1 /* 2 * Copyright (C) 2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include <linux/blkdev.h> 22 #include <linux/list_sort.h> 23 #include "tree-log.h" 24 #include "disk-io.h" 25 #include "locking.h" 26 #include "print-tree.h" 27 #include "backref.h" 28 #include "hash.h" 29 30 /* magic values for the inode_only field in btrfs_log_inode: 31 * 32 * LOG_INODE_ALL means to log everything 33 * LOG_INODE_EXISTS means to log just enough to recreate the inode 34 * during log replay 35 */ 36 #define LOG_INODE_ALL 0 37 #define LOG_INODE_EXISTS 1 38 39 /* 40 * directory trouble cases 41 * 42 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync 43 * log, we must force a full commit before doing an fsync of the directory 44 * where the unlink was done. 45 * ---> record transid of last unlink/rename per directory 46 * 47 * mkdir foo/some_dir 48 * normal commit 49 * rename foo/some_dir foo2/some_dir 50 * mkdir foo/some_dir 51 * fsync foo/some_dir/some_file 52 * 53 * The fsync above will unlink the original some_dir without recording 54 * it in its new location (foo2). After a crash, some_dir will be gone 55 * unless the fsync of some_file forces a full commit 56 * 57 * 2) we must log any new names for any file or dir that is in the fsync 58 * log. ---> check inode while renaming/linking. 59 * 60 * 2a) we must log any new names for any file or dir during rename 61 * when the directory they are being removed from was logged. 62 * ---> check inode and old parent dir during rename 63 * 64 * 2a is actually the more important variant. With the extra logging 65 * a crash might unlink the old name without recreating the new one 66 * 67 * 3) after a crash, we must go through any directories with a link count 68 * of zero and redo the rm -rf 69 * 70 * mkdir f1/foo 71 * normal commit 72 * rm -rf f1/foo 73 * fsync(f1) 74 * 75 * The directory f1 was fully removed from the FS, but fsync was never 76 * called on f1, only its parent dir. After a crash the rm -rf must 77 * be replayed. This must be able to recurse down the entire 78 * directory tree. The inode link count fixup code takes care of the 79 * ugly details. 80 */ 81 82 /* 83 * stages for the tree walking. The first 84 * stage (0) is to only pin down the blocks we find 85 * the second stage (1) is to make sure that all the inodes 86 * we find in the log are created in the subvolume. 87 * 88 * The last stage is to deal with directories and links and extents 89 * and all the other fun semantics 90 */ 91 #define LOG_WALK_PIN_ONLY 0 92 #define LOG_WALK_REPLAY_INODES 1 93 #define LOG_WALK_REPLAY_DIR_INDEX 2 94 #define LOG_WALK_REPLAY_ALL 3 95 96 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 97 struct btrfs_root *root, struct inode *inode, 98 int inode_only, 99 const loff_t start, 100 const loff_t end, 101 struct btrfs_log_ctx *ctx); 102 static int link_to_fixup_dir(struct btrfs_trans_handle *trans, 103 struct btrfs_root *root, 104 struct btrfs_path *path, u64 objectid); 105 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 106 struct btrfs_root *root, 107 struct btrfs_root *log, 108 struct btrfs_path *path, 109 u64 dirid, int del_all); 110 111 /* 112 * tree logging is a special write ahead log used to make sure that 113 * fsyncs and O_SYNCs can happen without doing full tree commits. 114 * 115 * Full tree commits are expensive because they require commonly 116 * modified blocks to be recowed, creating many dirty pages in the 117 * extent tree an 4x-6x higher write load than ext3. 118 * 119 * Instead of doing a tree commit on every fsync, we use the 120 * key ranges and transaction ids to find items for a given file or directory 121 * that have changed in this transaction. Those items are copied into 122 * a special tree (one per subvolume root), that tree is written to disk 123 * and then the fsync is considered complete. 124 * 125 * After a crash, items are copied out of the log-tree back into the 126 * subvolume tree. Any file data extents found are recorded in the extent 127 * allocation tree, and the log-tree freed. 128 * 129 * The log tree is read three times, once to pin down all the extents it is 130 * using in ram and once, once to create all the inodes logged in the tree 131 * and once to do all the other items. 132 */ 133 134 /* 135 * start a sub transaction and setup the log tree 136 * this increments the log tree writer count to make the people 137 * syncing the tree wait for us to finish 138 */ 139 static int start_log_trans(struct btrfs_trans_handle *trans, 140 struct btrfs_root *root, 141 struct btrfs_log_ctx *ctx) 142 { 143 int index; 144 int ret; 145 146 mutex_lock(&root->log_mutex); 147 if (root->log_root) { 148 if (btrfs_need_log_full_commit(root->fs_info, trans)) { 149 ret = -EAGAIN; 150 goto out; 151 } 152 if (!root->log_start_pid) { 153 root->log_start_pid = current->pid; 154 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 155 } else if (root->log_start_pid != current->pid) { 156 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 157 } 158 159 atomic_inc(&root->log_batch); 160 atomic_inc(&root->log_writers); 161 if (ctx) { 162 index = root->log_transid % 2; 163 list_add_tail(&ctx->list, &root->log_ctxs[index]); 164 ctx->log_transid = root->log_transid; 165 } 166 mutex_unlock(&root->log_mutex); 167 return 0; 168 } 169 170 ret = 0; 171 mutex_lock(&root->fs_info->tree_log_mutex); 172 if (!root->fs_info->log_root_tree) 173 ret = btrfs_init_log_root_tree(trans, root->fs_info); 174 mutex_unlock(&root->fs_info->tree_log_mutex); 175 if (ret) 176 goto out; 177 178 if (!root->log_root) { 179 ret = btrfs_add_log_tree(trans, root); 180 if (ret) 181 goto out; 182 } 183 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 184 root->log_start_pid = current->pid; 185 atomic_inc(&root->log_batch); 186 atomic_inc(&root->log_writers); 187 if (ctx) { 188 index = root->log_transid % 2; 189 list_add_tail(&ctx->list, &root->log_ctxs[index]); 190 ctx->log_transid = root->log_transid; 191 } 192 out: 193 mutex_unlock(&root->log_mutex); 194 return ret; 195 } 196 197 /* 198 * returns 0 if there was a log transaction running and we were able 199 * to join, or returns -ENOENT if there were not transactions 200 * in progress 201 */ 202 static int join_running_log_trans(struct btrfs_root *root) 203 { 204 int ret = -ENOENT; 205 206 smp_mb(); 207 if (!root->log_root) 208 return -ENOENT; 209 210 mutex_lock(&root->log_mutex); 211 if (root->log_root) { 212 ret = 0; 213 atomic_inc(&root->log_writers); 214 } 215 mutex_unlock(&root->log_mutex); 216 return ret; 217 } 218 219 /* 220 * This either makes the current running log transaction wait 221 * until you call btrfs_end_log_trans() or it makes any future 222 * log transactions wait until you call btrfs_end_log_trans() 223 */ 224 int btrfs_pin_log_trans(struct btrfs_root *root) 225 { 226 int ret = -ENOENT; 227 228 mutex_lock(&root->log_mutex); 229 atomic_inc(&root->log_writers); 230 mutex_unlock(&root->log_mutex); 231 return ret; 232 } 233 234 /* 235 * indicate we're done making changes to the log tree 236 * and wake up anyone waiting to do a sync 237 */ 238 void btrfs_end_log_trans(struct btrfs_root *root) 239 { 240 if (atomic_dec_and_test(&root->log_writers)) { 241 smp_mb(); 242 if (waitqueue_active(&root->log_writer_wait)) 243 wake_up(&root->log_writer_wait); 244 } 245 } 246 247 248 /* 249 * the walk control struct is used to pass state down the chain when 250 * processing the log tree. The stage field tells us which part 251 * of the log tree processing we are currently doing. The others 252 * are state fields used for that specific part 253 */ 254 struct walk_control { 255 /* should we free the extent on disk when done? This is used 256 * at transaction commit time while freeing a log tree 257 */ 258 int free; 259 260 /* should we write out the extent buffer? This is used 261 * while flushing the log tree to disk during a sync 262 */ 263 int write; 264 265 /* should we wait for the extent buffer io to finish? Also used 266 * while flushing the log tree to disk for a sync 267 */ 268 int wait; 269 270 /* pin only walk, we record which extents on disk belong to the 271 * log trees 272 */ 273 int pin; 274 275 /* what stage of the replay code we're currently in */ 276 int stage; 277 278 /* the root we are currently replaying */ 279 struct btrfs_root *replay_dest; 280 281 /* the trans handle for the current replay */ 282 struct btrfs_trans_handle *trans; 283 284 /* the function that gets used to process blocks we find in the 285 * tree. Note the extent_buffer might not be up to date when it is 286 * passed in, and it must be checked or read if you need the data 287 * inside it 288 */ 289 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb, 290 struct walk_control *wc, u64 gen); 291 }; 292 293 /* 294 * process_func used to pin down extents, write them or wait on them 295 */ 296 static int process_one_buffer(struct btrfs_root *log, 297 struct extent_buffer *eb, 298 struct walk_control *wc, u64 gen) 299 { 300 int ret = 0; 301 302 /* 303 * If this fs is mixed then we need to be able to process the leaves to 304 * pin down any logged extents, so we have to read the block. 305 */ 306 if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) { 307 ret = btrfs_read_buffer(eb, gen); 308 if (ret) 309 return ret; 310 } 311 312 if (wc->pin) 313 ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root, 314 eb->start, eb->len); 315 316 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) { 317 if (wc->pin && btrfs_header_level(eb) == 0) 318 ret = btrfs_exclude_logged_extents(log, eb); 319 if (wc->write) 320 btrfs_write_tree_block(eb); 321 if (wc->wait) 322 btrfs_wait_tree_block_writeback(eb); 323 } 324 return ret; 325 } 326 327 /* 328 * Item overwrite used by replay and tree logging. eb, slot and key all refer 329 * to the src data we are copying out. 330 * 331 * root is the tree we are copying into, and path is a scratch 332 * path for use in this function (it should be released on entry and 333 * will be released on exit). 334 * 335 * If the key is already in the destination tree the existing item is 336 * overwritten. If the existing item isn't big enough, it is extended. 337 * If it is too large, it is truncated. 338 * 339 * If the key isn't in the destination yet, a new item is inserted. 340 */ 341 static noinline int overwrite_item(struct btrfs_trans_handle *trans, 342 struct btrfs_root *root, 343 struct btrfs_path *path, 344 struct extent_buffer *eb, int slot, 345 struct btrfs_key *key) 346 { 347 int ret; 348 u32 item_size; 349 u64 saved_i_size = 0; 350 int save_old_i_size = 0; 351 unsigned long src_ptr; 352 unsigned long dst_ptr; 353 int overwrite_root = 0; 354 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY; 355 356 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) 357 overwrite_root = 1; 358 359 item_size = btrfs_item_size_nr(eb, slot); 360 src_ptr = btrfs_item_ptr_offset(eb, slot); 361 362 /* look for the key in the destination tree */ 363 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 364 if (ret < 0) 365 return ret; 366 367 if (ret == 0) { 368 char *src_copy; 369 char *dst_copy; 370 u32 dst_size = btrfs_item_size_nr(path->nodes[0], 371 path->slots[0]); 372 if (dst_size != item_size) 373 goto insert; 374 375 if (item_size == 0) { 376 btrfs_release_path(path); 377 return 0; 378 } 379 dst_copy = kmalloc(item_size, GFP_NOFS); 380 src_copy = kmalloc(item_size, GFP_NOFS); 381 if (!dst_copy || !src_copy) { 382 btrfs_release_path(path); 383 kfree(dst_copy); 384 kfree(src_copy); 385 return -ENOMEM; 386 } 387 388 read_extent_buffer(eb, src_copy, src_ptr, item_size); 389 390 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 391 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr, 392 item_size); 393 ret = memcmp(dst_copy, src_copy, item_size); 394 395 kfree(dst_copy); 396 kfree(src_copy); 397 /* 398 * they have the same contents, just return, this saves 399 * us from cowing blocks in the destination tree and doing 400 * extra writes that may not have been done by a previous 401 * sync 402 */ 403 if (ret == 0) { 404 btrfs_release_path(path); 405 return 0; 406 } 407 408 /* 409 * We need to load the old nbytes into the inode so when we 410 * replay the extents we've logged we get the right nbytes. 411 */ 412 if (inode_item) { 413 struct btrfs_inode_item *item; 414 u64 nbytes; 415 u32 mode; 416 417 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 418 struct btrfs_inode_item); 419 nbytes = btrfs_inode_nbytes(path->nodes[0], item); 420 item = btrfs_item_ptr(eb, slot, 421 struct btrfs_inode_item); 422 btrfs_set_inode_nbytes(eb, item, nbytes); 423 424 /* 425 * If this is a directory we need to reset the i_size to 426 * 0 so that we can set it up properly when replaying 427 * the rest of the items in this log. 428 */ 429 mode = btrfs_inode_mode(eb, item); 430 if (S_ISDIR(mode)) 431 btrfs_set_inode_size(eb, item, 0); 432 } 433 } else if (inode_item) { 434 struct btrfs_inode_item *item; 435 u32 mode; 436 437 /* 438 * New inode, set nbytes to 0 so that the nbytes comes out 439 * properly when we replay the extents. 440 */ 441 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 442 btrfs_set_inode_nbytes(eb, item, 0); 443 444 /* 445 * If this is a directory we need to reset the i_size to 0 so 446 * that we can set it up properly when replaying the rest of 447 * the items in this log. 448 */ 449 mode = btrfs_inode_mode(eb, item); 450 if (S_ISDIR(mode)) 451 btrfs_set_inode_size(eb, item, 0); 452 } 453 insert: 454 btrfs_release_path(path); 455 /* try to insert the key into the destination tree */ 456 ret = btrfs_insert_empty_item(trans, root, path, 457 key, item_size); 458 459 /* make sure any existing item is the correct size */ 460 if (ret == -EEXIST) { 461 u32 found_size; 462 found_size = btrfs_item_size_nr(path->nodes[0], 463 path->slots[0]); 464 if (found_size > item_size) 465 btrfs_truncate_item(root, path, item_size, 1); 466 else if (found_size < item_size) 467 btrfs_extend_item(root, path, 468 item_size - found_size); 469 } else if (ret) { 470 return ret; 471 } 472 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], 473 path->slots[0]); 474 475 /* don't overwrite an existing inode if the generation number 476 * was logged as zero. This is done when the tree logging code 477 * is just logging an inode to make sure it exists after recovery. 478 * 479 * Also, don't overwrite i_size on directories during replay. 480 * log replay inserts and removes directory items based on the 481 * state of the tree found in the subvolume, and i_size is modified 482 * as it goes 483 */ 484 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) { 485 struct btrfs_inode_item *src_item; 486 struct btrfs_inode_item *dst_item; 487 488 src_item = (struct btrfs_inode_item *)src_ptr; 489 dst_item = (struct btrfs_inode_item *)dst_ptr; 490 491 if (btrfs_inode_generation(eb, src_item) == 0) 492 goto no_copy; 493 494 if (overwrite_root && 495 S_ISDIR(btrfs_inode_mode(eb, src_item)) && 496 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) { 497 save_old_i_size = 1; 498 saved_i_size = btrfs_inode_size(path->nodes[0], 499 dst_item); 500 } 501 } 502 503 copy_extent_buffer(path->nodes[0], eb, dst_ptr, 504 src_ptr, item_size); 505 506 if (save_old_i_size) { 507 struct btrfs_inode_item *dst_item; 508 dst_item = (struct btrfs_inode_item *)dst_ptr; 509 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size); 510 } 511 512 /* make sure the generation is filled in */ 513 if (key->type == BTRFS_INODE_ITEM_KEY) { 514 struct btrfs_inode_item *dst_item; 515 dst_item = (struct btrfs_inode_item *)dst_ptr; 516 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) { 517 btrfs_set_inode_generation(path->nodes[0], dst_item, 518 trans->transid); 519 } 520 } 521 no_copy: 522 btrfs_mark_buffer_dirty(path->nodes[0]); 523 btrfs_release_path(path); 524 return 0; 525 } 526 527 /* 528 * simple helper to read an inode off the disk from a given root 529 * This can only be called for subvolume roots and not for the log 530 */ 531 static noinline struct inode *read_one_inode(struct btrfs_root *root, 532 u64 objectid) 533 { 534 struct btrfs_key key; 535 struct inode *inode; 536 537 key.objectid = objectid; 538 key.type = BTRFS_INODE_ITEM_KEY; 539 key.offset = 0; 540 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL); 541 if (IS_ERR(inode)) { 542 inode = NULL; 543 } else if (is_bad_inode(inode)) { 544 iput(inode); 545 inode = NULL; 546 } 547 return inode; 548 } 549 550 /* replays a single extent in 'eb' at 'slot' with 'key' into the 551 * subvolume 'root'. path is released on entry and should be released 552 * on exit. 553 * 554 * extents in the log tree have not been allocated out of the extent 555 * tree yet. So, this completes the allocation, taking a reference 556 * as required if the extent already exists or creating a new extent 557 * if it isn't in the extent allocation tree yet. 558 * 559 * The extent is inserted into the file, dropping any existing extents 560 * from the file that overlap the new one. 561 */ 562 static noinline int replay_one_extent(struct btrfs_trans_handle *trans, 563 struct btrfs_root *root, 564 struct btrfs_path *path, 565 struct extent_buffer *eb, int slot, 566 struct btrfs_key *key) 567 { 568 int found_type; 569 u64 extent_end; 570 u64 start = key->offset; 571 u64 nbytes = 0; 572 struct btrfs_file_extent_item *item; 573 struct inode *inode = NULL; 574 unsigned long size; 575 int ret = 0; 576 577 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 578 found_type = btrfs_file_extent_type(eb, item); 579 580 if (found_type == BTRFS_FILE_EXTENT_REG || 581 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 582 nbytes = btrfs_file_extent_num_bytes(eb, item); 583 extent_end = start + nbytes; 584 585 /* 586 * We don't add to the inodes nbytes if we are prealloc or a 587 * hole. 588 */ 589 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 590 nbytes = 0; 591 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 592 size = btrfs_file_extent_inline_len(eb, slot, item); 593 nbytes = btrfs_file_extent_ram_bytes(eb, item); 594 extent_end = ALIGN(start + size, root->sectorsize); 595 } else { 596 ret = 0; 597 goto out; 598 } 599 600 inode = read_one_inode(root, key->objectid); 601 if (!inode) { 602 ret = -EIO; 603 goto out; 604 } 605 606 /* 607 * first check to see if we already have this extent in the 608 * file. This must be done before the btrfs_drop_extents run 609 * so we don't try to drop this extent. 