xref: /linux/fs/btrfs/tree-log.c (revision 4359a011e259a4608afc7fb3635370c9d4ba5943)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "misc.h"
12 #include "ctree.h"
13 #include "tree-log.h"
14 #include "disk-io.h"
15 #include "locking.h"
16 #include "print-tree.h"
17 #include "backref.h"
18 #include "compression.h"
19 #include "qgroup.h"
20 #include "block-group.h"
21 #include "space-info.h"
22 #include "zoned.h"
23 #include "inode-item.h"
24 
25 /* magic values for the inode_only field in btrfs_log_inode:
26  *
27  * LOG_INODE_ALL means to log everything
28  * LOG_INODE_EXISTS means to log just enough to recreate the inode
29  * during log replay
30  */
31 enum {
32 	LOG_INODE_ALL,
33 	LOG_INODE_EXISTS,
34 	LOG_OTHER_INODE,
35 	LOG_OTHER_INODE_ALL,
36 };
37 
38 /*
39  * directory trouble cases
40  *
41  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
42  * log, we must force a full commit before doing an fsync of the directory
43  * where the unlink was done.
44  * ---> record transid of last unlink/rename per directory
45  *
46  * mkdir foo/some_dir
47  * normal commit
48  * rename foo/some_dir foo2/some_dir
49  * mkdir foo/some_dir
50  * fsync foo/some_dir/some_file
51  *
52  * The fsync above will unlink the original some_dir without recording
53  * it in its new location (foo2).  After a crash, some_dir will be gone
54  * unless the fsync of some_file forces a full commit
55  *
56  * 2) we must log any new names for any file or dir that is in the fsync
57  * log. ---> check inode while renaming/linking.
58  *
59  * 2a) we must log any new names for any file or dir during rename
60  * when the directory they are being removed from was logged.
61  * ---> check inode and old parent dir during rename
62  *
63  *  2a is actually the more important variant.  With the extra logging
64  *  a crash might unlink the old name without recreating the new one
65  *
66  * 3) after a crash, we must go through any directories with a link count
67  * of zero and redo the rm -rf
68  *
69  * mkdir f1/foo
70  * normal commit
71  * rm -rf f1/foo
72  * fsync(f1)
73  *
74  * The directory f1 was fully removed from the FS, but fsync was never
75  * called on f1, only its parent dir.  After a crash the rm -rf must
76  * be replayed.  This must be able to recurse down the entire
77  * directory tree.  The inode link count fixup code takes care of the
78  * ugly details.
79  */
80 
81 /*
82  * stages for the tree walking.  The first
83  * stage (0) is to only pin down the blocks we find
84  * the second stage (1) is to make sure that all the inodes
85  * we find in the log are created in the subvolume.
86  *
87  * The last stage is to deal with directories and links and extents
88  * and all the other fun semantics
89  */
90 enum {
91 	LOG_WALK_PIN_ONLY,
92 	LOG_WALK_REPLAY_INODES,
93 	LOG_WALK_REPLAY_DIR_INDEX,
94 	LOG_WALK_REPLAY_ALL,
95 };
96 
97 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
98 			   struct btrfs_inode *inode,
99 			   int inode_only,
100 			   struct btrfs_log_ctx *ctx);
101 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
102 			     struct btrfs_root *root,
103 			     struct btrfs_path *path, u64 objectid);
104 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
105 				       struct btrfs_root *root,
106 				       struct btrfs_root *log,
107 				       struct btrfs_path *path,
108 				       u64 dirid, int del_all);
109 static void wait_log_commit(struct btrfs_root *root, int transid);
110 
111 /*
112  * tree logging is a special write ahead log used to make sure that
113  * fsyncs and O_SYNCs can happen without doing full tree commits.
114  *
115  * Full tree commits are expensive because they require commonly
116  * modified blocks to be recowed, creating many dirty pages in the
117  * extent tree an 4x-6x higher write load than ext3.
118  *
119  * Instead of doing a tree commit on every fsync, we use the
120  * key ranges and transaction ids to find items for a given file or directory
121  * that have changed in this transaction.  Those items are copied into
122  * a special tree (one per subvolume root), that tree is written to disk
123  * and then the fsync is considered complete.
124  *
125  * After a crash, items are copied out of the log-tree back into the
126  * subvolume tree.  Any file data extents found are recorded in the extent
127  * allocation tree, and the log-tree freed.
128  *
129  * The log tree is read three times, once to pin down all the extents it is
130  * using in ram and once, once to create all the inodes logged in the tree
131  * and once to do all the other items.
132  */
133 
134 /*
135  * start a sub transaction and setup the log tree
136  * this increments the log tree writer count to make the people
137  * syncing the tree wait for us to finish
138  */
139 static int start_log_trans(struct btrfs_trans_handle *trans,
140 			   struct btrfs_root *root,
141 			   struct btrfs_log_ctx *ctx)
142 {
143 	struct btrfs_fs_info *fs_info = root->fs_info;
144 	struct btrfs_root *tree_root = fs_info->tree_root;
145 	const bool zoned = btrfs_is_zoned(fs_info);
146 	int ret = 0;
147 	bool created = false;
148 
149 	/*
150 	 * First check if the log root tree was already created. If not, create
151 	 * it before locking the root's log_mutex, just to keep lockdep happy.
152 	 */
153 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
154 		mutex_lock(&tree_root->log_mutex);
155 		if (!fs_info->log_root_tree) {
156 			ret = btrfs_init_log_root_tree(trans, fs_info);
157 			if (!ret) {
158 				set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
159 				created = true;
160 			}
161 		}
162 		mutex_unlock(&tree_root->log_mutex);
163 		if (ret)
164 			return ret;
165 	}
166 
167 	mutex_lock(&root->log_mutex);
168 
169 again:
170 	if (root->log_root) {
171 		int index = (root->log_transid + 1) % 2;
172 
173 		if (btrfs_need_log_full_commit(trans)) {
174 			ret = BTRFS_LOG_FORCE_COMMIT;
175 			goto out;
176 		}
177 
178 		if (zoned && atomic_read(&root->log_commit[index])) {
179 			wait_log_commit(root, root->log_transid - 1);
180 			goto again;
181 		}
182 
183 		if (!root->log_start_pid) {
184 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
185 			root->log_start_pid = current->pid;
186 		} else if (root->log_start_pid != current->pid) {
187 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
188 		}
189 	} else {
190 		/*
191 		 * This means fs_info->log_root_tree was already created
192 		 * for some other FS trees. Do the full commit not to mix
193 		 * nodes from multiple log transactions to do sequential
194 		 * writing.
195 		 */
196 		if (zoned && !created) {
197 			ret = BTRFS_LOG_FORCE_COMMIT;
198 			goto out;
199 		}
200 
201 		ret = btrfs_add_log_tree(trans, root);
202 		if (ret)
203 			goto out;
204 
205 		set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
206 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
207 		root->log_start_pid = current->pid;
208 	}
209 
210 	atomic_inc(&root->log_writers);
211 	if (!ctx->logging_new_name) {
212 		int index = root->log_transid % 2;
213 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
214 		ctx->log_transid = root->log_transid;
215 	}
216 
217 out:
218 	mutex_unlock(&root->log_mutex);
219 	return ret;
220 }
221 
222 /*
223  * returns 0 if there was a log transaction running and we were able
224  * to join, or returns -ENOENT if there were not transactions
225  * in progress
226  */
227 static int join_running_log_trans(struct btrfs_root *root)
228 {
229 	const bool zoned = btrfs_is_zoned(root->fs_info);
230 	int ret = -ENOENT;
231 
232 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
233 		return ret;
234 
235 	mutex_lock(&root->log_mutex);
236 again:
237 	if (root->log_root) {
238 		int index = (root->log_transid + 1) % 2;
239 
240 		ret = 0;
241 		if (zoned && atomic_read(&root->log_commit[index])) {
242 			wait_log_commit(root, root->log_transid - 1);
243 			goto again;
244 		}
245 		atomic_inc(&root->log_writers);
246 	}
247 	mutex_unlock(&root->log_mutex);
248 	return ret;
249 }
250 
251 /*
252  * This either makes the current running log transaction wait
253  * until you call btrfs_end_log_trans() or it makes any future
254  * log transactions wait until you call btrfs_end_log_trans()
255  */
256 void btrfs_pin_log_trans(struct btrfs_root *root)
257 {
258 	atomic_inc(&root->log_writers);
259 }
260 
261 /*
262  * indicate we're done making changes to the log tree
263  * and wake up anyone waiting to do a sync
264  */
265 void btrfs_end_log_trans(struct btrfs_root *root)
266 {
267 	if (atomic_dec_and_test(&root->log_writers)) {
268 		/* atomic_dec_and_test implies a barrier */
269 		cond_wake_up_nomb(&root->log_writer_wait);
270 	}
271 }
272 
273 static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
274 {
275 	filemap_fdatawait_range(buf->pages[0]->mapping,
276 			        buf->start, buf->start + buf->len - 1);
277 }
278 
279 /*
280  * the walk control struct is used to pass state down the chain when
281  * processing the log tree.  The stage field tells us which part
282  * of the log tree processing we are currently doing.  The others
283  * are state fields used for that specific part
284  */
285 struct walk_control {
286 	/* should we free the extent on disk when done?  This is used
287 	 * at transaction commit time while freeing a log tree
288 	 */
289 	int free;
290 
291 	/* pin only walk, we record which extents on disk belong to the
292 	 * log trees
293 	 */
294 	int pin;
295 
296 	/* what stage of the replay code we're currently in */
297 	int stage;
298 
299 	/*
300 	 * Ignore any items from the inode currently being processed. Needs
301 	 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
302 	 * the LOG_WALK_REPLAY_INODES stage.
303 	 */
304 	bool ignore_cur_inode;
305 
306 	/* the root we are currently replaying */
307 	struct btrfs_root *replay_dest;
308 
309 	/* the trans handle for the current replay */
310 	struct btrfs_trans_handle *trans;
311 
312 	/* the function that gets used to process blocks we find in the
313 	 * tree.  Note the extent_buffer might not be up to date when it is
314 	 * passed in, and it must be checked or read if you need the data
315 	 * inside it
316 	 */
317 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
318 			    struct walk_control *wc, u64 gen, int level);
319 };
320 
321 /*
322  * process_func used to pin down extents, write them or wait on them
323  */
324 static int process_one_buffer(struct btrfs_root *log,
325 			      struct extent_buffer *eb,
326 			      struct walk_control *wc, u64 gen, int level)
327 {
328 	struct btrfs_fs_info *fs_info = log->fs_info;
329 	int ret = 0;
330 
331 	/*
332 	 * If this fs is mixed then we need to be able to process the leaves to
333 	 * pin down any logged extents, so we have to read the block.
334 	 */
335 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
336 		ret = btrfs_read_extent_buffer(eb, gen, level, NULL);
337 		if (ret)
338 			return ret;
339 	}
340 
341 	if (wc->pin) {
342 		ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
343 						      eb->len);
344 		if (ret)
345 			return ret;
346 
347 		if (btrfs_buffer_uptodate(eb, gen, 0) &&
348 		    btrfs_header_level(eb) == 0)
349 			ret = btrfs_exclude_logged_extents(eb);
350 	}
351 	return ret;
352 }
353 
354 static int do_overwrite_item(struct btrfs_trans_handle *trans,
355 			     struct btrfs_root *root,
356 			     struct btrfs_path *path,
357 			     struct extent_buffer *eb, int slot,
358 			     struct btrfs_key *key)
359 {
360 	int ret;
361 	u32 item_size;
362 	u64 saved_i_size = 0;
363 	int save_old_i_size = 0;
364 	unsigned long src_ptr;
365 	unsigned long dst_ptr;
366 	int overwrite_root = 0;
367 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
368 
369 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
370 		overwrite_root = 1;
371 
372 	item_size = btrfs_item_size(eb, slot);
373 	src_ptr = btrfs_item_ptr_offset(eb, slot);
374 
375 	/* Our caller must have done a search for the key for us. */
376 	ASSERT(path->nodes[0] != NULL);
377 
378 	/*
379 	 * And the slot must point to the exact key or the slot where the key
380 	 * should be at (the first item with a key greater than 'key')
381 	 */
382 	if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
383 		struct btrfs_key found_key;
384 
385 		btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
386 		ret = btrfs_comp_cpu_keys(&found_key, key);
387 		ASSERT(ret >= 0);
388 	} else {
389 		ret = 1;
390 	}
391 
392 	if (ret == 0) {
393 		char *src_copy;
394 		char *dst_copy;
395 		u32 dst_size = btrfs_item_size(path->nodes[0],
396 						  path->slots[0]);
397 		if (dst_size != item_size)
398 			goto insert;
399 
400 		if (item_size == 0) {
401 			btrfs_release_path(path);
402 			return 0;
403 		}
404 		dst_copy = kmalloc(item_size, GFP_NOFS);
405 		src_copy = kmalloc(item_size, GFP_NOFS);
406 		if (!dst_copy || !src_copy) {
407 			btrfs_release_path(path);
408 			kfree(dst_copy);
409 			kfree(src_copy);
410 			return -ENOMEM;
411 		}
412 
413 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
414 
415 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
416 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
417 				   item_size);
418 		ret = memcmp(dst_copy, src_copy, item_size);
419 
420 		kfree(dst_copy);
421 		kfree(src_copy);
422 		/*
423 		 * they have the same contents, just return, this saves
424 		 * us from cowing blocks in the destination tree and doing
425 		 * extra writes that may not have been done by a previous
426 		 * sync
427 		 */
428 		if (ret == 0) {
429 			btrfs_release_path(path);
430 			return 0;
431 		}
432 
433 		/*
434 		 * We need to load the old nbytes into the inode so when we
435 		 * replay the extents we've logged we get the right nbytes.
436 		 */
437 		if (inode_item) {
438 			struct btrfs_inode_item *item;
439 			u64 nbytes;
440 			u32 mode;
441 
442 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
443 					      struct btrfs_inode_item);
444 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
445 			item = btrfs_item_ptr(eb, slot,
446 					      struct btrfs_inode_item);
447 			btrfs_set_inode_nbytes(eb, item, nbytes);
448 
449 			/*
450 			 * If this is a directory we need to reset the i_size to
451 			 * 0 so that we can set it up properly when replaying
452 			 * the rest of the items in this log.
453 			 */
454 			mode = btrfs_inode_mode(eb, item);
455 			if (S_ISDIR(mode))
456 				btrfs_set_inode_size(eb, item, 0);
457 		}
458 	} else if (inode_item) {
459 		struct btrfs_inode_item *item;
460 		u32 mode;
461 
462 		/*
463 		 * New inode, set nbytes to 0 so that the nbytes comes out
464 		 * properly when we replay the extents.
465 		 */
466 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
467 		btrfs_set_inode_nbytes(eb, item, 0);
468 
469 		/*
470 		 * If this is a directory we need to reset the i_size to 0 so
471 		 * that we can set it up properly when replaying the rest of
472 		 * the items in this log.
473 		 */
474 		mode = btrfs_inode_mode(eb, item);
475 		if (S_ISDIR(mode))
476 			btrfs_set_inode_size(eb, item, 0);
477 	}
478 insert:
479 	btrfs_release_path(path);
480 	/* try to insert the key into the destination tree */
481 	path->skip_release_on_error = 1;
482 	ret = btrfs_insert_empty_item(trans, root, path,
483 				      key, item_size);
484 	path->skip_release_on_error = 0;
485 
486 	/* make sure any existing item is the correct size */
487 	if (ret == -EEXIST || ret == -EOVERFLOW) {
488 		u32 found_size;
489 		found_size = btrfs_item_size(path->nodes[0],
490 						path->slots[0]);
491 		if (found_size > item_size)
492 			btrfs_truncate_item(path, item_size, 1);
493 		else if (found_size < item_size)
494 			btrfs_extend_item(path, item_size - found_size);
495 	} else if (ret) {
496 		return ret;
497 	}
498 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
499 					path->slots[0]);
500 
501 	/* don't overwrite an existing inode if the generation number
502 	 * was logged as zero.  This is done when the tree logging code
503 	 * is just logging an inode to make sure it exists after recovery.
504 	 *
505 	 * Also, don't overwrite i_size on directories during replay.
506 	 * log replay inserts and removes directory items based on the
507 	 * state of the tree found in the subvolume, and i_size is modified
508 	 * as it goes
509 	 */
510 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
511 		struct btrfs_inode_item *src_item;
512 		struct btrfs_inode_item *dst_item;
513 
514 		src_item = (struct btrfs_inode_item *)src_ptr;
515 		dst_item = (struct btrfs_inode_item *)dst_ptr;
516 
517 		if (btrfs_inode_generation(eb, src_item) == 0) {
518 			struct extent_buffer *dst_eb = path->nodes[0];
519 			const u64 ino_size = btrfs_inode_size(eb, src_item);
520 
521 			/*
522 			 * For regular files an ino_size == 0 is used only when
523 			 * logging that an inode exists, as part of a directory
524 			 * fsync, and the inode wasn't fsynced before. In this
525 			 * case don't set the size of the inode in the fs/subvol
526 			 * tree, otherwise we would be throwing valid data away.
527 			 */
528 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
529 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
530 			    ino_size != 0)
531 				btrfs_set_inode_size(dst_eb, dst_item, ino_size);
532 			goto no_copy;
533 		}
534 
535 		if (overwrite_root &&
536 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
537 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
538 			save_old_i_size = 1;
539 			saved_i_size = btrfs_inode_size(path->nodes[0],
540 							dst_item);
541 		}
542 	}
543 
544 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
545 			   src_ptr, item_size);
546 
547 	if (save_old_i_size) {
548 		struct btrfs_inode_item *dst_item;
549 		dst_item = (struct btrfs_inode_item *)dst_ptr;
550 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
551 	}
552 
553 	/* make sure the generation is filled in */
554 	if (key->type == BTRFS_INODE_ITEM_KEY) {
555 		struct btrfs_inode_item *dst_item;
556 		dst_item = (struct btrfs_inode_item *)dst_ptr;
557 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
558 			btrfs_set_inode_generation(path->nodes[0], dst_item,
559 						   trans->transid);
560 		}
561 	}
562 no_copy:
563 	btrfs_mark_buffer_dirty(path->nodes[0]);
564 	btrfs_release_path(path);
565 	return 0;
566 }
567 
568 /*
569  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
570  * to the src data we are copying out.
571  *
572  * root is the tree we are copying into, and path is a scratch
573  * path for use in this function (it should be released on entry and
574  * will be released on exit).
575  *
576  * If the key is already in the destination tree the existing item is
577  * overwritten.  If the existing item isn't big enough, it is extended.
578  * If it is too large, it is truncated.
579  *
580  * If the key isn't in the destination yet, a new item is inserted.
581  */
582 static int overwrite_item(struct btrfs_trans_handle *trans,
583 			  struct btrfs_root *root,
584 			  struct btrfs_path *path,
585 			  struct extent_buffer *eb, int slot,
586 			  struct btrfs_key *key)
587 {
588 	int ret;
589 
590 	/* Look for the key in the destination tree. */
591 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
592 	if (ret < 0)
593 		return ret;
594 
595 	return do_overwrite_item(trans, root, path, eb, slot, key);
596 }
597 
598 /*
599  * simple helper to read an inode off the disk from a given root
600  * This can only be called for subvolume roots and not for the log
601  */
602 static noinline struct inode *read_one_inode(struct btrfs_root *root,
603 					     u64 objectid)
604 {
605 	struct inode *inode;
606 
607 	inode = btrfs_iget(root->fs_info->sb, objectid, root);
608 	if (IS_ERR(inode))
609 		inode = NULL;
610 	return inode;
611 }
612 
613 /* replays a single extent in 'eb' at 'slot' with 'key' into the
614  * subvolume 'root'.  path is released on entry and should be released
615  * on exit.
616  *
617  * extents in the log tree have not been allocated out of the extent
618  * tree yet.  So, this completes the allocation, taking a reference
619  * as required if the extent already exists or creating a new extent
620  * if it isn't in the extent allocation tree yet.
621  *
622  * The extent is inserted into the file, dropping any existing extents
623  * from the file that overlap the new one.
624  */
625 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
626 				      struct btrfs_root *root,
627 				      struct btrfs_path *path,
628 				      struct extent_buffer *eb, int slot,
629 				      struct btrfs_key *key)
630 {
631 	struct btrfs_drop_extents_args drop_args = { 0 };
632 	struct btrfs_fs_info *fs_info = root->fs_info;
633 	int found_type;
634 	u64 extent_end;
635 	u64 start = key->offset;
636 	u64 nbytes = 0;
637 	struct btrfs_file_extent_item *item;
638 	struct inode *inode = NULL;
639 	unsigned long size;
640 	int ret = 0;
641 
642 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
643 	found_type = btrfs_file_extent_type(eb, item);
644 
645 	if (found_type == BTRFS_FILE_EXTENT_REG ||
646 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
647 		nbytes = btrfs_file_extent_num_bytes(eb, item);
648 		extent_end = start + nbytes;
649 
650 		/*
651 		 * We don't add to the inodes nbytes if we are prealloc or a
652 		 * hole.
653 		 */
654 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
655 			nbytes = 0;
656 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
657 		size = btrfs_file_extent_ram_bytes(eb, item);
658 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
659 		extent_end = ALIGN(start + size,
660 				   fs_info->sectorsize);
661 	} else {
662 		ret = 0;
663 		goto out;
664 	}
665 
666 	inode = read_one_inode(root, key->objectid);
667 	if (!inode) {
668 		ret = -EIO;
669 		goto out;
670 	}
671 
672 	/*
673 	 * first check to see if we already have this extent in the
674 	 * file.  This must be done before the btrfs_drop_extents run
675 	 * so we don't try to drop this extent.
676 	 */
677 	ret = btrfs_lookup_file_extent(trans, root, path,
678 			btrfs_ino(BTRFS_I(inode)), start, 0);
679 
680 	if (ret == 0 &&
681 	    (found_type == BTRFS_FILE_EXTENT_REG ||
682 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
683 		struct btrfs_file_extent_item cmp1;
684 		struct btrfs_file_extent_item cmp2;
685 		struct btrfs_file_extent_item *existing;
686 		struct extent_buffer *leaf;
687 
688 		leaf = path->nodes[0];
689 		existing = btrfs_item_ptr(leaf, path->slots[0],
690 					  struct btrfs_file_extent_item);
691 
692 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
693 				   sizeof(cmp1));
694 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
695 				   sizeof(cmp2));
696 
697 		/*
698 		 * we already have a pointer to this exact extent,
699 		 * we don't have to do anything
700 		 */
701 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
702 			btrfs_release_path(path);
703 			goto out;
704 		}
705 	}
706 	btrfs_release_path(path);
707 
708 	/* drop any overlapping extents */
709 	drop_args.start = start;
710 	drop_args.end = extent_end;
711 	drop_args.drop_cache = true;
712 	ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
713 	if (ret)
714 		goto out;
715 
716 	if (found_type == BTRFS_FILE_EXTENT_REG ||
717 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
718 		u64 offset;
719 		unsigned long dest_offset;
720 		struct btrfs_key ins;
721 
722 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
723 		    btrfs_fs_incompat(fs_info, NO_HOLES))
724 			goto update_inode;
725 
726 		ret = btrfs_insert_empty_item(trans, root, path, key,
727 					      sizeof(*item));
728 		if (ret)
729 			goto out;
730 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
731 						    path->slots[0]);
732 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
733 				(unsigned long)item,  sizeof(*item));
734 
735 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
736 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
737 		ins.type = BTRFS_EXTENT_ITEM_KEY;
738 		offset = key->offset - btrfs_file_extent_offset(eb, item);
739 
740 		/*
741 		 * Manually record dirty extent, as here we did a shallow
742 		 * file extent item copy and skip normal backref update,
743 		 * but modifying extent tree all by ourselves.
744 		 * So need to manually record dirty extent for qgroup,
745 		 * as the owner of the file extent changed from log tree
746 		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
747 		 */
748 		ret = btrfs_qgroup_trace_extent(trans,
749 				btrfs_file_extent_disk_bytenr(eb, item),
750 				btrfs_file_extent_disk_num_bytes(eb, item),
751 				GFP_NOFS);
752 		if (ret < 0)
753 			goto out;
754 
755 		if (ins.objectid > 0) {
756 			struct btrfs_ref ref = { 0 };
757 			u64 csum_start;
758 			u64 csum_end;
759 			LIST_HEAD(ordered_sums);
760 
761 			/*
762 			 * is this extent already allocated in the extent
763 			 * allocation tree?  If so, just add a reference
764 			 */
765 			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
766 						ins.offset);
767 			if (ret < 0) {
768 				goto out;
769 			} else if (ret == 0) {
770 				btrfs_init_generic_ref(&ref,
771 						BTRFS_ADD_DELAYED_REF,
772 						ins.objectid, ins.offset, 0);
773 				btrfs_init_data_ref(&ref,
774 						root->root_key.objectid,
775 						key->objectid, offset, 0, false);
776 				ret = btrfs_inc_extent_ref(trans, &ref);
777 				if (ret)
778 					goto out;
779 			} else {
780 				/*
781 				 * insert the extent pointer in the extent
782 				 * allocation tree
783 				 */
784 				ret = btrfs_alloc_logged_file_extent(trans,
785 						root->root_key.objectid,
786 						key->objectid, offset, &ins);
787 				if (ret)
788 					goto out;
789 			}
790 			btrfs_release_path(path);
791 
792 			if (btrfs_file_extent_compression(eb, item)) {
793 				csum_start = ins.objectid;
794 				csum_end = csum_start + ins.offset;
795 			} else {
796 				csum_start = ins.objectid +
797 					btrfs_file_extent_offset(eb, item);
798 				csum_end = csum_start +
799 					btrfs_file_extent_num_bytes(eb, item);
800 			}
801 
802 			ret = btrfs_lookup_csums_range(root->log_root,
803 						csum_start, csum_end - 1,
804 						&ordered_sums, 0);
805 			if (ret)
806 				goto out;
807 			/*
808 			 * Now delete all existing cums in the csum root that
809 			 * cover our range. We do this because we can have an
810 			 * extent that is completely referenced by one file
811 			 * extent item and partially referenced by another
812 			 * file extent item (like after using the clone or
813 			 * extent_same ioctls). In this case if we end up doing
814 			 * the replay of the one that partially references the
815 			 * extent first, and we do not do the csum deletion
816 			 * below, we can get 2 csum items in the csum tree that
817 			 * overlap each other. For example, imagine our log has
818 			 * the two following file extent items:
819 			 *
820 			 * key (257 EXTENT_DATA 409600)
821 			 *     extent data disk byte 12845056 nr 102400
822 			 *     extent data offset 20480 nr 20480 ram 102400
823 			 *
824 			 * key (257 EXTENT_DATA 819200)
825 			 *     extent data disk byte 12845056 nr 102400
826 			 *     extent data offset 0 nr 102400 ram 102400
827 			 *
828 			 * Where the second one fully references the 100K extent
829 			 * that starts at disk byte 12845056, and the log tree
830 			 * has a single csum item that covers the entire range
831 			 * of the extent:
832 			 *
833 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
834 			 *
835 			 * After the first file extent item is replayed, the
836 			 * csum tree gets the following csum item:
837 			 *
838 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
839 			 *
840 			 * Which covers the 20K sub-range starting at offset 20K
841 			 * of our extent. Now when we replay the second file
842 			 * extent item, if we do not delete existing csum items
843 			 * that cover any of its blocks, we end up getting two
844 			 * csum items in our csum tree that overlap each other:
845 			 *
846 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
847 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
848 			 *
849 			 * Which is a problem, because after this anyone trying
850 			 * to lookup up for the checksum of any block of our
851 			 * extent starting at an offset of 40K or higher, will
852 			 * end up looking at the second csum item only, which
853 			 * does not contain the checksum for any block starting
854 			 * at offset 40K or higher of our extent.
855 			 */
856 			while (!list_empty(&ordered_sums)) {
857 				struct btrfs_ordered_sum *sums;
858 				struct btrfs_root *csum_root;
859 
860 				sums = list_entry(ordered_sums.next,
861 						struct btrfs_ordered_sum,
862 						list);
863 				csum_root = btrfs_csum_root(fs_info,
864 							    sums->bytenr);
865 				if (!ret)
866 					ret = btrfs_del_csums(trans, csum_root,
867 							      sums->bytenr,
868 							      sums->len);
869 				if (!ret)
870 					ret = btrfs_csum_file_blocks(trans,
871 								     csum_root,
872 								     sums);
873 				list_del(&sums->list);
874 				kfree(sums);
875 			}
876 			if (ret)
877 				goto out;
878 		} else {
879 			btrfs_release_path(path);
880 		}
881 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
882 		/* inline extents are easy, we just overwrite them */
883 		ret = overwrite_item(trans, root, path, eb, slot, key);
884 		if (ret)
885 			goto out;
886 	}
887 
888 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
889 						extent_end - start);
890 	if (ret)
891 		goto out;
892 
893 update_inode:
894 	btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
895 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
896 out:
897 	iput(inode);
898 	return ret;
899 }
900 
901 static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans,
902 				       struct btrfs_inode *dir,
903 				       struct btrfs_inode *inode,
904 				       const char *name,
905 				       int name_len)
906 {
907 	int ret;
908 
909 	ret = btrfs_unlink_inode(trans, dir, inode, name, name_len);
910 	if (ret)
911 		return ret;
912 	/*
913 	 * Whenever we need to check if a name exists or not, we check the
914 	 * fs/subvolume tree. So after an unlink we must run delayed items, so
915 	 * that future checks for a name during log replay see that the name
916 	 * does not exists anymore.
917 	 */
918 	return btrfs_run_delayed_items(trans);
919 }
920 
921 /*
922  * when cleaning up conflicts between the directory names in the
923  * subvolume, directory names in the log and directory names in the
924  * inode back references, we may have to unlink inodes from directories.
