xref: /linux/fs/btrfs/tree-log.c (revision 429508c84d95811dd1300181dfe84743caff9a38)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "misc.h"
12 #include "ctree.h"
13 #include "tree-log.h"
14 #include "disk-io.h"
15 #include "locking.h"
16 #include "backref.h"
17 #include "compression.h"
18 #include "qgroup.h"
19 #include "block-group.h"
20 #include "space-info.h"
21 #include "inode-item.h"
22 #include "fs.h"
23 #include "accessors.h"
24 #include "extent-tree.h"
25 #include "root-tree.h"
26 #include "dir-item.h"
27 #include "file-item.h"
28 #include "file.h"
29 #include "orphan.h"
30 #include "tree-checker.h"
31 
32 #define MAX_CONFLICT_INODES 10
33 
34 /* magic values for the inode_only field in btrfs_log_inode:
35  *
36  * LOG_INODE_ALL means to log everything
37  * LOG_INODE_EXISTS means to log just enough to recreate the inode
38  * during log replay
39  */
40 enum {
41 	LOG_INODE_ALL,
42 	LOG_INODE_EXISTS,
43 };
44 
45 /*
46  * directory trouble cases
47  *
48  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
49  * log, we must force a full commit before doing an fsync of the directory
50  * where the unlink was done.
51  * ---> record transid of last unlink/rename per directory
52  *
53  * mkdir foo/some_dir
54  * normal commit
55  * rename foo/some_dir foo2/some_dir
56  * mkdir foo/some_dir
57  * fsync foo/some_dir/some_file
58  *
59  * The fsync above will unlink the original some_dir without recording
60  * it in its new location (foo2).  After a crash, some_dir will be gone
61  * unless the fsync of some_file forces a full commit
62  *
63  * 2) we must log any new names for any file or dir that is in the fsync
64  * log. ---> check inode while renaming/linking.
65  *
66  * 2a) we must log any new names for any file or dir during rename
67  * when the directory they are being removed from was logged.
68  * ---> check inode and old parent dir during rename
69  *
70  *  2a is actually the more important variant.  With the extra logging
71  *  a crash might unlink the old name without recreating the new one
72  *
73  * 3) after a crash, we must go through any directories with a link count
74  * of zero and redo the rm -rf
75  *
76  * mkdir f1/foo
77  * normal commit
78  * rm -rf f1/foo
79  * fsync(f1)
80  *
81  * The directory f1 was fully removed from the FS, but fsync was never
82  * called on f1, only its parent dir.  After a crash the rm -rf must
83  * be replayed.  This must be able to recurse down the entire
84  * directory tree.  The inode link count fixup code takes care of the
85  * ugly details.
86  */
87 
88 /*
89  * stages for the tree walking.  The first
90  * stage (0) is to only pin down the blocks we find
91  * the second stage (1) is to make sure that all the inodes
92  * we find in the log are created in the subvolume.
93  *
94  * The last stage is to deal with directories and links and extents
95  * and all the other fun semantics
96  */
97 enum {
98 	LOG_WALK_PIN_ONLY,
99 	LOG_WALK_REPLAY_INODES,
100 	LOG_WALK_REPLAY_DIR_INDEX,
101 	LOG_WALK_REPLAY_ALL,
102 };
103 
104 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
105 			   struct btrfs_inode *inode,
106 			   int inode_only,
107 			   struct btrfs_log_ctx *ctx);
108 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
109 			     struct btrfs_root *root,
110 			     struct btrfs_path *path, u64 objectid);
111 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
112 				       struct btrfs_root *root,
113 				       struct btrfs_root *log,
114 				       struct btrfs_path *path,
115 				       u64 dirid, int del_all);
116 static void wait_log_commit(struct btrfs_root *root, int transid);
117 
118 /*
119  * tree logging is a special write ahead log used to make sure that
120  * fsyncs and O_SYNCs can happen without doing full tree commits.
121  *
122  * Full tree commits are expensive because they require commonly
123  * modified blocks to be recowed, creating many dirty pages in the
124  * extent tree an 4x-6x higher write load than ext3.
125  *
126  * Instead of doing a tree commit on every fsync, we use the
127  * key ranges and transaction ids to find items for a given file or directory
128  * that have changed in this transaction.  Those items are copied into
129  * a special tree (one per subvolume root), that tree is written to disk
130  * and then the fsync is considered complete.
131  *
132  * After a crash, items are copied out of the log-tree back into the
133  * subvolume tree.  Any file data extents found are recorded in the extent
134  * allocation tree, and the log-tree freed.
135  *
136  * The log tree is read three times, once to pin down all the extents it is
137  * using in ram and once, once to create all the inodes logged in the tree
138  * and once to do all the other items.
139  */
140 
141 /*
142  * start a sub transaction and setup the log tree
143  * this increments the log tree writer count to make the people
144  * syncing the tree wait for us to finish
145  */
146 static int start_log_trans(struct btrfs_trans_handle *trans,
147 			   struct btrfs_root *root,
148 			   struct btrfs_log_ctx *ctx)
149 {
150 	struct btrfs_fs_info *fs_info = root->fs_info;
151 	struct btrfs_root *tree_root = fs_info->tree_root;
152 	const bool zoned = btrfs_is_zoned(fs_info);
153 	int ret = 0;
154 	bool created = false;
155 
156 	/*
157 	 * First check if the log root tree was already created. If not, create
158 	 * it before locking the root's log_mutex, just to keep lockdep happy.
159 	 */
160 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
161 		mutex_lock(&tree_root->log_mutex);
162 		if (!fs_info->log_root_tree) {
163 			ret = btrfs_init_log_root_tree(trans, fs_info);
164 			if (!ret) {
165 				set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
166 				created = true;
167 			}
168 		}
169 		mutex_unlock(&tree_root->log_mutex);
170 		if (ret)
171 			return ret;
172 	}
173 
174 	mutex_lock(&root->log_mutex);
175 
176 again:
177 	if (root->log_root) {
178 		int index = (root->log_transid + 1) % 2;
179 
180 		if (btrfs_need_log_full_commit(trans)) {
181 			ret = BTRFS_LOG_FORCE_COMMIT;
182 			goto out;
183 		}
184 
185 		if (zoned && atomic_read(&root->log_commit[index])) {
186 			wait_log_commit(root, root->log_transid - 1);
187 			goto again;
188 		}
189 
190 		if (!root->log_start_pid) {
191 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
192 			root->log_start_pid = current->pid;
193 		} else if (root->log_start_pid != current->pid) {
194 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
195 		}
196 	} else {
197 		/*
198 		 * This means fs_info->log_root_tree was already created
199 		 * for some other FS trees. Do the full commit not to mix
200 		 * nodes from multiple log transactions to do sequential
201 		 * writing.
202 		 */
203 		if (zoned && !created) {
204 			ret = BTRFS_LOG_FORCE_COMMIT;
205 			goto out;
206 		}
207 
208 		ret = btrfs_add_log_tree(trans, root);
209 		if (ret)
210 			goto out;
211 
212 		set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
213 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
214 		root->log_start_pid = current->pid;
215 	}
216 
217 	atomic_inc(&root->log_writers);
218 	if (!ctx->logging_new_name) {
219 		int index = root->log_transid % 2;
220 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
221 		ctx->log_transid = root->log_transid;
222 	}
223 
224 out:
225 	mutex_unlock(&root->log_mutex);
226 	return ret;
227 }
228 
229 /*
230  * returns 0 if there was a log transaction running and we were able
231  * to join, or returns -ENOENT if there were not transactions
232  * in progress
233  */
234 static int join_running_log_trans(struct btrfs_root *root)
235 {
236 	const bool zoned = btrfs_is_zoned(root->fs_info);
237 	int ret = -ENOENT;
238 
239 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
240 		return ret;
241 
242 	mutex_lock(&root->log_mutex);
243 again:
244 	if (root->log_root) {
245 		int index = (root->log_transid + 1) % 2;
246 
247 		ret = 0;
248 		if (zoned && atomic_read(&root->log_commit[index])) {
249 			wait_log_commit(root, root->log_transid - 1);
250 			goto again;
251 		}
252 		atomic_inc(&root->log_writers);
253 	}
254 	mutex_unlock(&root->log_mutex);
255 	return ret;
256 }
257 
258 /*
259  * This either makes the current running log transaction wait
260  * until you call btrfs_end_log_trans() or it makes any future
261  * log transactions wait until you call btrfs_end_log_trans()
262  */
263 void btrfs_pin_log_trans(struct btrfs_root *root)
264 {
265 	atomic_inc(&root->log_writers);
266 }
267 
268 /*
269  * indicate we're done making changes to the log tree
270  * and wake up anyone waiting to do a sync
271  */
272 void btrfs_end_log_trans(struct btrfs_root *root)
273 {
274 	if (atomic_dec_and_test(&root->log_writers)) {
275 		/* atomic_dec_and_test implies a barrier */
276 		cond_wake_up_nomb(&root->log_writer_wait);
277 	}
278 }
279 
280 /*
281  * the walk control struct is used to pass state down the chain when
282  * processing the log tree.  The stage field tells us which part
283  * of the log tree processing we are currently doing.  The others
284  * are state fields used for that specific part
285  */
286 struct walk_control {
287 	/* should we free the extent on disk when done?  This is used
288 	 * at transaction commit time while freeing a log tree
289 	 */
290 	int free;
291 
292 	/* pin only walk, we record which extents on disk belong to the
293 	 * log trees
294 	 */
295 	int pin;
296 
297 	/* what stage of the replay code we're currently in */
298 	int stage;
299 
300 	/*
301 	 * Ignore any items from the inode currently being processed. Needs
302 	 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
303 	 * the LOG_WALK_REPLAY_INODES stage.
304 	 */
305 	bool ignore_cur_inode;
306 
307 	/* the root we are currently replaying */
308 	struct btrfs_root *replay_dest;
309 
310 	/* the trans handle for the current replay */
311 	struct btrfs_trans_handle *trans;
312 
313 	/* the function that gets used to process blocks we find in the
314 	 * tree.  Note the extent_buffer might not be up to date when it is
315 	 * passed in, and it must be checked or read if you need the data
316 	 * inside it
317 	 */
318 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
319 			    struct walk_control *wc, u64 gen, int level);
320 };
321 
322 /*
323  * process_func used to pin down extents, write them or wait on them
324  */
325 static int process_one_buffer(struct btrfs_root *log,
326 			      struct extent_buffer *eb,
327 			      struct walk_control *wc, u64 gen, int level)
328 {
329 	struct btrfs_fs_info *fs_info = log->fs_info;
330 	int ret = 0;
331 
332 	/*
333 	 * If this fs is mixed then we need to be able to process the leaves to
334 	 * pin down any logged extents, so we have to read the block.
335 	 */
336 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
337 		struct btrfs_tree_parent_check check = {
338 			.level = level,
339 			.transid = gen
340 		};
341 
342 		ret = btrfs_read_extent_buffer(eb, &check);
343 		if (ret)
344 			return ret;
345 	}
346 
347 	if (wc->pin) {
348 		ret = btrfs_pin_extent_for_log_replay(wc->trans, eb);
349 		if (ret)
350 			return ret;
351 
352 		if (btrfs_buffer_uptodate(eb, gen, 0) &&
353 		    btrfs_header_level(eb) == 0)
354 			ret = btrfs_exclude_logged_extents(eb);
355 	}
356 	return ret;
357 }
358 
359 /*
360  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
361  * to the src data we are copying out.
362  *
363  * root is the tree we are copying into, and path is a scratch
364  * path for use in this function (it should be released on entry and
365  * will be released on exit).
366  *
367  * If the key is already in the destination tree the existing item is
368  * overwritten.  If the existing item isn't big enough, it is extended.
369  * If it is too large, it is truncated.
370  *
371  * If the key isn't in the destination yet, a new item is inserted.
372  */
373 static int overwrite_item(struct btrfs_trans_handle *trans,
374 			  struct btrfs_root *root,
375 			  struct btrfs_path *path,
376 			  struct extent_buffer *eb, int slot,
377 			  struct btrfs_key *key)
378 {
379 	int ret;
380 	u32 item_size;
381 	u64 saved_i_size = 0;
382 	int save_old_i_size = 0;
383 	unsigned long src_ptr;
384 	unsigned long dst_ptr;
385 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
386 
387 	/*
388 	 * This is only used during log replay, so the root is always from a
389 	 * fs/subvolume tree. In case we ever need to support a log root, then
390 	 * we'll have to clone the leaf in the path, release the path and use
391 	 * the leaf before writing into the log tree. See the comments at
392 	 * copy_items() for more details.
393 	 */
394 	ASSERT(btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID);
395 
396 	item_size = btrfs_item_size(eb, slot);
397 	src_ptr = btrfs_item_ptr_offset(eb, slot);
398 
399 	/* Look for the key in the destination tree. */
400 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
401 	if (ret < 0)
402 		return ret;
403 
404 	if (ret == 0) {
405 		char *src_copy;
406 		char *dst_copy;
407 		u32 dst_size = btrfs_item_size(path->nodes[0],
408 						  path->slots[0]);
409 		if (dst_size != item_size)
410 			goto insert;
411 
412 		if (item_size == 0) {
413 			btrfs_release_path(path);
414 			return 0;
415 		}
416 		dst_copy = kmalloc(item_size, GFP_NOFS);
417 		src_copy = kmalloc(item_size, GFP_NOFS);
418 		if (!dst_copy || !src_copy) {
419 			btrfs_release_path(path);
420 			kfree(dst_copy);
421 			kfree(src_copy);
422 			return -ENOMEM;
423 		}
424 
425 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
426 
427 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
428 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
429 				   item_size);
430 		ret = memcmp(dst_copy, src_copy, item_size);
431 
432 		kfree(dst_copy);
433 		kfree(src_copy);
434 		/*
435 		 * they have the same contents, just return, this saves
436 		 * us from cowing blocks in the destination tree and doing
437 		 * extra writes that may not have been done by a previous
438 		 * sync
439 		 */
440 		if (ret == 0) {
441 			btrfs_release_path(path);
442 			return 0;
443 		}
444 
445 		/*
446 		 * We need to load the old nbytes into the inode so when we
447 		 * replay the extents we've logged we get the right nbytes.
448 		 */
449 		if (inode_item) {
450 			struct btrfs_inode_item *item;
451 			u64 nbytes;
452 			u32 mode;
453 
454 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
455 					      struct btrfs_inode_item);
456 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
457 			item = btrfs_item_ptr(eb, slot,
458 					      struct btrfs_inode_item);
459 			btrfs_set_inode_nbytes(eb, item, nbytes);
460 
461 			/*
462 			 * If this is a directory we need to reset the i_size to
463 			 * 0 so that we can set it up properly when replaying
464 			 * the rest of the items in this log.
465 			 */
466 			mode = btrfs_inode_mode(eb, item);
467 			if (S_ISDIR(mode))
468 				btrfs_set_inode_size(eb, item, 0);
469 		}
470 	} else if (inode_item) {
471 		struct btrfs_inode_item *item;
472 		u32 mode;
473 
474 		/*
475 		 * New inode, set nbytes to 0 so that the nbytes comes out
476 		 * properly when we replay the extents.
477 		 */
478 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
479 		btrfs_set_inode_nbytes(eb, item, 0);
480 
481 		/*
482 		 * If this is a directory we need to reset the i_size to 0 so
483 		 * that we can set it up properly when replaying the rest of
484 		 * the items in this log.
485 		 */
486 		mode = btrfs_inode_mode(eb, item);
487 		if (S_ISDIR(mode))
488 			btrfs_set_inode_size(eb, item, 0);
489 	}
490 insert:
491 	btrfs_release_path(path);
492 	/* try to insert the key into the destination tree */
493 	path->skip_release_on_error = 1;
494 	ret = btrfs_insert_empty_item(trans, root, path,
495 				      key, item_size);
496 	path->skip_release_on_error = 0;
497 
498 	/* make sure any existing item is the correct size */
499 	if (ret == -EEXIST || ret == -EOVERFLOW) {
500 		u32 found_size;
501 		found_size = btrfs_item_size(path->nodes[0],
502 						path->slots[0]);
503 		if (found_size > item_size)
504 			btrfs_truncate_item(trans, path, item_size, 1);
505 		else if (found_size < item_size)
506 			btrfs_extend_item(trans, path, item_size - found_size);
507 	} else if (ret) {
508 		return ret;
509 	}
510 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
511 					path->slots[0]);
512 
513 	/* don't overwrite an existing inode if the generation number
514 	 * was logged as zero.  This is done when the tree logging code
515 	 * is just logging an inode to make sure it exists after recovery.
516 	 *
517 	 * Also, don't overwrite i_size on directories during replay.
518 	 * log replay inserts and removes directory items based on the
519 	 * state of the tree found in the subvolume, and i_size is modified
520 	 * as it goes
521 	 */
522 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
523 		struct btrfs_inode_item *src_item;
524 		struct btrfs_inode_item *dst_item;
525 
526 		src_item = (struct btrfs_inode_item *)src_ptr;
527 		dst_item = (struct btrfs_inode_item *)dst_ptr;
528 
529 		if (btrfs_inode_generation(eb, src_item) == 0) {
530 			struct extent_buffer *dst_eb = path->nodes[0];
531 			const u64 ino_size = btrfs_inode_size(eb, src_item);
532 
533 			/*
534 			 * For regular files an ino_size == 0 is used only when
535 			 * logging that an inode exists, as part of a directory
536 			 * fsync, and the inode wasn't fsynced before. In this
537 			 * case don't set the size of the inode in the fs/subvol
538 			 * tree, otherwise we would be throwing valid data away.
539 			 */
540 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
541 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
542 			    ino_size != 0)
543 				btrfs_set_inode_size(dst_eb, dst_item, ino_size);
544 			goto no_copy;
545 		}
546 
547 		if (S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
548 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
549 			save_old_i_size = 1;
550 			saved_i_size = btrfs_inode_size(path->nodes[0],
551 							dst_item);
552 		}
553 	}
554 
555 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
556 			   src_ptr, item_size);
557 
558 	if (save_old_i_size) {
559 		struct btrfs_inode_item *dst_item;
560 		dst_item = (struct btrfs_inode_item *)dst_ptr;
561 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
562 	}
563 
564 	/* make sure the generation is filled in */
565 	if (key->type == BTRFS_INODE_ITEM_KEY) {
566 		struct btrfs_inode_item *dst_item;
567 		dst_item = (struct btrfs_inode_item *)dst_ptr;
568 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
569 			btrfs_set_inode_generation(path->nodes[0], dst_item,
570 						   trans->transid);
571 		}
572 	}
573 no_copy:
574 	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
575 	btrfs_release_path(path);
576 	return 0;
577 }
578 
579 static int read_alloc_one_name(struct extent_buffer *eb, void *start, int len,
580 			       struct fscrypt_str *name)
581 {
582 	char *buf;
583 
584 	buf = kmalloc(len, GFP_NOFS);
585 	if (!buf)
586 		return -ENOMEM;
587 
588 	read_extent_buffer(eb, buf, (unsigned long)start, len);
589 	name->name = buf;
590 	name->len = len;
591 	return 0;
592 }
593 
594 /*
595  * simple helper to read an inode off the disk from a given root
596  * This can only be called for subvolume roots and not for the log
597  */
598 static noinline struct inode *read_one_inode(struct btrfs_root *root,
599 					     u64 objectid)
600 {
601 	struct inode *inode;
602 
603 	inode = btrfs_iget(root->fs_info->sb, objectid, root);
604 	if (IS_ERR(inode))
605 		inode = NULL;
606 	return inode;
607 }
608 
609 /* replays a single extent in 'eb' at 'slot' with 'key' into the
610  * subvolume 'root'.  path is released on entry and should be released
611  * on exit.
612  *
613  * extents in the log tree have not been allocated out of the extent
614  * tree yet.  So, this completes the allocation, taking a reference
615  * as required if the extent already exists or creating a new extent
616  * if it isn't in the extent allocation tree yet.
617  *
618  * The extent is inserted into the file, dropping any existing extents
619  * from the file that overlap the new one.
620  */
621 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
622 				      struct btrfs_root *root,
623 				      struct btrfs_path *path,
624 				      struct extent_buffer *eb, int slot,
625 				      struct btrfs_key *key)
626 {
627 	struct btrfs_drop_extents_args drop_args = { 0 };
628 	struct btrfs_fs_info *fs_info = root->fs_info;
629 	int found_type;
630 	u64 extent_end;
631 	u64 start = key->offset;
632 	u64 nbytes = 0;
633 	struct btrfs_file_extent_item *item;
634 	struct inode *inode = NULL;
635 	unsigned long size;
636 	int ret = 0;
637 
638 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
639 	found_type = btrfs_file_extent_type(eb, item);
640 
641 	if (found_type == BTRFS_FILE_EXTENT_REG ||
642 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
643 		nbytes = btrfs_file_extent_num_bytes(eb, item);
644 		extent_end = start + nbytes;
645 
646 		/*
647 		 * We don't add to the inodes nbytes if we are prealloc or a
648 		 * hole.
649 		 */
650 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
651 			nbytes = 0;
652 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
653 		size = btrfs_file_extent_ram_bytes(eb, item);
654 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
655 		extent_end = ALIGN(start + size,
656 				   fs_info->sectorsize);
657 	} else {
658 		ret = 0;
659 		goto out;
660 	}
661 
662 	inode = read_one_inode(root, key->objectid);
663 	if (!inode) {
664 		ret = -EIO;
665 		goto out;
666 	}
667 
668 	/*
669 	 * first check to see if we already have this extent in the
670 	 * file.  This must be done before the btrfs_drop_extents run
671 	 * so we don't try to drop this extent.
672 	 */
673 	ret = btrfs_lookup_file_extent(trans, root, path,
674 			btrfs_ino(BTRFS_I(inode)), start, 0);
675 
676 	if (ret == 0 &&
677 	    (found_type == BTRFS_FILE_EXTENT_REG ||
678 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
679 		struct btrfs_file_extent_item cmp1;
680 		struct btrfs_file_extent_item cmp2;
681 		struct btrfs_file_extent_item *existing;
682 		struct extent_buffer *leaf;
683 
684 		leaf = path->nodes[0];
685 		existing = btrfs_item_ptr(leaf, path->slots[0],
686 					  struct btrfs_file_extent_item);
687 
688 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
689 				   sizeof(cmp1));
690 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
691 				   sizeof(cmp2));
692 
693 		/*
694 		 * we already have a pointer to this exact extent,
695 		 * we don't have to do anything
696 		 */
697 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
698 			btrfs_release_path(path);
699 			goto out;
700 		}
701 	}
702 	btrfs_release_path(path);
703 
704 	/* drop any overlapping extents */
705 	drop_args.start = start;
706 	drop_args.end = extent_end;
707 	drop_args.drop_cache = true;
708 	ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
709 	if (ret)
710 		goto out;
711 
712 	if (found_type == BTRFS_FILE_EXTENT_REG ||
713 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
714 		u64 offset;
715 		unsigned long dest_offset;
716 		struct btrfs_key ins;
717 
718 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
719 		    btrfs_fs_incompat(fs_info, NO_HOLES))
720 			goto update_inode;
721 
722 		ret = btrfs_insert_empty_item(trans, root, path, key,
723 					      sizeof(*item));
724 		if (ret)
725 			goto out;
726 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
727 						    path->slots[0]);
728 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
729 				(unsigned long)item,  sizeof(*item));
730 
731 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
732 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
733 		ins.type = BTRFS_EXTENT_ITEM_KEY;
734 		offset = key->offset - btrfs_file_extent_offset(eb, item);
735 
736 		/*
737 		 * Manually record dirty extent, as here we did a shallow
738 		 * file extent item copy and skip normal backref update,
739 		 * but modifying extent tree all by ourselves.
740 		 * So need to manually record dirty extent for qgroup,
741 		 * as the owner of the file extent changed from log tree
742 		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
743 		 */
744 		ret = btrfs_qgroup_trace_extent(trans,
745 				btrfs_file_extent_disk_bytenr(eb, item),
746 				btrfs_file_extent_disk_num_bytes(eb, item));
747 		if (ret < 0)
748 			goto out;
749 
750 		if (ins.objectid > 0) {
751 			u64 csum_start;
752 			u64 csum_end;
753 			LIST_HEAD(ordered_sums);
754 
755 			/*
756 			 * is this extent already allocated in the extent
757 			 * allocation tree?  If so, just add a reference
758 			 */
759 			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
760 						ins.offset);
761 			if (ret < 0) {
762 				goto out;
763 			} else if (ret == 0) {
764 				struct btrfs_ref ref = {
765 					.action = BTRFS_ADD_DELAYED_REF,
766 					.bytenr = ins.objectid,
767 					.num_bytes = ins.offset,
768 					.owning_root = btrfs_root_id(root),
769 					.ref_root = btrfs_root_id(root),
770 				};
771 				btrfs_init_data_ref(&ref, key->objectid, offset,
772 						    0, false);
773 				ret = btrfs_inc_extent_ref(trans, &ref);
774 				if (ret)
775 					goto out;
776 			} else {
777 				/*
778 				 * insert the extent pointer in the extent
779 				 * allocation tree
780 				 */
781 				ret = btrfs_alloc_logged_file_extent(trans,
782 						btrfs_root_id(root),
783 						key->objectid, offset, &ins);
784 				if (ret)
785 					goto out;
786 			}
787 			btrfs_release_path(path);
788 
789 			if (btrfs_file_extent_compression(eb, item)) {
790 				csum_start = ins.objectid;
791 				csum_end = csum_start + ins.offset;
792 			} else {
793 				csum_start = ins.objectid +
794 					btrfs_file_extent_offset(eb, item);
795 				csum_end = csum_start +
796 					btrfs_file_extent_num_bytes(eb, item);
797 			}
798 
799 			ret = btrfs_lookup_csums_list(root->log_root,
800 						csum_start, csum_end - 1,
801 						&ordered_sums, false);
802 			if (ret < 0)
803 				goto out;
804 			ret = 0;
805 			/*
806 			 * Now delete all existing cums in the csum root that
807 			 * cover our range. We do this because we can have an
808 			 * extent that is completely referenced by one file
809 			 * extent item and partially referenced by another
810 			 * file extent item (like after using the clone or
811 			 * extent_same ioctls). In this case if we end up doing
812 			 * the replay of the one that partially references the
813 			 * extent first, and we do not do the csum deletion
814 			 * below, we can get 2 csum items in the csum tree that
815 			 * overlap each other. For example, imagine our log has
816 			 * the two following file extent items:
817 			 *
818 			 * key (257 EXTENT_DATA 409600)
819 			 *     extent data disk byte 12845056 nr 102400
820 			 *     extent data offset 20480 nr 20480 ram 102400
821 			 *
822 			 * key (257 EXTENT_DATA 819200)
823 			 *     extent data disk byte 12845056 nr 102400
824 			 *     extent data offset 0 nr 102400 ram 102400
825 			 *
826 			 * Where the second one fully references the 100K extent
827 			 * that starts at disk byte 12845056, and the log tree
828 			 * has a single csum item that covers the entire range
829 			 * of the extent:
830 			 *
831 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
832 			 *
833 			 * After the first file extent item is replayed, the
834 			 * csum tree gets the following csum item:
835 			 *
836 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
837 			 *
838 			 * Which covers the 20K sub-range starting at offset 20K
839 			 * of our extent. Now when we replay the second file
840 			 * extent item, if we do not delete existing csum items
841 			 * that cover any of its blocks, we end up getting two
842 			 * csum items in our csum tree that overlap each other:
843 			 *
844 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
845 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
846 			 *
847 			 * Which is a problem, because after this anyone trying
848 			 * to lookup up for the checksum of any block of our
849 			 * extent starting at an offset of 40K or higher, will
850 			 * end up looking at the second csum item only, which
851 			 * does not contain the checksum for any block starting
852 			 * at offset 40K or higher of our extent.
853 			 */
854 			while (!list_empty(&ordered_sums)) {
855 				struct btrfs_ordered_sum *sums;
856 				struct btrfs_root *csum_root;
857 
858 				sums = list_entry(ordered_sums.next,
859 						struct btrfs_ordered_sum,
860 						list);
861 				csum_root = btrfs_csum_root(fs_info,
862 							    sums->logical);
863 				if (!ret)
864 					ret = btrfs_del_csums(trans, csum_root,
865 							      sums->logical,
866 							      sums->len);
867 				if (!ret)
868 					ret = btrfs_csum_file_blocks(trans,
869 								     csum_root,
870 								     sums);
871 				list_del(&sums->list);
872 				kfree(sums);
873 			}
874 			if (ret)
875 				goto out;
876 		} else {
877 			btrfs_release_path(path);
878 		}
879 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
880 		/* inline extents are easy, we just overwrite them */
881 		ret = overwrite_item(trans, root, path, eb, slot, key);
882 		if (ret)
883 			goto out;
884 	}
885 
886 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
887 						extent_end - start);
888 	if (ret)
889 		goto out;
890 
891 update_inode:
892 	btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
893 	ret = btrfs_update_inode(trans, BTRFS_I(inode));
894 out:
895 	iput(inode);
896 	return ret;
897 }
898 
899 static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans,
900 				       struct btrfs_inode *dir,
901 				       struct btrfs_inode *inode,
902 				       const struct fscrypt_str *name)
903 {
904 	int ret;
905 
906 	ret = btrfs_unlink_inode(trans, dir, inode, name);
907 	if (ret)
908 		return ret;
909 	/*
910 	 * Whenever we need to check if a name exists or not, we check the
911 	 * fs/subvolume tree. So after an unlink we must run delayed items, so
912 	 * that future checks for a name during log replay see that the name
913 	 * does not exists anymore.
914 	 */
915 	return btrfs_run_delayed_items(trans);
916 }
917 
918 /*
919  * when cleaning up conflicts between the directory names in the
920  * subvolume, directory names in the log and directory names in the
921  * inode back references, we may have to unlink inodes from directories.
922  *
923  * This is a helper function to do the unlink of a specific directory
924  * item
925  */
926 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
927 				      struct btrfs_path *path,
928 				      struct btrfs_inode *dir,
929 				      struct btrfs_dir_item *di)
930 {
931 	struct btrfs_root *root = dir->root;
932 	struct inode *inode;
933 	struct fscrypt_str name;
934 	struct extent_buffer *leaf;
935 	struct btrfs_key location;
936 	int ret;
937 
938 	leaf = path->nodes[0];
939 
940 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
941 	ret = read_alloc_one_name(leaf, di + 1, btrfs_dir_name_len(leaf, di), &name);
942 	if (ret)
943 		return -ENOMEM;
944 
945 	btrfs_release_path(path);
946 
947 	inode = read_one_inode(root, location.objectid);
948 	if (!inode) {
949 		ret = -EIO;
950 		goto out;
951 	}
952 
953 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
954 	if (ret)
955 		goto out;
956 
957 	ret = unlink_inode_for_log_replay(trans, dir, BTRFS_I(inode), &name);
958 out:
959 	kfree(name.name);
960 	iput(inode);
961 	return ret;
962 }
963 
964 /*
965  * See if a given name and sequence number found in an inode back reference are
966  * already in a directory and correctly point to this inode.
967  *
968  * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
969  * exists.
970  */
971 static noinline int inode_in_dir(struct btrfs_root *root,
972 				 struct btrfs_path *path,
973 				 u64 dirid, u64 objectid, u64 index,
974 				 struct fscrypt_str *name)
975 {
976 	struct btrfs_dir_item *di;
977 	struct btrfs_key location;
978 	int ret = 0;
979 
980 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
981 					 index, name, 0);
982 	if (IS_ERR(di)) {
983 		ret = PTR_ERR(di);
984 		goto out;
985 	} else if (di) {
986 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
987 		if (location.objectid != objectid)
988 			goto out;
989 	} else {
990 		goto out;
991 	}
992 
993 	btrfs_release_path(path);
994 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, 0);
995 	if (IS_ERR(di)) {
996 		ret = PTR_ERR(di);
997 		goto out;
998 	} else if (di) {
999 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1000 		if (location.objectid == objectid)
1001 			ret = 1;
1002 	}
1003 out:
1004 	btrfs_release_path(path);
1005 	return ret;
1006 }
1007 
1008 /*
1009  * helper function to check a log tree for a named back reference in
1010  * an inode.  This is used to decide if a back reference that is
1011  * found in the subvolume conflicts with what we find in the log.
1012  *
1013  * inode backreferences may have multiple refs in a single item,
1014  * during replay we process one reference at a time, and we don't
1015  * want to delete valid links to a file from the subvolume if that
1016  * link is also in the log.
