 		goto out;
2598 	}
2599 
2600 	index2 = root_log_ctx.log_transid % 2;
2601 	if (atomic_read(&log_root_tree->log_commit[index2])) {
2602 		blk_finish_plug(&plug);
2603 		ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages,
2604 						mark);
2605 		btrfs_wait_logged_extents(trans, log, log_transid);
2606 		wait_log_commit(trans, log_root_tree,
2607 				root_log_ctx.log_transid);
2608 		mutex_unlock(&log_root_tree->log_mutex);
2609 		if (!ret)
2610 			ret = root_log_ctx.log_ret;
2611 		goto out;
2612 	}
2613 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
2614 	atomic_set(&log_root_tree->log_commit[index2], 1);
2615 
2616 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2617 		wait_log_commit(trans, log_root_tree,
2618 				root_log_ctx.log_transid - 1);
2619 	}
2620 
2621 	wait_for_writer(trans, log_root_tree);
2622 
2623 	/*
2624 	 * now that we've moved on to the tree of log tree roots,
2625 	 * check the full commit flag again
2626 	 */
2627 	if (btrfs_need_log_full_commit(root->fs_info, trans)) {
2628 		blk_finish_plug(&plug);
2629 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2630 		btrfs_free_logged_extents(log, log_transid);
2631 		mutex_unlock(&log_root_tree->log_mutex);
2632 		ret = -EAGAIN;
2633 		goto out_wake_log_root;
2634 	}
2635 
2636 	ret = btrfs_write_marked_extents(log_root_tree,
2637 					 &log_root_tree->dirty_log_pages,
2638 					 EXTENT_DIRTY | EXTENT_NEW);
2639 	blk_finish_plug(&plug);
2640 	if (ret) {
2641 		btrfs_set_log_full_commit(root->fs_info, trans);
2642 		btrfs_abort_transaction(trans, root, ret);
2643 		btrfs_free_logged_extents(log, log_transid);
2644 		mutex_unlock(&log_root_tree->log_mutex);
2645 		goto out_wake_log_root;
2646 	}
2647 	ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2648 	if (!ret)
2649 		ret = btrfs_wait_marked_extents(log_root_tree,
2650 						&log_root_tree->dirty_log_pages,
2651 						EXTENT_NEW | EXTENT_DIRTY);
2652 	if (ret) {
2653 		btrfs_set_log_full_commit(root->fs_info, trans);
2654 		btrfs_free_logged_extents(log, log_transid);
2655 		mutex_unlock(&log_root_tree->log_mutex);
2656 		goto out_wake_log_root;
2657 	}
2658 	btrfs_wait_logged_extents(trans, log, log_transid);
2659 
2660 	btrfs_set_super_log_root(root->fs_info->super_for_commit,
2661 				log_root_tree->node->start);
2662 	btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2663 				btrfs_header_level(log_root_tree->node));
2664 
2665 	log_root_tree->log_transid++;
2666 	mutex_unlock(&log_root_tree->log_mutex);
2667 
2668 	/*
2669 	 * nobody else is going to jump in and write the the ctree
2670 	 * super here because the log_commit atomic below is protecting
2671 	 * us.  We must be called with a transaction handle pinning
2672 	 * the running transaction open, so a full commit can't hop
2673 	 * in and cause problems either.
2674 	 */
2675 	ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
2676 	if (ret) {
2677 		btrfs_set_log_full_commit(root->fs_info, trans);
2678 		btrfs_abort_transaction(trans, root, ret);
2679 		goto out_wake_log_root;
2680 	}
2681 
2682 	mutex_lock(&root->log_mutex);
2683 	if (root->last_log_commit < log_transid)
2684 		root->last_log_commit = log_transid;
2685 	mutex_unlock(&root->log_mutex);
2686 
2687 out_wake_log_root:
2688 	/*
2689 	 * We needn't get log_mutex here because we are sure all
2690 	 * the other tasks are blocked.
2691 	 */
2692 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
2693 
2694 	mutex_lock(&log_root_tree->log_mutex);
2695 	log_root_tree->log_transid_committed++;
2696 	atomic_set(&log_root_tree->log_commit[index2], 0);
2697 	mutex_unlock(&log_root_tree->log_mutex);
2698 
2699 	if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2700 		wake_up(&log_root_tree->log_commit_wait[index2]);
2701 out:
2702 	/* See above. */
2703 	btrfs_remove_all_log_ctxs(root, index1, ret);
2704 
2705 	mutex_lock(&root->log_mutex);
2706 	root->log_transid_committed++;
2707 	atomic_set(&root->log_commit[index1], 0);
2708 	mutex_unlock(&root->log_mutex);
2709 
2710 	if (waitqueue_active(&root->log_commit_wait[index1]))
2711 		wake_up(&root->log_commit_wait[index1]);
2712 	return ret;
2713 }
2714 
2715 static void free_log_tree(struct btrfs_trans_handle *trans,
2716 			  struct btrfs_root *log)
2717 {
2718 	int ret;
2719 	u64 start;
2720 	u64 end;
2721 	struct walk_control wc = {
2722 		.free = 1,
2723 		.process_func = process_one_buffer
2724 	};
2725 
2726 	ret = walk_log_tree(trans, log, &wc);
2727 	/* I don't think this can happen but just in case */
2728 	if (ret)
2729 		btrfs_abort_transaction(trans, log, ret);
2730 
2731 	while (1) {
2732 		ret = find_first_extent_bit(&log->dirty_log_pages,
2733 				0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
2734 				NULL);
2735 		if (ret)
2736 			break;
2737 
2738 		clear_extent_bits(&log->dirty_log_pages, start, end,
2739 				  EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2740 	}
2741 
2742 	/*
2743 	 * We may have short-circuited the log tree with the full commit logic
2744 	 * and left ordered extents on our list, so clear these out to keep us
2745 	 * from leaking inodes and memory.
2746 	 */
2747 	btrfs_free_logged_extents(log, 0);
2748 	btrfs_free_logged_extents(log, 1);
2749 
2750 	free_extent_buffer(log->node);
2751 	kfree(log);
2752 }
2753 
2754 /*
2755  * free all the extents used by the tree log.  This should be called
2756  * at commit time of the full transaction
2757  */
2758 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2759 {
2760 	if (root->log_root) {
2761 		free_log_tree(trans, root->log_root);
2762 		root->log_root = NULL;
2763 	}
2764 	return 0;
2765 }
2766 
2767 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2768 			     struct btrfs_fs_info *fs_info)
2769 {
2770 	if (fs_info->log_root_tree) {
2771 		free_log_tree(trans, fs_info->log_root_tree);
2772 		fs_info->log_root_tree = NULL;
2773 	}
2774 	return 0;
2775 }
2776 
2777 /*
2778  * If both a file and directory are logged, and unlinks or renames are
2779  * mixed in, we have a few interesting corners:
2780  *
2781  * create file X in dir Y
2782  * link file X to X.link in dir Y
2783  * fsync file X
2784  * unlink file X but leave X.link
2785  * fsync dir Y
2786  *
2787  * After a crash we would expect only X.link to exist.  But file X
2788  * didn't get fsync'd again so the log has back refs for X and X.link.
2789  *
2790  * We solve this by removing directory entries and inode backrefs from the
2791  * log when a file that was logged in the current transaction is
2792  * unlinked.  Any later fsync will include the updated log entries, and
2793  * we'll be able to reconstruct the proper directory items from backrefs.
2794  *
2795  * This optimizations allows us to avoid relogging the entire inode
2796  * or the entire directory.