925  *
926  * This is a helper function to do the unlink of a specific directory
927  * item
928  */
929 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
930 				      struct btrfs_path *path,
931 				      struct btrfs_inode *dir,
932 				      struct btrfs_dir_item *di)
933 {
934 	struct btrfs_root *root = dir->root;
935 	struct inode *inode;
936 	char *name;
937 	int name_len;
938 	struct extent_buffer *leaf;
939 	struct btrfs_key location;
940 	int ret;
941 
942 	leaf = path->nodes[0];
943 
944 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
945 	name_len = btrfs_dir_name_len(leaf, di);
946 	name = kmalloc(name_len, GFP_NOFS);
947 	if (!name)
948 		return -ENOMEM;
949 
950 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
951 	btrfs_release_path(path);
952 
953 	inode = read_one_inode(root, location.objectid);
954 	if (!inode) {
955 		ret = -EIO;
956 		goto out;
957 	}
958 
959 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
960 	if (ret)
961 		goto out;
962 
963 	ret = unlink_inode_for_log_replay(trans, dir, BTRFS_I(inode), name,
964 			name_len);
965 out:
966 	kfree(name);
967 	iput(inode);
968 	return ret;
969 }
970 
971 /*
972  * See if a given name and sequence number found in an inode back reference are
973  * already in a directory and correctly point to this inode.
974  *
975  * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
976  * exists.
977  */
978 static noinline int inode_in_dir(struct btrfs_root *root,
979 				 struct btrfs_path *path,
980 				 u64 dirid, u64 objectid, u64 index,
981 				 const char *name, int name_len)
982 {
983 	struct btrfs_dir_item *di;
984 	struct btrfs_key location;
985 	int ret = 0;
986 
987 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
988 					 index, name, name_len, 0);
989 	if (IS_ERR(di)) {
990 		ret = PTR_ERR(di);
991 		goto out;
992 	} else if (di) {
993 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
994 		if (location.objectid != objectid)
995 			goto out;
996 	} else {
997 		goto out;
998 	}
999 
1000 	btrfs_release_path(path);
1001 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
1002 	if (IS_ERR(di)) {
1003 		ret = PTR_ERR(di);
1004 		goto out;
1005 	} else if (di) {
1006 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1007 		if (location.objectid == objectid)
1008 			ret = 1;
1009 	}
1010 out:
1011 	btrfs_release_path(path);
1012 	return ret;
1013 }
1014 
1015 /*
1016  * helper function to check a log tree for a named back reference in
1017  * an inode.  This is used to decide if a back reference that is
1018  * found in the subvolume conflicts with what we find in the log.
1019  *
1020  * inode backreferences may have multiple refs in a single item,
1021  * during replay we process one reference at a time, and we don't
1022  * want to delete valid links to a file from the subvolume if that
1023  * link is also in the log.
1024  */
1025 static noinline int backref_in_log(struct btrfs_root *log,
1026 				   struct btrfs_key *key,
1027 				   u64 ref_objectid,
1028 				   const char *name, int namelen)
1029 {
1030 	struct btrfs_path *path;
1031 	int ret;
1032 
1033 	path = btrfs_alloc_path();
1034 	if (!path)
1035 		return -ENOMEM;
1036 
1037 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
1038 	if (ret < 0) {
1039 		goto out;
1040 	} else if (ret == 1) {
1041 		ret = 0;
1042 		goto out;
1043 	}
1044 
1045 	if (key->type == BTRFS_INODE_EXTREF_KEY)
1046 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1047 						       path->slots[0],
1048 						       ref_objectid,
1049 						       name, namelen);
1050 	else
1051 		ret = !!btrfs_find_name_in_backref(path->nodes[0],
1052 						   path->slots[0],
1053 						   name, namelen);
1054 out:
1055 	btrfs_free_path(path);
1056 	return ret;
1057 }
1058 
1059 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1060 				  struct btrfs_root *root,
1061 				  struct btrfs_path *path,
1062 				  struct btrfs_root *log_root,
1063 				  struct btrfs_inode *dir,
1064 				  struct btrfs_inode *inode,
1065 				  u64 inode_objectid, u64 parent_objectid,
1066 				  u64 ref_index, char *name, int namelen,
1067 				  int *search_done)
1068 {
1069 	int ret;
1070 	char *victim_name;
1071 	int victim_name_len;
1072 	struct extent_buffer *leaf;
1073 	struct btrfs_dir_item *di;
1074 	struct btrfs_key search_key;
1075 	struct btrfs_inode_extref *extref;
1076 
1077 again:
1078 	/* Search old style refs */
1079 	search_key.objectid = inode_objectid;
1080 	search_key.type = BTRFS_INODE_REF_KEY;
1081 	search_key.offset = parent_objectid;
1082 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1083 	if (ret == 0) {
1084 		struct btrfs_inode_ref *victim_ref;
1085 		unsigned long ptr;
1086 		unsigned long ptr_end;
1087 
1088 		leaf = path->nodes[0];
1089 
1090 		/* are we trying to overwrite a back ref for the root directory
1091 		 * if so, just jump out, we're done
1092 		 */
1093 		if (search_key.objectid == search_key.offset)
1094 			return 1;
1095 
1096 		/* check all the names in this back reference to see
1097 		 * if they are in the log.  if so, we allow them to stay
1098 		 * otherwise they must be unlinked as a conflict
1099 		 */
1100 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1101 		ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]);
1102 		while (ptr < ptr_end) {
1103 			victim_ref = (struct btrfs_inode_ref *)ptr;
1104 			victim_name_len = btrfs_inode_ref_name_len(leaf,
1105 								   victim_ref);
1106 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1107 			if (!victim_name)
1108 				return -ENOMEM;
1109 
1110 			read_extent_buffer(leaf, victim_name,
1111 					   (unsigned long)(victim_ref + 1),
1112 					   victim_name_len);
1113 
1114 			ret = backref_in_log(log_root, &search_key,
1115 					     parent_objectid, victim_name,
1116 					     victim_name_len);
1117 			if (ret < 0) {
1118 				kfree(victim_name);
1119 				return ret;
1120 			} else if (!ret) {
1121 				inc_nlink(&inode->vfs_inode);
1122 				btrfs_release_path(path);
1123 
1124 				ret = unlink_inode_for_log_replay(trans, dir, inode,
1125 						victim_name, victim_name_len);
1126 				kfree(victim_name);
1127 				if (ret)
1128 					return ret;
1129 				*search_done = 1;
1130 				goto again;
1131 			}
1132 			kfree(victim_name);
1133 
1134 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1135 		}
1136 
1137 		/*
1138 		 * NOTE: we have searched root tree and checked the
1139 		 * corresponding ref, it does not need to check again.
1140 		 */
1141 		*search_done = 1;
1142 	}
1143 	btrfs_release_path(path);
1144 
1145 	/* Same search but for extended refs */
1146 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1147 					   inode_objectid, parent_objectid, 0,
1148 					   0);
1149 	if (IS_ERR(extref)) {
1150 		return PTR_ERR(extref);
1151 	} else if (extref) {
1152 		u32 item_size;
1153 		u32 cur_offset = 0;
1154 		unsigned long base;
1155 		struct inode *victim_parent;
1156 
1157 		leaf = path->nodes[0];
1158 
1159 		item_size = btrfs_item_size(leaf, path->slots[0]);
1160 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1161 
1162 		while (cur_offset < item_size) {
1163 			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1164 
1165 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1166 
1167 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1168 				goto next;
1169 
1170 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1171 			if (!victim_name)
1172 				return -ENOMEM;
1173 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1174 					   victim_name_len);
1175 
1176 			search_key.objectid = inode_objectid;
1177 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1178 			search_key.offset = btrfs_extref_hash(parent_objectid,
1179 							      victim_name,
1180 							      victim_name_len);
1181 			ret = backref_in_log(log_root, &search_key,
1182 					     parent_objectid, victim_name,
1183 					     victim_name_len);
1184 			if (ret < 0) {
1185 				kfree(victim_name);
1186 				return ret;
1187 			} else if (!ret) {
1188 				ret = -ENOENT;
1189 				victim_parent = read_one_inode(root,
1190 						parent_objectid);
1191 				if (victim_parent) {
1192 					inc_nlink(&inode->vfs_inode);
1193 					btrfs_release_path(path);
1194 
1195 					ret = unlink_inode_for_log_replay(trans,
1196 							BTRFS_I(victim_parent),
1197 							inode,
1198 							victim_name,
1199 							victim_name_len);
1200 				}
1201 				iput(victim_parent);
1202 				kfree(victim_name);
1203 				if (ret)
1204 					return ret;
1205 				*search_done = 1;
1206 				goto again;
1207 			}
1208 			kfree(victim_name);
1209 next:
1210 			cur_offset += victim_name_len + sizeof(*extref);
1211 		}
1212 		*search_done = 1;
1213 	}
1214 	btrfs_release_path(path);
1215 
1216 	/* look for a conflicting sequence number */
1217 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1218 					 ref_index, name, namelen, 0);
1219 	if (IS_ERR(di)) {
1220 		return PTR_ERR(di);
1221 	} else if (di) {
1222 		ret = drop_one_dir_item(trans, path, dir, di);
1223 		if (ret)
1224 			return ret;
1225 	}
1226 	btrfs_release_path(path);
1227 
1228 	/* look for a conflicting name */
1229 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1230 				   name, namelen, 0);
1231 	if (IS_ERR(di)) {
1232 		return PTR_ERR(di);
1233 	} else if (di) {
1234 		ret = drop_one_dir_item(trans, path, dir, di);
1235 		if (ret)
1236 			return ret;
1237 	}
1238 	btrfs_release_path(path);
1239 
1240 	return 0;
1241 }
1242 
1243 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1244 			     u32 *namelen, char **name, u64 *index,
1245 			     u64 *parent_objectid)
1246 {
1247 	struct btrfs_inode_extref *extref;
1248 
1249 	extref = (struct btrfs_inode_extref *)ref_ptr;
1250 
1251 	*namelen = btrfs_inode_extref_name_len(eb, extref);
1252 	*name = kmalloc(*namelen, GFP_NOFS);
1253 	if (*name == NULL)
1254 		return -ENOMEM;
1255 
1256 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1257 			   *namelen);
1258 
1259 	if (index)
1260 		*index = btrfs_inode_extref_index(eb, extref);
1261 	if (parent_objectid)
1262 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1263 
1264 	return 0;
1265 }
1266 
1267 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1268 			  u32 *namelen, char **name, u64 *index)
1269 {
1270 	struct btrfs_inode_ref *ref;
1271 
1272 	ref = (struct btrfs_inode_ref *)ref_ptr;
1273 
1274 	*namelen = btrfs_inode_ref_name_len(eb, ref);
1275 	*name = kmalloc(*namelen, GFP_NOFS);
1276 	if (*name == NULL)
1277 		return -ENOMEM;
1278 
1279 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1280 
1281 	if (index)
1282 		*index = btrfs_inode_ref_index(eb, ref);
1283 
1284 	return 0;
1285 }
1286 
1287 /*
1288  * Take an inode reference item from the log tree and iterate all names from the
1289  * inode reference item in the subvolume tree with the same key (if it exists).
1290  * For any name that is not in the inode reference item from the log tree, do a
1291  * proper unlink of that name (that is, remove its entry from the inode
1292  * reference item and both dir index keys).
1293  */
1294 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1295 				 struct btrfs_root *root,
1296 				 struct btrfs_path *path,
1297 				 struct btrfs_inode *inode,
1298 				 struct extent_buffer *log_eb,
1299 				 int log_slot,
1300 				 struct btrfs_key *key)
1301 {
1302 	int ret;
1303 	unsigned long ref_ptr;
1304 	unsigned long ref_end;
1305 	struct extent_buffer *eb;
1306 
1307 again:
1308 	btrfs_release_path(path);
1309 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1310 	if (ret > 0) {
1311 		ret = 0;
1312 		goto out;
1313 	}
1314 	if (ret < 0)
1315 		goto out;
1316 
1317 	eb = path->nodes[0];
1318 	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1319 	ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]);
1320 	while (ref_ptr < ref_end) {
1321 		char *name = NULL;
1322 		int namelen;
1323 		u64 parent_id;
1324 
1325 		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1326 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1327 						NULL, &parent_id);
1328 		} else {
1329 			parent_id = key->offset;
1330 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1331 					     NULL);
1332 		}
1333 		if (ret)
1334 			goto out;
1335 
1336 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1337 			ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1338 							       parent_id, name,
1339 							       namelen);
1340 		else
1341 			ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1342 							   name, namelen);
1343 
1344 		if (!ret) {
1345 			struct inode *dir;
1346 
1347 			btrfs_release_path(path);
1348 			dir = read_one_inode(root, parent_id);
1349 			if (!dir) {
1350 				ret = -ENOENT;
1351 				kfree(name);
1352 				goto out;
1353 			}
1354 			ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir),
1355 						 inode, name, namelen);
1356 			kfree(name);
1357 			iput(dir);
1358 			if (ret)
1359 				goto out;
1360 			goto again;
1361 		}
1362 
1363 		kfree(name);
1364 		ref_ptr += namelen;
1365 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1366 			ref_ptr += sizeof(struct btrfs_inode_extref);
1367 		else
1368 			ref_ptr += sizeof(struct btrfs_inode_ref);
1369 	}
1370 	ret = 0;
1371  out:
1372 	btrfs_release_path(path);
1373 	return ret;
1374 }
1375 
1376 static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1377 				  const u8 ref_type, const char *name,
1378 				  const int namelen)
1379 {
1380 	struct btrfs_key key;
1381 	struct btrfs_path *path;
1382 	const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1383 	int ret;
1384 
1385 	path = btrfs_alloc_path();
1386 	if (!path)
1387 		return -ENOMEM;
1388 
1389 	key.objectid = btrfs_ino(BTRFS_I(inode));
1390 	key.type = ref_type;
1391 	if (key.type == BTRFS_INODE_REF_KEY)
1392 		key.offset = parent_id;
1393 	else
1394 		key.offset = btrfs_extref_hash(parent_id, name, namelen);
1395 
1396 	ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1397 	if (ret < 0)
1398 		goto out;
1399 	if (ret > 0) {
1400 		ret = 0;
1401 		goto out;
1402 	}
1403 	if (key.type == BTRFS_INODE_EXTREF_KEY)
1404 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1405 				path->slots[0], parent_id, name, namelen);
1406 	else
1407 		ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1408 						   name, namelen);
1409 
1410 out:
1411 	btrfs_free_path(path);
1412 	return ret;
1413 }
1414 
1415 static int add_link(struct btrfs_trans_handle *trans,
1416 		    struct inode *dir, struct inode *inode, const char *name,
1417 		    int namelen, u64 ref_index)
1418 {
1419 	struct btrfs_root *root = BTRFS_I(dir)->root;
1420 	struct btrfs_dir_item *dir_item;
1421 	struct btrfs_key key;
1422 	struct btrfs_path *path;
1423 	struct inode *other_inode = NULL;
1424 	int ret;
1425 
1426 	path = btrfs_alloc_path();
1427 	if (!path)
1428 		return -ENOMEM;
1429 
1430 	dir_item = btrfs_lookup_dir_item(NULL, root, path,
1431 					 btrfs_ino(BTRFS_I(dir)),
1432 					 name, namelen, 0);
1433 	if (!dir_item) {
1434 		btrfs_release_path(path);
1435 		goto add_link;
1436 	} else if (IS_ERR(dir_item)) {
1437 		ret = PTR_ERR(dir_item);
1438 		goto out;
1439 	}
1440 
1441 	/*
1442 	 * Our inode's dentry collides with the dentry of another inode which is
1443 	 * in the log but not yet processed since it has a higher inode number.
1444 	 * So delete that other dentry.
1445 	 */
1446 	btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1447 	btrfs_release_path(path);
1448 	other_inode = read_one_inode(root, key.objectid);
1449 	if (!other_inode) {
1450 		ret = -ENOENT;
1451 		goto out;
1452 	}
1453 	ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), BTRFS_I(other_inode),
1454 					  name, namelen);
1455 	if (ret)
1456 		goto out;
1457 	/*
1458 	 * If we dropped the link count to 0, bump it so that later the iput()
1459 	 * on the inode will not free it. We will fixup the link count later.
1460 	 */
1461 	if (other_inode->i_nlink == 0)
1462 		set_nlink(other_inode, 1);
1463 add_link:
1464 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1465 			     name, namelen, 0, ref_index);
1466 out:
1467 	iput(other_inode);
1468 	btrfs_free_path(path);
1469 
1470 	return ret;
1471 }
1472 
1473 /*
1474  * replay one inode back reference item found in the log tree.
1475  * eb, slot and key refer to the buffer and key found in the log tree.
1476  * root is the destination we are replaying into, and path is for temp
1477  * use by this function.  (it should be released on return).
1478  */
1479 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1480 				  struct btrfs_root *root,
1481 				  struct btrfs_root *log,
1482 				  struct btrfs_path *path,
1483 				  struct extent_buffer *eb, int slot,
1484 				  struct btrfs_key *key)
1485 {
1486 	struct inode *dir = NULL;
1487 	struct inode *inode = NULL;
1488 	unsigned long ref_ptr;
1489 	unsigned long ref_end;
1490 	char *name = NULL;
1491 	int namelen;
1492 	int ret;
1493 	int search_done = 0;
1494 	int log_ref_ver = 0;
1495 	u64 parent_objectid;
1496 	u64 inode_objectid;
1497 	u64 ref_index = 0;
1498 	int ref_struct_size;
1499 
1500 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1501 	ref_end = ref_ptr + btrfs_item_size(eb, slot);
1502 
1503 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1504 		struct btrfs_inode_extref *r;
1505 
1506 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1507 		log_ref_ver = 1;
1508 		r = (struct btrfs_inode_extref *)ref_ptr;
1509 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1510 	} else {
1511 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1512 		parent_objectid = key->offset;
1513 	}
1514 	inode_objectid = key->objectid;
1515 
1516 	/*
1517 	 * it is possible that we didn't log all the parent directories
1518 	 * for a given inode.  If we don't find the dir, just don't
1519 	 * copy the back ref in.  The link count fixup code will take
1520 	 * care of the rest
1521 	 */
1522 	dir = read_one_inode(root, parent_objectid);
1523 	if (!dir) {
1524 		ret = -ENOENT;
1525 		goto out;
1526 	}
1527 
1528 	inode = read_one_inode(root, inode_objectid);
1529 	if (!inode) {
1530 		ret = -EIO;
1531 		goto out;
1532 	}
1533 
1534 	while (ref_ptr < ref_end) {
1535 		if (log_ref_ver) {
1536 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1537 						&ref_index, &parent_objectid);
1538 			/*
1539 			 * parent object can change from one array
1540 			 * item to another.
1541 			 */
1542 			if (!dir)
1543 				dir = read_one_inode(root, parent_objectid);
1544 			if (!dir) {
1545 				ret = -ENOENT;
1546 				goto out;
1547 			}
1548 		} else {
1549 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1550 					     &ref_index);
1551 		}
1552 		if (ret)
1553 			goto out;
1554 
1555 		ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1556 				   btrfs_ino(BTRFS_I(inode)), ref_index,
1557 				   name, namelen);
1558 		if (ret < 0) {
1559 			goto out;
1560 		} else if (ret == 0) {
1561 			/*
1562 			 * look for a conflicting back reference in the
1563 			 * metadata. if we find one we have to unlink that name
1564 			 * of the file before we add our new link.  Later on, we
1565 			 * overwrite any existing back reference, and we don't
1566 			 * want to create dangling pointers in the directory.
1567 			 */
1568 
1569 			if (!search_done) {
1570 				ret = __add_inode_ref(trans, root, path, log,
1571 						      BTRFS_I(dir),
1572 						      BTRFS_I(inode),
1573 						      inode_objectid,
1574 						      parent_objectid,
1575 						      ref_index, name, namelen,
1576 						      &search_done);
1577 				if (ret) {
1578 					if (ret == 1)
1579 						ret = 0;
1580 					goto out;
1581 				}
1582 			}
1583 
1584 			/*
1585 			 * If a reference item already exists for this inode
1586 			 * with the same parent and name, but different index,
1587 			 * drop it and the corresponding directory index entries
1588 			 * from the parent before adding the new reference item
1589 			 * and dir index entries, otherwise we would fail with
1590 			 * -EEXIST returned from btrfs_add_link() below.
1591 			 */
1592 			ret = btrfs_inode_ref_exists(inode, dir, key->type,
1593 						     name, namelen);
1594 			if (ret > 0) {
1595 				ret = unlink_inode_for_log_replay(trans,
1596 							 BTRFS_I(dir),
1597 							 BTRFS_I(inode),
1598 							 name, namelen);
1599 				/*
1600 				 * If we dropped the link count to 0, bump it so
1601 				 * that later the iput() on the inode will not
1602 				 * free it. We will fixup the link count later.
1603 				 */
1604 				if (!ret && inode->i_nlink == 0)
1605 					set_nlink(inode, 1);
1606 			}
1607 			if (ret < 0)
1608 				goto out;
1609 
1610 			/* insert our name */
1611 			ret = add_link(trans, dir, inode, name, namelen,
1612 				       ref_index);
1613 			if (ret)
1614 				goto out;
1615 
1616 			ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1617 			if (ret)
1618 				goto out;
1619 		}
1620 		/* Else, ret == 1, we already have a perfect match, we're done. */
1621 
1622 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1623 		kfree(name);
1624 		name = NULL;
1625 		if (log_ref_ver) {
1626 			iput(dir);
1627 			dir = NULL;
1628 		}
1629 	}
1630 
1631 	/*
1632 	 * Before we overwrite the inode reference item in the subvolume tree
1633 	 * with the item from the log tree, we must unlink all names from the
1634 	 * parent directory that are in the subvolume's tree inode reference
1635 	 * item, otherwise we end up with an inconsistent subvolume tree where
1636 	 * dir index entries exist for a name but there is no inode reference
1637 	 * item with the same name.
1638 	 */
1639 	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1640 				    key);
1641 	if (ret)
1642 		goto out;
1643 
1644 	/* finally write the back reference in the inode */
1645 	ret = overwrite_item(trans, root, path, eb, slot, key);
1646 out:
1647 	btrfs_release_path(path);
1648 	kfree(name);
1649 	iput(dir);
1650 	iput(inode);
1651 	return ret;
1652 }
1653 
1654 static int count_inode_extrefs(struct btrfs_root *root,
1655 		struct btrfs_inode *inode, struct btrfs_path *path)
1656 {
1657 	int ret = 0;
1658 	int name_len;
1659 	unsigned int nlink = 0;
1660 	u32 item_size;
1661 	u32 cur_offset = 0;
1662 	u64 inode_objectid = btrfs_ino(inode);
1663 	u64 offset = 0;
1664 	unsigned long ptr;
1665 	struct btrfs_inode_extref *extref;
1666 	struct extent_buffer *leaf;
1667 
1668 	while (1) {
1669 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1670 					    &extref, &offset);
1671 		if (ret)
1672 			break;
1673 
1674 		leaf = path->nodes[0];
1675 		item_size = btrfs_item_size(leaf, path->slots[0]);
1676 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1677 		cur_offset = 0;
1678 
1679 		while (cur_offset < item_size) {
1680 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1681 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1682 
1683 			nlink++;
1684 
1685 			cur_offset += name_len + sizeof(*extref);
1686 		}
1687 
1688 		offset++;
1689 		btrfs_release_path(path);
1690 	}
1691 	btrfs_release_path(path);
1692 
1693 	if (ret < 0 && ret != -ENOENT)
1694 		return ret;
1695 	return nlink;
1696 }
1697 
1698 static int count_inode_refs(struct btrfs_root *root,
1699 			struct btrfs_inode *inode, struct btrfs_path *path)
1700 {
1701 	int ret;
1702 	struct btrfs_key key;
1703 	unsigned int nlink = 0;
1704 	unsigned long ptr;
1705 	unsigned long ptr_end;
1706 	int name_len;
1707 	u64 ino = btrfs_ino(inode);
1708 
1709 	key.objectid = ino;
1710 	key.type = BTRFS_INODE_REF_KEY;
1711 	key.offset = (u64)-1;
1712 
1713 	while (1) {
1714 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1715 		if (ret < 0)
1716 			break;
1717 		if (ret > 0) {
1718 			if (path->slots[0] == 0)
1719 				break;
1720 			path->slots[0]--;
1721 		}
1722 process_slot:
1723 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1724 				      path->slots[0]);
1725 		if (key.objectid != ino ||
1726 		    key.type != BTRFS_INODE_REF_KEY)
1727 			break;
1728 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1729 		ptr_end = ptr + btrfs_item_size(path->nodes[0],
1730 						   path->slots[0]);
1731 		while (ptr < ptr_end) {
1732 			struct btrfs_inode_ref *ref;
1733 
1734 			ref = (struct btrfs_inode_ref *)ptr;
1735 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1736 							    ref);
1737 			ptr = (unsigned long)(ref + 1) + name_len;
1738 			nlink++;
1739 		}
1740 
1741 		if (key.offset == 0)
1742 			break;
1743 		if (path->slots[0] > 0) {
1744 			path->slots[0]--;
1745 			goto process_slot;
1746 		}
1747 		key.offset--;
1748 		btrfs_release_path(path);
1749 	}
1750 	btrfs_release_path(path);
1751 
1752 	return nlink;
1753 }
1754 
1755 /*
1756  * There are a few corners where the link count of the file can't
1757  * be properly maintained during replay.  So, instead of adding
1758  * lots of complexity to the log code, we just scan the backrefs
1759  * for any file that has been through replay.
1760  *
1761  * The scan will update the link count on the inode to reflect the
1762  * number of back refs found.  If it goes down to zero, the iput
1763  * will free the inode.
1764  */
1765 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1766 					   struct btrfs_root *root,
1767 					   struct inode *inode)
1768 {
1769 	struct btrfs_path *path;
1770 	int ret;
1771 	u64 nlink = 0;
1772 	u64 ino = btrfs_ino(BTRFS_I(inode));
1773 
1774 	path = btrfs_alloc_path();
1775 	if (!path)
1776 		return -ENOMEM;
1777 
1778 	ret = count_inode_refs(root, BTRFS_I(inode), path);
1779 	if (ret < 0)
1780 		goto out;
1781 
1782 	nlink = ret;
1783 
1784 	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1785 	if (ret < 0)
1786 		goto out;
1787 
1788 	nlink += ret;
1789 
1790 	ret = 0;
1791 
1792 	if (nlink != inode->i_nlink) {
1793 		set_nlink(inode, nlink);
1794 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1795 		if (ret)
1796 			goto out;
1797 	}
1798 	BTRFS_I(inode)->index_cnt = (u64)-1;
1799 
1800 	if (inode->i_nlink == 0) {
1801 		if (S_ISDIR(inode->i_mode)) {
1802 			ret = replay_dir_deletes(trans, root, NULL, path,
1803 						 ino, 1);
1804 			if (ret)
1805 				goto out;
1806 		}
1807 		ret = btrfs_insert_orphan_item(trans, root, ino);
1808 		if (ret == -EEXIST)
1809 			ret = 0;
1810 	}
1811 
1812 out:
1813 	btrfs_free_path(path);
1814 	return ret;
1815 }
1816 
1817 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1818 					    struct btrfs_root *root,
1819 					    struct btrfs_path *path)
1820 {
1821 	int ret;
1822 	struct btrfs_key key;
1823 	struct inode *inode;
1824 
1825 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1826 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1827 	key.offset = (u64)-1;
1828 	while (1) {
1829 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1830 		if (ret < 0)
1831 			break;
1832 
1833 		if (ret == 1) {
1834 			ret = 0;
1835 			if (path->slots[0] == 0)
1836 				break;
1837 			path->slots[0]--;
1838 		}
1839 
1840 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1841 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1842 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1843 			break;
1844 
1845 		ret = btrfs_del_item(trans, root, path);
1846 		if (ret)
1847 			break;
1848 
1849 		btrfs_release_path(path);
1850 		inode = read_one_inode(root, key.offset);
1851 		if (!inode) {
1852 			ret = -EIO;
1853 			break;
1854 		}
1855 
1856 		ret = fixup_inode_link_count(trans, root, inode);
1857 		iput(inode);
1858 		if (ret)
1859 			break;
1860 
1861 		/*
1862 		 * fixup on a directory may create new entries,
1863 		 * make sure we always look for the highset possible
1864 		 * offset
1865 		 */
1866 		key.offset = (u64)-1;
1867 	}
1868 	btrfs_release_path(path);
1869 	return ret;
1870 }
1871 
1872 
1873 /*
1874  * record a given inode in the fixup dir so we can check its link
1875  * count when replay is done.  The link count is incremented here
1876  * so the inode won't go away until we check it
1877  */
1878 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1879 				      struct btrfs_root *root,
1880 				      struct btrfs_path *path,
1881 				      u64 objectid)
1882 {
1883 	struct btrfs_key key;
1884 	int ret = 0;
1885 	struct inode *inode;
1886 
1887 	inode = read_one_inode(root, objectid);
1888 	if (!inode)
1889 		return -EIO;
1890 
1891 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1892 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1893 	key.offset = objectid;
1894 
1895 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1896 
1897 	btrfs_release_path(path);
1898 	if (ret == 0) {
1899 		if (!inode->i_nlink)
1900 			set_nlink(inode, 1);
1901 		else
1902 			inc_nlink(inode);
1903 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1904 	} else if (ret == -EEXIST) {
1905 		ret = 0;
1906 	}
1907 	iput(inode);
1908 
1909 	return ret;
1910 }
1911 
1912 /*
1913  * when replaying the log for a directory, we only insert names
1914  * for inodes that actually exist.  This means an fsync on a directory
1915  * does not implicitly fsync all the new files in it
1916  */
1917 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1918 				    struct btrfs_root *root,
1919 				    u64 dirid, u64 index,
1920 				    char *name, int name_len,
1921 				    struct btrfs_key *location)
1922 {
1923 	struct inode *inode;
1924 	struct inode *dir;
1925 	int ret;
1926 
1927 	inode = read_one_inode(root, location->objectid);
1928 	if (!inode)
1929 		return -ENOENT;
1930 
1931 	dir = read_one_inode(root, dirid);
1932 	if (!dir) {
1933 		iput(inode);
1934 		return -EIO;
1935 	}
1936 
1937 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1938 			name_len, 1, index);
1939 
1940 	/* FIXME, put inode into FIXUP list */
1941 
1942 	iput(inode);
1943 	iput(dir);
1944 	return ret;
1945 }
1946 
1947 static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans,
1948 					struct btrfs_inode *dir,
1949 					struct btrfs_path *path,
1950 					struct btrfs_dir_item *dst_di,
1951 					const struct btrfs_key *log_key,
1952 					u8 log_type,
1953 					bool exists)
1954 {
1955 	struct btrfs_key found_key;
1956 
1957 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1958 	/* The existing dentry points to the same inode, don't delete it. */
1959 	if (found_key.objectid == log_key->objectid &&
1960 	    found_key.type == log_key->type &&
1961 	    found_key.offset == log_key->offset &&
1962 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type)
1963 		return 1;
1964 
1965 	/*
1966 	 * Don't drop the conflicting directory entry if the inode for the new
1967 	 * entry doesn't exist.
