xref: /linux/fs/btrfs/tree-log.c (revision 3e85fd614c7b6bb7f33bb04a0dcb5a3bfca4c0fe)
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include "ctree.h"
21 #include "transaction.h"
22 #include "disk-io.h"
23 #include "locking.h"
24 #include "print-tree.h"
25 #include "compat.h"
26 #include "tree-log.h"
27 
28 /* magic values for the inode_only field in btrfs_log_inode:
29  *
30  * LOG_INODE_ALL means to log everything
31  * LOG_INODE_EXISTS means to log just enough to recreate the inode
32  * during log replay
33  */
34 #define LOG_INODE_ALL 0
35 #define LOG_INODE_EXISTS 1
36 
37 /*
38  * directory trouble cases
39  *
40  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
41  * log, we must force a full commit before doing an fsync of the directory
42  * where the unlink was done.
43  * ---> record transid of last unlink/rename per directory
44  *
45  * mkdir foo/some_dir
46  * normal commit
47  * rename foo/some_dir foo2/some_dir
48  * mkdir foo/some_dir
49  * fsync foo/some_dir/some_file
50  *
51  * The fsync above will unlink the original some_dir without recording
52  * it in its new location (foo2).  After a crash, some_dir will be gone
53  * unless the fsync of some_file forces a full commit
54  *
55  * 2) we must log any new names for any file or dir that is in the fsync
56  * log. ---> check inode while renaming/linking.
57  *
58  * 2a) we must log any new names for any file or dir during rename
59  * when the directory they are being removed from was logged.
60  * ---> check inode and old parent dir during rename
61  *
62  *  2a is actually the more important variant.  With the extra logging
63  *  a crash might unlink the old name without recreating the new one
64  *
65  * 3) after a crash, we must go through any directories with a link count
66  * of zero and redo the rm -rf
67  *
68  * mkdir f1/foo
69  * normal commit
70  * rm -rf f1/foo
71  * fsync(f1)
72  *
73  * The directory f1 was fully removed from the FS, but fsync was never
74  * called on f1, only its parent dir.  After a crash the rm -rf must
75  * be replayed.  This must be able to recurse down the entire
76  * directory tree.  The inode link count fixup code takes care of the
77  * ugly details.
78  */
79 
80 /*
81  * stages for the tree walking.  The first
82  * stage (0) is to only pin down the blocks we find
83  * the second stage (1) is to make sure that all the inodes
84  * we find in the log are created in the subvolume.
85  *
86  * The last stage is to deal with directories and links and extents
87  * and all the other fun semantics
88  */
89 #define LOG_WALK_PIN_ONLY 0
90 #define LOG_WALK_REPLAY_INODES 1
91 #define LOG_WALK_REPLAY_ALL 2
92 
93 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
94 			     struct btrfs_root *root, struct inode *inode,
95 			     int inode_only);
96 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
97 			     struct btrfs_root *root,
98 			     struct btrfs_path *path, u64 objectid);
99 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
100 				       struct btrfs_root *root,
101 				       struct btrfs_root *log,
102 				       struct btrfs_path *path,
103 				       u64 dirid, int del_all);
104 
105 /*
106  * tree logging is a special write ahead log used to make sure that
107  * fsyncs and O_SYNCs can happen without doing full tree commits.
108  *
109  * Full tree commits are expensive because they require commonly
110  * modified blocks to be recowed, creating many dirty pages in the
111  * extent tree an 4x-6x higher write load than ext3.
112  *
113  * Instead of doing a tree commit on every fsync, we use the
114  * key ranges and transaction ids to find items for a given file or directory
115  * that have changed in this transaction.  Those items are copied into
116  * a special tree (one per subvolume root), that tree is written to disk
117  * and then the fsync is considered complete.
118  *
119  * After a crash, items are copied out of the log-tree back into the
120  * subvolume tree.  Any file data extents found are recorded in the extent
121  * allocation tree, and the log-tree freed.
122  *
123  * The log tree is read three times, once to pin down all the extents it is
124  * using in ram and once, once to create all the inodes logged in the tree
125  * and once to do all the other items.