2797  */
2798 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2799 				 struct btrfs_root *root,
2800 				 const char *name, int name_len,
2801 				 struct inode *dir, u64 index)
2802 {
2803 	struct btrfs_root *log;
2804 	struct btrfs_dir_item *di;
2805 	struct btrfs_path *path;
2806 	int ret;
2807 	int err = 0;
2808 	int bytes_del = 0;
2809 	u64 dir_ino = btrfs_ino(dir);
2810 
2811 	if (BTRFS_I(dir)->logged_trans < trans->transid)
2812 		return 0;
2813 
2814 	ret = join_running_log_trans(root);
2815 	if (ret)
2816 		return 0;
2817 
2818 	mutex_lock(&BTRFS_I(dir)->log_mutex);
2819 
2820 	log = root->log_root;
2821 	path = btrfs_alloc_path();
2822 	if (!path) {
2823 		err = -ENOMEM;
2824 		goto out_unlock;
2825 	}
2826 
2827 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
2828 				   name, name_len, -1);
2829 	if (IS_ERR(di)) {
2830 		err = PTR_ERR(di);
2831 		goto fail;
2832 	}
2833 	if (di) {
2834 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2835 		bytes_del += name_len;
2836 		if (ret) {
2837 			err = ret;
2838 			goto fail;
2839 		}
2840 	}
2841 	btrfs_release_path(path);
2842 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
2843 					 index, name, name_len, -1);
2844 	if (IS_ERR(di)) {
2845 		err = PTR_ERR(di);
2846 		goto fail;
2847 	}
2848 	if (di) {
2849 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2850 		bytes_del += name_len;
2851 		if (ret) {
2852 			err = ret;
2853 			goto fail;
2854 		}
2855 	}
2856 
2857 	/* update the directory size in the log to reflect the names
2858 	 * we have removed
2859 	 */
2860 	if (bytes_del) {
2861 		struct btrfs_key key;
2862 
2863 		key.objectid = dir_ino;
2864 		key.offset = 0;
2865 		key.type = BTRFS_INODE_ITEM_KEY;
2866 		btrfs_release_path(path);
2867 
2868 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2869 		if (ret < 0) {
2870 			err = ret;
2871 			goto fail;
2872 		}
2873 		if (ret == 0) {
2874 			struct btrfs_inode_item *item;
2875 			u64 i_size;
2876 
2877 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2878 					      struct btrfs_inode_item);
2879 			i_size = btrfs_inode_size(path->nodes[0], item);
2880 			if (i_size > bytes_del)
2881 				i_size -= bytes_del;
2882 			else
2883 				i_size = 0;
2884 			btrfs_set_inode_size(path->nodes[0], item, i_size);
2885 			btrfs_mark_buffer_dirty(path->nodes[0]);
2886 		} else
2887 			ret = 0;
2888 		btrfs_release_path(path);
2889 	}
2890 fail:
2891 	btrfs_free_path(path);
2892 out_unlock:
2893 	mutex_unlock(&BTRFS_I(dir)->log_mutex);
2894 	if (ret == -ENOSPC) {
2895 		btrfs_set_log_full_commit(root->fs_info, trans);
2896 		ret = 0;
2897 	} else if (ret < 0)
2898 		btrfs_abort_transaction(trans, root, ret);
2899 
2900 	btrfs_end_log_trans(root);
2901 
2902 	return err;
2903 }
2904 
2905 /* see comments for btrfs_del_dir_entries_in_log */
2906 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2907 			       struct btrfs_root *root,
2908 			       const char *name, int name_len,
2909 			       struct inode *inode, u64 dirid)
2910 {
2911 	struct btrfs_root *log;
2912 	u64 index;
2913 	int ret;
2914 
2915 	if (BTRFS_I(inode)->logged_trans < trans->transid)
2916 		return 0;
2917 
2918 	ret = join_running_log_trans(root);
2919 	if (ret)
2920 		return 0;
2921 	log = root->log_root;
2922 	mutex_lock(&BTRFS_I(inode)->log_mutex);
2923 
2924 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
2925 				  dirid, &index);
2926 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
2927 	if (ret == -ENOSPC) {
2928 		btrfs_set_log_full_commit(root->fs_info, trans);
2929 		ret = 0;
2930 	} else if (ret < 0 && ret != -ENOENT)
2931 		btrfs_abort_transaction(trans, root, ret);
2932 	btrfs_end_log_trans(root);
2933 
2934 	return ret;
2935 }
2936 
2937 /*
2938  * creates a range item in the log for 'dirid'.  first_offset and
2939  * last_offset tell us which parts of the key space the log should
2940  * be considered authoritative for.
2941  */
2942 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2943 				       struct btrfs_root *log,
2944 				       struct btrfs_path *path,
2945 				       int key_type, u64 dirid,
2946 				       u64 first_offset, u64 last_offset)
2947 {
2948 	int ret;
2949 	struct btrfs_key key;
2950 	struct btrfs_dir_log_item *item;
2951 
2952 	key.objectid = dirid;
2953 	key.offset = first_offset;
2954 	if (key_type == BTRFS_DIR_ITEM_KEY)
2955 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
2956 	else
2957 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
2958 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2959 	if (ret)
2960 		return ret;
2961 
2962 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2963 			      struct btrfs_dir_log_item);
2964 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2965 	btrfs_mark_buffer_dirty(path->nodes[0]);
2966 	btrfs_release_path(path);
2967 	return 0;
2968 }
2969 
2970 /*
2971  * log all the items included in the current transaction for a given
2972  * directory.  This also creates the range items in the log tree required
2973  * to replay anything deleted before the fsync
2974  */
2975 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2976 			  struct btrfs_root *root, struct inode *inode,
2977 			  struct btrfs_path *path,
2978 			  struct btrfs_path *dst_path, int key_type,
2979 			  u64 min_offset, u64 *last_offset_ret)
2980 {
2981 	struct btrfs_key min_key;
2982 	struct btrfs_root *log = root->log_root;
2983 	struct extent_buffer *src;
2984 	int err = 0;
2985 	int ret;
2986 	int i;
2987 	int nritems;
2988 	u64 first_offset = min_offset;
2989 	u64 last_offset = (u64)-1;
2990 	u64 ino = btrfs_ino(inode);
2991 
2992 	log = root->log_root;
2993 
2994 	min_key.objectid = ino;
2995 	min_key.type = key_type;
2996 	min_key.offset = min_offset;
2997 
2998 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
2999 
3000 	/*
3001 	 * we didn't find anything from this transaction, see if there
3002 	 * is anything at all
3003 	 */
3004 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3005 		min_key.objectid = ino;
3006 		min_key.type = key_type;
3007 		min_key.offset = (u64)-1;
3008 		btrfs_release_path(path);
3009 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3010 		if (ret < 0) {
3011 			btrfs_release_path(path);
3012 			return ret;
3013 		}
3014 		ret = btrfs_previous_item(root, path, ino, key_type);
3015 
3016 		/* if ret == 0 there are items for this type,
3017 		 * create a range to tell us the last key of this type.
3018 		 * otherwise, there are no items in this directory after
3019 		 * *min_offset, and we create a range to indicate that.
3020 		 */
3021 		if (ret == 0) {
3022 			struct btrfs_key tmp;
3023 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3024 					      path->slots[0]);
3025 			if (key_type == tmp.type)
3026 				first_offset = max(min_offset, tmp.offset) + 1;
3027 		}
3028 		goto done;
3029 	}
3030 
3031 	/* go backward to find any previous key */
3032 	ret = btrfs_previous_item(root, path, ino, key_type);
3033 	if (ret == 0) {
3034 		struct btrfs_key tmp;
3035 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3036 		if (key_type == tmp.type) {
3037 			first_offset = tmp.offset;
3038 			ret = overwrite_item(trans, log, dst_path,
3039 					     path->nodes[0], path->slots[0],
3040 					     &tmp);
3041 			if (ret) {
3042 				err = ret;
3043 				goto done;
3044 			}
3045 		}
3046 	}
3047 	btrfs_release_path(path);
3048 
3049 	/* find the first key from this transaction again */
3050 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3051 	if (WARN_ON(ret != 0))
3052 		goto done;
3053 
3054 	/*
3055 	 * we have a block from this transaction, log every item in it
3056 	 * from our directory
3057 	 */
3058 	while (1) {
3059 		struct btrfs_key tmp;
3060 		src = path->nodes[0];
3061 		nritems = btrfs_header_nritems(src);
3062 		for (i = path->slots[0]; i < nritems; i++) {
3063 			btrfs_item_key_to_cpu(src, &min_key, i);
3064 
3065 			if (min_key.objectid != ino || min_key.type != key_type)
3066 				goto done;
3067 			ret = overwrite_item(trans, log, dst_path, src, i,
3068 					     &min_key);
3069 			if (ret) {
3070 				err = ret;
3071 				goto done;
3072 			}
3073 		}
3074 		path->slots[0] = nritems;
3075 
3076 		/*
3077 		 * look ahead to the next item and see if it is also
3078 		 * from this directory and from this transaction
3079 		 */
3080 		ret = btrfs_next_leaf(root, path);
3081 		if (ret == 1) {
3082 			last_offset = (u64)-1;
3083 			goto done;
3084 		}
3085 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3086 		if (tmp.objectid != ino || tmp.type != key_type) {
3087 			last_offset = (u64)-1;
3088 			goto done;
3089 		}
3090 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3091 			ret = overwrite_item(trans, log, dst_path,
3092 					     path->nodes[0], path->slots[0],
3093 					     &tmp);
3094 			if (ret)
3095 				err = ret;
3096 			else
3097 				last_offset = tmp.offset;
3098 			goto done;
3099 		}
3100 	}
3101 done:
3102 	btrfs_release_path(path);
3103 	btrfs_release_path(dst_path);
3104 
3105 	if (err == 0) {
3106 		*last_offset_ret = last_offset;
3107 		/*
3108 		 * insert the log range keys to indicate where the log
3109 		 * is valid
3110 		 */
3111 		ret = insert_dir_log_key(trans, log, path, key_type,
3112 					 ino, first_offset, last_offset);
3113 		if (ret)
3114 			err = ret;
3115 	}
3116 	return err;
3117 }
3118 
3119 /*
3120  * logging directories is very similar to logging inodes, We find all the items
3121  * from the current transaction and write them to the log.