1968 	 */
1969 	if (!exists)
1970 		return 0;
1971 
1972 	return drop_one_dir_item(trans, path, dir, dst_di);
1973 }
1974 
1975 /*
1976  * take a single entry in a log directory item and replay it into
1977  * the subvolume.
1978  *
1979  * if a conflicting item exists in the subdirectory already,
1980  * the inode it points to is unlinked and put into the link count
1981  * fix up tree.
1982  *
1983  * If a name from the log points to a file or directory that does
1984  * not exist in the FS, it is skipped.  fsyncs on directories
1985  * do not force down inodes inside that directory, just changes to the
1986  * names or unlinks in a directory.
1987  *
1988  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1989  * non-existing inode) and 1 if the name was replayed.
1990  */
1991 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1992 				    struct btrfs_root *root,
1993 				    struct btrfs_path *path,
1994 				    struct extent_buffer *eb,
1995 				    struct btrfs_dir_item *di,
1996 				    struct btrfs_key *key)
1997 {
1998 	char *name;
1999 	int name_len;
2000 	struct btrfs_dir_item *dir_dst_di;
2001 	struct btrfs_dir_item *index_dst_di;
2002 	bool dir_dst_matches = false;
2003 	bool index_dst_matches = false;
2004 	struct btrfs_key log_key;
2005 	struct btrfs_key search_key;
2006 	struct inode *dir;
2007 	u8 log_type;
2008 	bool exists;
2009 	int ret;
2010 	bool update_size = true;
2011 	bool name_added = false;
2012 
2013 	dir = read_one_inode(root, key->objectid);
2014 	if (!dir)
2015 		return -EIO;
2016 
2017 	name_len = btrfs_dir_name_len(eb, di);
2018 	name = kmalloc(name_len, GFP_NOFS);
2019 	if (!name) {
2020 		ret = -ENOMEM;
2021 		goto out;
2022 	}
2023 
2024 	log_type = btrfs_dir_type(eb, di);
2025 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
2026 		   name_len);
2027 
2028 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
2029 	ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
2030 	btrfs_release_path(path);
2031 	if (ret < 0)
2032 		goto out;
2033 	exists = (ret == 0);
2034 	ret = 0;
2035 
2036 	dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
2037 					   name, name_len, 1);
2038 	if (IS_ERR(dir_dst_di)) {
2039 		ret = PTR_ERR(dir_dst_di);
2040 		goto out;
2041 	} else if (dir_dst_di) {
2042 		ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
2043 						   dir_dst_di, &log_key, log_type,
2044 						   exists);
2045 		if (ret < 0)
2046 			goto out;
2047 		dir_dst_matches = (ret == 1);
2048 	}
2049 
2050 	btrfs_release_path(path);
2051 
2052 	index_dst_di = btrfs_lookup_dir_index_item(trans, root, path,
2053 						   key->objectid, key->offset,
2054 						   name, name_len, 1);
2055 	if (IS_ERR(index_dst_di)) {
2056 		ret = PTR_ERR(index_dst_di);
2057 		goto out;
2058 	} else if (index_dst_di) {
2059 		ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
2060 						   index_dst_di, &log_key,
2061 						   log_type, exists);
2062 		if (ret < 0)
2063 			goto out;
2064 		index_dst_matches = (ret == 1);
2065 	}
2066 
2067 	btrfs_release_path(path);
2068 
2069 	if (dir_dst_matches && index_dst_matches) {
2070 		ret = 0;
2071 		update_size = false;
2072 		goto out;
2073 	}
2074 
2075 	/*
2076 	 * Check if the inode reference exists in the log for the given name,
2077 	 * inode and parent inode
2078 	 */
2079 	search_key.objectid = log_key.objectid;
2080 	search_key.type = BTRFS_INODE_REF_KEY;
2081 	search_key.offset = key->objectid;
2082 	ret = backref_in_log(root->log_root, &search_key, 0, name, name_len);
2083 	if (ret < 0) {
2084 	        goto out;
2085 	} else if (ret) {
2086 	        /* The dentry will be added later. */
2087 	        ret = 0;
2088 	        update_size = false;
2089 	        goto out;
2090 	}
2091 
2092 	search_key.objectid = log_key.objectid;
2093 	search_key.type = BTRFS_INODE_EXTREF_KEY;
2094 	search_key.offset = key->objectid;
2095 	ret = backref_in_log(root->log_root, &search_key, key->objectid, name,
2096 			     name_len);
2097 	if (ret < 0) {
2098 		goto out;
2099 	} else if (ret) {
2100 		/* The dentry will be added later. */
2101 		ret = 0;
2102 		update_size = false;
2103 		goto out;
2104 	}
2105 	btrfs_release_path(path);
2106 	ret = insert_one_name(trans, root, key->objectid, key->offset,
2107 			      name, name_len, &log_key);
2108 	if (ret && ret != -ENOENT && ret != -EEXIST)
2109 		goto out;
2110 	if (!ret)
2111 		name_added = true;
2112 	update_size = false;
2113 	ret = 0;
2114 
2115 out:
2116 	if (!ret && update_size) {
2117 		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
2118 		ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
2119 	}
2120 	kfree(name);
2121 	iput(dir);
2122 	if (!ret && name_added)
2123 		ret = 1;
2124 	return ret;
2125 }
2126 
2127 /* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */
2128 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2129 					struct btrfs_root *root,
2130 					struct btrfs_path *path,
2131 					struct extent_buffer *eb, int slot,
2132 					struct btrfs_key *key)
2133 {
2134 	int ret;
2135 	struct btrfs_dir_item *di;
2136 
2137 	/* We only log dir index keys, which only contain a single dir item. */
2138 	ASSERT(key->type == BTRFS_DIR_INDEX_KEY);
2139 
2140 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2141 	ret = replay_one_name(trans, root, path, eb, di, key);
2142 	if (ret < 0)
2143 		return ret;
2144 
2145 	/*
2146 	 * If this entry refers to a non-directory (directories can not have a
2147 	 * link count > 1) and it was added in the transaction that was not
2148 	 * committed, make sure we fixup the link count of the inode the entry
2149 	 * points to. Otherwise something like the following would result in a
2150 	 * directory pointing to an inode with a wrong link that does not account
2151 	 * for this dir entry:
2152 	 *
2153 	 * mkdir testdir
2154 	 * touch testdir/foo
2155 	 * touch testdir/bar
2156 	 * sync
2157 	 *
2158 	 * ln testdir/bar testdir/bar_link
2159 	 * ln testdir/foo testdir/foo_link
2160 	 * xfs_io -c "fsync" testdir/bar
2161 	 *
2162 	 * <power failure>
2163 	 *
2164 	 * mount fs, log replay happens
2165 	 *
2166 	 * File foo would remain with a link count of 1 when it has two entries
2167 	 * pointing to it in the directory testdir. This would make it impossible
2168 	 * to ever delete the parent directory has it would result in stale
2169 	 * dentries that can never be deleted.
2170 	 */
2171 	if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2172 		struct btrfs_path *fixup_path;
2173 		struct btrfs_key di_key;
2174 
2175 		fixup_path = btrfs_alloc_path();
2176 		if (!fixup_path)
2177 			return -ENOMEM;
2178 
2179 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2180 		ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid);
2181 		btrfs_free_path(fixup_path);
2182 	}
2183 
2184 	return ret;
2185 }
2186 
2187 /*
2188  * directory replay has two parts.  There are the standard directory
2189  * items in the log copied from the subvolume, and range items
2190  * created in the log while the subvolume was logged.
2191  *
2192  * The range items tell us which parts of the key space the log
2193  * is authoritative for.  During replay, if a key in the subvolume
2194  * directory is in a logged range item, but not actually in the log
2195  * that means it was deleted from the directory before the fsync
2196  * and should be removed.
2197  */
2198 static noinline int find_dir_range(struct btrfs_root *root,
2199 				   struct btrfs_path *path,
2200 				   u64 dirid,
2201 				   u64 *start_ret, u64 *end_ret)
2202 {
2203 	struct btrfs_key key;
2204 	u64 found_end;
2205 	struct btrfs_dir_log_item *item;
2206 	int ret;
2207 	int nritems;
2208 
2209 	if (*start_ret == (u64)-1)
2210 		return 1;
2211 
2212 	key.objectid = dirid;
2213 	key.type = BTRFS_DIR_LOG_INDEX_KEY;
2214 	key.offset = *start_ret;
2215 
2216 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2217 	if (ret < 0)
2218 		goto out;
2219 	if (ret > 0) {
2220 		if (path->slots[0] == 0)
2221 			goto out;
2222 		path->slots[0]--;
2223 	}
2224 	if (ret != 0)
2225 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2226 
2227 	if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2228 		ret = 1;
2229 		goto next;
2230 	}
2231 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2232 			      struct btrfs_dir_log_item);
2233 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2234 
2235 	if (*start_ret >= key.offset && *start_ret <= found_end) {
2236 		ret = 0;
2237 		*start_ret = key.offset;
2238 		*end_ret = found_end;
2239 		goto out;
2240 	}
2241 	ret = 1;
2242 next:
2243 	/* check the next slot in the tree to see if it is a valid item */
2244 	nritems = btrfs_header_nritems(path->nodes[0]);
2245 	path->slots[0]++;
2246 	if (path->slots[0] >= nritems) {
2247 		ret = btrfs_next_leaf(root, path);
2248 		if (ret)
2249 			goto out;
2250 	}
2251 
2252 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2253 
2254 	if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2255 		ret = 1;
2256 		goto out;
2257 	}
2258 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2259 			      struct btrfs_dir_log_item);
2260 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2261 	*start_ret = key.offset;
2262 	*end_ret = found_end;
2263 	ret = 0;
2264 out:
2265 	btrfs_release_path(path);
2266 	return ret;
2267 }
2268 
2269 /*
2270  * this looks for a given directory item in the log.  If the directory
2271  * item is not in the log, the item is removed and the inode it points
2272  * to is unlinked
2273  */
2274 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2275 				      struct btrfs_root *log,
2276 				      struct btrfs_path *path,
2277 				      struct btrfs_path *log_path,
2278 				      struct inode *dir,
2279 				      struct btrfs_key *dir_key)
2280 {
2281 	struct btrfs_root *root = BTRFS_I(dir)->root;
2282 	int ret;
2283 	struct extent_buffer *eb;
2284 	int slot;
2285 	struct btrfs_dir_item *di;
2286 	int name_len;
2287 	char *name;
2288 	struct inode *inode = NULL;
2289 	struct btrfs_key location;
2290 
2291 	/*
2292 	 * Currently we only log dir index keys. Even if we replay a log created
2293 	 * by an older kernel that logged both dir index and dir item keys, all
2294 	 * we need to do is process the dir index keys, we (and our caller) can
2295 	 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY).
2296 	 */
2297 	ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY);
2298 
2299 	eb = path->nodes[0];
2300 	slot = path->slots[0];
2301 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2302 	name_len = btrfs_dir_name_len(eb, di);
2303 	name = kmalloc(name_len, GFP_NOFS);
2304 	if (!name) {
2305 		ret = -ENOMEM;
2306 		goto out;
2307 	}
2308 
2309 	read_extent_buffer(eb, name, (unsigned long)(di + 1), name_len);
2310 
2311 	if (log) {
2312 		struct btrfs_dir_item *log_di;
2313 
2314 		log_di = btrfs_lookup_dir_index_item(trans, log, log_path,
2315 						     dir_key->objectid,
2316 						     dir_key->offset,
2317 						     name, name_len, 0);
2318 		if (IS_ERR(log_di)) {
2319 			ret = PTR_ERR(log_di);
2320 			goto out;
2321 		} else if (log_di) {
2322 			/* The dentry exists in the log, we have nothing to do. */
2323 			ret = 0;
2324 			goto out;
2325 		}
2326 	}
2327 
2328 	btrfs_dir_item_key_to_cpu(eb, di, &location);
2329 	btrfs_release_path(path);
2330 	btrfs_release_path(log_path);
2331 	inode = read_one_inode(root, location.objectid);
2332 	if (!inode) {
2333 		ret = -EIO;
2334 		goto out;
2335 	}
2336 
2337 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
2338 	if (ret)
2339 		goto out;
2340 
2341 	inc_nlink(inode);
2342 	ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), BTRFS_I(inode),
2343 					  name, name_len);
2344 	/*
2345 	 * Unlike dir item keys, dir index keys can only have one name (entry) in
2346 	 * them, as there are no key collisions since each key has a unique offset
2347 	 * (an index number), so we're done.
2348 	 */
2349 out:
2350 	btrfs_release_path(path);
2351 	btrfs_release_path(log_path);
2352 	kfree(name);
2353 	iput(inode);
2354 	return ret;
2355 }
2356 
2357 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2358 			      struct btrfs_root *root,
2359 			      struct btrfs_root *log,
2360 			      struct btrfs_path *path,
2361 			      const u64 ino)
2362 {
2363 	struct btrfs_key search_key;
2364 	struct btrfs_path *log_path;
2365 	int i;
2366 	int nritems;
2367 	int ret;
2368 
2369 	log_path = btrfs_alloc_path();
2370 	if (!log_path)
2371 		return -ENOMEM;
2372 
2373 	search_key.objectid = ino;
2374 	search_key.type = BTRFS_XATTR_ITEM_KEY;
2375 	search_key.offset = 0;
2376 again:
2377 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2378 	if (ret < 0)
2379 		goto out;
2380 process_leaf:
2381 	nritems = btrfs_header_nritems(path->nodes[0]);
2382 	for (i = path->slots[0]; i < nritems; i++) {
2383 		struct btrfs_key key;
2384 		struct btrfs_dir_item *di;
2385 		struct btrfs_dir_item *log_di;
2386 		u32 total_size;
2387 		u32 cur;
2388 
2389 		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2390 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2391 			ret = 0;
2392 			goto out;
2393 		}
2394 
2395 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2396 		total_size = btrfs_item_size(path->nodes[0], i);
2397 		cur = 0;
2398 		while (cur < total_size) {
2399 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2400 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2401 			u32 this_len = sizeof(*di) + name_len + data_len;
2402 			char *name;
2403 
2404 			name = kmalloc(name_len, GFP_NOFS);
2405 			if (!name) {
2406 				ret = -ENOMEM;
2407 				goto out;
2408 			}
2409 			read_extent_buffer(path->nodes[0], name,
2410 					   (unsigned long)(di + 1), name_len);
2411 
2412 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2413 						    name, name_len, 0);
2414 			btrfs_release_path(log_path);
2415 			if (!log_di) {
2416 				/* Doesn't exist in log tree, so delete it. */
2417 				btrfs_release_path(path);
2418 				di = btrfs_lookup_xattr(trans, root, path, ino,
2419 							name, name_len, -1);
2420 				kfree(name);
2421 				if (IS_ERR(di)) {
2422 					ret = PTR_ERR(di);
2423 					goto out;
2424 				}
2425 				ASSERT(di);
2426 				ret = btrfs_delete_one_dir_name(trans, root,
2427 								path, di);
2428 				if (ret)
2429 					goto out;
2430 				btrfs_release_path(path);
2431 				search_key = key;
2432 				goto again;
2433 			}
2434 			kfree(name);
2435 			if (IS_ERR(log_di)) {
2436 				ret = PTR_ERR(log_di);
2437 				goto out;
2438 			}
2439 			cur += this_len;
2440 			di = (struct btrfs_dir_item *)((char *)di + this_len);
2441 		}
2442 	}
2443 	ret = btrfs_next_leaf(root, path);
2444 	if (ret > 0)
2445 		ret = 0;
2446 	else if (ret == 0)
2447 		goto process_leaf;
2448 out:
2449 	btrfs_free_path(log_path);
2450 	btrfs_release_path(path);
2451 	return ret;
2452 }
2453 
2454 
2455 /*
2456  * deletion replay happens before we copy any new directory items
2457  * out of the log or out of backreferences from inodes.  It
2458  * scans the log to find ranges of keys that log is authoritative for,
2459  * and then scans the directory to find items in those ranges that are
2460  * not present in the log.
2461  *
2462  * Anything we don't find in the log is unlinked and removed from the
2463  * directory.
2464  */
2465 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2466 				       struct btrfs_root *root,
2467 				       struct btrfs_root *log,
2468 				       struct btrfs_path *path,
2469 				       u64 dirid, int del_all)
2470 {
2471 	u64 range_start;
2472 	u64 range_end;
2473 	int ret = 0;
2474 	struct btrfs_key dir_key;
2475 	struct btrfs_key found_key;
2476 	struct btrfs_path *log_path;
2477 	struct inode *dir;
2478 
2479 	dir_key.objectid = dirid;
2480 	dir_key.type = BTRFS_DIR_INDEX_KEY;
2481 	log_path = btrfs_alloc_path();
2482 	if (!log_path)
2483 		return -ENOMEM;
2484 
2485 	dir = read_one_inode(root, dirid);
2486 	/* it isn't an error if the inode isn't there, that can happen
2487 	 * because we replay the deletes before we copy in the inode item
2488 	 * from the log
2489 	 */
2490 	if (!dir) {
2491 		btrfs_free_path(log_path);
2492 		return 0;
2493 	}
2494 
2495 	range_start = 0;
2496 	range_end = 0;
2497 	while (1) {
2498 		if (del_all)
2499 			range_end = (u64)-1;
2500 		else {
2501 			ret = find_dir_range(log, path, dirid,
2502 					     &range_start, &range_end);
2503 			if (ret < 0)
2504 				goto out;
2505 			else if (ret > 0)
2506 				break;
2507 		}
2508 
2509 		dir_key.offset = range_start;
2510 		while (1) {
2511 			int nritems;
2512 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2513 						0, 0);
2514 			if (ret < 0)
2515 				goto out;
2516 
2517 			nritems = btrfs_header_nritems(path->nodes[0]);
2518 			if (path->slots[0] >= nritems) {
2519 				ret = btrfs_next_leaf(root, path);
2520 				if (ret == 1)
2521 					break;
2522 				else if (ret < 0)
2523 					goto out;
2524 			}
2525 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2526 					      path->slots[0]);
2527 			if (found_key.objectid != dirid ||
2528 			    found_key.type != dir_key.type) {
2529 				ret = 0;
2530 				goto out;
2531 			}
2532 
2533 			if (found_key.offset > range_end)
2534 				break;
2535 
2536 			ret = check_item_in_log(trans, log, path,
2537 						log_path, dir,
2538 						&found_key);
2539 			if (ret)
2540 				goto out;
2541 			if (found_key.offset == (u64)-1)
2542 				break;
2543 			dir_key.offset = found_key.offset + 1;
2544 		}
2545 		btrfs_release_path(path);
2546 		if (range_end == (u64)-1)
2547 			break;
2548 		range_start = range_end + 1;
2549 	}
2550 	ret = 0;
2551 out:
2552 	btrfs_release_path(path);
2553 	btrfs_free_path(log_path);
2554 	iput(dir);
2555 	return ret;
2556 }
2557 
2558 /*
2559  * the process_func used to replay items from the log tree.  This
2560  * gets called in two different stages.  The first stage just looks
2561  * for inodes and makes sure they are all copied into the subvolume.
2562  *
2563  * The second stage copies all the other item types from the log into
2564  * the subvolume.  The two stage approach is slower, but gets rid of
2565  * lots of complexity around inodes referencing other inodes that exist
2566  * only in the log (references come from either directory items or inode
2567  * back refs).
2568  */
2569 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2570 			     struct walk_control *wc, u64 gen, int level)
2571 {
2572 	int nritems;
2573 	struct btrfs_path *path;
2574 	struct btrfs_root *root = wc->replay_dest;
2575 	struct btrfs_key key;
2576 	int i;
2577 	int ret;
2578 
2579 	ret = btrfs_read_extent_buffer(eb, gen, level, NULL);
2580 	if (ret)
2581 		return ret;
2582 
2583 	level = btrfs_header_level(eb);
2584 
2585 	if (level != 0)
2586 		return 0;
2587 
2588 	path = btrfs_alloc_path();
2589 	if (!path)
2590 		return -ENOMEM;
2591 
2592 	nritems = btrfs_header_nritems(eb);
2593 	for (i = 0; i < nritems; i++) {
2594 		btrfs_item_key_to_cpu(eb, &key, i);
2595 
2596 		/* inode keys are done during the first stage */
2597 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2598 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2599 			struct btrfs_inode_item *inode_item;
2600 			u32 mode;
2601 
2602 			inode_item = btrfs_item_ptr(eb, i,
2603 					    struct btrfs_inode_item);
2604 			/*
2605 			 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2606 			 * and never got linked before the fsync, skip it, as
2607 			 * replaying it is pointless since it would be deleted
2608 			 * later. We skip logging tmpfiles, but it's always
2609 			 * possible we are replaying a log created with a kernel
2610 			 * that used to log tmpfiles.
2611 			 */
2612 			if (btrfs_inode_nlink(eb, inode_item) == 0) {
2613 				wc->ignore_cur_inode = true;
2614 				continue;
2615 			} else {
2616 				wc->ignore_cur_inode = false;
2617 			}
2618 			ret = replay_xattr_deletes(wc->trans, root, log,
2619 						   path, key.objectid);
2620 			if (ret)
2621 				break;
2622 			mode = btrfs_inode_mode(eb, inode_item);
2623 			if (S_ISDIR(mode)) {
2624 				ret = replay_dir_deletes(wc->trans,
2625 					 root, log, path, key.objectid, 0);
2626 				if (ret)
2627 					break;
2628 			}
2629 			ret = overwrite_item(wc->trans, root, path,
2630 					     eb, i, &key);
2631 			if (ret)
2632 				break;
2633 
2634 			/*
2635 			 * Before replaying extents, truncate the inode to its
2636 			 * size. We need to do it now and not after log replay
2637 			 * because before an fsync we can have prealloc extents
2638 			 * added beyond the inode's i_size. If we did it after,
2639 			 * through orphan cleanup for example, we would drop
2640 			 * those prealloc extents just after replaying them.
2641 			 */
2642 			if (S_ISREG(mode)) {
2643 				struct btrfs_drop_extents_args drop_args = { 0 };
2644 				struct inode *inode;
2645 				u64 from;
2646 
2647 				inode = read_one_inode(root, key.objectid);
2648 				if (!inode) {
2649 					ret = -EIO;
2650 					break;
2651 				}
2652 				from = ALIGN(i_size_read(inode),
2653 					     root->fs_info->sectorsize);
2654 				drop_args.start = from;
2655 				drop_args.end = (u64)-1;
2656 				drop_args.drop_cache = true;
2657 				ret = btrfs_drop_extents(wc->trans, root,
2658 							 BTRFS_I(inode),
2659 							 &drop_args);
2660 				if (!ret) {
2661 					inode_sub_bytes(inode,
2662 							drop_args.bytes_found);
2663 					/* Update the inode's nbytes. */
2664 					ret = btrfs_update_inode(wc->trans,
2665 							root, BTRFS_I(inode));
2666 				}
2667 				iput(inode);
2668 				if (ret)
2669 					break;
2670 			}
2671 
2672 			ret = link_to_fixup_dir(wc->trans, root,
2673 						path, key.objectid);
2674 			if (ret)
2675 				break;
2676 		}
2677 
2678 		if (wc->ignore_cur_inode)
2679 			continue;
2680 
2681 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2682 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2683 			ret = replay_one_dir_item(wc->trans, root, path,
2684 						  eb, i, &key);
2685 			if (ret)
2686 				break;
2687 		}
2688 
2689 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2690 			continue;
2691 
2692 		/* these keys are simply copied */
2693 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2694 			ret = overwrite_item(wc->trans, root, path,
2695 					     eb, i, &key);
2696 			if (ret)
2697 				break;
2698 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2699 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2700 			ret = add_inode_ref(wc->trans, root, log, path,
2701 					    eb, i, &key);
2702 			if (ret && ret != -ENOENT)
2703 				break;
2704 			ret = 0;
2705 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2706 			ret = replay_one_extent(wc->trans, root, path,
2707 						eb, i, &key);
2708 			if (ret)
2709 				break;
2710 		}
2711 		/*
2712 		 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the
2713 		 * BTRFS_DIR_INDEX_KEY items which we use to derive the
2714 		 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an
2715 		 * older kernel with such keys, ignore them.
2716 		 */
2717 	}
2718 	btrfs_free_path(path);
2719 	return ret;
2720 }
2721 
2722 /*
2723  * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2724  */
2725 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2726 {
2727 	struct btrfs_block_group *cache;
2728 
2729 	cache = btrfs_lookup_block_group(fs_info, start);
2730 	if (!cache) {
2731 		btrfs_err(fs_info, "unable to find block group for %llu", start);
2732 		return;
2733 	}
2734 
2735 	spin_lock(&cache->space_info->lock);
2736 	spin_lock(&cache->lock);
2737 	cache->reserved -= fs_info->nodesize;
2738 	cache->space_info->bytes_reserved -= fs_info->nodesize;
2739 	spin_unlock(&cache->lock);
2740 	spin_unlock(&cache->space_info->lock);
2741 
2742 	btrfs_put_block_group(cache);
2743 }
2744 
2745 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2746 				   struct btrfs_root *root,
2747 				   struct btrfs_path *path, int *level,
2748 				   struct walk_control *wc)
2749 {
2750 	struct btrfs_fs_info *fs_info = root->fs_info;
2751 	u64 bytenr;
2752 	u64 ptr_gen;
2753 	struct extent_buffer *next;
2754 	struct extent_buffer *cur;
2755 	u32 blocksize;
2756 	int ret = 0;
2757 
2758 	while (*level > 0) {
2759 		struct btrfs_key first_key;
2760 
2761 		cur = path->nodes[*level];
2762 
2763 		WARN_ON(btrfs_header_level(cur) != *level);
2764 
2765 		if (path->slots[*level] >=
2766 		    btrfs_header_nritems(cur))
2767 			break;
2768 
2769 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2770 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2771 		btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2772 		blocksize = fs_info->nodesize;
2773 
2774 		next = btrfs_find_create_tree_block(fs_info, bytenr,
2775 						    btrfs_header_owner(cur),
2776 						    *level - 1);
2777 		if (IS_ERR(next))
2778 			return PTR_ERR(next);
2779 
2780 		if (*level == 1) {
2781 			ret = wc->process_func(root, next, wc, ptr_gen,
2782 					       *level - 1);
2783 			if (ret) {
2784 				free_extent_buffer(next);
2785 				return ret;
2786 			}
2787 
2788 			path->slots[*level]++;
2789 			if (wc->free) {
2790 				ret = btrfs_read_extent_buffer(next, ptr_gen,
2791 							*level - 1, &first_key);
2792 				if (ret) {
2793 					free_extent_buffer(next);
2794 					return ret;
2795 				}
2796 
2797 				if (trans) {
2798 					btrfs_tree_lock(next);
2799 					btrfs_clean_tree_block(next);
2800 					btrfs_wait_tree_block_writeback(next);
2801 					btrfs_tree_unlock(next);
2802 					ret = btrfs_pin_reserved_extent(trans,
2803 							bytenr, blocksize);
2804 					if (ret) {
2805 						free_extent_buffer(next);
2806 						return ret;
2807 					}
2808 					btrfs_redirty_list_add(
2809 						trans->transaction, next);
2810 				} else {
2811 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2812 						clear_extent_buffer_dirty(next);
2813 					unaccount_log_buffer(fs_info, bytenr);
2814 				}
2815 			}
2816 			free_extent_buffer(next);
2817 			continue;
2818 		}
2819 		ret = btrfs_read_extent_buffer(next, ptr_gen, *level - 1, &first_key);
2820 		if (ret) {
2821 			free_extent_buffer(next);
2822 			return ret;
2823 		}
2824 
2825 		if (path->nodes[*level-1])
2826 			free_extent_buffer(path->nodes[*level-1]);
2827 		path->nodes[*level-1] = next;
2828 		*level = btrfs_header_level(next);
2829 		path->slots[*level] = 0;
2830 		cond_resched();
2831 	}
2832 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2833 
2834 	cond_resched();
2835 	return 0;
2836 }
2837 
2838 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2839 				 struct btrfs_root *root,
2840 				 struct btrfs_path *path, int *level,
2841 				 struct walk_control *wc)
2842 {
2843 	struct btrfs_fs_info *fs_info = root->fs_info;
2844 	int i;
2845 	int slot;
2846 	int ret;
2847 
2848 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2849 		slot = path->slots[i];
2850 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2851 			path->slots[i]++;
2852 			*level = i;
2853 			WARN_ON(*level == 0);
2854 			return 0;
2855 		} else {
2856 			ret = wc->process_func(root, path->nodes[*level], wc,
2857 				 btrfs_header_generation(path->nodes[*level]),
2858 				 *level);
2859 			if (ret)
2860 				return ret;
2861 
2862 			if (wc->free) {
2863 				struct extent_buffer *next;
2864 
2865 				next = path->nodes[*level];
2866 
2867 				if (trans) {
2868 					btrfs_tree_lock(next);
2869 					btrfs_clean_tree_block(next);
2870 					btrfs_wait_tree_block_writeback(next);
2871 					btrfs_tree_unlock(next);
2872 					ret = btrfs_pin_reserved_extent(trans,
2873 						     path->nodes[*level]->start,
2874 						     path->nodes[*level]->len);
2875 					if (ret)
2876 						return ret;
2877 					btrfs_redirty_list_add(trans->transaction,
2878 							       next);
2879 				} else {
2880 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2881 						clear_extent_buffer_dirty(next);
2882 
2883 					unaccount_log_buffer(fs_info,
2884 						path->nodes[*level]->start);
2885 				}
2886 			}
2887 			free_extent_buffer(path->nodes[*level]);
2888 			path->nodes[*level] = NULL;
2889 			*level = i + 1;
2890 		}
2891 	}
2892 	return 1;
2893 }
2894 
2895 /*
2896  * drop the reference count on the tree rooted at 'snap'.  This traverses
2897  * the tree freeing any blocks that have a ref count of zero after being
2898  * decremented.