126  */
127 
128 /*
129  * start a sub transaction and setup the log tree
130  * this increments the log tree writer count to make the people
131  * syncing the tree wait for us to finish
132  */
133 static int start_log_trans(struct btrfs_trans_handle *trans,
134 			   struct btrfs_root *root)
135 {
136 	int ret;
137 
138 	mutex_lock(&root->log_mutex);
139 	if (root->log_root) {
140 		if (!root->log_start_pid) {
141 			root->log_start_pid = current->pid;
142 			root->log_multiple_pids = false;
143 		} else if (root->log_start_pid != current->pid) {
144 			root->log_multiple_pids = true;
145 		}
146 
147 		root->log_batch++;
148 		atomic_inc(&root->log_writers);
149 		mutex_unlock(&root->log_mutex);
150 		return 0;
151 	}
152 	root->log_multiple_pids = false;
153 	root->log_start_pid = current->pid;
154 	mutex_lock(&root->fs_info->tree_log_mutex);
155 	if (!root->fs_info->log_root_tree) {
156 		ret = btrfs_init_log_root_tree(trans, root->fs_info);
157 		BUG_ON(ret);
158 	}
159 	if (!root->log_root) {
160 		ret = btrfs_add_log_tree(trans, root);
161 		BUG_ON(ret);
162 	}
163 	mutex_unlock(&root->fs_info->tree_log_mutex);
164 	root->log_batch++;
165 	atomic_inc(&root->log_writers);
166 	mutex_unlock(&root->log_mutex);
167 	return 0;
168 }
169 
170 /*
171  * returns 0 if there was a log transaction running and we were able
172  * to join, or returns -ENOENT if there were not transactions
173  * in progress
174  */
175 static int join_running_log_trans(struct btrfs_root *root)
176 {
177 	int ret = -ENOENT;
178 
179 	smp_mb();
180 	if (!root->log_root)
181 		return -ENOENT;
182 
183 	mutex_lock(&root->log_mutex);
184 	if (root->log_root) {
185 		ret = 0;
186 		atomic_inc(&root->log_writers);
187 	}
188 	mutex_unlock(&root->log_mutex);
189 	return ret;
190 }
191 
192 /*
193  * This either makes the current running log transaction wait
194  * until you call btrfs_end_log_trans() or it makes any future
195  * log transactions wait until you call btrfs_end_log_trans()
196  */
197 int btrfs_pin_log_trans(struct btrfs_root *root)
198 {
199 	int ret = -ENOENT;
200 
201 	mutex_lock(&root->log_mutex);
202 	atomic_inc(&root->log_writers);
203 	mutex_unlock(&root->log_mutex);
204 	return ret;
205 }
206 
207 /*
208  * indicate we're done making changes to the log tree
209  * and wake up anyone waiting to do a sync
210  */
211 int btrfs_end_log_trans(struct btrfs_root *root)
212 {
213 	if (atomic_dec_and_test(&root->log_writers)) {
214 		smp_mb();
215 		if (waitqueue_active(&root->log_writer_wait))
216 			wake_up(&root->log_writer_wait);
217 	}
218 	return 0;
219 }
220 
221 
222 /*
223  * the walk control struct is used to pass state down the chain when
224  * processing the log tree.  The stage field tells us which part
225  * of the log tree processing we are currently doing.  The others
226  * are state fields used for that specific part
227  */
228 struct walk_control {
229 	/* should we free the extent on disk when done?  This is used
230 	 * at transaction commit time while freeing a log tree
231 	 */
232 	int free;
233 
234 	/* should we write out the extent buffer?  This is used
235 	 * while flushing the log tree to disk during a sync
236 	 */
237 	int write;
238 
239 	/* should we wait for the extent buffer io to finish?  Also used
240 	 * while flushing the log tree to disk for a sync
241 	 */
242 	int wait;
243 
244 	/* pin only walk, we record which extents on disk belong to the
245 	 * log trees
246 	 */
247 	int pin;
248 
249 	/* what stage of the replay code we're currently in */
250 	int stage;
251 
252 	/* the root we are currently replaying */
253 	struct btrfs_root *replay_dest;
254 
255 	/* the trans handle for the current replay */
256 	struct btrfs_trans_handle *trans;
257 
258 	/* the function that gets used to process blocks we find in the
259 	 * tree.  Note the extent_buffer might not be up to date when it is
260 	 * passed in, and it must be checked or read if you need the data
261 	 * inside it
262 	 */
263 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
264 			    struct walk_control *wc, u64 gen);
265 };
266 
267 /*
268  * process_func used to pin down extents, write them or wait on them
269  */
270 static int process_one_buffer(struct btrfs_root *log,
271 			      struct extent_buffer *eb,
272 			      struct walk_control *wc, u64 gen)
273 {
274 	if (wc->pin)
275 		btrfs_pin_extent(log->fs_info->extent_root,
276 				 eb->start, eb->len, 0);
277 
278 	if (btrfs_buffer_uptodate(eb, gen)) {
279 		if (wc->write)
280 			btrfs_write_tree_block(eb);
281 		if (wc->wait)
282 			btrfs_wait_tree_block_writeback(eb);
283 	}
284 	return 0;
285 }
286 
287 /*
288  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
289  * to the src data we are copying out.