610 */ 611 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode), 612 start, 0); 613 614 if (ret == 0 && 615 (found_type == BTRFS_FILE_EXTENT_REG || 616 found_type == BTRFS_FILE_EXTENT_PREALLOC)) { 617 struct btrfs_file_extent_item cmp1; 618 struct btrfs_file_extent_item cmp2; 619 struct btrfs_file_extent_item *existing; 620 struct extent_buffer *leaf; 621 622 leaf = path->nodes[0]; 623 existing = btrfs_item_ptr(leaf, path->slots[0], 624 struct btrfs_file_extent_item); 625 626 read_extent_buffer(eb, &cmp1, (unsigned long)item, 627 sizeof(cmp1)); 628 read_extent_buffer(leaf, &cmp2, (unsigned long)existing, 629 sizeof(cmp2)); 630 631 /* 632 * we already have a pointer to this exact extent, 633 * we don't have to do anything 634 */ 635 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) { 636 btrfs_release_path(path); 637 goto out; 638 } 639 } 640 btrfs_release_path(path); 641 642 /* drop any overlapping extents */ 643 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1); 644 if (ret) 645 goto out; 646 647 if (found_type == BTRFS_FILE_EXTENT_REG || 648 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 649 u64 offset; 650 unsigned long dest_offset; 651 struct btrfs_key ins; 652 653 ret = btrfs_insert_empty_item(trans, root, path, key, 654 sizeof(*item)); 655 if (ret) 656 goto out; 657 dest_offset = btrfs_item_ptr_offset(path->nodes[0], 658 path->slots[0]); 659 copy_extent_buffer(path->nodes[0], eb, dest_offset, 660 (unsigned long)item, sizeof(*item)); 661 662 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item); 663 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item); 664 ins.type = BTRFS_EXTENT_ITEM_KEY; 665 offset = key->offset - btrfs_file_extent_offset(eb, item); 666 667 if (ins.objectid > 0) { 668 u64 csum_start; 669 u64 csum_end; 670 LIST_HEAD(ordered_sums); 671 /* 672 * is this extent already allocated in the extent 673 * allocation tree? If so, just add a reference 674 */ 675 ret = btrfs_lookup_data_extent(root, ins.objectid, 676 ins.offset); 677 if (ret == 0) { 678 ret = btrfs_inc_extent_ref(trans, root, 679 ins.objectid, ins.offset, 680 0, root->root_key.objectid, 681 key->objectid, offset, 0); 682 if (ret) 683 goto out; 684 } else { 685 /* 686 * insert the extent pointer in the extent 687 * allocation tree 688 */ 689 ret = btrfs_alloc_logged_file_extent(trans, 690 root, root->root_key.objectid, 691 key->objectid, offset, &ins); 692 if (ret) 693 goto out; 694 } 695 btrfs_release_path(path); 696 697 if (btrfs_file_extent_compression(eb, item)) { 698 csum_start = ins.objectid; 699 csum_end = csum_start + ins.offset; 700 } else { 701 csum_start = ins.objectid + 702 btrfs_file_extent_offset(eb, item); 703 csum_end = csum_start + 704 btrfs_file_extent_num_bytes(eb, item); 705 } 706 707 ret = btrfs_lookup_csums_range(root->log_root, 708 csum_start, csum_end - 1, 709 &ordered_sums, 0); 710 if (ret) 711 goto out; 712 while (!list_empty(&ordered_sums)) { 713 struct btrfs_ordered_sum *sums; 714 sums = list_entry(ordered_sums.next, 715 struct btrfs_ordered_sum, 716 list); 717 if (!ret) 718 ret = btrfs_csum_file_blocks(trans, 719 root->fs_info->csum_root, 720 sums); 721 list_del(&sums->list); 722 kfree(sums); 723 } 724 if (ret) 725 goto out; 726 } else { 727 btrfs_release_path(path); 728 } 729 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 730 /* inline extents are easy, we just overwrite them */ 731 ret = overwrite_item(trans, root, path, eb, slot, key); 732 if (ret) 733 goto out; 734 } 735 736 inode_add_bytes(inode, nbytes); 737 ret = btrfs_update_inode(trans, root, inode); 738 out: 739 if (inode) 740 iput(inode); 741 return ret; 742 } 743 744 /* 745 * when cleaning up conflicts between the directory names in the 746 * subvolume, directory names in the log and directory names in the 747 * inode back references, we may have to unlink inodes from directories. 748 * 749 * This is a helper function to do the unlink of a specific directory 750 * item 751 */ 752 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans, 753 struct btrfs_root *root, 754 struct btrfs_path *path, 755 struct inode *dir, 756 struct btrfs_dir_item *di) 757 { 758 struct inode *inode; 759 char *name; 760 int name_len; 761 struct extent_buffer *leaf; 762 struct btrfs_key location; 763 int ret; 764 765 leaf = path->nodes[0]; 766 767 btrfs_dir_item_key_to_cpu(leaf, di, &location); 768 name_len = btrfs_dir_name_len(leaf, di); 769 name = kmalloc(name_len, GFP_NOFS); 770 if (!name) 771 return -ENOMEM; 772 773 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len); 774 btrfs_release_path(path); 775 776 inode = read_one_inode(root, location.objectid); 777 if (!inode) { 778 ret = -EIO; 779 goto out; 780 } 781 782 ret = link_to_fixup_dir(trans, root, path, location.objectid); 783 if (ret) 784 goto out; 785 786 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 787 if (ret) 788 goto out; 789 else 790 ret = btrfs_run_delayed_items(trans, root); 791 out: 792 kfree(name); 793 iput(inode); 794 return ret; 795 } 796 797 /* 798 * helper function to see if a given name and sequence number found 799 * in an inode back reference are already in a directory and correctly 800 * point to this inode 801 */ 802 static noinline int inode_in_dir(struct btrfs_root *root, 803 struct btrfs_path *path, 804 u64 dirid, u64 objectid, u64 index, 805 const char *name, int name_len) 806 { 807 struct btrfs_dir_item *di; 808 struct btrfs_key location; 809 int match = 0; 810 811 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid, 812 index, name, name_len, 0); 813 if (di && !IS_ERR(di)) { 814 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 815 if (location.objectid != objectid) 816 goto out; 817 } else 818 goto out; 819 btrfs_release_path(path); 820 821 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0); 822 if (di && !IS_ERR(di)) { 823 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 824 if (location.objectid != objectid) 825 goto out; 826 } else 827 goto out; 828 match = 1; 829 out: 830 btrfs_release_path(path); 831 return match; 832 } 833 834 /* 835 * helper function to check a log tree for a named back reference in 836 * an inode. This is used to decide if a back reference that is 837 * found in the subvolume conflicts with what we find in the log. 838 * 839 * inode backreferences may have multiple refs in a single item, 840 * during replay we process one reference at a time, and we don't 841 * want to delete valid links to a file from the subvolume if that 842 * link is also in the log. 843 */ 844 static noinline int backref_in_log(struct btrfs_root *log, 845 struct btrfs_key *key, 846 u64 ref_objectid, 847 char *name, int namelen) 848 { 849 struct btrfs_path *path; 850 struct btrfs_inode_ref *ref; 851 unsigned long ptr; 852 unsigned long ptr_end; 853 unsigned long name_ptr; 854 int found_name_len; 855 int item_size; 856 int ret; 857 int match = 0; 858 859 path = btrfs_alloc_path(); 860 if (!path) 861 return -ENOMEM; 862 863 ret = btrfs_search_slot(NULL, log, key, path, 0, 0); 864 if (ret != 0) 865 goto out; 866 867 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 868 869 if (key->type == BTRFS_INODE_EXTREF_KEY) { 870 if (btrfs_find_name_in_ext_backref(path, ref_objectid, 871 name, namelen, NULL)) 872 match = 1; 873 874 goto out; 875 } 876 877 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 878 ptr_end = ptr + item_size; 879 while (ptr < ptr_end) { 880 ref = (struct btrfs_inode_ref *)ptr; 881 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref); 882 if (found_name_len == namelen) { 883 name_ptr = (unsigned long)(ref + 1); 884 ret = memcmp_extent_buffer(path->nodes[0], name, 885 name_ptr, namelen); 886 if (ret == 0) { 887 match = 1; 888 goto out; 889 } 890 } 891 ptr = (unsigned long)(ref + 1) + found_name_len; 892 } 893 out: 894 btrfs_free_path(path); 895 return match; 896 } 897 898 static inline int __add_inode_ref(struct btrfs_trans_handle *trans, 899 struct btrfs_root *root, 900 struct btrfs_path *path, 901 struct btrfs_root *log_root, 902 struct inode *dir, struct inode *inode, 903 struct extent_buffer *eb, 904 u64 inode_objectid, u64 parent_objectid, 905 u64 ref_index, char *name, int namelen, 906 int *search_done) 907 { 908 int ret; 909 char *victim_name; 910 int victim_name_len; 911 struct extent_buffer *leaf; 912 struct btrfs_dir_item *di; 913 struct btrfs_key search_key; 914 struct btrfs_inode_extref *extref; 915 916 again: 917 /* Search old style refs */ 918 search_key.objectid = inode_objectid; 919 search_key.type = BTRFS_INODE_REF_KEY; 920 search_key.offset = parent_objectid; 921 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 922 if (ret == 0) { 923 struct btrfs_inode_ref *victim_ref; 924 unsigned long ptr; 925 unsigned long ptr_end; 926 927 leaf = path->nodes[0]; 928 929 /* are we trying to overwrite a back ref for the root directory 930 * if so, just jump out, we're done 931 */ 932 if (search_key.objectid == search_key.offset) 933 return 1; 934 935 /* check all the names in this back reference to see 936 * if they are in the log. if so, we allow them to stay 937 * otherwise they must be unlinked as a conflict 938 */ 939 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 940 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]); 941 while (ptr < ptr_end) { 942 victim_ref = (struct btrfs_inode_ref *)ptr; 943 victim_name_len = btrfs_inode_ref_name_len(leaf, 944 victim_ref); 945 victim_name = kmalloc(victim_name_len, GFP_NOFS); 946 if (!victim_name) 947 return -ENOMEM; 948 949 read_extent_buffer(leaf, victim_name, 950 (unsigned long)(victim_ref + 1), 951 victim_name_len); 952 953 if (!backref_in_log(log_root, &search_key, 954 parent_objectid, 955 victim_name, 956 victim_name_len)) { 957 inc_nlink(inode); 958 btrfs_release_path(path); 959 960 ret = btrfs_unlink_inode(trans, root, dir, 961 inode, victim_name, 962 victim_name_len); 963 kfree(victim_name); 964 if (ret) 965 return ret; 966 ret = btrfs_run_delayed_items(trans, root); 967 if (ret) 968 return ret; 969 *search_done = 1; 970 goto again; 971 } 972 kfree(victim_name); 973 974 ptr = (unsigned long)(victim_ref + 1) + victim_name_len; 975 } 976 977 /* 978 * NOTE: we have searched root tree and checked the 979 * coresponding ref, it does not need to check again. 980 */ 981 *search_done = 1; 982 } 983 btrfs_release_path(path); 984 985 /* Same search but for extended refs */ 986 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen, 987 inode_objectid, parent_objectid, 0, 988 0); 989 if (!IS_ERR_OR_NULL(extref)) { 990 u32 item_size; 991 u32 cur_offset = 0; 992 unsigned long base; 993 struct inode *victim_parent; 994 995 leaf = path->nodes[0]; 996 997 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 998 base = btrfs_item_ptr_offset(leaf, path->slots[0]); 999 1000 while (cur_offset < item_size) { 1001 extref = (struct btrfs_inode_extref *)base + cur_offset; 1002 1003 victim_name_len = btrfs_inode_extref_name_len(leaf, extref); 1004 1005 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid) 1006 goto next; 1007 1008 victim_name = kmalloc(victim_name_len, GFP_NOFS); 1009 if (!victim_name) 1010 return -ENOMEM; 1011 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name, 1012 victim_name_len); 1013 1014 search_key.objectid = inode_objectid; 1015 search_key.type = BTRFS_INODE_EXTREF_KEY; 1016 search_key.offset = btrfs_extref_hash(parent_objectid, 1017 victim_name, 1018 victim_name_len); 1019 ret = 0; 1020 if (!backref_in_log(log_root, &search_key, 1021 parent_objectid, victim_name, 1022 victim_name_len)) { 1023 ret = -ENOENT; 1024 victim_parent = read_one_inode(root, 1025 parent_objectid); 1026 if (victim_parent) { 1027 inc_nlink(inode); 1028 btrfs_release_path(path); 1029 1030 ret = btrfs_unlink_inode(trans, root, 1031 victim_parent, 1032 inode, 1033 victim_name, 1034 victim_name_len); 1035 if (!ret) 1036 ret = btrfs_run_delayed_items( 1037 trans, root); 1038 } 1039 iput(victim_parent); 1040 kfree(victim_name); 1041 if (ret) 1042 return ret; 1043 *search_done = 1; 1044 goto again; 1045 } 1046 kfree(victim_name); 1047 if (ret) 1048 return ret; 1049 next: 1050 cur_offset += victim_name_len + sizeof(*extref); 1051 } 1052 *search_done = 1; 1053 } 1054 btrfs_release_path(path); 1055 1056 /* look for a conflicting sequence number */ 1057 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir), 1058 ref_index, name, namelen, 0); 1059 if (di && !IS_ERR(di)) { 1060 ret = drop_one_dir_item(trans, root, path, dir, di); 1061 if (ret) 1062 return ret; 1063 } 1064 btrfs_release_path(path); 1065 1066 /* look for a conflicing name */ 1067 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), 1068 name, namelen, 0); 1069 if (di && !IS_ERR(di)) { 1070 ret = drop_one_dir_item(trans, root, path, dir, di); 1071 if (ret) 1072 return ret; 1073 } 1074 btrfs_release_path(path); 1075 1076 return 0; 1077 } 1078 1079 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1080 u32 *namelen, char **name, u64 *index, 1081 u64 *parent_objectid) 1082 { 1083 struct btrfs_inode_extref *extref; 1084 1085 extref = (struct btrfs_inode_extref *)ref_ptr; 1086 1087 *namelen = btrfs_inode_extref_name_len(eb, extref); 1088 *name = kmalloc(*namelen, GFP_NOFS); 1089 if (*name == NULL) 1090 return -ENOMEM; 1091 1092 read_extent_buffer(eb, *name, (unsigned long)&extref->name, 1093 *namelen); 1094 1095 *index = btrfs_inode_extref_index(eb, extref); 1096 if (parent_objectid) 1097 *parent_objectid = btrfs_inode_extref_parent(eb, extref); 1098 1099 return 0; 1100 } 1101 1102 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1103 u32 *namelen, char **name, u64 *index) 1104 { 1105 struct btrfs_inode_ref *ref; 1106 1107 ref = (struct btrfs_inode_ref *)ref_ptr; 1108 1109 *namelen = btrfs_inode_ref_name_len(eb, ref); 1110 *name = kmalloc(*namelen, GFP_NOFS); 1111 if (*name == NULL) 1112 return -ENOMEM; 1113 1114 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen); 1115 1116 *index = btrfs_inode_ref_index(eb, ref); 1117 1118 return 0; 1119 } 1120 1121 /* 1122 * replay one inode back reference item found in the log tree. 1123 * eb, slot and key refer to the buffer and key found in the log tree. 1124 * root is the destination we are replaying into, and path is for temp 1125 * use by this function. (it should be released on return). 