2899  */
2900 static int walk_log_tree(struct btrfs_trans_handle *trans,
2901 			 struct btrfs_root *log, struct walk_control *wc)
2902 {
2903 	struct btrfs_fs_info *fs_info = log->fs_info;
2904 	int ret = 0;
2905 	int wret;
2906 	int level;
2907 	struct btrfs_path *path;
2908 	int orig_level;
2909 
2910 	path = btrfs_alloc_path();
2911 	if (!path)
2912 		return -ENOMEM;
2913 
2914 	level = btrfs_header_level(log->node);
2915 	orig_level = level;
2916 	path->nodes[level] = log->node;
2917 	atomic_inc(&log->node->refs);
2918 	path->slots[level] = 0;
2919 
2920 	while (1) {
2921 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2922 		if (wret > 0)
2923 			break;
2924 		if (wret < 0) {
2925 			ret = wret;
2926 			goto out;
2927 		}
2928 
2929 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2930 		if (wret > 0)
2931 			break;
2932 		if (wret < 0) {
2933 			ret = wret;
2934 			goto out;
2935 		}
2936 	}
2937 
2938 	/* was the root node processed? if not, catch it here */
2939 	if (path->nodes[orig_level]) {
2940 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2941 			 btrfs_header_generation(path->nodes[orig_level]),
2942 			 orig_level);
2943 		if (ret)
2944 			goto out;
2945 		if (wc->free) {
2946 			struct extent_buffer *next;
2947 
2948 			next = path->nodes[orig_level];
2949 
2950 			if (trans) {
2951 				btrfs_tree_lock(next);
2952 				btrfs_clean_tree_block(next);
2953 				btrfs_wait_tree_block_writeback(next);
2954 				btrfs_tree_unlock(next);
2955 				ret = btrfs_pin_reserved_extent(trans,
2956 						next->start, next->len);
2957 				if (ret)
2958 					goto out;
2959 				btrfs_redirty_list_add(trans->transaction, next);
2960 			} else {
2961 				if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2962 					clear_extent_buffer_dirty(next);
2963 				unaccount_log_buffer(fs_info, next->start);
2964 			}
2965 		}
2966 	}
2967 
2968 out:
2969 	btrfs_free_path(path);
2970 	return ret;
2971 }
2972 
2973 /*
2974  * helper function to update the item for a given subvolumes log root
2975  * in the tree of log roots
2976  */
2977 static int update_log_root(struct btrfs_trans_handle *trans,
2978 			   struct btrfs_root *log,
2979 			   struct btrfs_root_item *root_item)
2980 {
2981 	struct btrfs_fs_info *fs_info = log->fs_info;
2982 	int ret;
2983 
2984 	if (log->log_transid == 1) {
2985 		/* insert root item on the first sync */
2986 		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2987 				&log->root_key, root_item);
2988 	} else {
2989 		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2990 				&log->root_key, root_item);
2991 	}
2992 	return ret;
2993 }
2994 
2995 static void wait_log_commit(struct btrfs_root *root, int transid)
2996 {
2997 	DEFINE_WAIT(wait);
2998 	int index = transid % 2;
2999 
3000 	/*
3001 	 * we only allow two pending log transactions at a time,
3002 	 * so we know that if ours is more than 2 older than the
3003 	 * current transaction, we're done
3004 	 */
3005 	for (;;) {
3006 		prepare_to_wait(&root->log_commit_wait[index],
3007 				&wait, TASK_UNINTERRUPTIBLE);
3008 
3009 		if (!(root->log_transid_committed < transid &&
3010 		      atomic_read(&root->log_commit[index])))
3011 			break;
3012 
3013 		mutex_unlock(&root->log_mutex);
3014 		schedule();
3015 		mutex_lock(&root->log_mutex);
3016 	}
3017 	finish_wait(&root->log_commit_wait[index], &wait);
3018 }
3019 
3020 static void wait_for_writer(struct btrfs_root *root)
3021 {
3022 	DEFINE_WAIT(wait);
3023 
3024 	for (;;) {
3025 		prepare_to_wait(&root->log_writer_wait, &wait,
3026 				TASK_UNINTERRUPTIBLE);
3027 		if (!atomic_read(&root->log_writers))
3028 			break;
3029 
3030 		mutex_unlock(&root->log_mutex);
3031 		schedule();
3032 		mutex_lock(&root->log_mutex);
3033 	}
3034 	finish_wait(&root->log_writer_wait, &wait);
3035 }
3036 
3037 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
3038 					struct btrfs_log_ctx *ctx)
3039 {
3040 	mutex_lock(&root->log_mutex);
3041 	list_del_init(&ctx->list);
3042 	mutex_unlock(&root->log_mutex);
3043 }
3044 
3045 /*
3046  * Invoked in log mutex context, or be sure there is no other task which
3047  * can access the list.
3048  */
3049 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
3050 					     int index, int error)
3051 {
3052 	struct btrfs_log_ctx *ctx;
3053 	struct btrfs_log_ctx *safe;
3054 
3055 	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
3056 		list_del_init(&ctx->list);
3057 		ctx->log_ret = error;
3058 	}
3059 }
3060 
3061 /*
3062  * btrfs_sync_log does sends a given tree log down to the disk and
3063  * updates the super blocks to record it.  When this call is done,
3064  * you know that any inodes previously logged are safely on disk only
3065  * if it returns 0.
3066  *
3067  * Any other return value means you need to call btrfs_commit_transaction.
3068  * Some of the edge cases for fsyncing directories that have had unlinks
3069  * or renames done in the past mean that sometimes the only safe
3070  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
3071  * that has happened.
3072  */
3073 int btrfs_sync_log(struct btrfs_trans_handle *trans,
3074 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
3075 {
3076 	int index1;
3077 	int index2;
3078 	int mark;
3079 	int ret;
3080 	struct btrfs_fs_info *fs_info = root->fs_info;
3081 	struct btrfs_root *log = root->log_root;
3082 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
3083 	struct btrfs_root_item new_root_item;
3084 	int log_transid = 0;
3085 	struct btrfs_log_ctx root_log_ctx;
3086 	struct blk_plug plug;
3087 	u64 log_root_start;
3088 	u64 log_root_level;
3089 
3090 	mutex_lock(&root->log_mutex);
3091 	log_transid = ctx->log_transid;
3092 	if (root->log_transid_committed >= log_transid) {
3093 		mutex_unlock(&root->log_mutex);
3094 		return ctx->log_ret;
3095 	}
3096 
3097 	index1 = log_transid % 2;
3098 	if (atomic_read(&root->log_commit[index1])) {
3099 		wait_log_commit(root, log_transid);
3100 		mutex_unlock(&root->log_mutex);
3101 		return ctx->log_ret;
3102 	}
3103 	ASSERT(log_transid == root->log_transid);
3104 	atomic_set(&root->log_commit[index1], 1);
3105 
3106 	/* wait for previous tree log sync to complete */
3107 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
3108 		wait_log_commit(root, log_transid - 1);
3109 
3110 	while (1) {
3111 		int batch = atomic_read(&root->log_batch);
3112 		/* when we're on an ssd, just kick the log commit out */
3113 		if (!btrfs_test_opt(fs_info, SSD) &&
3114 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3115 			mutex_unlock(&root->log_mutex);
3116 			schedule_timeout_uninterruptible(1);
3117 			mutex_lock(&root->log_mutex);
3118 		}
3119 		wait_for_writer(root);
3120 		if (batch == atomic_read(&root->log_batch))
3121 			break;
3122 	}
3123 
3124 	/* bail out if we need to do a full commit */
3125 	if (btrfs_need_log_full_commit(trans)) {
3126 		ret = BTRFS_LOG_FORCE_COMMIT;
3127 		mutex_unlock(&root->log_mutex);
3128 		goto out;
3129 	}
3130 
3131 	if (log_transid % 2 == 0)
3132 		mark = EXTENT_DIRTY;
3133 	else
3134 		mark = EXTENT_NEW;
3135 
3136 	/* we start IO on  all the marked extents here, but we don't actually
3137 	 * wait for them until later.
3138 	 */
3139 	blk_start_plug(&plug);
3140 	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3141 	/*
3142 	 * -EAGAIN happens when someone, e.g., a concurrent transaction
3143 	 *  commit, writes a dirty extent in this tree-log commit. This
3144 	 *  concurrent write will create a hole writing out the extents,
3145 	 *  and we cannot proceed on a zoned filesystem, requiring
3146 	 *  sequential writing. While we can bail out to a full commit
3147 	 *  here, but we can continue hoping the concurrent writing fills
3148 	 *  the hole.
3149 	 */
3150 	if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
3151 		ret = 0;
3152 	if (ret) {
3153 		blk_finish_plug(&plug);
3154 		btrfs_abort_transaction(trans, ret);
3155 		btrfs_set_log_full_commit(trans);
3156 		mutex_unlock(&root->log_mutex);
3157 		goto out;
3158 	}
3159 
3160 	/*
3161 	 * We _must_ update under the root->log_mutex in order to make sure we
3162 	 * have a consistent view of the log root we are trying to commit at
3163 	 * this moment.
3164 	 *
3165 	 * We _must_ copy this into a local copy, because we are not holding the
3166 	 * log_root_tree->log_mutex yet.  This is important because when we
3167 	 * commit the log_root_tree we must have a consistent view of the
3168 	 * log_root_tree when we update the super block to point at the
3169 	 * log_root_tree bytenr.  If we update the log_root_tree here we'll race
3170 	 * with the commit and possibly point at the new block which we may not
3171 	 * have written out.
3172 	 */
3173 	btrfs_set_root_node(&log->root_item, log->node);
3174 	memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3175 
3176 	root->log_transid++;
3177 	log->log_transid = root->log_transid;
3178 	root->log_start_pid = 0;
3179 	/*
3180 	 * IO has been started, blocks of the log tree have WRITTEN flag set
3181 	 * in their headers. new modifications of the log will be written to
3182 	 * new positions. so it's safe to allow log writers to go in.
3183 	 */
3184 	mutex_unlock(&root->log_mutex);
3185 
3186 	if (btrfs_is_zoned(fs_info)) {
3187 		mutex_lock(&fs_info->tree_root->log_mutex);
3188 		if (!log_root_tree->node) {
3189 			ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3190 			if (ret) {
3191 				mutex_unlock(&fs_info->tree_root->log_mutex);
3192 				blk_finish_plug(&plug);
3193 				goto out;
3194 			}
3195 		}
3196 		mutex_unlock(&fs_info->tree_root->log_mutex);
3197 	}
3198 
3199 	btrfs_init_log_ctx(&root_log_ctx, NULL);
3200 
3201 	mutex_lock(&log_root_tree->log_mutex);
3202 
3203 	index2 = log_root_tree->log_transid % 2;
3204 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3205 	root_log_ctx.log_transid = log_root_tree->log_transid;
3206 
3207 	/*
3208 	 * Now we are safe to update the log_root_tree because we're under the
3209 	 * log_mutex, and we're a current writer so we're holding the commit
3210 	 * open until we drop the log_mutex.
3211 	 */
3212 	ret = update_log_root(trans, log, &new_root_item);
3213 	if (ret) {
3214 		if (!list_empty(&root_log_ctx.list))
3215 			list_del_init(&root_log_ctx.list);
3216 
3217 		blk_finish_plug(&plug);
3218 		btrfs_set_log_full_commit(trans);
3219 
3220 		if (ret != -ENOSPC) {
3221 			btrfs_abort_transaction(trans, ret);
3222 			mutex_unlock(&log_root_tree->log_mutex);
3223 			goto out;
3224 		}
3225 		btrfs_wait_tree_log_extents(log, mark);
3226 		mutex_unlock(&log_root_tree->log_mutex);
3227 		ret = BTRFS_LOG_FORCE_COMMIT;
3228 		goto out;
3229 	}
3230 
3231 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3232 		blk_finish_plug(&plug);
3233 		list_del_init(&root_log_ctx.list);
3234 		mutex_unlock(&log_root_tree->log_mutex);
3235 		ret = root_log_ctx.log_ret;
3236 		goto out;
3237 	}
3238 
3239 	index2 = root_log_ctx.log_transid % 2;
3240 	if (atomic_read(&log_root_tree->log_commit[index2])) {
3241 		blk_finish_plug(&plug);
3242 		ret = btrfs_wait_tree_log_extents(log, mark);
3243 		wait_log_commit(log_root_tree,
3244 				root_log_ctx.log_transid);
3245 		mutex_unlock(&log_root_tree->log_mutex);
3246 		if (!ret)
3247 			ret = root_log_ctx.log_ret;
3248 		goto out;
3249 	}
3250 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3251 	atomic_set(&log_root_tree->log_commit[index2], 1);
3252 
3253 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3254 		wait_log_commit(log_root_tree,
3255 				root_log_ctx.log_transid - 1);
3256 	}
3257 
3258 	/*
3259 	 * now that we've moved on to the tree of log tree roots,
3260 	 * check the full commit flag again
3261 	 */
3262 	if (btrfs_need_log_full_commit(trans)) {
3263 		blk_finish_plug(&plug);
3264 		btrfs_wait_tree_log_extents(log, mark);
3265 		mutex_unlock(&log_root_tree->log_mutex);
3266 		ret = BTRFS_LOG_FORCE_COMMIT;
3267 		goto out_wake_log_root;
3268 	}
3269 
3270 	ret = btrfs_write_marked_extents(fs_info,
3271 					 &log_root_tree->dirty_log_pages,
3272 					 EXTENT_DIRTY | EXTENT_NEW);
3273 	blk_finish_plug(&plug);
3274 	/*
3275 	 * As described above, -EAGAIN indicates a hole in the extents. We
3276 	 * cannot wait for these write outs since the waiting cause a
3277 	 * deadlock. Bail out to the full commit instead.
3278 	 */
3279 	if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3280 		btrfs_set_log_full_commit(trans);
3281 		btrfs_wait_tree_log_extents(log, mark);
3282 		mutex_unlock(&log_root_tree->log_mutex);
3283 		goto out_wake_log_root;
3284 	} else if (ret) {
3285 		btrfs_set_log_full_commit(trans);
3286 		btrfs_abort_transaction(trans, ret);
3287 		mutex_unlock(&log_root_tree->log_mutex);
3288 		goto out_wake_log_root;
3289 	}
3290 	ret = btrfs_wait_tree_log_extents(log, mark);
3291 	if (!ret)
3292 		ret = btrfs_wait_tree_log_extents(log_root_tree,
3293 						  EXTENT_NEW | EXTENT_DIRTY);
3294 	if (ret) {
3295 		btrfs_set_log_full_commit(trans);
3296 		mutex_unlock(&log_root_tree->log_mutex);
3297 		goto out_wake_log_root;
3298 	}
3299 
3300 	log_root_start = log_root_tree->node->start;
3301 	log_root_level = btrfs_header_level(log_root_tree->node);
3302 	log_root_tree->log_transid++;
3303 	mutex_unlock(&log_root_tree->log_mutex);
3304 
3305 	/*
3306 	 * Here we are guaranteed that nobody is going to write the superblock
3307 	 * for the current transaction before us and that neither we do write
3308 	 * our superblock before the previous transaction finishes its commit
3309 	 * and writes its superblock, because:
3310 	 *
3311 	 * 1) We are holding a handle on the current transaction, so no body
3312 	 *    can commit it until we release the handle;
3313 	 *
3314 	 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3315 	 *    if the previous transaction is still committing, and hasn't yet
3316 	 *    written its superblock, we wait for it to do it, because a
3317 	 *    transaction commit acquires the tree_log_mutex when the commit
3318 	 *    begins and releases it only after writing its superblock.
3319 	 */
3320 	mutex_lock(&fs_info->tree_log_mutex);
3321 
3322 	/*
3323 	 * The previous transaction writeout phase could have failed, and thus
3324 	 * marked the fs in an error state.  We must not commit here, as we
3325 	 * could have updated our generation in the super_for_commit and
3326 	 * writing the super here would result in transid mismatches.  If there
3327 	 * is an error here just bail.
3328 	 */
3329 	if (BTRFS_FS_ERROR(fs_info)) {
3330 		ret = -EIO;
3331 		btrfs_set_log_full_commit(trans);
3332 		btrfs_abort_transaction(trans, ret);
3333 		mutex_unlock(&fs_info->tree_log_mutex);
3334 		goto out_wake_log_root;
3335 	}
3336 
3337 	btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3338 	btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3339 	ret = write_all_supers(fs_info, 1);
3340 	mutex_unlock(&fs_info->tree_log_mutex);
3341 	if (ret) {
3342 		btrfs_set_log_full_commit(trans);
3343 		btrfs_abort_transaction(trans, ret);
3344 		goto out_wake_log_root;
3345 	}
3346 
3347 	/*
3348 	 * We know there can only be one task here, since we have not yet set
3349 	 * root->log_commit[index1] to 0 and any task attempting to sync the
3350 	 * log must wait for the previous log transaction to commit if it's
3351 	 * still in progress or wait for the current log transaction commit if
3352 	 * someone else already started it. We use <= and not < because the
3353 	 * first log transaction has an ID of 0.
3354 	 */
3355 	ASSERT(root->last_log_commit <= log_transid);
3356 	root->last_log_commit = log_transid;
3357 
3358 out_wake_log_root:
3359 	mutex_lock(&log_root_tree->log_mutex);
3360 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3361 
3362 	log_root_tree->log_transid_committed++;
3363 	atomic_set(&log_root_tree->log_commit[index2], 0);
3364 	mutex_unlock(&log_root_tree->log_mutex);
3365 
3366 	/*
3367 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3368 	 * all the updates above are seen by the woken threads. It might not be
3369 	 * necessary, but proving that seems to be hard.
3370 	 */
3371 	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3372 out:
3373 	mutex_lock(&root->log_mutex);
3374 	btrfs_remove_all_log_ctxs(root, index1, ret);
3375 	root->log_transid_committed++;
3376 	atomic_set(&root->log_commit[index1], 0);
3377 	mutex_unlock(&root->log_mutex);
3378 
3379 	/*
3380 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3381 	 * all the updates above are seen by the woken threads. It might not be
3382 	 * necessary, but proving that seems to be hard.
3383 	 */
3384 	cond_wake_up(&root->log_commit_wait[index1]);
3385 	return ret;
3386 }
3387 
3388 static void free_log_tree(struct btrfs_trans_handle *trans,
3389 			  struct btrfs_root *log)
3390 {
3391 	int ret;
3392 	struct walk_control wc = {
3393 		.free = 1,
3394 		.process_func = process_one_buffer
3395 	};
3396 
3397 	if (log->node) {
3398 		ret = walk_log_tree(trans, log, &wc);
3399 		if (ret) {
3400 			/*
3401 			 * We weren't able to traverse the entire log tree, the
3402 			 * typical scenario is getting an -EIO when reading an
3403 			 * extent buffer of the tree, due to a previous writeback
3404 			 * failure of it.
3405 			 */
3406 			set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
3407 				&log->fs_info->fs_state);
3408 
3409 			/*
3410 			 * Some extent buffers of the log tree may still be dirty
3411 			 * and not yet written back to storage, because we may
3412 			 * have updates to a log tree without syncing a log tree,
3413 			 * such as during rename and link operations. So flush
3414 			 * them out and wait for their writeback to complete, so
3415 			 * that we properly cleanup their state and pages.
3416 			 */
3417 			btrfs_write_marked_extents(log->fs_info,
3418 						   &log->dirty_log_pages,
3419 						   EXTENT_DIRTY | EXTENT_NEW);
3420 			btrfs_wait_tree_log_extents(log,
3421 						    EXTENT_DIRTY | EXTENT_NEW);
3422 
3423 			if (trans)
3424 				btrfs_abort_transaction(trans, ret);
3425 			else
3426 				btrfs_handle_fs_error(log->fs_info, ret, NULL);
3427 		}
3428 	}
3429 
3430 	clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3431 			  EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3432 	extent_io_tree_release(&log->log_csum_range);
3433 
3434 	btrfs_put_root(log);
3435 }
3436 
3437 /*
3438  * free all the extents used by the tree log.  This should be called
3439  * at commit time of the full transaction
3440  */
3441 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3442 {
3443 	if (root->log_root) {
3444 		free_log_tree(trans, root->log_root);
3445 		root->log_root = NULL;
3446 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3447 	}
3448 	return 0;
3449 }
3450 
3451 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3452 			     struct btrfs_fs_info *fs_info)
3453 {
3454 	if (fs_info->log_root_tree) {
3455 		free_log_tree(trans, fs_info->log_root_tree);
3456 		fs_info->log_root_tree = NULL;
3457 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3458 	}
3459 	return 0;
3460 }
3461 
3462 /*
3463  * Check if an inode was logged in the current transaction. This correctly deals
3464  * with the case where the inode was logged but has a logged_trans of 0, which
3465  * happens if the inode is evicted and loaded again, as logged_trans is an in
3466  * memory only field (not persisted).
3467  *
3468  * Returns 1 if the inode was logged before in the transaction, 0 if it was not,
3469  * and < 0 on error.
3470  */
3471 static int inode_logged(struct btrfs_trans_handle *trans,
3472 			struct btrfs_inode *inode,
3473 			struct btrfs_path *path_in)
3474 {
3475 	struct btrfs_path *path = path_in;
3476 	struct btrfs_key key;
3477 	int ret;
3478 
3479 	if (inode->logged_trans == trans->transid)
3480 		return 1;
3481 
3482 	/*
3483 	 * If logged_trans is not 0, then we know the inode logged was not logged
3484 	 * in this transaction, so we can return false right away.
3485 	 */
3486 	if (inode->logged_trans > 0)
3487 		return 0;
3488 
3489 	/*
3490 	 * If no log tree was created for this root in this transaction, then
3491 	 * the inode can not have been logged in this transaction. In that case
3492 	 * set logged_trans to anything greater than 0 and less than the current
3493 	 * transaction's ID, to avoid the search below in a future call in case
3494 	 * a log tree gets created after this.
3495 	 */
3496 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) {
3497 		inode->logged_trans = trans->transid - 1;
3498 		return 0;
3499 	}
3500 
3501 	/*
3502 	 * We have a log tree and the inode's logged_trans is 0. We can't tell
3503 	 * for sure if the inode was logged before in this transaction by looking
3504 	 * only at logged_trans. We could be pessimistic and assume it was, but
3505 	 * that can lead to unnecessarily logging an inode during rename and link
3506 	 * operations, and then further updating the log in followup rename and
3507 	 * link operations, specially if it's a directory, which adds latency
3508 	 * visible to applications doing a series of rename or link operations.
3509 	 *
3510 	 * A logged_trans of 0 here can mean several things:
3511 	 *
3512 	 * 1) The inode was never logged since the filesystem was mounted, and may
3513 	 *    or may have not been evicted and loaded again;
3514 	 *
3515 	 * 2) The inode was logged in a previous transaction, then evicted and
3516 	 *    then loaded again;
3517 	 *
3518 	 * 3) The inode was logged in the current transaction, then evicted and
3519 	 *    then loaded again.
3520 	 *
3521 	 * For cases 1) and 2) we don't want to return true, but we need to detect
3522 	 * case 3) and return true. So we do a search in the log root for the inode
3523 	 * item.
3524 	 */
3525 	key.objectid = btrfs_ino(inode);
3526 	key.type = BTRFS_INODE_ITEM_KEY;
3527 	key.offset = 0;
3528 
3529 	if (!path) {
3530 		path = btrfs_alloc_path();
3531 		if (!path)
3532 			return -ENOMEM;
3533 	}
3534 
3535 	ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3536 
3537 	if (path_in)
3538 		btrfs_release_path(path);
3539 	else
3540 		btrfs_free_path(path);
3541 
3542 	/*
3543 	 * Logging an inode always results in logging its inode item. So if we
3544 	 * did not find the item we know the inode was not logged for sure.
3545 	 */
3546 	if (ret < 0) {
3547 		return ret;
3548 	} else if (ret > 0) {
3549 		/*
3550 		 * Set logged_trans to a value greater than 0 and less then the
3551 		 * current transaction to avoid doing the search in future calls.
3552 		 */
3553 		inode->logged_trans = trans->transid - 1;
3554 		return 0;
3555 	}
3556 
3557 	/*
3558 	 * The inode was previously logged and then evicted, set logged_trans to
3559 	 * the current transacion's ID, to avoid future tree searches as long as
3560 	 * the inode is not evicted again.
3561 	 */
3562 	inode->logged_trans = trans->transid;
3563 
3564 	/*
3565 	 * If it's a directory, then we must set last_dir_index_offset to the
3566 	 * maximum possible value, so that the next attempt to log the inode does
3567 	 * not skip checking if dir index keys found in modified subvolume tree
3568 	 * leaves have been logged before, otherwise it would result in attempts
3569 	 * to insert duplicate dir index keys in the log tree. This must be done
3570 	 * because last_dir_index_offset is an in-memory only field, not persisted
3571 	 * in the inode item or any other on-disk structure, so its value is lost
3572 	 * once the inode is evicted.
3573 	 */
3574 	if (S_ISDIR(inode->vfs_inode.i_mode))
3575 		inode->last_dir_index_offset = (u64)-1;
3576 
3577 	return 1;
3578 }
3579 
3580 /*
3581  * Delete a directory entry from the log if it exists.
3582  *
3583  * Returns < 0 on error
3584  *           1 if the entry does not exists
3585  *           0 if the entry existed and was successfully deleted
3586  */
3587 static int del_logged_dentry(struct btrfs_trans_handle *trans,
3588 			     struct btrfs_root *log,
3589 			     struct btrfs_path *path,
3590 			     u64 dir_ino,
3591 			     const char *name, int name_len,
3592 			     u64 index)
3593 {
3594 	struct btrfs_dir_item *di;
3595 
3596 	/*
3597 	 * We only log dir index items of a directory, so we don't need to look
3598 	 * for dir item keys.
3599 	 */
3600 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3601 					 index, name, name_len, -1);
3602 	if (IS_ERR(di))
3603 		return PTR_ERR(di);
3604 	else if (!di)
3605 		return 1;
3606 
3607 	/*
3608 	 * We do not need to update the size field of the directory's
3609 	 * inode item because on log replay we update the field to reflect
3610 	 * all existing entries in the directory (see overwrite_item()).
3611 	 */
3612 	return btrfs_delete_one_dir_name(trans, log, path, di);
3613 }
3614 
3615 /*
3616  * If both a file and directory are logged, and unlinks or renames are
3617  * mixed in, we have a few interesting corners:
3618  *
3619  * create file X in dir Y
3620  * link file X to X.link in dir Y
3621  * fsync file X
3622  * unlink file X but leave X.link
3623  * fsync dir Y
3624  *
3625  * After a crash we would expect only X.link to exist.  But file X
3626  * didn't get fsync'd again so the log has back refs for X and X.link.
3627  *
3628  * We solve this by removing directory entries and inode backrefs from the
3629  * log when a file that was logged in the current transaction is
3630  * unlinked.  Any later fsync will include the updated log entries, and
3631  * we'll be able to reconstruct the proper directory items from backrefs.
3632  *
3633  * This optimizations allows us to avoid relogging the entire inode
3634  * or the entire directory.
3635  */
3636 void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3637 				  struct btrfs_root *root,
3638 				  const char *name, int name_len,
3639 				  struct btrfs_inode *dir, u64 index)
3640 {
3641 	struct btrfs_path *path;
3642 	int ret;
3643 
3644 	ret = inode_logged(trans, dir, NULL);
3645 	if (ret == 0)
3646 		return;
3647 	else if (ret < 0) {
3648 		btrfs_set_log_full_commit(trans);
3649 		return;
3650 	}
3651 
3652 	ret = join_running_log_trans(root);
3653 	if (ret)
3654 		return;
3655 
3656 	mutex_lock(&dir->log_mutex);
3657 
3658 	path = btrfs_alloc_path();
3659 	if (!path) {
3660 		ret = -ENOMEM;
3661 		goto out_unlock;
3662 	}
3663 
3664 	ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir),
3665 				name, name_len, index);
3666 	btrfs_free_path(path);
3667 out_unlock:
3668 	mutex_unlock(&dir->log_mutex);
3669 	if (ret < 0)
3670 		btrfs_set_log_full_commit(trans);
3671 	btrfs_end_log_trans(root);
3672 }
3673 
3674 /* see comments for btrfs_del_dir_entries_in_log */
3675 void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3676 				struct btrfs_root *root,
3677 				const char *name, int name_len,
3678 				struct btrfs_inode *inode, u64 dirid)
3679 {
3680 	struct btrfs_root *log;
3681 	u64 index;
3682 	int ret;
3683 
3684 	ret = inode_logged(trans, inode, NULL);
3685 	if (ret == 0)
3686 		return;
3687 	else if (ret < 0) {
3688 		btrfs_set_log_full_commit(trans);
3689 		return;
3690 	}
3691 
3692 	ret = join_running_log_trans(root);
3693 	if (ret)
3694 		return;
3695 	log = root->log_root;
3696 	mutex_lock(&inode->log_mutex);
3697 
3698 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3699 				  dirid, &index);
3700 	mutex_unlock(&inode->log_mutex);
3701 	if (ret < 0 && ret != -ENOENT)
3702 		btrfs_set_log_full_commit(trans);
3703 	btrfs_end_log_trans(root);
3704 }
3705 
3706 /*
3707  * creates a range item in the log for 'dirid'.  first_offset and
3708  * last_offset tell us which parts of the key space the log should
3709  * be considered authoritative for.