290  *
291  * root is the tree we are copying into, and path is a scratch
292  * path for use in this function (it should be released on entry and
293  * will be released on exit).
294  *
295  * If the key is already in the destination tree the existing item is
296  * overwritten.  If the existing item isn't big enough, it is extended.
297  * If it is too large, it is truncated.
298  *
299  * If the key isn't in the destination yet, a new item is inserted.
300  */
301 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
302 				   struct btrfs_root *root,
303 				   struct btrfs_path *path,
304 				   struct extent_buffer *eb, int slot,
305 				   struct btrfs_key *key)
306 {
307 	int ret;
308 	u32 item_size;
309 	u64 saved_i_size = 0;
310 	int save_old_i_size = 0;
311 	unsigned long src_ptr;
312 	unsigned long dst_ptr;
313 	int overwrite_root = 0;
314 
315 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
316 		overwrite_root = 1;
317 
318 	item_size = btrfs_item_size_nr(eb, slot);
319 	src_ptr = btrfs_item_ptr_offset(eb, slot);
320 
321 	/* look for the key in the destination tree */
322 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
323 	if (ret == 0) {
324 		char *src_copy;
325 		char *dst_copy;
326 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
327 						  path->slots[0]);
328 		if (dst_size != item_size)
329 			goto insert;
330 
331 		if (item_size == 0) {
332 			btrfs_release_path(root, path);
333 			return 0;
334 		}
335 		dst_copy = kmalloc(item_size, GFP_NOFS);
336 		src_copy = kmalloc(item_size, GFP_NOFS);
337 
338 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
339 
340 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
341 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
342 				   item_size);
343 		ret = memcmp(dst_copy, src_copy, item_size);
344 
345 		kfree(dst_copy);
346 		kfree(src_copy);
347 		/*
348 		 * they have the same contents, just return, this saves
349 		 * us from cowing blocks in the destination tree and doing
350 		 * extra writes that may not have been done by a previous
351 		 * sync
352 		 */
353 		if (ret == 0) {
354 			btrfs_release_path(root, path);
355 			return 0;
356 		}
357 
358 	}
359 insert:
360 	btrfs_release_path(root, path);
361 	/* try to insert the key into the destination tree */
362 	ret = btrfs_insert_empty_item(trans, root, path,
363 				      key, item_size);
364 
365 	/* make sure any existing item is the correct size */
366 	if (ret == -EEXIST) {
367 		u32 found_size;
368 		found_size = btrfs_item_size_nr(path->nodes[0],
369 						path->slots[0]);
370 		if (found_size > item_size) {
371 			btrfs_truncate_item(trans, root, path, item_size, 1);
372 		} else if (found_size < item_size) {
373 			ret = btrfs_extend_item(trans, root, path,
374 						item_size - found_size);
375 			BUG_ON(ret);
376 		}
377 	} else if (ret) {
378 		BUG();
379 	}
380 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
381 					path->slots[0]);
382 
383 	/* don't overwrite an existing inode if the generation number
384 	 * was logged as zero.  This is done when the tree logging code
385 	 * is just logging an inode to make sure it exists after recovery.
386 	 *
387 	 * Also, don't overwrite i_size on directories during replay.
388 	 * log replay inserts and removes directory items based on the
389 	 * state of the tree found in the subvolume, and i_size is modified
390 	 * as it goes
391 	 */
392 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
393 		struct btrfs_inode_item *src_item;
394 		struct btrfs_inode_item *dst_item;
395 
396 		src_item = (struct btrfs_inode_item *)src_ptr;
397 		dst_item = (struct btrfs_inode_item *)dst_ptr;
398 
399 		if (btrfs_inode_generation(eb, src_item) == 0)
400 			goto no_copy;
401 
402 		if (overwrite_root &&
403 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
404 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
405 			save_old_i_size = 1;
406 			saved_i_size = btrfs_inode_size(path->nodes[0],
407 							dst_item);
408 		}
409 	}
410 
411 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
412 			   src_ptr, item_size);
413 
414 	if (save_old_i_size) {
415 		struct btrfs_inode_item *dst_item;
416 		dst_item = (struct btrfs_inode_item *)dst_ptr;
417 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
418 	}
419 
420 	/* make sure the generation is filled in */
421 	if (key->type == BTRFS_INODE_ITEM_KEY) {
422 		struct btrfs_inode_item *dst_item;
423 		dst_item = (struct btrfs_inode_item *)dst_ptr;
424 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
425 			btrfs_set_inode_generation(path->nodes[0], dst_item,
426 						   trans->transid);
427 		}
428 	}
429 no_copy:
430 	btrfs_mark_buffer_dirty(path->nodes[0]);
431 	btrfs_release_path(root, path);
432 	return 0;
433 }
434 
435 /*
436  * simple helper to read an inode off the disk from a given root
437  * This can only be called for subvolume roots and not for the log
438  */
439 static noinline struct inode *read_one_inode(struct btrfs_root *root,
440 					     u64 objectid)
441 {
442 	struct btrfs_key key;
443 	struct inode *inode;
444 
445 	key.objectid = objectid;
446 	key.type = BTRFS_INODE_ITEM_KEY;
447 	key.offset = 0;
448 	inode = btrfs_iget(root->fs_info->sb, &key, root);
449 	if (IS_ERR(inode)) {
450 		inode = NULL;
451 	} else if (is_bad_inode(inode)) {
452 		iput(inode);
453 		inode = NULL;
454 	}
455 	return inode;
456 }
457 
458 /* replays a single extent in 'eb' at 'slot' with 'key' into the
459  * subvolume 'root'.  path is released on entry and should be released
460  * on exit.