1126 */ 1127 static noinline int add_inode_ref(struct btrfs_trans_handle *trans, 1128 struct btrfs_root *root, 1129 struct btrfs_root *log, 1130 struct btrfs_path *path, 1131 struct extent_buffer *eb, int slot, 1132 struct btrfs_key *key) 1133 { 1134 struct inode *dir = NULL; 1135 struct inode *inode = NULL; 1136 unsigned long ref_ptr; 1137 unsigned long ref_end; 1138 char *name = NULL; 1139 int namelen; 1140 int ret; 1141 int search_done = 0; 1142 int log_ref_ver = 0; 1143 u64 parent_objectid; 1144 u64 inode_objectid; 1145 u64 ref_index = 0; 1146 int ref_struct_size; 1147 1148 ref_ptr = btrfs_item_ptr_offset(eb, slot); 1149 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot); 1150 1151 if (key->type == BTRFS_INODE_EXTREF_KEY) { 1152 struct btrfs_inode_extref *r; 1153 1154 ref_struct_size = sizeof(struct btrfs_inode_extref); 1155 log_ref_ver = 1; 1156 r = (struct btrfs_inode_extref *)ref_ptr; 1157 parent_objectid = btrfs_inode_extref_parent(eb, r); 1158 } else { 1159 ref_struct_size = sizeof(struct btrfs_inode_ref); 1160 parent_objectid = key->offset; 1161 } 1162 inode_objectid = key->objectid; 1163 1164 /* 1165 * it is possible that we didn't log all the parent directories 1166 * for a given inode. If we don't find the dir, just don't 1167 * copy the back ref in. The link count fixup code will take 1168 * care of the rest 1169 */ 1170 dir = read_one_inode(root, parent_objectid); 1171 if (!dir) { 1172 ret = -ENOENT; 1173 goto out; 1174 } 1175 1176 inode = read_one_inode(root, inode_objectid); 1177 if (!inode) { 1178 ret = -EIO; 1179 goto out; 1180 } 1181 1182 while (ref_ptr < ref_end) { 1183 if (log_ref_ver) { 1184 ret = extref_get_fields(eb, ref_ptr, &namelen, &name, 1185 &ref_index, &parent_objectid); 1186 /* 1187 * parent object can change from one array 1188 * item to another. 1189 */ 1190 if (!dir) 1191 dir = read_one_inode(root, parent_objectid); 1192 if (!dir) { 1193 ret = -ENOENT; 1194 goto out; 1195 } 1196 } else { 1197 ret = ref_get_fields(eb, ref_ptr, &namelen, &name, 1198 &ref_index); 1199 } 1200 if (ret) 1201 goto out; 1202 1203 /* if we already have a perfect match, we're done */ 1204 if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode), 1205 ref_index, name, namelen)) { 1206 /* 1207 * look for a conflicting back reference in the 1208 * metadata. if we find one we have to unlink that name 1209 * of the file before we add our new link. Later on, we 1210 * overwrite any existing back reference, and we don't 1211 * want to create dangling pointers in the directory. 1212 */ 1213 1214 if (!search_done) { 1215 ret = __add_inode_ref(trans, root, path, log, 1216 dir, inode, eb, 1217 inode_objectid, 1218 parent_objectid, 1219 ref_index, name, namelen, 1220 &search_done); 1221 if (ret) { 1222 if (ret == 1) 1223 ret = 0; 1224 goto out; 1225 } 1226 } 1227 1228 /* insert our name */ 1229 ret = btrfs_add_link(trans, dir, inode, name, namelen, 1230 0, ref_index); 1231 if (ret) 1232 goto out; 1233 1234 btrfs_update_inode(trans, root, inode); 1235 } 1236 1237 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen; 1238 kfree(name); 1239 name = NULL; 1240 if (log_ref_ver) { 1241 iput(dir); 1242 dir = NULL; 1243 } 1244 } 1245 1246 /* finally write the back reference in the inode */ 1247 ret = overwrite_item(trans, root, path, eb, slot, key); 1248 out: 1249 btrfs_release_path(path); 1250 kfree(name); 1251 iput(dir); 1252 iput(inode); 1253 return ret; 1254 } 1255 1256 static int insert_orphan_item(struct btrfs_trans_handle *trans, 1257 struct btrfs_root *root, u64 offset) 1258 { 1259 int ret; 1260 ret = btrfs_find_item(root, NULL, BTRFS_ORPHAN_OBJECTID, 1261 offset, BTRFS_ORPHAN_ITEM_KEY, NULL); 1262 if (ret > 0) 1263 ret = btrfs_insert_orphan_item(trans, root, offset); 1264 return ret; 1265 } 1266 1267 static int count_inode_extrefs(struct btrfs_root *root, 1268 struct inode *inode, struct btrfs_path *path) 1269 { 1270 int ret = 0; 1271 int name_len; 1272 unsigned int nlink = 0; 1273 u32 item_size; 1274 u32 cur_offset = 0; 1275 u64 inode_objectid = btrfs_ino(inode); 1276 u64 offset = 0; 1277 unsigned long ptr; 1278 struct btrfs_inode_extref *extref; 1279 struct extent_buffer *leaf; 1280 1281 while (1) { 1282 ret = btrfs_find_one_extref(root, inode_objectid, offset, path, 1283 &extref, &offset); 1284 if (ret) 1285 break; 1286 1287 leaf = path->nodes[0]; 1288 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1289 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1290 1291 while (cur_offset < item_size) { 1292 extref = (struct btrfs_inode_extref *) (ptr + cur_offset); 1293 name_len = btrfs_inode_extref_name_len(leaf, extref); 1294 1295 nlink++; 1296 1297 cur_offset += name_len + sizeof(*extref); 1298 } 1299 1300 offset++; 1301 btrfs_release_path(path); 1302 } 1303 btrfs_release_path(path); 1304 1305 if (ret < 0) 1306 return ret; 1307 return nlink; 1308 } 1309 1310 static int count_inode_refs(struct btrfs_root *root, 1311 struct inode *inode, struct btrfs_path *path) 1312 { 1313 int ret; 1314 struct btrfs_key key; 1315 unsigned int nlink = 0; 1316 unsigned long ptr; 1317 unsigned long ptr_end; 1318 int name_len; 1319 u64 ino = btrfs_ino(inode); 1320 1321 key.objectid = ino; 1322 key.type = BTRFS_INODE_REF_KEY; 1323 key.offset = (u64)-1; 1324 1325 while (1) { 1326 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1327 if (ret < 0) 1328 break; 1329 if (ret > 0) { 1330 if (path->slots[0] == 0) 1331 break; 1332 path->slots[0]--; 1333 } 1334 process_slot: 1335 btrfs_item_key_to_cpu(path->nodes[0], &key, 1336 path->slots[0]); 1337 if (key.objectid != ino || 1338 key.type != BTRFS_INODE_REF_KEY) 1339 break; 1340 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 1341 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0], 1342 path->slots[0]); 1343 while (ptr < ptr_end) { 1344 struct btrfs_inode_ref *ref; 1345 1346 ref = (struct btrfs_inode_ref *)ptr; 1347 name_len = btrfs_inode_ref_name_len(path->nodes[0], 1348 ref); 1349 ptr = (unsigned long)(ref + 1) + name_len; 1350 nlink++; 1351 } 1352 1353 if (key.offset == 0) 1354 break; 1355 if (path->slots[0] > 0) { 1356 path->slots[0]--; 1357 goto process_slot; 1358 } 1359 key.offset--; 1360 btrfs_release_path(path); 1361 } 1362 btrfs_release_path(path); 1363 1364 return nlink; 1365 } 1366 1367 /* 1368 * There are a few corners where the link count of the file can't 1369 * be properly maintained during replay. So, instead of adding 1370 * lots of complexity to the log code, we just scan the backrefs 1371 * for any file that has been through replay. 1372 * 1373 * The scan will update the link count on the inode to reflect the 1374 * number of back refs found. If it goes down to zero, the iput 1375 * will free the inode. 1376 */ 1377 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans, 1378 struct btrfs_root *root, 1379 struct inode *inode) 1380 { 1381 struct btrfs_path *path; 1382 int ret; 1383 u64 nlink = 0; 1384 u64 ino = btrfs_ino(inode); 1385 1386 path = btrfs_alloc_path(); 1387 if (!path) 1388 return -ENOMEM; 1389 1390 ret = count_inode_refs(root, inode, path); 1391 if (ret < 0) 1392 goto out; 1393 1394 nlink = ret; 1395 1396 ret = count_inode_extrefs(root, inode, path); 1397 if (ret == -ENOENT) 1398 ret = 0; 1399 1400 if (ret < 0) 1401 goto out; 1402 1403 nlink += ret; 1404 1405 ret = 0; 1406 1407 if (nlink != inode->i_nlink) { 1408 set_nlink(inode, nlink); 1409 btrfs_update_inode(trans, root, inode); 1410 } 1411 BTRFS_I(inode)->index_cnt = (u64)-1; 1412 1413 if (inode->i_nlink == 0) { 1414 if (S_ISDIR(inode->i_mode)) { 1415 ret = replay_dir_deletes(trans, root, NULL, path, 1416 ino, 1); 1417 if (ret) 1418 goto out; 1419 } 1420 ret = insert_orphan_item(trans, root, ino); 1421 } 1422 1423 out: 1424 btrfs_free_path(path); 1425 return ret; 1426 } 1427 1428 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans, 1429 struct btrfs_root *root, 1430 struct btrfs_path *path) 1431 { 1432 int ret; 1433 struct btrfs_key key; 1434 struct inode *inode; 1435 1436 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1437 key.type = BTRFS_ORPHAN_ITEM_KEY; 1438 key.offset = (u64)-1; 1439 while (1) { 1440 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1441 if (ret < 0) 1442 break; 1443 1444 if (ret == 1) { 1445 if (path->slots[0] == 0) 1446 break; 1447 path->slots[0]--; 1448 } 1449 1450 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1451 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID || 1452 key.type != BTRFS_ORPHAN_ITEM_KEY) 1453 break; 1454 1455 ret = btrfs_del_item(trans, root, path); 1456 if (ret) 1457 goto out; 1458 1459 btrfs_release_path(path); 1460 inode = read_one_inode(root, key.offset); 1461 if (!inode) 1462 return -EIO; 1463 1464 ret = fixup_inode_link_count(trans, root, inode); 1465 iput(inode); 1466 if (ret) 1467 goto out; 1468 1469 /* 1470 * fixup on a directory may create new entries, 1471 * make sure we always look for the highset possible 1472 * offset 1473 */ 1474 key.offset = (u64)-1; 1475 } 1476 ret = 0; 1477 out: 1478 btrfs_release_path(path); 1479 return ret; 1480 } 1481 1482 1483 /* 1484 * record a given inode in the fixup dir so we can check its link 1485 * count when replay is done. The link count is incremented here 1486 * so the inode won't go away until we check it 1487 */ 1488 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans, 1489 struct btrfs_root *root, 1490 struct btrfs_path *path, 1491 u64 objectid) 1492 { 1493 struct btrfs_key key; 1494 int ret = 0; 1495 struct inode *inode; 1496 1497 inode = read_one_inode(root, objectid); 1498 if (!inode) 1499 return -EIO; 1500 1501 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1502 key.type = BTRFS_ORPHAN_ITEM_KEY; 1503 key.offset = objectid; 1504 1505 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1506 1507 btrfs_release_path(path); 1508 if (ret == 0) { 1509 if (!inode->i_nlink) 1510 set_nlink(inode, 1); 1511 else 1512 inc_nlink(inode); 1513 ret = btrfs_update_inode(trans, root, inode); 1514 } else if (ret == -EEXIST) { 1515 ret = 0; 1516 } else { 1517 BUG(); /* Logic Error */ 1518 } 1519 iput(inode); 1520 1521 return ret; 1522 } 1523 1524 /* 1525 * when replaying the log for a directory, we only insert names 1526 * for inodes that actually exist. This means an fsync on a directory 1527 * does not implicitly fsync all the new files in it 1528 */ 1529 static noinline int insert_one_name(struct btrfs_trans_handle *trans, 1530 struct btrfs_root *root, 1531 struct btrfs_path *path, 1532 u64 dirid, u64 index, 1533 char *name, int name_len, u8 type, 1534 struct btrfs_key *location) 1535 { 1536 struct inode *inode; 1537 struct inode *dir; 1538 int ret; 1539 1540 inode = read_one_inode(root, location->objectid); 1541 if (!inode) 1542 return -ENOENT; 1543 1544 dir = read_one_inode(root, dirid); 1545 if (!dir) { 1546 iput(inode); 1547 return -EIO; 1548 } 1549 1550 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index); 1551 1552 /* FIXME, put inode into FIXUP list */ 1553 1554 iput(inode); 1555 iput(dir); 1556 return ret; 1557 } 1558 1559 /* 1560 * take a single entry in a log directory item and replay it into 1561 * the subvolume. 1562 * 1563 * if a conflicting item exists in the subdirectory already, 1564 * the inode it points to is unlinked and put into the link count 1565 * fix up tree. 1566 * 1567 * If a name from the log points to a file or directory that does 1568 * not exist in the FS, it is skipped. fsyncs on directories 1569 * do not force down inodes inside that directory, just changes to the 1570 * names or unlinks in a directory. 1571 */ 1572 static noinline int replay_one_name(struct btrfs_trans_handle *trans, 1573 struct btrfs_root *root, 1574 struct btrfs_path *path, 1575 struct extent_buffer *eb, 1576 struct btrfs_dir_item *di, 1577 struct btrfs_key *key) 1578 { 1579 char *name; 1580 int name_len; 1581 struct btrfs_dir_item *dst_di; 1582 struct btrfs_key found_key; 1583 struct btrfs_key log_key; 1584 struct inode *dir; 1585 u8 log_type; 1586 int exists; 1587 int ret = 0; 1588 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY); 1589 1590 dir = read_one_inode(root, key->objectid); 1591 if (!dir) 1592 return -EIO; 1593 1594 name_len = btrfs_dir_name_len(eb, di); 1595 name = kmalloc(name_len, GFP_NOFS); 1596 if (!name) { 1597 ret = -ENOMEM; 1598 goto out; 1599 } 1600 1601 log_type = btrfs_dir_type(eb, di); 1602 read_extent_buffer(eb, name, (unsigned long)(di + 1), 1603 name_len); 1604 1605 btrfs_dir_item_key_to_cpu(eb, di, &log_key); 1606 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0); 1607 if (exists == 0) 1608 exists = 1; 1609 else 1610 exists = 0; 1611 btrfs_release_path(path); 1612 1613 if (key->type == BTRFS_DIR_ITEM_KEY) { 1614 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid, 1615 name, name_len, 1); 1616 } else if (key->type == BTRFS_DIR_INDEX_KEY) { 1617 dst_di = btrfs_lookup_dir_index_item(trans, root, path, 1618 key->objectid, 1619 key->offset, name, 1620 name_len, 1); 1621 } else { 1622 /* Corruption */ 1623 ret = -EINVAL; 1624 goto out; 1625 } 1626 if (IS_ERR_OR_NULL(dst_di)) { 1627 /* we need a sequence number to insert, so we only 1628 * do inserts for the BTRFS_DIR_INDEX_KEY types 1629 */ 1630 if (key->type != BTRFS_DIR_INDEX_KEY) 1631 goto out; 1632 goto insert; 1633 } 1634 1635 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key); 1636 /* the existing item matches the logged item */ 1637 if (found_key.objectid == log_key.objectid && 1638 found_key.type == log_key.type && 1639 found_key.offset == log_key.offset && 1640 btrfs_dir_type(path->nodes[0], dst_di) == log_type) { 1641 update_size = false; 1642 goto out; 1643 } 1644 1645 /* 1646 * don't drop the conflicting directory entry if the inode 1647 * for the new entry doesn't exist 1648 */ 1649 if (!exists) 1650 goto out; 1651 1652 ret = drop_one_dir_item(trans, root, path, dir, dst_di); 1653 if (ret) 1654 goto out; 1655 1656 if (key->type == BTRFS_DIR_INDEX_KEY) 1657 goto insert; 1658 out: 1659 btrfs_release_path(path); 1660 if (!ret && update_size) { 1661 btrfs_i_size_write(dir, dir->i_size + name_len * 2); 1662 ret = btrfs_update_inode(trans, root, dir); 1663 } 1664 kfree(name); 1665 iput(dir); 1666 return ret; 1667 1668 insert: 1669 btrfs_release_path(path); 1670 ret = insert_one_name(trans, root, path, key->objectid, key->offset, 1671 name, name_len, log_type, &log_key); 1672 if (ret && ret != -ENOENT) 1673 goto out; 1674 update_size = false; 1675 ret = 0; 1676 goto out; 1677 } 1678 1679 /* 1680 * find all the names in a directory item and reconcile them into 1681 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than 1682 * one name in a directory item, but the same code gets used for 1683 * both directory index types 1684 */ 1685 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans, 1686 struct btrfs_root *root, 1687 struct btrfs_path *path, 1688 struct extent_buffer *eb, int slot, 1689 struct btrfs_key *key) 1690 { 1691 int ret; 1692 u32 item_size = btrfs_item_size_nr(eb, slot); 1693 struct btrfs_dir_item *di; 1694 int name_len; 1695 unsigned long ptr; 1696 unsigned long ptr_end; 1697 1698 ptr = btrfs_item_ptr_offset(eb, slot); 1699 ptr_end = ptr + item_size; 1700 while (ptr < ptr_end) { 1701 di = (struct btrfs_dir_item *)ptr; 1702 if (verify_dir_item(root, eb, di)) 1703 return -EIO; 1704 name_len = btrfs_dir_name_len(eb, di); 1705 ret = replay_one_name(trans, root, path, eb, di, key); 1706 if (ret) 1707 return ret; 1708 ptr = (unsigned long)(di + 1); 1709 ptr += name_len; 1710 } 1711 return 0; 1712 } 1713 1714 /* 1715 * directory replay has two parts. There are the standard directory 1716 * items in the log copied from the subvolume, and range items 1717 * created in the log while the subvolume was logged. 1718 * 1719 * The range items tell us which parts of the key space the log 1720 * is authoritative for. During replay, if a key in the subvolume 1721 * directory is in a logged range item, but not actually in the log 1722 * that means it was deleted from the directory before the fsync 1723 * and should be removed. 