3122  *
3123  * The recovery code scans the directory in the subvolume, and if it finds a
3124  * key in the range logged that is not present in the log tree, then it means
3125  * that dir entry was unlinked during the transaction.
3126  *
3127  * In order for that scan to work, we must include one key smaller than
3128  * the smallest logged by this transaction and one key larger than the largest
3129  * key logged by this transaction.
3130  */
3131 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3132 			  struct btrfs_root *root, struct inode *inode,
3133 			  struct btrfs_path *path,
3134 			  struct btrfs_path *dst_path)
3135 {
3136 	u64 min_key;
3137 	u64 max_key;
3138 	int ret;
3139 	int key_type = BTRFS_DIR_ITEM_KEY;
3140 
3141 again:
3142 	min_key = 0;
3143 	max_key = 0;
3144 	while (1) {
3145 		ret = log_dir_items(trans, root, inode, path,
3146 				    dst_path, key_type, min_key,
3147 				    &max_key);
3148 		if (ret)
3149 			return ret;
3150 		if (max_key == (u64)-1)
3151 			break;
3152 		min_key = max_key + 1;
3153 	}
3154 
3155 	if (key_type == BTRFS_DIR_ITEM_KEY) {
3156 		key_type = BTRFS_DIR_INDEX_KEY;
3157 		goto again;
3158 	}
3159 	return 0;
3160 }
3161 
3162 /*
3163  * a helper function to drop items from the log before we relog an
3164  * inode.  max_key_type indicates the highest item type to remove.
3165  * This cannot be run for file data extents because it does not
3166  * free the extents they point to.
3167  */
3168 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3169 				  struct btrfs_root *log,
3170 				  struct btrfs_path *path,
3171 				  u64 objectid, int max_key_type)
3172 {
3173 	int ret;
3174 	struct btrfs_key key;
3175 	struct btrfs_key found_key;
3176 	int start_slot;
3177 
3178 	key.objectid = objectid;
3179 	key.type = max_key_type;
3180 	key.offset = (u64)-1;
3181 
3182 	while (1) {
3183 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3184 		BUG_ON(ret == 0); /* Logic error */
3185 		if (ret < 0)
3186 			break;
3187 
3188 		if (path->slots[0] == 0)
3189 			break;
3190 
3191 		path->slots[0]--;
3192 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3193 				      path->slots[0]);
3194 
3195 		if (found_key.objectid != objectid)
3196 			break;
3197 
3198 		found_key.offset = 0;
3199 		found_key.type = 0;
3200 		ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3201 				       &start_slot);
3202 
3203 		ret = btrfs_del_items(trans, log, path, start_slot,
3204 				      path->slots[0] - start_slot + 1);
3205 		/*
3206 		 * If start slot isn't 0 then we don't need to re-search, we've
3207 		 * found the last guy with the objectid in this tree.
3208 		 */
3209 		if (ret || start_slot != 0)
3210 			break;
3211 		btrfs_release_path(path);
3212 	}
3213 	btrfs_release_path(path);
3214 	if (ret > 0)
3215 		ret = 0;
3216 	return ret;
3217 }
3218 
3219 static void fill_inode_item(struct btrfs_trans_handle *trans,
3220 			    struct extent_buffer *leaf,
3221 			    struct btrfs_inode_item *item,
3222 			    struct inode *inode, int log_inode_only)
3223 {
3224 	struct btrfs_map_token token;
3225 
3226 	btrfs_init_map_token(&token);
3227 
3228 	if (log_inode_only) {
3229 		/* set the generation to zero so the recover code
3230 		 * can tell the difference between an logging
3231 		 * just to say 'this inode exists' and a logging
3232 		 * to say 'update this inode with these values'
3233 		 */
3234 		btrfs_set_token_inode_generation(leaf, item, 0, &token);
3235 		btrfs_set_token_inode_size(leaf, item, 0, &token);
3236 	} else {
3237 		btrfs_set_token_inode_generation(leaf, item,
3238 						 BTRFS_I(inode)->generation,
3239 						 &token);
3240 		btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3241 	}
3242 
3243 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3244 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3245 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3246 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3247 
3248 	btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3249 				     inode->i_atime.tv_sec, &token);
3250 	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3251 				      inode->i_atime.tv_nsec, &token);
3252 
3253 	btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3254 				     inode->i_mtime.tv_sec, &token);
3255 	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3256 				      inode->i_mtime.tv_nsec, &token);
3257 
3258 	btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3259 				     inode->i_ctime.tv_sec, &token);
3260 	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3261 				      inode->i_ctime.tv_nsec, &token);
3262 
3263 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3264 				     &token);
3265 
3266 	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3267 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3268 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3269 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3270 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3271 }
3272 
3273 static int log_inode_item(struct btrfs_trans_handle *trans,
3274 			  struct btrfs_root *log, struct btrfs_path *path,
3275 			  struct inode *inode)
3276 {
3277 	struct btrfs_inode_item *inode_item;
3278 	int ret;
3279 
3280 	ret = btrfs_insert_empty_item(trans, log, path,
3281 				      &BTRFS_I(inode)->location,
3282 				      sizeof(*inode_item));
3283 	if (ret && ret != -EEXIST)
3284 		return ret;
3285 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3286 				    struct btrfs_inode_item);
3287 	fill_inode_item(trans, path->nodes[0], inode_item, inode, 0);
3288 	btrfs_release_path(path);
3289 	return 0;
3290 }
3291 
3292 static noinline int copy_items(struct btrfs_trans_handle *trans,
3293 			       struct inode *inode,
3294 			       struct btrfs_path *dst_path,
3295 			       struct btrfs_path *src_path, u64 *last_extent,
3296 			       int start_slot, int nr, int inode_only)
3297 {
3298 	unsigned long src_offset;
3299 	unsigned long dst_offset;
3300 	struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3301 	struct btrfs_file_extent_item *extent;
3302 	struct btrfs_inode_item *inode_item;
3303 	struct extent_buffer *src = src_path->nodes[0];
3304 	struct btrfs_key first_key, last_key, key;
3305 	int ret;
3306 	struct btrfs_key *ins_keys;
3307 	u32 *ins_sizes;
3308 	char *ins_data;
3309 	int i;
3310 	struct list_head ordered_sums;
3311 	int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3312 	bool has_extents = false;
3313 	bool need_find_last_extent = true;
3314 	bool done = false;
3315 
3316 	INIT_LIST_HEAD(&ordered_sums);
3317 
3318 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3319 			   nr * sizeof(u32), GFP_NOFS);
3320 	if (!ins_data)
3321 		return -ENOMEM;
3322 
3323 	first_key.objectid = (u64)-1;
3324 
3325 	ins_sizes = (u32 *)ins_data;
3326 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3327 
3328 	for (i = 0; i < nr; i++) {
3329 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3330 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3331 	}
3332 	ret = btrfs_insert_empty_items(trans, log, dst_path,
3333 				       ins_keys, ins_sizes, nr);
3334 	if (ret) {
3335 		kfree(ins_data);
3336 		return ret;
3337 	}
3338 
3339 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3340 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3341 						   dst_path->slots[0]);
3342 
3343 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3344 
3345 		if ((i == (nr - 1)))
3346 			last_key = ins_keys[i];
3347 
3348 		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3349 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
3350 						    dst_path->slots[0],
3351 						    struct btrfs_inode_item);
3352 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
3353 					inode, inode_only == LOG_INODE_EXISTS);
3354 		} else {
3355 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3356 					   src_offset, ins_sizes[i]);
3357 		}
3358 
3359 		/*
3360 		 * We set need_find_last_extent here in case we know we were
3361 		 * processing other items and then walk into the first extent in
3362 		 * the inode.  If we don't hit an extent then nothing changes,
3363 		 * we'll do the last search the next time around.