1017  */
1018 static noinline int backref_in_log(struct btrfs_root *log,
1019 				   struct btrfs_key *key,
1020 				   u64 ref_objectid,
1021 				   const struct fscrypt_str *name)
1022 {
1023 	struct btrfs_path *path;
1024 	int ret;
1025 
1026 	path = btrfs_alloc_path();
1027 	if (!path)
1028 		return -ENOMEM;
1029 
1030 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
1031 	if (ret < 0) {
1032 		goto out;
1033 	} else if (ret == 1) {
1034 		ret = 0;
1035 		goto out;
1036 	}
1037 
1038 	if (key->type == BTRFS_INODE_EXTREF_KEY)
1039 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1040 						       path->slots[0],
1041 						       ref_objectid, name);
1042 	else
1043 		ret = !!btrfs_find_name_in_backref(path->nodes[0],
1044 						   path->slots[0], name);
1045 out:
1046 	btrfs_free_path(path);
1047 	return ret;
1048 }
1049 
1050 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1051 				  struct btrfs_root *root,
1052 				  struct btrfs_path *path,
1053 				  struct btrfs_root *log_root,
1054 				  struct btrfs_inode *dir,
1055 				  struct btrfs_inode *inode,
1056 				  u64 inode_objectid, u64 parent_objectid,
1057 				  u64 ref_index, struct fscrypt_str *name)
1058 {
1059 	int ret;
1060 	struct extent_buffer *leaf;
1061 	struct btrfs_dir_item *di;
1062 	struct btrfs_key search_key;
1063 	struct btrfs_inode_extref *extref;
1064 
1065 again:
1066 	/* Search old style refs */
1067 	search_key.objectid = inode_objectid;
1068 	search_key.type = BTRFS_INODE_REF_KEY;
1069 	search_key.offset = parent_objectid;
1070 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1071 	if (ret == 0) {
1072 		struct btrfs_inode_ref *victim_ref;
1073 		unsigned long ptr;
1074 		unsigned long ptr_end;
1075 
1076 		leaf = path->nodes[0];
1077 
1078 		/* are we trying to overwrite a back ref for the root directory
1079 		 * if so, just jump out, we're done
1080 		 */
1081 		if (search_key.objectid == search_key.offset)
1082 			return 1;
1083 
1084 		/* check all the names in this back reference to see
1085 		 * if they are in the log.  if so, we allow them to stay
1086 		 * otherwise they must be unlinked as a conflict
1087 		 */
1088 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1089 		ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]);
1090 		while (ptr < ptr_end) {
1091 			struct fscrypt_str victim_name;
1092 
1093 			victim_ref = (struct btrfs_inode_ref *)ptr;
1094 			ret = read_alloc_one_name(leaf, (victim_ref + 1),
1095 				 btrfs_inode_ref_name_len(leaf, victim_ref),
1096 				 &victim_name);
1097 			if (ret)
1098 				return ret;
1099 
1100 			ret = backref_in_log(log_root, &search_key,
1101 					     parent_objectid, &victim_name);
1102 			if (ret < 0) {
1103 				kfree(victim_name.name);
1104 				return ret;
1105 			} else if (!ret) {
1106 				inc_nlink(&inode->vfs_inode);
1107 				btrfs_release_path(path);
1108 
1109 				ret = unlink_inode_for_log_replay(trans, dir, inode,
1110 						&victim_name);
1111 				kfree(victim_name.name);
1112 				if (ret)
1113 					return ret;
1114 				goto again;
1115 			}
1116 			kfree(victim_name.name);
1117 
1118 			ptr = (unsigned long)(victim_ref + 1) + victim_name.len;
1119 		}
1120 	}
1121 	btrfs_release_path(path);
1122 
1123 	/* Same search but for extended refs */
1124 	extref = btrfs_lookup_inode_extref(NULL, root, path, name,
1125 					   inode_objectid, parent_objectid, 0,
1126 					   0);
1127 	if (IS_ERR(extref)) {
1128 		return PTR_ERR(extref);
1129 	} else if (extref) {
1130 		u32 item_size;
1131 		u32 cur_offset = 0;
1132 		unsigned long base;
1133 		struct inode *victim_parent;
1134 
1135 		leaf = path->nodes[0];
1136 
1137 		item_size = btrfs_item_size(leaf, path->slots[0]);
1138 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1139 
1140 		while (cur_offset < item_size) {
1141 			struct fscrypt_str victim_name;
1142 
1143 			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1144 
1145 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1146 				goto next;
1147 
1148 			ret = read_alloc_one_name(leaf, &extref->name,
1149 				 btrfs_inode_extref_name_len(leaf, extref),
1150 				 &victim_name);
1151 			if (ret)
1152 				return ret;
1153 
1154 			search_key.objectid = inode_objectid;
1155 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1156 			search_key.offset = btrfs_extref_hash(parent_objectid,
1157 							      victim_name.name,
1158 							      victim_name.len);
1159 			ret = backref_in_log(log_root, &search_key,
1160 					     parent_objectid, &victim_name);
1161 			if (ret < 0) {
1162 				kfree(victim_name.name);
1163 				return ret;
1164 			} else if (!ret) {
1165 				ret = -ENOENT;
1166 				victim_parent = read_one_inode(root,
1167 						parent_objectid);
1168 				if (victim_parent) {
1169 					inc_nlink(&inode->vfs_inode);
1170 					btrfs_release_path(path);
1171 
1172 					ret = unlink_inode_for_log_replay(trans,
1173 							BTRFS_I(victim_parent),
1174 							inode, &victim_name);
1175 				}
1176 				iput(victim_parent);
1177 				kfree(victim_name.name);
1178 				if (ret)
1179 					return ret;
1180 				goto again;
1181 			}
1182 			kfree(victim_name.name);
1183 next:
1184 			cur_offset += victim_name.len + sizeof(*extref);
1185 		}
1186 	}
1187 	btrfs_release_path(path);
1188 
1189 	/* look for a conflicting sequence number */
1190 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1191 					 ref_index, name, 0);
1192 	if (IS_ERR(di)) {
1193 		return PTR_ERR(di);
1194 	} else if (di) {
1195 		ret = drop_one_dir_item(trans, path, dir, di);
1196 		if (ret)
1197 			return ret;
1198 	}
1199 	btrfs_release_path(path);
1200 
1201 	/* look for a conflicting name */
1202 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), name, 0);
1203 	if (IS_ERR(di)) {
1204 		return PTR_ERR(di);
1205 	} else if (di) {
1206 		ret = drop_one_dir_item(trans, path, dir, di);
1207 		if (ret)
1208 			return ret;
1209 	}
1210 	btrfs_release_path(path);
1211 
1212 	return 0;
1213 }
1214 
1215 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1216 			     struct fscrypt_str *name, u64 *index,
1217 			     u64 *parent_objectid)
1218 {
1219 	struct btrfs_inode_extref *extref;
1220 	int ret;
1221 
1222 	extref = (struct btrfs_inode_extref *)ref_ptr;
1223 
1224 	ret = read_alloc_one_name(eb, &extref->name,
1225 				  btrfs_inode_extref_name_len(eb, extref), name);
1226 	if (ret)
1227 		return ret;
1228 
1229 	if (index)
1230 		*index = btrfs_inode_extref_index(eb, extref);
1231 	if (parent_objectid)
1232 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1233 
1234 	return 0;
1235 }
1236 
1237 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1238 			  struct fscrypt_str *name, u64 *index)
1239 {
1240 	struct btrfs_inode_ref *ref;
1241 	int ret;
1242 
1243 	ref = (struct btrfs_inode_ref *)ref_ptr;
1244 
1245 	ret = read_alloc_one_name(eb, ref + 1, btrfs_inode_ref_name_len(eb, ref),
1246 				  name);
1247 	if (ret)
1248 		return ret;
1249 
1250 	if (index)
1251 		*index = btrfs_inode_ref_index(eb, ref);
1252 
1253 	return 0;
1254 }
1255 
1256 /*
1257  * Take an inode reference item from the log tree and iterate all names from the
1258  * inode reference item in the subvolume tree with the same key (if it exists).
1259  * For any name that is not in the inode reference item from the log tree, do a
1260  * proper unlink of that name (that is, remove its entry from the inode
1261  * reference item and both dir index keys).
1262  */
1263 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1264 				 struct btrfs_root *root,
1265 				 struct btrfs_path *path,
1266 				 struct btrfs_inode *inode,
1267 				 struct extent_buffer *log_eb,
1268 				 int log_slot,
1269 				 struct btrfs_key *key)
1270 {
1271 	int ret;
1272 	unsigned long ref_ptr;
1273 	unsigned long ref_end;
1274 	struct extent_buffer *eb;
1275 
1276 again:
1277 	btrfs_release_path(path);
1278 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1279 	if (ret > 0) {
1280 		ret = 0;
1281 		goto out;
1282 	}
1283 	if (ret < 0)
1284 		goto out;
1285 
1286 	eb = path->nodes[0];
1287 	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1288 	ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]);
1289 	while (ref_ptr < ref_end) {
1290 		struct fscrypt_str name;
1291 		u64 parent_id;
1292 
1293 		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1294 			ret = extref_get_fields(eb, ref_ptr, &name,
1295 						NULL, &parent_id);
1296 		} else {
1297 			parent_id = key->offset;
1298 			ret = ref_get_fields(eb, ref_ptr, &name, NULL);
1299 		}
1300 		if (ret)
1301 			goto out;
1302 
1303 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1304 			ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1305 							       parent_id, &name);
1306 		else
1307 			ret = !!btrfs_find_name_in_backref(log_eb, log_slot, &name);
1308 
1309 		if (!ret) {
1310 			struct inode *dir;
1311 
1312 			btrfs_release_path(path);
1313 			dir = read_one_inode(root, parent_id);
1314 			if (!dir) {
1315 				ret = -ENOENT;
1316 				kfree(name.name);
1317 				goto out;
1318 			}
1319 			ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir),
1320 						 inode, &name);
1321 			kfree(name.name);
1322 			iput(dir);
1323 			if (ret)
1324 				goto out;
1325 			goto again;
1326 		}
1327 
1328 		kfree(name.name);
1329 		ref_ptr += name.len;
1330 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1331 			ref_ptr += sizeof(struct btrfs_inode_extref);
1332 		else
1333 			ref_ptr += sizeof(struct btrfs_inode_ref);
1334 	}
1335 	ret = 0;
1336  out:
1337 	btrfs_release_path(path);
1338 	return ret;
1339 }
1340 
1341 /*
1342  * replay one inode back reference item found in the log tree.
1343  * eb, slot and key refer to the buffer and key found in the log tree.
1344  * root is the destination we are replaying into, and path is for temp
1345  * use by this function.  (it should be released on return).
1346  */
1347 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1348 				  struct btrfs_root *root,
1349 				  struct btrfs_root *log,
1350 				  struct btrfs_path *path,
1351 				  struct extent_buffer *eb, int slot,
1352 				  struct btrfs_key *key)
1353 {
1354 	struct inode *dir = NULL;
1355 	struct inode *inode = NULL;
1356 	unsigned long ref_ptr;
1357 	unsigned long ref_end;
1358 	struct fscrypt_str name;
1359 	int ret;
1360 	int log_ref_ver = 0;
1361 	u64 parent_objectid;
1362 	u64 inode_objectid;
1363 	u64 ref_index = 0;
1364 	int ref_struct_size;
1365 
1366 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1367 	ref_end = ref_ptr + btrfs_item_size(eb, slot);
1368 
1369 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1370 		struct btrfs_inode_extref *r;
1371 
1372 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1373 		log_ref_ver = 1;
1374 		r = (struct btrfs_inode_extref *)ref_ptr;
1375 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1376 	} else {
1377 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1378 		parent_objectid = key->offset;
1379 	}
1380 	inode_objectid = key->objectid;
1381 
1382 	/*
1383 	 * it is possible that we didn't log all the parent directories
1384 	 * for a given inode.  If we don't find the dir, just don't
1385 	 * copy the back ref in.  The link count fixup code will take
1386 	 * care of the rest
1387 	 */
1388 	dir = read_one_inode(root, parent_objectid);
1389 	if (!dir) {
1390 		ret = -ENOENT;
1391 		goto out;
1392 	}
1393 
1394 	inode = read_one_inode(root, inode_objectid);
1395 	if (!inode) {
1396 		ret = -EIO;
1397 		goto out;
1398 	}
1399 
1400 	while (ref_ptr < ref_end) {
1401 		if (log_ref_ver) {
1402 			ret = extref_get_fields(eb, ref_ptr, &name,
1403 						&ref_index, &parent_objectid);
1404 			/*
1405 			 * parent object can change from one array
1406 			 * item to another.
1407 			 */
1408 			if (!dir)
1409 				dir = read_one_inode(root, parent_objectid);
1410 			if (!dir) {
1411 				ret = -ENOENT;
1412 				goto out;
1413 			}
1414 		} else {
1415 			ret = ref_get_fields(eb, ref_ptr, &name, &ref_index);
1416 		}
1417 		if (ret)
1418 			goto out;
1419 
1420 		ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1421 				   btrfs_ino(BTRFS_I(inode)), ref_index, &name);
1422 		if (ret < 0) {
1423 			goto out;
1424 		} else if (ret == 0) {
1425 			/*
1426 			 * look for a conflicting back reference in the
1427 			 * metadata. if we find one we have to unlink that name
1428 			 * of the file before we add our new link.  Later on, we
1429 			 * overwrite any existing back reference, and we don't
1430 			 * want to create dangling pointers in the directory.
1431 			 */
1432 			ret = __add_inode_ref(trans, root, path, log,
1433 					      BTRFS_I(dir), BTRFS_I(inode),
1434 					      inode_objectid, parent_objectid,
1435 					      ref_index, &name);
1436 			if (ret) {
1437 				if (ret == 1)
1438 					ret = 0;
1439 				goto out;
1440 			}
1441 
1442 			/* insert our name */
1443 			ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1444 					     &name, 0, ref_index);
1445 			if (ret)
1446 				goto out;
1447 
1448 			ret = btrfs_update_inode(trans, BTRFS_I(inode));
1449 			if (ret)
1450 				goto out;
1451 		}
1452 		/* Else, ret == 1, we already have a perfect match, we're done. */
1453 
1454 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + name.len;
1455 		kfree(name.name);
1456 		name.name = NULL;
1457 		if (log_ref_ver) {
1458 			iput(dir);
1459 			dir = NULL;
1460 		}
1461 	}
1462 
1463 	/*
1464 	 * Before we overwrite the inode reference item in the subvolume tree
1465 	 * with the item from the log tree, we must unlink all names from the
1466 	 * parent directory that are in the subvolume's tree inode reference
1467 	 * item, otherwise we end up with an inconsistent subvolume tree where
1468 	 * dir index entries exist for a name but there is no inode reference
1469 	 * item with the same name.
1470 	 */
1471 	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1472 				    key);
1473 	if (ret)
1474 		goto out;
1475 
1476 	/* finally write the back reference in the inode */
1477 	ret = overwrite_item(trans, root, path, eb, slot, key);
1478 out:
1479 	btrfs_release_path(path);
1480 	kfree(name.name);
1481 	iput(dir);
1482 	iput(inode);
1483 	return ret;
1484 }
1485 
1486 static int count_inode_extrefs(struct btrfs_inode *inode, struct btrfs_path *path)
1487 {
1488 	int ret = 0;
1489 	int name_len;
1490 	unsigned int nlink = 0;
1491 	u32 item_size;
1492 	u32 cur_offset = 0;
1493 	u64 inode_objectid = btrfs_ino(inode);
1494 	u64 offset = 0;
1495 	unsigned long ptr;
1496 	struct btrfs_inode_extref *extref;
1497 	struct extent_buffer *leaf;
1498 
1499 	while (1) {
1500 		ret = btrfs_find_one_extref(inode->root, inode_objectid, offset,
1501 					    path, &extref, &offset);
1502 		if (ret)
1503 			break;
1504 
1505 		leaf = path->nodes[0];
1506 		item_size = btrfs_item_size(leaf, path->slots[0]);
1507 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1508 		cur_offset = 0;
1509 
1510 		while (cur_offset < item_size) {
1511 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1512 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1513 
1514 			nlink++;
1515 
1516 			cur_offset += name_len + sizeof(*extref);
1517 		}
1518 
1519 		offset++;
1520 		btrfs_release_path(path);
1521 	}
1522 	btrfs_release_path(path);
1523 
1524 	if (ret < 0 && ret != -ENOENT)
1525 		return ret;
1526 	return nlink;
1527 }
1528 
1529 static int count_inode_refs(struct btrfs_inode *inode, struct btrfs_path *path)
1530 {
1531 	int ret;
1532 	struct btrfs_key key;
1533 	unsigned int nlink = 0;
1534 	unsigned long ptr;
1535 	unsigned long ptr_end;
1536 	int name_len;
1537 	u64 ino = btrfs_ino(inode);
1538 
1539 	key.objectid = ino;
1540 	key.type = BTRFS_INODE_REF_KEY;
1541 	key.offset = (u64)-1;
1542 
1543 	while (1) {
1544 		ret = btrfs_search_slot(NULL, inode->root, &key, path, 0, 0);
1545 		if (ret < 0)
1546 			break;
1547 		if (ret > 0) {
1548 			if (path->slots[0] == 0)
1549 				break;
1550 			path->slots[0]--;
1551 		}
1552 process_slot:
1553 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1554 				      path->slots[0]);
1555 		if (key.objectid != ino ||
1556 		    key.type != BTRFS_INODE_REF_KEY)
1557 			break;
1558 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1559 		ptr_end = ptr + btrfs_item_size(path->nodes[0],
1560 						   path->slots[0]);
1561 		while (ptr < ptr_end) {
1562 			struct btrfs_inode_ref *ref;
1563 
1564 			ref = (struct btrfs_inode_ref *)ptr;
1565 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1566 							    ref);
1567 			ptr = (unsigned long)(ref + 1) + name_len;
1568 			nlink++;
1569 		}
1570 
1571 		if (key.offset == 0)
1572 			break;
1573 		if (path->slots[0] > 0) {
1574 			path->slots[0]--;
1575 			goto process_slot;
1576 		}
1577 		key.offset--;
1578 		btrfs_release_path(path);
1579 	}
1580 	btrfs_release_path(path);
1581 
1582 	return nlink;
1583 }
1584 
1585 /*
1586  * There are a few corners where the link count of the file can't
1587  * be properly maintained during replay.  So, instead of adding
1588  * lots of complexity to the log code, we just scan the backrefs
1589  * for any file that has been through replay.
1590  *
1591  * The scan will update the link count on the inode to reflect the
1592  * number of back refs found.  If it goes down to zero, the iput
1593  * will free the inode.
1594  */
1595 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1596 					   struct inode *inode)
1597 {
1598 	struct btrfs_root *root = BTRFS_I(inode)->root;
1599 	struct btrfs_path *path;
1600 	int ret;
1601 	u64 nlink = 0;
1602 	u64 ino = btrfs_ino(BTRFS_I(inode));
1603 
1604 	path = btrfs_alloc_path();
1605 	if (!path)
1606 		return -ENOMEM;
1607 
1608 	ret = count_inode_refs(BTRFS_I(inode), path);
1609 	if (ret < 0)
1610 		goto out;
1611 
1612 	nlink = ret;
1613 
1614 	ret = count_inode_extrefs(BTRFS_I(inode), path);
1615 	if (ret < 0)
1616 		goto out;
1617 
1618 	nlink += ret;
1619 
1620 	ret = 0;
1621 
1622 	if (nlink != inode->i_nlink) {
1623 		set_nlink(inode, nlink);
1624 		ret = btrfs_update_inode(trans, BTRFS_I(inode));
1625 		if (ret)
1626 			goto out;
1627 	}
1628 	BTRFS_I(inode)->index_cnt = (u64)-1;
1629 
1630 	if (inode->i_nlink == 0) {
1631 		if (S_ISDIR(inode->i_mode)) {
1632 			ret = replay_dir_deletes(trans, root, NULL, path,
1633 						 ino, 1);
1634 			if (ret)
1635 				goto out;
1636 		}
1637 		ret = btrfs_insert_orphan_item(trans, root, ino);
1638 		if (ret == -EEXIST)
1639 			ret = 0;
1640 	}
1641 
1642 out:
1643 	btrfs_free_path(path);
1644 	return ret;
1645 }
1646 
1647 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1648 					    struct btrfs_root *root,
1649 					    struct btrfs_path *path)
1650 {
1651 	int ret;
1652 	struct btrfs_key key;
1653 	struct inode *inode;
1654 
1655 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1656 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1657 	key.offset = (u64)-1;
1658 	while (1) {
1659 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1660 		if (ret < 0)
1661 			break;
1662 
1663 		if (ret == 1) {
1664 			ret = 0;
1665 			if (path->slots[0] == 0)
1666 				break;
1667 			path->slots[0]--;
1668 		}
1669 
1670 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1671 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1672 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1673 			break;
1674 
1675 		ret = btrfs_del_item(trans, root, path);
1676 		if (ret)
1677 			break;
1678 
1679 		btrfs_release_path(path);
1680 		inode = read_one_inode(root, key.offset);
1681 		if (!inode) {
1682 			ret = -EIO;
1683 			break;
1684 		}
1685 
1686 		ret = fixup_inode_link_count(trans, inode);
1687 		iput(inode);
1688 		if (ret)
1689 			break;
1690 
1691 		/*
1692 		 * fixup on a directory may create new entries,
1693 		 * make sure we always look for the highset possible
1694 		 * offset
1695 		 */
1696 		key.offset = (u64)-1;
1697 	}
1698 	btrfs_release_path(path);
1699 	return ret;
1700 }
1701 
1702 
1703 /*
1704  * record a given inode in the fixup dir so we can check its link
1705  * count when replay is done.  The link count is incremented here
1706  * so the inode won't go away until we check it
1707  */
1708 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1709 				      struct btrfs_root *root,
1710 				      struct btrfs_path *path,
1711 				      u64 objectid)
1712 {
1713 	struct btrfs_key key;
1714 	int ret = 0;
1715 	struct inode *inode;
1716 
1717 	inode = read_one_inode(root, objectid);
1718 	if (!inode)
1719 		return -EIO;
1720 
1721 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1722 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1723 	key.offset = objectid;
1724 
1725 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1726 
1727 	btrfs_release_path(path);
1728 	if (ret == 0) {
1729 		if (!inode->i_nlink)
1730 			set_nlink(inode, 1);
1731 		else
1732 			inc_nlink(inode);
1733 		ret = btrfs_update_inode(trans, BTRFS_I(inode));
1734 	} else if (ret == -EEXIST) {
1735 		ret = 0;
1736 	}
1737 	iput(inode);
1738 
1739 	return ret;
1740 }
1741 
1742 /*
1743  * when replaying the log for a directory, we only insert names
1744  * for inodes that actually exist.  This means an fsync on a directory
1745  * does not implicitly fsync all the new files in it
1746  */
1747 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1748 				    struct btrfs_root *root,
1749 				    u64 dirid, u64 index,
1750 				    const struct fscrypt_str *name,
1751 				    struct btrfs_key *location)
1752 {
1753 	struct inode *inode;
1754 	struct inode *dir;
1755 	int ret;
1756 
1757 	inode = read_one_inode(root, location->objectid);
1758 	if (!inode)
1759 		return -ENOENT;
1760 
1761 	dir = read_one_inode(root, dirid);
1762 	if (!dir) {
1763 		iput(inode);
1764 		return -EIO;
1765 	}
1766 
1767 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1768 			     1, index);
1769 
1770 	/* FIXME, put inode into FIXUP list */
1771 
1772 	iput(inode);
1773 	iput(dir);
1774 	return ret;
1775 }
1776 
1777 static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans,
1778 					struct btrfs_inode *dir,
1779 					struct btrfs_path *path,
1780 					struct btrfs_dir_item *dst_di,
1781 					const struct btrfs_key *log_key,
1782 					u8 log_flags,
1783 					bool exists)
1784 {
1785 	struct btrfs_key found_key;
1786 
1787 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1788 	/* The existing dentry points to the same inode, don't delete it. */
1789 	if (found_key.objectid == log_key->objectid &&
1790 	    found_key.type == log_key->type &&
1791 	    found_key.offset == log_key->offset &&
1792 	    btrfs_dir_flags(path->nodes[0], dst_di) == log_flags)
1793 		return 1;
1794 
1795 	/*
1796 	 * Don't drop the conflicting directory entry if the inode for the new
1797 	 * entry doesn't exist.
1798 	 */
1799 	if (!exists)
1800 		return 0;
1801 
1802 	return drop_one_dir_item(trans, path, dir, dst_di);
1803 }
1804 
1805 /*
1806  * take a single entry in a log directory item and replay it into
1807  * the subvolume.
1808  *
1809  * if a conflicting item exists in the subdirectory already,
1810  * the inode it points to is unlinked and put into the link count
1811  * fix up tree.
1812  *
1813  * If a name from the log points to a file or directory that does
1814  * not exist in the FS, it is skipped.  fsyncs on directories
1815  * do not force down inodes inside that directory, just changes to the
1816  * names or unlinks in a directory.
1817  *
1818  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1819  * non-existing inode) and 1 if the name was replayed.
1820  */
1821 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1822 				    struct btrfs_root *root,
1823 				    struct btrfs_path *path,
1824 				    struct extent_buffer *eb,
1825 				    struct btrfs_dir_item *di,
1826 				    struct btrfs_key *key)
1827 {
1828 	struct fscrypt_str name;
1829 	struct btrfs_dir_item *dir_dst_di;
1830 	struct btrfs_dir_item *index_dst_di;
1831 	bool dir_dst_matches = false;
1832 	bool index_dst_matches = false;
1833 	struct btrfs_key log_key;
1834 	struct btrfs_key search_key;
1835 	struct inode *dir;
1836 	u8 log_flags;
1837 	bool exists;
1838 	int ret;
1839 	bool update_size = true;
1840 	bool name_added = false;
1841 
1842 	dir = read_one_inode(root, key->objectid);
1843 	if (!dir)
1844 		return -EIO;
1845 
1846 	ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
1847 	if (ret)
1848 		goto out;
1849 
1850 	log_flags = btrfs_dir_flags(eb, di);
1851 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1852 	ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1853 	btrfs_release_path(path);
1854 	if (ret < 0)
1855 		goto out;
1856 	exists = (ret == 0);
1857 	ret = 0;
1858 
1859 	dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1860 					   &name, 1);
1861 	if (IS_ERR(dir_dst_di)) {
1862 		ret = PTR_ERR(dir_dst_di);
1863 		goto out;
1864 	} else if (dir_dst_di) {
1865 		ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1866 						   dir_dst_di, &log_key,
1867 						   log_flags, exists);
1868 		if (ret < 0)
1869 			goto out;
1870 		dir_dst_matches = (ret == 1);
1871 	}
1872 
1873 	btrfs_release_path(path);
1874 
1875 	index_dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1876 						   key->objectid, key->offset,
1877 						   &name, 1);
1878 	if (IS_ERR(index_dst_di)) {
1879 		ret = PTR_ERR(index_dst_di);
1880 		goto out;
1881 	} else if (index_dst_di) {
1882 		ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1883 						   index_dst_di, &log_key,
1884 						   log_flags, exists);
1885 		if (ret < 0)
1886 			goto out;
1887 		index_dst_matches = (ret == 1);
1888 	}
1889 
1890 	btrfs_release_path(path);
1891 
1892 	if (dir_dst_matches && index_dst_matches) {
1893 		ret = 0;
1894 		update_size = false;
1895 		goto out;
1896 	}
1897 
1898 	/*
1899 	 * Check if the inode reference exists in the log for the given name,
1900 	 * inode and parent inode
1901 	 */
1902 	search_key.objectid = log_key.objectid;
1903 	search_key.type = BTRFS_INODE_REF_KEY;
1904 	search_key.offset = key->objectid;
1905 	ret = backref_in_log(root->log_root, &search_key, 0, &name);
1906 	if (ret < 0) {
1907 	        goto out;
1908 	} else if (ret) {
1909 	        /* The dentry will be added later. */
1910 	        ret = 0;
1911 	        update_size = false;
1912 	        goto out;
1913 	}
1914 
1915 	search_key.objectid = log_key.objectid;
1916 	search_key.type = BTRFS_INODE_EXTREF_KEY;
1917 	search_key.offset = key->objectid;
1918 	ret = backref_in_log(root->log_root, &search_key, key->objectid, &name);
1919 	if (ret < 0) {
1920 		goto out;
1921 	} else if (ret) {
1922 		/* The dentry will be added later. */
1923 		ret = 0;
1924 		update_size = false;
1925 		goto out;
1926 	}
1927 	btrfs_release_path(path);
1928 	ret = insert_one_name(trans, root, key->objectid, key->offset,
1929 			      &name, &log_key);
1930 	if (ret && ret != -ENOENT && ret != -EEXIST)
1931 		goto out;
1932 	if (!ret)
1933 		name_added = true;
1934 	update_size = false;
1935 	ret = 0;
1936 
1937 out:
1938 	if (!ret && update_size) {
1939 		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name.len * 2);
1940 		ret = btrfs_update_inode(trans, BTRFS_I(dir));
1941 	}
1942 	kfree(name.name);
1943 	iput(dir);
1944 	if (!ret && name_added)
1945 		ret = 1;
1946 	return ret;
1947 }
1948 
1949 /* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */
1950 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1951 					struct btrfs_root *root,
1952 					struct btrfs_path *path,
1953 					struct extent_buffer *eb, int slot,
1954 					struct btrfs_key *key)
1955 {
1956 	int ret;
1957 	struct btrfs_dir_item *di;
1958 
1959 	/* We only log dir index keys, which only contain a single dir item. */
1960 	ASSERT(key->type == BTRFS_DIR_INDEX_KEY);
1961 
1962 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1963 	ret = replay_one_name(trans, root, path, eb, di, key);
1964 	if (ret < 0)
1965 		return ret;
1966 
1967 	/*
1968 	 * If this entry refers to a non-directory (directories can not have a
1969 	 * link count > 1) and it was added in the transaction that was not
1970 	 * committed, make sure we fixup the link count of the inode the entry
1971 	 * points to. Otherwise something like the following would result in a
1972 	 * directory pointing to an inode with a wrong link that does not account
1973 	 * for this dir entry:
1974 	 *
1975 	 * mkdir testdir
1976 	 * touch testdir/foo
1977 	 * touch testdir/bar
1978 	 * sync
1979 	 *
1980 	 * ln testdir/bar testdir/bar_link
1981 	 * ln testdir/foo testdir/foo_link
1982 	 * xfs_io -c "fsync" testdir/bar
1983 	 *
1984 	 * <power failure>
1985 	 *
1986 	 * mount fs, log replay happens
1987 	 *
1988 	 * File foo would remain with a link count of 1 when it has two entries
1989 	 * pointing to it in the directory testdir. This would make it impossible
1990 	 * to ever delete the parent directory has it would result in stale
1991 	 * dentries that can never be deleted.
1992 	 */
1993 	if (ret == 1 && btrfs_dir_ftype(eb, di) != BTRFS_FT_DIR) {
1994 		struct btrfs_path *fixup_path;
1995 		struct btrfs_key di_key;
1996 
1997 		fixup_path = btrfs_alloc_path();
1998 		if (!fixup_path)
1999 			return -ENOMEM;
2000 
2001 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2002 		ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid);
2003 		btrfs_free_path(fixup_path);
2004 	}
2005 
2006 	return ret;
2007 }
2008 
2009 /*
2010  * directory replay has two parts.  There are the standard directory
2011  * items in the log copied from the subvolume, and range items
2012  * created in the log while the subvolume was logged.
2013  *
2014  * The range items tell us which parts of the key space the log
2015  * is authoritative for.  During replay, if a key in the subvolume
2016  * directory is in a logged range item, but not actually in the log
2017  * that means it was deleted from the directory before the fsync
2018  * and should be removed.
2019  */
2020 static noinline int find_dir_range(struct btrfs_root *root,
2021 				   struct btrfs_path *path,
2022 				   u64 dirid,
2023 				   u64 *start_ret, u64 *end_ret)
2024 {
2025 	struct btrfs_key key;
2026 	u64 found_end;
2027 	struct btrfs_dir_log_item *item;
2028 	int ret;
2029 	int nritems;
2030 
2031 	if (*start_ret == (u64)-1)
2032 		return 1;
2033 
2034 	key.objectid = dirid;
2035 	key.type = BTRFS_DIR_LOG_INDEX_KEY;
2036 	key.offset = *start_ret;
2037 
2038 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2039 	if (ret < 0)
2040 		goto out;
2041 	if (ret > 0) {
2042 		if (path->slots[0] == 0)
2043 			goto out;
2044 		path->slots[0]--;
2045 	}
2046 	if (ret != 0)
2047 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2048 
2049 	if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2050 		ret = 1;
2051 		goto next;
2052 	}
2053 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2054 			      struct btrfs_dir_log_item);
2055 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2056 
2057 	if (*start_ret >= key.offset && *start_ret <= found_end) {
2058 		ret = 0;
2059 		*start_ret = key.offset;
2060 		*end_ret = found_end;
2061 		goto out;
2062 	}
2063 	ret = 1;
2064 next:
2065 	/* check the next slot in the tree to see if it is a valid item */
2066 	nritems = btrfs_header_nritems(path->nodes[0]);
2067 	path->slots[0]++;
2068 	if (path->slots[0] >= nritems) {
2069 		ret = btrfs_next_leaf(root, path);
2070 		if (ret)
2071 			goto out;
2072 	}
2073 
2074 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2075 
2076 	if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2077 		ret = 1;
2078 		goto out;
2079 	}
2080 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2081 			      struct btrfs_dir_log_item);
2082 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2083 	*start_ret = key.offset;
2084 	*end_ret = found_end;
2085 	ret = 0;
2086 out:
2087 	btrfs_release_path(path);
2088 	return ret;
2089 }
2090 
2091 /*
2092  * this looks for a given directory item in the log.  If the directory
2093  * item is not in the log, the item is removed and the inode it points
2094  * to is unlinked
2095  */
2096 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2097 				      struct btrfs_root *log,
2098 				      struct btrfs_path *path,
2099 				      struct btrfs_path *log_path,
2100 				      struct inode *dir,
2101 				      struct btrfs_key *dir_key)
2102 {
2103 	struct btrfs_root *root = BTRFS_I(dir)->root;
2104 	int ret;
2105 	struct extent_buffer *eb;
2106 	int slot;
2107 	struct btrfs_dir_item *di;
2108 	struct fscrypt_str name;
2109 	struct inode *inode = NULL;
2110 	struct btrfs_key location;
2111 
2112 	/*
2113 	 * Currently we only log dir index keys. Even if we replay a log created
2114 	 * by an older kernel that logged both dir index and dir item keys, all
2115 	 * we need to do is process the dir index keys, we (and our caller) can
2116 	 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY).