461  *
462  * extents in the log tree have not been allocated out of the extent
463  * tree yet.  So, this completes the allocation, taking a reference
464  * as required if the extent already exists or creating a new extent
465  * if it isn't in the extent allocation tree yet.
466  *
467  * The extent is inserted into the file, dropping any existing extents
468  * from the file that overlap the new one.
469  */
470 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
471 				      struct btrfs_root *root,
472 				      struct btrfs_path *path,
473 				      struct extent_buffer *eb, int slot,
474 				      struct btrfs_key *key)
475 {
476 	int found_type;
477 	u64 mask = root->sectorsize - 1;
478 	u64 extent_end;
479 	u64 alloc_hint;
480 	u64 start = key->offset;
481 	u64 saved_nbytes;
482 	struct btrfs_file_extent_item *item;
483 	struct inode *inode = NULL;
484 	unsigned long size;
485 	int ret = 0;
486 
487 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
488 	found_type = btrfs_file_extent_type(eb, item);
489 
490 	if (found_type == BTRFS_FILE_EXTENT_REG ||
491 	    found_type == BTRFS_FILE_EXTENT_PREALLOC)
492 		extent_end = start + btrfs_file_extent_num_bytes(eb, item);
493 	else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
494 		size = btrfs_file_extent_inline_len(eb, item);
495 		extent_end = (start + size + mask) & ~mask;
496 	} else {
497 		ret = 0;
498 		goto out;
499 	}
500 
501 	inode = read_one_inode(root, key->objectid);
502 	if (!inode) {
503 		ret = -EIO;
504 		goto out;
505 	}
506 
507 	/*
508 	 * first check to see if we already have this extent in the
509 	 * file.  This must be done before the btrfs_drop_extents run
510 	 * so we don't try to drop this extent.
511 	 */
512 	ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
513 				       start, 0);
514 
515 	if (ret == 0 &&
516 	    (found_type == BTRFS_FILE_EXTENT_REG ||
517 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
518 		struct btrfs_file_extent_item cmp1;
519 		struct btrfs_file_extent_item cmp2;
520 		struct btrfs_file_extent_item *existing;
521 		struct extent_buffer *leaf;
522 
523 		leaf = path->nodes[0];
524 		existing = btrfs_item_ptr(leaf, path->slots[0],
525 					  struct btrfs_file_extent_item);
526 
527 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
528 				   sizeof(cmp1));
529 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
530 				   sizeof(cmp2));
531 
532 		/*
533 		 * we already have a pointer to this exact extent,
534 		 * we don't have to do anything
535 		 */
536 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
537 			btrfs_release_path(root, path);
538 			goto out;
539 		}
540 	}
541 	btrfs_release_path(root, path);
542 
543 	saved_nbytes = inode_get_bytes(inode);
544 	/* drop any overlapping extents */
545 	ret = btrfs_drop_extents(trans, root, inode,
546 			 start, extent_end, extent_end, start, &alloc_hint, 1);
547 	BUG_ON(ret);
548 
549 	if (found_type == BTRFS_FILE_EXTENT_REG ||
550 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
551 		u64 offset;
552 		unsigned long dest_offset;
553 		struct btrfs_key ins;
554 
555 		ret = btrfs_insert_empty_item(trans, root, path, key,
556 					      sizeof(*item));
557 		BUG_ON(ret);
558 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
559 						    path->slots[0]);
560 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
561 				(unsigned long)item,  sizeof(*item));
562 
563 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
564 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
565 		ins.type = BTRFS_EXTENT_ITEM_KEY;
566 		offset = key->offset - btrfs_file_extent_offset(eb, item);
567 
568 		if (ins.objectid > 0) {
569 			u64 csum_start;
570 			u64 csum_end;
571 			LIST_HEAD(ordered_sums);
572 			/*
573 			 * is this extent already allocated in the extent
574 			 * allocation tree?  If so, just add a reference