3364 		 */
3365 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3366 			has_extents = true;
3367 			if (first_key.objectid == (u64)-1)
3368 				first_key = ins_keys[i];
3369 		} else {
3370 			need_find_last_extent = false;
3371 		}
3372 
3373 		/* take a reference on file data extents so that truncates
3374 		 * or deletes of this inode don't have to relog the inode
3375 		 * again
3376 		 */
3377 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
3378 		    !skip_csum) {
3379 			int found_type;
3380 			extent = btrfs_item_ptr(src, start_slot + i,
3381 						struct btrfs_file_extent_item);
3382 
3383 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
3384 				continue;
3385 
3386 			found_type = btrfs_file_extent_type(src, extent);
3387 			if (found_type == BTRFS_FILE_EXTENT_REG) {
3388 				u64 ds, dl, cs, cl;
3389 				ds = btrfs_file_extent_disk_bytenr(src,
3390 								extent);
3391 				/* ds == 0 is a hole */
3392 				if (ds == 0)
3393 					continue;
3394 
3395 				dl = btrfs_file_extent_disk_num_bytes(src,
3396 								extent);
3397 				cs = btrfs_file_extent_offset(src, extent);
3398 				cl = btrfs_file_extent_num_bytes(src,
3399 								extent);
3400 				if (btrfs_file_extent_compression(src,
3401 								  extent)) {
3402 					cs = 0;
3403 					cl = dl;
3404 				}
3405 
3406 				ret = btrfs_lookup_csums_range(
3407 						log->fs_info->csum_root,
3408 						ds + cs, ds + cs + cl - 1,
3409 						&ordered_sums, 0);
3410 				if (ret) {
3411 					btrfs_release_path(dst_path);
3412 					kfree(ins_data);
3413 					return ret;
3414 				}
3415 			}
3416 		}
3417 	}
3418 
3419 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3420 	btrfs_release_path(dst_path);
3421 	kfree(ins_data);
3422 
3423 	/*
3424 	 * we have to do this after the loop above to avoid changing the
3425 	 * log tree while trying to change the log tree.
3426 	 */
3427 	ret = 0;
3428 	while (!list_empty(&ordered_sums)) {
3429 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3430 						   struct btrfs_ordered_sum,
3431 						   list);
3432 		if (!ret)
3433 			ret = btrfs_csum_file_blocks(trans, log, sums);
3434 		list_del(&sums->list);
3435 		kfree(sums);
3436 	}
3437 
3438 	if (!has_extents)
3439 		return ret;
3440 
3441 	if (need_find_last_extent && *last_extent == first_key.offset) {
3442 		/*
3443 		 * We don't have any leafs between our current one and the one
3444 		 * we processed before that can have file extent items for our
3445 		 * inode (and have a generation number smaller than our current
3446 		 * transaction id).
3447 		 */
3448 		need_find_last_extent = false;
3449 	}
3450 
3451 	/*
3452 	 * Because we use btrfs_search_forward we could skip leaves that were
3453 	 * not modified and then assume *last_extent is valid when it really
3454 	 * isn't.  So back up to the previous leaf and read the end of the last
3455 	 * extent before we go and fill in holes.
3456 	 */
3457 	if (need_find_last_extent) {
3458 		u64 len;
3459 
3460 		ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path);
3461 		if (ret < 0)
3462 			return ret;
3463 		if (ret)
3464 			goto fill_holes;
3465 		if (src_path->slots[0])
3466 			src_path->slots[0]--;
3467 		src = src_path->nodes[0];
3468 		btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3469 		if (key.objectid != btrfs_ino(inode) ||
3470 		    key.type != BTRFS_EXTENT_DATA_KEY)
3471 			goto fill_holes;
3472 		extent = btrfs_item_ptr(src, src_path->slots[0],
3473 					struct btrfs_file_extent_item);
3474 		if (btrfs_file_extent_type(src, extent) ==
3475 		    BTRFS_FILE_EXTENT_INLINE) {
3476 			len = btrfs_file_extent_inline_len(src,
3477 							   src_path->slots[0],
3478 							   extent);
3479 			*last_extent = ALIGN(key.offset + len,
3480 					     log->sectorsize);
3481 		} else {
3482 			len = btrfs_file_extent_num_bytes(src, extent);
3483 			*last_extent = key.offset + len;
3484 		}
3485 	}
3486 fill_holes:
3487 	/* So we did prev_leaf, now we need to move to the next leaf, but a few
3488 	 * things could have happened
3489 	 *
3490 	 * 1) A merge could have happened, so we could currently be on a leaf
3491 	 * that holds what we were copying in the first place.
3492 	 * 2) A split could have happened, and now not all of the items we want
3493 	 * are on the same leaf.
3494 	 *
3495 	 * So we need to adjust how we search for holes, we need to drop the
3496 	 * path and re-search for the first extent key we found, and then walk
3497 	 * forward until we hit the last one we copied.
3498 	 */
3499 	if (need_find_last_extent) {
3500 		/* btrfs_prev_leaf could return 1 without releasing the path */
3501 		btrfs_release_path(src_path);
3502 		ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key,
3503 					src_path, 0, 0);
3504 		if (ret < 0)
3505 			return ret;
3506 		ASSERT(ret == 0);
3507 		src = src_path->nodes[0];
3508 		i = src_path->slots[0];
3509 	} else {
3510 		i = start_slot;
3511 	}
3512 
3513 	/*
3514 	 * Ok so here we need to go through and fill in any holes we may have
3515 	 * to make sure that holes are punched for those areas in case they had
3516 	 * extents previously.
3517 	 */
3518 	while (!done) {
3519 		u64 offset, len;
3520 		u64 extent_end;
3521 
3522 		if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3523 			ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path);
3524 			if (ret < 0)
3525 				return ret;
3526 			ASSERT(ret == 0);
3527 			src = src_path->nodes[0];
3528 			i = 0;
3529 		}
3530 
3531 		btrfs_item_key_to_cpu(src, &key, i);
3532 		if (!btrfs_comp_cpu_keys(&key, &last_key))
3533 			done = true;
3534 		if (key.objectid != btrfs_ino(inode) ||
3535 		    key.type != BTRFS_EXTENT_DATA_KEY) {
3536 			i++;
3537 			continue;
3538 		}
3539 		extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3540 		if (btrfs_file_extent_type(src, extent) ==
3541 		    BTRFS_FILE_EXTENT_INLINE) {
3542 			len = btrfs_file_extent_inline_len(src, i, extent);
3543 			extent_end = ALIGN(key.offset + len, log->sectorsize);
3544 		} else {
3545 			len = btrfs_file_extent_num_bytes(src, extent);
3546 			extent_end = key.offset + len;
3547 		}
3548 		i++;
3549 
3550 		if (*last_extent == key.offset) {
3551 			*last_extent = extent_end;
3552 			continue;
3553 		}
3554 		offset = *last_extent;
3555 		len = key.offset - *last_extent;
3556 		ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3557 					       offset, 0, 0, len, 0, len, 0,
3558 					       0, 0);
3559 		if (ret)
3560 			break;
3561 		*last_extent = extent_end;
3562 	}
3563 	/*
3564 	 * Need to let the callers know we dropped the path so they should
3565 	 * re-search.
3566 	 */
3567 	if (!ret && need_find_last_extent)
3568 		ret = 1;
3569 	return ret;
3570 }
3571 
3572 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3573 {
3574 	struct extent_map *em1, *em2;
3575 
3576 	em1 = list_entry(a, struct extent_map, list);
3577 	em2 = list_entry(b, struct extent_map, list);
3578 
3579 	if (em1->start < em2->start)
3580 		return -1;
3581 	else if (em1->start > em2->start)
3582 		return 1;
3583 	return 0;
3584 }
3585 
3586 static int wait_ordered_extents(struct btrfs_trans_handle *trans,
3587 				struct inode *inode,
3588 				struct btrfs_root *root,
3589 				const struct extent_map *em,
3590 				const struct list_head *logged_list,
3591 				bool *ordered_io_error)
3592 {
3593 	struct btrfs_ordered_extent *ordered;
3594 	struct btrfs_root *log = root->log_root;
3595 	u64 mod_start = em->mod_start;
3596 	u64 mod_len = em->mod_len;
3597 	const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3598 	u64 csum_offset;
3599 	u64 csum_len;
3600 	LIST_HEAD(ordered_sums);
3601 	int ret = 0;
3602 
3603 	*ordered_io_error = false;
3604 
3605 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
3606 	    em->block_start == EXTENT_MAP_HOLE)
3607 		return 0;
3608 
3609 	/*
3610 	 * Wait far any ordered extent that covers our extent map. If it
3611 	 * finishes without an error, first check and see if our csums are on
3612 	 * our outstanding ordered extents.