2117 	 */
2118 	ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY);
2119 
2120 	eb = path->nodes[0];
2121 	slot = path->slots[0];
2122 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2123 	ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
2124 	if (ret)
2125 		goto out;
2126 
2127 	if (log) {
2128 		struct btrfs_dir_item *log_di;
2129 
2130 		log_di = btrfs_lookup_dir_index_item(trans, log, log_path,
2131 						     dir_key->objectid,
2132 						     dir_key->offset, &name, 0);
2133 		if (IS_ERR(log_di)) {
2134 			ret = PTR_ERR(log_di);
2135 			goto out;
2136 		} else if (log_di) {
2137 			/* The dentry exists in the log, we have nothing to do. */
2138 			ret = 0;
2139 			goto out;
2140 		}
2141 	}
2142 
2143 	btrfs_dir_item_key_to_cpu(eb, di, &location);
2144 	btrfs_release_path(path);
2145 	btrfs_release_path(log_path);
2146 	inode = read_one_inode(root, location.objectid);
2147 	if (!inode) {
2148 		ret = -EIO;
2149 		goto out;
2150 	}
2151 
2152 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
2153 	if (ret)
2154 		goto out;
2155 
2156 	inc_nlink(inode);
2157 	ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), BTRFS_I(inode),
2158 					  &name);
2159 	/*
2160 	 * Unlike dir item keys, dir index keys can only have one name (entry) in
2161 	 * them, as there are no key collisions since each key has a unique offset
2162 	 * (an index number), so we're done.
2163 	 */
2164 out:
2165 	btrfs_release_path(path);
2166 	btrfs_release_path(log_path);
2167 	kfree(name.name);
2168 	iput(inode);
2169 	return ret;
2170 }
2171 
2172 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2173 			      struct btrfs_root *root,
2174 			      struct btrfs_root *log,
2175 			      struct btrfs_path *path,
2176 			      const u64 ino)
2177 {
2178 	struct btrfs_key search_key;
2179 	struct btrfs_path *log_path;
2180 	int i;
2181 	int nritems;
2182 	int ret;
2183 
2184 	log_path = btrfs_alloc_path();
2185 	if (!log_path)
2186 		return -ENOMEM;
2187 
2188 	search_key.objectid = ino;
2189 	search_key.type = BTRFS_XATTR_ITEM_KEY;
2190 	search_key.offset = 0;
2191 again:
2192 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2193 	if (ret < 0)
2194 		goto out;
2195 process_leaf:
2196 	nritems = btrfs_header_nritems(path->nodes[0]);
2197 	for (i = path->slots[0]; i < nritems; i++) {
2198 		struct btrfs_key key;
2199 		struct btrfs_dir_item *di;
2200 		struct btrfs_dir_item *log_di;
2201 		u32 total_size;
2202 		u32 cur;
2203 
2204 		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2205 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2206 			ret = 0;
2207 			goto out;
2208 		}
2209 
2210 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2211 		total_size = btrfs_item_size(path->nodes[0], i);
2212 		cur = 0;
2213 		while (cur < total_size) {
2214 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2215 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2216 			u32 this_len = sizeof(*di) + name_len + data_len;
2217 			char *name;
2218 
2219 			name = kmalloc(name_len, GFP_NOFS);
2220 			if (!name) {
2221 				ret = -ENOMEM;
2222 				goto out;
2223 			}
2224 			read_extent_buffer(path->nodes[0], name,
2225 					   (unsigned long)(di + 1), name_len);
2226 
2227 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2228 						    name, name_len, 0);
2229 			btrfs_release_path(log_path);
2230 			if (!log_di) {
2231 				/* Doesn't exist in log tree, so delete it. */
2232 				btrfs_release_path(path);
2233 				di = btrfs_lookup_xattr(trans, root, path, ino,
2234 							name, name_len, -1);
2235 				kfree(name);
2236 				if (IS_ERR(di)) {
2237 					ret = PTR_ERR(di);
2238 					goto out;
2239 				}
2240 				ASSERT(di);
2241 				ret = btrfs_delete_one_dir_name(trans, root,
2242 								path, di);
2243 				if (ret)
2244 					goto out;
2245 				btrfs_release_path(path);
2246 				search_key = key;
2247 				goto again;
2248 			}
2249 			kfree(name);
2250 			if (IS_ERR(log_di)) {
2251 				ret = PTR_ERR(log_di);
2252 				goto out;
2253 			}
2254 			cur += this_len;
2255 			di = (struct btrfs_dir_item *)((char *)di + this_len);
2256 		}
2257 	}
2258 	ret = btrfs_next_leaf(root, path);
2259 	if (ret > 0)
2260 		ret = 0;
2261 	else if (ret == 0)
2262 		goto process_leaf;
2263 out:
2264 	btrfs_free_path(log_path);
2265 	btrfs_release_path(path);
2266 	return ret;
2267 }
2268 
2269 
2270 /*
2271  * deletion replay happens before we copy any new directory items
2272  * out of the log or out of backreferences from inodes.  It
2273  * scans the log to find ranges of keys that log is authoritative for,
2274  * and then scans the directory to find items in those ranges that are
2275  * not present in the log.
2276  *
2277  * Anything we don't find in the log is unlinked and removed from the
2278  * directory.
2279  */
2280 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2281 				       struct btrfs_root *root,
2282 				       struct btrfs_root *log,
2283 				       struct btrfs_path *path,
2284 				       u64 dirid, int del_all)
2285 {
2286 	u64 range_start;
2287 	u64 range_end;
2288 	int ret = 0;
2289 	struct btrfs_key dir_key;
2290 	struct btrfs_key found_key;
2291 	struct btrfs_path *log_path;
2292 	struct inode *dir;
2293 
2294 	dir_key.objectid = dirid;
2295 	dir_key.type = BTRFS_DIR_INDEX_KEY;
2296 	log_path = btrfs_alloc_path();
2297 	if (!log_path)
2298 		return -ENOMEM;
2299 
2300 	dir = read_one_inode(root, dirid);
2301 	/* it isn't an error if the inode isn't there, that can happen
2302 	 * because we replay the deletes before we copy in the inode item
2303 	 * from the log
2304 	 */
2305 	if (!dir) {
2306 		btrfs_free_path(log_path);
2307 		return 0;
2308 	}
2309 
2310 	range_start = 0;
2311 	range_end = 0;
2312 	while (1) {
2313 		if (del_all)
2314 			range_end = (u64)-1;
2315 		else {
2316 			ret = find_dir_range(log, path, dirid,
2317 					     &range_start, &range_end);
2318 			if (ret < 0)
2319 				goto out;
2320 			else if (ret > 0)
2321 				break;
2322 		}
2323 
2324 		dir_key.offset = range_start;
2325 		while (1) {
2326 			int nritems;
2327 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2328 						0, 0);
2329 			if (ret < 0)
2330 				goto out;
2331 
2332 			nritems = btrfs_header_nritems(path->nodes[0]);
2333 			if (path->slots[0] >= nritems) {
2334 				ret = btrfs_next_leaf(root, path);
2335 				if (ret == 1)
2336 					break;
2337 				else if (ret < 0)
2338 					goto out;
2339 			}
2340 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2341 					      path->slots[0]);
2342 			if (found_key.objectid != dirid ||
2343 			    found_key.type != dir_key.type) {
2344 				ret = 0;
2345 				goto out;
2346 			}
2347 
2348 			if (found_key.offset > range_end)
2349 				break;
2350 
2351 			ret = check_item_in_log(trans, log, path,
2352 						log_path, dir,
2353 						&found_key);
2354 			if (ret)
2355 				goto out;
2356 			if (found_key.offset == (u64)-1)
2357 				break;
2358 			dir_key.offset = found_key.offset + 1;
2359 		}
2360 		btrfs_release_path(path);
2361 		if (range_end == (u64)-1)
2362 			break;
2363 		range_start = range_end + 1;
2364 	}
2365 	ret = 0;
2366 out:
2367 	btrfs_release_path(path);
2368 	btrfs_free_path(log_path);
2369 	iput(dir);
2370 	return ret;
2371 }
2372 
2373 /*
2374  * the process_func used to replay items from the log tree.  This
2375  * gets called in two different stages.  The first stage just looks
2376  * for inodes and makes sure they are all copied into the subvolume.
2377  *
2378  * The second stage copies all the other item types from the log into
2379  * the subvolume.  The two stage approach is slower, but gets rid of
2380  * lots of complexity around inodes referencing other inodes that exist
2381  * only in the log (references come from either directory items or inode
2382  * back refs).
2383  */
2384 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2385 			     struct walk_control *wc, u64 gen, int level)
2386 {
2387 	int nritems;
2388 	struct btrfs_tree_parent_check check = {
2389 		.transid = gen,
2390 		.level = level
2391 	};
2392 	struct btrfs_path *path;
2393 	struct btrfs_root *root = wc->replay_dest;
2394 	struct btrfs_key key;
2395 	int i;
2396 	int ret;
2397 
2398 	ret = btrfs_read_extent_buffer(eb, &check);
2399 	if (ret)
2400 		return ret;
2401 
2402 	level = btrfs_header_level(eb);
2403 
2404 	if (level != 0)
2405 		return 0;
2406 
2407 	path = btrfs_alloc_path();
2408 	if (!path)
2409 		return -ENOMEM;
2410 
2411 	nritems = btrfs_header_nritems(eb);
2412 	for (i = 0; i < nritems; i++) {
2413 		btrfs_item_key_to_cpu(eb, &key, i);
2414 
2415 		/* inode keys are done during the first stage */
2416 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2417 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2418 			struct btrfs_inode_item *inode_item;
2419 			u32 mode;
2420 
2421 			inode_item = btrfs_item_ptr(eb, i,
2422 					    struct btrfs_inode_item);
2423 			/*
2424 			 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2425 			 * and never got linked before the fsync, skip it, as
2426 			 * replaying it is pointless since it would be deleted
2427 			 * later. We skip logging tmpfiles, but it's always
2428 			 * possible we are replaying a log created with a kernel
2429 			 * that used to log tmpfiles.
2430 			 */
2431 			if (btrfs_inode_nlink(eb, inode_item) == 0) {
2432 				wc->ignore_cur_inode = true;
2433 				continue;
2434 			} else {
2435 				wc->ignore_cur_inode = false;
2436 			}
2437 			ret = replay_xattr_deletes(wc->trans, root, log,
2438 						   path, key.objectid);
2439 			if (ret)
2440 				break;
2441 			mode = btrfs_inode_mode(eb, inode_item);
2442 			if (S_ISDIR(mode)) {
2443 				ret = replay_dir_deletes(wc->trans,
2444 					 root, log, path, key.objectid, 0);
2445 				if (ret)
2446 					break;
2447 			}
2448 			ret = overwrite_item(wc->trans, root, path,
2449 					     eb, i, &key);
2450 			if (ret)
2451 				break;
2452 
2453 			/*
2454 			 * Before replaying extents, truncate the inode to its
2455 			 * size. We need to do it now and not after log replay
2456 			 * because before an fsync we can have prealloc extents
2457 			 * added beyond the inode's i_size. If we did it after,
2458 			 * through orphan cleanup for example, we would drop
2459 			 * those prealloc extents just after replaying them.
2460 			 */
2461 			if (S_ISREG(mode)) {
2462 				struct btrfs_drop_extents_args drop_args = { 0 };
2463 				struct inode *inode;
2464 				u64 from;
2465 
2466 				inode = read_one_inode(root, key.objectid);
2467 				if (!inode) {
2468 					ret = -EIO;
2469 					break;
2470 				}
2471 				from = ALIGN(i_size_read(inode),
2472 					     root->fs_info->sectorsize);
2473 				drop_args.start = from;
2474 				drop_args.end = (u64)-1;
2475 				drop_args.drop_cache = true;
2476 				ret = btrfs_drop_extents(wc->trans, root,
2477 							 BTRFS_I(inode),
2478 							 &drop_args);
2479 				if (!ret) {
2480 					inode_sub_bytes(inode,
2481 							drop_args.bytes_found);
2482 					/* Update the inode's nbytes. */
2483 					ret = btrfs_update_inode(wc->trans,
2484 								 BTRFS_I(inode));
2485 				}
2486 				iput(inode);
2487 				if (ret)
2488 					break;
2489 			}
2490 
2491 			ret = link_to_fixup_dir(wc->trans, root,
2492 						path, key.objectid);
2493 			if (ret)
2494 				break;
2495 		}
2496 
2497 		if (wc->ignore_cur_inode)
2498 			continue;
2499 
2500 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2501 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2502 			ret = replay_one_dir_item(wc->trans, root, path,
2503 						  eb, i, &key);
2504 			if (ret)
2505 				break;
2506 		}
2507 
2508 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2509 			continue;
2510 
2511 		/* these keys are simply copied */
2512 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2513 			ret = overwrite_item(wc->trans, root, path,
2514 					     eb, i, &key);
2515 			if (ret)
2516 				break;
2517 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2518 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2519 			ret = add_inode_ref(wc->trans, root, log, path,
2520 					    eb, i, &key);
2521 			if (ret && ret != -ENOENT)
2522 				break;
2523 			ret = 0;
2524 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2525 			ret = replay_one_extent(wc->trans, root, path,
2526 						eb, i, &key);
2527 			if (ret)
2528 				break;
2529 		}
2530 		/*
2531 		 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the
2532 		 * BTRFS_DIR_INDEX_KEY items which we use to derive the
2533 		 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an
2534 		 * older kernel with such keys, ignore them.
2535 		 */
2536 	}
2537 	btrfs_free_path(path);
2538 	return ret;
2539 }
2540 
2541 /*
2542  * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2543  */
2544 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2545 {
2546 	struct btrfs_block_group *cache;
2547 
2548 	cache = btrfs_lookup_block_group(fs_info, start);
2549 	if (!cache) {
2550 		btrfs_err(fs_info, "unable to find block group for %llu", start);
2551 		return;
2552 	}
2553 
2554 	spin_lock(&cache->space_info->lock);
2555 	spin_lock(&cache->lock);
2556 	cache->reserved -= fs_info->nodesize;
2557 	cache->space_info->bytes_reserved -= fs_info->nodesize;
2558 	spin_unlock(&cache->lock);
2559 	spin_unlock(&cache->space_info->lock);
2560 
2561 	btrfs_put_block_group(cache);
2562 }
2563 
2564 static int clean_log_buffer(struct btrfs_trans_handle *trans,
2565 			    struct extent_buffer *eb)
2566 {
2567 	int ret;
2568 
2569 	btrfs_tree_lock(eb);
2570 	btrfs_clear_buffer_dirty(trans, eb);
2571 	wait_on_extent_buffer_writeback(eb);
2572 	btrfs_tree_unlock(eb);
2573 
2574 	if (trans) {
2575 		ret = btrfs_pin_reserved_extent(trans, eb);
2576 		if (ret)
2577 			return ret;
2578 	} else {
2579 		unaccount_log_buffer(eb->fs_info, eb->start);
2580 	}
2581 
2582 	return 0;
2583 }
2584 
2585 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2586 				   struct btrfs_root *root,
2587 				   struct btrfs_path *path, int *level,
2588 				   struct walk_control *wc)
2589 {
2590 	struct btrfs_fs_info *fs_info = root->fs_info;
2591 	u64 bytenr;
2592 	u64 ptr_gen;
2593 	struct extent_buffer *next;
2594 	struct extent_buffer *cur;
2595 	int ret = 0;
2596 
2597 	while (*level > 0) {
2598 		struct btrfs_tree_parent_check check = { 0 };
2599 
2600 		cur = path->nodes[*level];
2601 
2602 		WARN_ON(btrfs_header_level(cur) != *level);
2603 
2604 		if (path->slots[*level] >=
2605 		    btrfs_header_nritems(cur))
2606 			break;
2607 
2608 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2609 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2610 		check.transid = ptr_gen;
2611 		check.level = *level - 1;
2612 		check.has_first_key = true;
2613 		btrfs_node_key_to_cpu(cur, &check.first_key, path->slots[*level]);
2614 
2615 		next = btrfs_find_create_tree_block(fs_info, bytenr,
2616 						    btrfs_header_owner(cur),
2617 						    *level - 1);
2618 		if (IS_ERR(next))
2619 			return PTR_ERR(next);
2620 
2621 		if (*level == 1) {
2622 			ret = wc->process_func(root, next, wc, ptr_gen,
2623 					       *level - 1);
2624 			if (ret) {
2625 				free_extent_buffer(next);
2626 				return ret;
2627 			}
2628 
2629 			path->slots[*level]++;
2630 			if (wc->free) {
2631 				ret = btrfs_read_extent_buffer(next, &check);
2632 				if (ret) {
2633 					free_extent_buffer(next);
2634 					return ret;
2635 				}
2636 
2637 				ret = clean_log_buffer(trans, next);
2638 				if (ret) {
2639 					free_extent_buffer(next);
2640 					return ret;
2641 				}
2642 			}
2643 			free_extent_buffer(next);
2644 			continue;
2645 		}
2646 		ret = btrfs_read_extent_buffer(next, &check);
2647 		if (ret) {
2648 			free_extent_buffer(next);
2649 			return ret;
2650 		}
2651 
2652 		if (path->nodes[*level-1])
2653 			free_extent_buffer(path->nodes[*level-1]);
2654 		path->nodes[*level-1] = next;
2655 		*level = btrfs_header_level(next);
2656 		path->slots[*level] = 0;
2657 		cond_resched();
2658 	}
2659 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2660 
2661 	cond_resched();
2662 	return 0;
2663 }
2664 
2665 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2666 				 struct btrfs_root *root,
2667 				 struct btrfs_path *path, int *level,
2668 				 struct walk_control *wc)
2669 {
2670 	int i;
2671 	int slot;
2672 	int ret;
2673 
2674 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2675 		slot = path->slots[i];
2676 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2677 			path->slots[i]++;
2678 			*level = i;
2679 			WARN_ON(*level == 0);
2680 			return 0;
2681 		} else {
2682 			ret = wc->process_func(root, path->nodes[*level], wc,
2683 				 btrfs_header_generation(path->nodes[*level]),
2684 				 *level);
2685 			if (ret)
2686 				return ret;
2687 
2688 			if (wc->free) {
2689 				ret = clean_log_buffer(trans, path->nodes[*level]);
2690 				if (ret)
2691 					return ret;
2692 			}
2693 			free_extent_buffer(path->nodes[*level]);
2694 			path->nodes[*level] = NULL;
2695 			*level = i + 1;
2696 		}
2697 	}
2698 	return 1;
2699 }
2700 
2701 /*
2702  * drop the reference count on the tree rooted at 'snap'.  This traverses
2703  * the tree freeing any blocks that have a ref count of zero after being
2704  * decremented.
2705  */
2706 static int walk_log_tree(struct btrfs_trans_handle *trans,
2707 			 struct btrfs_root *log, struct walk_control *wc)
2708 {
2709 	int ret = 0;
2710 	int wret;
2711 	int level;
2712 	struct btrfs_path *path;
2713 	int orig_level;
2714 
2715 	path = btrfs_alloc_path();
2716 	if (!path)
2717 		return -ENOMEM;
2718 
2719 	level = btrfs_header_level(log->node);
2720 	orig_level = level;
2721 	path->nodes[level] = log->node;
2722 	atomic_inc(&log->node->refs);
2723 	path->slots[level] = 0;
2724 
2725 	while (1) {
2726 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2727 		if (wret > 0)
2728 			break;
2729 		if (wret < 0) {
2730 			ret = wret;
2731 			goto out;
2732 		}
2733 
2734 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2735 		if (wret > 0)
2736 			break;
2737 		if (wret < 0) {
2738 			ret = wret;
2739 			goto out;
2740 		}
2741 	}
2742 
2743 	/* was the root node processed? if not, catch it here */
2744 	if (path->nodes[orig_level]) {
2745 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2746 			 btrfs_header_generation(path->nodes[orig_level]),
2747 			 orig_level);
2748 		if (ret)
2749 			goto out;
2750 		if (wc->free)
2751 			ret = clean_log_buffer(trans, path->nodes[orig_level]);
2752 	}
2753 
2754 out:
2755 	btrfs_free_path(path);
2756 	return ret;
2757 }
2758 
2759 /*
2760  * helper function to update the item for a given subvolumes log root
2761  * in the tree of log roots
2762  */
2763 static int update_log_root(struct btrfs_trans_handle *trans,
2764 			   struct btrfs_root *log,
2765 			   struct btrfs_root_item *root_item)
2766 {
2767 	struct btrfs_fs_info *fs_info = log->fs_info;
2768 	int ret;
2769 
2770 	if (log->log_transid == 1) {
2771 		/* insert root item on the first sync */
2772 		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2773 				&log->root_key, root_item);
2774 	} else {
2775 		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2776 				&log->root_key, root_item);
2777 	}
2778 	return ret;
2779 }
2780 
2781 static void wait_log_commit(struct btrfs_root *root, int transid)
2782 {
2783 	DEFINE_WAIT(wait);
2784 	int index = transid % 2;
2785 
2786 	/*
2787 	 * we only allow two pending log transactions at a time,
2788 	 * so we know that if ours is more than 2 older than the
2789 	 * current transaction, we're done
2790 	 */
2791 	for (;;) {
2792 		prepare_to_wait(&root->log_commit_wait[index],
2793 				&wait, TASK_UNINTERRUPTIBLE);
2794 
2795 		if (!(root->log_transid_committed < transid &&
2796 		      atomic_read(&root->log_commit[index])))
2797 			break;
2798 
2799 		mutex_unlock(&root->log_mutex);
2800 		schedule();
2801 		mutex_lock(&root->log_mutex);
2802 	}
2803 	finish_wait(&root->log_commit_wait[index], &wait);
2804 }
2805 
2806 static void wait_for_writer(struct btrfs_root *root)
2807 {
2808 	DEFINE_WAIT(wait);
2809 
2810 	for (;;) {
2811 		prepare_to_wait(&root->log_writer_wait, &wait,
2812 				TASK_UNINTERRUPTIBLE);
2813 		if (!atomic_read(&root->log_writers))
2814 			break;
2815 
2816 		mutex_unlock(&root->log_mutex);
2817 		schedule();
2818 		mutex_lock(&root->log_mutex);
2819 	}
2820 	finish_wait(&root->log_writer_wait, &wait);
2821 }
2822 
2823 void btrfs_init_log_ctx(struct btrfs_log_ctx *ctx, struct inode *inode)
2824 {
2825 	ctx->log_ret = 0;
2826 	ctx->log_transid = 0;
2827 	ctx->log_new_dentries = false;
2828 	ctx->logging_new_name = false;
2829 	ctx->logging_new_delayed_dentries = false;
2830 	ctx->logged_before = false;
2831 	ctx->inode = inode;
2832 	INIT_LIST_HEAD(&ctx->list);
2833 	INIT_LIST_HEAD(&ctx->ordered_extents);
2834 	INIT_LIST_HEAD(&ctx->conflict_inodes);
2835 	ctx->num_conflict_inodes = 0;
2836 	ctx->logging_conflict_inodes = false;
2837 	ctx->scratch_eb = NULL;
2838 }
2839 
2840 void btrfs_init_log_ctx_scratch_eb(struct btrfs_log_ctx *ctx)
2841 {
2842 	struct btrfs_inode *inode = BTRFS_I(ctx->inode);
2843 
2844 	if (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
2845 	    !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
2846 		return;
2847 
2848 	/*
2849 	 * Don't care about allocation failure. This is just for optimization,
2850 	 * if we fail to allocate here, we will try again later if needed.
2851 	 */
2852 	ctx->scratch_eb = alloc_dummy_extent_buffer(inode->root->fs_info, 0);
2853 }
2854 
2855 void btrfs_release_log_ctx_extents(struct btrfs_log_ctx *ctx)
2856 {
2857 	struct btrfs_ordered_extent *ordered;
2858 	struct btrfs_ordered_extent *tmp;
2859 
2860 	ASSERT(inode_is_locked(ctx->inode));
2861 
2862 	list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
2863 		list_del_init(&ordered->log_list);
2864 		btrfs_put_ordered_extent(ordered);
2865 	}
2866 }
2867 
2868 
2869 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2870 					struct btrfs_log_ctx *ctx)
2871 {
2872 	mutex_lock(&root->log_mutex);
2873 	list_del_init(&ctx->list);
2874 	mutex_unlock(&root->log_mutex);
2875 }
2876 
2877 /*
2878  * Invoked in log mutex context, or be sure there is no other task which
2879  * can access the list.
2880  */
2881 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2882 					     int index, int error)
2883 {
2884 	struct btrfs_log_ctx *ctx;
2885 	struct btrfs_log_ctx *safe;
2886 
2887 	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2888 		list_del_init(&ctx->list);
2889 		ctx->log_ret = error;
2890 	}
2891 }
2892 
2893 /*
2894  * Sends a given tree log down to the disk and updates the super blocks to
2895  * record it.  When this call is done, you know that any inodes previously
2896  * logged are safely on disk only if it returns 0.
2897  *
2898  * Any other return value means you need to call btrfs_commit_transaction.
2899  * Some of the edge cases for fsyncing directories that have had unlinks
2900  * or renames done in the past mean that sometimes the only safe
2901  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2902  * that has happened.
2903  */
2904 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2905 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2906 {
2907 	int index1;
2908 	int index2;
2909 	int mark;
2910 	int ret;
2911 	struct btrfs_fs_info *fs_info = root->fs_info;
2912 	struct btrfs_root *log = root->log_root;
2913 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2914 	struct btrfs_root_item new_root_item;
2915 	int log_transid = 0;
2916 	struct btrfs_log_ctx root_log_ctx;
2917 	struct blk_plug plug;
2918 	u64 log_root_start;
2919 	u64 log_root_level;
2920 
2921 	mutex_lock(&root->log_mutex);
2922 	log_transid = ctx->log_transid;
2923 	if (root->log_transid_committed >= log_transid) {
2924 		mutex_unlock(&root->log_mutex);
2925 		return ctx->log_ret;
2926 	}
2927 
2928 	index1 = log_transid % 2;
2929 	if (atomic_read(&root->log_commit[index1])) {
2930 		wait_log_commit(root, log_transid);
2931 		mutex_unlock(&root->log_mutex);
2932 		return ctx->log_ret;
2933 	}
2934 	ASSERT(log_transid == root->log_transid);
2935 	atomic_set(&root->log_commit[index1], 1);
2936 
2937 	/* wait for previous tree log sync to complete */
2938 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2939 		wait_log_commit(root, log_transid - 1);
2940 
2941 	while (1) {
2942 		int batch = atomic_read(&root->log_batch);
2943 		/* when we're on an ssd, just kick the log commit out */
2944 		if (!btrfs_test_opt(fs_info, SSD) &&
2945 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2946 			mutex_unlock(&root->log_mutex);
2947 			schedule_timeout_uninterruptible(1);
2948 			mutex_lock(&root->log_mutex);
2949 		}
2950 		wait_for_writer(root);
2951 		if (batch == atomic_read(&root->log_batch))
2952 			break;
2953 	}
2954 
2955 	/* bail out if we need to do a full commit */
2956 	if (btrfs_need_log_full_commit(trans)) {
2957 		ret = BTRFS_LOG_FORCE_COMMIT;
2958 		mutex_unlock(&root->log_mutex);
2959 		goto out;
2960 	}
2961 
2962 	if (log_transid % 2 == 0)
2963 		mark = EXTENT_DIRTY;
2964 	else
2965 		mark = EXTENT_NEW;
2966 
2967 	/* we start IO on  all the marked extents here, but we don't actually
2968 	 * wait for them until later.
2969 	 */
2970 	blk_start_plug(&plug);
2971 	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
2972 	/*
2973 	 * -EAGAIN happens when someone, e.g., a concurrent transaction
2974 	 *  commit, writes a dirty extent in this tree-log commit. This
2975 	 *  concurrent write will create a hole writing out the extents,
2976 	 *  and we cannot proceed on a zoned filesystem, requiring
2977 	 *  sequential writing. While we can bail out to a full commit
2978 	 *  here, but we can continue hoping the concurrent writing fills
2979 	 *  the hole.
2980 	 */
2981 	if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
2982 		ret = 0;
2983 	if (ret) {
2984 		blk_finish_plug(&plug);
2985 		btrfs_set_log_full_commit(trans);
2986 		mutex_unlock(&root->log_mutex);
2987 		goto out;
2988 	}
2989 
2990 	/*
2991 	 * We _must_ update under the root->log_mutex in order to make sure we
2992 	 * have a consistent view of the log root we are trying to commit at
2993 	 * this moment.
2994 	 *
2995 	 * We _must_ copy this into a local copy, because we are not holding the
2996 	 * log_root_tree->log_mutex yet.  This is important because when we
2997 	 * commit the log_root_tree we must have a consistent view of the
2998 	 * log_root_tree when we update the super block to point at the
2999 	 * log_root_tree bytenr.  If we update the log_root_tree here we'll race
3000 	 * with the commit and possibly point at the new block which we may not
3001 	 * have written out.
3002 	 */
3003 	btrfs_set_root_node(&log->root_item, log->node);
3004 	memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3005 
3006 	btrfs_set_root_log_transid(root, root->log_transid + 1);
3007 	log->log_transid = root->log_transid;
3008 	root->log_start_pid = 0;
3009 	/*
3010 	 * IO has been started, blocks of the log tree have WRITTEN flag set
3011 	 * in their headers. new modifications of the log will be written to
3012 	 * new positions. so it's safe to allow log writers to go in.
3013 	 */
3014 	mutex_unlock(&root->log_mutex);
3015 
3016 	if (btrfs_is_zoned(fs_info)) {
3017 		mutex_lock(&fs_info->tree_root->log_mutex);
3018 		if (!log_root_tree->node) {
3019 			ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3020 			if (ret) {
3021 				mutex_unlock(&fs_info->tree_root->log_mutex);
3022 				blk_finish_plug(&plug);
3023 				goto out;
3024 			}
3025 		}
3026 		mutex_unlock(&fs_info->tree_root->log_mutex);
3027 	}
3028 
3029 	btrfs_init_log_ctx(&root_log_ctx, NULL);
3030 
3031 	mutex_lock(&log_root_tree->log_mutex);
3032 
3033 	index2 = log_root_tree->log_transid % 2;
3034 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3035 	root_log_ctx.log_transid = log_root_tree->log_transid;
3036 
3037 	/*
3038 	 * Now we are safe to update the log_root_tree because we're under the
3039 	 * log_mutex, and we're a current writer so we're holding the commit
3040 	 * open until we drop the log_mutex.
3041 	 */
3042 	ret = update_log_root(trans, log, &new_root_item);
3043 	if (ret) {
3044 		list_del_init(&root_log_ctx.list);
3045 		blk_finish_plug(&plug);
3046 		btrfs_set_log_full_commit(trans);
3047 		if (ret != -ENOSPC)
3048 			btrfs_err(fs_info,
3049 				  "failed to update log for root %llu ret %d",
3050 				  btrfs_root_id(root), ret);
3051 		btrfs_wait_tree_log_extents(log, mark);
3052 		mutex_unlock(&log_root_tree->log_mutex);
3053 		goto out;
3054 	}
3055 
3056 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3057 		blk_finish_plug(&plug);
3058 		list_del_init(&root_log_ctx.list);
3059 		mutex_unlock(&log_root_tree->log_mutex);
3060 		ret = root_log_ctx.log_ret;
3061 		goto out;
3062 	}
3063 
3064 	if (atomic_read(&log_root_tree->log_commit[index2])) {
3065 		blk_finish_plug(&plug);
3066 		ret = btrfs_wait_tree_log_extents(log, mark);
3067 		wait_log_commit(log_root_tree,
3068 				root_log_ctx.log_transid);
3069 		mutex_unlock(&log_root_tree->log_mutex);
3070 		if (!ret)
3071 			ret = root_log_ctx.log_ret;
3072 		goto out;
3073 	}
3074 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3075 	atomic_set(&log_root_tree->log_commit[index2], 1);
3076 
3077 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3078 		wait_log_commit(log_root_tree,
3079 				root_log_ctx.log_transid - 1);
3080 	}
3081 
3082 	/*
3083 	 * now that we've moved on to the tree of log tree roots,
3084 	 * check the full commit flag again
3085 	 */
3086 	if (btrfs_need_log_full_commit(trans)) {
3087 		blk_finish_plug(&plug);
3088 		btrfs_wait_tree_log_extents(log, mark);
3089 		mutex_unlock(&log_root_tree->log_mutex);
3090 		ret = BTRFS_LOG_FORCE_COMMIT;
3091 		goto out_wake_log_root;
3092 	}
3093 
3094 	ret = btrfs_write_marked_extents(fs_info,
3095 					 &log_root_tree->dirty_log_pages,
3096 					 EXTENT_DIRTY | EXTENT_NEW);
3097 	blk_finish_plug(&plug);
3098 	/*
3099 	 * As described above, -EAGAIN indicates a hole in the extents. We
3100 	 * cannot wait for these write outs since the waiting cause a
3101 	 * deadlock. Bail out to the full commit instead.