1724 */ 1725 static noinline int find_dir_range(struct btrfs_root *root, 1726 struct btrfs_path *path, 1727 u64 dirid, int key_type, 1728 u64 *start_ret, u64 *end_ret) 1729 { 1730 struct btrfs_key key; 1731 u64 found_end; 1732 struct btrfs_dir_log_item *item; 1733 int ret; 1734 int nritems; 1735 1736 if (*start_ret == (u64)-1) 1737 return 1; 1738 1739 key.objectid = dirid; 1740 key.type = key_type; 1741 key.offset = *start_ret; 1742 1743 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1744 if (ret < 0) 1745 goto out; 1746 if (ret > 0) { 1747 if (path->slots[0] == 0) 1748 goto out; 1749 path->slots[0]--; 1750 } 1751 if (ret != 0) 1752 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1753 1754 if (key.type != key_type || key.objectid != dirid) { 1755 ret = 1; 1756 goto next; 1757 } 1758 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 1759 struct btrfs_dir_log_item); 1760 found_end = btrfs_dir_log_end(path->nodes[0], item); 1761 1762 if (*start_ret >= key.offset && *start_ret <= found_end) { 1763 ret = 0; 1764 *start_ret = key.offset; 1765 *end_ret = found_end; 1766 goto out; 1767 } 1768 ret = 1; 1769 next: 1770 /* check the next slot in the tree to see if it is a valid item */ 1771 nritems = btrfs_header_nritems(path->nodes[0]); 1772 if (path->slots[0] >= nritems) { 1773 ret = btrfs_next_leaf(root, path); 1774 if (ret) 1775 goto out; 1776 } else { 1777 path->slots[0]++; 1778 } 1779 1780 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1781 1782 if (key.type != key_type || key.objectid != dirid) { 1783 ret = 1; 1784 goto out; 1785 } 1786 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 1787 struct btrfs_dir_log_item); 1788 found_end = btrfs_dir_log_end(path->nodes[0], item); 1789 *start_ret = key.offset; 1790 *end_ret = found_end; 1791 ret = 0; 1792 out: 1793 btrfs_release_path(path); 1794 return ret; 1795 } 1796 1797 /* 1798 * this looks for a given directory item in the log. If the directory 1799 * item is not in the log, the item is removed and the inode it points 1800 * to is unlinked 1801 */ 1802 static noinline int check_item_in_log(struct btrfs_trans_handle *trans, 1803 struct btrfs_root *root, 1804 struct btrfs_root *log, 1805 struct btrfs_path *path, 1806 struct btrfs_path *log_path, 1807 struct inode *dir, 1808 struct btrfs_key *dir_key) 1809 { 1810 int ret; 1811 struct extent_buffer *eb; 1812 int slot; 1813 u32 item_size; 1814 struct btrfs_dir_item *di; 1815 struct btrfs_dir_item *log_di; 1816 int name_len; 1817 unsigned long ptr; 1818 unsigned long ptr_end; 1819 char *name; 1820 struct inode *inode; 1821 struct btrfs_key location; 1822 1823 again: 1824 eb = path->nodes[0]; 1825 slot = path->slots[0]; 1826 item_size = btrfs_item_size_nr(eb, slot); 1827 ptr = btrfs_item_ptr_offset(eb, slot); 1828 ptr_end = ptr + item_size; 1829 while (ptr < ptr_end) { 1830 di = (struct btrfs_dir_item *)ptr; 1831 if (verify_dir_item(root, eb, di)) { 1832 ret = -EIO; 1833 goto out; 1834 } 1835 1836 name_len = btrfs_dir_name_len(eb, di); 1837 name = kmalloc(name_len, GFP_NOFS); 1838 if (!name) { 1839 ret = -ENOMEM; 1840 goto out; 1841 } 1842 read_extent_buffer(eb, name, (unsigned long)(di + 1), 1843 name_len); 1844 log_di = NULL; 1845 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) { 1846 log_di = btrfs_lookup_dir_item(trans, log, log_path, 1847 dir_key->objectid, 1848 name, name_len, 0); 1849 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) { 1850 log_di = btrfs_lookup_dir_index_item(trans, log, 1851 log_path, 1852 dir_key->objectid, 1853 dir_key->offset, 1854 name, name_len, 0); 1855 } 1856 if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) { 1857 btrfs_dir_item_key_to_cpu(eb, di, &location); 1858 btrfs_release_path(path); 1859 btrfs_release_path(log_path); 1860 inode = read_one_inode(root, location.objectid); 1861 if (!inode) { 1862 kfree(name); 1863 return -EIO; 1864 } 1865 1866 ret = link_to_fixup_dir(trans, root, 1867 path, location.objectid); 1868 if (ret) { 1869 kfree(name); 1870 iput(inode); 1871 goto out; 1872 } 1873 1874 inc_nlink(inode); 1875 ret = btrfs_unlink_inode(trans, root, dir, inode, 1876 name, name_len); 1877 if (!ret) 1878 ret = btrfs_run_delayed_items(trans, root); 1879 kfree(name); 1880 iput(inode); 1881 if (ret) 1882 goto out; 1883 1884 /* there might still be more names under this key 1885 * check and repeat if required 1886 */ 1887 ret = btrfs_search_slot(NULL, root, dir_key, path, 1888 0, 0); 1889 if (ret == 0) 1890 goto again; 1891 ret = 0; 1892 goto out; 1893 } else if (IS_ERR(log_di)) { 1894 kfree(name); 1895 return PTR_ERR(log_di); 1896 } 1897 btrfs_release_path(log_path); 1898 kfree(name); 1899 1900 ptr = (unsigned long)(di + 1); 1901 ptr += name_len; 1902 } 1903 ret = 0; 1904 out: 1905 btrfs_release_path(path); 1906 btrfs_release_path(log_path); 1907 return ret; 1908 } 1909 1910 /* 1911 * deletion replay happens before we copy any new directory items 1912 * out of the log or out of backreferences from inodes. It 1913 * scans the log to find ranges of keys that log is authoritative for, 1914 * and then scans the directory to find items in those ranges that are 1915 * not present in the log. 1916 * 1917 * Anything we don't find in the log is unlinked and removed from the 1918 * directory. 1919 */ 1920 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 1921 struct btrfs_root *root, 1922 struct btrfs_root *log, 1923 struct btrfs_path *path, 1924 u64 dirid, int del_all) 1925 { 1926 u64 range_start; 1927 u64 range_end; 1928 int key_type = BTRFS_DIR_LOG_ITEM_KEY; 1929 int ret = 0; 1930 struct btrfs_key dir_key; 1931 struct btrfs_key found_key; 1932 struct btrfs_path *log_path; 1933 struct inode *dir; 1934 1935 dir_key.objectid = dirid; 1936 dir_key.type = BTRFS_DIR_ITEM_KEY; 1937 log_path = btrfs_alloc_path(); 1938 if (!log_path) 1939 return -ENOMEM; 1940 1941 dir = read_one_inode(root, dirid); 1942 /* it isn't an error if the inode isn't there, that can happen 1943 * because we replay the deletes before we copy in the inode item 1944 * from the log 1945 */ 1946 if (!dir) { 1947 btrfs_free_path(log_path); 1948 return 0; 1949 } 1950 again: 1951 range_start = 0; 1952 range_end = 0; 1953 while (1) { 1954 if (del_all) 1955 range_end = (u64)-1; 1956 else { 1957 ret = find_dir_range(log, path, dirid, key_type, 1958 &range_start, &range_end); 1959 if (ret != 0) 1960 break; 1961 } 1962 1963 dir_key.offset = range_start; 1964 while (1) { 1965 int nritems; 1966 ret = btrfs_search_slot(NULL, root, &dir_key, path, 1967 0, 0); 1968 if (ret < 0) 1969 goto out; 1970 1971 nritems = btrfs_header_nritems(path->nodes[0]); 1972 if (path->slots[0] >= nritems) { 1973 ret = btrfs_next_leaf(root, path); 1974 if (ret) 1975 break; 1976 } 1977 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1978 path->slots[0]); 1979 if (found_key.objectid != dirid || 1980 found_key.type != dir_key.type) 1981 goto next_type; 1982 1983 if (found_key.offset > range_end) 1984 break; 1985 1986 ret = check_item_in_log(trans, root, log, path, 1987 log_path, dir, 1988 &found_key); 1989 if (ret) 1990 goto out; 1991 if (found_key.offset == (u64)-1) 1992 break; 1993 dir_key.offset = found_key.offset + 1; 1994 } 1995 btrfs_release_path(path); 1996 if (range_end == (u64)-1) 1997 break; 1998 range_start = range_end + 1; 1999 } 2000 2001 next_type: 2002 ret = 0; 2003 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) { 2004 key_type = BTRFS_DIR_LOG_INDEX_KEY; 2005 dir_key.type = BTRFS_DIR_INDEX_KEY; 2006 btrfs_release_path(path); 2007 goto again; 2008 } 2009 out: 2010 btrfs_release_path(path); 2011 btrfs_free_path(log_path); 2012 iput(dir); 2013 return ret; 2014 } 2015 2016 /* 2017 * the process_func used to replay items from the log tree. This 2018 * gets called in two different stages. The first stage just looks 2019 * for inodes and makes sure they are all copied into the subvolume. 2020 * 2021 * The second stage copies all the other item types from the log into 2022 * the subvolume. The two stage approach is slower, but gets rid of 2023 * lots of complexity around inodes referencing other inodes that exist 2024 * only in the log (references come from either directory items or inode 2025 * back refs). 2026 */ 2027 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb, 2028 struct walk_control *wc, u64 gen) 2029 { 2030 int nritems; 2031 struct btrfs_path *path; 2032 struct btrfs_root *root = wc->replay_dest; 2033 struct btrfs_key key; 2034 int level; 2035 int i; 2036 int ret; 2037 2038 ret = btrfs_read_buffer(eb, gen); 2039 if (ret) 2040 return ret; 2041 2042 level = btrfs_header_level(eb); 2043 2044 if (level != 0) 2045 return 0; 2046 2047 path = btrfs_alloc_path(); 2048 if (!path) 2049 return -ENOMEM; 2050 2051 nritems = btrfs_header_nritems(eb); 2052 for (i = 0; i < nritems; i++) { 2053 btrfs_item_key_to_cpu(eb, &key, i); 2054 2055 /* inode keys are done during the first stage */ 2056 if (key.type == BTRFS_INODE_ITEM_KEY && 2057 wc->stage == LOG_WALK_REPLAY_INODES) { 2058 struct btrfs_inode_item *inode_item; 2059 u32 mode; 2060 2061 inode_item = btrfs_item_ptr(eb, i, 2062 struct btrfs_inode_item); 2063 mode = btrfs_inode_mode(eb, inode_item); 2064 if (S_ISDIR(mode)) { 2065 ret = replay_dir_deletes(wc->trans, 2066 root, log, path, key.objectid, 0); 2067 if (ret) 2068 break; 2069 } 2070 ret = overwrite_item(wc->trans, root, path, 2071 eb, i, &key); 2072 if (ret) 2073 break; 2074 2075 /* for regular files, make sure corresponding 2076 * orhpan item exist. extents past the new EOF 2077 * will be truncated later by orphan cleanup. 2078 */ 2079 if (S_ISREG(mode)) { 2080 ret = insert_orphan_item(wc->trans, root, 2081 key.objectid); 2082 if (ret) 2083 break; 2084 } 2085 2086 ret = link_to_fixup_dir(wc->trans, root, 2087 path, key.objectid); 2088 if (ret) 2089 break; 2090 } 2091 2092 if (key.type == BTRFS_DIR_INDEX_KEY && 2093 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) { 2094 ret = replay_one_dir_item(wc->trans, root, path, 2095 eb, i, &key); 2096 if (ret) 2097 break; 2098 } 2099 2100 if (wc->stage < LOG_WALK_REPLAY_ALL) 2101 continue; 2102 2103 /* these keys are simply copied */ 2104 if (key.type == BTRFS_XATTR_ITEM_KEY) { 2105 ret = overwrite_item(wc->trans, root, path, 2106 eb, i, &key); 2107 if (ret) 2108 break; 2109 } else if (key.type == BTRFS_INODE_REF_KEY || 2110 key.type == BTRFS_INODE_EXTREF_KEY) { 2111 ret = add_inode_ref(wc->trans, root, log, path, 2112 eb, i, &key); 2113 if (ret && ret != -ENOENT) 2114 break; 2115 ret = 0; 2116 } else if (key.type == BTRFS_EXTENT_DATA_KEY) { 2117 ret = replay_one_extent(wc->trans, root, path, 2118 eb, i, &key); 2119 if (ret) 2120 break; 2121 } else if (key.type == BTRFS_DIR_ITEM_KEY) { 2122 ret = replay_one_dir_item(wc->trans, root, path, 2123 eb, i, &key); 2124 if (ret) 2125 break; 2126 } 2127 } 2128 btrfs_free_path(path); 2129 return ret; 2130 } 2131 2132 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans, 2133 struct btrfs_root *root, 2134 struct btrfs_path *path, int *level, 2135 struct walk_control *wc) 2136 { 2137 u64 root_owner; 2138 u64 bytenr; 2139 u64 ptr_gen; 2140 struct extent_buffer *next; 2141 struct extent_buffer *cur; 2142 struct extent_buffer *parent; 2143 u32 blocksize; 2144 int ret = 0; 2145 2146 WARN_ON(*level < 0); 2147 WARN_ON(*level >= BTRFS_MAX_LEVEL); 2148 2149 while (*level > 0) { 2150 WARN_ON(*level < 0); 2151 WARN_ON(*level >= BTRFS_MAX_LEVEL); 2152 cur = path->nodes[*level]; 2153 2154 WARN_ON(btrfs_header_level(cur) != *level); 2155 2156 if (path->slots[*level] >= 2157 btrfs_header_nritems(cur)) 2158 break; 2159 2160 bytenr = btrfs_node_blockptr(cur, path->slots[*level]); 2161 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); 2162 blocksize = root->nodesize; 2163 2164 parent = path->nodes[*level]; 2165 root_owner = btrfs_header_owner(parent); 2166 2167 next = btrfs_find_create_tree_block(root, bytenr, blocksize); 2168 if (!next) 2169 return -ENOMEM; 2170 2171 if (*level == 1) { 2172 ret = wc->process_func(root, next, wc, ptr_gen); 2173 if (ret) { 2174 free_extent_buffer(next); 2175 return ret; 2176 } 2177 2178 path->slots[*level]++; 2179 if (wc->free) { 2180 ret = btrfs_read_buffer(next, ptr_gen); 2181 if (ret) { 2182 free_extent_buffer(next); 2183 return ret; 2184 } 2185 2186 if (trans) { 2187 btrfs_tree_lock(next); 2188 btrfs_set_lock_blocking(next); 2189 clean_tree_block(trans, root, next); 2190 btrfs_wait_tree_block_writeback(next); 2191 btrfs_tree_unlock(next); 2192 } 2193 2194 WARN_ON(root_owner != 2195 BTRFS_TREE_LOG_OBJECTID); 2196 ret = btrfs_free_and_pin_reserved_extent(root, 2197 bytenr, blocksize); 2198 if (ret) { 2199 free_extent_buffer(next); 2200 return ret; 2201 } 2202 } 2203 free_extent_buffer(next); 2204 continue; 2205 } 2206 ret = btrfs_read_buffer(next, ptr_gen); 2207 if (ret) { 2208 free_extent_buffer(next); 2209 return ret; 2210 } 2211 2212 WARN_ON(*level <= 0); 2213 if (path->nodes[*level-1]) 2214 free_extent_buffer(path->nodes[*level-1]); 2215 path->nodes[*level-1] = next; 2216 *level = btrfs_header_level(next); 2217 path->slots[*level] = 0; 2218 cond_resched(); 2219 } 2220 WARN_ON(*level < 0); 2221 WARN_ON(*level >= BTRFS_MAX_LEVEL); 2222 2223 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]); 2224 2225 cond_resched(); 2226 return 0; 2227 } 2228 2229 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans, 2230 struct btrfs_root *root, 2231 struct btrfs_path *path, int *level, 2232 struct walk_control *wc) 2233 { 2234 u64 root_owner; 2235 int i; 2236 int slot; 2237 int ret; 2238 2239 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { 2240 slot = path->slots[i]; 2241 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) { 2242 path->slots[i]++; 2243 *level = i; 2244 WARN_ON(*level == 0); 2245 return 0; 2246 } else { 2247 struct extent_buffer *parent; 2248 if (path->nodes[*level] == root->node) 2249 parent = path->nodes[*level]; 2250 else 2251 parent = path->nodes[*level + 1]; 2252 2253 root_owner = btrfs_header_owner(parent); 2254 ret = wc->process_func(root, path->nodes[*level], wc, 2255 btrfs_header_generation(path->nodes[*level])); 2256 if (ret) 2257 return ret; 2258 2259 if (wc->free) { 2260 struct extent_buffer *next; 2261 2262 next = path->nodes[*level]; 2263 2264 if (trans) { 2265 btrfs_tree_lock(next); 2266 btrfs_set_lock_blocking(next); 2267 clean_tree_block(trans, root, next); 2268 btrfs_wait_tree_block_writeback(next); 2269 btrfs_tree_unlock(next); 2270 } 2271 2272 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID); 2273 ret = btrfs_free_and_pin_reserved_extent(root, 2274 path->nodes[*level]->start, 2275 path->nodes[*level]->len); 2276 if (ret) 2277 return ret; 2278 } 2279 free_extent_buffer(path->nodes[*level]); 2280 path->nodes[*level] = NULL; 2281 *level = i + 1; 2282 } 2283 } 2284 return 1; 2285 } 2286 2287 /* 2288 * drop the reference count on the tree rooted at 'snap'. This traverses 2289 * the tree freeing any blocks that have a ref count of zero after being 2290 * decremented. 2291 */ 2292 static int walk_log_tree(struct btrfs_trans_handle *trans, 2293 struct btrfs_root *log, struct walk_control *wc) 2294 { 2295 int ret = 0; 2296 int wret; 2297 int level; 2298 struct btrfs_path *path; 2299 int orig_level; 2300 2301 path = btrfs_alloc_path(); 2302 if (!path) 2303 return -ENOMEM; 2304 2305 level = btrfs_header_level(log->node); 2306 orig_level = level; 2307 path->nodes[level] = log->node; 2308 extent_buffer_get(log->node); 2309 path->slots[level] = 0; 2310 2311 while (1) { 2312 wret = walk_down_log_tree(trans, log, path, &level, wc); 2313 if (wret > 0) 2314 break; 2315 if (wret < 0) { 2316 ret = wret; 2317 goto out; 2318 } 2319 2320 wret = walk_up_log_tree(trans, log, path, &level, wc); 2321 if (wret > 0) 2322 break; 2323 if (wret < 0) { 2324 ret = wret; 2325 goto out; 2326 } 2327 } 2328 2329 /* was the root node processed? if not, catch it here */ 2330 if (path->nodes[orig_level]) { 2331 ret = wc->process_func(log, path->nodes[orig_level], wc, 2332 btrfs_header_generation(path->nodes[orig_level])); 2333 if (ret) 2334 goto out; 2335 if (wc->free) { 2336 struct extent_buffer *next; 2337 2338 next = path->nodes[orig_level]; 2339 2340 if (trans) { 2341 btrfs_tree_lock(next); 2342 btrfs_set_lock_blocking(next); 2343 clean_tree_block(trans, log, next); 2344 btrfs_wait_tree_block_writeback(next); 2345 btrfs_tree_unlock(next); 2346 } 2347 2348 WARN_ON(log->root_key.objectid != 2349 BTRFS_TREE_LOG_OBJECTID); 2350 ret = btrfs_free_and_pin_reserved_extent(log, next->start, 2351 next->len); 2352 if (ret) 2353 goto out; 2354 } 2355 } 2356 2357 out: 2358 btrfs_free_path(path); 2359 return ret; 2360 } 2361 2362 /* 2363 * helper function to update the item for a given subvolumes log root 2364 * in the tree of log roots 2365 */ 2366 static int update_log_root(struct btrfs_trans_handle *trans, 2367 struct btrfs_root *log) 2368 { 2369 int ret; 2370 2371 if (log->log_transid == 1) { 2372 /* insert root item on the first sync */ 2373 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree, 2374 &log->root_key, &log->root_item); 2375 } else { 2376 ret = btrfs_update_root(trans, log->fs_info->log_root_tree, 2377 &log->root_key, &log->root_item); 2378 } 2379 return ret; 2380 } 2381 2382 static void wait_log_commit(struct btrfs_trans_handle *trans, 2383 struct btrfs_root *root, int transid) 2384 { 2385 DEFINE_WAIT(wait); 2386 int index = transid % 2; 2387 2388 /* 2389 * we only allow two pending log transactions at a time, 2390 * so we know that if ours is more than 2 older than the 2391 * current transaction, we're done 2392 */ 2393 do { 2394 prepare_to_wait(&root->log_commit_wait[index], 2395 &wait, TASK_UNINTERRUPTIBLE); 2396 mutex_unlock(&root->log_mutex); 2397 2398 if (root->log_transid_committed < transid && 2399 atomic_read(&root->log_commit[index])) 2400 schedule(); 2401 2402 finish_wait(&root->log_commit_wait[index], &wait); 2403 mutex_lock(&root->log_mutex); 2404 } while (root->log_transid_committed < transid && 2405 atomic_read(&root->log_commit[index])); 2406 } 2407 2408 static void wait_for_writer(struct btrfs_trans_handle *trans, 2409 struct btrfs_root *root) 2410 { 2411 DEFINE_WAIT(wait); 2412 2413 while (atomic_read(&root->log_writers)) { 2414 prepare_to_wait(&root->log_writer_wait, 2415 &wait, TASK_UNINTERRUPTIBLE); 2416 mutex_unlock(&root->log_mutex); 2417 if (atomic_read(&root->log_writers)) 2418 schedule(); 2419 mutex_lock(&root->log_mutex); 2420 finish_wait(&root->log_writer_wait, &wait); 2421 } 2422 } 2423 2424 static inline void btrfs_remove_log_ctx(struct btrfs_root *root, 2425 struct btrfs_log_ctx *ctx) 2426 { 2427 if (!ctx) 2428 return; 2429 2430 mutex_lock(&root->log_mutex); 2431 list_del_init(&ctx->list); 2432 mutex_unlock(&root->log_mutex); 2433 } 2434 2435 /* 2436 * Invoked in log mutex context, or be sure there is no other task which 2437 * can access the list. 2438 */ 2439 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root, 2440 int index, int error) 2441 { 2442 struct btrfs_log_ctx *ctx; 2443 2444 if (!error) { 2445 INIT_LIST_HEAD(&root->log_ctxs[index]); 2446 return; 2447 } 2448 2449 list_for_each_entry(ctx, &root->log_ctxs[index], list) 2450 ctx->log_ret = error; 2451 2452 INIT_LIST_HEAD(&root->log_ctxs[index]); 2453 } 2454 2455 /* 2456 * btrfs_sync_log does sends a given tree log down to the disk and 2457 * updates the super blocks to record it. When this call is done, 2458 * you know that any inodes previously logged are safely on disk only 2459 * if it returns 0. 