3613 	 */
3614 	list_for_each_entry(ordered, logged_list, log_list) {
3615 		struct btrfs_ordered_sum *sum;
3616 
3617 		if (!mod_len)
3618 			break;
3619 
3620 		if (ordered->file_offset + ordered->len <= mod_start ||
3621 		    mod_start + mod_len <= ordered->file_offset)
3622 			continue;
3623 
3624 		if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
3625 		    !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3626 		    !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
3627 			const u64 start = ordered->file_offset;
3628 			const u64 end = ordered->file_offset + ordered->len - 1;
3629 
3630 			WARN_ON(ordered->inode != inode);
3631 			filemap_fdatawrite_range(inode->i_mapping, start, end);
3632 		}
3633 
3634 		wait_event(ordered->wait,
3635 			   (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
3636 			    test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
3637 
3638 		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
3639 			/*
3640 			 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
3641 			 * i_mapping flags, so that the next fsync won't get
3642 			 * an outdated io error too.
3643 			 */
3644 			btrfs_inode_check_errors(inode);
3645 			*ordered_io_error = true;
3646 			break;
3647 		}
3648 		/*
3649 		 * We are going to copy all the csums on this ordered extent, so
3650 		 * go ahead and adjust mod_start and mod_len in case this
3651 		 * ordered extent has already been logged.
3652 		 */
3653 		if (ordered->file_offset > mod_start) {
3654 			if (ordered->file_offset + ordered->len >=
3655 			    mod_start + mod_len)
3656 				mod_len = ordered->file_offset - mod_start;
3657 			/*
3658 			 * If we have this case
3659 			 *
3660 			 * |--------- logged extent ---------|
3661 			 *       |----- ordered extent ----|
3662 			 *
3663 			 * Just don't mess with mod_start and mod_len, we'll
3664 			 * just end up logging more csums than we need and it
3665 			 * will be ok.
3666 			 */
3667 		} else {
3668 			if (ordered->file_offset + ordered->len <
3669 			    mod_start + mod_len) {
3670 				mod_len = (mod_start + mod_len) -
3671 					(ordered->file_offset + ordered->len);
3672 				mod_start = ordered->file_offset +
3673 					ordered->len;
3674 			} else {
3675 				mod_len = 0;
3676 			}
3677 		}
3678 
3679 		if (skip_csum)
3680 			continue;
3681 
3682 		/*
3683 		 * To keep us from looping for the above case of an ordered
3684 		 * extent that falls inside of the logged extent.
3685 		 */
3686 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
3687 				     &ordered->flags))
3688 			continue;
3689 
3690 		if (ordered->csum_bytes_left) {
3691 			btrfs_start_ordered_extent(inode, ordered, 0);
3692 			wait_event(ordered->wait,
3693 				   ordered->csum_bytes_left == 0);
3694 		}
3695 
3696 		list_for_each_entry(sum, &ordered->list, list) {
3697 			ret = btrfs_csum_file_blocks(trans, log, sum);
3698 			if (ret)
3699 				break;
3700 		}
3701 	}
3702 
3703 	if (*ordered_io_error || !mod_len || ret || skip_csum)
3704 		return ret;
3705 
3706 	if (em->compress_type) {
3707 		csum_offset = 0;
3708 		csum_len = max(em->block_len, em->orig_block_len);
3709 	} else {
3710 		csum_offset = mod_start - em->start;
3711 		csum_len = mod_len;
3712 	}
3713 
3714 	/* block start is already adjusted for the file extent offset. */
3715 	ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
3716 				       em->block_start + csum_offset,
3717 				       em->block_start + csum_offset +
3718 				       csum_len - 1, &ordered_sums, 0);
3719 	if (ret)
3720 		return ret;
3721 
3722 	while (!list_empty(&ordered_sums)) {
3723 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3724 						   struct btrfs_ordered_sum,
3725 						   list);
3726 		if (!ret)
3727 			ret = btrfs_csum_file_blocks(trans, log, sums);
3728 		list_del(&sums->list);
3729 		kfree(sums);
3730 	}
3731 
3732 	return ret;
3733 }
3734 
3735 static int log_one_extent(struct btrfs_trans_handle *trans,
3736 			  struct inode *inode, struct btrfs_root *root,
3737 			  const struct extent_map *em,
3738 			  struct btrfs_path *path,
3739 			  const struct list_head *logged_list,
3740 			  struct btrfs_log_ctx *ctx)
3741 {
3742 	struct btrfs_root *log = root->log_root;
3743 	struct btrfs_file_extent_item *fi;
3744 	struct extent_buffer *leaf;
3745 	struct btrfs_map_token token;
3746 	struct btrfs_key key;
3747 	u64 extent_offset = em->start - em->orig_start;
3748 	u64 block_len;
3749 	int ret;
3750 	int extent_inserted = 0;
3751 	bool ordered_io_err = false;
3752 
3753 	ret = wait_ordered_extents(trans, inode, root, em, logged_list,
3754 				   &ordered_io_err);
3755 	if (ret)
3756 		return ret;
3757 
3758 	if (ordered_io_err) {
3759 		ctx->io_err = -EIO;
3760 		return 0;
3761 	}
3762 
3763 	btrfs_init_map_token(&token);
3764 
3765 	ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
3766 				   em->start + em->len, NULL, 0, 1,
3767 				   sizeof(*fi), &extent_inserted);
3768 	if (ret)
3769 		return ret;
3770 
3771 	if (!extent_inserted) {
3772 		key.objectid = btrfs_ino(inode);
3773 		key.type = BTRFS_EXTENT_DATA_KEY;
3774 		key.offset = em->start;
3775 
3776 		ret = btrfs_insert_empty_item(trans, log, path, &key,
3777 					      sizeof(*fi));
3778 		if (ret)
3779 			return ret;
3780 	}
3781 	leaf = path->nodes[0];
3782 	fi = btrfs_item_ptr(leaf, path->slots[0],
3783 			    struct btrfs_file_extent_item);
3784 
3785 	btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
3786 					       &token);
3787 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3788 		btrfs_set_token_file_extent_type(leaf, fi,
3789 						 BTRFS_FILE_EXTENT_PREALLOC,
3790 						 &token);
3791 	else
3792 		btrfs_set_token_file_extent_type(leaf, fi,
3793 						 BTRFS_FILE_EXTENT_REG,
3794 						 &token);
3795 
3796 	block_len = max(em->block_len, em->orig_block_len);
3797 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
3798 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3799 							em->block_start,
3800 							&token);
3801 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3802 							   &token);
3803 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
3804 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3805 							em->block_start -
3806 							extent_offset, &token);
3807 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3808 							   &token);
3809 	} else {
3810 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
3811 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
3812 							   &token);
3813 	}
3814 
3815 	btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
3816 	btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
3817 	btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
3818 	btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
3819 						&token);
3820 	btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
3821 	btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
3822 	btrfs_mark_buffer_dirty(leaf);
3823 
3824 	btrfs_release_path(path);
3825 
3826 	return ret;
3827 }
3828 
3829 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
3830 				     struct btrfs_root *root,
3831 				     struct inode *inode,
3832 				     struct btrfs_path *path,
3833 				     struct list_head *logged_list,
3834 				     struct btrfs_log_ctx *ctx)
3835 {
3836 	struct extent_map *em, *n;
3837 	struct list_head extents;
3838 	struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3839 	u64 test_gen;
3840 	int ret = 0;
3841 	int num = 0;
3842 
3843 	INIT_LIST_HEAD(&extents);
3844 
3845 	write_lock(&tree->lock);
3846 	test_gen = root->fs_info->last_trans_committed;
3847 
3848 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
3849 		list_del_init(&em->list);
3850 
3851 		/*
3852 		 * Just an arbitrary number, this can be really CPU intensive
3853 		 * once we start getting a lot of extents, and really once we
3854 		 * have a bunch of extents we just want to commit since it will
3855 		 * be faster.
3856 		 */
3857 		if (++num > 32768) {
3858 			list_del_init(&tree->modified_extents);
3859 			ret = -EFBIG;
3860 			goto process;
3861 		}
3862 
3863 		if (em->generation <= test_gen)
3864 			continue;
3865 		/* Need a ref to keep it from getting evicted from cache */
3866 		atomic_inc(&em->refs);
3867 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
3868 		list_add_tail(&em->list, &extents);
3869 		num++;
3870 	}
3871 
3872 	list_sort(NULL, &extents, extent_cmp);
3873 
3874 process:
3875 	while (!list_empty(&extents)) {
3876 		em = list_entry(extents.next, struct extent_map, list);
3877 
3878 		list_del_init(&em->list);
3879 
3880 		/*
3881 		 * If we had an error we just need to delete everybody from our
3882 		 * private list.