3102 	 */
3103 	if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3104 		btrfs_set_log_full_commit(trans);
3105 		btrfs_wait_tree_log_extents(log, mark);
3106 		mutex_unlock(&log_root_tree->log_mutex);
3107 		goto out_wake_log_root;
3108 	} else if (ret) {
3109 		btrfs_set_log_full_commit(trans);
3110 		mutex_unlock(&log_root_tree->log_mutex);
3111 		goto out_wake_log_root;
3112 	}
3113 	ret = btrfs_wait_tree_log_extents(log, mark);
3114 	if (!ret)
3115 		ret = btrfs_wait_tree_log_extents(log_root_tree,
3116 						  EXTENT_NEW | EXTENT_DIRTY);
3117 	if (ret) {
3118 		btrfs_set_log_full_commit(trans);
3119 		mutex_unlock(&log_root_tree->log_mutex);
3120 		goto out_wake_log_root;
3121 	}
3122 
3123 	log_root_start = log_root_tree->node->start;
3124 	log_root_level = btrfs_header_level(log_root_tree->node);
3125 	log_root_tree->log_transid++;
3126 	mutex_unlock(&log_root_tree->log_mutex);
3127 
3128 	/*
3129 	 * Here we are guaranteed that nobody is going to write the superblock
3130 	 * for the current transaction before us and that neither we do write
3131 	 * our superblock before the previous transaction finishes its commit
3132 	 * and writes its superblock, because:
3133 	 *
3134 	 * 1) We are holding a handle on the current transaction, so no body
3135 	 *    can commit it until we release the handle;
3136 	 *
3137 	 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3138 	 *    if the previous transaction is still committing, and hasn't yet
3139 	 *    written its superblock, we wait for it to do it, because a
3140 	 *    transaction commit acquires the tree_log_mutex when the commit
3141 	 *    begins and releases it only after writing its superblock.
3142 	 */
3143 	mutex_lock(&fs_info->tree_log_mutex);
3144 
3145 	/*
3146 	 * The previous transaction writeout phase could have failed, and thus
3147 	 * marked the fs in an error state.  We must not commit here, as we
3148 	 * could have updated our generation in the super_for_commit and
3149 	 * writing the super here would result in transid mismatches.  If there
3150 	 * is an error here just bail.
3151 	 */
3152 	if (BTRFS_FS_ERROR(fs_info)) {
3153 		ret = -EIO;
3154 		btrfs_set_log_full_commit(trans);
3155 		btrfs_abort_transaction(trans, ret);
3156 		mutex_unlock(&fs_info->tree_log_mutex);
3157 		goto out_wake_log_root;
3158 	}
3159 
3160 	btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3161 	btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3162 	ret = write_all_supers(fs_info, 1);
3163 	mutex_unlock(&fs_info->tree_log_mutex);
3164 	if (ret) {
3165 		btrfs_set_log_full_commit(trans);
3166 		btrfs_abort_transaction(trans, ret);
3167 		goto out_wake_log_root;
3168 	}
3169 
3170 	/*
3171 	 * We know there can only be one task here, since we have not yet set
3172 	 * root->log_commit[index1] to 0 and any task attempting to sync the
3173 	 * log must wait for the previous log transaction to commit if it's
3174 	 * still in progress or wait for the current log transaction commit if
3175 	 * someone else already started it. We use <= and not < because the
3176 	 * first log transaction has an ID of 0.
3177 	 */
3178 	ASSERT(btrfs_get_root_last_log_commit(root) <= log_transid);
3179 	btrfs_set_root_last_log_commit(root, log_transid);
3180 
3181 out_wake_log_root:
3182 	mutex_lock(&log_root_tree->log_mutex);
3183 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3184 
3185 	log_root_tree->log_transid_committed++;
3186 	atomic_set(&log_root_tree->log_commit[index2], 0);
3187 	mutex_unlock(&log_root_tree->log_mutex);
3188 
3189 	/*
3190 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3191 	 * all the updates above are seen by the woken threads. It might not be
3192 	 * necessary, but proving that seems to be hard.
3193 	 */
3194 	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3195 out:
3196 	mutex_lock(&root->log_mutex);
3197 	btrfs_remove_all_log_ctxs(root, index1, ret);
3198 	root->log_transid_committed++;
3199 	atomic_set(&root->log_commit[index1], 0);
3200 	mutex_unlock(&root->log_mutex);
3201 
3202 	/*
3203 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3204 	 * all the updates above are seen by the woken threads. It might not be
3205 	 * necessary, but proving that seems to be hard.
3206 	 */
3207 	cond_wake_up(&root->log_commit_wait[index1]);
3208 	return ret;
3209 }
3210 
3211 static void free_log_tree(struct btrfs_trans_handle *trans,
3212 			  struct btrfs_root *log)
3213 {
3214 	int ret;
3215 	struct walk_control wc = {
3216 		.free = 1,
3217 		.process_func = process_one_buffer
3218 	};
3219 
3220 	if (log->node) {
3221 		ret = walk_log_tree(trans, log, &wc);
3222 		if (ret) {
3223 			/*
3224 			 * We weren't able to traverse the entire log tree, the
3225 			 * typical scenario is getting an -EIO when reading an
3226 			 * extent buffer of the tree, due to a previous writeback
3227 			 * failure of it.
3228 			 */
3229 			set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
3230 				&log->fs_info->fs_state);
3231 
3232 			/*
3233 			 * Some extent buffers of the log tree may still be dirty
3234 			 * and not yet written back to storage, because we may
3235 			 * have updates to a log tree without syncing a log tree,
3236 			 * such as during rename and link operations. So flush
3237 			 * them out and wait for their writeback to complete, so
3238 			 * that we properly cleanup their state and pages.
3239 			 */
3240 			btrfs_write_marked_extents(log->fs_info,
3241 						   &log->dirty_log_pages,
3242 						   EXTENT_DIRTY | EXTENT_NEW);
3243 			btrfs_wait_tree_log_extents(log,
3244 						    EXTENT_DIRTY | EXTENT_NEW);
3245 
3246 			if (trans)
3247 				btrfs_abort_transaction(trans, ret);
3248 			else
3249 				btrfs_handle_fs_error(log->fs_info, ret, NULL);
3250 		}
3251 	}
3252 
3253 	extent_io_tree_release(&log->dirty_log_pages);
3254 	extent_io_tree_release(&log->log_csum_range);
3255 
3256 	btrfs_put_root(log);
3257 }
3258 
3259 /*
3260  * free all the extents used by the tree log.  This should be called
3261  * at commit time of the full transaction
3262  */
3263 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3264 {
3265 	if (root->log_root) {
3266 		free_log_tree(trans, root->log_root);
3267 		root->log_root = NULL;
3268 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3269 	}
3270 	return 0;
3271 }
3272 
3273 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3274 			     struct btrfs_fs_info *fs_info)
3275 {
3276 	if (fs_info->log_root_tree) {
3277 		free_log_tree(trans, fs_info->log_root_tree);
3278 		fs_info->log_root_tree = NULL;
3279 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3280 	}
3281 	return 0;
3282 }
3283 
3284 /*
3285  * Check if an inode was logged in the current transaction. This correctly deals
3286  * with the case where the inode was logged but has a logged_trans of 0, which
3287  * happens if the inode is evicted and loaded again, as logged_trans is an in
3288  * memory only field (not persisted).
3289  *
3290  * Returns 1 if the inode was logged before in the transaction, 0 if it was not,
3291  * and < 0 on error.
3292  */
3293 static int inode_logged(const struct btrfs_trans_handle *trans,
3294 			struct btrfs_inode *inode,
3295 			struct btrfs_path *path_in)
3296 {
3297 	struct btrfs_path *path = path_in;
3298 	struct btrfs_key key;
3299 	int ret;
3300 
3301 	if (inode->logged_trans == trans->transid)
3302 		return 1;
3303 
3304 	/*
3305 	 * If logged_trans is not 0, then we know the inode logged was not logged
3306 	 * in this transaction, so we can return false right away.
3307 	 */
3308 	if (inode->logged_trans > 0)
3309 		return 0;
3310 
3311 	/*
3312 	 * If no log tree was created for this root in this transaction, then
3313 	 * the inode can not have been logged in this transaction. In that case
3314 	 * set logged_trans to anything greater than 0 and less than the current
3315 	 * transaction's ID, to avoid the search below in a future call in case
3316 	 * a log tree gets created after this.
3317 	 */
3318 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) {
3319 		inode->logged_trans = trans->transid - 1;
3320 		return 0;
3321 	}
3322 
3323 	/*
3324 	 * We have a log tree and the inode's logged_trans is 0. We can't tell
3325 	 * for sure if the inode was logged before in this transaction by looking
3326 	 * only at logged_trans. We could be pessimistic and assume it was, but
3327 	 * that can lead to unnecessarily logging an inode during rename and link
3328 	 * operations, and then further updating the log in followup rename and
3329 	 * link operations, specially if it's a directory, which adds latency
3330 	 * visible to applications doing a series of rename or link operations.
3331 	 *
3332 	 * A logged_trans of 0 here can mean several things:
3333 	 *
3334 	 * 1) The inode was never logged since the filesystem was mounted, and may
3335 	 *    or may have not been evicted and loaded again;
3336 	 *
3337 	 * 2) The inode was logged in a previous transaction, then evicted and
3338 	 *    then loaded again;
3339 	 *
3340 	 * 3) The inode was logged in the current transaction, then evicted and
3341 	 *    then loaded again.
3342 	 *
3343 	 * For cases 1) and 2) we don't want to return true, but we need to detect
3344 	 * case 3) and return true. So we do a search in the log root for the inode
3345 	 * item.
3346 	 */
3347 	key.objectid = btrfs_ino(inode);
3348 	key.type = BTRFS_INODE_ITEM_KEY;
3349 	key.offset = 0;
3350 
3351 	if (!path) {
3352 		path = btrfs_alloc_path();
3353 		if (!path)
3354 			return -ENOMEM;
3355 	}
3356 
3357 	ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3358 
3359 	if (path_in)
3360 		btrfs_release_path(path);
3361 	else
3362 		btrfs_free_path(path);
3363 
3364 	/*
3365 	 * Logging an inode always results in logging its inode item. So if we
3366 	 * did not find the item we know the inode was not logged for sure.
3367 	 */
3368 	if (ret < 0) {
3369 		return ret;
3370 	} else if (ret > 0) {
3371 		/*
3372 		 * Set logged_trans to a value greater than 0 and less then the
3373 		 * current transaction to avoid doing the search in future calls.
3374 		 */
3375 		inode->logged_trans = trans->transid - 1;
3376 		return 0;
3377 	}
3378 
3379 	/*
3380 	 * The inode was previously logged and then evicted, set logged_trans to
3381 	 * the current transacion's ID, to avoid future tree searches as long as
3382 	 * the inode is not evicted again.
3383 	 */
3384 	inode->logged_trans = trans->transid;
3385 
3386 	/*
3387 	 * If it's a directory, then we must set last_dir_index_offset to the
3388 	 * maximum possible value, so that the next attempt to log the inode does
3389 	 * not skip checking if dir index keys found in modified subvolume tree
3390 	 * leaves have been logged before, otherwise it would result in attempts
3391 	 * to insert duplicate dir index keys in the log tree. This must be done
3392 	 * because last_dir_index_offset is an in-memory only field, not persisted
3393 	 * in the inode item or any other on-disk structure, so its value is lost
3394 	 * once the inode is evicted.
3395 	 */
3396 	if (S_ISDIR(inode->vfs_inode.i_mode))
3397 		inode->last_dir_index_offset = (u64)-1;
3398 
3399 	return 1;
3400 }
3401 
3402 /*
3403  * Delete a directory entry from the log if it exists.
3404  *
3405  * Returns < 0 on error
3406  *           1 if the entry does not exists
3407  *           0 if the entry existed and was successfully deleted
3408  */
3409 static int del_logged_dentry(struct btrfs_trans_handle *trans,
3410 			     struct btrfs_root *log,
3411 			     struct btrfs_path *path,
3412 			     u64 dir_ino,
3413 			     const struct fscrypt_str *name,
3414 			     u64 index)
3415 {
3416 	struct btrfs_dir_item *di;
3417 
3418 	/*
3419 	 * We only log dir index items of a directory, so we don't need to look
3420 	 * for dir item keys.
3421 	 */
3422 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3423 					 index, name, -1);
3424 	if (IS_ERR(di))
3425 		return PTR_ERR(di);
3426 	else if (!di)
3427 		return 1;
3428 
3429 	/*
3430 	 * We do not need to update the size field of the directory's
3431 	 * inode item because on log replay we update the field to reflect
3432 	 * all existing entries in the directory (see overwrite_item()).
3433 	 */
3434 	return btrfs_delete_one_dir_name(trans, log, path, di);
3435 }
3436 
3437 /*
3438  * If both a file and directory are logged, and unlinks or renames are
3439  * mixed in, we have a few interesting corners:
3440  *
3441  * create file X in dir Y
3442  * link file X to X.link in dir Y
3443  * fsync file X
3444  * unlink file X but leave X.link
3445  * fsync dir Y
3446  *
3447  * After a crash we would expect only X.link to exist.  But file X
3448  * didn't get fsync'd again so the log has back refs for X and X.link.
3449  *
3450  * We solve this by removing directory entries and inode backrefs from the
3451  * log when a file that was logged in the current transaction is
3452  * unlinked.  Any later fsync will include the updated log entries, and
3453  * we'll be able to reconstruct the proper directory items from backrefs.
3454  *
3455  * This optimizations allows us to avoid relogging the entire inode
3456  * or the entire directory.
3457  */
3458 void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3459 				  struct btrfs_root *root,
3460 				  const struct fscrypt_str *name,
3461 				  struct btrfs_inode *dir, u64 index)
3462 {
3463 	struct btrfs_path *path;
3464 	int ret;
3465 
3466 	ret = inode_logged(trans, dir, NULL);
3467 	if (ret == 0)
3468 		return;
3469 	else if (ret < 0) {
3470 		btrfs_set_log_full_commit(trans);
3471 		return;
3472 	}
3473 
3474 	ret = join_running_log_trans(root);
3475 	if (ret)
3476 		return;
3477 
3478 	mutex_lock(&dir->log_mutex);
3479 
3480 	path = btrfs_alloc_path();
3481 	if (!path) {
3482 		ret = -ENOMEM;
3483 		goto out_unlock;
3484 	}
3485 
3486 	ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir),
3487 				name, index);
3488 	btrfs_free_path(path);
3489 out_unlock:
3490 	mutex_unlock(&dir->log_mutex);
3491 	if (ret < 0)
3492 		btrfs_set_log_full_commit(trans);
3493 	btrfs_end_log_trans(root);
3494 }
3495 
3496 /* see comments for btrfs_del_dir_entries_in_log */
3497 void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3498 				struct btrfs_root *root,
3499 				const struct fscrypt_str *name,
3500 				struct btrfs_inode *inode, u64 dirid)
3501 {
3502 	struct btrfs_root *log;
3503 	u64 index;
3504 	int ret;
3505 
3506 	ret = inode_logged(trans, inode, NULL);
3507 	if (ret == 0)
3508 		return;
3509 	else if (ret < 0) {
3510 		btrfs_set_log_full_commit(trans);
3511 		return;
3512 	}
3513 
3514 	ret = join_running_log_trans(root);
3515 	if (ret)
3516 		return;
3517 	log = root->log_root;
3518 	mutex_lock(&inode->log_mutex);
3519 
3520 	ret = btrfs_del_inode_ref(trans, log, name, btrfs_ino(inode),
3521 				  dirid, &index);
3522 	mutex_unlock(&inode->log_mutex);
3523 	if (ret < 0 && ret != -ENOENT)
3524 		btrfs_set_log_full_commit(trans);
3525 	btrfs_end_log_trans(root);
3526 }
3527 
3528 /*
3529  * creates a range item in the log for 'dirid'.  first_offset and
3530  * last_offset tell us which parts of the key space the log should
3531  * be considered authoritative for.
3532  */
3533 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3534 				       struct btrfs_root *log,
3535 				       struct btrfs_path *path,
3536 				       u64 dirid,
3537 				       u64 first_offset, u64 last_offset)
3538 {
3539 	int ret;
3540 	struct btrfs_key key;
3541 	struct btrfs_dir_log_item *item;
3542 
3543 	key.objectid = dirid;
3544 	key.offset = first_offset;
3545 	key.type = BTRFS_DIR_LOG_INDEX_KEY;
3546 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3547 	/*
3548 	 * -EEXIST is fine and can happen sporadically when we are logging a
3549 	 * directory and have concurrent insertions in the subvolume's tree for
3550 	 * items from other inodes and that result in pushing off some dir items
3551 	 * from one leaf to another in order to accommodate for the new items.
3552 	 * This results in logging the same dir index range key.
3553 	 */
3554 	if (ret && ret != -EEXIST)
3555 		return ret;
3556 
3557 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3558 			      struct btrfs_dir_log_item);
3559 	if (ret == -EEXIST) {
3560 		const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item);
3561 
3562 		/*
3563 		 * btrfs_del_dir_entries_in_log() might have been called during
3564 		 * an unlink between the initial insertion of this key and the
3565 		 * current update, or we might be logging a single entry deletion
3566 		 * during a rename, so set the new last_offset to the max value.
3567 		 */
3568 		last_offset = max(last_offset, curr_end);
3569 	}
3570 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3571 	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
3572 	btrfs_release_path(path);
3573 	return 0;
3574 }
3575 
3576 static int flush_dir_items_batch(struct btrfs_trans_handle *trans,
3577 				 struct btrfs_inode *inode,
3578 				 struct extent_buffer *src,
3579 				 struct btrfs_path *dst_path,
3580 				 int start_slot,
3581 				 int count)
3582 {
3583 	struct btrfs_root *log = inode->root->log_root;
3584 	char *ins_data = NULL;
3585 	struct btrfs_item_batch batch;
3586 	struct extent_buffer *dst;
3587 	unsigned long src_offset;
3588 	unsigned long dst_offset;
3589 	u64 last_index;
3590 	struct btrfs_key key;
3591 	u32 item_size;
3592 	int ret;
3593 	int i;
3594 
3595 	ASSERT(count > 0);
3596 	batch.nr = count;
3597 
3598 	if (count == 1) {
3599 		btrfs_item_key_to_cpu(src, &key, start_slot);
3600 		item_size = btrfs_item_size(src, start_slot);
3601 		batch.keys = &key;
3602 		batch.data_sizes = &item_size;
3603 		batch.total_data_size = item_size;
3604 	} else {
3605 		struct btrfs_key *ins_keys;
3606 		u32 *ins_sizes;
3607 
3608 		ins_data = kmalloc(count * sizeof(u32) +
3609 				   count * sizeof(struct btrfs_key), GFP_NOFS);
3610 		if (!ins_data)
3611 			return -ENOMEM;
3612 
3613 		ins_sizes = (u32 *)ins_data;
3614 		ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32));
3615 		batch.keys = ins_keys;
3616 		batch.data_sizes = ins_sizes;
3617 		batch.total_data_size = 0;
3618 
3619 		for (i = 0; i < count; i++) {
3620 			const int slot = start_slot + i;
3621 
3622 			btrfs_item_key_to_cpu(src, &ins_keys[i], slot);
3623 			ins_sizes[i] = btrfs_item_size(src, slot);
3624 			batch.total_data_size += ins_sizes[i];
3625 		}
3626 	}
3627 
3628 	ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
3629 	if (ret)
3630 		goto out;
3631 
3632 	dst = dst_path->nodes[0];
3633 	/*
3634 	 * Copy all the items in bulk, in a single copy operation. Item data is
3635 	 * organized such that it's placed at the end of a leaf and from right
3636 	 * to left. For example, the data for the second item ends at an offset
3637 	 * that matches the offset where the data for the first item starts, the
3638 	 * data for the third item ends at an offset that matches the offset
3639 	 * where the data of the second items starts, and so on.
3640 	 * Therefore our source and destination start offsets for copy match the
3641 	 * offsets of the last items (highest slots).
3642 	 */
3643 	dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1);
3644 	src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1);
3645 	copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size);
3646 	btrfs_release_path(dst_path);
3647 
3648 	last_index = batch.keys[count - 1].offset;
3649 	ASSERT(last_index > inode->last_dir_index_offset);
3650 
3651 	/*
3652 	 * If for some unexpected reason the last item's index is not greater
3653 	 * than the last index we logged, warn and force a transaction commit.
3654 	 */
3655 	if (WARN_ON(last_index <= inode->last_dir_index_offset))
3656 		ret = BTRFS_LOG_FORCE_COMMIT;
3657 	else
3658 		inode->last_dir_index_offset = last_index;
3659 
3660 	if (btrfs_get_first_dir_index_to_log(inode) == 0)
3661 		btrfs_set_first_dir_index_to_log(inode, batch.keys[0].offset);
3662 out:
3663 	kfree(ins_data);
3664 
3665 	return ret;
3666 }
3667 
3668 static int clone_leaf(struct btrfs_path *path, struct btrfs_log_ctx *ctx)
3669 {
3670 	const int slot = path->slots[0];
3671 
3672 	if (ctx->scratch_eb) {
3673 		copy_extent_buffer_full(ctx->scratch_eb, path->nodes[0]);
3674 	} else {
3675 		ctx->scratch_eb = btrfs_clone_extent_buffer(path->nodes[0]);
3676 		if (!ctx->scratch_eb)
3677 			return -ENOMEM;
3678 	}
3679 
3680 	btrfs_release_path(path);
3681 	path->nodes[0] = ctx->scratch_eb;
3682 	path->slots[0] = slot;
3683 	/*
3684 	 * Add extra ref to scratch eb so that it is not freed when callers
3685 	 * release the path, so we can reuse it later if needed.
3686 	 */
3687 	atomic_inc(&ctx->scratch_eb->refs);
3688 
3689 	return 0;
3690 }
3691 
3692 static int process_dir_items_leaf(struct btrfs_trans_handle *trans,
3693 				  struct btrfs_inode *inode,
3694 				  struct btrfs_path *path,
3695 				  struct btrfs_path *dst_path,
3696 				  struct btrfs_log_ctx *ctx,
3697 				  u64 *last_old_dentry_offset)
3698 {
3699 	struct btrfs_root *log = inode->root->log_root;
3700 	struct extent_buffer *src;
3701 	const int nritems = btrfs_header_nritems(path->nodes[0]);
3702 	const u64 ino = btrfs_ino(inode);
3703 	bool last_found = false;
3704 	int batch_start = 0;
3705 	int batch_size = 0;
3706 	int ret;
3707 
3708 	/*
3709 	 * We need to clone the leaf, release the read lock on it, and use the
3710 	 * clone before modifying the log tree. See the comment at copy_items()
3711 	 * about why we need to do this.
3712 	 */
3713 	ret = clone_leaf(path, ctx);
3714 	if (ret < 0)
3715 		return ret;
3716 
3717 	src = path->nodes[0];
3718 
3719 	for (int i = path->slots[0]; i < nritems; i++) {
3720 		struct btrfs_dir_item *di;
3721 		struct btrfs_key key;
3722 		int ret;
3723 
3724 		btrfs_item_key_to_cpu(src, &key, i);
3725 
3726 		if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) {
3727 			last_found = true;
3728 			break;
3729 		}
3730 
3731 		di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3732 
3733 		/*
3734 		 * Skip ranges of items that consist only of dir item keys created
3735 		 * in past transactions. However if we find a gap, we must log a
3736 		 * dir index range item for that gap, so that index keys in that
3737 		 * gap are deleted during log replay.
3738 		 */
3739 		if (btrfs_dir_transid(src, di) < trans->transid) {
3740 			if (key.offset > *last_old_dentry_offset + 1) {
3741 				ret = insert_dir_log_key(trans, log, dst_path,
3742 						 ino, *last_old_dentry_offset + 1,
3743 						 key.offset - 1);
3744 				if (ret < 0)
3745 					return ret;
3746 			}
3747 
3748 			*last_old_dentry_offset = key.offset;
3749 			continue;
3750 		}
3751 
3752 		/* If we logged this dir index item before, we can skip it. */
3753 		if (key.offset <= inode->last_dir_index_offset)
3754 			continue;
3755 
3756 		/*
3757 		 * We must make sure that when we log a directory entry, the
3758 		 * corresponding inode, after log replay, has a matching link
3759 		 * count. For example:
3760 		 *
3761 		 * touch foo
3762 		 * mkdir mydir
3763 		 * sync
3764 		 * ln foo mydir/bar
3765 		 * xfs_io -c "fsync" mydir
3766 		 * <crash>
3767 		 * <mount fs and log replay>
3768 		 *
3769 		 * Would result in a fsync log that when replayed, our file inode
3770 		 * would have a link count of 1, but we get two directory entries
3771 		 * pointing to the same inode. After removing one of the names,
3772 		 * it would not be possible to remove the other name, which
3773 		 * resulted always in stale file handle errors, and would not be
3774 		 * possible to rmdir the parent directory, since its i_size could
3775 		 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
3776 		 * resulting in -ENOTEMPTY errors.
3777 		 */
3778 		if (!ctx->log_new_dentries) {
3779 			struct btrfs_key di_key;
3780 
3781 			btrfs_dir_item_key_to_cpu(src, di, &di_key);
3782 			if (di_key.type != BTRFS_ROOT_ITEM_KEY)
3783 				ctx->log_new_dentries = true;
3784 		}
3785 
3786 		if (batch_size == 0)
3787 			batch_start = i;
3788 		batch_size++;
3789 	}
3790 
3791 	if (batch_size > 0) {
3792 		int ret;
3793 
3794 		ret = flush_dir_items_batch(trans, inode, src, dst_path,
3795 					    batch_start, batch_size);
3796 		if (ret < 0)
3797 			return ret;
3798 	}
3799 
3800 	return last_found ? 1 : 0;
3801 }
3802 
3803 /*
3804  * log all the items included in the current transaction for a given
3805  * directory.  This also creates the range items in the log tree required
3806  * to replay anything deleted before the fsync
3807  */
3808 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3809 			  struct btrfs_inode *inode,
3810 			  struct btrfs_path *path,
3811 			  struct btrfs_path *dst_path,
3812 			  struct btrfs_log_ctx *ctx,
3813 			  u64 min_offset, u64 *last_offset_ret)
3814 {
3815 	struct btrfs_key min_key;
3816 	struct btrfs_root *root = inode->root;
3817 	struct btrfs_root *log = root->log_root;
3818 	int ret;
3819 	u64 last_old_dentry_offset = min_offset - 1;
3820 	u64 last_offset = (u64)-1;
3821 	u64 ino = btrfs_ino(inode);
3822 
3823 	min_key.objectid = ino;
3824 	min_key.type = BTRFS_DIR_INDEX_KEY;
3825 	min_key.offset = min_offset;
3826 
3827 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3828 
3829 	/*
3830 	 * we didn't find anything from this transaction, see if there
3831 	 * is anything at all
3832 	 */
3833 	if (ret != 0 || min_key.objectid != ino ||
3834 	    min_key.type != BTRFS_DIR_INDEX_KEY) {
3835 		min_key.objectid = ino;
3836 		min_key.type = BTRFS_DIR_INDEX_KEY;
3837 		min_key.offset = (u64)-1;
3838 		btrfs_release_path(path);
3839 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3840 		if (ret < 0) {
3841 			btrfs_release_path(path);
3842 			return ret;
3843 		}
3844 		ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3845 
3846 		/* if ret == 0 there are items for this type,
3847 		 * create a range to tell us the last key of this type.
3848 		 * otherwise, there are no items in this directory after
3849 		 * *min_offset, and we create a range to indicate that.
3850 		 */
3851 		if (ret == 0) {
3852 			struct btrfs_key tmp;
3853 
3854 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3855 					      path->slots[0]);
3856 			if (tmp.type == BTRFS_DIR_INDEX_KEY)
3857 				last_old_dentry_offset = tmp.offset;
3858 		} else if (ret > 0) {
3859 			ret = 0;
3860 		}
3861 
3862 		goto done;
3863 	}
3864 
3865 	/* go backward to find any previous key */
3866 	ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3867 	if (ret == 0) {
3868 		struct btrfs_key tmp;
3869 
3870 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3871 		/*
3872 		 * The dir index key before the first one we found that needs to
3873 		 * be logged might be in a previous leaf, and there might be a
3874 		 * gap between these keys, meaning that we had deletions that
3875 		 * happened. So the key range item we log (key type
3876 		 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the
3877 		 * previous key's offset plus 1, so that those deletes are replayed.
3878 		 */
3879 		if (tmp.type == BTRFS_DIR_INDEX_KEY)
3880 			last_old_dentry_offset = tmp.offset;
3881 	} else if (ret < 0) {
3882 		goto done;
3883 	}
3884 
3885 	btrfs_release_path(path);
3886 
3887 	/*
3888 	 * Find the first key from this transaction again or the one we were at
3889 	 * in the loop below in case we had to reschedule. We may be logging the
3890 	 * directory without holding its VFS lock, which happen when logging new
3891 	 * dentries (through log_new_dir_dentries()) or in some cases when we
3892 	 * need to log the parent directory of an inode. This means a dir index
3893 	 * key might be deleted from the inode's root, and therefore we may not
3894 	 * find it anymore. If we can't find it, just move to the next key. We
3895 	 * can not bail out and ignore, because if we do that we will simply
3896 	 * not log dir index keys that come after the one that was just deleted
3897 	 * and we can end up logging a dir index range that ends at (u64)-1
3898 	 * (@last_offset is initialized to that), resulting in removing dir
3899 	 * entries we should not remove at log replay time.
3900 	 */
3901 search:
3902 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3903 	if (ret > 0) {
3904 		ret = btrfs_next_item(root, path);
3905 		if (ret > 0) {
3906 			/* There are no more keys in the inode's root. */
3907 			ret = 0;
3908 			goto done;
3909 		}
3910 	}
3911 	if (ret < 0)
3912 		goto done;
3913 
3914 	/*
3915 	 * we have a block from this transaction, log every item in it
3916 	 * from our directory
3917 	 */
3918 	while (1) {
3919 		ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx,
3920 					     &last_old_dentry_offset);
3921 		if (ret != 0) {
3922 			if (ret > 0)
3923 				ret = 0;
3924 			goto done;
3925 		}
3926 		path->slots[0] = btrfs_header_nritems(path->nodes[0]);
3927 
3928 		/*
3929 		 * look ahead to the next item and see if it is also
3930 		 * from this directory and from this transaction
3931 		 */
3932 		ret = btrfs_next_leaf(root, path);
3933 		if (ret) {
3934 			if (ret == 1) {
3935 				last_offset = (u64)-1;
3936 				ret = 0;
3937 			}
3938 			goto done;
3939 		}
3940 		btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]);
3941 		if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) {
3942 			last_offset = (u64)-1;
3943 			goto done;
3944 		}
3945 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3946 			/*
3947 			 * The next leaf was not changed in the current transaction
3948 			 * and has at least one dir index key.
3949 			 * We check for the next key because there might have been
3950 			 * one or more deletions between the last key we logged and
3951 			 * that next key. So the key range item we log (key type
3952 			 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's
3953 			 * offset minus 1, so that those deletes are replayed.
3954 			 */
3955 			last_offset = min_key.offset - 1;
3956 			goto done;
3957 		}
3958 		if (need_resched()) {
3959 			btrfs_release_path(path);
3960 			cond_resched();
3961 			goto search;
3962 		}
3963 	}
3964 done:
3965 	btrfs_release_path(path);
3966 	btrfs_release_path(dst_path);
3967 
3968 	if (ret == 0) {
3969 		*last_offset_ret = last_offset;
3970 		/*
3971 		 * In case the leaf was changed in the current transaction but
3972 		 * all its dir items are from a past transaction, the last item
3973 		 * in the leaf is a dir item and there's no gap between that last
3974 		 * dir item and the first one on the next leaf (which did not
3975 		 * change in the current transaction), then we don't need to log
3976 		 * a range, last_old_dentry_offset is == to last_offset.