2460 * 2461 * Any other return value means you need to call btrfs_commit_transaction. 2462 * Some of the edge cases for fsyncing directories that have had unlinks 2463 * or renames done in the past mean that sometimes the only safe 2464 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN, 2465 * that has happened. 2466 */ 2467 int btrfs_sync_log(struct btrfs_trans_handle *trans, 2468 struct btrfs_root *root, struct btrfs_log_ctx *ctx) 2469 { 2470 int index1; 2471 int index2; 2472 int mark; 2473 int ret; 2474 struct btrfs_root *log = root->log_root; 2475 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree; 2476 int log_transid = 0; 2477 struct btrfs_log_ctx root_log_ctx; 2478 struct blk_plug plug; 2479 2480 mutex_lock(&root->log_mutex); 2481 log_transid = ctx->log_transid; 2482 if (root->log_transid_committed >= log_transid) { 2483 mutex_unlock(&root->log_mutex); 2484 return ctx->log_ret; 2485 } 2486 2487 index1 = log_transid % 2; 2488 if (atomic_read(&root->log_commit[index1])) { 2489 wait_log_commit(trans, root, log_transid); 2490 mutex_unlock(&root->log_mutex); 2491 return ctx->log_ret; 2492 } 2493 ASSERT(log_transid == root->log_transid); 2494 atomic_set(&root->log_commit[index1], 1); 2495 2496 /* wait for previous tree log sync to complete */ 2497 if (atomic_read(&root->log_commit[(index1 + 1) % 2])) 2498 wait_log_commit(trans, root, log_transid - 1); 2499 2500 while (1) { 2501 int batch = atomic_read(&root->log_batch); 2502 /* when we're on an ssd, just kick the log commit out */ 2503 if (!btrfs_test_opt(root, SSD) && 2504 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) { 2505 mutex_unlock(&root->log_mutex); 2506 schedule_timeout_uninterruptible(1); 2507 mutex_lock(&root->log_mutex); 2508 } 2509 wait_for_writer(trans, root); 2510 if (batch == atomic_read(&root->log_batch)) 2511 break; 2512 } 2513 2514 /* bail out if we need to do a full commit */ 2515 if (btrfs_need_log_full_commit(root->fs_info, trans)) { 2516 ret = -EAGAIN; 2517 btrfs_free_logged_extents(log, log_transid); 2518 mutex_unlock(&root->log_mutex); 2519 goto out; 2520 } 2521 2522 if (log_transid % 2 == 0) 2523 mark = EXTENT_DIRTY; 2524 else 2525 mark = EXTENT_NEW; 2526 2527 /* we start IO on all the marked extents here, but we don't actually 2528 * wait for them until later. 2529 */ 2530 blk_start_plug(&plug); 2531 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark); 2532 if (ret) { 2533 blk_finish_plug(&plug); 2534 btrfs_abort_transaction(trans, root, ret); 2535 btrfs_free_logged_extents(log, log_transid); 2536 btrfs_set_log_full_commit(root->fs_info, trans); 2537 mutex_unlock(&root->log_mutex); 2538 goto out; 2539 } 2540 2541 btrfs_set_root_node(&log->root_item, log->node); 2542 2543 root->log_transid++; 2544 log->log_transid = root->log_transid; 2545 root->log_start_pid = 0; 2546 /* 2547 * IO has been started, blocks of the log tree have WRITTEN flag set 2548 * in their headers. new modifications of the log will be written to 2549 * new positions. so it's safe to allow log writers to go in. 2550 */ 2551 mutex_unlock(&root->log_mutex); 2552 2553 btrfs_init_log_ctx(&root_log_ctx); 2554 2555 mutex_lock(&log_root_tree->log_mutex); 2556 atomic_inc(&log_root_tree->log_batch); 2557 atomic_inc(&log_root_tree->log_writers); 2558 2559 index2 = log_root_tree->log_transid % 2; 2560 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]); 2561 root_log_ctx.log_transid = log_root_tree->log_transid; 2562 2563 mutex_unlock(&log_root_tree->log_mutex); 2564 2565 ret = update_log_root(trans, log); 2566 2567 mutex_lock(&log_root_tree->log_mutex); 2568 if (atomic_dec_and_test(&log_root_tree->log_writers)) { 2569 smp_mb(); 2570 if (waitqueue_active(&log_root_tree->log_writer_wait)) 2571 wake_up(&log_root_tree->log_writer_wait); 2572 } 2573 2574 if (ret) { 2575 if (!list_empty(&root_log_ctx.list)) 2576 list_del_init(&root_log_ctx.list); 2577 2578 blk_finish_plug(&plug); 2579 btrfs_set_log_full_commit(root->fs_info, trans); 2580 2581 if (ret != -ENOSPC) { 2582 btrfs_abort_transaction(trans, root, ret); 2583 mutex_unlock(&log_root_tree->log_mutex); 2584 goto out; 2585 } 2586 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark); 2587 btrfs_free_logged_extents(log, log_transid); 2588 mutex_unlock(&log_root_tree->log_mutex); 2589 ret = -EAGAIN; 2590 goto out; 2591 } 2592 2593 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) { 2594 blk_finish_plug(&plug); 2595 mutex_unlock(&log_root_tree->log_mutex); 2596 ret = root_log_ctx.log_ret; 2597 goto out; 2598 } 2599 2600 index2 = root_log_ctx.log_transid % 2; 2601 if (atomic_read(&log_root_tree->log_commit[index2])) { 2602 blk_finish_plug(&plug); 2603 ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages, 2604 mark); 2605 btrfs_wait_logged_extents(trans, log, log_transid); 2606 wait_log_commit(trans, log_root_tree, 2607 root_log_ctx.log_transid); 2608 mutex_unlock(&log_root_tree->log_mutex); 2609 if (!ret) 2610 ret = root_log_ctx.log_ret; 2611 goto out; 2612 } 2613 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid); 2614 atomic_set(&log_root_tree->log_commit[index2], 1); 2615 2616 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) { 2617 wait_log_commit(trans, log_root_tree, 2618 root_log_ctx.log_transid - 1); 2619 } 2620 2621 wait_for_writer(trans, log_root_tree); 2622 2623 /* 2624 * now that we've moved on to the tree of log tree roots, 2625 * check the full commit flag again 2626 */ 2627 if (btrfs_need_log_full_commit(root->fs_info, trans)) { 2628 blk_finish_plug(&plug); 2629 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark); 2630 btrfs_free_logged_extents(log, log_transid); 2631 mutex_unlock(&log_root_tree->log_mutex); 2632 ret = -EAGAIN; 2633 goto out_wake_log_root; 2634 } 2635 2636 ret = btrfs_write_marked_extents(log_root_tree, 2637 &log_root_tree->dirty_log_pages, 2638 EXTENT_DIRTY | EXTENT_NEW); 2639 blk_finish_plug(&plug); 2640 if (ret) { 2641 btrfs_set_log_full_commit(root->fs_info, trans); 2642 btrfs_abort_transaction(trans, root, ret); 2643 btrfs_free_logged_extents(log, log_transid); 2644 mutex_unlock(&log_root_tree->log_mutex); 2645 goto out_wake_log_root; 2646 } 2647 ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark); 2648 if (!ret) 2649 ret = btrfs_wait_marked_extents(log_root_tree, 2650 &log_root_tree->dirty_log_pages, 2651 EXTENT_NEW | EXTENT_DIRTY); 2652 if (ret) { 2653 btrfs_set_log_full_commit(root->fs_info, trans); 2654 btrfs_free_logged_extents(log, log_transid); 2655 mutex_unlock(&log_root_tree->log_mutex); 2656 goto out_wake_log_root; 2657 } 2658 btrfs_wait_logged_extents(trans, log, log_transid); 2659 2660 btrfs_set_super_log_root(root->fs_info->super_for_commit, 2661 log_root_tree->node->start); 2662 btrfs_set_super_log_root_level(root->fs_info->super_for_commit, 2663 btrfs_header_level(log_root_tree->node)); 2664 2665 log_root_tree->log_transid++; 2666 mutex_unlock(&log_root_tree->log_mutex); 2667 2668 /* 2669 * nobody else is going to jump in and write the the ctree 2670 * super here because the log_commit atomic below is protecting 2671 * us. We must be called with a transaction handle pinning 2672 * the running transaction open, so a full commit can't hop 2673 * in and cause problems either. 2674 */ 2675 ret = write_ctree_super(trans, root->fs_info->tree_root, 1); 2676 if (ret) { 2677 btrfs_set_log_full_commit(root->fs_info, trans); 2678 btrfs_abort_transaction(trans, root, ret); 2679 goto out_wake_log_root; 2680 } 2681 2682 mutex_lock(&root->log_mutex); 2683 if (root->last_log_commit < log_transid) 2684 root->last_log_commit = log_transid; 2685 mutex_unlock(&root->log_mutex); 2686 2687 out_wake_log_root: 2688 /* 2689 * We needn't get log_mutex here because we are sure all 2690 * the other tasks are blocked. 2691 */ 2692 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret); 2693 2694 mutex_lock(&log_root_tree->log_mutex); 2695 log_root_tree->log_transid_committed++; 2696 atomic_set(&log_root_tree->log_commit[index2], 0); 2697 mutex_unlock(&log_root_tree->log_mutex); 2698 2699 if (waitqueue_active(&log_root_tree->log_commit_wait[index2])) 2700 wake_up(&log_root_tree->log_commit_wait[index2]); 2701 out: 2702 /* See above. */ 2703 btrfs_remove_all_log_ctxs(root, index1, ret); 2704 2705 mutex_lock(&root->log_mutex); 2706 root->log_transid_committed++; 2707 atomic_set(&root->log_commit[index1], 0); 2708 mutex_unlock(&root->log_mutex); 2709 2710 if (waitqueue_active(&root->log_commit_wait[index1])) 2711 wake_up(&root->log_commit_wait[index1]); 2712 return ret; 2713 } 2714 2715 static void free_log_tree(struct btrfs_trans_handle *trans, 2716 struct btrfs_root *log) 2717 { 2718 int ret; 2719 u64 start; 2720 u64 end; 2721 struct walk_control wc = { 2722 .free = 1, 2723 .process_func = process_one_buffer 2724 }; 2725 2726 ret = walk_log_tree(trans, log, &wc); 2727 /* I don't think this can happen but just in case */ 2728 if (ret) 2729 btrfs_abort_transaction(trans, log, ret); 2730 2731 while (1) { 2732 ret = find_first_extent_bit(&log->dirty_log_pages, 2733 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW, 2734 NULL); 2735 if (ret) 2736 break; 2737 2738 clear_extent_bits(&log->dirty_log_pages, start, end, 2739 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS); 2740 } 2741 2742 /* 2743 * We may have short-circuited the log tree with the full commit logic 2744 * and left ordered extents on our list, so clear these out to keep us 2745 * from leaking inodes and memory. 2746 */ 2747 btrfs_free_logged_extents(log, 0); 2748 btrfs_free_logged_extents(log, 1); 2749 2750 free_extent_buffer(log->node); 2751 kfree(log); 2752 } 2753 2754 /* 2755 * free all the extents used by the tree log. This should be called 2756 * at commit time of the full transaction 2757 */ 2758 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root) 2759 { 2760 if (root->log_root) { 2761 free_log_tree(trans, root->log_root); 2762 root->log_root = NULL; 2763 } 2764 return 0; 2765 } 2766 2767 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans, 2768 struct btrfs_fs_info *fs_info) 2769 { 2770 if (fs_info->log_root_tree) { 2771 free_log_tree(trans, fs_info->log_root_tree); 2772 fs_info->log_root_tree = NULL; 2773 } 2774 return 0; 2775 } 2776 2777 /* 2778 * If both a file and directory are logged, and unlinks or renames are 2779 * mixed in, we have a few interesting corners: 2780 * 2781 * create file X in dir Y 2782 * link file X to X.link in dir Y 2783 * fsync file X 2784 * unlink file X but leave X.link 2785 * fsync dir Y 2786 * 2787 * After a crash we would expect only X.link to exist. But file X 2788 * didn't get fsync'd again so the log has back refs for X and X.link. 2789 * 2790 * We solve this by removing directory entries and inode backrefs from the 2791 * log when a file that was logged in the current transaction is 2792 * unlinked. Any later fsync will include the updated log entries, and 2793 * we'll be able to reconstruct the proper directory items from backrefs. 2794 * 2795 * This optimizations allows us to avoid relogging the entire inode 2796 * or the entire directory. 2797 */ 2798 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans, 2799 struct btrfs_root *root, 2800 const char *name, int name_len, 2801 struct inode *dir, u64 index) 2802 { 2803 struct btrfs_root *log; 2804 struct btrfs_dir_item *di; 2805 struct btrfs_path *path; 2806 int ret; 2807 int err = 0; 2808 int bytes_del = 0; 2809 u64 dir_ino = btrfs_ino(dir); 2810 2811 if (BTRFS_I(dir)->logged_trans < trans->transid) 2812 return 0; 2813 2814 ret = join_running_log_trans(root); 2815 if (ret) 2816 return 0; 2817 2818 mutex_lock(&BTRFS_I(dir)->log_mutex); 2819 2820 log = root->log_root; 2821 path = btrfs_alloc_path(); 2822 if (!path) { 2823 err = -ENOMEM; 2824 goto out_unlock; 2825 } 2826 2827 di = btrfs_lookup_dir_item(trans, log, path, dir_ino, 2828 name, name_len, -1); 2829 if (IS_ERR(di)) { 2830 err = PTR_ERR(di); 2831 goto fail; 2832 } 2833 if (di) { 2834 ret = btrfs_delete_one_dir_name(trans, log, path, di); 2835 bytes_del += name_len; 2836 if (ret) { 2837 err = ret; 2838 goto fail; 2839 } 2840 } 2841 btrfs_release_path(path); 2842 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino, 2843 index, name, name_len, -1); 2844 if (IS_ERR(di)) { 2845 err = PTR_ERR(di); 2846 goto fail; 2847 } 2848 if (di) { 2849 ret = btrfs_delete_one_dir_name(trans, log, path, di); 2850 bytes_del += name_len; 2851 if (ret) { 2852 err = ret; 2853 goto fail; 2854 } 2855 } 2856 2857 /* update the directory size in the log to reflect the names 2858 * we have removed 2859 */ 2860 if (bytes_del) { 2861 struct btrfs_key key; 2862 2863 key.objectid = dir_ino; 2864 key.offset = 0; 2865 key.type = BTRFS_INODE_ITEM_KEY; 2866 btrfs_release_path(path); 2867 2868 ret = btrfs_search_slot(trans, log, &key, path, 0, 1); 2869 if (ret < 0) { 2870 err = ret; 2871 goto fail; 2872 } 2873 if (ret == 0) { 2874 struct btrfs_inode_item *item; 2875 u64 i_size; 2876 2877 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2878 struct btrfs_inode_item); 2879 i_size = btrfs_inode_size(path->nodes[0], item); 2880 if (i_size > bytes_del) 2881 i_size -= bytes_del; 2882 else 2883 i_size = 0; 2884 btrfs_set_inode_size(path->nodes[0], item, i_size); 2885 btrfs_mark_buffer_dirty(path->nodes[0]); 2886 } else 2887 ret = 0; 2888 btrfs_release_path(path); 2889 } 2890 fail: 2891 btrfs_free_path(path); 2892 out_unlock: 2893 mutex_unlock(&BTRFS_I(dir)->log_mutex); 2894 if (ret == -ENOSPC) { 2895 btrfs_set_log_full_commit(root->fs_info, trans); 2896 ret = 0; 2897 } else if (ret < 0) 2898 btrfs_abort_transaction(trans, root, ret); 2899 2900 btrfs_end_log_trans(root); 2901 2902 return err; 2903 } 2904 2905 /* see comments for btrfs_del_dir_entries_in_log */ 2906 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans, 2907 struct btrfs_root *root, 2908 const char *name, int name_len, 2909 struct inode *inode, u64 dirid) 2910 { 2911 struct btrfs_root *log; 2912 u64 index; 2913 int ret; 2914 2915 if (BTRFS_I(inode)->logged_trans < trans->transid) 2916 return 0; 2917 2918 ret = join_running_log_trans(root); 2919 if (ret) 2920 return 0; 2921 log = root->log_root; 2922 mutex_lock(&BTRFS_I(inode)->log_mutex); 2923 2924 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode), 2925 dirid, &index); 2926 mutex_unlock(&BTRFS_I(inode)->log_mutex); 2927 if (ret == -ENOSPC) { 2928 btrfs_set_log_full_commit(root->fs_info, trans); 2929 ret = 0; 2930 } else if (ret < 0 && ret != -ENOENT) 2931 btrfs_abort_transaction(trans, root, ret); 2932 btrfs_end_log_trans(root); 2933 2934 return ret; 2935 } 2936 2937 /* 2938 * creates a range item in the log for 'dirid'. first_offset and 2939 * last_offset tell us which parts of the key space the log should 2940 * be considered authoritative for. 2941 */ 2942 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans, 2943 struct btrfs_root *log, 2944 struct btrfs_path *path, 2945 