3883 		 */
3884 		if (ret) {
3885 			clear_em_logging(tree, em);
3886 			free_extent_map(em);
3887 			continue;
3888 		}
3889 
3890 		write_unlock(&tree->lock);
3891 
3892 		ret = log_one_extent(trans, inode, root, em, path, logged_list,
3893 				     ctx);
3894 		write_lock(&tree->lock);
3895 		clear_em_logging(tree, em);
3896 		free_extent_map(em);
3897 	}
3898 	WARN_ON(!list_empty(&extents));
3899 	write_unlock(&tree->lock);
3900 
3901 	btrfs_release_path(path);
3902 	return ret;
3903 }
3904 
3905 /* log a single inode in the tree log.
3906  * At least one parent directory for this inode must exist in the tree
3907  * or be logged already.
3908  *
3909  * Any items from this inode changed by the current transaction are copied
3910  * to the log tree.  An extra reference is taken on any extents in this
3911  * file, allowing us to avoid a whole pile of corner cases around logging
3912  * blocks that have been removed from the tree.
3913  *
3914  * See LOG_INODE_ALL and related defines for a description of what inode_only
3915  * does.
3916  *
3917  * This handles both files and directories.
3918  */
3919 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
3920 			   struct btrfs_root *root, struct inode *inode,
3921 			   int inode_only,
3922 			   const loff_t start,
3923 			   const loff_t end,
3924 			   struct btrfs_log_ctx *ctx)
3925 {
3926 	struct btrfs_path *path;
3927 	struct btrfs_path *dst_path;
3928 	struct btrfs_key min_key;
3929 	struct btrfs_key max_key;
3930 	struct btrfs_root *log = root->log_root;
3931 	struct extent_buffer *src = NULL;
3932 	LIST_HEAD(logged_list);
3933 	u64 last_extent = 0;
3934 	int err = 0;
3935 	int ret;
3936 	int nritems;
3937 	int ins_start_slot = 0;
3938 	int ins_nr;
3939 	bool fast_search = false;
3940 	u64 ino = btrfs_ino(inode);
3941 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3942 
3943 	path = btrfs_alloc_path();
3944 	if (!path)
3945 		return -ENOMEM;
3946 	dst_path = btrfs_alloc_path();
3947 	if (!dst_path) {
3948 		btrfs_free_path(path);
3949 		return -ENOMEM;
3950 	}
3951 
3952 	min_key.objectid = ino;
3953 	min_key.type = BTRFS_INODE_ITEM_KEY;
3954 	min_key.offset = 0;
3955 
3956 	max_key.objectid = ino;
3957 
3958 
3959 	/* today the code can only do partial logging of directories */
3960 	if (S_ISDIR(inode->i_mode) ||
3961 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3962 		       &BTRFS_I(inode)->runtime_flags) &&
3963 	     inode_only == LOG_INODE_EXISTS))
3964 		max_key.type = BTRFS_XATTR_ITEM_KEY;
3965 	else
3966 		max_key.type = (u8)-1;
3967 	max_key.offset = (u64)-1;
3968 
3969 	/* Only run delayed items if we are a dir or a new file */
3970 	if (S_ISDIR(inode->i_mode) ||
3971 	    BTRFS_I(inode)->generation > root->fs_info->last_trans_committed) {
3972 		ret = btrfs_commit_inode_delayed_items(trans, inode);
3973 		if (ret) {
3974 			btrfs_free_path(path);
3975 			btrfs_free_path(dst_path);
3976 			return ret;
3977 		}
3978 	}
3979 
3980 	mutex_lock(&BTRFS_I(inode)->log_mutex);
3981 
3982 	btrfs_get_logged_extents(inode, &logged_list, start, end);
3983 
3984 	/*
3985 	 * a brute force approach to making sure we get the most uptodate
3986 	 * copies of everything.
3987 	 */
3988 	if (S_ISDIR(inode->i_mode)) {
3989 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
3990 
3991 		if (inode_only == LOG_INODE_EXISTS)
3992 			max_key_type = BTRFS_XATTR_ITEM_KEY;
3993 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
3994 	} else {
3995 		if (test_and_clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3996 				       &BTRFS_I(inode)->runtime_flags)) {
3997 			clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3998 				  &BTRFS_I(inode)->runtime_flags);
3999 			ret = btrfs_truncate_inode_items(trans, log,
4000 							 inode, 0, 0);
4001 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4002 					      &BTRFS_I(inode)->runtime_flags) ||
4003 			   inode_only == LOG_INODE_EXISTS) {
4004 			if (inode_only == LOG_INODE_ALL)
4005 				fast_search = true;
4006 			max_key.type = BTRFS_XATTR_ITEM_KEY;
4007 			ret = drop_objectid_items(trans, log, path, ino,
4008 						  max_key.type);
4009 		} else {
4010 			if (inode_only == LOG_INODE_ALL)
4011 				fast_search = true;
4012 			ret = log_inode_item(trans, log, dst_path, inode);
4013 			if (ret) {
4014 				err = ret;
4015 				goto out_unlock;
4016 			}
4017 			goto log_extents;
4018 		}
4019 
4020 	}
4021 	if (ret) {
4022 		err = ret;
4023 		goto out_unlock;
4024 	}
4025 
4026 	while (1) {
4027 		ins_nr = 0;
4028 		ret = btrfs_search_forward(root, &min_key,
4029 					   path, trans->transid);
4030 		if (ret != 0)
4031 			break;
4032 again:
4033 		/* note, ins_nr might be > 0 here, cleanup outside the loop */
4034 		if (min_key.objectid != ino)
4035 			break;
4036 		if (min_key.type > max_key.type)
4037 			break;
4038 
4039 		src = path->nodes[0];
4040 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
4041 			ins_nr++;
4042 			goto next_slot;
4043 		} else if (!ins_nr) {
4044 			ins_start_slot = path->slots[0];
4045 			ins_nr = 1;
4046 			goto next_slot;
4047 		}
4048 
4049 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
4050 				 ins_start_slot, ins_nr, inode_only);
4051 		if (ret < 0) {
4052 			err = ret;
4053 			goto out_unlock;
4054 		}
4055 		if (ret) {
4056 			ins_nr = 0;
4057 			btrfs_release_path(path);
4058 			continue;
4059 		}
4060 		ins_nr = 1;
4061 		ins_start_slot = path->slots[0];
4062 next_slot:
4063 
4064 		nritems = btrfs_header_nritems(path->nodes[0]);
4065 		path->slots[0]++;
4066 		if (path->slots[0] < nritems) {
4067 			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
4068 					      path->slots[0]);
4069 			goto again;
4070 		}
4071 		if (ins_nr) {
4072 			ret = copy_items(trans, inode, dst_path, path,
4073 					 &last_extent, ins_start_slot,
4074 					 ins_nr, inode_only);
4075 			if (ret < 0) {
4076 				err = ret;
4077 				goto out_unlock;
4078 			}
4079 			ret = 0;
4080 			ins_nr = 0;
4081 		}
4082 		btrfs_release_path(path);
4083 
4084 		if (min_key.offset < (u64)-1) {
4085 			min_key.offset++;
4086 		} else if (min_key.type < max_key.type) {
4087 			min_key.type++;
4088 			min_key.offset = 0;
4089 		} else {
4090 			break;
4091 		}
4092 	}
4093 	if (ins_nr) {
4094 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
4095 				 ins_start_slot, ins_nr, inode_only);
4096 		if (ret < 0) {
4097 			err = ret;
4098 			goto out_unlock;
4099 		}
4100 		ret = 0;
4101 		ins_nr = 0;
4102 	}
4103 
4104 log_extents:
4105 	btrfs_release_path(path);
4106 	btrfs_release_path(dst_path);
4107 	if (fast_search) {
4108 		/*
4109 		 * Some ordered extents started by fsync might have completed
4110 		 * before we collected the ordered extents in logged_list, which
4111 		 * means they're gone, not in our logged_list nor in the inode's
4112 		 * ordered tree. We want the application/user space to know an
4113 		 * error happened while attempting to persist file data so that
4114 		 * it can take proper action. If such error happened, we leave
4115 		 * without writing to the log tree and the fsync must report the
4116 		 * file data write error and not commit the current transaction.