3977 		 */
3978 		ASSERT(last_old_dentry_offset <= last_offset);
3979 		if (last_old_dentry_offset < last_offset)
3980 			ret = insert_dir_log_key(trans, log, path, ino,
3981 						 last_old_dentry_offset + 1,
3982 						 last_offset);
3983 	}
3984 
3985 	return ret;
3986 }
3987 
3988 /*
3989  * If the inode was logged before and it was evicted, then its
3990  * last_dir_index_offset is (u64)-1, so we don't the value of the last index
3991  * key offset. If that's the case, search for it and update the inode. This
3992  * is to avoid lookups in the log tree every time we try to insert a dir index
3993  * key from a leaf changed in the current transaction, and to allow us to always
3994  * do batch insertions of dir index keys.
3995  */
3996 static int update_last_dir_index_offset(struct btrfs_inode *inode,
3997 					struct btrfs_path *path,
3998 					const struct btrfs_log_ctx *ctx)
3999 {
4000 	const u64 ino = btrfs_ino(inode);
4001 	struct btrfs_key key;
4002 	int ret;
4003 
4004 	lockdep_assert_held(&inode->log_mutex);
4005 
4006 	if (inode->last_dir_index_offset != (u64)-1)
4007 		return 0;
4008 
4009 	if (!ctx->logged_before) {
4010 		inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
4011 		return 0;
4012 	}
4013 
4014 	key.objectid = ino;
4015 	key.type = BTRFS_DIR_INDEX_KEY;
4016 	key.offset = (u64)-1;
4017 
4018 	ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
4019 	/*
4020 	 * An error happened or we actually have an index key with an offset
4021 	 * value of (u64)-1. Bail out, we're done.
4022 	 */
4023 	if (ret <= 0)
4024 		goto out;
4025 
4026 	ret = 0;
4027 	inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
4028 
4029 	/*
4030 	 * No dir index items, bail out and leave last_dir_index_offset with
4031 	 * the value right before the first valid index value.
4032 	 */
4033 	if (path->slots[0] == 0)
4034 		goto out;
4035 
4036 	/*
4037 	 * btrfs_search_slot() left us at one slot beyond the slot with the last
4038 	 * index key, or beyond the last key of the directory that is not an
4039 	 * index key. If we have an index key before, set last_dir_index_offset
4040 	 * to its offset value, otherwise leave it with a value right before the
4041 	 * first valid index value, as it means we have an empty directory.
4042 	 */
4043 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4044 	if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY)
4045 		inode->last_dir_index_offset = key.offset;
4046 
4047 out:
4048 	btrfs_release_path(path);
4049 
4050 	return ret;
4051 }
4052 
4053 /*
4054  * logging directories is very similar to logging inodes, We find all the items
4055  * from the current transaction and write them to the log.
4056  *
4057  * The recovery code scans the directory in the subvolume, and if it finds a
4058  * key in the range logged that is not present in the log tree, then it means
4059  * that dir entry was unlinked during the transaction.
4060  *
4061  * In order for that scan to work, we must include one key smaller than
4062  * the smallest logged by this transaction and one key larger than the largest
4063  * key logged by this transaction.
4064  */
4065 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
4066 			  struct btrfs_inode *inode,
4067 			  struct btrfs_path *path,
4068 			  struct btrfs_path *dst_path,
4069 			  struct btrfs_log_ctx *ctx)
4070 {
4071 	u64 min_key;
4072 	u64 max_key;
4073 	int ret;
4074 
4075 	ret = update_last_dir_index_offset(inode, path, ctx);
4076 	if (ret)
4077 		return ret;
4078 
4079 	min_key = BTRFS_DIR_START_INDEX;
4080 	max_key = 0;
4081 
4082 	while (1) {
4083 		ret = log_dir_items(trans, inode, path, dst_path,
4084 				ctx, min_key, &max_key);
4085 		if (ret)
4086 			return ret;
4087 		if (max_key == (u64)-1)
4088 			break;
4089 		min_key = max_key + 1;
4090 	}
4091 
4092 	return 0;
4093 }
4094 
4095 /*
4096  * a helper function to drop items from the log before we relog an
4097  * inode.  max_key_type indicates the highest item type to remove.
4098  * This cannot be run for file data extents because it does not
4099  * free the extents they point to.
4100  */
4101 static int drop_inode_items(struct btrfs_trans_handle *trans,
4102 				  struct btrfs_root *log,
4103 				  struct btrfs_path *path,
4104 				  struct btrfs_inode *inode,
4105 				  int max_key_type)
4106 {
4107 	int ret;
4108 	struct btrfs_key key;
4109 	struct btrfs_key found_key;
4110 	int start_slot;
4111 
4112 	key.objectid = btrfs_ino(inode);
4113 	key.type = max_key_type;
4114 	key.offset = (u64)-1;
4115 
4116 	while (1) {
4117 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
4118 		if (ret < 0) {
4119 			break;
4120 		} else if (ret > 0) {
4121 			if (path->slots[0] == 0)
4122 				break;
4123 			path->slots[0]--;
4124 		}
4125 
4126 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4127 				      path->slots[0]);
4128 
4129 		if (found_key.objectid != key.objectid)
4130 			break;
4131 
4132 		found_key.offset = 0;
4133 		found_key.type = 0;
4134 		ret = btrfs_bin_search(path->nodes[0], 0, &found_key, &start_slot);
4135 		if (ret < 0)
4136 			break;
4137 
4138 		ret = btrfs_del_items(trans, log, path, start_slot,
4139 				      path->slots[0] - start_slot + 1);
4140 		/*
4141 		 * If start slot isn't 0 then we don't need to re-search, we've
4142 		 * found the last guy with the objectid in this tree.
4143 		 */
4144 		if (ret || start_slot != 0)
4145 			break;
4146 		btrfs_release_path(path);
4147 	}
4148 	btrfs_release_path(path);
4149 	if (ret > 0)
4150 		ret = 0;
4151 	return ret;
4152 }
4153 
4154 static int truncate_inode_items(struct btrfs_trans_handle *trans,
4155 				struct btrfs_root *log_root,
4156 				struct btrfs_inode *inode,
4157 				u64 new_size, u32 min_type)
4158 {
4159 	struct btrfs_truncate_control control = {
4160 		.new_size = new_size,
4161 		.ino = btrfs_ino(inode),
4162 		.min_type = min_type,
4163 		.skip_ref_updates = true,
4164 	};
4165 
4166 	return btrfs_truncate_inode_items(trans, log_root, &control);
4167 }
4168 
4169 static void fill_inode_item(struct btrfs_trans_handle *trans,
4170 			    struct extent_buffer *leaf,
4171 			    struct btrfs_inode_item *item,
4172 			    struct inode *inode, int log_inode_only,
4173 			    u64 logged_isize)
4174 {
4175 	struct btrfs_map_token token;
4176 	u64 flags;
4177 
4178 	btrfs_init_map_token(&token, leaf);
4179 
4180 	if (log_inode_only) {
4181 		/* set the generation to zero so the recover code
4182 		 * can tell the difference between an logging
4183 		 * just to say 'this inode exists' and a logging
4184 		 * to say 'update this inode with these values'
4185 		 */
4186 		btrfs_set_token_inode_generation(&token, item, 0);
4187 		btrfs_set_token_inode_size(&token, item, logged_isize);
4188 	} else {
4189 		btrfs_set_token_inode_generation(&token, item,
4190 						 BTRFS_I(inode)->generation);
4191 		btrfs_set_token_inode_size(&token, item, inode->i_size);
4192 	}
4193 
4194 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4195 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4196 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4197 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4198 
4199 	btrfs_set_token_timespec_sec(&token, &item->atime,
4200 				     inode_get_atime_sec(inode));
4201 	btrfs_set_token_timespec_nsec(&token, &item->atime,
4202 				      inode_get_atime_nsec(inode));
4203 
4204 	btrfs_set_token_timespec_sec(&token, &item->mtime,
4205 				     inode_get_mtime_sec(inode));
4206 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
4207 				      inode_get_mtime_nsec(inode));
4208 
4209 	btrfs_set_token_timespec_sec(&token, &item->ctime,
4210 				     inode_get_ctime_sec(inode));
4211 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
4212 				      inode_get_ctime_nsec(inode));
4213 
4214 	/*
4215 	 * We do not need to set the nbytes field, in fact during a fast fsync
4216 	 * its value may not even be correct, since a fast fsync does not wait
4217 	 * for ordered extent completion, which is where we update nbytes, it
4218 	 * only waits for writeback to complete. During log replay as we find
4219 	 * file extent items and replay them, we adjust the nbytes field of the
4220 	 * inode item in subvolume tree as needed (see overwrite_item()).
4221 	 */
4222 
4223 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4224 	btrfs_set_token_inode_transid(&token, item, trans->transid);
4225 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4226 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4227 					  BTRFS_I(inode)->ro_flags);
4228 	btrfs_set_token_inode_flags(&token, item, flags);
4229 	btrfs_set_token_inode_block_group(&token, item, 0);
4230 }
4231 
4232 static int log_inode_item(struct btrfs_trans_handle *trans,
4233 			  struct btrfs_root *log, struct btrfs_path *path,
4234 			  struct btrfs_inode *inode, bool inode_item_dropped)
4235 {
4236 	struct btrfs_inode_item *inode_item;
4237 	int ret;
4238 
4239 	/*
4240 	 * If we are doing a fast fsync and the inode was logged before in the
4241 	 * current transaction, then we know the inode was previously logged and
4242 	 * it exists in the log tree. For performance reasons, in this case use
4243 	 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4244 	 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4245 	 * contention in case there are concurrent fsyncs for other inodes of the
4246 	 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4247 	 * already exists can also result in unnecessarily splitting a leaf.
4248 	 */
4249 	if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4250 		ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1);
4251 		ASSERT(ret <= 0);
4252 		if (ret > 0)
4253 			ret = -ENOENT;
4254 	} else {
4255 		/*
4256 		 * This means it is the first fsync in the current transaction,
4257 		 * so the inode item is not in the log and we need to insert it.
4258 		 * We can never get -EEXIST because we are only called for a fast
4259 		 * fsync and in case an inode eviction happens after the inode was
4260 		 * logged before in the current transaction, when we load again
4261 		 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4262 		 * flags and set ->logged_trans to 0.
4263 		 */
4264 		ret = btrfs_insert_empty_item(trans, log, path, &inode->location,
4265 					      sizeof(*inode_item));
4266 		ASSERT(ret != -EEXIST);
4267 	}
4268 	if (ret)
4269 		return ret;
4270 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4271 				    struct btrfs_inode_item);
4272 	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4273 			0, 0);
4274 	btrfs_release_path(path);
4275 	return 0;
4276 }
4277 
4278 static int log_csums(struct btrfs_trans_handle *trans,
4279 		     struct btrfs_inode *inode,
4280 		     struct btrfs_root *log_root,
4281 		     struct btrfs_ordered_sum *sums)
4282 {
4283 	const u64 lock_end = sums->logical + sums->len - 1;
4284 	struct extent_state *cached_state = NULL;
4285 	int ret;
4286 
4287 	/*
4288 	 * If this inode was not used for reflink operations in the current
4289 	 * transaction with new extents, then do the fast path, no need to
4290 	 * worry about logging checksum items with overlapping ranges.
4291 	 */
4292 	if (inode->last_reflink_trans < trans->transid)
4293 		return btrfs_csum_file_blocks(trans, log_root, sums);
4294 
4295 	/*
4296 	 * Serialize logging for checksums. This is to avoid racing with the
4297 	 * same checksum being logged by another task that is logging another
4298 	 * file which happens to refer to the same extent as well. Such races
4299 	 * can leave checksum items in the log with overlapping ranges.
4300 	 */
4301 	ret = lock_extent(&log_root->log_csum_range, sums->logical, lock_end,
4302 			  &cached_state);
4303 	if (ret)
4304 		return ret;
4305 	/*
4306 	 * Due to extent cloning, we might have logged a csum item that covers a
4307 	 * subrange of a cloned extent, and later we can end up logging a csum
4308 	 * item for a larger subrange of the same extent or the entire range.
4309 	 * This would leave csum items in the log tree that cover the same range
4310 	 * and break the searches for checksums in the log tree, resulting in
4311 	 * some checksums missing in the fs/subvolume tree. So just delete (or
4312 	 * trim and adjust) any existing csum items in the log for this range.
4313 	 */
4314 	ret = btrfs_del_csums(trans, log_root, sums->logical, sums->len);
4315 	if (!ret)
4316 		ret = btrfs_csum_file_blocks(trans, log_root, sums);
4317 
4318 	unlock_extent(&log_root->log_csum_range, sums->logical, lock_end,
4319 		      &cached_state);
4320 
4321 	return ret;
4322 }
4323 
4324 static noinline int copy_items(struct btrfs_trans_handle *trans,
4325 			       struct btrfs_inode *inode,
4326 			       struct btrfs_path *dst_path,
4327 			       struct btrfs_path *src_path,
4328 			       int start_slot, int nr, int inode_only,
4329 			       u64 logged_isize, struct btrfs_log_ctx *ctx)
4330 {
4331 	struct btrfs_root *log = inode->root->log_root;
4332 	struct btrfs_file_extent_item *extent;
4333 	struct extent_buffer *src;
4334 	int ret;
4335 	struct btrfs_key *ins_keys;
4336 	u32 *ins_sizes;
4337 	struct btrfs_item_batch batch;
4338 	char *ins_data;
4339 	int dst_index;
4340 	const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM);
4341 	const u64 i_size = i_size_read(&inode->vfs_inode);
4342 
4343 	/*
4344 	 * To keep lockdep happy and avoid deadlocks, clone the source leaf and
4345 	 * use the clone. This is because otherwise we would be changing the log
4346 	 * tree, to insert items from the subvolume tree or insert csum items,
4347 	 * while holding a read lock on a leaf from the subvolume tree, which
4348 	 * creates a nasty lock dependency when COWing log tree nodes/leaves:
4349 	 *
4350 	 * 1) Modifying the log tree triggers an extent buffer allocation while
4351 	 *    holding a write lock on a parent extent buffer from the log tree.
4352 	 *    Allocating the pages for an extent buffer, or the extent buffer
4353 	 *    struct, can trigger inode eviction and finally the inode eviction
4354 	 *    will trigger a release/remove of a delayed node, which requires
4355 	 *    taking the delayed node's mutex;
4356 	 *
4357 	 * 2) Allocating a metadata extent for a log tree can trigger the async
4358 	 *    reclaim thread and make us wait for it to release enough space and
4359 	 *    unblock our reservation ticket. The reclaim thread can start
4360 	 *    flushing delayed items, and that in turn results in the need to
4361 	 *    lock delayed node mutexes and in the need to write lock extent
4362 	 *    buffers of a subvolume tree - all this while holding a write lock
4363 	 *    on the parent extent buffer in the log tree.
4364 	 *
4365 	 * So one task in scenario 1) running in parallel with another task in
4366 	 * scenario 2) could lead to a deadlock, one wanting to lock a delayed
4367 	 * node mutex while having a read lock on a leaf from the subvolume,
4368 	 * while the other is holding the delayed node's mutex and wants to
4369 	 * write lock the same subvolume leaf for flushing delayed items.
4370 	 */
4371 	ret = clone_leaf(src_path, ctx);
4372 	if (ret < 0)
4373 		return ret;
4374 
4375 	src = src_path->nodes[0];
4376 
4377 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4378 			   nr * sizeof(u32), GFP_NOFS);
4379 	if (!ins_data)
4380 		return -ENOMEM;
4381 
4382 	ins_sizes = (u32 *)ins_data;
4383 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4384 	batch.keys = ins_keys;
4385 	batch.data_sizes = ins_sizes;
4386 	batch.total_data_size = 0;
4387 	batch.nr = 0;
4388 
4389 	dst_index = 0;
4390 	for (int i = 0; i < nr; i++) {
4391 		const int src_slot = start_slot + i;
4392 		struct btrfs_root *csum_root;
4393 		struct btrfs_ordered_sum *sums;
4394 		struct btrfs_ordered_sum *sums_next;
4395 		LIST_HEAD(ordered_sums);
4396 		u64 disk_bytenr;
4397 		u64 disk_num_bytes;
4398 		u64 extent_offset;
4399 		u64 extent_num_bytes;
4400 		bool is_old_extent;
4401 
4402 		btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot);
4403 
4404 		if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY)
4405 			goto add_to_batch;
4406 
4407 		extent = btrfs_item_ptr(src, src_slot,
4408 					struct btrfs_file_extent_item);
4409 
4410 		is_old_extent = (btrfs_file_extent_generation(src, extent) <
4411 				 trans->transid);
4412 
4413 		/*
4414 		 * Don't copy extents from past generations. That would make us
4415 		 * log a lot more metadata for common cases like doing only a
4416 		 * few random writes into a file and then fsync it for the first
4417 		 * time or after the full sync flag is set on the inode. We can
4418 		 * get leaves full of extent items, most of which are from past
4419 		 * generations, so we can skip them - as long as the inode has
4420 		 * not been the target of a reflink operation in this transaction,
4421 		 * as in that case it might have had file extent items with old
4422 		 * generations copied into it. We also must always log prealloc
4423 		 * extents that start at or beyond eof, otherwise we would lose
4424 		 * them on log replay.
4425 		 */
4426 		if (is_old_extent &&
4427 		    ins_keys[dst_index].offset < i_size &&
4428 		    inode->last_reflink_trans < trans->transid)
4429 			continue;
4430 
4431 		if (skip_csum)
4432 			goto add_to_batch;
4433 
4434 		/* Only regular extents have checksums. */
4435 		if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG)
4436 			goto add_to_batch;
4437 
4438 		/*
4439 		 * If it's an extent created in a past transaction, then its
4440 		 * checksums are already accessible from the committed csum tree,
4441 		 * no need to log them.
4442 		 */
4443 		if (is_old_extent)
4444 			goto add_to_batch;
4445 
4446 		disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent);
4447 		/* If it's an explicit hole, there are no checksums. */
4448 		if (disk_bytenr == 0)
4449 			goto add_to_batch;
4450 
4451 		disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent);
4452 
4453 		if (btrfs_file_extent_compression(src, extent)) {
4454 			extent_offset = 0;
4455 			extent_num_bytes = disk_num_bytes;
4456 		} else {
4457 			extent_offset = btrfs_file_extent_offset(src, extent);
4458 			extent_num_bytes = btrfs_file_extent_num_bytes(src, extent);
4459 		}
4460 
4461 		csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr);
4462 		disk_bytenr += extent_offset;
4463 		ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4464 					      disk_bytenr + extent_num_bytes - 1,
4465 					      &ordered_sums, false);
4466 		if (ret < 0)
4467 			goto out;
4468 		ret = 0;
4469 
4470 		list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) {
4471 			if (!ret)
4472 				ret = log_csums(trans, inode, log, sums);
4473 			list_del(&sums->list);
4474 			kfree(sums);
4475 		}
4476 		if (ret)
4477 			goto out;
4478 
4479 add_to_batch:
4480 		ins_sizes[dst_index] = btrfs_item_size(src, src_slot);
4481 		batch.total_data_size += ins_sizes[dst_index];
4482 		batch.nr++;
4483 		dst_index++;
4484 	}
4485 
4486 	/*
4487 	 * We have a leaf full of old extent items that don't need to be logged,
4488 	 * so we don't need to do anything.
4489 	 */
4490 	if (batch.nr == 0)
4491 		goto out;
4492 
4493 	ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
4494 	if (ret)
4495 		goto out;
4496 
4497 	dst_index = 0;
4498 	for (int i = 0; i < nr; i++) {
4499 		const int src_slot = start_slot + i;
4500 		const int dst_slot = dst_path->slots[0] + dst_index;
4501 		struct btrfs_key key;
4502 		unsigned long src_offset;
4503 		unsigned long dst_offset;
4504 
4505 		/*
4506 		 * We're done, all the remaining items in the source leaf
4507 		 * correspond to old file extent items.
4508 		 */
4509 		if (dst_index >= batch.nr)
4510 			break;
4511 
4512 		btrfs_item_key_to_cpu(src, &key, src_slot);
4513 
4514 		if (key.type != BTRFS_EXTENT_DATA_KEY)
4515 			goto copy_item;
4516 
4517 		extent = btrfs_item_ptr(src, src_slot,
4518 					struct btrfs_file_extent_item);
4519 
4520 		/* See the comment in the previous loop, same logic. */
4521 		if (btrfs_file_extent_generation(src, extent) < trans->transid &&
4522 		    key.offset < i_size &&
4523 		    inode->last_reflink_trans < trans->transid)
4524 			continue;
4525 
4526 copy_item:
4527 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot);
4528 		src_offset = btrfs_item_ptr_offset(src, src_slot);
4529 
4530 		if (key.type == BTRFS_INODE_ITEM_KEY) {
4531 			struct btrfs_inode_item *inode_item;
4532 
4533 			inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot,
4534 						    struct btrfs_inode_item);
4535 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
4536 					&inode->vfs_inode,
4537 					inode_only == LOG_INODE_EXISTS,
4538 					logged_isize);
4539 		} else {
4540 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4541 					   src_offset, ins_sizes[dst_index]);
4542 		}
4543 
4544 		dst_index++;
4545 	}
4546 
4547 	btrfs_mark_buffer_dirty(trans, dst_path->nodes[0]);
4548 	btrfs_release_path(dst_path);
4549 out:
4550 	kfree(ins_data);
4551 
4552 	return ret;
4553 }
4554 
4555 static int extent_cmp(void *priv, const struct list_head *a,
4556 		      const struct list_head *b)
4557 {
4558 	const struct extent_map *em1, *em2;
4559 
4560 	em1 = list_entry(a, struct extent_map, list);
4561 	em2 = list_entry(b, struct extent_map, list);
4562 
4563 	if (em1->start < em2->start)
4564 		return -1;
4565 	else if (em1->start > em2->start)
4566 		return 1;
4567 	return 0;
4568 }
4569 
4570 static int log_extent_csums(struct btrfs_trans_handle *trans,
4571 			    struct btrfs_inode *inode,
4572 			    struct btrfs_root *log_root,
4573 			    const struct extent_map *em,
4574 			    struct btrfs_log_ctx *ctx)
4575 {
4576 	struct btrfs_ordered_extent *ordered;
4577 	struct btrfs_root *csum_root;
4578 	u64 csum_offset;
4579 	u64 csum_len;
4580 	u64 mod_start = em->start;
4581 	u64 mod_len = em->len;
4582 	LIST_HEAD(ordered_sums);
4583 	int ret = 0;
4584 
4585 	if (inode->flags & BTRFS_INODE_NODATASUM ||
4586 	    (em->flags & EXTENT_FLAG_PREALLOC) ||
4587 	    em->block_start == EXTENT_MAP_HOLE)
4588 		return 0;
4589 
4590 	list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4591 		const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4592 		const u64 mod_end = mod_start + mod_len;
4593 		struct btrfs_ordered_sum *sums;
4594 
4595 		if (mod_len == 0)
4596 			break;
4597 
4598 		if (ordered_end <= mod_start)
4599 			continue;
4600 		if (mod_end <= ordered->file_offset)
4601 			break;
4602 
4603 		/*
4604 		 * We are going to copy all the csums on this ordered extent, so
4605 		 * go ahead and adjust mod_start and mod_len in case this ordered
4606 		 * extent has already been logged.
4607 		 */
4608 		if (ordered->file_offset > mod_start) {
4609 			if (ordered_end >= mod_end)
4610 				mod_len = ordered->file_offset - mod_start;
4611 			/*
4612 			 * If we have this case
4613 			 *
4614 			 * |--------- logged extent ---------|
4615 			 *       |----- ordered extent ----|
4616 			 *
4617 			 * Just don't mess with mod_start and mod_len, we'll
4618 			 * just end up logging more csums than we need and it
4619 			 * will be ok.
4620 			 */
4621 		} else {
4622 			if (ordered_end < mod_end) {
4623 				mod_len = mod_end - ordered_end;
4624 				mod_start = ordered_end;
4625 			} else {
4626 				mod_len = 0;
4627 			}
4628 		}
4629 
4630 		/*
4631 		 * To keep us from looping for the above case of an ordered
4632 		 * extent that falls inside of the logged extent.
4633 		 */
4634 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4635 			continue;
4636 
4637 		list_for_each_entry(sums, &ordered->list, list) {
4638 			ret = log_csums(trans, inode, log_root, sums);
4639 			if (ret)
4640 				return ret;
4641 		}
4642 	}
4643 
4644 	/* We're done, found all csums in the ordered extents. */
4645 	if (mod_len == 0)
4646 		return 0;
4647 
4648 	/* If we're compressed we have to save the entire range of csums. */
4649 	if (extent_map_is_compressed(em)) {
4650 		csum_offset = 0;
4651 		csum_len = max(em->block_len, em->orig_block_len);
4652 	} else {
4653 		csum_offset = mod_start - em->start;
4654 		csum_len = mod_len;
4655 	}
4656 
4657 	/* block start is already adjusted for the file extent offset. */
4658 	csum_root = btrfs_csum_root(trans->fs_info, em->block_start);
4659 	ret = btrfs_lookup_csums_list(csum_root, em->block_start + csum_offset,
4660 				      em->block_start + csum_offset +
4661 				      csum_len - 1, &ordered_sums, false);
4662 	if (ret < 0)
4663 		return ret;
4664 	ret = 0;
4665 
4666 	while (!list_empty(&ordered_sums)) {
4667 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4668 						   struct btrfs_ordered_sum,
4669 						   list);
4670 		if (!ret)
4671 			ret = log_csums(trans, inode, log_root, sums);
4672 		list_del(&sums->list);
4673 		kfree(sums);
4674 	}
4675 
4676 	return ret;
4677 }
4678 
4679 static int log_one_extent(struct btrfs_trans_handle *trans,
4680 			  struct btrfs_inode *inode,
4681 			  const struct extent_map *em,
4682 			  struct btrfs_path *path,
4683 			  struct btrfs_log_ctx *ctx)
4684 {
4685 	struct btrfs_drop_extents_args drop_args = { 0 };
4686 	struct btrfs_root *log = inode->root->log_root;
4687 	struct btrfs_file_extent_item fi = { 0 };
4688 	struct extent_buffer *leaf;
4689 	struct btrfs_key key;
4690 	enum btrfs_compression_type compress_type;
4691 	u64 extent_offset = em->start - em->orig_start;
4692 	u64 block_len;
4693 	int ret;
4694 
4695 	btrfs_set_stack_file_extent_generation(&fi, trans->transid);
4696 	if (em->flags & EXTENT_FLAG_PREALLOC)
4697 		btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC);
4698 	else
4699 		btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG);
4700 
4701 	block_len = max(em->block_len, em->orig_block_len);
4702 	compress_type = extent_map_compression(em);
4703 	if (compress_type != BTRFS_COMPRESS_NONE) {
4704 		btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start);
4705 		btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4706 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4707 		btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start -
4708 							extent_offset);
4709 		btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4710 	}
4711 
4712 	btrfs_set_stack_file_extent_offset(&fi, extent_offset);
4713 	btrfs_set_stack_file_extent_num_bytes(&fi, em->len);
4714 	btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes);
4715 	btrfs_set_stack_file_extent_compression(&fi, compress_type);
4716 
4717 	ret = log_extent_csums(trans, inode, log, em, ctx);
4718 	if (ret)
4719 		return ret;
4720 
4721 	/*
4722 	 * If this is the first time we are logging the inode in the current
4723 	 * transaction, we can avoid btrfs_drop_extents(), which is expensive
4724 	 * because it does a deletion search, which always acquires write locks
4725 	 * for extent buffers at levels 2, 1 and 0. This not only wastes time
4726 	 * but also adds significant contention in a log tree, since log trees
4727 	 * are small, with a root at level 2 or 3 at most, due to their short
4728 	 * life span.
4729 	 */
4730 	if (ctx->logged_before) {
4731 		drop_args.path = path;
4732 		drop_args.start = em->start;
4733 		drop_args.end = em->start + em->len;
4734 		drop_args.replace_extent = true;
4735 		drop_args.extent_item_size = sizeof(fi);
4736 		ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4737 		if (ret)
4738 			return ret;
4739 	}
4740 
4741 	if (!drop_args.extent_inserted) {
4742 		key.objectid = btrfs_ino(inode);
4743 		key.type = BTRFS_EXTENT_DATA_KEY;
4744 		key.offset = em->start;
4745 
4746 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4747 					      sizeof(fi));
4748 		if (ret)
4749 			return ret;
4750 	}
4751 	leaf = path->nodes[0];
4752 	write_extent_buffer(leaf, &fi,
4753 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4754 			    sizeof(fi));
4755 	btrfs_mark_buffer_dirty(trans, leaf);
4756 
4757 	btrfs_release_path(path);
4758 
4759 	return ret;
4760 }
4761 
4762 /*
4763  * Log all prealloc extents beyond the inode's i_size to make sure we do not
4764  * lose them after doing a full/fast fsync and replaying the log. We scan the
4765  * subvolume's root instead of iterating the inode's extent map tree because
4766  * otherwise we can log incorrect extent items based on extent map conversion.
4767  * That can happen due to the fact that extent maps are merged when they
4768  * are not in the extent map tree's list of modified extents.
4769  */
4770 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4771 				      struct btrfs_inode *inode,
4772 				      struct btrfs_path *path,
4773 				      struct btrfs_log_ctx *ctx)
4774 {
4775 	struct btrfs_root *root = inode->root;
4776 	struct btrfs_key key;
4777 	const u64 i_size = i_size_read(&inode->vfs_inode);
4778 	const u64 ino = btrfs_ino(inode);
4779 	struct btrfs_path *dst_path = NULL;
4780 	bool dropped_extents = false;
4781 	u64 truncate_offset = i_size;
4782 	struct extent_buffer *leaf;
4783 	int slot;
4784 	int ins_nr = 0;
4785 	int start_slot = 0;
4786 	int ret;
4787 
4788 	if (!(inode->flags & BTRFS_INODE_PREALLOC))
4789 		return 0;
4790 
4791 	key.objectid = ino;
4792 	key.type = BTRFS_EXTENT_DATA_KEY;
4793 	key.offset = i_size;
4794 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4795 	if (ret < 0)
4796 		goto out;
4797 
4798 	/*
4799 	 * We must check if there is a prealloc extent that starts before the
4800 	 * i_size and crosses the i_size boundary. This is to ensure later we
4801 	 * truncate down to the end of that extent and not to the i_size, as
4802 	 * otherwise we end up losing part of the prealloc extent after a log
4803 	 * replay and with an implicit hole if there is another prealloc extent
4804 	 * that starts at an offset beyond i_size.
4805 	 */
4806 	ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4807 	if (ret < 0)
4808 		goto out;
4809 
4810 	if (ret == 0) {
4811 		struct btrfs_file_extent_item *ei;
4812 
4813 		leaf = path->nodes[0];
4814 		slot = path->slots[0];
4815 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4816 
4817 		if (btrfs_file_extent_type(leaf, ei) ==
4818 		    BTRFS_FILE_EXTENT_PREALLOC) {
4819 			u64 extent_end;
4820 
4821 			btrfs_item_key_to_cpu(leaf, &key, slot);
4822 			extent_end = key.offset +
4823 				btrfs_file_extent_num_bytes(leaf, ei);
4824 
4825 			if (extent_end > i_size)
4826 				truncate_offset = extent_end;
4827 		}
4828 	} else {
4829 		ret = 0;
4830 	}
4831 
4832 	while (true) {
4833 		leaf = path->nodes[0];
4834 		slot = path->slots[0];
4835 
4836 		if (slot >= btrfs_header_nritems(leaf)) {
4837 			if (ins_nr > 0) {
4838 				ret = copy_items(trans, inode, dst_path, path,
4839 						 start_slot, ins_nr, 1, 0, ctx);
4840 				if (ret < 0)
4841 					goto out;
4842 				ins_nr = 0;
4843 			}
4844 			ret = btrfs_next_leaf(root, path);
4845 			if (ret < 0)
4846 				goto out;
4847 			if (ret > 0) {
4848 				ret = 0;
4849 				break;
4850 			}
4851 			continue;
4852 		}
4853 
4854 		btrfs_item_key_to_cpu(leaf, &key, slot);
4855 		if (key.objectid > ino)
4856 			break;
4857 		if (WARN_ON_ONCE(key.objectid < ino) ||
4858 		    key.type < BTRFS_EXTENT_DATA_KEY ||
4859 		    key.offset < i_size) {
4860 			path->slots[0]++;
4861 			continue;
4862 		}
4863 		/*
4864 		 * Avoid overlapping items in the log tree. The first time we
4865 		 * get here, get rid of everything from a past fsync. After
4866 		 * that, if the current extent starts before the end of the last
4867 		 * extent we copied, truncate the last one. This can happen if
4868 		 * an ordered extent completion modifies the subvolume tree
4869 		 * while btrfs_next_leaf() has the tree unlocked.