3710  */
3711 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3712 				       struct btrfs_root *log,
3713 				       struct btrfs_path *path,
3714 				       u64 dirid,
3715 				       u64 first_offset, u64 last_offset)
3716 {
3717 	int ret;
3718 	struct btrfs_key key;
3719 	struct btrfs_dir_log_item *item;
3720 
3721 	key.objectid = dirid;
3722 	key.offset = first_offset;
3723 	key.type = BTRFS_DIR_LOG_INDEX_KEY;
3724 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3725 	/*
3726 	 * -EEXIST is fine and can happen sporadically when we are logging a
3727 	 * directory and have concurrent insertions in the subvolume's tree for
3728 	 * items from other inodes and that result in pushing off some dir items
3729 	 * from one leaf to another in order to accommodate for the new items.
3730 	 * This results in logging the same dir index range key.
3731 	 */
3732 	if (ret && ret != -EEXIST)
3733 		return ret;
3734 
3735 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3736 			      struct btrfs_dir_log_item);
3737 	if (ret == -EEXIST) {
3738 		const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item);
3739 
3740 		/*
3741 		 * btrfs_del_dir_entries_in_log() might have been called during
3742 		 * an unlink between the initial insertion of this key and the
3743 		 * current update, or we might be logging a single entry deletion
3744 		 * during a rename, so set the new last_offset to the max value.
3745 		 */
3746 		last_offset = max(last_offset, curr_end);
3747 	}
3748 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3749 	btrfs_mark_buffer_dirty(path->nodes[0]);
3750 	btrfs_release_path(path);
3751 	return 0;
3752 }
3753 
3754 static int flush_dir_items_batch(struct btrfs_trans_handle *trans,
3755 				 struct btrfs_root *log,
3756 				 struct extent_buffer *src,
3757 				 struct btrfs_path *dst_path,
3758 				 int start_slot,
3759 				 int count)
3760 {
3761 	char *ins_data = NULL;
3762 	struct btrfs_item_batch batch;
3763 	struct extent_buffer *dst;
3764 	unsigned long src_offset;
3765 	unsigned long dst_offset;
3766 	struct btrfs_key key;
3767 	u32 item_size;
3768 	int ret;
3769 	int i;
3770 
3771 	ASSERT(count > 0);
3772 	batch.nr = count;
3773 
3774 	if (count == 1) {
3775 		btrfs_item_key_to_cpu(src, &key, start_slot);
3776 		item_size = btrfs_item_size(src, start_slot);
3777 		batch.keys = &key;
3778 		batch.data_sizes = &item_size;
3779 		batch.total_data_size = item_size;
3780 	} else {
3781 		struct btrfs_key *ins_keys;
3782 		u32 *ins_sizes;
3783 
3784 		ins_data = kmalloc(count * sizeof(u32) +
3785 				   count * sizeof(struct btrfs_key), GFP_NOFS);
3786 		if (!ins_data)
3787 			return -ENOMEM;
3788 
3789 		ins_sizes = (u32 *)ins_data;
3790 		ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32));
3791 		batch.keys = ins_keys;
3792 		batch.data_sizes = ins_sizes;
3793 		batch.total_data_size = 0;
3794 
3795 		for (i = 0; i < count; i++) {
3796 			const int slot = start_slot + i;
3797 
3798 			btrfs_item_key_to_cpu(src, &ins_keys[i], slot);
3799 			ins_sizes[i] = btrfs_item_size(src, slot);
3800 			batch.total_data_size += ins_sizes[i];
3801 		}
3802 	}
3803 
3804 	ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
3805 	if (ret)
3806 		goto out;
3807 
3808 	dst = dst_path->nodes[0];
3809 	/*
3810 	 * Copy all the items in bulk, in a single copy operation. Item data is
3811 	 * organized such that it's placed at the end of a leaf and from right
3812 	 * to left. For example, the data for the second item ends at an offset
3813 	 * that matches the offset where the data for the first item starts, the
3814 	 * data for the third item ends at an offset that matches the offset
3815 	 * where the data of the second items starts, and so on.
3816 	 * Therefore our source and destination start offsets for copy match the
3817 	 * offsets of the last items (highest slots).
3818 	 */
3819 	dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1);
3820 	src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1);
3821 	copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size);
3822 	btrfs_release_path(dst_path);
3823 out:
3824 	kfree(ins_data);
3825 
3826 	return ret;
3827 }
3828 
3829 static int process_dir_items_leaf(struct btrfs_trans_handle *trans,
3830 				  struct btrfs_inode *inode,
3831 				  struct btrfs_path *path,
3832 				  struct btrfs_path *dst_path,
3833 				  struct btrfs_log_ctx *ctx,
3834 				  u64 *last_old_dentry_offset)
3835 {
3836 	struct btrfs_root *log = inode->root->log_root;
3837 	struct extent_buffer *src = path->nodes[0];
3838 	const int nritems = btrfs_header_nritems(src);
3839 	const u64 ino = btrfs_ino(inode);
3840 	bool last_found = false;
3841 	int batch_start = 0;
3842 	int batch_size = 0;
3843 	int i;
3844 
3845 	for (i = path->slots[0]; i < nritems; i++) {
3846 		struct btrfs_dir_item *di;
3847 		struct btrfs_key key;
3848 		int ret;
3849 
3850 		btrfs_item_key_to_cpu(src, &key, i);
3851 
3852 		if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) {
3853 			last_found = true;
3854 			break;
3855 		}
3856 
3857 		di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3858 		ctx->last_dir_item_offset = key.offset;
3859 
3860 		/*
3861 		 * Skip ranges of items that consist only of dir item keys created
3862 		 * in past transactions. However if we find a gap, we must log a
3863 		 * dir index range item for that gap, so that index keys in that
3864 		 * gap are deleted during log replay.
3865 		 */
3866 		if (btrfs_dir_transid(src, di) < trans->transid) {
3867 			if (key.offset > *last_old_dentry_offset + 1) {
3868 				ret = insert_dir_log_key(trans, log, dst_path,
3869 						 ino, *last_old_dentry_offset + 1,
3870 						 key.offset - 1);
3871 				if (ret < 0)
3872 					return ret;
3873 			}
3874 
3875 			*last_old_dentry_offset = key.offset;
3876 			continue;
3877 		}
3878 		/*
3879 		 * We must make sure that when we log a directory entry, the
3880 		 * corresponding inode, after log replay, has a matching link
3881 		 * count. For example:
3882 		 *
3883 		 * touch foo
3884 		 * mkdir mydir
3885 		 * sync
3886 		 * ln foo mydir/bar
3887 		 * xfs_io -c "fsync" mydir
3888 		 * <crash>
3889 		 * <mount fs and log replay>
3890 		 *
3891 		 * Would result in a fsync log that when replayed, our file inode
3892 		 * would have a link count of 1, but we get two directory entries
3893 		 * pointing to the same inode. After removing one of the names,
3894 		 * it would not be possible to remove the other name, which
3895 		 * resulted always in stale file handle errors, and would not be
3896 		 * possible to rmdir the parent directory, since its i_size could
3897 		 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
3898 		 * resulting in -ENOTEMPTY errors.
3899 		 */
3900 		if (!ctx->log_new_dentries) {
3901 			struct btrfs_key di_key;
3902 
3903 			btrfs_dir_item_key_to_cpu(src, di, &di_key);
3904 			if (di_key.type != BTRFS_ROOT_ITEM_KEY)
3905 				ctx->log_new_dentries = true;
3906 		}
3907 
3908 		if (!ctx->logged_before)
3909 			goto add_to_batch;
3910 
3911 		/*
3912 		 * If we were logged before and have logged dir items, we can skip
3913 		 * checking if any item with a key offset larger than the last one
3914 		 * we logged is in the log tree, saving time and avoiding adding
3915 		 * contention on the log tree. We can only rely on the value of
3916 		 * last_dir_index_offset when we know for sure that the inode was
3917 		 * previously logged in the current transaction.
3918 		 */
3919 		if (key.offset > inode->last_dir_index_offset)
3920 			goto add_to_batch;
3921 		/*
3922 		 * Check if the key was already logged before. If not we can add
3923 		 * it to a batch for bulk insertion.
3924 		 */
3925 		ret = btrfs_search_slot(NULL, log, &key, dst_path, 0, 0);
3926 		if (ret < 0) {
3927 			return ret;
3928 		} else if (ret > 0) {
3929 			btrfs_release_path(dst_path);
3930 			goto add_to_batch;
3931 		}
3932 
3933 		/*
3934 		 * Item exists in the log. Overwrite the item in the log if it
3935 		 * has different content or do nothing if it has exactly the same
3936 		 * content. And then flush the current batch if any - do it after
3937 		 * overwriting the current item, or we would deadlock otherwise,
3938 		 * since we are holding a path for the existing item.
3939 		 */
3940 		ret = do_overwrite_item(trans, log, dst_path, src, i, &key);
3941 		if (ret < 0)
3942 			return ret;
3943 
3944 		if (batch_size > 0) {
3945 			ret = flush_dir_items_batch(trans, log, src, dst_path,
3946 						    batch_start, batch_size);
3947 			if (ret < 0)
3948 				return ret;
3949 			batch_size = 0;
3950 		}
3951 		continue;
3952 add_to_batch:
3953 		if (batch_size == 0)
3954 			batch_start = i;
3955 		batch_size++;
3956 	}
3957 
3958 	if (batch_size > 0) {
3959 		int ret;
3960 
3961 		ret = flush_dir_items_batch(trans, log, src, dst_path,
3962 					    batch_start, batch_size);
3963 		if (ret < 0)
3964 			return ret;
3965 	}
3966 
3967 	return last_found ? 1 : 0;
3968 }
3969 
3970 /*
3971  * log all the items included in the current transaction for a given
3972  * directory.  This also creates the range items in the log tree required
3973  * to replay anything deleted before the fsync
3974  */
3975 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3976 			  struct btrfs_inode *inode,
3977 			  struct btrfs_path *path,
3978 			  struct btrfs_path *dst_path,
3979 			  struct btrfs_log_ctx *ctx,
3980 			  u64 min_offset, u64 *last_offset_ret)
3981 {
3982 	struct btrfs_key min_key;
3983 	struct btrfs_root *root = inode->root;
3984 	struct btrfs_root *log = root->log_root;
3985 	int err = 0;
3986 	int ret;
3987 	u64 last_old_dentry_offset = min_offset - 1;
3988 	u64 last_offset = (u64)-1;
3989 	u64 ino = btrfs_ino(inode);
3990 
3991 	min_key.objectid = ino;
3992 	min_key.type = BTRFS_DIR_INDEX_KEY;
3993 	min_key.offset = min_offset;
3994 
3995 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3996 
3997 	/*
3998 	 * we didn't find anything from this transaction, see if there
3999 	 * is anything at all
4000 	 */
4001 	if (ret != 0 || min_key.objectid != ino ||
4002 	    min_key.type != BTRFS_DIR_INDEX_KEY) {
4003 		min_key.objectid = ino;
4004 		min_key.type = BTRFS_DIR_INDEX_KEY;
4005 		min_key.offset = (u64)-1;
4006 		btrfs_release_path(path);
4007 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
4008 		if (ret < 0) {
4009 			btrfs_release_path(path);
4010 			return ret;
4011 		}
4012 		ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
4013 
4014 		/* if ret == 0 there are items for this type,
4015 		 * create a range to tell us the last key of this type.
4016 		 * otherwise, there are no items in this directory after
4017 		 * *min_offset, and we create a range to indicate that.
4018 		 */
4019 		if (ret == 0) {
4020 			struct btrfs_key tmp;
4021 
4022 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
4023 					      path->slots[0]);
4024 			if (tmp.type == BTRFS_DIR_INDEX_KEY)
4025 				last_old_dentry_offset = tmp.offset;
4026 		}
4027 		goto done;
4028 	}
4029 
4030 	/* go backward to find any previous key */
4031 	ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
4032 	if (ret == 0) {
4033 		struct btrfs_key tmp;
4034 
4035 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
4036 		/*
4037 		 * The dir index key before the first one we found that needs to
4038 		 * be logged might be in a previous leaf, and there might be a
4039 		 * gap between these keys, meaning that we had deletions that
4040 		 * happened. So the key range item we log (key type
4041 		 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the
4042 		 * previous key's offset plus 1, so that those deletes are replayed.
4043 		 */
4044 		if (tmp.type == BTRFS_DIR_INDEX_KEY)
4045 			last_old_dentry_offset = tmp.offset;
4046 	}
4047 	btrfs_release_path(path);
4048 
4049 	/*
4050 	 * Find the first key from this transaction again.  See the note for
4051 	 * log_new_dir_dentries, if we're logging a directory recursively we
4052 	 * won't be holding its i_mutex, which means we can modify the directory
4053 	 * while we're logging it.  If we remove an entry between our first
4054 	 * search and this search we'll not find the key again and can just
4055 	 * bail.
4056 	 */
4057 search:
4058 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
4059 	if (ret != 0)
4060 		goto done;
4061 
4062 	/*
4063 	 * we have a block from this transaction, log every item in it
4064 	 * from our directory
4065 	 */
4066 	while (1) {
4067 		ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx,
4068 					     &last_old_dentry_offset);
4069 		if (ret != 0) {
4070 			if (ret < 0)
4071 				err = ret;
4072 			goto done;
4073 		}
4074 		path->slots[0] = btrfs_header_nritems(path->nodes[0]);
4075 
4076 		/*
4077 		 * look ahead to the next item and see if it is also
4078 		 * from this directory and from this transaction
4079 		 */
4080 		ret = btrfs_next_leaf(root, path);
4081 		if (ret) {
4082 			if (ret == 1)
4083 				last_offset = (u64)-1;
4084 			else
4085 				err = ret;
4086 			goto done;
4087 		}
4088 		btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]);
4089 		if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) {
4090 			last_offset = (u64)-1;
4091 			goto done;
4092 		}
4093 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
4094 			/*
4095 			 * The next leaf was not changed in the current transaction
4096 			 * and has at least one dir index key.
4097 			 * We check for the next key because there might have been
4098 			 * one or more deletions between the last key we logged and
4099 			 * that next key. So the key range item we log (key type
4100 			 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's
4101 			 * offset minus 1, so that those deletes are replayed.
4102 			 */
4103 			last_offset = min_key.offset - 1;
4104 			goto done;
4105 		}
4106 		if (need_resched()) {
4107 			btrfs_release_path(path);
4108 			cond_resched();
4109 			goto search;
4110 		}
4111 	}
4112 done:
4113 	btrfs_release_path(path);
4114 	btrfs_release_path(dst_path);
4115 
4116 	if (err == 0) {
4117 		*last_offset_ret = last_offset;
4118 		/*
4119 		 * In case the leaf was changed in the current transaction but
4120 		 * all its dir items are from a past transaction, the last item
4121 		 * in the leaf is a dir item and there's no gap between that last
4122 		 * dir item and the first one on the next leaf (which did not
4123 		 * change in the current transaction), then we don't need to log
4124 		 * a range, last_old_dentry_offset is == to last_offset.
4125 		 */
4126 		ASSERT(last_old_dentry_offset <= last_offset);
4127 		if (last_old_dentry_offset < last_offset) {
4128 			ret = insert_dir_log_key(trans, log, path, ino,
4129 						 last_old_dentry_offset + 1,
4130 						 last_offset);
4131 			if (ret)
4132 				err = ret;
4133 		}
4134 	}
4135 	return err;
4136 }
4137 
4138 /*
4139  * logging directories is very similar to logging inodes, We find all the items
4140  * from the current transaction and write them to the log.
4141  *
4142  * The recovery code scans the directory in the subvolume, and if it finds a
4143  * key in the range logged that is not present in the log tree, then it means
4144  * that dir entry was unlinked during the transaction.
4145  *
4146  * In order for that scan to work, we must include one key smaller than
4147  * the smallest logged by this transaction and one key larger than the largest
4148  * key logged by this transaction.
4149  */
4150 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
4151 			  struct btrfs_inode *inode,
4152 			  struct btrfs_path *path,
4153 			  struct btrfs_path *dst_path,
4154 			  struct btrfs_log_ctx *ctx)
4155 {
4156 	u64 min_key;
4157 	u64 max_key;
4158 	int ret;
4159 
4160 	min_key = BTRFS_DIR_START_INDEX;
4161 	max_key = 0;
4162 	ctx->last_dir_item_offset = inode->last_dir_index_offset;
4163 
4164 	while (1) {
4165 		ret = log_dir_items(trans, inode, path, dst_path,
4166 				ctx, min_key, &max_key);
4167 		if (ret)
4168 			return ret;
4169 		if (max_key == (u64)-1)
4170 			break;
4171 		min_key = max_key + 1;
4172 	}
4173 
4174 	inode->last_dir_index_offset = ctx->last_dir_item_offset;
4175 
4176 	return 0;
4177 }
4178 
4179 /*
4180  * a helper function to drop items from the log before we relog an
4181  * inode.  max_key_type indicates the highest item type to remove.
4182  * This cannot be run for file data extents because it does not
4183  * free the extents they point to.
4184  */
4185 static int drop_inode_items(struct btrfs_trans_handle *trans,
4186 				  struct btrfs_root *log,
4187 				  struct btrfs_path *path,
4188 				  struct btrfs_inode *inode,
4189 				  int max_key_type)
4190 {
4191 	int ret;
4192 	struct btrfs_key key;
4193 	struct btrfs_key found_key;
4194 	int start_slot;
4195 
4196 	key.objectid = btrfs_ino(inode);
4197 	key.type = max_key_type;
4198 	key.offset = (u64)-1;
4199 
4200 	while (1) {
4201 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
4202 		BUG_ON(ret == 0); /* Logic error */
4203 		if (ret < 0)
4204 			break;
4205 
4206 		if (path->slots[0] == 0)
4207 			break;
4208 
4209 		path->slots[0]--;
4210 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4211 				      path->slots[0]);
4212 
4213 		if (found_key.objectid != key.objectid)
4214 			break;
4215 
4216 		found_key.offset = 0;
4217 		found_key.type = 0;
4218 		ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
4219 		if (ret < 0)
4220 			break;
4221 
4222 		ret = btrfs_del_items(trans, log, path, start_slot,
4223 				      path->slots[0] - start_slot + 1);
4224 		/*
4225 		 * If start slot isn't 0 then we don't need to re-search, we've
4226 		 * found the last guy with the objectid in this tree.
4227 		 */
4228 		if (ret || start_slot != 0)
4229 			break;
4230 		btrfs_release_path(path);
4231 	}
4232 	btrfs_release_path(path);
4233 	if (ret > 0)
4234 		ret = 0;
4235 	return ret;
4236 }
4237 
4238 static int truncate_inode_items(struct btrfs_trans_handle *trans,
4239 				struct btrfs_root *log_root,
4240 				struct btrfs_inode *inode,
4241 				u64 new_size, u32 min_type)
4242 {
4243 	struct btrfs_truncate_control control = {
4244 		.new_size = new_size,
4245 		.ino = btrfs_ino(inode),
4246 		.min_type = min_type,
4247 		.skip_ref_updates = true,
4248 	};
4249 
4250 	return btrfs_truncate_inode_items(trans, log_root, &control);
4251 }
4252 
4253 static void fill_inode_item(struct btrfs_trans_handle *trans,
4254 			    struct extent_buffer *leaf,
4255 			    struct btrfs_inode_item *item,
4256 			    struct inode *inode, int log_inode_only,
4257 			    u64 logged_isize)
4258 {
4259 	struct btrfs_map_token token;
4260 	u64 flags;
4261 
4262 	btrfs_init_map_token(&token, leaf);
4263 
4264 	if (log_inode_only) {
4265 		/* set the generation to zero so the recover code
4266 		 * can tell the difference between an logging
4267 		 * just to say 'this inode exists' and a logging
4268 		 * to say 'update this inode with these values'
4269 		 */
4270 		btrfs_set_token_inode_generation(&token, item, 0);
4271 		btrfs_set_token_inode_size(&token, item, logged_isize);
4272 	} else {
4273 		btrfs_set_token_inode_generation(&token, item,
4274 						 BTRFS_I(inode)->generation);
4275 		btrfs_set_token_inode_size(&token, item, inode->i_size);
4276 	}
4277 
4278 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4279 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4280 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4281 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4282 
4283 	btrfs_set_token_timespec_sec(&token, &item->atime,
4284 				     inode->i_atime.tv_sec);
4285 	btrfs_set_token_timespec_nsec(&token, &item->atime,
4286 				      inode->i_atime.tv_nsec);
4287 
4288 	btrfs_set_token_timespec_sec(&token, &item->mtime,
4289 				     inode->i_mtime.tv_sec);
4290 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
4291 				      inode->i_mtime.tv_nsec);
4292 
4293 	btrfs_set_token_timespec_sec(&token, &item->ctime,
4294 				     inode->i_ctime.tv_sec);
4295 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
4296 				      inode->i_ctime.tv_nsec);
4297 
4298 	/*
4299 	 * We do not need to set the nbytes field, in fact during a fast fsync
4300 	 * its value may not even be correct, since a fast fsync does not wait
4301 	 * for ordered extent completion, which is where we update nbytes, it
4302 	 * only waits for writeback to complete. During log replay as we find
4303 	 * file extent items and replay them, we adjust the nbytes field of the
4304 	 * inode item in subvolume tree as needed (see overwrite_item()).
4305 	 */
4306 
4307 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4308 	btrfs_set_token_inode_transid(&token, item, trans->transid);
4309 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4310 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4311 					  BTRFS_I(inode)->ro_flags);
4312 	btrfs_set_token_inode_flags(&token, item, flags);
4313 	btrfs_set_token_inode_block_group(&token, item, 0);
4314 }
4315 
4316 static int log_inode_item(struct btrfs_trans_handle *trans,
4317 			  struct btrfs_root *log, struct btrfs_path *path,
4318 			  struct btrfs_inode *inode, bool inode_item_dropped)
4319 {
4320 	struct btrfs_inode_item *inode_item;
4321 	int ret;
4322 
4323 	/*
4324 	 * If we are doing a fast fsync and the inode was logged before in the
4325 	 * current transaction, then we know the inode was previously logged and
4326 	 * it exists in the log tree. For performance reasons, in this case use
4327 	 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4328 	 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4329 	 * contention in case there are concurrent fsyncs for other inodes of the
4330 	 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4331 	 * already exists can also result in unnecessarily splitting a leaf.
4332 	 */
4333 	if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4334 		ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1);
4335 		ASSERT(ret <= 0);
4336 		if (ret > 0)
4337 			ret = -ENOENT;
4338 	} else {
4339 		/*
4340 		 * This means it is the first fsync in the current transaction,
4341 		 * so the inode item is not in the log and we need to insert it.
4342 		 * We can never get -EEXIST because we are only called for a fast
4343 		 * fsync and in case an inode eviction happens after the inode was
4344 		 * logged before in the current transaction, when we load again
4345 		 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4346 		 * flags and set ->logged_trans to 0.
4347 		 */
4348 		ret = btrfs_insert_empty_item(trans, log, path, &inode->location,
4349 					      sizeof(*inode_item));
4350 		ASSERT(ret != -EEXIST);
4351 	}
4352 	if (ret)
4353 		return ret;
4354 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4355 				    struct btrfs_inode_item);
4356 	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4357 			0, 0);
4358 	btrfs_release_path(path);
4359 	return 0;
4360 }
4361 
4362 static int log_csums(struct btrfs_trans_handle *trans,
4363 		     struct btrfs_inode *inode,
4364 		     struct btrfs_root *log_root,
4365 		     struct btrfs_ordered_sum *sums)
4366 {
4367 	const u64 lock_end = sums->bytenr + sums->len - 1;
4368 	struct extent_state *cached_state = NULL;
4369 	int ret;
4370 
4371 	/*
4372 	 * If this inode was not used for reflink operations in the current
4373 	 * transaction with new extents, then do the fast path, no need to
4374 	 * worry about logging checksum items with overlapping ranges.
4375 	 */
4376 	if (inode->last_reflink_trans < trans->transid)
4377 		return btrfs_csum_file_blocks(trans, log_root, sums);
4378 
4379 	/*
4380 	 * Serialize logging for checksums. This is to avoid racing with the
4381 	 * same checksum being logged by another task that is logging another
4382 	 * file which happens to refer to the same extent as well. Such races
4383 	 * can leave checksum items in the log with overlapping ranges.
4384 	 */
4385 	ret = lock_extent_bits(&log_root->log_csum_range, sums->bytenr,
4386 			       lock_end, &cached_state);
4387 	if (ret)
4388 		return ret;
4389 	/*
4390 	 * Due to extent cloning, we might have logged a csum item that covers a
4391 	 * subrange of a cloned extent, and later we can end up logging a csum
4392 	 * item for a larger subrange of the same extent or the entire range.
4393 	 * This would leave csum items in the log tree that cover the same range
4394 	 * and break the searches for checksums in the log tree, resulting in
4395 	 * some checksums missing in the fs/subvolume tree. So just delete (or
4396 	 * trim and adjust) any existing csum items in the log for this range.
4397 	 */
4398 	ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
4399 	if (!ret)
4400 		ret = btrfs_csum_file_blocks(trans, log_root, sums);
4401 
4402 	unlock_extent_cached(&log_root->log_csum_range, sums->bytenr, lock_end,
4403 			     &cached_state);
4404 
4405 	return ret;
4406 }
4407 
4408 static noinline int copy_items(struct btrfs_trans_handle *trans,
4409 			       struct btrfs_inode *inode,
4410 			       struct btrfs_path *dst_path,
4411 			       struct btrfs_path *src_path,
4412 			       int start_slot, int nr, int inode_only,
4413 			       u64 logged_isize)
4414 {
4415 	struct btrfs_root *log = inode->root->log_root;
4416 	struct btrfs_file_extent_item *extent;
4417 	struct extent_buffer *src = src_path->nodes[0];
4418 	int ret = 0;
4419 	struct btrfs_key *ins_keys;
4420 	u32 *ins_sizes;
4421 	struct btrfs_item_batch batch;
4422 	char *ins_data;
4423 	int i;
4424 	int dst_index;
4425 	const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM);
4426 	const u64 i_size = i_size_read(&inode->vfs_inode);
4427 
4428 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4429 			   nr * sizeof(u32), GFP_NOFS);
4430 	if (!ins_data)
4431 		return -ENOMEM;
4432 
4433 	ins_sizes = (u32 *)ins_data;
4434 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4435 	batch.keys = ins_keys;
4436 	batch.data_sizes = ins_sizes;
4437 	batch.total_data_size = 0;
4438 	batch.nr = 0;
4439 
4440 	dst_index = 0;
4441 	for (i = 0; i < nr; i++) {
4442 		const int src_slot = start_slot + i;
4443 		struct btrfs_root *csum_root;
4444 		struct btrfs_ordered_sum *sums;
4445 		struct btrfs_ordered_sum *sums_next;
4446 		LIST_HEAD(ordered_sums);
4447 		u64 disk_bytenr;
4448 		u64 disk_num_bytes;
4449 		u64 extent_offset;
4450 		u64 extent_num_bytes;
4451 		bool is_old_extent;
4452 
4453 		btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot);
4454 
4455 		if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY)
4456 			goto add_to_batch;
4457 
4458 		extent = btrfs_item_ptr(src, src_slot,
4459 					struct btrfs_file_extent_item);
4460 
4461 		is_old_extent = (btrfs_file_extent_generation(src, extent) <
4462 				 trans->transid);
4463 
4464 		/*
4465 		 * Don't copy extents from past generations. That would make us
4466 		 * log a lot more metadata for common cases like doing only a
4467 		 * few random writes into a file and then fsync it for the first
4468 		 * time or after the full sync flag is set on the inode. We can
4469 		 * get leaves full of extent items, most of which are from past
4470 		 * generations, so we can skip them - as long as the inode has
4471 		 * not been the target of a reflink operation in this transaction,
4472 		 * as in that case it might have had file extent items with old
4473 		 * generations copied into it. We also must always log prealloc
4474 		 * extents that start at or beyond eof, otherwise we would lose
4475 		 * them on log replay.
4476 		 */
4477 		if (is_old_extent &&
4478 		    ins_keys[dst_index].offset < i_size &&
4479 		    inode->last_reflink_trans < trans->transid)
4480 			continue;
4481 
4482 		if (skip_csum)
4483 			goto add_to_batch;
4484 
4485 		/* Only regular extents have checksums. */
4486 		if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG)
4487 			goto add_to_batch;
4488 
4489 		/*
4490 		 * If it's an extent created in a past transaction, then its
4491 		 * checksums are already accessible from the committed csum tree,
4492 		 * no need to log them.
4493 		 */
4494 		if (is_old_extent)
4495 			goto add_to_batch;
4496 
4497 		disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent);
4498 		/* If it's an explicit hole, there are no checksums. */
4499 		if (disk_bytenr == 0)
4500 			goto add_to_batch;
4501 
4502 		disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent);
4503 
4504 		if (btrfs_file_extent_compression(src, extent)) {
4505 			extent_offset = 0;
4506 			extent_num_bytes = disk_num_bytes;
4507 		} else {
4508 			extent_offset = btrfs_file_extent_offset(src, extent);
4509 			extent_num_bytes = btrfs_file_extent_num_bytes(src, extent);
4510 		}
4511 
4512 		csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr);
4513 		disk_bytenr += extent_offset;
4514 		ret = btrfs_lookup_csums_range(csum_root, disk_bytenr,
4515 					       disk_bytenr + extent_num_bytes - 1,
4516 					       &ordered_sums, 0);
4517 		if (ret)
4518 			goto out;
4519 
4520 		list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) {
4521 			if (!ret)
4522 				ret = log_csums(trans, inode, log, sums);
4523 			list_del(&sums->list);
4524 			kfree(sums);
4525 		}
4526 		if (ret)
4527 			goto out;
4528 
4529 add_to_batch:
4530 		ins_sizes[dst_index] = btrfs_item_size(src, src_slot);
4531 		batch.total_data_size += ins_sizes[dst_index];
4532 		batch.nr++;
4533 		dst_index++;
4534 	}
4535 
4536 	/*
4537 	 * We have a leaf full of old extent items that don't need to be logged,
4538 	 * so we don't need to do anything.