int key_type, u64 dirid, 2946 u64 first_offset, u64 last_offset) 2947 { 2948 int ret; 2949 struct btrfs_key key; 2950 struct btrfs_dir_log_item *item; 2951 2952 key.objectid = dirid; 2953 key.offset = first_offset; 2954 if (key_type == BTRFS_DIR_ITEM_KEY) 2955 key.type = BTRFS_DIR_LOG_ITEM_KEY; 2956 else 2957 key.type = BTRFS_DIR_LOG_INDEX_KEY; 2958 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item)); 2959 if (ret) 2960 return ret; 2961 2962 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2963 struct btrfs_dir_log_item); 2964 btrfs_set_dir_log_end(path->nodes[0], item, last_offset); 2965 btrfs_mark_buffer_dirty(path->nodes[0]); 2966 btrfs_release_path(path); 2967 return 0; 2968 } 2969 2970 /* 2971 * log all the items included in the current transaction for a given 2972 * directory. This also creates the range items in the log tree required 2973 * to replay anything deleted before the fsync 2974 */ 2975 static noinline int log_dir_items(struct btrfs_trans_handle *trans, 2976 struct btrfs_root *root, struct inode *inode, 2977 struct btrfs_path *path, 2978 struct btrfs_path *dst_path, int key_type, 2979 u64 min_offset, u64 *last_offset_ret) 2980 { 2981 struct btrfs_key min_key; 2982 struct btrfs_root *log = root->log_root; 2983 struct extent_buffer *src; 2984 int err = 0; 2985 int ret; 2986 int i; 2987 int nritems; 2988 u64 first_offset = min_offset; 2989 u64 last_offset = (u64)-1; 2990 u64 ino = btrfs_ino(inode); 2991 2992 log = root->log_root; 2993 2994 min_key.objectid = ino; 2995 min_key.type = key_type; 2996 min_key.offset = min_offset; 2997 2998 ret = btrfs_search_forward(root, &min_key, path, trans->transid); 2999 3000 /* 3001 * we didn't find anything from this transaction, see if there 3002 * is anything at all 3003 */ 3004 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) { 3005 min_key.objectid = ino; 3006 min_key.type = key_type; 3007 min_key.offset = (u64)-1; 3008 btrfs_release_path(path); 3009 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 3010 if (ret < 0) { 3011 btrfs_release_path(path); 3012 return ret; 3013 } 3014 ret = btrfs_previous_item(root, path, ino, key_type); 3015 3016 /* if ret == 0 there are items for this type, 3017 * create a range to tell us the last key of this type. 3018 * otherwise, there are no items in this directory after 3019 * *min_offset, and we create a range to indicate that. 3020 */ 3021 if (ret == 0) { 3022 struct btrfs_key tmp; 3023 btrfs_item_key_to_cpu(path->nodes[0], &tmp, 3024 path->slots[0]); 3025 if (key_type == tmp.type) 3026 first_offset = max(min_offset, tmp.offset) + 1; 3027 } 3028 goto done; 3029 } 3030 3031 /* go backward to find any previous key */ 3032 ret = btrfs_previous_item(root, path, ino, key_type); 3033 if (ret == 0) { 3034 struct btrfs_key tmp; 3035 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 3036 if (key_type == tmp.type) { 3037 first_offset = tmp.offset; 3038 ret = overwrite_item(trans, log, dst_path, 3039 path->nodes[0], path->slots[0], 3040 &tmp); 3041 if (ret) { 3042 err = ret; 3043 goto done; 3044 } 3045 } 3046 } 3047 btrfs_release_path(path); 3048 3049 /* find the first key from this transaction again */ 3050 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 3051 if (WARN_ON(ret != 0)) 3052 goto done; 3053 3054 /* 3055 * we have a block from this transaction, log every item in it 3056 * from our directory 3057 */ 3058 while (1) { 3059 struct btrfs_key tmp; 3060 src = path->nodes[0]; 3061 nritems = btrfs_header_nritems(src); 3062 for (i = path->slots[0]; i < nritems; i++) { 3063 btrfs_item_key_to_cpu(src, &min_key, i); 3064 3065 if (min_key.objectid != ino || min_key.type != key_type) 3066 goto done; 3067 ret = overwrite_item(trans, log, dst_path, src, i, 3068 &min_key); 3069 if (ret) { 3070 err = ret; 3071 goto done; 3072 } 3073 } 3074 path->slots[0] = nritems; 3075 3076 /* 3077 * look ahead to the next item and see if it is also 3078 * from this directory and from this transaction 3079 */ 3080 ret = btrfs_next_leaf(root, path); 3081 if (ret == 1) { 3082 last_offset = (u64)-1; 3083 goto done; 3084 } 3085 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 3086 if (tmp.objectid != ino || tmp.type != key_type) { 3087 last_offset = (u64)-1; 3088 goto done; 3089 } 3090 if (btrfs_header_generation(path->nodes[0]) != trans->transid) { 3091 ret = overwrite_item(trans, log, dst_path, 3092 path->nodes[0], path->slots[0], 3093 &tmp); 3094 if (ret) 3095 err = ret; 3096 else 3097 last_offset = tmp.offset; 3098 goto done; 3099 } 3100 } 3101 done: 3102 btrfs_release_path(path); 3103 btrfs_release_path(dst_path); 3104 3105 if (err == 0) { 3106 *last_offset_ret = last_offset; 3107 /* 3108 * insert the log range keys to indicate where the log 3109 * is valid 3110 */ 3111 ret = insert_dir_log_key(trans, log, path, key_type, 3112 ino, first_offset, last_offset); 3113 if (ret) 3114 err = ret; 3115 } 3116 return err; 3117 } 3118 3119 /* 3120 * logging directories is very similar to logging inodes, We find all the items 3121 * from the current transaction and write them to the log. 3122 * 3123 * The recovery code scans the directory in the subvolume, and if it finds a 3124 * key in the range logged that is not present in the log tree, then it means 3125 * that dir entry was unlinked during the transaction. 3126 * 3127 * In order for that scan to work, we must include one key smaller than 3128 * the smallest logged by this transaction and one key larger than the largest 3129 * key logged by this transaction. 3130 */ 3131 static noinline int log_directory_changes(struct btrfs_trans_handle *trans, 3132 struct btrfs_root *root, struct inode *inode, 3133 struct btrfs_path *path, 3134 struct btrfs_path *dst_path) 3135 { 3136 u64 min_key; 3137 u64 max_key; 3138 int ret; 3139 int key_type = BTRFS_DIR_ITEM_KEY; 3140 3141 again: 3142 min_key = 0; 3143 max_key = 0; 3144 while (1) { 3145 ret = log_dir_items(trans, root, inode, path, 3146 dst_path, key_type, min_key, 3147 &max_key); 3148 if (ret) 3149 return ret; 3150 if (max_key == (u64)-1) 3151 break; 3152 min_key = max_key + 1; 3153 } 3154 3155 if (key_type == BTRFS_DIR_ITEM_KEY) { 3156 key_type = BTRFS_DIR_INDEX_KEY; 3157 goto again; 3158 } 3159 return 0; 3160 } 3161 3162 /* 3163 * a helper function to drop items from the log before we relog an 3164 * inode. max_key_type indicates the highest item type to remove. 3165 * This cannot be run for file data extents because it does not 3166 * free the extents they point to. 3167 */ 3168 static int drop_objectid_items(struct btrfs_trans_handle *trans, 3169 struct btrfs_root *log, 3170 struct btrfs_path *path, 3171 u64 objectid, int max_key_type) 3172 { 3173 int ret; 3174 struct btrfs_key key; 3175 struct btrfs_key found_key; 3176 int start_slot; 3177 3178 key.objectid = objectid; 3179 key.type = max_key_type; 3180 key.offset = (u64)-1; 3181 3182 while (1) { 3183 ret = btrfs_search_slot(trans, log, &key, path, -1, 1); 3184 BUG_ON(ret == 0); /* Logic error */ 3185 if (ret < 0) 3186 break; 3187 3188 if (path->slots[0] == 0) 3189 break; 3190 3191 path->slots[0]--; 3192 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 3193 path->slots[0]); 3194 3195 if (found_key.objectid != objectid) 3196 break; 3197 3198 found_key.offset = 0; 3199 found_key.type = 0; 3200 ret = btrfs_bin_search(path->nodes[0], &found_key, 0, 3201 &start_slot); 3202 3203 ret = btrfs_del_items(trans, log, path, start_slot, 3204 path->slots[0] - start_slot + 1); 3205 /* 3206 * If start slot isn't 0 then we don't need to re-search, we've 3207 * found the last guy with the objectid in this tree. 3208 */ 3209 if (ret || start_slot != 0) 3210 break; 3211 btrfs_release_path(path); 3212 } 3213 btrfs_release_path(path); 3214 if (ret > 0) 3215 ret = 0; 3216 return ret; 3217 } 3218 3219 static void fill_inode_item(struct btrfs_trans_handle *trans, 3220 struct extent_buffer *leaf, 3221 struct btrfs_inode_item *item, 3222 struct inode *inode, int log_inode_only) 3223 { 3224 struct btrfs_map_token token; 3225 3226 btrfs_init_map_token(&token); 3227 3228 if (log_inode_only) { 3229 /* set the generation to zero so the recover code 3230 * can tell the difference between an logging 3231 * just to say 'this inode exists' and a logging 3232 * to say 'update this inode with these values' 3233 */ 3234 btrfs_set_token_inode_generation(leaf, item, 0, &token); 3235 btrfs_set_token_inode_size(leaf, item, 0, &token); 3236 } else { 3237 btrfs_set_token_inode_generation(leaf, item, 3238 BTRFS_I(inode)->generation, 3239 &token); 3240 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token); 3241 } 3242 3243 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3244 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3245 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3246 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3247 3248 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item), 3249 inode->i_atime.tv_sec, &token); 3250 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item), 3251 inode->i_atime.tv_nsec, &token); 3252 3253 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item), 3254 inode->i_mtime.tv_sec, &token); 3255 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item), 3256 inode->i_mtime.tv_nsec, &token); 3257 3258 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item), 3259 inode->i_ctime.tv_sec, &token); 3260 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item), 3261 inode->i_ctime.tv_nsec, &token); 3262 3263 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3264 &token); 3265 3266 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token); 3267 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3268 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3269 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3270 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3271 } 3272 3273 static int log_inode_item(struct btrfs_trans_handle *trans, 3274 struct btrfs_root *log, struct btrfs_path *path, 3275 struct inode *inode) 3276 { 3277 struct btrfs_inode_item *inode_item; 3278 int ret; 3279 3280 ret = btrfs_insert_empty_item(trans, log, path, 3281 &BTRFS_I(inode)->location, 3282 sizeof(*inode_item)); 3283 if (ret && ret != -EEXIST) 3284 return ret; 3285 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3286 struct btrfs_inode_item); 3287 fill_inode_item(trans, path->nodes[0], inode_item, inode, 0); 3288 btrfs_release_path(path); 3289 return 0; 3290 } 3291 3292 static noinline int copy_items(struct btrfs_trans_handle *trans, 3293 struct inode *inode, 3294 struct btrfs_path *dst_path, 3295 struct btrfs_path *src_path, u64 *last_extent, 3296 int start_slot, int nr, int inode_only) 3297 { 3298 unsigned long src_offset; 3299 unsigned long dst_offset; 3300 struct btrfs_root *log = BTRFS_I(inode)->root->log_root; 3301 struct btrfs_file_extent_item *extent; 3302 struct btrfs_inode_item *inode_item; 3303 struct extent_buffer *src = src_path->nodes[0]; 3304 struct btrfs_key first_key, last_key, key; 3305 int ret; 3306 struct btrfs_key *ins_keys; 3307 u32 *ins_sizes; 3308 char *ins_data; 3309 int i; 3310 struct list_head ordered_sums; 3311 int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 3312 bool has_extents = false; 3313 bool need_find_last_extent = true; 3314 bool done = false; 3315 3316 INIT_LIST_HEAD(&ordered_sums); 3317 3318 ins_data = kmalloc(nr * sizeof(struct btrfs_key) + 3319 nr * sizeof(u32), GFP_NOFS); 3320 if (!ins_data) 3321 return -ENOMEM; 3322 3323 first_key.objectid = (u64)-1; 3324 3325 ins_sizes = (u32 *)ins_data; 3326 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32)); 3327 3328 for (i = 0; i < nr; i++) { 3329 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot); 3330 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot); 3331 } 3332 ret = btrfs_insert_empty_items(trans, log, dst_path, 3333 ins_keys, ins_sizes, nr); 3334 if (ret) { 3335 kfree(ins_data); 3336 return ret; 3337 } 3338 3339 for (i = 0; i < nr; i++, dst_path->slots[0]++) { 3340 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], 3341 dst_path->slots[0]); 3342 3343 src_offset = btrfs_item_ptr_offset(src, start_slot + i); 3344 3345 if ((i == (nr - 1))) 3346 last_key = ins_keys[i]; 3347 3348 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) { 3349 inode_item = btrfs_item_ptr(dst_path->nodes[0], 3350 dst_path->slots[0], 3351 struct btrfs_inode_item); 3352 fill_inode_item(trans, dst_path->nodes[0], inode_item, 3353 inode, inode_only == LOG_INODE_EXISTS); 3354 } else { 3355 copy_extent_buffer(dst_path->nodes[0], src, dst_offset, 3356 src_offset, ins_sizes[i]); 3357 } 3358 3359 /* 3360 * We set need_find_last_extent here in case we know we were 3361 * processing other items and then walk into the first extent in 3362 * the inode. If we don't hit an extent then nothing changes, 3363 * we'll do the last search the next time around. 3364 */ 3365 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) { 3366 has_extents = true; 3367 if (first_key.objectid == (u64)-1) 3368 first_key = ins_keys[i]; 3369 } else { 3370 need_find_last_extent = false; 3371 } 3372 3373 /* take a reference on file data extents so that truncates 3374 * or deletes of this inode don't have to relog the inode 3375 * again 3376 */ 3377 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY && 3378 !skip_csum) { 3379 int found_type; 3380 extent = btrfs_item_ptr(src, start_slot + i, 3381 struct btrfs_file_extent_item); 3382 3383 if (btrfs_file_extent_generation(src, extent) < trans->transid) 3384 continue; 3385 3386 found_type = btrfs_file_extent_type(src, extent); 3387 if (found_type == BTRFS_FILE_EXTENT_REG) { 3388 u64 ds, dl, cs, cl; 3389 ds = btrfs_file_extent_disk_bytenr(src, 3390 extent); 3391 /* ds == 0 is a hole */ 3392 if (ds == 0) 3393 continue; 3394 3395 dl = btrfs_file_extent_disk_num_bytes(src, 3396 extent); 3397 cs = btrfs_file_extent_offset(src, extent); 3398 cl = btrfs_file_extent_num_bytes(src, 3399 extent); 3400 if (btrfs_file_extent_compression(src, 3401 extent)) { 3402 cs = 0; 3403 cl = dl; 3404 } 3405 3406 ret = btrfs_lookup_csums_range( 3407 log->fs_info->csum_root, 3408 ds + cs, ds + cs + cl - 1, 3409 &ordered_sums, 0); 3410 if (ret) { 3411 btrfs_release_path(dst_path); 3412 kfree(ins_data); 3413 return ret; 3414 } 3415 } 3416 } 3417 } 3418 3419 btrfs_mark_buffer_dirty(dst_path->nodes[0]); 3420 btrfs_release_path(dst_path); 3421 kfree(ins_data); 3422 3423 /* 3424 * we have to do this after the loop above to avoid changing the 3425 * log tree while trying to change the log tree. 3426 */ 3427 ret = 0; 3428 while (!list_empty(&ordered_sums)) { 3429 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, 3430 struct btrfs_ordered_sum, 3431 list); 3432 if (!ret) 3433 ret = btrfs_csum_file_blocks(trans, log, sums); 3434 list_del(&sums->list); 3435 kfree(sums); 3436 } 3437 3438 if (!has_extents) 3439 return ret; 3440 3441 if (need_find_last_extent && *last_extent == first_key.offset) { 3442 /* 3443 * We don't have any leafs between our current one and the one 3444 * we processed before that can have file extent items for our 3445 * inode (and have a generation number smaller than our current 3446 * transaction id). 3447 */ 3448 need_find_last_extent = false; 3449 } 3450 3451 /* 3452 * Because we use btrfs_search_forward we could skip leaves that were 3453 * not modified and then assume *last_extent is valid when it really 3454 * isn't. So back up to the previous leaf and read the end of the last 3455 * extent before we go and fill in holes. 3456 */ 3457 if (need_find_last_extent) { 3458 u64 len; 3459 3460 ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path); 3461 if (ret < 0) 3462 return ret; 3463 if (ret) 3464 goto fill_holes; 3465 if (src_path->slots[0]) 3466 src_path->slots[0]--; 3467 src = src_path->nodes[0]; 3468 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]); 3469 if (key.objectid != btrfs_ino(inode) || 3470 key.type != BTRFS_EXTENT_DATA_KEY) 3471 goto fill_holes; 3472 extent = btrfs_item_ptr(src, src_path->slots[0], 3473 struct btrfs_file_extent_item); 3474 if (btrfs_file_extent_type(src, extent) == 3475 BTRFS_FILE_EXTENT_INLINE) { 3476 len = btrfs_file_extent_inline_len(src, 3477 src_path->slots[0], 3478 extent); 3479 *last_extent = ALIGN(key.offset + len, 3480 log->sectorsize); 3481 } else { 3482 len = btrfs_file_extent_num_bytes(src, extent); 3483 *last_extent = key.offset + len; 3484 } 3485 } 3486 fill_holes: 3487 /* So we did prev_leaf, now we need to move to the next leaf, but a few 3488 * things could have happened 3489 * 3490 * 1) A merge could have happened, so we could currently be on a leaf 3491 * that holds what we were copying in the first place. 