4870 		 */
4871 		if (!dropped_extents || key.offset < truncate_offset) {
4872 			ret = truncate_inode_items(trans, root->log_root, inode,
4873 						   min(key.offset, truncate_offset),
4874 						   BTRFS_EXTENT_DATA_KEY);
4875 			if (ret)
4876 				goto out;
4877 			dropped_extents = true;
4878 		}
4879 		truncate_offset = btrfs_file_extent_end(path);
4880 		if (ins_nr == 0)
4881 			start_slot = slot;
4882 		ins_nr++;
4883 		path->slots[0]++;
4884 		if (!dst_path) {
4885 			dst_path = btrfs_alloc_path();
4886 			if (!dst_path) {
4887 				ret = -ENOMEM;
4888 				goto out;
4889 			}
4890 		}
4891 	}
4892 	if (ins_nr > 0)
4893 		ret = copy_items(trans, inode, dst_path, path,
4894 				 start_slot, ins_nr, 1, 0, ctx);
4895 out:
4896 	btrfs_release_path(path);
4897 	btrfs_free_path(dst_path);
4898 	return ret;
4899 }
4900 
4901 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4902 				     struct btrfs_inode *inode,
4903 				     struct btrfs_path *path,
4904 				     struct btrfs_log_ctx *ctx)
4905 {
4906 	struct btrfs_ordered_extent *ordered;
4907 	struct btrfs_ordered_extent *tmp;
4908 	struct extent_map *em, *n;
4909 	LIST_HEAD(extents);
4910 	struct extent_map_tree *tree = &inode->extent_tree;
4911 	int ret = 0;
4912 	int num = 0;
4913 
4914 	write_lock(&tree->lock);
4915 
4916 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4917 		list_del_init(&em->list);
4918 		/*
4919 		 * Just an arbitrary number, this can be really CPU intensive
4920 		 * once we start getting a lot of extents, and really once we
4921 		 * have a bunch of extents we just want to commit since it will
4922 		 * be faster.
4923 		 */
4924 		if (++num > 32768) {
4925 			list_del_init(&tree->modified_extents);
4926 			ret = -EFBIG;
4927 			goto process;
4928 		}
4929 
4930 		if (em->generation < trans->transid)
4931 			continue;
4932 
4933 		/* We log prealloc extents beyond eof later. */
4934 		if ((em->flags & EXTENT_FLAG_PREALLOC) &&
4935 		    em->start >= i_size_read(&inode->vfs_inode))
4936 			continue;
4937 
4938 		/* Need a ref to keep it from getting evicted from cache */
4939 		refcount_inc(&em->refs);
4940 		em->flags |= EXTENT_FLAG_LOGGING;
4941 		list_add_tail(&em->list, &extents);
4942 		num++;
4943 	}
4944 
4945 	list_sort(NULL, &extents, extent_cmp);
4946 process:
4947 	while (!list_empty(&extents)) {
4948 		em = list_entry(extents.next, struct extent_map, list);
4949 
4950 		list_del_init(&em->list);
4951 
4952 		/*
4953 		 * If we had an error we just need to delete everybody from our
4954 		 * private list.
4955 		 */
4956 		if (ret) {
4957 			clear_em_logging(inode, em);
4958 			free_extent_map(em);
4959 			continue;
4960 		}
4961 
4962 		write_unlock(&tree->lock);
4963 
4964 		ret = log_one_extent(trans, inode, em, path, ctx);
4965 		write_lock(&tree->lock);
4966 		clear_em_logging(inode, em);
4967 		free_extent_map(em);
4968 	}
4969 	WARN_ON(!list_empty(&extents));
4970 	write_unlock(&tree->lock);
4971 
4972 	if (!ret)
4973 		ret = btrfs_log_prealloc_extents(trans, inode, path, ctx);
4974 	if (ret)
4975 		return ret;
4976 
4977 	/*
4978 	 * We have logged all extents successfully, now make sure the commit of
4979 	 * the current transaction waits for the ordered extents to complete
4980 	 * before it commits and wipes out the log trees, otherwise we would
4981 	 * lose data if an ordered extents completes after the transaction
4982 	 * commits and a power failure happens after the transaction commit.
4983 	 */
4984 	list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4985 		list_del_init(&ordered->log_list);
4986 		set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4987 
4988 		if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4989 			spin_lock_irq(&inode->ordered_tree_lock);
4990 			if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4991 				set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4992 				atomic_inc(&trans->transaction->pending_ordered);
4993 			}
4994 			spin_unlock_irq(&inode->ordered_tree_lock);
4995 		}
4996 		btrfs_put_ordered_extent(ordered);
4997 	}
4998 
4999 	return 0;
5000 }
5001 
5002 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
5003 			     struct btrfs_path *path, u64 *size_ret)
5004 {
5005 	struct btrfs_key key;
5006 	int ret;
5007 
5008 	key.objectid = btrfs_ino(inode);
5009 	key.type = BTRFS_INODE_ITEM_KEY;
5010 	key.offset = 0;
5011 
5012 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
5013 	if (ret < 0) {
5014 		return ret;
5015 	} else if (ret > 0) {
5016 		*size_ret = 0;
5017 	} else {
5018 		struct btrfs_inode_item *item;
5019 
5020 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5021 				      struct btrfs_inode_item);
5022 		*size_ret = btrfs_inode_size(path->nodes[0], item);
5023 		/*
5024 		 * If the in-memory inode's i_size is smaller then the inode
5025 		 * size stored in the btree, return the inode's i_size, so
5026 		 * that we get a correct inode size after replaying the log
5027 		 * when before a power failure we had a shrinking truncate
5028 		 * followed by addition of a new name (rename / new hard link).
5029 		 * Otherwise return the inode size from the btree, to avoid
5030 		 * data loss when replaying a log due to previously doing a
5031 		 * write that expands the inode's size and logging a new name
5032 		 * immediately after.
5033 		 */
5034 		if (*size_ret > inode->vfs_inode.i_size)
5035 			*size_ret = inode->vfs_inode.i_size;
5036 	}
5037 
5038 	btrfs_release_path(path);
5039 	return 0;
5040 }
5041 
5042 /*
5043  * At the moment we always log all xattrs. This is to figure out at log replay
5044  * time which xattrs must have their deletion replayed. If a xattr is missing
5045  * in the log tree and exists in the fs/subvol tree, we delete it. This is
5046  * because if a xattr is deleted, the inode is fsynced and a power failure
5047  * happens, causing the log to be replayed the next time the fs is mounted,
5048  * we want the xattr to not exist anymore (same behaviour as other filesystems
5049  * with a journal, ext3/4, xfs, f2fs, etc).
5050  */
5051 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
5052 				struct btrfs_inode *inode,
5053 				struct btrfs_path *path,
5054 				struct btrfs_path *dst_path,
5055 				struct btrfs_log_ctx *ctx)
5056 {
5057 	struct btrfs_root *root = inode->root;
5058 	int ret;
5059 	struct btrfs_key key;
5060 	const u64 ino = btrfs_ino(inode);
5061 	int ins_nr = 0;
5062 	int start_slot = 0;
5063 	bool found_xattrs = false;
5064 
5065 	if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
5066 		return 0;
5067 
5068 	key.objectid = ino;
5069 	key.type = BTRFS_XATTR_ITEM_KEY;
5070 	key.offset = 0;
5071 
5072 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5073 	if (ret < 0)
5074 		return ret;
5075 
5076 	while (true) {
5077 		int slot = path->slots[0];
5078 		struct extent_buffer *leaf = path->nodes[0];
5079 		int nritems = btrfs_header_nritems(leaf);
5080 
5081 		if (slot >= nritems) {
5082 			if (ins_nr > 0) {
5083 				ret = copy_items(trans, inode, dst_path, path,
5084 						 start_slot, ins_nr, 1, 0, ctx);
5085 				if (ret < 0)
5086 					return ret;
5087 				ins_nr = 0;
5088 			}
5089 			ret = btrfs_next_leaf(root, path);
5090 			if (ret < 0)
5091 				return ret;
5092 			else if (ret > 0)
5093 				break;
5094 			continue;
5095 		}
5096 
5097 		btrfs_item_key_to_cpu(leaf, &key, slot);
5098 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
5099 			break;
5100 
5101 		if (ins_nr == 0)
5102 			start_slot = slot;
5103 		ins_nr++;
5104 		path->slots[0]++;
5105 		found_xattrs = true;
5106 		cond_resched();
5107 	}
5108 	if (ins_nr > 0) {
5109 		ret = copy_items(trans, inode, dst_path, path,
5110 				 start_slot, ins_nr, 1, 0, ctx);
5111 		if (ret < 0)
5112 			return ret;
5113 	}
5114 
5115 	if (!found_xattrs)
5116 		set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
5117 
5118 	return 0;
5119 }
5120 
5121 /*
5122  * When using the NO_HOLES feature if we punched a hole that causes the
5123  * deletion of entire leafs or all the extent items of the first leaf (the one
5124  * that contains the inode item and references) we may end up not processing
5125  * any extents, because there are no leafs with a generation matching the
5126  * current transaction that have extent items for our inode. So we need to find
5127  * if any holes exist and then log them. We also need to log holes after any
5128  * truncate operation that changes the inode's size.
5129  */
5130 static int btrfs_log_holes(struct btrfs_trans_handle *trans,
5131 			   struct btrfs_inode *inode,
5132 			   struct btrfs_path *path)
5133 {
5134 	struct btrfs_root *root = inode->root;
5135 	struct btrfs_fs_info *fs_info = root->fs_info;
5136 	struct btrfs_key key;
5137 	const u64 ino = btrfs_ino(inode);
5138 	const u64 i_size = i_size_read(&inode->vfs_inode);
5139 	u64 prev_extent_end = 0;
5140 	int ret;
5141 
5142 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
5143 		return 0;
5144 
5145 	key.objectid = ino;
5146 	key.type = BTRFS_EXTENT_DATA_KEY;
5147 	key.offset = 0;
5148 
5149 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5150 	if (ret < 0)
5151 		return ret;
5152 
5153 	while (true) {
5154 		struct extent_buffer *leaf = path->nodes[0];
5155 
5156 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
5157 			ret = btrfs_next_leaf(root, path);
5158 			if (ret < 0)
5159 				return ret;
5160 			if (ret > 0) {
5161 				ret = 0;
5162 				break;
5163 			}
5164 			leaf = path->nodes[0];
5165 		}
5166 
5167 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5168 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
5169 			break;
5170 
5171 		/* We have a hole, log it. */
5172 		if (prev_extent_end < key.offset) {
5173 			const u64 hole_len = key.offset - prev_extent_end;
5174 
5175 			/*
5176 			 * Release the path to avoid deadlocks with other code
5177 			 * paths that search the root while holding locks on
5178 			 * leafs from the log root.
5179 			 */
5180 			btrfs_release_path(path);
5181 			ret = btrfs_insert_hole_extent(trans, root->log_root,
5182 						       ino, prev_extent_end,
5183 						       hole_len);
5184 			if (ret < 0)
5185 				return ret;
5186 
5187 			/*
5188 			 * Search for the same key again in the root. Since it's
5189 			 * an extent item and we are holding the inode lock, the
5190 			 * key must still exist. If it doesn't just emit warning
5191 			 * and return an error to fall back to a transaction
5192 			 * commit.
5193 			 */
5194 			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5195 			if (ret < 0)
5196 				return ret;
5197 			if (WARN_ON(ret > 0))
5198 				return -ENOENT;
5199 			leaf = path->nodes[0];
5200 		}
5201 
5202 		prev_extent_end = btrfs_file_extent_end(path);
5203 		path->slots[0]++;
5204 		cond_resched();
5205 	}
5206 
5207 	if (prev_extent_end < i_size) {
5208 		u64 hole_len;
5209 
5210 		btrfs_release_path(path);
5211 		hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
5212 		ret = btrfs_insert_hole_extent(trans, root->log_root, ino,
5213 					       prev_extent_end, hole_len);
5214 		if (ret < 0)
5215 			return ret;
5216 	}
5217 
5218 	return 0;
5219 }
5220 
5221 /*
5222  * When we are logging a new inode X, check if it doesn't have a reference that
5223  * matches the reference from some other inode Y created in a past transaction
5224  * and that was renamed in the current transaction. If we don't do this, then at
5225  * log replay time we can lose inode Y (and all its files if it's a directory):
5226  *
5227  * mkdir /mnt/x
5228  * echo "hello world" > /mnt/x/foobar
5229  * sync
5230  * mv /mnt/x /mnt/y
5231  * mkdir /mnt/x                 # or touch /mnt/x
5232  * xfs_io -c fsync /mnt/x
5233  * <power fail>
5234  * mount fs, trigger log replay
5235  *
5236  * After the log replay procedure, we would lose the first directory and all its
5237  * files (file foobar).
5238  * For the case where inode Y is not a directory we simply end up losing it:
5239  *
5240  * echo "123" > /mnt/foo
5241  * sync
5242  * mv /mnt/foo /mnt/bar
5243  * echo "abc" > /mnt/foo
5244  * xfs_io -c fsync /mnt/foo
5245  * <power fail>
5246  *
5247  * We also need this for cases where a snapshot entry is replaced by some other
5248  * entry (file or directory) otherwise we end up with an unreplayable log due to
5249  * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5250  * if it were a regular entry:
5251  *
5252  * mkdir /mnt/x
5253  * btrfs subvolume snapshot /mnt /mnt/x/snap
5254  * btrfs subvolume delete /mnt/x/snap
5255  * rmdir /mnt/x
5256  * mkdir /mnt/x
5257  * fsync /mnt/x or fsync some new file inside it
5258  * <power fail>
5259  *
5260  * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5261  * the same transaction.
5262  */
5263 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
5264 					 const int slot,
5265 					 const struct btrfs_key *key,
5266 					 struct btrfs_inode *inode,
5267 					 u64 *other_ino, u64 *other_parent)
5268 {
5269 	int ret;
5270 	struct btrfs_path *search_path;
5271 	char *name = NULL;
5272 	u32 name_len = 0;
5273 	u32 item_size = btrfs_item_size(eb, slot);
5274 	u32 cur_offset = 0;
5275 	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
5276 
5277 	search_path = btrfs_alloc_path();
5278 	if (!search_path)
5279 		return -ENOMEM;
5280 	search_path->search_commit_root = 1;
5281 	search_path->skip_locking = 1;
5282 
5283 	while (cur_offset < item_size) {
5284 		u64 parent;
5285 		u32 this_name_len;
5286 		u32 this_len;
5287 		unsigned long name_ptr;
5288 		struct btrfs_dir_item *di;
5289 		struct fscrypt_str name_str;
5290 
5291 		if (key->type == BTRFS_INODE_REF_KEY) {
5292 			struct btrfs_inode_ref *iref;
5293 
5294 			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
5295 			parent = key->offset;
5296 			this_name_len = btrfs_inode_ref_name_len(eb, iref);
5297 			name_ptr = (unsigned long)(iref + 1);
5298 			this_len = sizeof(*iref) + this_name_len;
5299 		} else {
5300 			struct btrfs_inode_extref *extref;
5301 
5302 			extref = (struct btrfs_inode_extref *)(ptr +
5303 							       cur_offset);
5304 			parent = btrfs_inode_extref_parent(eb, extref);
5305 			this_name_len = btrfs_inode_extref_name_len(eb, extref);
5306 			name_ptr = (unsigned long)&extref->name;
5307 			this_len = sizeof(*extref) + this_name_len;
5308 		}
5309 
5310 		if (this_name_len > name_len) {
5311 			char *new_name;
5312 
5313 			new_name = krealloc(name, this_name_len, GFP_NOFS);
5314 			if (!new_name) {
5315 				ret = -ENOMEM;
5316 				goto out;
5317 			}
5318 			name_len = this_name_len;
5319 			name = new_name;
5320 		}
5321 
5322 		read_extent_buffer(eb, name, name_ptr, this_name_len);
5323 
5324 		name_str.name = name;
5325 		name_str.len = this_name_len;
5326 		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
5327 				parent, &name_str, 0);
5328 		if (di && !IS_ERR(di)) {
5329 			struct btrfs_key di_key;
5330 
5331 			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
5332 						  di, &di_key);
5333 			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
5334 				if (di_key.objectid != key->objectid) {
5335 					ret = 1;
5336 					*other_ino = di_key.objectid;
5337 					*other_parent = parent;
5338 				} else {
5339 					ret = 0;
5340 				}
5341 			} else {
5342 				ret = -EAGAIN;
5343 			}
5344 			goto out;
5345 		} else if (IS_ERR(di)) {
5346 			ret = PTR_ERR(di);
5347 			goto out;
5348 		}
5349 		btrfs_release_path(search_path);
5350 
5351 		cur_offset += this_len;
5352 	}
5353 	ret = 0;
5354 out:
5355 	btrfs_free_path(search_path);
5356 	kfree(name);
5357 	return ret;
5358 }
5359 
5360 /*
5361  * Check if we need to log an inode. This is used in contexts where while
5362  * logging an inode we need to log another inode (either that it exists or in
5363  * full mode). This is used instead of btrfs_inode_in_log() because the later
5364  * requires the inode to be in the log and have the log transaction committed,
5365  * while here we do not care if the log transaction was already committed - our
5366  * caller will commit the log later - and we want to avoid logging an inode
5367  * multiple times when multiple tasks have joined the same log transaction.
5368  */
5369 static bool need_log_inode(const struct btrfs_trans_handle *trans,
5370 			   struct btrfs_inode *inode)
5371 {
5372 	/*
5373 	 * If a directory was not modified, no dentries added or removed, we can
5374 	 * and should avoid logging it.
5375 	 */
5376 	if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
5377 		return false;
5378 
5379 	/*
5380 	 * If this inode does not have new/updated/deleted xattrs since the last
5381 	 * time it was logged and is flagged as logged in the current transaction,
5382 	 * we can skip logging it. As for new/deleted names, those are updated in
5383 	 * the log by link/unlink/rename operations.
5384 	 * In case the inode was logged and then evicted and reloaded, its
5385 	 * logged_trans will be 0, in which case we have to fully log it since
5386 	 * logged_trans is a transient field, not persisted.
5387 	 */
5388 	if (inode_logged(trans, inode, NULL) == 1 &&
5389 	    !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5390 		return false;
5391 
5392 	return true;
5393 }
5394 
5395 struct btrfs_dir_list {
5396 	u64 ino;
5397 	struct list_head list;
5398 };
5399 
5400 /*
5401  * Log the inodes of the new dentries of a directory.
5402  * See process_dir_items_leaf() for details about why it is needed.
5403  * This is a recursive operation - if an existing dentry corresponds to a
5404  * directory, that directory's new entries are logged too (same behaviour as
5405  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5406  * the dentries point to we do not acquire their VFS lock, otherwise lockdep
5407  * complains about the following circular lock dependency / possible deadlock:
5408  *
5409  *        CPU0                                        CPU1
5410  *        ----                                        ----
5411  * lock(&type->i_mutex_dir_key#3/2);
5412  *                                            lock(sb_internal#2);
5413  *                                            lock(&type->i_mutex_dir_key#3/2);
5414  * lock(&sb->s_type->i_mutex_key#14);
5415  *
5416  * Where sb_internal is the lock (a counter that works as a lock) acquired by
5417  * sb_start_intwrite() in btrfs_start_transaction().
5418  * Not acquiring the VFS lock of the inodes is still safe because:
5419  *
5420  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5421  *    that while logging the inode new references (names) are added or removed
5422  *    from the inode, leaving the logged inode item with a link count that does
5423  *    not match the number of logged inode reference items. This is fine because
5424  *    at log replay time we compute the real number of links and correct the
5425  *    link count in the inode item (see replay_one_buffer() and
5426  *    link_to_fixup_dir());
5427  *
5428  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5429  *    while logging the inode's items new index items (key type
5430  *    BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item
5431  *    has a size that doesn't match the sum of the lengths of all the logged
5432  *    names - this is ok, not a problem, because at log replay time we set the
5433  *    directory's i_size to the correct value (see replay_one_name() and
5434  *    overwrite_item()).
5435  */
5436 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5437 				struct btrfs_inode *start_inode,
5438 				struct btrfs_log_ctx *ctx)
5439 {
5440 	struct btrfs_root *root = start_inode->root;
5441 	struct btrfs_fs_info *fs_info = root->fs_info;
5442 	struct btrfs_path *path;
5443 	LIST_HEAD(dir_list);
5444 	struct btrfs_dir_list *dir_elem;
5445 	u64 ino = btrfs_ino(start_inode);
5446 	struct btrfs_inode *curr_inode = start_inode;
5447 	int ret = 0;
5448 
5449 	/*
5450 	 * If we are logging a new name, as part of a link or rename operation,
5451 	 * don't bother logging new dentries, as we just want to log the names
5452 	 * of an inode and that any new parents exist.
5453 	 */
5454 	if (ctx->logging_new_name)
5455 		return 0;
5456 
5457 	path = btrfs_alloc_path();
5458 	if (!path)
5459 		return -ENOMEM;
5460 
5461 	/* Pairs with btrfs_add_delayed_iput below. */
5462 	ihold(&curr_inode->vfs_inode);
5463 
5464 	while (true) {
5465 		struct inode *vfs_inode;
5466 		struct btrfs_key key;
5467 		struct btrfs_key found_key;
5468 		u64 next_index;
5469 		bool continue_curr_inode = true;
5470 		int iter_ret;
5471 
5472 		key.objectid = ino;
5473 		key.type = BTRFS_DIR_INDEX_KEY;
5474 		key.offset = btrfs_get_first_dir_index_to_log(curr_inode);
5475 		next_index = key.offset;
5476 again:
5477 		btrfs_for_each_slot(root->log_root, &key, &found_key, path, iter_ret) {
5478 			struct extent_buffer *leaf = path->nodes[0];
5479 			struct btrfs_dir_item *di;
5480 			struct btrfs_key di_key;
5481 			struct inode *di_inode;
5482 			int log_mode = LOG_INODE_EXISTS;
5483 			int type;
5484 
5485 			if (found_key.objectid != ino ||
5486 			    found_key.type != BTRFS_DIR_INDEX_KEY) {
5487 				continue_curr_inode = false;
5488 				break;
5489 			}
5490 
5491 			next_index = found_key.offset + 1;
5492 
5493 			di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5494 			type = btrfs_dir_ftype(leaf, di);
5495 			if (btrfs_dir_transid(leaf, di) < trans->transid)
5496 				continue;
5497 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5498 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5499 				continue;
5500 
5501 			btrfs_release_path(path);
5502 			di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5503 			if (IS_ERR(di_inode)) {
5504 				ret = PTR_ERR(di_inode);
5505 				goto out;
5506 			}
5507 
5508 			if (!need_log_inode(trans, BTRFS_I(di_inode))) {
5509 				btrfs_add_delayed_iput(BTRFS_I(di_inode));
5510 				break;
5511 			}
5512 
5513 			ctx->log_new_dentries = false;
5514 			if (type == BTRFS_FT_DIR)
5515 				log_mode = LOG_INODE_ALL;
5516 			ret = btrfs_log_inode(trans, BTRFS_I(di_inode),
5517 					      log_mode, ctx);
5518 			btrfs_add_delayed_iput(BTRFS_I(di_inode));
5519 			if (ret)
5520 				goto out;
5521 			if (ctx->log_new_dentries) {
5522 				dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5523 				if (!dir_elem) {
5524 					ret = -ENOMEM;
5525 					goto out;
5526 				}
5527 				dir_elem->ino = di_key.objectid;
5528 				list_add_tail(&dir_elem->list, &dir_list);
5529 			}
5530 			break;
5531 		}
5532 
5533 		btrfs_release_path(path);
5534 
5535 		if (iter_ret < 0) {
5536 			ret = iter_ret;
5537 			goto out;
5538 		} else if (iter_ret > 0) {
5539 			continue_curr_inode = false;
5540 		} else {
5541 			key = found_key;
5542 		}
5543 
5544 		if (continue_curr_inode && key.offset < (u64)-1) {
5545 			key.offset++;
5546 			goto again;
5547 		}
5548 
5549 		btrfs_set_first_dir_index_to_log(curr_inode, next_index);
5550 
5551 		if (list_empty(&dir_list))
5552 			break;
5553 
5554 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list);
5555 		ino = dir_elem->ino;
5556 		list_del(&dir_elem->list);
5557 		kfree(dir_elem);
5558 
5559 		btrfs_add_delayed_iput(curr_inode);
5560 		curr_inode = NULL;
5561 
5562 		vfs_inode = btrfs_iget(fs_info->sb, ino, root);
5563 		if (IS_ERR(vfs_inode)) {
5564 			ret = PTR_ERR(vfs_inode);
5565 			break;
5566 		}
5567 		curr_inode = BTRFS_I(vfs_inode);
5568 	}
5569 out:
5570 	btrfs_free_path(path);
5571 	if (curr_inode)
5572 		btrfs_add_delayed_iput(curr_inode);
5573 
5574 	if (ret) {
5575 		struct btrfs_dir_list *next;
5576 
5577 		list_for_each_entry_safe(dir_elem, next, &dir_list, list)
5578 			kfree(dir_elem);
5579 	}
5580 
5581 	return ret;
5582 }
5583 
5584 struct btrfs_ino_list {
5585 	u64 ino;
5586 	u64 parent;
5587 	struct list_head list;
5588 };
5589 
5590 static void free_conflicting_inodes(struct btrfs_log_ctx *ctx)
5591 {
5592 	struct btrfs_ino_list *curr;
5593 	struct btrfs_ino_list *next;
5594 
5595 	list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) {
5596 		list_del(&curr->list);
5597 		kfree(curr);
5598 	}
5599 }
5600 
5601 static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino,
5602 				    struct btrfs_path *path)
5603 {
5604 	struct btrfs_key key;
5605 	int ret;
5606 
5607 	key.objectid = ino;
5608 	key.type = BTRFS_INODE_ITEM_KEY;
5609 	key.offset = 0;
5610 
5611 	path->search_commit_root = 1;
5612 	path->skip_locking = 1;
5613 
5614 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5615 	if (WARN_ON_ONCE(ret > 0)) {
5616 		/*
5617 		 * We have previously found the inode through the commit root
5618 		 * so this should not happen. If it does, just error out and
5619 		 * fallback to a transaction commit.
5620 		 */
5621 		ret = -ENOENT;
5622 	} else if (ret == 0) {
5623 		struct btrfs_inode_item *item;
5624 
5625 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5626 				      struct btrfs_inode_item);
5627 		if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item)))
5628 			ret = 1;
5629 	}
5630 
5631 	btrfs_release_path(path);
5632 	path->search_commit_root = 0;
5633 	path->skip_locking = 0;
5634 
5635 	return ret;
5636 }
5637 
5638 static int add_conflicting_inode(struct btrfs_trans_handle *trans,
5639 				 struct btrfs_root *root,
5640 				 struct btrfs_path *path,
5641 				 u64 ino, u64 parent,
5642 				 struct btrfs_log_ctx *ctx)
5643 {
5644 	struct btrfs_ino_list *ino_elem;
5645 	struct inode *inode;
5646 
5647 	/*
5648 	 * It's rare to have a lot of conflicting inodes, in practice it is not
5649 	 * common to have more than 1 or 2. We don't want to collect too many,
5650 	 * as we could end up logging too many inodes (even if only in
5651 	 * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction
5652 	 * commits.
5653 	 */
5654 	if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES)
5655 		return BTRFS_LOG_FORCE_COMMIT;
5656 
5657 	inode = btrfs_iget(root->fs_info->sb, ino, root);
5658 	/*
5659 	 * If the other inode that had a conflicting dir entry was deleted in
5660 	 * the current transaction then we either:
5661 	 *
5662 	 * 1) Log the parent directory (later after adding it to the list) if
5663 	 *    the inode is a directory. This is because it may be a deleted
5664 	 *    subvolume/snapshot or it may be a regular directory that had
5665 	 *    deleted subvolumes/snapshots (or subdirectories that had them),
5666 	 *    and at the moment we can't deal with dropping subvolumes/snapshots
5667 	 *    during log replay. So we just log the parent, which will result in
5668 	 *    a fallback to a transaction commit if we are dealing with those
5669 	 *    cases (last_unlink_trans will match the current transaction);
5670 	 *
5671 	 * 2) Do nothing if it's not a directory. During log replay we simply
5672 	 *    unlink the conflicting dentry from the parent directory and then
5673 	 *    add the dentry for our inode. Like this we can avoid logging the
5674 	 *    parent directory (and maybe fallback to a transaction commit in
5675 	 *    case it has a last_unlink_trans == trans->transid, due to moving
5676 	 *    some inode from it to some other directory).
5677 	 */
5678 	if (IS_ERR(inode)) {
5679 		int ret = PTR_ERR(inode);
5680 
5681 		if (ret != -ENOENT)
5682 			return ret;
5683 
5684 		ret = conflicting_inode_is_dir(root, ino, path);
5685 		/* Not a directory or we got an error. */
5686 		if (ret <= 0)
5687 			return ret;
5688 
5689 		/* Conflicting inode is a directory, so we'll log its parent. */
5690 		ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5691 		if (!ino_elem)
5692 			return -ENOMEM;
5693 		ino_elem->ino = ino;
5694 		ino_elem->parent = parent;
5695 		list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5696 		ctx->num_conflict_inodes++;
5697 
5698 		return 0;
5699 	}
5700 
5701 	/*
5702 	 * If the inode was already logged skip it - otherwise we can hit an
5703 	 * infinite loop. Example:
5704 	 *
5705 	 * From the commit root (previous transaction) we have the following
5706 	 * inodes:
5707 	 *
5708 	 * inode 257 a directory
5709 	 * inode 258 with references "zz" and "zz_link" on inode 257
5710 	 * inode 259 with reference "a" on inode 257
5711 	 *
5712 	 * And in the current (uncommitted) transaction we have:
5713 	 *
5714 	 * inode 257 a directory, unchanged
5715 	 * inode 258 with references "a" and "a2" on inode 257
5716 	 * inode 259 with reference "zz_link" on inode 257
5717 	 * inode 261 with reference "zz" on inode 257
5718 	 *
5719 	 * When logging inode 261 the following infinite loop could
5720 	 * happen if we don't skip already logged inodes:
5721 	 *
5722 	 * - we detect inode 258 as a conflicting inode, with inode 261
5723 	 *   on reference "zz", and log it;
5724 	 *
5725 	 * - we detect inode 259 as a conflicting inode, with inode 258
5726 	 *   on reference "a", and log it;
5727 	 *
5728 	 * - we detect inode 258 as a conflicting inode, with inode 259
5729 	 *   on reference "zz_link", and log it - again! After this we
5730 	 *   repeat the above steps forever.
5731 	 *
5732 	 * Here we can use need_log_inode() because we only need to log the
5733 	 * inode in LOG_INODE_EXISTS mode and rename operations update the log,
5734 	 * so that the log ends up with the new name and without the old name.
5735 	 */
5736 	if (!need_log_inode(trans, BTRFS_I(inode))) {
5737 		btrfs_add_delayed_iput(BTRFS_I(inode));
5738 		return 0;
5739 	}
5740 
5741 	btrfs_add_delayed_iput(BTRFS_I(inode));
5742 
5743 	ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5744 	if (!ino_elem)
5745 		return -ENOMEM;
5746 	ino_elem->ino = ino;
5747 	ino_elem->parent = parent;
5748 	list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5749 	ctx->num_conflict_inodes++;
5750 
5751 	return 0;
5752 }
5753 
5754 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5755 				  struct btrfs_root *root,
5756 				  struct btrfs_log_ctx *ctx)
5757 {
5758 	struct btrfs_fs_info *fs_info = root->fs_info;
5759 	int ret = 0;
5760 
5761 	/*
5762 	 * Conflicting inodes are logged by the first call to btrfs_log_inode(),
5763 	 * otherwise we could have unbounded recursion of btrfs_log_inode()
5764 	 * calls. This check guarantees we can have only 1 level of recursion.
5765 	 */
5766 	if (ctx->logging_conflict_inodes)
5767 		return 0;
5768 
5769 	ctx->logging_conflict_inodes = true;
5770 
5771 	/*
5772 	 * New conflicting inodes may be found and added to the list while we
5773 	 * are logging a conflicting inode, so keep iterating while the list is
5774 	 * not empty.
5775 	 */
5776 	while (!list_empty(&ctx->conflict_inodes)) {
5777 		struct btrfs_ino_list *curr;
5778 		struct inode *inode;
5779 		u64 ino;
5780 		u64 parent;
5781 
5782 		curr = list_first_entry(&ctx->conflict_inodes,
5783 					struct btrfs_ino_list, list);
5784 		ino = curr->ino;
5785 		parent = curr->parent;
5786 		list_del(&curr->list);
5787 		kfree(curr);
5788 
5789 		inode = btrfs_iget(fs_info->sb, ino, root);
5790 		/*
5791 		 * If the other inode that had a conflicting dir entry was
5792 		 * deleted in the current transaction, we need to log its parent
5793 		 * directory. See the comment at add_conflicting_inode().