4539 	 */
4540 	if (batch.nr == 0)
4541 		goto out;
4542 
4543 	ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
4544 	if (ret)
4545 		goto out;
4546 
4547 	dst_index = 0;
4548 	for (i = 0; i < nr; i++) {
4549 		const int src_slot = start_slot + i;
4550 		const int dst_slot = dst_path->slots[0] + dst_index;
4551 		struct btrfs_key key;
4552 		unsigned long src_offset;
4553 		unsigned long dst_offset;
4554 
4555 		/*
4556 		 * We're done, all the remaining items in the source leaf
4557 		 * correspond to old file extent items.
4558 		 */
4559 		if (dst_index >= batch.nr)
4560 			break;
4561 
4562 		btrfs_item_key_to_cpu(src, &key, src_slot);
4563 
4564 		if (key.type != BTRFS_EXTENT_DATA_KEY)
4565 			goto copy_item;
4566 
4567 		extent = btrfs_item_ptr(src, src_slot,
4568 					struct btrfs_file_extent_item);
4569 
4570 		/* See the comment in the previous loop, same logic. */
4571 		if (btrfs_file_extent_generation(src, extent) < trans->transid &&
4572 		    key.offset < i_size &&
4573 		    inode->last_reflink_trans < trans->transid)
4574 			continue;
4575 
4576 copy_item:
4577 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot);
4578 		src_offset = btrfs_item_ptr_offset(src, src_slot);
4579 
4580 		if (key.type == BTRFS_INODE_ITEM_KEY) {
4581 			struct btrfs_inode_item *inode_item;
4582 
4583 			inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot,
4584 						    struct btrfs_inode_item);
4585 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
4586 					&inode->vfs_inode,
4587 					inode_only == LOG_INODE_EXISTS,
4588 					logged_isize);
4589 		} else {
4590 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4591 					   src_offset, ins_sizes[dst_index]);
4592 		}
4593 
4594 		dst_index++;
4595 	}
4596 
4597 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4598 	btrfs_release_path(dst_path);
4599 out:
4600 	kfree(ins_data);
4601 
4602 	return ret;
4603 }
4604 
4605 static int extent_cmp(void *priv, const struct list_head *a,
4606 		      const struct list_head *b)
4607 {
4608 	const struct extent_map *em1, *em2;
4609 
4610 	em1 = list_entry(a, struct extent_map, list);
4611 	em2 = list_entry(b, struct extent_map, list);
4612 
4613 	if (em1->start < em2->start)
4614 		return -1;
4615 	else if (em1->start > em2->start)
4616 		return 1;
4617 	return 0;
4618 }
4619 
4620 static int log_extent_csums(struct btrfs_trans_handle *trans,
4621 			    struct btrfs_inode *inode,
4622 			    struct btrfs_root *log_root,
4623 			    const struct extent_map *em,
4624 			    struct btrfs_log_ctx *ctx)
4625 {
4626 	struct btrfs_ordered_extent *ordered;
4627 	struct btrfs_root *csum_root;
4628 	u64 csum_offset;
4629 	u64 csum_len;
4630 	u64 mod_start = em->mod_start;
4631 	u64 mod_len = em->mod_len;
4632 	LIST_HEAD(ordered_sums);
4633 	int ret = 0;
4634 
4635 	if (inode->flags & BTRFS_INODE_NODATASUM ||
4636 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4637 	    em->block_start == EXTENT_MAP_HOLE)
4638 		return 0;
4639 
4640 	list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4641 		const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4642 		const u64 mod_end = mod_start + mod_len;
4643 		struct btrfs_ordered_sum *sums;
4644 
4645 		if (mod_len == 0)
4646 			break;
4647 
4648 		if (ordered_end <= mod_start)
4649 			continue;
4650 		if (mod_end <= ordered->file_offset)
4651 			break;
4652 
4653 		/*
4654 		 * We are going to copy all the csums on this ordered extent, so
4655 		 * go ahead and adjust mod_start and mod_len in case this ordered
4656 		 * extent has already been logged.
4657 		 */
4658 		if (ordered->file_offset > mod_start) {
4659 			if (ordered_end >= mod_end)
4660 				mod_len = ordered->file_offset - mod_start;
4661 			/*
4662 			 * If we have this case
4663 			 *
4664 			 * |--------- logged extent ---------|
4665 			 *       |----- ordered extent ----|
4666 			 *
4667 			 * Just don't mess with mod_start and mod_len, we'll
4668 			 * just end up logging more csums than we need and it
4669 			 * will be ok.
4670 			 */
4671 		} else {
4672 			if (ordered_end < mod_end) {
4673 				mod_len = mod_end - ordered_end;
4674 				mod_start = ordered_end;
4675 			} else {
4676 				mod_len = 0;
4677 			}
4678 		}
4679 
4680 		/*
4681 		 * To keep us from looping for the above case of an ordered
4682 		 * extent that falls inside of the logged extent.
4683 		 */
4684 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4685 			continue;
4686 
4687 		list_for_each_entry(sums, &ordered->list, list) {
4688 			ret = log_csums(trans, inode, log_root, sums);
4689 			if (ret)
4690 				return ret;
4691 		}
4692 	}
4693 
4694 	/* We're done, found all csums in the ordered extents. */
4695 	if (mod_len == 0)
4696 		return 0;
4697 
4698 	/* If we're compressed we have to save the entire range of csums. */
4699 	if (em->compress_type) {
4700 		csum_offset = 0;
4701 		csum_len = max(em->block_len, em->orig_block_len);
4702 	} else {
4703 		csum_offset = mod_start - em->start;
4704 		csum_len = mod_len;
4705 	}
4706 
4707 	/* block start is already adjusted for the file extent offset. */
4708 	csum_root = btrfs_csum_root(trans->fs_info, em->block_start);
4709 	ret = btrfs_lookup_csums_range(csum_root,
4710 				       em->block_start + csum_offset,
4711 				       em->block_start + csum_offset +
4712 				       csum_len - 1, &ordered_sums, 0);
4713 	if (ret)
4714 		return ret;
4715 
4716 	while (!list_empty(&ordered_sums)) {
4717 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4718 						   struct btrfs_ordered_sum,
4719 						   list);
4720 		if (!ret)
4721 			ret = log_csums(trans, inode, log_root, sums);
4722 		list_del(&sums->list);
4723 		kfree(sums);
4724 	}
4725 
4726 	return ret;
4727 }
4728 
4729 static int log_one_extent(struct btrfs_trans_handle *trans,
4730 			  struct btrfs_inode *inode,
4731 			  const struct extent_map *em,
4732 			  struct btrfs_path *path,
4733 			  struct btrfs_log_ctx *ctx)
4734 {
4735 	struct btrfs_drop_extents_args drop_args = { 0 };
4736 	struct btrfs_root *log = inode->root->log_root;
4737 	struct btrfs_file_extent_item fi = { 0 };
4738 	struct extent_buffer *leaf;
4739 	struct btrfs_key key;
4740 	u64 extent_offset = em->start - em->orig_start;
4741 	u64 block_len;
4742 	int ret;
4743 
4744 	btrfs_set_stack_file_extent_generation(&fi, trans->transid);
4745 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4746 		btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC);
4747 	else
4748 		btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG);
4749 
4750 	block_len = max(em->block_len, em->orig_block_len);
4751 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4752 		btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start);
4753 		btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4754 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4755 		btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start -
4756 							extent_offset);
4757 		btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4758 	}
4759 
4760 	btrfs_set_stack_file_extent_offset(&fi, extent_offset);
4761 	btrfs_set_stack_file_extent_num_bytes(&fi, em->len);
4762 	btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes);
4763 	btrfs_set_stack_file_extent_compression(&fi, em->compress_type);
4764 
4765 	ret = log_extent_csums(trans, inode, log, em, ctx);
4766 	if (ret)
4767 		return ret;
4768 
4769 	/*
4770 	 * If this is the first time we are logging the inode in the current
4771 	 * transaction, we can avoid btrfs_drop_extents(), which is expensive
4772 	 * because it does a deletion search, which always acquires write locks
4773 	 * for extent buffers at levels 2, 1 and 0. This not only wastes time
4774 	 * but also adds significant contention in a log tree, since log trees
4775 	 * are small, with a root at level 2 or 3 at most, due to their short
4776 	 * life span.
4777 	 */
4778 	if (ctx->logged_before) {
4779 		drop_args.path = path;
4780 		drop_args.start = em->start;
4781 		drop_args.end = em->start + em->len;
4782 		drop_args.replace_extent = true;
4783 		drop_args.extent_item_size = sizeof(fi);
4784 		ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4785 		if (ret)
4786 			return ret;
4787 	}
4788 
4789 	if (!drop_args.extent_inserted) {
4790 		key.objectid = btrfs_ino(inode);
4791 		key.type = BTRFS_EXTENT_DATA_KEY;
4792 		key.offset = em->start;
4793 
4794 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4795 					      sizeof(fi));
4796 		if (ret)
4797 			return ret;
4798 	}
4799 	leaf = path->nodes[0];
4800 	write_extent_buffer(leaf, &fi,
4801 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4802 			    sizeof(fi));
4803 	btrfs_mark_buffer_dirty(leaf);
4804 
4805 	btrfs_release_path(path);
4806 
4807 	return ret;
4808 }
4809 
4810 /*
4811  * Log all prealloc extents beyond the inode's i_size to make sure we do not
4812  * lose them after doing a full/fast fsync and replaying the log. We scan the
4813  * subvolume's root instead of iterating the inode's extent map tree because
4814  * otherwise we can log incorrect extent items based on extent map conversion.
4815  * That can happen due to the fact that extent maps are merged when they
4816  * are not in the extent map tree's list of modified extents.
4817  */
4818 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4819 				      struct btrfs_inode *inode,
4820 				      struct btrfs_path *path)
4821 {
4822 	struct btrfs_root *root = inode->root;
4823 	struct btrfs_key key;
4824 	const u64 i_size = i_size_read(&inode->vfs_inode);
4825 	const u64 ino = btrfs_ino(inode);
4826 	struct btrfs_path *dst_path = NULL;
4827 	bool dropped_extents = false;
4828 	u64 truncate_offset = i_size;
4829 	struct extent_buffer *leaf;
4830 	int slot;
4831 	int ins_nr = 0;
4832 	int start_slot;
4833 	int ret;
4834 
4835 	if (!(inode->flags & BTRFS_INODE_PREALLOC))
4836 		return 0;
4837 
4838 	key.objectid = ino;
4839 	key.type = BTRFS_EXTENT_DATA_KEY;
4840 	key.offset = i_size;
4841 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4842 	if (ret < 0)
4843 		goto out;
4844 
4845 	/*
4846 	 * We must check if there is a prealloc extent that starts before the
4847 	 * i_size and crosses the i_size boundary. This is to ensure later we
4848 	 * truncate down to the end of that extent and not to the i_size, as
4849 	 * otherwise we end up losing part of the prealloc extent after a log
4850 	 * replay and with an implicit hole if there is another prealloc extent
4851 	 * that starts at an offset beyond i_size.
4852 	 */
4853 	ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4854 	if (ret < 0)
4855 		goto out;
4856 
4857 	if (ret == 0) {
4858 		struct btrfs_file_extent_item *ei;
4859 
4860 		leaf = path->nodes[0];
4861 		slot = path->slots[0];
4862 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4863 
4864 		if (btrfs_file_extent_type(leaf, ei) ==
4865 		    BTRFS_FILE_EXTENT_PREALLOC) {
4866 			u64 extent_end;
4867 
4868 			btrfs_item_key_to_cpu(leaf, &key, slot);
4869 			extent_end = key.offset +
4870 				btrfs_file_extent_num_bytes(leaf, ei);
4871 
4872 			if (extent_end > i_size)
4873 				truncate_offset = extent_end;
4874 		}
4875 	} else {
4876 		ret = 0;
4877 	}
4878 
4879 	while (true) {
4880 		leaf = path->nodes[0];
4881 		slot = path->slots[0];
4882 
4883 		if (slot >= btrfs_header_nritems(leaf)) {
4884 			if (ins_nr > 0) {
4885 				ret = copy_items(trans, inode, dst_path, path,
4886 						 start_slot, ins_nr, 1, 0);
4887 				if (ret < 0)
4888 					goto out;
4889 				ins_nr = 0;
4890 			}
4891 			ret = btrfs_next_leaf(root, path);
4892 			if (ret < 0)
4893 				goto out;
4894 			if (ret > 0) {
4895 				ret = 0;
4896 				break;
4897 			}
4898 			continue;
4899 		}
4900 
4901 		btrfs_item_key_to_cpu(leaf, &key, slot);
4902 		if (key.objectid > ino)
4903 			break;
4904 		if (WARN_ON_ONCE(key.objectid < ino) ||
4905 		    key.type < BTRFS_EXTENT_DATA_KEY ||
4906 		    key.offset < i_size) {
4907 			path->slots[0]++;
4908 			continue;
4909 		}
4910 		if (!dropped_extents) {
4911 			/*
4912 			 * Avoid logging extent items logged in past fsync calls
4913 			 * and leading to duplicate keys in the log tree.
4914 			 */
4915 			ret = truncate_inode_items(trans, root->log_root, inode,
4916 						   truncate_offset,
4917 						   BTRFS_EXTENT_DATA_KEY);
4918 			if (ret)
4919 				goto out;
4920 			dropped_extents = true;
4921 		}
4922 		if (ins_nr == 0)
4923 			start_slot = slot;
4924 		ins_nr++;
4925 		path->slots[0]++;
4926 		if (!dst_path) {
4927 			dst_path = btrfs_alloc_path();
4928 			if (!dst_path) {
4929 				ret = -ENOMEM;
4930 				goto out;
4931 			}
4932 		}
4933 	}
4934 	if (ins_nr > 0)
4935 		ret = copy_items(trans, inode, dst_path, path,
4936 				 start_slot, ins_nr, 1, 0);
4937 out:
4938 	btrfs_release_path(path);
4939 	btrfs_free_path(dst_path);
4940 	return ret;
4941 }
4942 
4943 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4944 				     struct btrfs_inode *inode,
4945 				     struct btrfs_path *path,
4946 				     struct btrfs_log_ctx *ctx)
4947 {
4948 	struct btrfs_ordered_extent *ordered;
4949 	struct btrfs_ordered_extent *tmp;
4950 	struct extent_map *em, *n;
4951 	struct list_head extents;
4952 	struct extent_map_tree *tree = &inode->extent_tree;
4953 	int ret = 0;
4954 	int num = 0;
4955 
4956 	INIT_LIST_HEAD(&extents);
4957 
4958 	write_lock(&tree->lock);
4959 
4960 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4961 		list_del_init(&em->list);
4962 		/*
4963 		 * Just an arbitrary number, this can be really CPU intensive
4964 		 * once we start getting a lot of extents, and really once we
4965 		 * have a bunch of extents we just want to commit since it will
4966 		 * be faster.
4967 		 */
4968 		if (++num > 32768) {
4969 			list_del_init(&tree->modified_extents);
4970 			ret = -EFBIG;
4971 			goto process;
4972 		}
4973 
4974 		if (em->generation < trans->transid)
4975 			continue;
4976 
4977 		/* We log prealloc extents beyond eof later. */
4978 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4979 		    em->start >= i_size_read(&inode->vfs_inode))
4980 			continue;
4981 
4982 		/* Need a ref to keep it from getting evicted from cache */
4983 		refcount_inc(&em->refs);
4984 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4985 		list_add_tail(&em->list, &extents);
4986 		num++;
4987 	}
4988 
4989 	list_sort(NULL, &extents, extent_cmp);
4990 process:
4991 	while (!list_empty(&extents)) {
4992 		em = list_entry(extents.next, struct extent_map, list);
4993 
4994 		list_del_init(&em->list);
4995 
4996 		/*
4997 		 * If we had an error we just need to delete everybody from our
4998 		 * private list.
4999 		 */
5000 		if (ret) {
5001 			clear_em_logging(tree, em);
5002 			free_extent_map(em);
5003 			continue;
5004 		}
5005 
5006 		write_unlock(&tree->lock);
5007 
5008 		ret = log_one_extent(trans, inode, em, path, ctx);
5009 		write_lock(&tree->lock);
5010 		clear_em_logging(tree, em);
5011 		free_extent_map(em);
5012 	}
5013 	WARN_ON(!list_empty(&extents));
5014 	write_unlock(&tree->lock);
5015 
5016 	if (!ret)
5017 		ret = btrfs_log_prealloc_extents(trans, inode, path);
5018 	if (ret)
5019 		return ret;
5020 
5021 	/*
5022 	 * We have logged all extents successfully, now make sure the commit of
5023 	 * the current transaction waits for the ordered extents to complete
5024 	 * before it commits and wipes out the log trees, otherwise we would
5025 	 * lose data if an ordered extents completes after the transaction
5026 	 * commits and a power failure happens after the transaction commit.
5027 	 */
5028 	list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
5029 		list_del_init(&ordered->log_list);
5030 		set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
5031 
5032 		if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
5033 			spin_lock_irq(&inode->ordered_tree.lock);
5034 			if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
5035 				set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
5036 				atomic_inc(&trans->transaction->pending_ordered);
5037 			}
5038 			spin_unlock_irq(&inode->ordered_tree.lock);
5039 		}
5040 		btrfs_put_ordered_extent(ordered);
5041 	}
5042 
5043 	return 0;
5044 }
5045 
5046 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
5047 			     struct btrfs_path *path, u64 *size_ret)
5048 {
5049 	struct btrfs_key key;
5050 	int ret;
5051 
5052 	key.objectid = btrfs_ino(inode);
5053 	key.type = BTRFS_INODE_ITEM_KEY;
5054 	key.offset = 0;
5055 
5056 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
5057 	if (ret < 0) {
5058 		return ret;
5059 	} else if (ret > 0) {
5060 		*size_ret = 0;
5061 	} else {
5062 		struct btrfs_inode_item *item;
5063 
5064 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5065 				      struct btrfs_inode_item);
5066 		*size_ret = btrfs_inode_size(path->nodes[0], item);
5067 		/*
5068 		 * If the in-memory inode's i_size is smaller then the inode
5069 		 * size stored in the btree, return the inode's i_size, so
5070 		 * that we get a correct inode size after replaying the log
5071 		 * when before a power failure we had a shrinking truncate
5072 		 * followed by addition of a new name (rename / new hard link).
5073 		 * Otherwise return the inode size from the btree, to avoid
5074 		 * data loss when replaying a log due to previously doing a
5075 		 * write that expands the inode's size and logging a new name
5076 		 * immediately after.
5077 		 */
5078 		if (*size_ret > inode->vfs_inode.i_size)
5079 			*size_ret = inode->vfs_inode.i_size;
5080 	}
5081 
5082 	btrfs_release_path(path);
5083 	return 0;
5084 }
5085 
5086 /*
5087  * At the moment we always log all xattrs. This is to figure out at log replay
5088  * time which xattrs must have their deletion replayed. If a xattr is missing
5089  * in the log tree and exists in the fs/subvol tree, we delete it. This is
5090  * because if a xattr is deleted, the inode is fsynced and a power failure
5091  * happens, causing the log to be replayed the next time the fs is mounted,
5092  * we want the xattr to not exist anymore (same behaviour as other filesystems
5093  * with a journal, ext3/4, xfs, f2fs, etc).
5094  */
5095 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
5096 				struct btrfs_inode *inode,
5097 				struct btrfs_path *path,
5098 				struct btrfs_path *dst_path)
5099 {
5100 	struct btrfs_root *root = inode->root;
5101 	int ret;
5102 	struct btrfs_key key;
5103 	const u64 ino = btrfs_ino(inode);
5104 	int ins_nr = 0;
5105 	int start_slot = 0;
5106 	bool found_xattrs = false;
5107 
5108 	if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
5109 		return 0;
5110 
5111 	key.objectid = ino;
5112 	key.type = BTRFS_XATTR_ITEM_KEY;
5113 	key.offset = 0;
5114 
5115 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5116 	if (ret < 0)
5117 		return ret;
5118 
5119 	while (true) {
5120 		int slot = path->slots[0];
5121 		struct extent_buffer *leaf = path->nodes[0];
5122 		int nritems = btrfs_header_nritems(leaf);
5123 
5124 		if (slot >= nritems) {
5125 			if (ins_nr > 0) {
5126 				ret = copy_items(trans, inode, dst_path, path,
5127 						 start_slot, ins_nr, 1, 0);
5128 				if (ret < 0)
5129 					return ret;
5130 				ins_nr = 0;
5131 			}
5132 			ret = btrfs_next_leaf(root, path);
5133 			if (ret < 0)
5134 				return ret;
5135 			else if (ret > 0)
5136 				break;
5137 			continue;
5138 		}
5139 
5140 		btrfs_item_key_to_cpu(leaf, &key, slot);
5141 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
5142 			break;
5143 
5144 		if (ins_nr == 0)
5145 			start_slot = slot;
5146 		ins_nr++;
5147 		path->slots[0]++;
5148 		found_xattrs = true;
5149 		cond_resched();
5150 	}
5151 	if (ins_nr > 0) {
5152 		ret = copy_items(trans, inode, dst_path, path,
5153 				 start_slot, ins_nr, 1, 0);
5154 		if (ret < 0)
5155 			return ret;
5156 	}
5157 
5158 	if (!found_xattrs)
5159 		set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
5160 
5161 	return 0;
5162 }
5163 
5164 /*
5165  * When using the NO_HOLES feature if we punched a hole that causes the
5166  * deletion of entire leafs or all the extent items of the first leaf (the one
5167  * that contains the inode item and references) we may end up not processing
5168  * any extents, because there are no leafs with a generation matching the
5169  * current transaction that have extent items for our inode. So we need to find
5170  * if any holes exist and then log them. We also need to log holes after any
5171  * truncate operation that changes the inode's size.
5172  */
5173 static int btrfs_log_holes(struct btrfs_trans_handle *trans,
5174 			   struct btrfs_inode *inode,
5175 			   struct btrfs_path *path)
5176 {
5177 	struct btrfs_root *root = inode->root;
5178 	struct btrfs_fs_info *fs_info = root->fs_info;
5179 	struct btrfs_key key;
5180 	const u64 ino = btrfs_ino(inode);
5181 	const u64 i_size = i_size_read(&inode->vfs_inode);
5182 	u64 prev_extent_end = 0;
5183 	int ret;
5184 
5185 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
5186 		return 0;
5187 
5188 	key.objectid = ino;
5189 	key.type = BTRFS_EXTENT_DATA_KEY;
5190 	key.offset = 0;
5191 
5192 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5193 	if (ret < 0)
5194 		return ret;
5195 
5196 	while (true) {
5197 		struct extent_buffer *leaf = path->nodes[0];
5198 
5199 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
5200 			ret = btrfs_next_leaf(root, path);
5201 			if (ret < 0)
5202 				return ret;
5203 			if (ret > 0) {
5204 				ret = 0;
5205 				break;
5206 			}
5207 			leaf = path->nodes[0];
5208 		}
5209 
5210 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5211 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
5212 			break;
5213 
5214 		/* We have a hole, log it. */
5215 		if (prev_extent_end < key.offset) {
5216 			const u64 hole_len = key.offset - prev_extent_end;
5217 
5218 			/*
5219 			 * Release the path to avoid deadlocks with other code
5220 			 * paths that search the root while holding locks on
5221 			 * leafs from the log root.
5222 			 */
5223 			btrfs_release_path(path);
5224 			ret = btrfs_insert_file_extent(trans, root->log_root,
5225 						       ino, prev_extent_end, 0,
5226 						       0, hole_len, 0, hole_len,
5227 						       0, 0, 0);
5228 			if (ret < 0)
5229 				return ret;
5230 
5231 			/*
5232 			 * Search for the same key again in the root. Since it's
5233 			 * an extent item and we are holding the inode lock, the
5234 			 * key must still exist. If it doesn't just emit warning
5235 			 * and return an error to fall back to a transaction
5236 			 * commit.
5237 			 */
5238 			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5239 			if (ret < 0)
5240 				return ret;
5241 			if (WARN_ON(ret > 0))
5242 				return -ENOENT;
5243 			leaf = path->nodes[0];
5244 		}
5245 
5246 		prev_extent_end = btrfs_file_extent_end(path);
5247 		path->slots[0]++;
5248 		cond_resched();
5249 	}
5250 
5251 	if (prev_extent_end < i_size) {
5252 		u64 hole_len;
5253 
5254 		btrfs_release_path(path);
5255 		hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
5256 		ret = btrfs_insert_file_extent(trans, root->log_root,
5257 					       ino, prev_extent_end, 0, 0,
5258 					       hole_len, 0, hole_len,
5259 					       0, 0, 0);
5260 		if (ret < 0)
5261 			return ret;
5262 	}
5263 
5264 	return 0;
5265 }
5266 
5267 /*
5268  * When we are logging a new inode X, check if it doesn't have a reference that
5269  * matches the reference from some other inode Y created in a past transaction
5270  * and that was renamed in the current transaction. If we don't do this, then at
5271  * log replay time we can lose inode Y (and all its files if it's a directory):
5272  *
5273  * mkdir /mnt/x
5274  * echo "hello world" > /mnt/x/foobar
5275  * sync
5276  * mv /mnt/x /mnt/y
5277  * mkdir /mnt/x                 # or touch /mnt/x
5278  * xfs_io -c fsync /mnt/x
5279  * <power fail>
5280  * mount fs, trigger log replay
5281  *
5282  * After the log replay procedure, we would lose the first directory and all its
5283  * files (file foobar).
5284  * For the case where inode Y is not a directory we simply end up losing it:
5285  *
5286  * echo "123" > /mnt/foo
5287  * sync
5288  * mv /mnt/foo /mnt/bar
5289  * echo "abc" > /mnt/foo
5290  * xfs_io -c fsync /mnt/foo
5291  * <power fail>
5292  *
5293  * We also need this for cases where a snapshot entry is replaced by some other
5294  * entry (file or directory) otherwise we end up with an unreplayable log due to
5295  * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5296  * if it were a regular entry:
5297  *
5298  * mkdir /mnt/x
5299  * btrfs subvolume snapshot /mnt /mnt/x/snap
5300  * btrfs subvolume delete /mnt/x/snap
5301  * rmdir /mnt/x
5302  * mkdir /mnt/x
5303  * fsync /mnt/x or fsync some new file inside it
5304  * <power fail>
5305  *
5306  * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5307  * the same transaction.
5308  */
5309 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
5310 					 const int slot,
5311 					 const struct btrfs_key *key,
5312 					 struct btrfs_inode *inode,
5313 					 u64 *other_ino, u64 *other_parent)
5314 {
5315 	int ret;
5316 	struct btrfs_path *search_path;
5317 	char *name = NULL;
5318 	u32 name_len = 0;
5319 	u32 item_size = btrfs_item_size(eb, slot);
5320 	u32 cur_offset = 0;
5321 	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
5322 
5323 	search_path = btrfs_alloc_path();
5324 	if (!search_path)
5325 		return -ENOMEM;
5326 	search_path->search_commit_root = 1;
5327 	search_path->skip_locking = 1;
5328 
5329 	while (cur_offset < item_size) {
5330 		u64 parent;
5331 		u32 this_name_len;
5332 		u32 this_len;
5333 		unsigned long name_ptr;
5334 		struct btrfs_dir_item *di;
5335 
5336 		if (key->type == BTRFS_INODE_REF_KEY) {
5337 			struct btrfs_inode_ref *iref;
5338 
5339 			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
5340 			parent = key->offset;
5341 			this_name_len = btrfs_inode_ref_name_len(eb, iref);
5342 			name_ptr = (unsigned long)(iref + 1);
5343 			this_len = sizeof(*iref) + this_name_len;
5344 		} else {
5345 			struct btrfs_inode_extref *extref;
5346 
5347 			extref = (struct btrfs_inode_extref *)(ptr +
5348 							       cur_offset);
5349 			parent = btrfs_inode_extref_parent(eb, extref);
5350 			this_name_len = btrfs_inode_extref_name_len(eb, extref);
5351 			name_ptr = (unsigned long)&extref->name;
5352 			this_len = sizeof(*extref) + this_name_len;
5353 		}
5354 
5355 		if (this_name_len > name_len) {
5356 			char *new_name;
5357 
5358 			new_name = krealloc(name, this_name_len, GFP_NOFS);
5359 			if (!new_name) {
5360 				ret = -ENOMEM;
5361 				goto out;
5362 			}
5363 			name_len = this_name_len;
5364 			name = new_name;
5365 		}
5366 
5367 		read_extent_buffer(eb, name, name_ptr, this_name_len);
5368 		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
5369 				parent, name, this_name_len, 0);
5370 		if (di && !IS_ERR(di)) {
5371 			struct btrfs_key di_key;
5372 
5373 			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
5374 						  di, &di_key);
5375 			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
5376 				if (di_key.objectid != key->objectid) {
5377 					ret = 1;
5378 					*other_ino = di_key.objectid;
5379 					*other_parent = parent;
5380 				} else {
5381 					ret = 0;
5382 				}
5383 			} else {
5384 				ret = -EAGAIN;
5385 			}
5386 			goto out;
5387 		} else if (IS_ERR(di)) {
5388 			ret = PTR_ERR(di);
5389 			goto out;
5390 		}
5391 		btrfs_release_path(search_path);
5392 
5393 		cur_offset += this_len;
5394 	}
5395 	ret = 0;
5396 out:
5397 	btrfs_free_path(search_path);
5398 	kfree(name);
5399 	return ret;
5400 }
5401 
5402 struct btrfs_ino_list {
5403 	u64 ino;
5404 	u64 parent;
5405 	struct list_head list;
5406 };
5407 
5408 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5409 				  struct btrfs_root *root,
5410 				  struct btrfs_path *path,
5411 				  struct btrfs_log_ctx *ctx,
5412 				  u64 ino, u64 parent)
5413 {
5414 	struct btrfs_ino_list *ino_elem;
5415 	LIST_HEAD(inode_list);
5416 	int ret = 0;
5417 
5418 	ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5419 	if (!ino_elem)
5420 		return -ENOMEM;
5421 	ino_elem->ino = ino;
5422 	ino_elem->parent = parent;
5423 	list_add_tail(&ino_elem->list, &inode_list);
5424 
5425 	while (!list_empty(&inode_list)) {
5426 		struct btrfs_fs_info *fs_info = root->fs_info;
5427 		struct btrfs_key key;
5428 		struct inode *inode;
5429 
5430 		ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
5431 					    list);
5432 		ino = ino_elem->ino;
5433 		parent = ino_elem->parent;
5434 		list_del(&ino_elem->list);
5435 		kfree(ino_elem);
5436 		if (ret)
5437 			continue;
5438 
5439 		btrfs_release_path(path);
5440 
5441 		inode = btrfs_iget(fs_info->sb, ino, root);
5442 		/*
5443 		 * If the other inode that had a conflicting dir entry was
5444 		 * deleted in the current transaction, we need to log its parent
5445 		 * directory.