4117 		 */
4118 		err = btrfs_inode_check_errors(inode);
4119 		if (err) {
4120 			ctx->io_err = err;
4121 			goto out_unlock;
4122 		}
4123 		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
4124 						&logged_list, ctx);
4125 		if (ret) {
4126 			err = ret;
4127 			goto out_unlock;
4128 		}
4129 	} else if (inode_only == LOG_INODE_ALL) {
4130 		struct extent_map *em, *n;
4131 
4132 		write_lock(&em_tree->lock);
4133 		/*
4134 		 * We can't just remove every em if we're called for a ranged
4135 		 * fsync - that is, one that doesn't cover the whole possible
4136 		 * file range (0 to LLONG_MAX). This is because we can have
4137 		 * em's that fall outside the range we're logging and therefore
4138 		 * their ordered operations haven't completed yet
4139 		 * (btrfs_finish_ordered_io() not invoked yet). This means we
4140 		 * didn't get their respective file extent item in the fs/subvol
4141 		 * tree yet, and need to let the next fast fsync (one which
4142 		 * consults the list of modified extent maps) find the em so
4143 		 * that it logs a matching file extent item and waits for the
4144 		 * respective ordered operation to complete (if it's still
4145 		 * running).
4146 		 *
4147 		 * Removing every em outside the range we're logging would make
4148 		 * the next fast fsync not log their matching file extent items,
4149 		 * therefore making us lose data after a log replay.
4150 		 */
4151 		list_for_each_entry_safe(em, n, &em_tree->modified_extents,
4152 					 list) {
4153 			const u64 mod_end = em->mod_start + em->mod_len - 1;
4154 
4155 			if (em->mod_start >= start && mod_end <= end)
4156 				list_del_init(&em->list);
4157 		}
4158 		write_unlock(&em_tree->lock);
4159 	}
4160 
4161 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
4162 		ret = log_directory_changes(trans, root, inode, path, dst_path);
4163 		if (ret) {
4164 			err = ret;
4165 			goto out_unlock;
4166 		}
4167 	}
4168 
4169 	BTRFS_I(inode)->logged_trans = trans->transid;
4170 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
4171 out_unlock:
4172 	if (unlikely(err))
4173 		btrfs_put_logged_extents(&logged_list);
4174 	else
4175 		btrfs_submit_logged_extents(&logged_list, log);
4176 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
4177 
4178 	btrfs_free_path(path);
4179 	btrfs_free_path(dst_path);
4180 	return err;
4181 }
4182 
4183 /*
4184  * follow the dentry parent pointers up the chain and see if any
4185  * of the directories in it require a full commit before they can
4186  * be logged.  Returns zero if nothing special needs to be done or 1 if
4187  * a full commit is required.
4188  */
4189 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
4190 					       struct inode *inode,
4191 					       struct dentry *parent,
4192 					       struct super_block *sb,
4193 					       u64 last_committed)
4194 {
4195 	int ret = 0;
4196 	struct btrfs_root *root;
4197 	struct dentry *old_parent = NULL;
4198 	struct inode *orig_inode = inode;
4199 
4200 	/*
4201 	 * for regular files, if its inode is already on disk, we don't
4202 	 * have to worry about the parents at all.  This is because
4203 	 * we can use the last_unlink_trans field to record renames
4204 	 * and other fun in this file.
4205 	 */
4206 	if (S_ISREG(inode->i_mode) &&
4207 	    BTRFS_I(inode)->generation <= last_committed &&
4208 	    BTRFS_I(inode)->last_unlink_trans <= last_committed)
4209 			goto out;
4210 
4211 	if (!S_ISDIR(inode->i_mode)) {
4212 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4213 			goto out;
4214 		inode = parent->d_inode;
4215 	}
4216 
4217 	while (1) {
4218 		/*
4219 		 * If we are logging a directory then we start with our inode,
4220 		 * not our parents inode, so we need to skipp setting the
4221 		 * logged_trans so that further down in the log code we don't
4222 		 * think this inode has already been logged.
4223 		 */
4224 		if (inode != orig_inode)
4225 			BTRFS_I(inode)->logged_trans = trans->transid;
4226 		smp_mb();
4227 
4228 		if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
4229 			root = BTRFS_I(inode)->root;
4230 
4231 			/*
4232 			 * make sure any commits to the log are forced
4233 			 * to be full commits
4234 			 */
4235 			btrfs_set_log_full_commit(root->fs_info, trans);
4236 			ret = 1;
4237 			break;
4238 		}
4239 
4240 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4241 			break;
4242 
4243 		if (IS_ROOT(parent))
4244 			break;
4245 
4246 		parent = dget_parent(parent);
4247 		dput(old_parent);
4248 		old_parent = parent;
4249 		inode = parent->d_inode;
4250 
4251 	}
4252 	dput(old_parent);
4253 out:
4254 	return ret;
4255 }
4256 
4257 /*
4258  * helper function around btrfs_log_inode to make sure newly created
4259  * parent directories also end up in the log.  A minimal inode and backref
4260  * only logging is done of any parent directories that are older than
4261  * the last committed transaction
4262  */
4263 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
4264 			    	  struct btrfs_root *root, struct inode *inode,
4265 				  struct dentry *parent,
4266 				  const loff_t start,
4267 				  const loff_t end,
4268 				  int exists_only,
4269 				  struct btrfs_log_ctx *ctx)
4270 {
4271 	int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
4272 	struct super_block *sb;
4273 	struct dentry *old_parent = NULL;
4274 	int ret = 0;
4275 	u64 last_committed = root->fs_info->last_trans_committed;
4276 
4277 	sb = inode->i_sb;
4278 
4279 	if (btrfs_test_opt(root, NOTREELOG)) {
4280 		ret = 1;
4281 		goto end_no_trans;
4282 	}
4283 
4284 	/*
4285 	 * The prev transaction commit doesn't complete, we need do
4286 	 * full commit by ourselves.
4287 	 */
4288 	if (root->fs_info->last_trans_log_full_commit >
4289 	    root->fs_info->last_trans_committed) {
4290 		ret = 1;
4291 		goto end_no_trans;
4292 	}
4293 
4294 	if (root != BTRFS_I(inode)->root ||
4295 	    btrfs_root_refs(&root->root_item) == 0) {
4296 		ret = 1;
4297 		goto end_no_trans;
4298 	}
4299 
4300 	ret = check_parent_dirs_for_sync(trans, inode, parent,
4301 					 sb, last_committed);
4302 	if (ret)
4303 		goto end_no_trans;
4304 
4305 	if (btrfs_inode_in_log(inode, trans->transid)) {
4306 		ret = BTRFS_NO_LOG_SYNC;
4307 		goto end_no_trans;
4308 	}
4309 
4310 	ret = start_log_trans(trans, root, ctx);
4311 	if (ret)
4312 		goto end_no_trans;
4313 
4314 	ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
4315 	if (ret)
4316 		goto end_trans;
4317 
4318 	/*
4319 	 * for regular files, if its inode is already on disk, we don't
4320 	 * have to worry about the parents at all.  This is because
4321 	 * we can use the last_unlink_trans field to record renames
4322 	 * and other fun in this file.
4323 	 */
4324 	if (S_ISREG(inode->i_mode) &&
4325 	    BTRFS_I(inode)->generation <= last_committed &&
4326 	    BTRFS_I(inode)->last_unlink_trans <= last_committed) {
4327 		ret = 0;
4328 		goto end_trans;
4329 	}
4330 
4331 	inode_only = LOG_INODE_EXISTS;
4332 	while (1) {
4333 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4334 			break;
4335 
4336 		inode = parent->d_inode;
4337 		if (root != BTRFS_I(inode)->root)
4338 			break;
4339 
4340 		if (BTRFS_I(inode)->generation >
4341 		    root->fs_info->last_trans_committed) {
4342 			ret = btrfs_log_inode(trans, root, inode, inode_only,
4343 					      0, LLONG_MAX, ctx);
4344 			if (ret)
4345 				goto end_trans;
4346 		}
4347 		if (IS_ROOT(parent))
4348 			break;
4349 
4350 		parent = dget_parent(parent);
4351 		dput(old_parent);
4352 		old_parent = parent;
4353 	}
4354 	ret = 0;
4355 end_trans:
4356 	dput(old_parent);
4357 	if (ret < 0) {
4358 		btrfs_set_log_full_commit(root->fs_info, trans);
4359 		ret = 1;
4360 	}
4361 
4362 	if (ret)
4363 		btrfs_remove_log_ctx(root, ctx);
4364 	btrfs_end_log_trans(root);
4365 end_no_trans:
4366 	return ret;
4367 }
4368 
4369 /*
4370  * it is not safe to log dentry if the chunk root has added new
4371  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
4372  * If this returns 1, you must commit the transaction to safely get your
4373  * data on disk.