5794 		 */
5795 		if (IS_ERR(inode)) {
5796 			ret = PTR_ERR(inode);
5797 			if (ret != -ENOENT)
5798 				break;
5799 
5800 			inode = btrfs_iget(fs_info->sb, parent, root);
5801 			if (IS_ERR(inode)) {
5802 				ret = PTR_ERR(inode);
5803 				break;
5804 			}
5805 
5806 			/*
5807 			 * Always log the directory, we cannot make this
5808 			 * conditional on need_log_inode() because the directory
5809 			 * might have been logged in LOG_INODE_EXISTS mode or
5810 			 * the dir index of the conflicting inode is not in a
5811 			 * dir index key range logged for the directory. So we
5812 			 * must make sure the deletion is recorded.
5813 			 */
5814 			ret = btrfs_log_inode(trans, BTRFS_I(inode),
5815 					      LOG_INODE_ALL, ctx);
5816 			btrfs_add_delayed_iput(BTRFS_I(inode));
5817 			if (ret)
5818 				break;
5819 			continue;
5820 		}
5821 
5822 		/*
5823 		 * Here we can use need_log_inode() because we only need to log
5824 		 * the inode in LOG_INODE_EXISTS mode and rename operations
5825 		 * update the log, so that the log ends up with the new name and
5826 		 * without the old name.
5827 		 *
5828 		 * We did this check at add_conflicting_inode(), but here we do
5829 		 * it again because if some other task logged the inode after
5830 		 * that, we can avoid doing it again.
5831 		 */
5832 		if (!need_log_inode(trans, BTRFS_I(inode))) {
5833 			btrfs_add_delayed_iput(BTRFS_I(inode));
5834 			continue;
5835 		}
5836 
5837 		/*
5838 		 * We are safe logging the other inode without acquiring its
5839 		 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5840 		 * are safe against concurrent renames of the other inode as
5841 		 * well because during a rename we pin the log and update the
5842 		 * log with the new name before we unpin it.
5843 		 */
5844 		ret = btrfs_log_inode(trans, BTRFS_I(inode), LOG_INODE_EXISTS, ctx);
5845 		btrfs_add_delayed_iput(BTRFS_I(inode));
5846 		if (ret)
5847 			break;
5848 	}
5849 
5850 	ctx->logging_conflict_inodes = false;
5851 	if (ret)
5852 		free_conflicting_inodes(ctx);
5853 
5854 	return ret;
5855 }
5856 
5857 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5858 				   struct btrfs_inode *inode,
5859 				   struct btrfs_key *min_key,
5860 				   const struct btrfs_key *max_key,
5861 				   struct btrfs_path *path,
5862 				   struct btrfs_path *dst_path,
5863 				   const u64 logged_isize,
5864 				   const int inode_only,
5865 				   struct btrfs_log_ctx *ctx,
5866 				   bool *need_log_inode_item)
5867 {
5868 	const u64 i_size = i_size_read(&inode->vfs_inode);
5869 	struct btrfs_root *root = inode->root;
5870 	int ins_start_slot = 0;
5871 	int ins_nr = 0;
5872 	int ret;
5873 
5874 	while (1) {
5875 		ret = btrfs_search_forward(root, min_key, path, trans->transid);
5876 		if (ret < 0)
5877 			return ret;
5878 		if (ret > 0) {
5879 			ret = 0;
5880 			break;
5881 		}
5882 again:
5883 		/* Note, ins_nr might be > 0 here, cleanup outside the loop */
5884 		if (min_key->objectid != max_key->objectid)
5885 			break;
5886 		if (min_key->type > max_key->type)
5887 			break;
5888 
5889 		if (min_key->type == BTRFS_INODE_ITEM_KEY) {
5890 			*need_log_inode_item = false;
5891 		} else if (min_key->type == BTRFS_EXTENT_DATA_KEY &&
5892 			   min_key->offset >= i_size) {
5893 			/*
5894 			 * Extents at and beyond eof are logged with
5895 			 * btrfs_log_prealloc_extents().
5896 			 * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
5897 			 * and no keys greater than that, so bail out.
5898 			 */
5899 			break;
5900 		} else if ((min_key->type == BTRFS_INODE_REF_KEY ||
5901 			    min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5902 			   (inode->generation == trans->transid ||
5903 			    ctx->logging_conflict_inodes)) {
5904 			u64 other_ino = 0;
5905 			u64 other_parent = 0;
5906 
5907 			ret = btrfs_check_ref_name_override(path->nodes[0],
5908 					path->slots[0], min_key, inode,
5909 					&other_ino, &other_parent);
5910 			if (ret < 0) {
5911 				return ret;
5912 			} else if (ret > 0 &&
5913 				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5914 				if (ins_nr > 0) {
5915 					ins_nr++;
5916 				} else {
5917 					ins_nr = 1;
5918 					ins_start_slot = path->slots[0];
5919 				}
5920 				ret = copy_items(trans, inode, dst_path, path,
5921 						 ins_start_slot, ins_nr,
5922 						 inode_only, logged_isize, ctx);
5923 				if (ret < 0)
5924 					return ret;
5925 				ins_nr = 0;
5926 
5927 				btrfs_release_path(path);
5928 				ret = add_conflicting_inode(trans, root, path,
5929 							    other_ino,
5930 							    other_parent, ctx);
5931 				if (ret)
5932 					return ret;
5933 				goto next_key;
5934 			}
5935 		} else if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5936 			/* Skip xattrs, logged later with btrfs_log_all_xattrs() */
5937 			if (ins_nr == 0)
5938 				goto next_slot;
5939 			ret = copy_items(trans, inode, dst_path, path,
5940 					 ins_start_slot,
5941 					 ins_nr, inode_only, logged_isize, ctx);
5942 			if (ret < 0)
5943 				return ret;
5944 			ins_nr = 0;
5945 			goto next_slot;
5946 		}
5947 
5948 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5949 			ins_nr++;
5950 			goto next_slot;
5951 		} else if (!ins_nr) {
5952 			ins_start_slot = path->slots[0];
5953 			ins_nr = 1;
5954 			goto next_slot;
5955 		}
5956 
5957 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5958 				 ins_nr, inode_only, logged_isize, ctx);
5959 		if (ret < 0)
5960 			return ret;
5961 		ins_nr = 1;
5962 		ins_start_slot = path->slots[0];
5963 next_slot:
5964 		path->slots[0]++;
5965 		if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5966 			btrfs_item_key_to_cpu(path->nodes[0], min_key,
5967 					      path->slots[0]);
5968 			goto again;
5969 		}
5970 		if (ins_nr) {
5971 			ret = copy_items(trans, inode, dst_path, path,
5972 					 ins_start_slot, ins_nr, inode_only,
5973 					 logged_isize, ctx);
5974 			if (ret < 0)
5975 				return ret;
5976 			ins_nr = 0;
5977 		}
5978 		btrfs_release_path(path);
5979 next_key:
5980 		if (min_key->offset < (u64)-1) {
5981 			min_key->offset++;
5982 		} else if (min_key->type < max_key->type) {
5983 			min_key->type++;
5984 			min_key->offset = 0;
5985 		} else {
5986 			break;
5987 		}
5988 
5989 		/*
5990 		 * We may process many leaves full of items for our inode, so
5991 		 * avoid monopolizing a cpu for too long by rescheduling while
5992 		 * not holding locks on any tree.
5993 		 */
5994 		cond_resched();
5995 	}
5996 	if (ins_nr) {
5997 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5998 				 ins_nr, inode_only, logged_isize, ctx);
5999 		if (ret)
6000 			return ret;
6001 	}
6002 
6003 	if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) {
6004 		/*
6005 		 * Release the path because otherwise we might attempt to double
6006 		 * lock the same leaf with btrfs_log_prealloc_extents() below.
6007 		 */
6008 		btrfs_release_path(path);
6009 		ret = btrfs_log_prealloc_extents(trans, inode, dst_path, ctx);
6010 	}
6011 
6012 	return ret;
6013 }
6014 
6015 static int insert_delayed_items_batch(struct btrfs_trans_handle *trans,
6016 				      struct btrfs_root *log,
6017 				      struct btrfs_path *path,
6018 				      const struct btrfs_item_batch *batch,
6019 				      const struct btrfs_delayed_item *first_item)
6020 {
6021 	const struct btrfs_delayed_item *curr = first_item;
6022 	int ret;
6023 
6024 	ret = btrfs_insert_empty_items(trans, log, path, batch);
6025 	if (ret)
6026 		return ret;
6027 
6028 	for (int i = 0; i < batch->nr; i++) {
6029 		char *data_ptr;
6030 
6031 		data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
6032 		write_extent_buffer(path->nodes[0], &curr->data,
6033 				    (unsigned long)data_ptr, curr->data_len);
6034 		curr = list_next_entry(curr, log_list);
6035 		path->slots[0]++;
6036 	}
6037 
6038 	btrfs_release_path(path);
6039 
6040 	return 0;
6041 }
6042 
6043 static int log_delayed_insertion_items(struct btrfs_trans_handle *trans,
6044 				       struct btrfs_inode *inode,
6045 				       struct btrfs_path *path,
6046 				       const struct list_head *delayed_ins_list,
6047 				       struct btrfs_log_ctx *ctx)
6048 {
6049 	/* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */
6050 	const int max_batch_size = 195;
6051 	const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info);
6052 	const u64 ino = btrfs_ino(inode);
6053 	struct btrfs_root *log = inode->root->log_root;
6054 	struct btrfs_item_batch batch = {
6055 		.nr = 0,
6056 		.total_data_size = 0,
6057 	};
6058 	const struct btrfs_delayed_item *first = NULL;
6059 	const struct btrfs_delayed_item *curr;
6060 	char *ins_data;
6061 	struct btrfs_key *ins_keys;
6062 	u32 *ins_sizes;
6063 	u64 curr_batch_size = 0;
6064 	int batch_idx = 0;
6065 	int ret;
6066 
6067 	/* We are adding dir index items to the log tree. */
6068 	lockdep_assert_held(&inode->log_mutex);
6069 
6070 	/*
6071 	 * We collect delayed items before copying index keys from the subvolume
6072 	 * to the log tree. However just after we collected them, they may have
6073 	 * been flushed (all of them or just some of them), and therefore we
6074 	 * could have copied them from the subvolume tree to the log tree.
6075 	 * So find the first delayed item that was not yet logged (they are
6076 	 * sorted by index number).
6077 	 */
6078 	list_for_each_entry(curr, delayed_ins_list, log_list) {
6079 		if (curr->index > inode->last_dir_index_offset) {
6080 			first = curr;
6081 			break;
6082 		}
6083 	}
6084 
6085 	/* Empty list or all delayed items were already logged. */
6086 	if (!first)
6087 		return 0;
6088 
6089 	ins_data = kmalloc(max_batch_size * sizeof(u32) +
6090 			   max_batch_size * sizeof(struct btrfs_key), GFP_NOFS);
6091 	if (!ins_data)
6092 		return -ENOMEM;
6093 	ins_sizes = (u32 *)ins_data;
6094 	batch.data_sizes = ins_sizes;
6095 	ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32));
6096 	batch.keys = ins_keys;
6097 
6098 	curr = first;
6099 	while (!list_entry_is_head(curr, delayed_ins_list, log_list)) {
6100 		const u32 curr_size = curr->data_len + sizeof(struct btrfs_item);
6101 
6102 		if (curr_batch_size + curr_size > leaf_data_size ||
6103 		    batch.nr == max_batch_size) {
6104 			ret = insert_delayed_items_batch(trans, log, path,
6105 							 &batch, first);
6106 			if (ret)
6107 				goto out;
6108 			batch_idx = 0;
6109 			batch.nr = 0;
6110 			batch.total_data_size = 0;
6111 			curr_batch_size = 0;
6112 			first = curr;
6113 		}
6114 
6115 		ins_sizes[batch_idx] = curr->data_len;
6116 		ins_keys[batch_idx].objectid = ino;
6117 		ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY;
6118 		ins_keys[batch_idx].offset = curr->index;
6119 		curr_batch_size += curr_size;
6120 		batch.total_data_size += curr->data_len;
6121 		batch.nr++;
6122 		batch_idx++;
6123 		curr = list_next_entry(curr, log_list);
6124 	}
6125 
6126 	ASSERT(batch.nr >= 1);
6127 	ret = insert_delayed_items_batch(trans, log, path, &batch, first);
6128 
6129 	curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item,
6130 			       log_list);
6131 	inode->last_dir_index_offset = curr->index;
6132 out:
6133 	kfree(ins_data);
6134 
6135 	return ret;
6136 }
6137 
6138 static int log_delayed_deletions_full(struct btrfs_trans_handle *trans,
6139 				      struct btrfs_inode *inode,
6140 				      struct btrfs_path *path,
6141 				      const struct list_head *delayed_del_list,
6142 				      struct btrfs_log_ctx *ctx)
6143 {
6144 	const u64 ino = btrfs_ino(inode);
6145 	const struct btrfs_delayed_item *curr;
6146 
6147 	curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6148 				log_list);
6149 
6150 	while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6151 		u64 first_dir_index = curr->index;
6152 		u64 last_dir_index;
6153 		const struct btrfs_delayed_item *next;
6154 		int ret;
6155 
6156 		/*
6157 		 * Find a range of consecutive dir index items to delete. Like
6158 		 * this we log a single dir range item spanning several contiguous
6159 		 * dir items instead of logging one range item per dir index item.
6160 		 */
6161 		next = list_next_entry(curr, log_list);
6162 		while (!list_entry_is_head(next, delayed_del_list, log_list)) {
6163 			if (next->index != curr->index + 1)
6164 				break;
6165 			curr = next;
6166 			next = list_next_entry(next, log_list);
6167 		}
6168 
6169 		last_dir_index = curr->index;
6170 		ASSERT(last_dir_index >= first_dir_index);
6171 
6172 		ret = insert_dir_log_key(trans, inode->root->log_root, path,
6173 					 ino, first_dir_index, last_dir_index);
6174 		if (ret)
6175 			return ret;
6176 		curr = list_next_entry(curr, log_list);
6177 	}
6178 
6179 	return 0;
6180 }
6181 
6182 static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans,
6183 					struct btrfs_inode *inode,
6184 					struct btrfs_path *path,
6185 					struct btrfs_log_ctx *ctx,
6186 					const struct list_head *delayed_del_list,
6187 					const struct btrfs_delayed_item *first,
6188 					const struct btrfs_delayed_item **last_ret)
6189 {
6190 	const struct btrfs_delayed_item *next;
6191 	struct extent_buffer *leaf = path->nodes[0];
6192 	const int last_slot = btrfs_header_nritems(leaf) - 1;
6193 	int slot = path->slots[0] + 1;
6194 	const u64 ino = btrfs_ino(inode);
6195 
6196 	next = list_next_entry(first, log_list);
6197 
6198 	while (slot < last_slot &&
6199 	       !list_entry_is_head(next, delayed_del_list, log_list)) {
6200 		struct btrfs_key key;
6201 
6202 		btrfs_item_key_to_cpu(leaf, &key, slot);
6203 		if (key.objectid != ino ||
6204 		    key.type != BTRFS_DIR_INDEX_KEY ||
6205 		    key.offset != next->index)
6206 			break;
6207 
6208 		slot++;
6209 		*last_ret = next;
6210 		next = list_next_entry(next, log_list);
6211 	}
6212 
6213 	return btrfs_del_items(trans, inode->root->log_root, path,
6214 			       path->slots[0], slot - path->slots[0]);
6215 }
6216 
6217 static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans,
6218 					     struct btrfs_inode *inode,
6219 					     struct btrfs_path *path,
6220 					     const struct list_head *delayed_del_list,
6221 					     struct btrfs_log_ctx *ctx)
6222 {
6223 	struct btrfs_root *log = inode->root->log_root;
6224 	const struct btrfs_delayed_item *curr;
6225 	u64 last_range_start = 0;
6226 	u64 last_range_end = 0;
6227 	struct btrfs_key key;
6228 
6229 	key.objectid = btrfs_ino(inode);
6230 	key.type = BTRFS_DIR_INDEX_KEY;
6231 	curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6232 				log_list);
6233 
6234 	while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6235 		const struct btrfs_delayed_item *last = curr;
6236 		u64 first_dir_index = curr->index;
6237 		u64 last_dir_index;
6238 		bool deleted_items = false;
6239 		int ret;
6240 
6241 		key.offset = curr->index;
6242 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
6243 		if (ret < 0) {
6244 			return ret;
6245 		} else if (ret == 0) {
6246 			ret = batch_delete_dir_index_items(trans, inode, path, ctx,
6247 							   delayed_del_list, curr,
6248 							   &last);
6249 			if (ret)
6250 				return ret;
6251 			deleted_items = true;
6252 		}
6253 
6254 		btrfs_release_path(path);
6255 
6256 		/*
6257 		 * If we deleted items from the leaf, it means we have a range
6258 		 * item logging their range, so no need to add one or update an
6259 		 * existing one. Otherwise we have to log a dir range item.
6260 		 */
6261 		if (deleted_items)
6262 			goto next_batch;
6263 
6264 		last_dir_index = last->index;
6265 		ASSERT(last_dir_index >= first_dir_index);
6266 		/*
6267 		 * If this range starts right after where the previous one ends,
6268 		 * then we want to reuse the previous range item and change its
6269 		 * end offset to the end of this range. This is just to minimize
6270 		 * leaf space usage, by avoiding adding a new range item.
6271 		 */
6272 		if (last_range_end != 0 && first_dir_index == last_range_end + 1)
6273 			first_dir_index = last_range_start;
6274 
6275 		ret = insert_dir_log_key(trans, log, path, key.objectid,
6276 					 first_dir_index, last_dir_index);
6277 		if (ret)
6278 			return ret;
6279 
6280 		last_range_start = first_dir_index;
6281 		last_range_end = last_dir_index;
6282 next_batch:
6283 		curr = list_next_entry(last, log_list);
6284 	}
6285 
6286 	return 0;
6287 }
6288 
6289 static int log_delayed_deletion_items(struct btrfs_trans_handle *trans,
6290 				      struct btrfs_inode *inode,
6291 				      struct btrfs_path *path,
6292 				      const struct list_head *delayed_del_list,
6293 				      struct btrfs_log_ctx *ctx)
6294 {
6295 	/*
6296 	 * We are deleting dir index items from the log tree or adding range
6297 	 * items to it.
6298 	 */
6299 	lockdep_assert_held(&inode->log_mutex);
6300 
6301 	if (list_empty(delayed_del_list))
6302 		return 0;
6303 
6304 	if (ctx->logged_before)
6305 		return log_delayed_deletions_incremental(trans, inode, path,
6306 							 delayed_del_list, ctx);
6307 
6308 	return log_delayed_deletions_full(trans, inode, path, delayed_del_list,
6309 					  ctx);
6310 }
6311 
6312 /*
6313  * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed
6314  * items instead of the subvolume tree.
6315  */
6316 static int log_new_delayed_dentries(struct btrfs_trans_handle *trans,
6317 				    struct btrfs_inode *inode,
6318 				    const struct list_head *delayed_ins_list,
6319 				    struct btrfs_log_ctx *ctx)
6320 {
6321 	const bool orig_log_new_dentries = ctx->log_new_dentries;
6322 	struct btrfs_fs_info *fs_info = trans->fs_info;
6323 	struct btrfs_delayed_item *item;
6324 	int ret = 0;
6325 
6326 	/*
6327 	 * No need for the log mutex, plus to avoid potential deadlocks or
6328 	 * lockdep annotations due to nesting of delayed inode mutexes and log
6329 	 * mutexes.
6330 	 */
6331 	lockdep_assert_not_held(&inode->log_mutex);
6332 
6333 	ASSERT(!ctx->logging_new_delayed_dentries);
6334 	ctx->logging_new_delayed_dentries = true;
6335 
6336 	list_for_each_entry(item, delayed_ins_list, log_list) {
6337 		struct btrfs_dir_item *dir_item;
6338 		struct inode *di_inode;
6339 		struct btrfs_key key;
6340 		int log_mode = LOG_INODE_EXISTS;
6341 
6342 		dir_item = (struct btrfs_dir_item *)item->data;
6343 		btrfs_disk_key_to_cpu(&key, &dir_item->location);
6344 
6345 		if (key.type == BTRFS_ROOT_ITEM_KEY)
6346 			continue;
6347 
6348 		di_inode = btrfs_iget(fs_info->sb, key.objectid, inode->root);
6349 		if (IS_ERR(di_inode)) {
6350 			ret = PTR_ERR(di_inode);
6351 			break;
6352 		}
6353 
6354 		if (!need_log_inode(trans, BTRFS_I(di_inode))) {
6355 			btrfs_add_delayed_iput(BTRFS_I(di_inode));
6356 			continue;
6357 		}
6358 
6359 		if (btrfs_stack_dir_ftype(dir_item) == BTRFS_FT_DIR)
6360 			log_mode = LOG_INODE_ALL;
6361 
6362 		ctx->log_new_dentries = false;
6363 		ret = btrfs_log_inode(trans, BTRFS_I(di_inode), log_mode, ctx);
6364 
6365 		if (!ret && ctx->log_new_dentries)
6366 			ret = log_new_dir_dentries(trans, BTRFS_I(di_inode), ctx);
6367 
6368 		btrfs_add_delayed_iput(BTRFS_I(di_inode));
6369 
6370 		if (ret)
6371 			break;
6372 	}
6373 
6374 	ctx->log_new_dentries = orig_log_new_dentries;
6375 	ctx->logging_new_delayed_dentries = false;
6376 
6377 	return ret;
6378 }
6379 
6380 /* log a single inode in the tree log.
6381  * At least one parent directory for this inode must exist in the tree
6382  * or be logged already.
6383  *
6384  * Any items from this inode changed by the current transaction are copied
6385  * to the log tree.  An extra reference is taken on any extents in this
6386  * file, allowing us to avoid a whole pile of corner cases around logging
6387  * blocks that have been removed from the tree.
6388  *
6389  * See LOG_INODE_ALL and related defines for a description of what inode_only
6390  * does.
6391  *
6392  * This handles both files and directories.
6393  */
6394 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
6395 			   struct btrfs_inode *inode,
6396 			   int inode_only,
6397 			   struct btrfs_log_ctx *ctx)
6398 {
6399 	struct btrfs_path *path;
6400 	struct btrfs_path *dst_path;
6401 	struct btrfs_key min_key;
6402 	struct btrfs_key max_key;
6403 	struct btrfs_root *log = inode->root->log_root;
6404 	int ret;
6405 	bool fast_search = false;
6406 	u64 ino = btrfs_ino(inode);
6407 	struct extent_map_tree *em_tree = &inode->extent_tree;
6408 	u64 logged_isize = 0;
6409 	bool need_log_inode_item = true;
6410 	bool xattrs_logged = false;
6411 	bool inode_item_dropped = true;
6412 	bool full_dir_logging = false;
6413 	LIST_HEAD(delayed_ins_list);
6414 	LIST_HEAD(delayed_del_list);
6415 
6416 	path = btrfs_alloc_path();
6417 	if (!path)
6418 		return -ENOMEM;
6419 	dst_path = btrfs_alloc_path();
6420 	if (!dst_path) {
6421 		btrfs_free_path(path);
6422 		return -ENOMEM;
6423 	}
6424 
6425 	min_key.objectid = ino;
6426 	min_key.type = BTRFS_INODE_ITEM_KEY;
6427 	min_key.offset = 0;
6428 
6429 	max_key.objectid = ino;
6430 
6431 
6432 	/* today the code can only do partial logging of directories */
6433 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
6434 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6435 		       &inode->runtime_flags) &&
6436 	     inode_only >= LOG_INODE_EXISTS))
6437 		max_key.type = BTRFS_XATTR_ITEM_KEY;
6438 	else
6439 		max_key.type = (u8)-1;
6440 	max_key.offset = (u64)-1;
6441 
6442 	if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL)
6443 		full_dir_logging = true;
6444 
6445 	/*
6446 	 * If we are logging a directory while we are logging dentries of the
6447 	 * delayed items of some other inode, then we need to flush the delayed
6448 	 * items of this directory and not log the delayed items directly. This
6449 	 * is to prevent more than one level of recursion into btrfs_log_inode()
6450 	 * by having something like this:
6451 	 *
6452 	 *     $ mkdir -p a/b/c/d/e/f/g/h/...
6453 	 *     $ xfs_io -c "fsync" a
6454 	 *
6455 	 * Where all directories in the path did not exist before and are
6456 	 * created in the current transaction.
6457 	 * So in such a case we directly log the delayed items of the main
6458 	 * directory ("a") without flushing them first, while for each of its
6459 	 * subdirectories we flush their delayed items before logging them.
6460 	 * This prevents a potential unbounded recursion like this:
6461 	 *
6462 	 * btrfs_log_inode()
6463 	 *   log_new_delayed_dentries()
6464 	 *      btrfs_log_inode()
6465 	 *        log_new_delayed_dentries()
6466 	 *          btrfs_log_inode()
6467 	 *            log_new_delayed_dentries()
6468 	 *              (...)
6469 	 *
6470 	 * We have thresholds for the maximum number of delayed items to have in
6471 	 * memory, and once they are hit, the items are flushed asynchronously.
6472 	 * However the limit is quite high, so lets prevent deep levels of
6473 	 * recursion to happen by limiting the maximum depth to be 1.
6474 	 */
6475 	if (full_dir_logging && ctx->logging_new_delayed_dentries) {
6476 		ret = btrfs_commit_inode_delayed_items(trans, inode);
6477 		if (ret)
6478 			goto out;
6479 	}
6480 
6481 	mutex_lock(&inode->log_mutex);
6482 
6483 	/*
6484 	 * For symlinks, we must always log their content, which is stored in an
6485 	 * inline extent, otherwise we could end up with an empty symlink after
6486 	 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if
6487 	 * one attempts to create an empty symlink).
6488 	 * We don't need to worry about flushing delalloc, because when we create
6489 	 * the inline extent when the symlink is created (we never have delalloc
6490 	 * for symlinks).
6491 	 */
6492 	if (S_ISLNK(inode->vfs_inode.i_mode))
6493 		inode_only = LOG_INODE_ALL;
6494 
6495 	/*
6496 	 * Before logging the inode item, cache the value returned by
6497 	 * inode_logged(), because after that we have the need to figure out if
6498 	 * the inode was previously logged in this transaction.
6499 	 */
6500 	ret = inode_logged(trans, inode, path);
6501 	if (ret < 0)
6502 		goto out_unlock;
6503 	ctx->logged_before = (ret == 1);
6504 	ret = 0;
6505 
6506 	/*
6507 	 * This is for cases where logging a directory could result in losing a
6508 	 * a file after replaying the log. For example, if we move a file from a
6509 	 * directory A to a directory B, then fsync directory A, we have no way
6510 	 * to known the file was moved from A to B, so logging just A would
6511 	 * result in losing the file after a log replay.
6512 	 */
6513 	if (full_dir_logging && inode->last_unlink_trans >= trans->transid) {
6514 		ret = BTRFS_LOG_FORCE_COMMIT;
6515 		goto out_unlock;
6516 	}
6517 
6518 	/*
6519 	 * a brute force approach to making sure we get the most uptodate
6520 	 * copies of everything.
6521 	 */
6522 	if (S_ISDIR(inode->vfs_inode.i_mode)) {
6523 		clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
6524 		if (ctx->logged_before)
6525 			ret = drop_inode_items(trans, log, path, inode,
6526 					       BTRFS_XATTR_ITEM_KEY);
6527 	} else {
6528 		if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) {
6529 			/*
6530 			 * Make sure the new inode item we write to the log has
6531 			 * the same isize as the current one (if it exists).
6532 			 * This is necessary to prevent data loss after log
6533 			 * replay, and also to prevent doing a wrong expanding
6534 			 * truncate - for e.g. create file, write 4K into offset
6535 			 * 0, fsync, write 4K into offset 4096, add hard link,
6536 			 * fsync some other file (to sync log), power fail - if
6537 			 * we use the inode's current i_size, after log replay
6538 			 * we get a 8Kb file, with the last 4Kb extent as a hole
6539 			 * (zeroes), as if an expanding truncate happened,
6540 			 * instead of getting a file of 4Kb only.
6541 			 */
6542 			ret = logged_inode_size(log, inode, path, &logged_isize);
6543 			if (ret)
6544 				goto out_unlock;
6545 		}
6546 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6547 			     &inode->runtime_flags)) {
6548 			if (inode_only == LOG_INODE_EXISTS) {
6549 				max_key.type = BTRFS_XATTR_ITEM_KEY;
6550 				if (ctx->logged_before)
6551 					ret = drop_inode_items(trans, log, path,
6552 							       inode, max_key.type);
6553 			} else {
6554 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6555 					  &inode->runtime_flags);
6556 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6557 					  &inode->runtime_flags);
6558 				if (ctx->logged_before)
6559 					ret = truncate_inode_items(trans, log,
6560 								   inode, 0, 0);
6561 			}
6562 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6563 					      &inode->runtime_flags) ||
6564 			   inode_only == LOG_INODE_EXISTS) {
6565 			if (inode_only == LOG_INODE_ALL)
6566 				fast_search = true;
6567 			max_key.type = BTRFS_XATTR_ITEM_KEY;
6568 			if (ctx->logged_before)
6569 				ret = drop_inode_items(trans, log, path, inode,
6570 						       max_key.type);
6571 		} else {
6572 			if (inode_only == LOG_INODE_ALL)
6573 				fast_search = true;
6574 			inode_item_dropped = false;
6575 			goto log_extents;
6576 		}
6577 
6578 	}
6579 	if (ret)
6580 		goto out_unlock;
6581 
6582 	/*
6583 	 * If we are logging a directory in full mode, collect the delayed items
6584 	 * before iterating the subvolume tree, so that we don't miss any new
6585 	 * dir index items in case they get flushed while or right after we are
6586 	 * iterating the subvolume tree.
6587 	 */
6588 	if (full_dir_logging && !ctx->logging_new_delayed_dentries)
6589 		btrfs_log_get_delayed_items(inode, &delayed_ins_list,
6590 					    &delayed_del_list);
6591 
6592 	ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
6593 				      path, dst_path, logged_isize,
6594 				      inode_only, ctx,
6595 				      &need_log_inode_item);
6596 	if (ret)
6597 		goto out_unlock;
6598 
6599 	btrfs_release_path(path);
6600 	btrfs_release_path(dst_path);
6601 	ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx);
6602 	if (ret)
6603 		goto out_unlock;
6604 	xattrs_logged = true;
6605 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
6606 		btrfs_release_path(path);
6607 		btrfs_release_path(dst_path);
6608 		ret = btrfs_log_holes(trans, inode, path);
6609 		if (ret)
6610 			goto out_unlock;
6611 	}
6612 log_extents:
6613 	btrfs_release_path(path);
6614 	btrfs_release_path(dst_path);
6615 	if (need_log_inode_item) {
6616 		ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
6617 		if (ret)
6618 			goto out_unlock;
6619 		/*
6620 		 * If we are doing a fast fsync and the inode was logged before
6621 		 * in this transaction, we don't need to log the xattrs because
6622 		 * they were logged before. If xattrs were added, changed or
6623 		 * deleted since the last time we logged the inode, then we have
6624 		 * already logged them because the inode had the runtime flag
6625 		 * BTRFS_INODE_COPY_EVERYTHING set.
6626 		 */
6627 		if (!xattrs_logged && inode->logged_trans < trans->transid) {
6628 			ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx);
6629 			if (ret)
6630 				goto out_unlock;
6631 			btrfs_release_path(path);
6632 		}
6633 	}
6634 	if (fast_search) {
6635 		ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx);
6636 		if (ret)
6637 			goto out_unlock;
6638 	} else if (inode_only == LOG_INODE_ALL) {
6639 		struct extent_map *em, *n;
6640 
6641 		write_lock(&em_tree->lock);
6642 		list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
6643 			list_del_init(&em->list);
6644 		write_unlock(&em_tree->lock);
6645 	}
6646 
6647 	if (full_dir_logging) {
6648 		ret = log_directory_changes(trans, inode, path, dst_path, ctx);
6649 		if (ret)
6650 			goto out_unlock;
6651 		ret = log_delayed_insertion_items(trans, inode, path,
6652 						  &delayed_ins_list, ctx);
6653 		if (ret)
6654 			goto out_unlock;
6655 		ret = log_delayed_deletion_items(trans, inode, path,
6656 						 &delayed_del_list, ctx);
6657 		if (ret)
6658 			goto out_unlock;
6659 	}
6660 
6661 	spin_lock(&inode->lock);
6662 	inode->logged_trans = trans->transid;
6663 	/*
6664 	 * Don't update last_log_commit if we logged that an inode exists.
6665 	 * We do this for three reasons:
6666 	 *
6667 	 * 1) We might have had buffered writes to this inode that were
6668 	 *    flushed and had their ordered extents completed in this
6669 	 *    transaction, but we did not previously log the inode with
6670 	 *    LOG_INODE_ALL. Later the inode was evicted and after that
6671 	 *    it was loaded again and this LOG_INODE_EXISTS log operation
6672 	 *    happened. We must make sure that if an explicit fsync against
6673 	 *    the inode is performed later, it logs the new extents, an
6674 	 *    updated inode item, etc, and syncs the log. The same logic
6675 	 *    applies to direct IO writes instead of buffered writes.