5446 		 */
5447 		if (IS_ERR(inode)) {
5448 			ret = PTR_ERR(inode);
5449 			if (ret == -ENOENT) {
5450 				inode = btrfs_iget(fs_info->sb, parent, root);
5451 				if (IS_ERR(inode)) {
5452 					ret = PTR_ERR(inode);
5453 				} else {
5454 					ret = btrfs_log_inode(trans,
5455 						      BTRFS_I(inode),
5456 						      LOG_OTHER_INODE_ALL,
5457 						      ctx);
5458 					btrfs_add_delayed_iput(inode);
5459 				}
5460 			}
5461 			continue;
5462 		}
5463 		/*
5464 		 * If the inode was already logged skip it - otherwise we can
5465 		 * hit an infinite loop. Example:
5466 		 *
5467 		 * From the commit root (previous transaction) we have the
5468 		 * following inodes:
5469 		 *
5470 		 * inode 257 a directory
5471 		 * inode 258 with references "zz" and "zz_link" on inode 257
5472 		 * inode 259 with reference "a" on inode 257
5473 		 *
5474 		 * And in the current (uncommitted) transaction we have:
5475 		 *
5476 		 * inode 257 a directory, unchanged
5477 		 * inode 258 with references "a" and "a2" on inode 257
5478 		 * inode 259 with reference "zz_link" on inode 257
5479 		 * inode 261 with reference "zz" on inode 257
5480 		 *
5481 		 * When logging inode 261 the following infinite loop could
5482 		 * happen if we don't skip already logged inodes:
5483 		 *
5484 		 * - we detect inode 258 as a conflicting inode, with inode 261
5485 		 *   on reference "zz", and log it;
5486 		 *
5487 		 * - we detect inode 259 as a conflicting inode, with inode 258
5488 		 *   on reference "a", and log it;
5489 		 *
5490 		 * - we detect inode 258 as a conflicting inode, with inode 259
5491 		 *   on reference "zz_link", and log it - again! After this we
5492 		 *   repeat the above steps forever.
5493 		 */
5494 		spin_lock(&BTRFS_I(inode)->lock);
5495 		/*
5496 		 * Check the inode's logged_trans only instead of
5497 		 * btrfs_inode_in_log(). This is because the last_log_commit of
5498 		 * the inode is not updated when we only log that it exists (see
5499 		 * btrfs_log_inode()).
5500 		 */
5501 		if (BTRFS_I(inode)->logged_trans == trans->transid) {
5502 			spin_unlock(&BTRFS_I(inode)->lock);
5503 			btrfs_add_delayed_iput(inode);
5504 			continue;
5505 		}
5506 		spin_unlock(&BTRFS_I(inode)->lock);
5507 		/*
5508 		 * We are safe logging the other inode without acquiring its
5509 		 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5510 		 * are safe against concurrent renames of the other inode as
5511 		 * well because during a rename we pin the log and update the
5512 		 * log with the new name before we unpin it.
5513 		 */
5514 		ret = btrfs_log_inode(trans, BTRFS_I(inode), LOG_OTHER_INODE, ctx);
5515 		if (ret) {
5516 			btrfs_add_delayed_iput(inode);
5517 			continue;
5518 		}
5519 
5520 		key.objectid = ino;
5521 		key.type = BTRFS_INODE_REF_KEY;
5522 		key.offset = 0;
5523 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5524 		if (ret < 0) {
5525 			btrfs_add_delayed_iput(inode);
5526 			continue;
5527 		}
5528 
5529 		while (true) {
5530 			struct extent_buffer *leaf = path->nodes[0];
5531 			int slot = path->slots[0];
5532 			u64 other_ino = 0;
5533 			u64 other_parent = 0;
5534 
5535 			if (slot >= btrfs_header_nritems(leaf)) {
5536 				ret = btrfs_next_leaf(root, path);
5537 				if (ret < 0) {
5538 					break;
5539 				} else if (ret > 0) {
5540 					ret = 0;
5541 					break;
5542 				}
5543 				continue;
5544 			}
5545 
5546 			btrfs_item_key_to_cpu(leaf, &key, slot);
5547 			if (key.objectid != ino ||
5548 			    (key.type != BTRFS_INODE_REF_KEY &&
5549 			     key.type != BTRFS_INODE_EXTREF_KEY)) {
5550 				ret = 0;
5551 				break;
5552 			}
5553 
5554 			ret = btrfs_check_ref_name_override(leaf, slot, &key,
5555 					BTRFS_I(inode), &other_ino,
5556 					&other_parent);
5557 			if (ret < 0)
5558 				break;
5559 			if (ret > 0) {
5560 				ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5561 				if (!ino_elem) {
5562 					ret = -ENOMEM;
5563 					break;
5564 				}
5565 				ino_elem->ino = other_ino;
5566 				ino_elem->parent = other_parent;
5567 				list_add_tail(&ino_elem->list, &inode_list);
5568 				ret = 0;
5569 			}
5570 			path->slots[0]++;
5571 		}
5572 		btrfs_add_delayed_iput(inode);
5573 	}
5574 
5575 	return ret;
5576 }
5577 
5578 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5579 				   struct btrfs_inode *inode,
5580 				   struct btrfs_key *min_key,
5581 				   const struct btrfs_key *max_key,
5582 				   struct btrfs_path *path,
5583 				   struct btrfs_path *dst_path,
5584 				   const u64 logged_isize,
5585 				   const bool recursive_logging,
5586 				   const int inode_only,
5587 				   struct btrfs_log_ctx *ctx,
5588 				   bool *need_log_inode_item)
5589 {
5590 	const u64 i_size = i_size_read(&inode->vfs_inode);
5591 	struct btrfs_root *root = inode->root;
5592 	int ins_start_slot = 0;
5593 	int ins_nr = 0;
5594 	int ret;
5595 
5596 	while (1) {
5597 		ret = btrfs_search_forward(root, min_key, path, trans->transid);
5598 		if (ret < 0)
5599 			return ret;
5600 		if (ret > 0) {
5601 			ret = 0;
5602 			break;
5603 		}
5604 again:
5605 		/* Note, ins_nr might be > 0 here, cleanup outside the loop */
5606 		if (min_key->objectid != max_key->objectid)
5607 			break;
5608 		if (min_key->type > max_key->type)
5609 			break;
5610 
5611 		if (min_key->type == BTRFS_INODE_ITEM_KEY) {
5612 			*need_log_inode_item = false;
5613 		} else if (min_key->type == BTRFS_EXTENT_DATA_KEY &&
5614 			   min_key->offset >= i_size) {
5615 			/*
5616 			 * Extents at and beyond eof are logged with
5617 			 * btrfs_log_prealloc_extents().
5618 			 * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
5619 			 * and no keys greater than that, so bail out.
5620 			 */
5621 			break;
5622 		} else if ((min_key->type == BTRFS_INODE_REF_KEY ||
5623 			    min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5624 			   inode->generation == trans->transid &&
5625 			   !recursive_logging) {
5626 			u64 other_ino = 0;
5627 			u64 other_parent = 0;
5628 
5629 			ret = btrfs_check_ref_name_override(path->nodes[0],
5630 					path->slots[0], min_key, inode,
5631 					&other_ino, &other_parent);
5632 			if (ret < 0) {
5633 				return ret;
5634 			} else if (ret > 0 &&
5635 				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5636 				if (ins_nr > 0) {
5637 					ins_nr++;
5638 				} else {
5639 					ins_nr = 1;
5640 					ins_start_slot = path->slots[0];
5641 				}
5642 				ret = copy_items(trans, inode, dst_path, path,
5643 						 ins_start_slot, ins_nr,
5644 						 inode_only, logged_isize);
5645 				if (ret < 0)
5646 					return ret;
5647 				ins_nr = 0;
5648 
5649 				ret = log_conflicting_inodes(trans, root, path,
5650 						ctx, other_ino, other_parent);
5651 				if (ret)
5652 					return ret;
5653 				btrfs_release_path(path);
5654 				goto next_key;
5655 			}
5656 		} else if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5657 			/* Skip xattrs, logged later with btrfs_log_all_xattrs() */
5658 			if (ins_nr == 0)
5659 				goto next_slot;
5660 			ret = copy_items(trans, inode, dst_path, path,
5661 					 ins_start_slot,
5662 					 ins_nr, inode_only, logged_isize);
5663 			if (ret < 0)
5664 				return ret;
5665 			ins_nr = 0;
5666 			goto next_slot;
5667 		}
5668 
5669 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5670 			ins_nr++;
5671 			goto next_slot;
5672 		} else if (!ins_nr) {
5673 			ins_start_slot = path->slots[0];
5674 			ins_nr = 1;
5675 			goto next_slot;
5676 		}
5677 
5678 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5679 				 ins_nr, inode_only, logged_isize);
5680 		if (ret < 0)
5681 			return ret;
5682 		ins_nr = 1;
5683 		ins_start_slot = path->slots[0];
5684 next_slot:
5685 		path->slots[0]++;
5686 		if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5687 			btrfs_item_key_to_cpu(path->nodes[0], min_key,
5688 					      path->slots[0]);
5689 			goto again;
5690 		}
5691 		if (ins_nr) {
5692 			ret = copy_items(trans, inode, dst_path, path,
5693 					 ins_start_slot, ins_nr, inode_only,
5694 					 logged_isize);
5695 			if (ret < 0)
5696 				return ret;
5697 			ins_nr = 0;
5698 		}
5699 		btrfs_release_path(path);
5700 next_key:
5701 		if (min_key->offset < (u64)-1) {
5702 			min_key->offset++;
5703 		} else if (min_key->type < max_key->type) {
5704 			min_key->type++;
5705 			min_key->offset = 0;
5706 		} else {
5707 			break;
5708 		}
5709 
5710 		/*
5711 		 * We may process many leaves full of items for our inode, so
5712 		 * avoid monopolizing a cpu for too long by rescheduling while
5713 		 * not holding locks on any tree.
5714 		 */
5715 		cond_resched();
5716 	}
5717 	if (ins_nr) {
5718 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5719 				 ins_nr, inode_only, logged_isize);
5720 		if (ret)
5721 			return ret;
5722 	}
5723 
5724 	if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) {
5725 		/*
5726 		 * Release the path because otherwise we might attempt to double
5727 		 * lock the same leaf with btrfs_log_prealloc_extents() below.
5728 		 */
5729 		btrfs_release_path(path);
5730 		ret = btrfs_log_prealloc_extents(trans, inode, dst_path);
5731 	}
5732 
5733 	return ret;
5734 }
5735 
5736 /* log a single inode in the tree log.
5737  * At least one parent directory for this inode must exist in the tree
5738  * or be logged already.
5739  *
5740  * Any items from this inode changed by the current transaction are copied
5741  * to the log tree.  An extra reference is taken on any extents in this
5742  * file, allowing us to avoid a whole pile of corner cases around logging
5743  * blocks that have been removed from the tree.
5744  *
5745  * See LOG_INODE_ALL and related defines for a description of what inode_only
5746  * does.
5747  *
5748  * This handles both files and directories.
5749  */
5750 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
5751 			   struct btrfs_inode *inode,
5752 			   int inode_only,
5753 			   struct btrfs_log_ctx *ctx)
5754 {
5755 	struct btrfs_path *path;
5756 	struct btrfs_path *dst_path;
5757 	struct btrfs_key min_key;
5758 	struct btrfs_key max_key;
5759 	struct btrfs_root *log = inode->root->log_root;
5760 	int ret;
5761 	bool fast_search = false;
5762 	u64 ino = btrfs_ino(inode);
5763 	struct extent_map_tree *em_tree = &inode->extent_tree;
5764 	u64 logged_isize = 0;
5765 	bool need_log_inode_item = true;
5766 	bool xattrs_logged = false;
5767 	bool recursive_logging = false;
5768 	bool inode_item_dropped = true;
5769 	const bool orig_logged_before = ctx->logged_before;
5770 
5771 	path = btrfs_alloc_path();
5772 	if (!path)
5773 		return -ENOMEM;
5774 	dst_path = btrfs_alloc_path();
5775 	if (!dst_path) {
5776 		btrfs_free_path(path);
5777 		return -ENOMEM;
5778 	}
5779 
5780 	min_key.objectid = ino;
5781 	min_key.type = BTRFS_INODE_ITEM_KEY;
5782 	min_key.offset = 0;
5783 
5784 	max_key.objectid = ino;
5785 
5786 
5787 	/* today the code can only do partial logging of directories */
5788 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
5789 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5790 		       &inode->runtime_flags) &&
5791 	     inode_only >= LOG_INODE_EXISTS))
5792 		max_key.type = BTRFS_XATTR_ITEM_KEY;
5793 	else
5794 		max_key.type = (u8)-1;
5795 	max_key.offset = (u64)-1;
5796 
5797 	/*
5798 	 * Only run delayed items if we are a directory. We want to make sure
5799 	 * all directory indexes hit the fs/subvolume tree so we can find them
5800 	 * and figure out which index ranges have to be logged.
5801 	 */
5802 	if (S_ISDIR(inode->vfs_inode.i_mode)) {
5803 		ret = btrfs_commit_inode_delayed_items(trans, inode);
5804 		if (ret)
5805 			goto out;
5806 	}
5807 
5808 	if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5809 		recursive_logging = true;
5810 		if (inode_only == LOG_OTHER_INODE)
5811 			inode_only = LOG_INODE_EXISTS;
5812 		else
5813 			inode_only = LOG_INODE_ALL;
5814 		mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
5815 	} else {
5816 		mutex_lock(&inode->log_mutex);
5817 	}
5818 
5819 	/*
5820 	 * For symlinks, we must always log their content, which is stored in an
5821 	 * inline extent, otherwise we could end up with an empty symlink after
5822 	 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if
5823 	 * one attempts to create an empty symlink).
5824 	 * We don't need to worry about flushing delalloc, because when we create
5825 	 * the inline extent when the symlink is created (we never have delalloc
5826 	 * for symlinks).
5827 	 */
5828 	if (S_ISLNK(inode->vfs_inode.i_mode))
5829 		inode_only = LOG_INODE_ALL;
5830 
5831 	/*
5832 	 * Before logging the inode item, cache the value returned by
5833 	 * inode_logged(), because after that we have the need to figure out if
5834 	 * the inode was previously logged in this transaction.
5835 	 */
5836 	ret = inode_logged(trans, inode, path);
5837 	if (ret < 0)
5838 		goto out_unlock;
5839 	ctx->logged_before = (ret == 1);
5840 	ret = 0;
5841 
5842 	/*
5843 	 * This is for cases where logging a directory could result in losing a
5844 	 * a file after replaying the log. For example, if we move a file from a
5845 	 * directory A to a directory B, then fsync directory A, we have no way
5846 	 * to known the file was moved from A to B, so logging just A would
5847 	 * result in losing the file after a log replay.
5848 	 */
5849 	if (S_ISDIR(inode->vfs_inode.i_mode) &&
5850 	    inode_only == LOG_INODE_ALL &&
5851 	    inode->last_unlink_trans >= trans->transid) {
5852 		btrfs_set_log_full_commit(trans);
5853 		ret = BTRFS_LOG_FORCE_COMMIT;
5854 		goto out_unlock;
5855 	}
5856 
5857 	/*
5858 	 * a brute force approach to making sure we get the most uptodate
5859 	 * copies of everything.
5860 	 */
5861 	if (S_ISDIR(inode->vfs_inode.i_mode)) {
5862 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5863 
5864 		clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
5865 		if (inode_only == LOG_INODE_EXISTS)
5866 			max_key_type = BTRFS_XATTR_ITEM_KEY;
5867 		if (ctx->logged_before)
5868 			ret = drop_inode_items(trans, log, path, inode,
5869 					       max_key_type);
5870 	} else {
5871 		if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) {
5872 			/*
5873 			 * Make sure the new inode item we write to the log has
5874 			 * the same isize as the current one (if it exists).
5875 			 * This is necessary to prevent data loss after log
5876 			 * replay, and also to prevent doing a wrong expanding
5877 			 * truncate - for e.g. create file, write 4K into offset
5878 			 * 0, fsync, write 4K into offset 4096, add hard link,
5879 			 * fsync some other file (to sync log), power fail - if
5880 			 * we use the inode's current i_size, after log replay
5881 			 * we get a 8Kb file, with the last 4Kb extent as a hole
5882 			 * (zeroes), as if an expanding truncate happened,
5883 			 * instead of getting a file of 4Kb only.
5884 			 */
5885 			ret = logged_inode_size(log, inode, path, &logged_isize);
5886 			if (ret)
5887 				goto out_unlock;
5888 		}
5889 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5890 			     &inode->runtime_flags)) {
5891 			if (inode_only == LOG_INODE_EXISTS) {
5892 				max_key.type = BTRFS_XATTR_ITEM_KEY;
5893 				if (ctx->logged_before)
5894 					ret = drop_inode_items(trans, log, path,
5895 							       inode, max_key.type);
5896 			} else {
5897 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5898 					  &inode->runtime_flags);
5899 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5900 					  &inode->runtime_flags);
5901 				if (ctx->logged_before)
5902 					ret = truncate_inode_items(trans, log,
5903 								   inode, 0, 0);
5904 			}
5905 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5906 					      &inode->runtime_flags) ||
5907 			   inode_only == LOG_INODE_EXISTS) {
5908 			if (inode_only == LOG_INODE_ALL)
5909 				fast_search = true;
5910 			max_key.type = BTRFS_XATTR_ITEM_KEY;
5911 			if (ctx->logged_before)
5912 				ret = drop_inode_items(trans, log, path, inode,
5913 						       max_key.type);
5914 		} else {
5915 			if (inode_only == LOG_INODE_ALL)
5916 				fast_search = true;
5917 			inode_item_dropped = false;
5918 			goto log_extents;
5919 		}
5920 
5921 	}
5922 	if (ret)
5923 		goto out_unlock;
5924 
5925 	ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
5926 				      path, dst_path, logged_isize,
5927 				      recursive_logging, inode_only, ctx,
5928 				      &need_log_inode_item);
5929 	if (ret)
5930 		goto out_unlock;
5931 
5932 	btrfs_release_path(path);
5933 	btrfs_release_path(dst_path);
5934 	ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
5935 	if (ret)
5936 		goto out_unlock;
5937 	xattrs_logged = true;
5938 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5939 		btrfs_release_path(path);
5940 		btrfs_release_path(dst_path);
5941 		ret = btrfs_log_holes(trans, inode, path);
5942 		if (ret)
5943 			goto out_unlock;
5944 	}
5945 log_extents:
5946 	btrfs_release_path(path);
5947 	btrfs_release_path(dst_path);
5948 	if (need_log_inode_item) {
5949 		ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
5950 		if (ret)
5951 			goto out_unlock;
5952 		/*
5953 		 * If we are doing a fast fsync and the inode was logged before
5954 		 * in this transaction, we don't need to log the xattrs because
5955 		 * they were logged before. If xattrs were added, changed or
5956 		 * deleted since the last time we logged the inode, then we have
5957 		 * already logged them because the inode had the runtime flag
5958 		 * BTRFS_INODE_COPY_EVERYTHING set.
5959 		 */
5960 		if (!xattrs_logged && inode->logged_trans < trans->transid) {
5961 			ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
5962 			if (ret)
5963 				goto out_unlock;
5964 			btrfs_release_path(path);
5965 		}
5966 	}
5967 	if (fast_search) {
5968 		ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx);
5969 		if (ret)
5970 			goto out_unlock;
5971 	} else if (inode_only == LOG_INODE_ALL) {
5972 		struct extent_map *em, *n;
5973 
5974 		write_lock(&em_tree->lock);
5975 		list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
5976 			list_del_init(&em->list);
5977 		write_unlock(&em_tree->lock);
5978 	}
5979 
5980 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5981 		ret = log_directory_changes(trans, inode, path, dst_path, ctx);
5982 		if (ret)
5983 			goto out_unlock;
5984 	}
5985 
5986 	spin_lock(&inode->lock);
5987 	inode->logged_trans = trans->transid;
5988 	/*
5989 	 * Don't update last_log_commit if we logged that an inode exists.
5990 	 * We do this for three reasons:
5991 	 *
5992 	 * 1) We might have had buffered writes to this inode that were
5993 	 *    flushed and had their ordered extents completed in this
5994 	 *    transaction, but we did not previously log the inode with
5995 	 *    LOG_INODE_ALL. Later the inode was evicted and after that
5996 	 *    it was loaded again and this LOG_INODE_EXISTS log operation
5997 	 *    happened. We must make sure that if an explicit fsync against
5998 	 *    the inode is performed later, it logs the new extents, an
5999 	 *    updated inode item, etc, and syncs the log. The same logic
6000 	 *    applies to direct IO writes instead of buffered writes.
6001 	 *
6002 	 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
6003 	 *    is logged with an i_size of 0 or whatever value was logged
6004 	 *    before. If later the i_size of the inode is increased by a
6005 	 *    truncate operation, the log is synced through an fsync of
6006 	 *    some other inode and then finally an explicit fsync against
6007 	 *    this inode is made, we must make sure this fsync logs the
6008 	 *    inode with the new i_size, the hole between old i_size and
6009 	 *    the new i_size, and syncs the log.
6010 	 *
6011 	 * 3) If we are logging that an ancestor inode exists as part of
6012 	 *    logging a new name from a link or rename operation, don't update
6013 	 *    its last_log_commit - otherwise if an explicit fsync is made
6014 	 *    against an ancestor, the fsync considers the inode in the log
6015 	 *    and doesn't sync the log, resulting in the ancestor missing after
6016 	 *    a power failure unless the log was synced as part of an fsync
6017 	 *    against any other unrelated inode.
6018 	 */
6019 	if (inode_only != LOG_INODE_EXISTS)
6020 		inode->last_log_commit = inode->last_sub_trans;
6021 	spin_unlock(&inode->lock);
6022 
6023 	/*
6024 	 * Reset the last_reflink_trans so that the next fsync does not need to
6025 	 * go through the slower path when logging extents and their checksums.
6026 	 */
6027 	if (inode_only == LOG_INODE_ALL)
6028 		inode->last_reflink_trans = 0;
6029 
6030 out_unlock:
6031 	mutex_unlock(&inode->log_mutex);
6032 out:
6033 	btrfs_free_path(path);
6034 	btrfs_free_path(dst_path);
6035 
6036 	if (recursive_logging)
6037 		ctx->logged_before = orig_logged_before;
6038 
6039 	return ret;
6040 }
6041 
6042 /*
6043  * Check if we need to log an inode. This is used in contexts where while
6044  * logging an inode we need to log another inode (either that it exists or in
6045  * full mode). This is used instead of btrfs_inode_in_log() because the later
6046  * requires the inode to be in the log and have the log transaction committed,
6047  * while here we do not care if the log transaction was already committed - our
6048  * caller will commit the log later - and we want to avoid logging an inode
6049  * multiple times when multiple tasks have joined the same log transaction.
6050  */
6051 static bool need_log_inode(struct btrfs_trans_handle *trans,
6052 			   struct btrfs_inode *inode)
6053 {
6054 	/*
6055 	 * If a directory was not modified, no dentries added or removed, we can
6056 	 * and should avoid logging it.
6057 	 */
6058 	if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
6059 		return false;
6060 
6061 	/*
6062 	 * If this inode does not have new/updated/deleted xattrs since the last
6063 	 * time it was logged and is flagged as logged in the current transaction,
6064 	 * we can skip logging it. As for new/deleted names, those are updated in
6065 	 * the log by link/unlink/rename operations.
6066 	 * In case the inode was logged and then evicted and reloaded, its
6067 	 * logged_trans will be 0, in which case we have to fully log it since
6068 	 * logged_trans is a transient field, not persisted.
6069 	 */
6070 	if (inode->logged_trans == trans->transid &&
6071 	    !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
6072 		return false;
6073 
6074 	return true;
6075 }
6076 
6077 struct btrfs_dir_list {
6078 	u64 ino;
6079 	struct list_head list;
6080 };
6081 
6082 /*
6083  * Log the inodes of the new dentries of a directory. See log_dir_items() for
6084  * details about the why it is needed.
6085  * This is a recursive operation - if an existing dentry corresponds to a
6086  * directory, that directory's new entries are logged too (same behaviour as
6087  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
6088  * the dentries point to we do not lock their i_mutex, otherwise lockdep
6089  * complains about the following circular lock dependency / possible deadlock:
6090  *
6091  *        CPU0                                        CPU1
6092  *        ----                                        ----
6093  * lock(&type->i_mutex_dir_key#3/2);
6094  *                                            lock(sb_internal#2);
6095  *                                            lock(&type->i_mutex_dir_key#3/2);
6096  * lock(&sb->s_type->i_mutex_key#14);
6097  *
6098  * Where sb_internal is the lock (a counter that works as a lock) acquired by
6099  * sb_start_intwrite() in btrfs_start_transaction().
6100  * Not locking i_mutex of the inodes is still safe because:
6101  *
6102  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
6103  *    that while logging the inode new references (names) are added or removed
6104  *    from the inode, leaving the logged inode item with a link count that does
6105  *    not match the number of logged inode reference items. This is fine because
6106  *    at log replay time we compute the real number of links and correct the
6107  *    link count in the inode item (see replay_one_buffer() and
6108  *    link_to_fixup_dir());
6109  *
6110  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
6111  *    while logging the inode's items new index items (key type
6112  *    BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item
6113  *    has a size that doesn't match the sum of the lengths of all the logged
6114  *    names - this is ok, not a problem, because at log replay time we set the
6115  *    directory's i_size to the correct value (see replay_one_name() and
6116  *    do_overwrite_item()).
6117  */
6118 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
6119 				struct btrfs_root *root,
6120 				struct btrfs_inode *start_inode,
6121 				struct btrfs_log_ctx *ctx)
6122 {
6123 	struct btrfs_fs_info *fs_info = root->fs_info;
6124 	struct btrfs_path *path;
6125 	LIST_HEAD(dir_list);
6126 	struct btrfs_dir_list *dir_elem;
6127 	int ret = 0;
6128 
6129 	/*
6130 	 * If we are logging a new name, as part of a link or rename operation,
6131 	 * don't bother logging new dentries, as we just want to log the names
6132 	 * of an inode and that any new parents exist.
6133 	 */
6134 	if (ctx->logging_new_name)
6135 		return 0;
6136 
6137 	path = btrfs_alloc_path();
6138 	if (!path)
6139 		return -ENOMEM;
6140 
6141 	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
6142 	if (!dir_elem) {
6143 		btrfs_free_path(path);
6144 		return -ENOMEM;
6145 	}
6146 	dir_elem->ino = btrfs_ino(start_inode);
6147 	list_add_tail(&dir_elem->list, &dir_list);
6148 
6149 	while (!list_empty(&dir_list)) {
6150 		struct extent_buffer *leaf;
6151 		struct btrfs_key min_key;
6152 		int nritems;
6153 		int i;
6154 
6155 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
6156 					    list);
6157 		if (ret)
6158 			goto next_dir_inode;
6159 
6160 		min_key.objectid = dir_elem->ino;
6161 		min_key.type = BTRFS_DIR_INDEX_KEY;
6162 		min_key.offset = 0;
6163 again:
6164 		btrfs_release_path(path);
6165 		ret = btrfs_search_forward(root, &min_key, path, trans->transid);
6166 		if (ret < 0) {
6167 			goto next_dir_inode;
6168 		} else if (ret > 0) {
6169 			ret = 0;
6170 			goto next_dir_inode;
6171 		}
6172 
6173 		leaf = path->nodes[0];
6174 		nritems = btrfs_header_nritems(leaf);
6175 		for (i = path->slots[0]; i < nritems; i++) {
6176 			struct btrfs_dir_item *di;
6177 			struct btrfs_key di_key;
6178 			struct inode *di_inode;
6179 			struct btrfs_dir_list *new_dir_elem;
6180 			int log_mode = LOG_INODE_EXISTS;
6181 			int type;
6182 
6183 			btrfs_item_key_to_cpu(leaf, &min_key, i);
6184 			if (min_key.objectid != dir_elem->ino ||
6185 			    min_key.type != BTRFS_DIR_INDEX_KEY)
6186 				goto next_dir_inode;
6187 
6188 			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
6189 			type = btrfs_dir_type(leaf, di);
6190 			if (btrfs_dir_transid(leaf, di) < trans->transid)
6191 				continue;
6192 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
6193 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
6194 				continue;
6195 
6196 			btrfs_release_path(path);
6197 			di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
6198 			if (IS_ERR(di_inode)) {
6199 				ret = PTR_ERR(di_inode);
6200 				goto next_dir_inode;
6201 			}
6202 
6203 			if (!need_log_inode(trans, BTRFS_I(di_inode))) {
6204 				btrfs_add_delayed_iput(di_inode);
6205 				break;
6206 			}
6207 
6208 			ctx->log_new_dentries = false;
6209 			if (type == BTRFS_FT_DIR)
6210 				log_mode = LOG_INODE_ALL;
6211 			ret = btrfs_log_inode(trans, BTRFS_I(di_inode),
6212 					      log_mode, ctx);
6213 			btrfs_add_delayed_iput(di_inode);
6214 			if (ret)
6215 				goto next_dir_inode;
6216 			if (ctx->log_new_dentries) {
6217 				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
6218 						       GFP_NOFS);
6219 				if (!new_dir_elem) {
6220 					ret = -ENOMEM;
6221 					goto next_dir_inode;
6222 				}
6223 				new_dir_elem->ino = di_key.objectid;
6224 				list_add_tail(&new_dir_elem->list, &dir_list);
6225 			}
6226 			break;
6227 		}
6228 		if (min_key.offset < (u64)-1) {
6229 			min_key.offset++;
6230 			goto again;
6231 		}
6232 next_dir_inode:
6233 		list_del(&dir_elem->list);
6234 		kfree(dir_elem);
6235 	}
6236 
6237 	btrfs_free_path(path);
6238 	return ret;
6239 }
6240 
6241 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
6242 				 struct btrfs_inode *inode,
6243 				 struct btrfs_log_ctx *ctx)
6244 {
6245 	struct btrfs_fs_info *fs_info = trans->fs_info;
6246 	int ret;
6247 	struct btrfs_path *path;
6248 	struct btrfs_key key;
6249 	struct btrfs_root *root = inode->root;
6250 	const u64 ino = btrfs_ino(inode);
6251 
6252 	path = btrfs_alloc_path();
6253 	if (!path)
6254 		return -ENOMEM;
6255 	path->skip_locking = 1;
6256 	path->search_commit_root = 1;
6257 
6258 	key.objectid = ino;
6259 	key.type = BTRFS_INODE_REF_KEY;
6260 	key.offset = 0;
6261 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6262 	if (ret < 0)
6263 		goto out;
6264 
6265 	while (true) {
6266 		struct extent_buffer *leaf = path->nodes[0];
6267 		int slot = path->slots[0];
6268 		u32 cur_offset = 0;
6269 		u32 item_size;
6270 		unsigned long ptr;
6271 
6272 		if (slot >= btrfs_header_nritems(leaf)) {
6273 			ret = btrfs_next_leaf(root, path);
6274 			if (ret < 0)
6275 				goto out;
6276 			else if (ret > 0)
6277 				break;
6278 			continue;
6279 		}
6280 
6281 		btrfs_item_key_to_cpu(leaf, &key, slot);
6282 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
6283 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
6284 			break;
6285 
6286 		item_size = btrfs_item_size(leaf, slot);
6287 		ptr = btrfs_item_ptr_offset(leaf, slot);
6288 		while (cur_offset < item_size) {
6289 			struct btrfs_key inode_key;
6290 			struct inode *dir_inode;
6291 
6292 			inode_key.type = BTRFS_INODE_ITEM_KEY;
6293 			inode_key.offset = 0;
6294 
6295 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
6296 				struct btrfs_inode_extref *extref;
6297 
6298 				extref = (struct btrfs_inode_extref *)
6299 					(ptr + cur_offset);
6300 				inode_key.objectid = btrfs_inode_extref_parent(
6301 					leaf, extref);
6302 				cur_offset += sizeof(*extref);
6303 				cur_offset += btrfs_inode_extref_name_len(leaf,
6304 					extref);
6305 			} else {
6306 				inode_key.objectid = key.offset;
6307 				cur_offset = item_size;
6308 			}
6309 
6310 			dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
6311 					       root);
6312 			/*
6313 			 * If the parent inode was deleted, return an error to
6314 			 * fallback to a transaction commit. This is to prevent
6315 			 * getting an inode that was moved from one parent A to
6316 			 * a parent B, got its former parent A deleted and then
6317 			 * it got fsync'ed, from existing at both parents after
6318 			 * a log replay (and the old parent still existing).