4374  */
4375 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
4376 			  struct btrfs_root *root, struct dentry *dentry,
4377 			  const loff_t start,
4378 			  const loff_t end,
4379 			  struct btrfs_log_ctx *ctx)
4380 {
4381 	struct dentry *parent = dget_parent(dentry);
4382 	int ret;
4383 
4384 	ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent,
4385 				     start, end, 0, ctx);
4386 	dput(parent);
4387 
4388 	return ret;
4389 }
4390 
4391 /*
4392  * should be called during mount to recover any replay any log trees
4393  * from the FS
4394  */
4395 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
4396 {
4397 	int ret;
4398 	struct btrfs_path *path;
4399 	struct btrfs_trans_handle *trans;
4400 	struct btrfs_key key;
4401 	struct btrfs_key found_key;
4402 	struct btrfs_key tmp_key;
4403 	struct btrfs_root *log;
4404 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
4405 	struct walk_control wc = {
4406 		.process_func = process_one_buffer,
4407 		.stage = 0,
4408 	};
4409 
4410 	path = btrfs_alloc_path();
4411 	if (!path)
4412 		return -ENOMEM;
4413 
4414 	fs_info->log_root_recovering = 1;
4415 
4416 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4417 	if (IS_ERR(trans)) {
4418 		ret = PTR_ERR(trans);
4419 		goto error;
4420 	}
4421 
4422 	wc.trans = trans;
4423 	wc.pin = 1;
4424 
4425 	ret = walk_log_tree(trans, log_root_tree, &wc);
4426 	if (ret) {
4427 		btrfs_error(fs_info, ret, "Failed to pin buffers while "
4428 			    "recovering log root tree.");
4429 		goto error;
4430 	}
4431 
4432 again:
4433 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
4434 	key.offset = (u64)-1;
4435 	key.type = BTRFS_ROOT_ITEM_KEY;
4436 
4437 	while (1) {
4438 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
4439 
4440 		if (ret < 0) {
4441 			btrfs_error(fs_info, ret,
4442 				    "Couldn't find tree log root.");
4443 			goto error;
4444 		}
4445 		if (ret > 0) {
4446 			if (path->slots[0] == 0)
4447 				break;
4448 			path->slots[0]--;
4449 		}
4450 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4451 				      path->slots[0]);
4452 		btrfs_release_path(path);
4453 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4454 			break;
4455 
4456 		log = btrfs_read_fs_root(log_root_tree, &found_key);
4457 		if (IS_ERR(log)) {
4458 			ret = PTR_ERR(log);
4459 			btrfs_error(fs_info, ret,
4460 				    "Couldn't read tree log root.");
4461 			goto error;
4462 		}
4463 
4464 		tmp_key.objectid = found_key.offset;
4465 		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
4466 		tmp_key.offset = (u64)-1;
4467 
4468 		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
4469 		if (IS_ERR(wc.replay_dest)) {
4470 			ret = PTR_ERR(wc.replay_dest);
4471 			free_extent_buffer(log->node);
4472 			free_extent_buffer(log->commit_root);
4473 			kfree(log);
4474 			btrfs_error(fs_info, ret, "Couldn't read target root "
4475 				    "for tree log recovery.");
4476 			goto error;
4477 		}
4478 
4479 		wc.replay_dest->log_root = log;
4480 		btrfs_record_root_in_trans(trans, wc.replay_dest);
4481 		ret = walk_log_tree(trans, log, &wc);
4482 
4483 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
4484 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
4485 						      path);
4486 		}
4487 
4488 		key.offset = found_key.offset - 1;
4489 		wc.replay_dest->log_root = NULL;
4490 		free_extent_buffer(log->node);
4491 		free_extent_buffer(log->commit_root);
4492 		kfree(log);
4493 
4494 		if (ret)
4495 			goto error;
4496 
4497 		if (found_key.offset == 0)
4498 			break;
4499 	}
4500 	btrfs_release_path(path);
4501 
4502 	/* step one is to pin it all, step two is to replay just inodes */
4503 	if (wc.pin) {
4504 		wc.pin = 0;
4505 		wc.process_func = replay_one_buffer;
4506 		wc.stage = LOG_WALK_REPLAY_INODES;
4507 		goto again;
4508 	}
4509 	/* step three is to replay everything */
4510 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
4511 		wc.stage++;
4512 		goto again;
4513 	}
4514 
4515 	btrfs_free_path(path);
4516 
4517 	/* step 4: commit the transaction, which also unpins the blocks */
4518 	ret = btrfs_commit_transaction(trans, fs_info->tree_root);
4519 	if (ret)
4520 		return ret;
4521 
4522 	free_extent_buffer(log_root_tree->node);
4523 	log_root_tree->log_root = NULL;
4524 	fs_info->log_root_recovering = 0;
4525 	kfree(log_root_tree);
4526 
4527 	return 0;
4528 error:
4529 	if (wc.trans)
4530 		btrfs_end_transaction(wc.trans, fs_info->tree_root);
4531 	btrfs_free_path(path);
4532 	return ret;
4533 }
4534 
4535 /*
4536  * there are some corner cases where we want to force a full
4537  * commit instead of allowing a directory to be logged.
4538  *
4539  * They revolve around files there were unlinked from the directory, and
4540  * this function updates the parent directory so that a full commit is
4541  * properly done if it is fsync'd later after the unlinks are done.
4542  */
4543 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4544 			     struct inode *dir, struct inode *inode,
4545 			     int for_rename)
4546 {
4547 	/*
4548 	 * when we're logging a file, if it hasn't been renamed
4549 	 * or unlinked, and its inode is fully committed on disk,
4550 	 * we don't have to worry about walking up the directory chain
4551 	 * to log its parents.
4552 	 *
4553 	 * So, we use the last_unlink_trans field to put this transid
4554 	 * into the file.  When the file is logged we check it and
4555 	 * don't log the parents if the file is fully on disk.
4556 	 */
4557 	if (S_ISREG(inode->i_mode))
4558 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
4559 
4560 	/*
4561 	 * if this directory was already logged any new
4562 	 * names for this file/dir will get recorded
4563 	 */
4564 	smp_mb();
4565 	if (BTRFS_I(dir)->logged_trans == trans->transid)
4566 		return;
4567 
4568 	/*
4569 	 * if the inode we're about to unlink was logged,
4570 	 * the log will be properly updated for any new names
4571 	 */
4572 	if (BTRFS_I(inode)->logged_trans == trans->transid)
4573 		return;
4574 
4575 	/*
4576 	 * when renaming files across directories, if the directory
4577 	 * there we're unlinking from gets fsync'd later on, there's
4578 	 * no way to find the destination directory later and fsync it
4579 	 * properly.  So, we have to be conservative and force commits
4580 	 * so the new name gets discovered.
4581 	 */
4582 	if (for_rename)
4583 		goto record;
4584 
4585 	/* we can safely do the unlink without any special recording */
4586 	return;
4587 
4588 record:
4589 	BTRFS_I(dir)->last_unlink_trans = trans->transid;
4590 }
4591 
4592 /*
4593  * Call this after adding a new name for a file and it will properly
4594  * update the log to reflect the new name.
4595  *
4596  * It will return zero if all goes well, and it will return 1 if a
4597  * full transaction commit is required.
4598  */
4599 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
4600 			struct inode *inode, struct inode *old_dir,
4601 			struct dentry *parent)
4602 {
4603 	struct btrfs_root * root = BTRFS_I(inode)->root;
4604 
4605 	/*
4606 	 * this will force the logging code to walk the dentry chain
4607 	 * up for the file
4608 	 */
4609 	if (S_ISREG(inode->i_mode))
4610 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
4611 
4612 	/*
4613 	 * if this inode hasn't been logged and directory we're renaming it
4614 	 * from hasn't been logged, we don't need to log it
4615 	 */
4616 	if (BTRFS_I(inode)->logged_trans <=
4617 	    root->fs_info->last_trans_committed &&
4618 	    (!old_dir || BTRFS_I(old_dir)->logged_trans <=
4619 		    root->fs_info->last_trans_committed))
4620 		return 0;
4621 
4622 	return btrfs_log_inode_parent(trans, root, inode, parent, 0,
4623 				      LLONG_MAX, 1, NULL);
4624 }
4625 
4626