6676 	 *
6677 	 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
6678 	 *    is logged with an i_size of 0 or whatever value was logged
6679 	 *    before. If later the i_size of the inode is increased by a
6680 	 *    truncate operation, the log is synced through an fsync of
6681 	 *    some other inode and then finally an explicit fsync against
6682 	 *    this inode is made, we must make sure this fsync logs the
6683 	 *    inode with the new i_size, the hole between old i_size and
6684 	 *    the new i_size, and syncs the log.
6685 	 *
6686 	 * 3) If we are logging that an ancestor inode exists as part of
6687 	 *    logging a new name from a link or rename operation, don't update
6688 	 *    its last_log_commit - otherwise if an explicit fsync is made
6689 	 *    against an ancestor, the fsync considers the inode in the log
6690 	 *    and doesn't sync the log, resulting in the ancestor missing after
6691 	 *    a power failure unless the log was synced as part of an fsync
6692 	 *    against any other unrelated inode.
6693 	 */
6694 	if (inode_only != LOG_INODE_EXISTS)
6695 		inode->last_log_commit = inode->last_sub_trans;
6696 	spin_unlock(&inode->lock);
6697 
6698 	/*
6699 	 * Reset the last_reflink_trans so that the next fsync does not need to
6700 	 * go through the slower path when logging extents and their checksums.
6701 	 */
6702 	if (inode_only == LOG_INODE_ALL)
6703 		inode->last_reflink_trans = 0;
6704 
6705 out_unlock:
6706 	mutex_unlock(&inode->log_mutex);
6707 out:
6708 	btrfs_free_path(path);
6709 	btrfs_free_path(dst_path);
6710 
6711 	if (ret)
6712 		free_conflicting_inodes(ctx);
6713 	else
6714 		ret = log_conflicting_inodes(trans, inode->root, ctx);
6715 
6716 	if (full_dir_logging && !ctx->logging_new_delayed_dentries) {
6717 		if (!ret)
6718 			ret = log_new_delayed_dentries(trans, inode,
6719 						       &delayed_ins_list, ctx);
6720 
6721 		btrfs_log_put_delayed_items(inode, &delayed_ins_list,
6722 					    &delayed_del_list);
6723 	}
6724 
6725 	return ret;
6726 }
6727 
6728 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
6729 				 struct btrfs_inode *inode,
6730 				 struct btrfs_log_ctx *ctx)
6731 {
6732 	struct btrfs_fs_info *fs_info = trans->fs_info;
6733 	int ret;
6734 	struct btrfs_path *path;
6735 	struct btrfs_key key;
6736 	struct btrfs_root *root = inode->root;
6737 	const u64 ino = btrfs_ino(inode);
6738 
6739 	path = btrfs_alloc_path();
6740 	if (!path)
6741 		return -ENOMEM;
6742 	path->skip_locking = 1;
6743 	path->search_commit_root = 1;
6744 
6745 	key.objectid = ino;
6746 	key.type = BTRFS_INODE_REF_KEY;
6747 	key.offset = 0;
6748 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6749 	if (ret < 0)
6750 		goto out;
6751 
6752 	while (true) {
6753 		struct extent_buffer *leaf = path->nodes[0];
6754 		int slot = path->slots[0];
6755 		u32 cur_offset = 0;
6756 		u32 item_size;
6757 		unsigned long ptr;
6758 
6759 		if (slot >= btrfs_header_nritems(leaf)) {
6760 			ret = btrfs_next_leaf(root, path);
6761 			if (ret < 0)
6762 				goto out;
6763 			else if (ret > 0)
6764 				break;
6765 			continue;
6766 		}
6767 
6768 		btrfs_item_key_to_cpu(leaf, &key, slot);
6769 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
6770 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
6771 			break;
6772 
6773 		item_size = btrfs_item_size(leaf, slot);
6774 		ptr = btrfs_item_ptr_offset(leaf, slot);
6775 		while (cur_offset < item_size) {
6776 			struct btrfs_key inode_key;
6777 			struct inode *dir_inode;
6778 
6779 			inode_key.type = BTRFS_INODE_ITEM_KEY;
6780 			inode_key.offset = 0;
6781 
6782 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
6783 				struct btrfs_inode_extref *extref;
6784 
6785 				extref = (struct btrfs_inode_extref *)
6786 					(ptr + cur_offset);
6787 				inode_key.objectid = btrfs_inode_extref_parent(
6788 					leaf, extref);
6789 				cur_offset += sizeof(*extref);
6790 				cur_offset += btrfs_inode_extref_name_len(leaf,
6791 					extref);
6792 			} else {
6793 				inode_key.objectid = key.offset;
6794 				cur_offset = item_size;
6795 			}
6796 
6797 			dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
6798 					       root);
6799 			/*
6800 			 * If the parent inode was deleted, return an error to
6801 			 * fallback to a transaction commit. This is to prevent
6802 			 * getting an inode that was moved from one parent A to
6803 			 * a parent B, got its former parent A deleted and then
6804 			 * it got fsync'ed, from existing at both parents after
6805 			 * a log replay (and the old parent still existing).
6806 			 * Example:
6807 			 *
6808 			 * mkdir /mnt/A
6809 			 * mkdir /mnt/B
6810 			 * touch /mnt/B/bar
6811 			 * sync
6812 			 * mv /mnt/B/bar /mnt/A/bar
6813 			 * mv -T /mnt/A /mnt/B
6814 			 * fsync /mnt/B/bar
6815 			 * <power fail>
6816 			 *
6817 			 * If we ignore the old parent B which got deleted,
6818 			 * after a log replay we would have file bar linked
6819 			 * at both parents and the old parent B would still
6820 			 * exist.
6821 			 */
6822 			if (IS_ERR(dir_inode)) {
6823 				ret = PTR_ERR(dir_inode);
6824 				goto out;
6825 			}
6826 
6827 			if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
6828 				btrfs_add_delayed_iput(BTRFS_I(dir_inode));
6829 				continue;
6830 			}
6831 
6832 			ctx->log_new_dentries = false;
6833 			ret = btrfs_log_inode(trans, BTRFS_I(dir_inode),
6834 					      LOG_INODE_ALL, ctx);
6835 			if (!ret && ctx->log_new_dentries)
6836 				ret = log_new_dir_dentries(trans,
6837 						   BTRFS_I(dir_inode), ctx);
6838 			btrfs_add_delayed_iput(BTRFS_I(dir_inode));
6839 			if (ret)
6840 				goto out;
6841 		}
6842 		path->slots[0]++;
6843 	}
6844 	ret = 0;
6845 out:
6846 	btrfs_free_path(path);
6847 	return ret;
6848 }
6849 
6850 static int log_new_ancestors(struct btrfs_trans_handle *trans,
6851 			     struct btrfs_root *root,
6852 			     struct btrfs_path *path,
6853 			     struct btrfs_log_ctx *ctx)
6854 {
6855 	struct btrfs_key found_key;
6856 
6857 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
6858 
6859 	while (true) {
6860 		struct btrfs_fs_info *fs_info = root->fs_info;
6861 		struct extent_buffer *leaf;
6862 		int slot;
6863 		struct btrfs_key search_key;
6864 		struct inode *inode;
6865 		u64 ino;
6866 		int ret = 0;
6867 
6868 		btrfs_release_path(path);
6869 
6870 		ino = found_key.offset;
6871 
6872 		search_key.objectid = found_key.offset;
6873 		search_key.type = BTRFS_INODE_ITEM_KEY;
6874 		search_key.offset = 0;
6875 		inode = btrfs_iget(fs_info->sb, ino, root);
6876 		if (IS_ERR(inode))
6877 			return PTR_ERR(inode);
6878 
6879 		if (BTRFS_I(inode)->generation >= trans->transid &&
6880 		    need_log_inode(trans, BTRFS_I(inode)))
6881 			ret = btrfs_log_inode(trans, BTRFS_I(inode),
6882 					      LOG_INODE_EXISTS, ctx);
6883 		btrfs_add_delayed_iput(BTRFS_I(inode));
6884 		if (ret)
6885 			return ret;
6886 
6887 		if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
6888 			break;
6889 
6890 		search_key.type = BTRFS_INODE_REF_KEY;
6891 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6892 		if (ret < 0)
6893 			return ret;
6894 
6895 		leaf = path->nodes[0];
6896 		slot = path->slots[0];
6897 		if (slot >= btrfs_header_nritems(leaf)) {
6898 			ret = btrfs_next_leaf(root, path);
6899 			if (ret < 0)
6900 				return ret;
6901 			else if (ret > 0)
6902 				return -ENOENT;
6903 			leaf = path->nodes[0];
6904 			slot = path->slots[0];
6905 		}
6906 
6907 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6908 		if (found_key.objectid != search_key.objectid ||
6909 		    found_key.type != BTRFS_INODE_REF_KEY)
6910 			return -ENOENT;
6911 	}
6912 	return 0;
6913 }
6914 
6915 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6916 				  struct btrfs_inode *inode,
6917 				  struct dentry *parent,
6918 				  struct btrfs_log_ctx *ctx)
6919 {
6920 	struct btrfs_root *root = inode->root;
6921 	struct dentry *old_parent = NULL;
6922 	struct super_block *sb = inode->vfs_inode.i_sb;
6923 	int ret = 0;
6924 
6925 	while (true) {
6926 		if (!parent || d_really_is_negative(parent) ||
6927 		    sb != parent->d_sb)
6928 			break;
6929 
6930 		inode = BTRFS_I(d_inode(parent));
6931 		if (root != inode->root)
6932 			break;
6933 
6934 		if (inode->generation >= trans->transid &&
6935 		    need_log_inode(trans, inode)) {
6936 			ret = btrfs_log_inode(trans, inode,
6937 					      LOG_INODE_EXISTS, ctx);
6938 			if (ret)
6939 				break;
6940 		}
6941 		if (IS_ROOT(parent))
6942 			break;
6943 
6944 		parent = dget_parent(parent);
6945 		dput(old_parent);
6946 		old_parent = parent;
6947 	}
6948 	dput(old_parent);
6949 
6950 	return ret;
6951 }
6952 
6953 static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6954 				 struct btrfs_inode *inode,
6955 				 struct dentry *parent,
6956 				 struct btrfs_log_ctx *ctx)
6957 {
6958 	struct btrfs_root *root = inode->root;
6959 	const u64 ino = btrfs_ino(inode);
6960 	struct btrfs_path *path;
6961 	struct btrfs_key search_key;
6962 	int ret;
6963 
6964 	/*
6965 	 * For a single hard link case, go through a fast path that does not
6966 	 * need to iterate the fs/subvolume tree.
6967 	 */
6968 	if (inode->vfs_inode.i_nlink < 2)
6969 		return log_new_ancestors_fast(trans, inode, parent, ctx);
6970 
6971 	path = btrfs_alloc_path();
6972 	if (!path)
6973 		return -ENOMEM;
6974 
6975 	search_key.objectid = ino;
6976 	search_key.type = BTRFS_INODE_REF_KEY;
6977 	search_key.offset = 0;
6978 again:
6979 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6980 	if (ret < 0)
6981 		goto out;
6982 	if (ret == 0)
6983 		path->slots[0]++;
6984 
6985 	while (true) {
6986 		struct extent_buffer *leaf = path->nodes[0];
6987 		int slot = path->slots[0];
6988 		struct btrfs_key found_key;
6989 
6990 		if (slot >= btrfs_header_nritems(leaf)) {
6991 			ret = btrfs_next_leaf(root, path);
6992 			if (ret < 0)
6993 				goto out;
6994 			else if (ret > 0)
6995 				break;
6996 			continue;
6997 		}
6998 
6999 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7000 		if (found_key.objectid != ino ||
7001 		    found_key.type > BTRFS_INODE_EXTREF_KEY)
7002 			break;
7003 
7004 		/*
7005 		 * Don't deal with extended references because they are rare
7006 		 * cases and too complex to deal with (we would need to keep
7007 		 * track of which subitem we are processing for each item in
7008 		 * this loop, etc). So just return some error to fallback to
7009 		 * a transaction commit.
7010 		 */
7011 		if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
7012 			ret = -EMLINK;
7013 			goto out;
7014 		}
7015 
7016 		/*
7017 		 * Logging ancestors needs to do more searches on the fs/subvol
7018 		 * tree, so it releases the path as needed to avoid deadlocks.
7019 		 * Keep track of the last inode ref key and resume from that key
7020 		 * after logging all new ancestors for the current hard link.
7021 		 */
7022 		memcpy(&search_key, &found_key, sizeof(search_key));
7023 
7024 		ret = log_new_ancestors(trans, root, path, ctx);
7025 		if (ret)
7026 			goto out;
7027 		btrfs_release_path(path);
7028 		goto again;
7029 	}
7030 	ret = 0;
7031 out:
7032 	btrfs_free_path(path);
7033 	return ret;
7034 }
7035 
7036 /*
7037  * helper function around btrfs_log_inode to make sure newly created
7038  * parent directories also end up in the log.  A minimal inode and backref
7039  * only logging is done of any parent directories that are older than
7040  * the last committed transaction
7041  */
7042 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
7043 				  struct btrfs_inode *inode,
7044 				  struct dentry *parent,
7045 				  int inode_only,
7046 				  struct btrfs_log_ctx *ctx)
7047 {
7048 	struct btrfs_root *root = inode->root;
7049 	struct btrfs_fs_info *fs_info = root->fs_info;
7050 	int ret = 0;
7051 	bool log_dentries = false;
7052 
7053 	if (btrfs_test_opt(fs_info, NOTREELOG)) {
7054 		ret = BTRFS_LOG_FORCE_COMMIT;
7055 		goto end_no_trans;
7056 	}
7057 
7058 	if (btrfs_root_refs(&root->root_item) == 0) {
7059 		ret = BTRFS_LOG_FORCE_COMMIT;
7060 		goto end_no_trans;
7061 	}
7062 
7063 	/*
7064 	 * Skip already logged inodes or inodes corresponding to tmpfiles
7065 	 * (since logging them is pointless, a link count of 0 means they
7066 	 * will never be accessible).
7067 	 */
7068 	if ((btrfs_inode_in_log(inode, trans->transid) &&
7069 	     list_empty(&ctx->ordered_extents)) ||
7070 	    inode->vfs_inode.i_nlink == 0) {
7071 		ret = BTRFS_NO_LOG_SYNC;
7072 		goto end_no_trans;
7073 	}
7074 
7075 	ret = start_log_trans(trans, root, ctx);
7076 	if (ret)
7077 		goto end_no_trans;
7078 
7079 	ret = btrfs_log_inode(trans, inode, inode_only, ctx);
7080 	if (ret)
7081 		goto end_trans;
7082 
7083 	/*
7084 	 * for regular files, if its inode is already on disk, we don't
7085 	 * have to worry about the parents at all.  This is because
7086 	 * we can use the last_unlink_trans field to record renames
7087 	 * and other fun in this file.
7088 	 */
7089 	if (S_ISREG(inode->vfs_inode.i_mode) &&
7090 	    inode->generation < trans->transid &&
7091 	    inode->last_unlink_trans < trans->transid) {
7092 		ret = 0;
7093 		goto end_trans;
7094 	}
7095 
7096 	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries)
7097 		log_dentries = true;
7098 
7099 	/*
7100 	 * On unlink we must make sure all our current and old parent directory
7101 	 * inodes are fully logged. This is to prevent leaving dangling
7102 	 * directory index entries in directories that were our parents but are
7103 	 * not anymore. Not doing this results in old parent directory being
7104 	 * impossible to delete after log replay (rmdir will always fail with
7105 	 * error -ENOTEMPTY).
7106 	 *
7107 	 * Example 1:
7108 	 *
7109 	 * mkdir testdir
7110 	 * touch testdir/foo
7111 	 * ln testdir/foo testdir/bar
7112 	 * sync
7113 	 * unlink testdir/bar
7114 	 * xfs_io -c fsync testdir/foo
7115 	 * <power failure>
7116 	 * mount fs, triggers log replay
7117 	 *
7118 	 * If we don't log the parent directory (testdir), after log replay the
7119 	 * directory still has an entry pointing to the file inode using the bar
7120 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
7121 	 * the file inode has a link count of 1.
7122 	 *
7123 	 * Example 2:
7124 	 *
7125 	 * mkdir testdir
7126 	 * touch foo
7127 	 * ln foo testdir/foo2
7128 	 * ln foo testdir/foo3
7129 	 * sync
7130 	 * unlink testdir/foo3
7131 	 * xfs_io -c fsync foo
7132 	 * <power failure>
7133 	 * mount fs, triggers log replay
7134 	 *
7135 	 * Similar as the first example, after log replay the parent directory
7136 	 * testdir still has an entry pointing to the inode file with name foo3
7137 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
7138 	 * and has a link count of 2.
7139 	 */
7140 	if (inode->last_unlink_trans >= trans->transid) {
7141 		ret = btrfs_log_all_parents(trans, inode, ctx);
7142 		if (ret)
7143 			goto end_trans;
7144 	}
7145 
7146 	ret = log_all_new_ancestors(trans, inode, parent, ctx);
7147 	if (ret)
7148 		goto end_trans;
7149 
7150 	if (log_dentries)
7151 		ret = log_new_dir_dentries(trans, inode, ctx);
7152 	else
7153 		ret = 0;
7154 end_trans:
7155 	if (ret < 0) {
7156 		btrfs_set_log_full_commit(trans);
7157 		ret = BTRFS_LOG_FORCE_COMMIT;
7158 	}
7159 
7160 	if (ret)
7161 		btrfs_remove_log_ctx(root, ctx);
7162 	btrfs_end_log_trans(root);
7163 end_no_trans:
7164 	return ret;
7165 }
7166 
7167 /*
7168  * it is not safe to log dentry if the chunk root has added new
7169  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
7170  * If this returns 1, you must commit the transaction to safely get your
7171  * data on disk.
7172  */
7173 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
7174 			  struct dentry *dentry,
7175 			  struct btrfs_log_ctx *ctx)
7176 {
7177 	struct dentry *parent = dget_parent(dentry);
7178 	int ret;
7179 
7180 	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
7181 				     LOG_INODE_ALL, ctx);
7182 	dput(parent);
7183 
7184 	return ret;
7185 }
7186 
7187 /*
7188  * should be called during mount to recover any replay any log trees
7189  * from the FS
7190  */
7191 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
7192 {
7193 	int ret;
7194 	struct btrfs_path *path;
7195 	struct btrfs_trans_handle *trans;
7196 	struct btrfs_key key;
7197 	struct btrfs_key found_key;
7198 	struct btrfs_root *log;
7199 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
7200 	struct walk_control wc = {
7201 		.process_func = process_one_buffer,
7202 		.stage = LOG_WALK_PIN_ONLY,
7203 	};
7204 
7205 	path = btrfs_alloc_path();
7206 	if (!path)
7207 		return -ENOMEM;
7208 
7209 	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7210 
7211 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
7212 	if (IS_ERR(trans)) {
7213 		ret = PTR_ERR(trans);
7214 		goto error;
7215 	}
7216 
7217 	wc.trans = trans;
7218 	wc.pin = 1;
7219 
7220 	ret = walk_log_tree(trans, log_root_tree, &wc);
7221 	if (ret) {
7222 		btrfs_abort_transaction(trans, ret);
7223 		goto error;
7224 	}
7225 
7226 again:
7227 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
7228 	key.offset = (u64)-1;
7229 	key.type = BTRFS_ROOT_ITEM_KEY;
7230 
7231 	while (1) {
7232 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
7233 
7234 		if (ret < 0) {
7235 			btrfs_abort_transaction(trans, ret);
7236 			goto error;
7237 		}
7238 		if (ret > 0) {
7239 			if (path->slots[0] == 0)
7240 				break;
7241 			path->slots[0]--;
7242 		}
7243 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
7244 				      path->slots[0]);
7245 		btrfs_release_path(path);
7246 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7247 			break;
7248 
7249 		log = btrfs_read_tree_root(log_root_tree, &found_key);
7250 		if (IS_ERR(log)) {
7251 			ret = PTR_ERR(log);
7252 			btrfs_abort_transaction(trans, ret);
7253 			goto error;
7254 		}
7255 
7256 		wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
7257 						   true);
7258 		if (IS_ERR(wc.replay_dest)) {
7259 			ret = PTR_ERR(wc.replay_dest);
7260 
7261 			/*
7262 			 * We didn't find the subvol, likely because it was
7263 			 * deleted.  This is ok, simply skip this log and go to
7264 			 * the next one.
7265 			 *
7266 			 * We need to exclude the root because we can't have
7267 			 * other log replays overwriting this log as we'll read
7268 			 * it back in a few more times.  This will keep our
7269 			 * block from being modified, and we'll just bail for
7270 			 * each subsequent pass.
7271 			 */
7272 			if (ret == -ENOENT)
7273 				ret = btrfs_pin_extent_for_log_replay(trans, log->node);
7274 			btrfs_put_root(log);
7275 
7276 			if (!ret)
7277 				goto next;
7278 			btrfs_abort_transaction(trans, ret);
7279 			goto error;
7280 		}
7281 
7282 		wc.replay_dest->log_root = log;
7283 		ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
7284 		if (ret)
7285 			/* The loop needs to continue due to the root refs */
7286 			btrfs_abort_transaction(trans, ret);
7287 		else
7288 			ret = walk_log_tree(trans, log, &wc);
7289 
7290 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7291 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
7292 						      path);
7293 			if (ret)
7294 				btrfs_abort_transaction(trans, ret);
7295 		}
7296 
7297 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7298 			struct btrfs_root *root = wc.replay_dest;
7299 
7300 			btrfs_release_path(path);
7301 
7302 			/*
7303 			 * We have just replayed everything, and the highest
7304 			 * objectid of fs roots probably has changed in case
7305 			 * some inode_item's got replayed.
7306 			 *
7307 			 * root->objectid_mutex is not acquired as log replay
7308 			 * could only happen during mount.
7309 			 */
7310 			ret = btrfs_init_root_free_objectid(root);
7311 			if (ret)
7312 				btrfs_abort_transaction(trans, ret);
7313 		}
7314 
7315 		wc.replay_dest->log_root = NULL;
7316 		btrfs_put_root(wc.replay_dest);
7317 		btrfs_put_root(log);
7318 
7319 		if (ret)
7320 			goto error;
7321 next:
7322 		if (found_key.offset == 0)
7323 			break;
7324 		key.offset = found_key.offset - 1;
7325 	}
7326 	btrfs_release_path(path);
7327 
7328 	/* step one is to pin it all, step two is to replay just inodes */
7329 	if (wc.pin) {
7330 		wc.pin = 0;
7331 		wc.process_func = replay_one_buffer;
7332 		wc.stage = LOG_WALK_REPLAY_INODES;
7333 		goto again;
7334 	}
7335 	/* step three is to replay everything */
7336 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
7337 		wc.stage++;
7338 		goto again;
7339 	}
7340 
7341 	btrfs_free_path(path);
7342 
7343 	/* step 4: commit the transaction, which also unpins the blocks */
7344 	ret = btrfs_commit_transaction(trans);
7345 	if (ret)
7346 		return ret;
7347 
7348 	log_root_tree->log_root = NULL;
7349 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7350 	btrfs_put_root(log_root_tree);
7351 
7352 	return 0;
7353 error:
7354 	if (wc.trans)
7355 		btrfs_end_transaction(wc.trans);
7356 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7357 	btrfs_free_path(path);
7358 	return ret;
7359 }
7360 
7361 /*
7362  * there are some corner cases where we want to force a full
7363  * commit instead of allowing a directory to be logged.
7364  *
7365  * They revolve around files there were unlinked from the directory, and
7366  * this function updates the parent directory so that a full commit is
7367  * properly done if it is fsync'd later after the unlinks are done.
7368  *
7369  * Must be called before the unlink operations (updates to the subvolume tree,
7370  * inodes, etc) are done.
7371  */
7372 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
7373 			     struct btrfs_inode *dir, struct btrfs_inode *inode,
7374 			     bool for_rename)
7375 {
7376 	/*
7377 	 * when we're logging a file, if it hasn't been renamed
7378 	 * or unlinked, and its inode is fully committed on disk,
7379 	 * we don't have to worry about walking up the directory chain
7380 	 * to log its parents.
7381 	 *
7382 	 * So, we use the last_unlink_trans field to put this transid
7383 	 * into the file.  When the file is logged we check it and
7384 	 * don't log the parents if the file is fully on disk.
7385 	 */
7386 	mutex_lock(&inode->log_mutex);
7387 	inode->last_unlink_trans = trans->transid;
7388 	mutex_unlock(&inode->log_mutex);
7389 
7390 	if (!for_rename)
7391 		return;
7392 
7393 	/*
7394 	 * If this directory was already logged, any new names will be logged
7395 	 * with btrfs_log_new_name() and old names will be deleted from the log
7396 	 * tree with btrfs_del_dir_entries_in_log() or with
7397 	 * btrfs_del_inode_ref_in_log().
7398 	 */
7399 	if (inode_logged(trans, dir, NULL) == 1)
7400 		return;
7401 
7402 	/*
7403 	 * If the inode we're about to unlink was logged before, the log will be
7404 	 * properly updated with the new name with btrfs_log_new_name() and the
7405 	 * old name removed with btrfs_del_dir_entries_in_log() or with
7406 	 * btrfs_del_inode_ref_in_log().
7407 	 */
7408 	if (inode_logged(trans, inode, NULL) == 1)
7409 		return;
7410 
7411 	/*
7412 	 * when renaming files across directories, if the directory
7413 	 * there we're unlinking from gets fsync'd later on, there's
7414 	 * no way to find the destination directory later and fsync it
7415 	 * properly.  So, we have to be conservative and force commits
7416 	 * so the new name gets discovered.
7417 	 */
7418 	mutex_lock(&dir->log_mutex);
7419 	dir->last_unlink_trans = trans->transid;
7420 	mutex_unlock(&dir->log_mutex);
7421 }
7422 
7423 /*
7424  * Make sure that if someone attempts to fsync the parent directory of a deleted
7425  * snapshot, it ends up triggering a transaction commit. This is to guarantee
7426  * that after replaying the log tree of the parent directory's root we will not
7427  * see the snapshot anymore and at log replay time we will not see any log tree
7428  * corresponding to the deleted snapshot's root, which could lead to replaying
7429  * it after replaying the log tree of the parent directory (which would replay
7430  * the snapshot delete operation).
7431  *
7432  * Must be called before the actual snapshot destroy operation (updates to the
7433  * parent root and tree of tree roots trees, etc) are done.
7434  */
7435 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
7436 				   struct btrfs_inode *dir)
7437 {
7438 	mutex_lock(&dir->log_mutex);
7439 	dir->last_unlink_trans = trans->transid;
7440 	mutex_unlock(&dir->log_mutex);
7441 }
7442 
7443 /*
7444  * Update the log after adding a new name for an inode.
7445  *
7446  * @trans:              Transaction handle.
7447  * @old_dentry:         The dentry associated with the old name and the old
7448  *                      parent directory.
7449  * @old_dir:            The inode of the previous parent directory for the case
7450  *                      of a rename. For a link operation, it must be NULL.
7451  * @old_dir_index:      The index number associated with the old name, meaningful
7452  *                      only for rename operations (when @old_dir is not NULL).
7453  *                      Ignored for link operations.
7454  * @parent:             The dentry associated with the directory under which the
7455  *                      new name is located.
7456  *
7457  * Call this after adding a new name for an inode, as a result of a link or
7458  * rename operation, and it will properly update the log to reflect the new name.
7459  */
7460 void btrfs_log_new_name(struct btrfs_trans_handle *trans,
7461 			struct dentry *old_dentry, struct btrfs_inode *old_dir,
7462 			u64 old_dir_index, struct dentry *parent)
7463 {
7464 	struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry));
7465 	struct btrfs_root *root = inode->root;
7466 	struct btrfs_log_ctx ctx;
7467 	bool log_pinned = false;
7468 	int ret;
7469 
7470 	/*
7471 	 * this will force the logging code to walk the dentry chain
7472 	 * up for the file
7473 	 */
7474 	if (!S_ISDIR(inode->vfs_inode.i_mode))
7475 		inode->last_unlink_trans = trans->transid;
7476 
7477 	/*
7478 	 * if this inode hasn't been logged and directory we're renaming it
7479 	 * from hasn't been logged, we don't need to log it
7480 	 */
7481 	ret = inode_logged(trans, inode, NULL);
7482 	if (ret < 0) {
7483 		goto out;
7484 	} else if (ret == 0) {
7485 		if (!old_dir)
7486 			return;
7487 		/*
7488 		 * If the inode was not logged and we are doing a rename (old_dir is not
7489 		 * NULL), check if old_dir was logged - if it was not we can return and
7490 		 * do nothing.
7491 		 */
7492 		ret = inode_logged(trans, old_dir, NULL);
7493 		if (ret < 0)
7494 			goto out;
7495 		else if (ret == 0)
7496 			return;
7497 	}
7498 	ret = 0;
7499 
7500 	/*
7501 	 * If we are doing a rename (old_dir is not NULL) from a directory that
7502 	 * was previously logged, make sure that on log replay we get the old
7503 	 * dir entry deleted. This is needed because we will also log the new
7504 	 * name of the renamed inode, so we need to make sure that after log
7505 	 * replay we don't end up with both the new and old dir entries existing.
7506 	 */
7507 	if (old_dir && old_dir->logged_trans == trans->transid) {
7508 		struct btrfs_root *log = old_dir->root->log_root;
7509 		struct btrfs_path *path;
7510 		struct fscrypt_name fname;
7511 
7512 		ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX);
7513 
7514 		ret = fscrypt_setup_filename(&old_dir->vfs_inode,
7515 					     &old_dentry->d_name, 0, &fname);
7516 		if (ret)
7517 			goto out;
7518 		/*
7519 		 * We have two inodes to update in the log, the old directory and
7520 		 * the inode that got renamed, so we must pin the log to prevent
7521 		 * anyone from syncing the log until we have updated both inodes
7522 		 * in the log.
7523 		 */
7524 		ret = join_running_log_trans(root);
7525 		/*
7526 		 * At least one of the inodes was logged before, so this should
7527 		 * not fail, but if it does, it's not serious, just bail out and
7528 		 * mark the log for a full commit.
7529 		 */
7530 		if (WARN_ON_ONCE(ret < 0)) {
7531 			fscrypt_free_filename(&fname);
7532 			goto out;
7533 		}
7534 
7535 		log_pinned = true;
7536 
7537 		path = btrfs_alloc_path();
7538 		if (!path) {
7539 			ret = -ENOMEM;
7540 			fscrypt_free_filename(&fname);
7541 			goto out;
7542 		}
7543 
7544 		/*
7545 		 * Other concurrent task might be logging the old directory,
7546 		 * as it can be triggered when logging other inode that had or
7547 		 * still has a dentry in the old directory. We lock the old
7548 		 * directory's log_mutex to ensure the deletion of the old
7549 		 * name is persisted, because during directory logging we
7550 		 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of
7551 		 * the old name's dir index item is in the delayed items, so
7552 		 * it could be missed by an in progress directory logging.
7553 		 */
7554 		mutex_lock(&old_dir->log_mutex);
7555 		ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir),
7556 					&fname.disk_name, old_dir_index);
7557 		if (ret > 0) {
7558 			/*
7559 			 * The dentry does not exist in the log, so record its
7560 			 * deletion.
7561 			 */
7562 			btrfs_release_path(path);
7563 			ret = insert_dir_log_key(trans, log, path,
7564 						 btrfs_ino(old_dir),
7565 						 old_dir_index, old_dir_index);
7566 		}
7567 		mutex_unlock(&old_dir->log_mutex);
7568 
7569 		btrfs_free_path(path);
7570 		fscrypt_free_filename(&fname);
7571 		if (ret < 0)
7572 			goto out;
7573 	}
7574 
7575 	btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
7576 	ctx.logging_new_name = true;
7577 	btrfs_init_log_ctx_scratch_eb(&ctx);
7578 	/*
7579 	 * We don't care about the return value. If we fail to log the new name
7580 	 * then we know the next attempt to sync the log will fallback to a full
7581 	 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
7582 	 * we don't need to worry about getting a log committed that has an
7583 	 * inconsistent state after a rename operation.
7584 	 */
7585 	btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
7586 	free_extent_buffer(ctx.scratch_eb);
7587 	ASSERT(list_empty(&ctx.conflict_inodes));
7588 out:
7589 	/*
7590 	 * If an error happened mark the log for a full commit because it's not
7591 	 * consistent and up to date or we couldn't find out if one of the
7592 	 * inodes was logged before in this transaction. Do it before unpinning
7593 	 * the log, to avoid any races with someone else trying to commit it.
7594 	 */
7595 	if (ret < 0)
7596 		btrfs_set_log_full_commit(trans);
7597 	if (log_pinned)
7598 		btrfs_end_log_trans(root);
7599 }
7600 
7601