3492 * 2) A split could have happened, and now not all of the items we want 3493 * are on the same leaf. 3494 * 3495 * So we need to adjust how we search for holes, we need to drop the 3496 * path and re-search for the first extent key we found, and then walk 3497 * forward until we hit the last one we copied. 3498 */ 3499 if (need_find_last_extent) { 3500 /* btrfs_prev_leaf could return 1 without releasing the path */ 3501 btrfs_release_path(src_path); 3502 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key, 3503 src_path, 0, 0); 3504 if (ret < 0) 3505 return ret; 3506 ASSERT(ret == 0); 3507 src = src_path->nodes[0]; 3508 i = src_path->slots[0]; 3509 } else { 3510 i = start_slot; 3511 } 3512 3513 /* 3514 * Ok so here we need to go through and fill in any holes we may have 3515 * to make sure that holes are punched for those areas in case they had 3516 * extents previously. 3517 */ 3518 while (!done) { 3519 u64 offset, len; 3520 u64 extent_end; 3521 3522 if (i >= btrfs_header_nritems(src_path->nodes[0])) { 3523 ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path); 3524 if (ret < 0) 3525 return ret; 3526 ASSERT(ret == 0); 3527 src = src_path->nodes[0]; 3528 i = 0; 3529 } 3530 3531 btrfs_item_key_to_cpu(src, &key, i); 3532 if (!btrfs_comp_cpu_keys(&key, &last_key)) 3533 done = true; 3534 if (key.objectid != btrfs_ino(inode) || 3535 key.type != BTRFS_EXTENT_DATA_KEY) { 3536 i++; 3537 continue; 3538 } 3539 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item); 3540 if (btrfs_file_extent_type(src, extent) == 3541 BTRFS_FILE_EXTENT_INLINE) { 3542 len = btrfs_file_extent_inline_len(src, i, extent); 3543 extent_end = ALIGN(key.offset + len, log->sectorsize); 3544 } else { 3545 len = btrfs_file_extent_num_bytes(src, extent); 3546 extent_end = key.offset + len; 3547 } 3548 i++; 3549 3550 if (*last_extent == key.offset) { 3551 *last_extent = extent_end; 3552 continue; 3553 } 3554 offset = *last_extent; 3555 len = key.offset - *last_extent; 3556 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode), 3557 offset, 0, 0, len, 0, len, 0, 3558 0, 0); 3559 if (ret) 3560 break; 3561 *last_extent = extent_end; 3562 } 3563 /* 3564 * Need to let the callers know we dropped the path so they should 3565 * re-search. 3566 */ 3567 if (!ret && need_find_last_extent) 3568 ret = 1; 3569 return ret; 3570 } 3571 3572 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b) 3573 { 3574 struct extent_map *em1, *em2; 3575 3576 em1 = list_entry(a, struct extent_map, list); 3577 em2 = list_entry(b, struct extent_map, list); 3578 3579 if (em1->start < em2->start) 3580 return -1; 3581 else if (em1->start > em2->start) 3582 return 1; 3583 return 0; 3584 } 3585 3586 static int wait_ordered_extents(struct btrfs_trans_handle *trans, 3587 struct inode *inode, 3588 struct btrfs_root *root, 3589 const struct extent_map *em, 3590 const struct list_head *logged_list, 3591 bool *ordered_io_error) 3592 { 3593 struct btrfs_ordered_extent *ordered; 3594 struct btrfs_root *log = root->log_root; 3595 u64 mod_start = em->mod_start; 3596 u64 mod_len = em->mod_len; 3597 const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 3598 u64 csum_offset; 3599 u64 csum_len; 3600 LIST_HEAD(ordered_sums); 3601 int ret = 0; 3602 3603 *ordered_io_error = false; 3604 3605 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 3606 em->block_start == EXTENT_MAP_HOLE) 3607 return 0; 3608 3609 /* 3610 * Wait far any ordered extent that covers our extent map. If it 3611 * finishes without an error, first check and see if our csums are on 3612 * our outstanding ordered extents. 3613 */ 3614 list_for_each_entry(ordered, logged_list, log_list) { 3615 struct btrfs_ordered_sum *sum; 3616 3617 if (!mod_len) 3618 break; 3619 3620 if (ordered->file_offset + ordered->len <= mod_start || 3621 mod_start + mod_len <= ordered->file_offset) 3622 continue; 3623 3624 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) && 3625 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) && 3626 !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) { 3627 const u64 start = ordered->file_offset; 3628 const u64 end = ordered->file_offset + ordered->len - 1; 3629 3630 WARN_ON(ordered->inode != inode); 3631 filemap_fdatawrite_range(inode->i_mapping, start, end); 3632 } 3633 3634 wait_event(ordered->wait, 3635 (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) || 3636 test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))); 3637 3638 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) { 3639 /* 3640 * Clear the AS_EIO/AS_ENOSPC flags from the inode's 3641 * i_mapping flags, so that the next fsync won't get 3642 * an outdated io error too. 3643 */ 3644 btrfs_inode_check_errors(inode); 3645 *ordered_io_error = true; 3646 break; 3647 } 3648 /* 3649 * We are going to copy all the csums on this ordered extent, so 3650 * go ahead and adjust mod_start and mod_len in case this 3651 * ordered extent has already been logged. 3652 */ 3653 if (ordered->file_offset > mod_start) { 3654 if (ordered->file_offset + ordered->len >= 3655 mod_start + mod_len) 3656 mod_len = ordered->file_offset - mod_start; 3657 /* 3658 * If we have this case 3659 * 3660 * |--------- logged extent ---------| 3661 * |----- ordered extent ----| 3662 * 3663 * Just don't mess with mod_start and mod_len, we'll 3664 * just end up logging more csums than we need and it 3665 * will be ok. 3666 */ 3667 } else { 3668 if (ordered->file_offset + ordered->len < 3669 mod_start + mod_len) { 3670 mod_len = (mod_start + mod_len) - 3671 (ordered->file_offset + ordered->len); 3672 mod_start = ordered->file_offset + 3673 ordered->len; 3674 } else { 3675 mod_len = 0; 3676 } 3677 } 3678 3679 if (skip_csum) 3680 continue; 3681 3682 /* 3683 * To keep us from looping for the above case of an ordered 3684 * extent that falls inside of the logged extent. 3685 */ 3686 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, 3687 &ordered->flags)) 3688 continue; 3689 3690 if (ordered->csum_bytes_left) { 3691 btrfs_start_ordered_extent(inode, ordered, 0); 3692 wait_event(ordered->wait, 3693 ordered->csum_bytes_left == 0); 3694 } 3695 3696 list_for_each_entry(sum, &ordered->list, list) { 3697 ret = btrfs_csum_file_blocks(trans, log, sum); 3698 if (ret) 3699 break; 3700 } 3701 } 3702 3703 if (*ordered_io_error || !mod_len || ret || skip_csum) 3704 return ret; 3705 3706 if (em->compress_type) { 3707 csum_offset = 0; 3708 csum_len = max(em->block_len, em->orig_block_len); 3709 } else { 3710 csum_offset = mod_start - em->start; 3711 csum_len = mod_len; 3712 } 3713 3714 /* block start is already adjusted for the file extent offset. */ 3715 ret = btrfs_lookup_csums_range(log->fs_info->csum_root, 3716 em->block_start + csum_offset, 3717 em->block_start + csum_offset + 3718 csum_len - 1, &ordered_sums, 0); 3719 if (ret) 3720 return ret; 3721 3722 while (!list_empty(&ordered_sums)) { 3723 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, 3724 struct btrfs_ordered_sum, 3725 list); 3726 if (!ret) 3727 ret = btrfs_csum_file_blocks(trans, log, sums); 3728 list_del(&sums->list); 3729 kfree(sums); 3730 } 3731 3732 return ret; 3733 } 3734 3735 static int log_one_extent(struct btrfs_trans_handle *trans, 3736 struct inode *inode, struct btrfs_root *root, 3737 const struct extent_map *em, 3738 struct btrfs_path *path, 3739 const struct list_head *logged_list, 3740 struct btrfs_log_ctx *ctx) 3741 { 3742 struct btrfs_root *log = root->log_root; 3743 struct btrfs_file_extent_item *fi; 3744 struct extent_buffer *leaf; 3745 struct btrfs_map_token token; 3746 struct btrfs_key key; 3747 u64 extent_offset = em->start - em->orig_start; 3748 u64 block_len; 3749 int ret; 3750 int extent_inserted = 0; 3751 bool ordered_io_err = false; 3752 3753 ret = wait_ordered_extents(trans, inode, root, em, logged_list, 3754 &ordered_io_err); 3755 if (ret) 3756 return ret; 3757 3758 if (ordered_io_err) { 3759 ctx->io_err = -EIO; 3760 return 0; 3761 } 3762 3763 btrfs_init_map_token(&token); 3764 3765 ret = __btrfs_drop_extents(trans, log, inode, path, em->start, 3766 em->start + em->len, NULL, 0, 1, 3767 sizeof(*fi), &extent_inserted); 3768 if (ret) 3769 return ret; 3770 3771 if (!extent_inserted) { 3772 key.objectid = btrfs_ino(inode); 3773 key.type = BTRFS_EXTENT_DATA_KEY; 3774 key.offset = em->start; 3775 3776 ret = btrfs_insert_empty_item(trans, log, path, &key, 3777 sizeof(*fi)); 3778 if (ret) 3779 return ret; 3780 } 3781 leaf = path->nodes[0]; 3782 fi = btrfs_item_ptr(leaf, path->slots[0], 3783 struct btrfs_file_extent_item); 3784 3785 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid, 3786 &token); 3787 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 3788 btrfs_set_token_file_extent_type(leaf, fi, 3789 BTRFS_FILE_EXTENT_PREALLOC, 3790 &token); 3791 else 3792 btrfs_set_token_file_extent_type(leaf, fi, 3793 BTRFS_FILE_EXTENT_REG, 3794 &token); 3795 3796 block_len = max(em->block_len, em->orig_block_len); 3797 if (em->compress_type != BTRFS_COMPRESS_NONE) { 3798 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 3799 em->block_start, 3800 &token); 3801 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len, 3802 &token); 3803 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) { 3804 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 3805 em->block_start - 3806 extent_offset, &token); 3807 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len, 3808 &token); 3809 } else { 3810 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token); 3811 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0, 3812 &token); 3813 } 3814 3815 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token); 3816 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token); 3817 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token); 3818 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type, 3819 &token); 3820 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token); 3821 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token); 3822 btrfs_mark_buffer_dirty(leaf); 3823 3824 btrfs_release_path(path); 3825 3826 return ret; 3827 } 3828 3829 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans, 3830 struct btrfs_root *root, 3831 struct inode *inode, 3832 struct btrfs_path *path, 3833 struct list_head *logged_list, 3834 struct btrfs_log_ctx *ctx) 3835 { 3836 struct extent_map *em, *n; 3837 struct list_head extents; 3838 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree; 3839 u64 test_gen; 3840 int ret = 0; 3841 int num = 0; 3842 3843 INIT_LIST_HEAD(&extents); 3844 3845 write_lock(&tree->lock); 3846 test_gen = root->fs_info->last_trans_committed; 3847 3848 list_for_each_entry_safe(em, n, &tree->modified_extents, list) { 3849 list_del_init(&em->list); 3850 3851 /* 3852 * Just an arbitrary number, this can be really CPU intensive 3853 * once we start getting a lot of extents, and really once we 3854 * have a bunch of extents we just want to commit since it will 3855 * be faster. 3856 */ 3857 if (++num > 32768) { 3858 list_del_init(&tree->modified_extents); 3859 ret = -EFBIG; 3860 goto process; 3861 } 3862 3863 if (em->generation <= test_gen) 3864 continue; 3865 /* Need a ref to keep it from getting evicted from cache */ 3866 atomic_inc(&em->refs); 3867 set_bit(EXTENT_FLAG_LOGGING, &em->flags); 3868 list_add_tail(&em->list, &extents); 3869 num++; 3870 } 3871 3872 list_sort(NULL, &extents, extent_cmp); 3873 3874 process: 3875 while (!list_empty(&extents)) { 3876 em = list_entry(extents.next, struct extent_map, list); 3877 3878 list_del_init(&em->list); 3879 3880 /* 3881 * If we had an error we just need to delete everybody from our 3882 * private list. 3883 */ 3884 if (ret) { 3885 clear_em_logging(tree, em); 3886 free_extent_map(em); 3887 continue; 3888 } 3889 3890 write_unlock(&tree->lock); 3891 3892 ret = log_one_extent(trans, inode, root, em, path, logged_list, 3893 ctx); 3894 write_lock(&tree->lock); 3895 clear_em_logging(tree, em); 3896 free_extent_map(em); 3897 } 3898 WARN_ON(!list_empty(&extents)); 3899 write_unlock(&tree->lock); 3900 3901 btrfs_release_path(path); 3902 return ret; 3903 } 3904 3905 /* log a single inode in the tree log. 3906 * At least one parent directory for this inode must exist in the tree 3907 * or be logged already. 3908 * 3909 * Any items from this inode changed by the current transaction are copied 3910 * to the log tree. An extra reference is taken on any extents in this 3911 * file, allowing us to avoid a whole pile of corner cases around logging 3912 * blocks that have been removed from the tree. 3913 * 3914 * See LOG_INODE_ALL and related defines for a description of what inode_only 3915 * does. 3916 * 3917 * This handles both files and directories. 3918 */ 3919 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 3920 struct btrfs_root *root, struct inode *inode, 3921 int inode_only, 3922 const loff_t start, 3923 const loff_t end, 3924 struct btrfs_log_ctx *ctx) 3925 { 3926 struct btrfs_path *path; 3927 struct btrfs_path *dst_path; 3928 struct btrfs_key min_key; 3929 struct btrfs_key max_key; 3930 struct btrfs_root *log = root->log_root; 3931 struct extent_buffer *src = NULL; 3932 LIST_HEAD(logged_list); 3933 u64 last_extent = 0; 3934 int err = 0; 3935 int ret; 3936 int nritems; 3937 int ins_start_slot = 0; 3938 int ins_nr; 3939 bool fast_search = false; 3940 u64 ino = btrfs_ino(inode); 3941 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 3942 3943 path = btrfs_alloc_path(); 3944 if (!path) 3945 return -ENOMEM; 3946 dst_path = btrfs_alloc_path(); 3947 if (!dst_path) { 3948 btrfs_free_path(path); 3949 return -ENOMEM; 3950 } 3951 3952 min_key.objectid = ino; 3953 min_key.type = BTRFS_INODE_ITEM_KEY; 3954 min_key.offset = 0; 3955 3956 max_key.objectid = ino; 3957 3958 3959 /* today the code can only do partial logging of directories */ 3960 if (S_ISDIR(inode->i_mode) || 3961 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3962 &BTRFS_I(inode)->runtime_flags) && 3963 inode_only == LOG_INODE_EXISTS)) 3964 max_key.type = BTRFS_XATTR_ITEM_KEY; 3965 else 3966 max_key.type = (u8)-1; 3967 max_key.offset = (u64)-1; 3968 3969 /* Only run delayed items if we are a dir or a new file */ 3970 if (S_ISDIR(inode->i_mode) || 3971 BTRFS_I(inode)->generation > root->fs_info->last_trans_committed) { 3972 ret = btrfs_commit_inode_delayed_items(trans, inode); 3973 if (ret) { 3974 btrfs_free_path(path); 3975 btrfs_free_path(dst_path); 3976 return ret; 3977 } 3978 } 3979 3980 mutex_lock(&BTRFS_I(inode)->log_mutex); 3981 3982 btrfs_get_logged_extents(inode, &logged_list, start, end); 3983 3984 /* 3985 * a brute force approach to making sure we get the most uptodate 3986 * copies of everything. 3987 */ 3988 if (S_ISDIR(inode->i_mode)) { 3989 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY; 3990 3991 if (inode_only == LOG_INODE_EXISTS) 3992 max_key_type = BTRFS_XATTR_ITEM_KEY; 3993 ret = drop_objectid_items(trans, log, path, ino, max_key_type); 3994 } else { 3995 if (test_and_clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3996 &BTRFS_I(inode)->runtime_flags)) { 3997 clear_bit(BTRFS_INODE_COPY_EVERYTHING, 3998 &BTRFS_I(inode)->runtime_flags); 3999 ret = btrfs_truncate_inode_items(trans, log, 4000 inode, 0, 0); 4001 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING, 4002 &BTRFS_I(inode)->runtime_flags) || 4003 inode_only == LOG_INODE_EXISTS) { 4004 if (inode_only == LOG_INODE_ALL) 4005 fast_search = true; 4006 max_key.type = BTRFS_XATTR_ITEM_KEY; 4007 ret = drop_objectid_items(trans, log, path, ino, 4008 max_key.type); 4009 } else { 4010 if (inode_only == LOG_INODE_ALL) 4011 fast_search = true; 4012 ret = log_inode_item(trans, log, dst_path, inode); 4013 if (ret) { 4014 err = ret; 4015 goto out_unlock; 4016 } 4017 goto log_extents; 4018 } 4019 4020 } 4021 if (ret) { 4022 err = ret; 4023 goto out_unlock; 4024 } 4025 4026 while (1) { 4027 ins_nr = 0; 4028 ret = btrfs_search_forward(root, &min_key, 4029 path, trans->transid); 4030 if (ret != 0) 4031 break; 4032 again: 4033 /* note, ins_nr might be > 0 here, cleanup outside the loop */ 4034 if (min_key.objectid != ino) 4035 break; 4036 if (min_key.type > max_key.type) 4037 break; 4038 4039 src = path->nodes[0]; 4040 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) { 4041 ins_nr++; 4042 goto next_slot; 4043 } else if (!ins_nr) { 4044 ins_start_slot = path->slots[0]; 4045 ins_nr = 1; 4046 goto next_slot; 4047 } 4048 4049 ret = copy_items(trans, inode, dst_path, path, &last_extent, 4050 ins_start_slot, ins_nr, inode_only); 4051 if (ret < 0) { 4052 err = ret; 4053 goto out_unlock; 4054 } 4055 if (ret) { 4056 ins_nr = 0; 4057 btrfs_release_path(path); 4058 continue; 4059 } 4060 ins_nr = 1; 4061 ins_start_slot = path->slots[0]; 4062 next_slot: 4063 4064 nritems = btrfs_header_nritems(path->nodes[0]); 4065 path->slots[0]++; 4066 if (path->slots[0] < nritems) { 4067 btrfs_item_key_to_cpu(path->nodes[0], &min_key, 4068 path->slots[0]); 4069 goto again; 4070 } 4071 if (ins_nr) { 4072 ret = copy_items(trans, inode, dst_path, path, 4073 &last_extent, ins_start_slot, 4074 ins_nr, inode_only); 4075 if (ret < 0) { 4076 err = ret; 4077 goto out_unlock; 4078 } 4079 ret = 0; 4080 ins_nr = 0; 4081 } 4082 btrfs_release_path(path); 4083 4084 if (min_key.offset < (u64)-1) { 4085 min_key.offset++; 4086 } else if (min_key.type < max_key.type) { 4087 min_key.type++; 4088 min_key.offset = 0; 4089 } else { 4090 break; 4091 } 4092 } 4093 if (ins_nr) { 4094 ret = copy_items(trans, inode, dst_path, path, &last_extent, 4095 ins_start_slot, ins_nr, inode_only); 4096 if (ret < 0) { 4097 err = ret; 4098 goto out_unlock; 4099 } 4100 ret = 0; 4101 ins_nr = 0; 4102 } 4103 4104 log_extents: 4105 btrfs_release_path(path); 4106 btrfs_release_path(dst_path); 4107 if (fast_search) { 4108 /* 4109 * Some ordered extents started by fsync might have completed 4110 * before we collected the ordered extents in logged_list, which 4111 * means they're gone, not in our logged_list nor in the inode's 4112 * ordered tree. We want the application/user space to know an 4113 * error happened while attempting to persist file data so that 4114 * it can take proper action. If such error happened, we leave 4115 * without writing to the log tree and the fsync must report the 4116 * file data write error and not commit the current transaction. 