6319 			 * Example:
6320 			 *
6321 			 * mkdir /mnt/A
6322 			 * mkdir /mnt/B
6323 			 * touch /mnt/B/bar
6324 			 * sync
6325 			 * mv /mnt/B/bar /mnt/A/bar
6326 			 * mv -T /mnt/A /mnt/B
6327 			 * fsync /mnt/B/bar
6328 			 * <power fail>
6329 			 *
6330 			 * If we ignore the old parent B which got deleted,
6331 			 * after a log replay we would have file bar linked
6332 			 * at both parents and the old parent B would still
6333 			 * exist.
6334 			 */
6335 			if (IS_ERR(dir_inode)) {
6336 				ret = PTR_ERR(dir_inode);
6337 				goto out;
6338 			}
6339 
6340 			if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
6341 				btrfs_add_delayed_iput(dir_inode);
6342 				continue;
6343 			}
6344 
6345 			ctx->log_new_dentries = false;
6346 			ret = btrfs_log_inode(trans, BTRFS_I(dir_inode),
6347 					      LOG_INODE_ALL, ctx);
6348 			if (!ret && ctx->log_new_dentries)
6349 				ret = log_new_dir_dentries(trans, root,
6350 						   BTRFS_I(dir_inode), ctx);
6351 			btrfs_add_delayed_iput(dir_inode);
6352 			if (ret)
6353 				goto out;
6354 		}
6355 		path->slots[0]++;
6356 	}
6357 	ret = 0;
6358 out:
6359 	btrfs_free_path(path);
6360 	return ret;
6361 }
6362 
6363 static int log_new_ancestors(struct btrfs_trans_handle *trans,
6364 			     struct btrfs_root *root,
6365 			     struct btrfs_path *path,
6366 			     struct btrfs_log_ctx *ctx)
6367 {
6368 	struct btrfs_key found_key;
6369 
6370 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
6371 
6372 	while (true) {
6373 		struct btrfs_fs_info *fs_info = root->fs_info;
6374 		struct extent_buffer *leaf = path->nodes[0];
6375 		int slot = path->slots[0];
6376 		struct btrfs_key search_key;
6377 		struct inode *inode;
6378 		u64 ino;
6379 		int ret = 0;
6380 
6381 		btrfs_release_path(path);
6382 
6383 		ino = found_key.offset;
6384 
6385 		search_key.objectid = found_key.offset;
6386 		search_key.type = BTRFS_INODE_ITEM_KEY;
6387 		search_key.offset = 0;
6388 		inode = btrfs_iget(fs_info->sb, ino, root);
6389 		if (IS_ERR(inode))
6390 			return PTR_ERR(inode);
6391 
6392 		if (BTRFS_I(inode)->generation >= trans->transid &&
6393 		    need_log_inode(trans, BTRFS_I(inode)))
6394 			ret = btrfs_log_inode(trans, BTRFS_I(inode),
6395 					      LOG_INODE_EXISTS, ctx);
6396 		btrfs_add_delayed_iput(inode);
6397 		if (ret)
6398 			return ret;
6399 
6400 		if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
6401 			break;
6402 
6403 		search_key.type = BTRFS_INODE_REF_KEY;
6404 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6405 		if (ret < 0)
6406 			return ret;
6407 
6408 		leaf = path->nodes[0];
6409 		slot = path->slots[0];
6410 		if (slot >= btrfs_header_nritems(leaf)) {
6411 			ret = btrfs_next_leaf(root, path);
6412 			if (ret < 0)
6413 				return ret;
6414 			else if (ret > 0)
6415 				return -ENOENT;
6416 			leaf = path->nodes[0];
6417 			slot = path->slots[0];
6418 		}
6419 
6420 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6421 		if (found_key.objectid != search_key.objectid ||
6422 		    found_key.type != BTRFS_INODE_REF_KEY)
6423 			return -ENOENT;
6424 	}
6425 	return 0;
6426 }
6427 
6428 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6429 				  struct btrfs_inode *inode,
6430 				  struct dentry *parent,
6431 				  struct btrfs_log_ctx *ctx)
6432 {
6433 	struct btrfs_root *root = inode->root;
6434 	struct dentry *old_parent = NULL;
6435 	struct super_block *sb = inode->vfs_inode.i_sb;
6436 	int ret = 0;
6437 
6438 	while (true) {
6439 		if (!parent || d_really_is_negative(parent) ||
6440 		    sb != parent->d_sb)
6441 			break;
6442 
6443 		inode = BTRFS_I(d_inode(parent));
6444 		if (root != inode->root)
6445 			break;
6446 
6447 		if (inode->generation >= trans->transid &&
6448 		    need_log_inode(trans, inode)) {
6449 			ret = btrfs_log_inode(trans, inode,
6450 					      LOG_INODE_EXISTS, ctx);
6451 			if (ret)
6452 				break;
6453 		}
6454 		if (IS_ROOT(parent))
6455 			break;
6456 
6457 		parent = dget_parent(parent);
6458 		dput(old_parent);
6459 		old_parent = parent;
6460 	}
6461 	dput(old_parent);
6462 
6463 	return ret;
6464 }
6465 
6466 static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6467 				 struct btrfs_inode *inode,
6468 				 struct dentry *parent,
6469 				 struct btrfs_log_ctx *ctx)
6470 {
6471 	struct btrfs_root *root = inode->root;
6472 	const u64 ino = btrfs_ino(inode);
6473 	struct btrfs_path *path;
6474 	struct btrfs_key search_key;
6475 	int ret;
6476 
6477 	/*
6478 	 * For a single hard link case, go through a fast path that does not
6479 	 * need to iterate the fs/subvolume tree.
6480 	 */
6481 	if (inode->vfs_inode.i_nlink < 2)
6482 		return log_new_ancestors_fast(trans, inode, parent, ctx);
6483 
6484 	path = btrfs_alloc_path();
6485 	if (!path)
6486 		return -ENOMEM;
6487 
6488 	search_key.objectid = ino;
6489 	search_key.type = BTRFS_INODE_REF_KEY;
6490 	search_key.offset = 0;
6491 again:
6492 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6493 	if (ret < 0)
6494 		goto out;
6495 	if (ret == 0)
6496 		path->slots[0]++;
6497 
6498 	while (true) {
6499 		struct extent_buffer *leaf = path->nodes[0];
6500 		int slot = path->slots[0];
6501 		struct btrfs_key found_key;
6502 
6503 		if (slot >= btrfs_header_nritems(leaf)) {
6504 			ret = btrfs_next_leaf(root, path);
6505 			if (ret < 0)
6506 				goto out;
6507 			else if (ret > 0)
6508 				break;
6509 			continue;
6510 		}
6511 
6512 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6513 		if (found_key.objectid != ino ||
6514 		    found_key.type > BTRFS_INODE_EXTREF_KEY)
6515 			break;
6516 
6517 		/*
6518 		 * Don't deal with extended references because they are rare
6519 		 * cases and too complex to deal with (we would need to keep
6520 		 * track of which subitem we are processing for each item in
6521 		 * this loop, etc). So just return some error to fallback to
6522 		 * a transaction commit.
6523 		 */
6524 		if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6525 			ret = -EMLINK;
6526 			goto out;
6527 		}
6528 
6529 		/*
6530 		 * Logging ancestors needs to do more searches on the fs/subvol
6531 		 * tree, so it releases the path as needed to avoid deadlocks.
6532 		 * Keep track of the last inode ref key and resume from that key
6533 		 * after logging all new ancestors for the current hard link.
6534 		 */
6535 		memcpy(&search_key, &found_key, sizeof(search_key));
6536 
6537 		ret = log_new_ancestors(trans, root, path, ctx);
6538 		if (ret)
6539 			goto out;
6540 		btrfs_release_path(path);
6541 		goto again;
6542 	}
6543 	ret = 0;
6544 out:
6545 	btrfs_free_path(path);
6546 	return ret;
6547 }
6548 
6549 /*
6550  * helper function around btrfs_log_inode to make sure newly created
6551  * parent directories also end up in the log.  A minimal inode and backref
6552  * only logging is done of any parent directories that are older than
6553  * the last committed transaction
6554  */
6555 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
6556 				  struct btrfs_inode *inode,
6557 				  struct dentry *parent,
6558 				  int inode_only,
6559 				  struct btrfs_log_ctx *ctx)
6560 {
6561 	struct btrfs_root *root = inode->root;
6562 	struct btrfs_fs_info *fs_info = root->fs_info;
6563 	int ret = 0;
6564 	bool log_dentries = false;
6565 
6566 	if (btrfs_test_opt(fs_info, NOTREELOG)) {
6567 		ret = BTRFS_LOG_FORCE_COMMIT;
6568 		goto end_no_trans;
6569 	}
6570 
6571 	if (btrfs_root_refs(&root->root_item) == 0) {
6572 		ret = BTRFS_LOG_FORCE_COMMIT;
6573 		goto end_no_trans;
6574 	}
6575 
6576 	/*
6577 	 * Skip already logged inodes or inodes corresponding to tmpfiles
6578 	 * (since logging them is pointless, a link count of 0 means they
6579 	 * will never be accessible).
6580 	 */
6581 	if ((btrfs_inode_in_log(inode, trans->transid) &&
6582 	     list_empty(&ctx->ordered_extents)) ||
6583 	    inode->vfs_inode.i_nlink == 0) {
6584 		ret = BTRFS_NO_LOG_SYNC;
6585 		goto end_no_trans;
6586 	}
6587 
6588 	ret = start_log_trans(trans, root, ctx);
6589 	if (ret)
6590 		goto end_no_trans;
6591 
6592 	ret = btrfs_log_inode(trans, inode, inode_only, ctx);
6593 	if (ret)
6594 		goto end_trans;
6595 
6596 	/*
6597 	 * for regular files, if its inode is already on disk, we don't
6598 	 * have to worry about the parents at all.  This is because
6599 	 * we can use the last_unlink_trans field to record renames
6600 	 * and other fun in this file.
6601 	 */
6602 	if (S_ISREG(inode->vfs_inode.i_mode) &&
6603 	    inode->generation < trans->transid &&
6604 	    inode->last_unlink_trans < trans->transid) {
6605 		ret = 0;
6606 		goto end_trans;
6607 	}
6608 
6609 	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries)
6610 		log_dentries = true;
6611 
6612 	/*
6613 	 * On unlink we must make sure all our current and old parent directory
6614 	 * inodes are fully logged. This is to prevent leaving dangling
6615 	 * directory index entries in directories that were our parents but are
6616 	 * not anymore. Not doing this results in old parent directory being
6617 	 * impossible to delete after log replay (rmdir will always fail with
6618 	 * error -ENOTEMPTY).
6619 	 *
6620 	 * Example 1:
6621 	 *
6622 	 * mkdir testdir
6623 	 * touch testdir/foo
6624 	 * ln testdir/foo testdir/bar
6625 	 * sync
6626 	 * unlink testdir/bar
6627 	 * xfs_io -c fsync testdir/foo
6628 	 * <power failure>
6629 	 * mount fs, triggers log replay
6630 	 *
6631 	 * If we don't log the parent directory (testdir), after log replay the
6632 	 * directory still has an entry pointing to the file inode using the bar
6633 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6634 	 * the file inode has a link count of 1.
6635 	 *
6636 	 * Example 2:
6637 	 *
6638 	 * mkdir testdir
6639 	 * touch foo
6640 	 * ln foo testdir/foo2
6641 	 * ln foo testdir/foo3
6642 	 * sync
6643 	 * unlink testdir/foo3
6644 	 * xfs_io -c fsync foo
6645 	 * <power failure>
6646 	 * mount fs, triggers log replay
6647 	 *
6648 	 * Similar as the first example, after log replay the parent directory
6649 	 * testdir still has an entry pointing to the inode file with name foo3
6650 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6651 	 * and has a link count of 2.
6652 	 */
6653 	if (inode->last_unlink_trans >= trans->transid) {
6654 		ret = btrfs_log_all_parents(trans, inode, ctx);
6655 		if (ret)
6656 			goto end_trans;
6657 	}
6658 
6659 	ret = log_all_new_ancestors(trans, inode, parent, ctx);
6660 	if (ret)
6661 		goto end_trans;
6662 
6663 	if (log_dentries)
6664 		ret = log_new_dir_dentries(trans, root, inode, ctx);
6665 	else
6666 		ret = 0;
6667 end_trans:
6668 	if (ret < 0) {
6669 		btrfs_set_log_full_commit(trans);
6670 		ret = BTRFS_LOG_FORCE_COMMIT;
6671 	}
6672 
6673 	if (ret)
6674 		btrfs_remove_log_ctx(root, ctx);
6675 	btrfs_end_log_trans(root);
6676 end_no_trans:
6677 	return ret;
6678 }
6679 
6680 /*
6681  * it is not safe to log dentry if the chunk root has added new
6682  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
6683  * If this returns 1, you must commit the transaction to safely get your
6684  * data on disk.
6685  */
6686 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
6687 			  struct dentry *dentry,
6688 			  struct btrfs_log_ctx *ctx)
6689 {
6690 	struct dentry *parent = dget_parent(dentry);
6691 	int ret;
6692 
6693 	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6694 				     LOG_INODE_ALL, ctx);
6695 	dput(parent);
6696 
6697 	return ret;
6698 }
6699 
6700 /*
6701  * should be called during mount to recover any replay any log trees
6702  * from the FS
6703  */
6704 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6705 {
6706 	int ret;
6707 	struct btrfs_path *path;
6708 	struct btrfs_trans_handle *trans;
6709 	struct btrfs_key key;
6710 	struct btrfs_key found_key;
6711 	struct btrfs_root *log;
6712 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6713 	struct walk_control wc = {
6714 		.process_func = process_one_buffer,
6715 		.stage = LOG_WALK_PIN_ONLY,
6716 	};
6717 
6718 	path = btrfs_alloc_path();
6719 	if (!path)
6720 		return -ENOMEM;
6721 
6722 	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6723 
6724 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
6725 	if (IS_ERR(trans)) {
6726 		ret = PTR_ERR(trans);
6727 		goto error;
6728 	}
6729 
6730 	wc.trans = trans;
6731 	wc.pin = 1;
6732 
6733 	ret = walk_log_tree(trans, log_root_tree, &wc);
6734 	if (ret) {
6735 		btrfs_abort_transaction(trans, ret);
6736 		goto error;
6737 	}
6738 
6739 again:
6740 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
6741 	key.offset = (u64)-1;
6742 	key.type = BTRFS_ROOT_ITEM_KEY;
6743 
6744 	while (1) {
6745 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
6746 
6747 		if (ret < 0) {
6748 			btrfs_abort_transaction(trans, ret);
6749 			goto error;
6750 		}
6751 		if (ret > 0) {
6752 			if (path->slots[0] == 0)
6753 				break;
6754 			path->slots[0]--;
6755 		}
6756 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6757 				      path->slots[0]);
6758 		btrfs_release_path(path);
6759 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6760 			break;
6761 
6762 		log = btrfs_read_tree_root(log_root_tree, &found_key);
6763 		if (IS_ERR(log)) {
6764 			ret = PTR_ERR(log);
6765 			btrfs_abort_transaction(trans, ret);
6766 			goto error;
6767 		}
6768 
6769 		wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
6770 						   true);
6771 		if (IS_ERR(wc.replay_dest)) {
6772 			ret = PTR_ERR(wc.replay_dest);
6773 
6774 			/*
6775 			 * We didn't find the subvol, likely because it was
6776 			 * deleted.  This is ok, simply skip this log and go to
6777 			 * the next one.
6778 			 *
6779 			 * We need to exclude the root because we can't have
6780 			 * other log replays overwriting this log as we'll read
6781 			 * it back in a few more times.  This will keep our
6782 			 * block from being modified, and we'll just bail for
6783 			 * each subsequent pass.
6784 			 */
6785 			if (ret == -ENOENT)
6786 				ret = btrfs_pin_extent_for_log_replay(trans,
6787 							log->node->start,
6788 							log->node->len);
6789 			btrfs_put_root(log);
6790 
6791 			if (!ret)
6792 				goto next;
6793 			btrfs_abort_transaction(trans, ret);
6794 			goto error;
6795 		}
6796 
6797 		wc.replay_dest->log_root = log;
6798 		ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
6799 		if (ret)
6800 			/* The loop needs to continue due to the root refs */
6801 			btrfs_abort_transaction(trans, ret);
6802 		else
6803 			ret = walk_log_tree(trans, log, &wc);
6804 
6805 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6806 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
6807 						      path);
6808 			if (ret)
6809 				btrfs_abort_transaction(trans, ret);
6810 		}
6811 
6812 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6813 			struct btrfs_root *root = wc.replay_dest;
6814 
6815 			btrfs_release_path(path);
6816 
6817 			/*
6818 			 * We have just replayed everything, and the highest
6819 			 * objectid of fs roots probably has changed in case
6820 			 * some inode_item's got replayed.
6821 			 *
6822 			 * root->objectid_mutex is not acquired as log replay
6823 			 * could only happen during mount.
6824 			 */
6825 			ret = btrfs_init_root_free_objectid(root);
6826 			if (ret)
6827 				btrfs_abort_transaction(trans, ret);
6828 		}
6829 
6830 		wc.replay_dest->log_root = NULL;
6831 		btrfs_put_root(wc.replay_dest);
6832 		btrfs_put_root(log);
6833 
6834 		if (ret)
6835 			goto error;
6836 next:
6837 		if (found_key.offset == 0)
6838 			break;
6839 		key.offset = found_key.offset - 1;
6840 	}
6841 	btrfs_release_path(path);
6842 
6843 	/* step one is to pin it all, step two is to replay just inodes */
6844 	if (wc.pin) {
6845 		wc.pin = 0;
6846 		wc.process_func = replay_one_buffer;
6847 		wc.stage = LOG_WALK_REPLAY_INODES;
6848 		goto again;
6849 	}
6850 	/* step three is to replay everything */
6851 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
6852 		wc.stage++;
6853 		goto again;
6854 	}
6855 
6856 	btrfs_free_path(path);
6857 
6858 	/* step 4: commit the transaction, which also unpins the blocks */
6859 	ret = btrfs_commit_transaction(trans);
6860 	if (ret)
6861 		return ret;
6862 
6863 	log_root_tree->log_root = NULL;
6864 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6865 	btrfs_put_root(log_root_tree);
6866 
6867 	return 0;
6868 error:
6869 	if (wc.trans)
6870 		btrfs_end_transaction(wc.trans);
6871 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6872 	btrfs_free_path(path);
6873 	return ret;
6874 }
6875 
6876 /*
6877  * there are some corner cases where we want to force a full
6878  * commit instead of allowing a directory to be logged.
6879  *
6880  * They revolve around files there were unlinked from the directory, and
6881  * this function updates the parent directory so that a full commit is
6882  * properly done if it is fsync'd later after the unlinks are done.
6883  *
6884  * Must be called before the unlink operations (updates to the subvolume tree,
6885  * inodes, etc) are done.
6886  */
6887 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6888 			     struct btrfs_inode *dir, struct btrfs_inode *inode,
6889 			     int for_rename)
6890 {
6891 	/*
6892 	 * when we're logging a file, if it hasn't been renamed
6893 	 * or unlinked, and its inode is fully committed on disk,
6894 	 * we don't have to worry about walking up the directory chain
6895 	 * to log its parents.
6896 	 *
6897 	 * So, we use the last_unlink_trans field to put this transid
6898 	 * into the file.  When the file is logged we check it and
6899 	 * don't log the parents if the file is fully on disk.
6900 	 */
6901 	mutex_lock(&inode->log_mutex);
6902 	inode->last_unlink_trans = trans->transid;
6903 	mutex_unlock(&inode->log_mutex);
6904 
6905 	/*
6906 	 * if this directory was already logged any new
6907 	 * names for this file/dir will get recorded
6908 	 */
6909 	if (dir->logged_trans == trans->transid)
6910 		return;
6911 
6912 	/*
6913 	 * if the inode we're about to unlink was logged,
6914 	 * the log will be properly updated for any new names
6915 	 */
6916 	if (inode->logged_trans == trans->transid)
6917 		return;
6918 
6919 	/*
6920 	 * when renaming files across directories, if the directory
6921 	 * there we're unlinking from gets fsync'd later on, there's
6922 	 * no way to find the destination directory later and fsync it
6923 	 * properly.  So, we have to be conservative and force commits
6924 	 * so the new name gets discovered.
6925 	 */
6926 	if (for_rename)
6927 		goto record;
6928 
6929 	/* we can safely do the unlink without any special recording */
6930 	return;
6931 
6932 record:
6933 	mutex_lock(&dir->log_mutex);
6934 	dir->last_unlink_trans = trans->transid;
6935 	mutex_unlock(&dir->log_mutex);
6936 }
6937 
6938 /*
6939  * Make sure that if someone attempts to fsync the parent directory of a deleted
6940  * snapshot, it ends up triggering a transaction commit. This is to guarantee
6941  * that after replaying the log tree of the parent directory's root we will not
6942  * see the snapshot anymore and at log replay time we will not see any log tree
6943  * corresponding to the deleted snapshot's root, which could lead to replaying
6944  * it after replaying the log tree of the parent directory (which would replay
6945  * the snapshot delete operation).
6946  *
6947  * Must be called before the actual snapshot destroy operation (updates to the
6948  * parent root and tree of tree roots trees, etc) are done.
6949  */
6950 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6951 				   struct btrfs_inode *dir)
6952 {
6953 	mutex_lock(&dir->log_mutex);
6954 	dir->last_unlink_trans = trans->transid;
6955 	mutex_unlock(&dir->log_mutex);
6956 }
6957 
6958 /**
6959  * Update the log after adding a new name for an inode.
6960  *
6961  * @trans:              Transaction handle.
6962  * @old_dentry:         The dentry associated with the old name and the old
6963  *                      parent directory.
6964  * @old_dir:            The inode of the previous parent directory for the case
6965  *                      of a rename. For a link operation, it must be NULL.
6966  * @old_dir_index:      The index number associated with the old name, meaningful
6967  *                      only for rename operations (when @old_dir is not NULL).
6968  *                      Ignored for link operations.
6969  * @parent:             The dentry associated with the directory under which the
6970  *                      new name is located.
6971  *
6972  * Call this after adding a new name for an inode, as a result of a link or
6973  * rename operation, and it will properly update the log to reflect the new name.
6974  */
6975 void btrfs_log_new_name(struct btrfs_trans_handle *trans,
6976 			struct dentry *old_dentry, struct btrfs_inode *old_dir,
6977 			u64 old_dir_index, struct dentry *parent)
6978 {
6979 	struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry));
6980 	struct btrfs_root *root = inode->root;
6981 	struct btrfs_log_ctx ctx;
6982 	bool log_pinned = false;
6983 	int ret;
6984 
6985 	/*
6986 	 * this will force the logging code to walk the dentry chain
6987 	 * up for the file
6988 	 */
6989 	if (!S_ISDIR(inode->vfs_inode.i_mode))
6990 		inode->last_unlink_trans = trans->transid;
6991 
6992 	/*
6993 	 * if this inode hasn't been logged and directory we're renaming it
6994 	 * from hasn't been logged, we don't need to log it
6995 	 */
6996 	ret = inode_logged(trans, inode, NULL);
6997 	if (ret < 0) {
6998 		goto out;
6999 	} else if (ret == 0) {
7000 		if (!old_dir)
7001 			return;
7002 		/*
7003 		 * If the inode was not logged and we are doing a rename (old_dir is not
7004 		 * NULL), check if old_dir was logged - if it was not we can return and
7005 		 * do nothing.
7006 		 */
7007 		ret = inode_logged(trans, old_dir, NULL);
7008 		if (ret < 0)
7009 			goto out;
7010 		else if (ret == 0)
7011 			return;
7012 	}
7013 	ret = 0;
7014 
7015 	/*
7016 	 * If we are doing a rename (old_dir is not NULL) from a directory that
7017 	 * was previously logged, make sure that on log replay we get the old
7018 	 * dir entry deleted. This is needed because we will also log the new
7019 	 * name of the renamed inode, so we need to make sure that after log
7020 	 * replay we don't end up with both the new and old dir entries existing.
7021 	 */
7022 	if (old_dir && old_dir->logged_trans == trans->transid) {
7023 		struct btrfs_root *log = old_dir->root->log_root;
7024 		struct btrfs_path *path;
7025 
7026 		ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX);
7027 
7028 		/*
7029 		 * We have two inodes to update in the log, the old directory and
7030 		 * the inode that got renamed, so we must pin the log to prevent
7031 		 * anyone from syncing the log until we have updated both inodes
7032 		 * in the log.
7033 		 */
7034 		ret = join_running_log_trans(root);
7035 		/*
7036 		 * At least one of the inodes was logged before, so this should
7037 		 * not fail, but if it does, it's not serious, just bail out and
7038 		 * mark the log for a full commit.
7039 		 */
7040 		if (WARN_ON_ONCE(ret < 0))
7041 			goto out;
7042 		log_pinned = true;
7043 
7044 		path = btrfs_alloc_path();
7045 		if (!path) {
7046 			ret = -ENOMEM;
7047 			goto out;
7048 		}
7049 
7050 		/*
7051 		 * Other concurrent task might be logging the old directory,
7052 		 * as it can be triggered when logging other inode that had or
7053 		 * still has a dentry in the old directory. We lock the old
7054 		 * directory's log_mutex to ensure the deletion of the old
7055 		 * name is persisted, because during directory logging we
7056 		 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of
7057 		 * the old name's dir index item is in the delayed items, so
7058 		 * it could be missed by an in progress directory logging.
7059 		 */
7060 		mutex_lock(&old_dir->log_mutex);
7061 		ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir),
7062 					old_dentry->d_name.name,
7063 					old_dentry->d_name.len, old_dir_index);
7064 		if (ret > 0) {
7065 			/*
7066 			 * The dentry does not exist in the log, so record its
7067 			 * deletion.
7068 			 */
7069 			btrfs_release_path(path);
7070 			ret = insert_dir_log_key(trans, log, path,
7071 						 btrfs_ino(old_dir),
7072 						 old_dir_index, old_dir_index);
7073 		}
7074 		mutex_unlock(&old_dir->log_mutex);
7075 
7076 		btrfs_free_path(path);
7077 		if (ret < 0)
7078 			goto out;
7079 	}
7080 
7081 	btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
7082 	ctx.logging_new_name = true;
7083 	/*
7084 	 * We don't care about the return value. If we fail to log the new name
7085 	 * then we know the next attempt to sync the log will fallback to a full
7086 	 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
7087 	 * we don't need to worry about getting a log committed that has an
7088 	 * inconsistent state after a rename operation.
7089 	 */
7090 	btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
7091 out:
7092 	/*
7093 	 * If an error happened mark the log for a full commit because it's not
7094 	 * consistent and up to date or we couldn't find out if one of the
7095 	 * inodes was logged before in this transaction. Do it before unpinning
7096 	 * the log, to avoid any races with someone else trying to commit it.
7097 	 */
7098 	if (ret < 0)
7099 		btrfs_set_log_full_commit(trans);
7100 	if (log_pinned)
7101 		btrfs_end_log_trans(root);
7102 }
7103 
7104