4117 */ 4118 err = btrfs_inode_check_errors(inode); 4119 if (err) { 4120 ctx->io_err = err; 4121 goto out_unlock; 4122 } 4123 ret = btrfs_log_changed_extents(trans, root, inode, dst_path, 4124 &logged_list, ctx); 4125 if (ret) { 4126 err = ret; 4127 goto out_unlock; 4128 } 4129 } else if (inode_only == LOG_INODE_ALL) { 4130 struct extent_map *em, *n; 4131 4132 write_lock(&em_tree->lock); 4133 /* 4134 * We can't just remove every em if we're called for a ranged 4135 * fsync - that is, one that doesn't cover the whole possible 4136 * file range (0 to LLONG_MAX). This is because we can have 4137 * em's that fall outside the range we're logging and therefore 4138 * their ordered operations haven't completed yet 4139 * (btrfs_finish_ordered_io() not invoked yet). This means we 4140 * didn't get their respective file extent item in the fs/subvol 4141 * tree yet, and need to let the next fast fsync (one which 4142 * consults the list of modified extent maps) find the em so 4143 * that it logs a matching file extent item and waits for the 4144 * respective ordered operation to complete (if it's still 4145 * running). 4146 * 4147 * Removing every em outside the range we're logging would make 4148 * the next fast fsync not log their matching file extent items, 4149 * therefore making us lose data after a log replay. 4150 */ 4151 list_for_each_entry_safe(em, n, &em_tree->modified_extents, 4152 list) { 4153 const u64 mod_end = em->mod_start + em->mod_len - 1; 4154 4155 if (em->mod_start >= start && mod_end <= end) 4156 list_del_init(&em->list); 4157 } 4158 write_unlock(&em_tree->lock); 4159 } 4160 4161 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) { 4162 ret = log_directory_changes(trans, root, inode, path, dst_path); 4163 if (ret) { 4164 err = ret; 4165 goto out_unlock; 4166 } 4167 } 4168 4169 BTRFS_I(inode)->logged_trans = trans->transid; 4170 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans; 4171 out_unlock: 4172 if (unlikely(err)) 4173 btrfs_put_logged_extents(&logged_list); 4174 else 4175 btrfs_submit_logged_extents(&logged_list, log); 4176 mutex_unlock(&BTRFS_I(inode)->log_mutex); 4177 4178 btrfs_free_path(path); 4179 btrfs_free_path(dst_path); 4180 return err; 4181 } 4182 4183 /* 4184 * follow the dentry parent pointers up the chain and see if any 4185 * of the directories in it require a full commit before they can 4186 * be logged. Returns zero if nothing special needs to be done or 1 if 4187 * a full commit is required. 4188 */ 4189 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans, 4190 struct inode *inode, 4191 struct dentry *parent, 4192 struct super_block *sb, 4193 u64 last_committed) 4194 { 4195 int ret = 0; 4196 struct btrfs_root *root; 4197 struct dentry *old_parent = NULL; 4198 struct inode *orig_inode = inode; 4199 4200 /* 4201 * for regular files, if its inode is already on disk, we don't 4202 * have to worry about the parents at all. This is because 4203 * we can use the last_unlink_trans field to record renames 4204 * and other fun in this file. 4205 */ 4206 if (S_ISREG(inode->i_mode) && 4207 BTRFS_I(inode)->generation <= last_committed && 4208 BTRFS_I(inode)->last_unlink_trans <= last_committed) 4209 goto out; 4210 4211 if (!S_ISDIR(inode->i_mode)) { 4212 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb) 4213 goto out; 4214 inode = parent->d_inode; 4215 } 4216 4217 while (1) { 4218 /* 4219 * If we are logging a directory then we start with our inode, 4220 * not our parents inode, so we need to skipp setting the 4221 * logged_trans so that further down in the log code we don't 4222 * think this inode has already been logged. 4223 */ 4224 if (inode != orig_inode) 4225 BTRFS_I(inode)->logged_trans = trans->transid; 4226 smp_mb(); 4227 4228 if (BTRFS_I(inode)->last_unlink_trans > last_committed) { 4229 root = BTRFS_I(inode)->root; 4230 4231 /* 4232 * make sure any commits to the log are forced 4233 * to be full commits 4234 */ 4235 btrfs_set_log_full_commit(root->fs_info, trans); 4236 ret = 1; 4237 break; 4238 } 4239 4240 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb) 4241 break; 4242 4243 if (IS_ROOT(parent)) 4244 break; 4245 4246 parent = dget_parent(parent); 4247 dput(old_parent); 4248 old_parent = parent; 4249 inode = parent->d_inode; 4250 4251 } 4252 dput(old_parent); 4253 out: 4254 return ret; 4255 } 4256 4257 /* 4258 * helper function around btrfs_log_inode to make sure newly created 4259 * parent directories also end up in the log. A minimal inode and backref 4260 * only logging is done of any parent directories that are older than 4261 * the last committed transaction 4262 */ 4263 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans, 4264 struct btrfs_root *root, struct inode *inode, 4265 struct dentry *parent, 4266 const loff_t start, 4267 const loff_t end, 4268 int exists_only, 4269 struct btrfs_log_ctx *ctx) 4270 { 4271 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL; 4272 struct super_block *sb; 4273 struct dentry *old_parent = NULL; 4274 int ret = 0; 4275 u64 last_committed = root->fs_info->last_trans_committed; 4276 4277 sb = inode->i_sb; 4278 4279 if (btrfs_test_opt(root, NOTREELOG)) { 4280 ret = 1; 4281 goto end_no_trans; 4282 } 4283 4284 /* 4285 * The prev transaction commit doesn't complete, we need do 4286 * full commit by ourselves. 4287 */ 4288 if (root->fs_info->last_trans_log_full_commit > 4289 root->fs_info->last_trans_committed) { 4290 ret = 1; 4291 goto end_no_trans; 4292 } 4293 4294 if (root != BTRFS_I(inode)->root || 4295 btrfs_root_refs(&root->root_item) == 0) { 4296 ret = 1; 4297 goto end_no_trans; 4298 } 4299 4300 ret = check_parent_dirs_for_sync(trans, inode, parent, 4301 sb, last_committed); 4302 if (ret) 4303 goto end_no_trans; 4304 4305 if (btrfs_inode_in_log(inode, trans->transid)) { 4306 ret = BTRFS_NO_LOG_SYNC; 4307 goto end_no_trans; 4308 } 4309 4310 ret = start_log_trans(trans, root, ctx); 4311 if (ret) 4312 goto end_no_trans; 4313 4314 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx); 4315 if (ret) 4316 goto end_trans; 4317 4318 /* 4319 * for regular files, if its inode is already on disk, we don't 4320 * have to worry about the parents at all. This is because 4321 * we can use the last_unlink_trans field to record renames 4322 * and other fun in this file. 4323 */ 4324 if (S_ISREG(inode->i_mode) && 4325 BTRFS_I(inode)->generation <= last_committed && 4326 BTRFS_I(inode)->last_unlink_trans <= last_committed) { 4327 ret = 0; 4328 goto end_trans; 4329 } 4330 4331 inode_only = LOG_INODE_EXISTS; 4332 while (1) { 4333 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb) 4334 break; 4335 4336 inode = parent->d_inode; 4337 if (root != BTRFS_I(inode)->root) 4338 break; 4339 4340 if (BTRFS_I(inode)->generation > 4341 root->fs_info->last_trans_committed) { 4342 ret = btrfs_log_inode(trans, root, inode, inode_only, 4343 0, LLONG_MAX, ctx); 4344 if (ret) 4345 goto end_trans; 4346 } 4347 if (IS_ROOT(parent)) 4348 break; 4349 4350 parent = dget_parent(parent); 4351 dput(old_parent); 4352 old_parent = parent; 4353 } 4354 ret = 0; 4355 end_trans: 4356 dput(old_parent); 4357 if (ret < 0) { 4358 btrfs_set_log_full_commit(root->fs_info, trans); 4359 ret = 1; 4360 } 4361 4362 if (ret) 4363 btrfs_remove_log_ctx(root, ctx); 4364 btrfs_end_log_trans(root); 4365 end_no_trans: 4366 return ret; 4367 } 4368 4369 /* 4370 * it is not safe to log dentry if the chunk root has added new 4371 * chunks. This returns 0 if the dentry was logged, and 1 otherwise. 4372 * If this returns 1, you must commit the transaction to safely get your 4373 * data on disk. 4374 */ 4375 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans, 4376 struct btrfs_root *root, struct dentry *dentry, 4377 const loff_t start, 4378 const loff_t end, 4379 struct btrfs_log_ctx *ctx) 4380 { 4381 struct dentry *parent = dget_parent(dentry); 4382 int ret; 4383 4384 ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 4385 start, end, 0, ctx); 4386 dput(parent); 4387 4388 return ret; 4389 } 4390 4391 /* 4392 * should be called during mount to recover any replay any log trees 4393 * from the FS 4394 */ 4395 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree) 4396 { 4397 int ret; 4398 struct btrfs_path *path; 4399 struct btrfs_trans_handle *trans; 4400 struct btrfs_key key; 4401 struct btrfs_key found_key; 4402 struct btrfs_key tmp_key; 4403 struct btrfs_root *log; 4404 struct btrfs_fs_info *fs_info = log_root_tree->fs_info; 4405 struct walk_control wc = { 4406 .process_func = process_one_buffer, 4407 .stage = 0, 4408 }; 4409 4410 path = btrfs_alloc_path(); 4411 if (!path) 4412 return -ENOMEM; 4413 4414 fs_info->log_root_recovering = 1; 4415 4416 trans = btrfs_start_transaction(fs_info->tree_root, 0); 4417 if (IS_ERR(trans)) { 4418 ret = PTR_ERR(trans); 4419 goto error; 4420 } 4421 4422 wc.trans = trans; 4423 wc.pin = 1; 4424 4425 ret = walk_log_tree(trans, log_root_tree, &wc); 4426 if (ret) { 4427 btrfs_error(fs_info, ret, "Failed to pin buffers while " 4428 "recovering log root tree."); 4429 goto error; 4430 } 4431 4432 again: 4433 key.objectid = BTRFS_TREE_LOG_OBJECTID; 4434 key.offset = (u64)-1; 4435 key.type = BTRFS_ROOT_ITEM_KEY; 4436 4437 while (1) { 4438 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0); 4439 4440 if (ret < 0) { 4441 btrfs_error(fs_info, ret, 4442 "Couldn't find tree log root."); 4443 goto error; 4444 } 4445 if (ret > 0) { 4446 if (path->slots[0] == 0) 4447 break; 4448 path->slots[0]--; 4449 } 4450 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 4451 path->slots[0]); 4452 btrfs_release_path(path); 4453 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID) 4454 break; 4455 4456 log = btrfs_read_fs_root(log_root_tree, &found_key); 4457 if (IS_ERR(log)) { 4458 ret = PTR_ERR(log); 4459 btrfs_error(fs_info, ret, 4460 "Couldn't read tree log root."); 4461 goto error; 4462 } 4463 4464 tmp_key.objectid = found_key.offset; 4465 tmp_key.type = BTRFS_ROOT_ITEM_KEY; 4466 tmp_key.offset = (u64)-1; 4467 4468 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key); 4469 if (IS_ERR(wc.replay_dest)) { 4470 ret = PTR_ERR(wc.replay_dest); 4471 free_extent_buffer(log->node); 4472 free_extent_buffer(log->commit_root); 4473 kfree(log); 4474 btrfs_error(fs_info, ret, "Couldn't read target root " 4475 "for tree log recovery."); 4476 goto error; 4477 } 4478 4479 wc.replay_dest->log_root = log; 4480 btrfs_record_root_in_trans(trans, wc.replay_dest); 4481 ret = walk_log_tree(trans, log, &wc); 4482 4483 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) { 4484 ret = fixup_inode_link_counts(trans, wc.replay_dest, 4485 path); 4486 } 4487 4488 key.offset = found_key.offset - 1; 4489 wc.replay_dest->log_root = NULL; 4490 free_extent_buffer(log->node); 4491 free_extent_buffer(log->commit_root); 4492 kfree(log); 4493 4494 if (ret) 4495 goto error; 4496 4497 if (found_key.offset == 0) 4498 break; 4499 } 4500 btrfs_release_path(path); 4501 4502 /* step one is to pin it all, step two is to replay just inodes */ 4503 if (wc.pin) { 4504 wc.pin = 0; 4505 wc.process_func = replay_one_buffer; 4506 wc.stage = LOG_WALK_REPLAY_INODES; 4507 goto again; 4508 } 4509 /* step three is to replay everything */ 4510 if (wc.stage < LOG_WALK_REPLAY_ALL) { 4511 wc.stage++; 4512 goto again; 4513 } 4514 4515 btrfs_free_path(path); 4516 4517 /* step 4: commit the transaction, which also unpins the blocks */ 4518 ret = btrfs_commit_transaction(trans, fs_info->tree_root); 4519 if (ret) 4520 return ret; 4521 4522 free_extent_buffer(log_root_tree->node); 4523 log_root_tree->log_root = NULL; 4524 fs_info->log_root_recovering = 0; 4525 kfree(log_root_tree); 4526 4527 return 0; 4528 error: 4529 if (wc.trans) 4530 btrfs_end_transaction(wc.trans, fs_info->tree_root); 4531 btrfs_free_path(path); 4532 return ret; 4533 } 4534 4535 /* 4536 * there are some corner cases where we want to force a full 4537 * commit instead of allowing a directory to be logged. 4538 * 4539 * They revolve around files there were unlinked from the directory, and 4540 * this function updates the parent directory so that a full commit is 4541 * properly done if it is fsync'd later after the unlinks are done. 4542 */ 4543 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans, 4544 struct inode *dir, struct inode *inode, 4545 int for_rename) 4546 { 4547 /* 4548 * when we're logging a file, if it hasn't been renamed 4549 * or unlinked, and its inode is fully committed on disk, 4550 * we don't have to worry about walking up the directory chain 4551 * to log its parents. 4552 * 4553 * So, we use the last_unlink_trans field to put this transid 4554 * into the file. When the file is logged we check it and 4555 * don't log the parents if the file is fully on disk. 4556 */ 4557 if (S_ISREG(inode->i_mode)) 4558 BTRFS_I(inode)->last_unlink_trans = trans->transid; 4559 4560 /* 4561 * if this directory was already logged any new 4562 * names for this file/dir will get recorded 4563 */ 4564 smp_mb(); 4565 if (BTRFS_I(dir)->logged_trans == trans->transid) 4566 return; 4567 4568 /* 4569 * if the inode we're about to unlink was logged, 4570 * the log will be properly updated for any new names 4571 */ 4572 if (BTRFS_I(inode)->logged_trans == trans->transid) 4573 return; 4574 4575 /* 4576 * when renaming files across directories, if the directory 4577 * there we're unlinking from gets fsync'd later on, there's 4578 * no way to find the destination directory later and fsync it 4579 * properly. So, we have to be conservative and force commits 4580 * so the new name gets discovered. 4581 */ 4582 if (for_rename) 4583 goto record; 4584 4585 /* we can safely do the unlink without any special recording */ 4586 return; 4587 4588 record: 4589 BTRFS_I(dir)->last_unlink_trans = trans->transid; 4590 } 4591 4592 /* 4593 * Call this after adding a new name for a file and it will properly 4594 * update the log to reflect the new name. 4595 * 4596 * It will return zero if all goes well, and it will return 1 if a 4597 * full transaction commit is required. 4598 */ 4599 int btrfs_log_new_name(struct btrfs_trans_handle *trans, 4600 struct inode *inode, struct inode *old_dir, 4601 struct dentry *parent) 4602 { 4603 struct btrfs_root * root = BTRFS_I(inode)->root; 4604 4605 /* 4606 * this will force the logging code to walk the dentry chain 4607 * up for the file 4608 */ 4609 if (S_ISREG(inode->i_mode)) 4610 BTRFS_I(inode)->last_unlink_trans = trans->transid; 4611 4612 /* 4613 * if this inode hasn't been logged and directory we're renaming it 4614 * from hasn't been logged, we don't need to log it 4615 */ 4616 if (BTRFS_I(inode)->logged_trans <= 4617 root->fs_info->last_trans_committed && 4618 (!old_dir || BTRFS_I(old_dir)->logged_trans <= 4619 root->fs_info->last_trans_committed)) 4620 return 0; 4621 4622 return btrfs_log_inode_parent(trans, root, inode, parent, 0, 4623 LLONG_MAX, 1, NULL); 4624 } 4625 4626