575 			 */
576 			ret = btrfs_lookup_extent(root, ins.objectid,
577 						ins.offset);
578 			if (ret == 0) {
579 				ret = btrfs_inc_extent_ref(trans, root,
580 						ins.objectid, ins.offset,
581 						0, root->root_key.objectid,
582 						key->objectid, offset);
583 			} else {
584 				/*
585 				 * insert the extent pointer in the extent
586 				 * allocation tree
587 				 */
588 				ret = btrfs_alloc_logged_file_extent(trans,
589 						root, root->root_key.objectid,
590 						key->objectid, offset, &ins);
591 				BUG_ON(ret);
592 			}
593 			btrfs_release_path(root, path);
594 
595 			if (btrfs_file_extent_compression(eb, item)) {
596 				csum_start = ins.objectid;
597 				csum_end = csum_start + ins.offset;
598 			} else {
599 				csum_start = ins.objectid +
600 					btrfs_file_extent_offset(eb, item);
601 				csum_end = csum_start +
602 					btrfs_file_extent_num_bytes(eb, item);
603 			}
604 
605 			ret = btrfs_lookup_csums_range(root->log_root,
606 						csum_start, csum_end - 1,
607 						&ordered_sums);
608 			BUG_ON(ret);
609 			while (!list_empty(&ordered_sums)) {
610 				struct btrfs_ordered_sum *sums;
611 				sums = list_entry(ordered_sums.next,
612 						struct btrfs_ordered_sum,
613 						list);
614 				ret = btrfs_csum_file_blocks(trans,
615 						root->fs_info->csum_root,
616 						sums);
617 				BUG_ON(ret);
618 				list_del(&sums->list);
619 				kfree(sums);
620 			}
621 		} else {
622 			btrfs_release_path(root, path);
623 		}
624 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
625 		/* inline extents are easy, we just overwrite them */
626 		ret = overwrite_item(trans, root, path, eb, slot, key);
627 		BUG_ON(ret);
628 	}
629 
630 	inode_set_bytes(inode, saved_nbytes);
631 	btrfs_update_inode(trans, root, inode);
632 out:
633 	if (inode)
634 		iput(inode);
635 	return ret;
636 }
637 
638 /*
639  * when cleaning up conflicts between the directory names in the
640  * subvolume, directory names in the log and directory names in the
641  * inode back references, we may have to unlink inodes from directories.
642  *
643  * This is a helper function to do the unlink of a specific directory
644  * item
645  */
646 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
647 				      struct btrfs_root *root,
648 				      struct btrfs_path *path,
649 				      struct inode *dir,
650 				      struct btrfs_dir_item *di)
651 {
652 	struct inode *inode;
653 	char *name;
654 	int name_len;
655 	struct extent_buffer *leaf;
656 	struct btrfs_key location;
657 	int ret;
658 
659 	leaf = path->nodes[0];
660 
661 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
662 	name_len = btrfs_dir_name_len(leaf, di);
663 	name = kmalloc(name_len, GFP_NOFS);
664 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
665 	btrfs_release_path(root, path);
666 
667 	inode = read_one_inode(root, location.objectid);
668 	BUG_ON(!inode);
669 
670 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
671 	BUG_ON(ret);
672 
673 	ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
674 	BUG_ON(ret);
675 	kfree(name);
676 
677 	iput(inode);
678 	return ret;
679 }
680 
681 /*
682  * helper function to see if a given name and sequence number found
683  * in an inode back reference are already in a directory and correctly
684  * point to this inode
685  */
686 static noinline int inode_in_dir(struct btrfs_root *root,
687 				 struct btrfs_path *path,
688 				 u64 dirid, u64 objectid, u64 index,
689 				 const char *name, int name_len)
690 {
691 	struct btrfs_dir_item *di;
692 	struct btrfs_key location;
693 	int match = 0;
694 
695 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
696 					 index, name, name_len, 0);
697 	if (di && !IS_ERR(di)) {
698 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
699 		if (location.objectid != objectid)
700 			goto out;
701 	} else
702 		goto out;
703 	btrfs_release_path(root, path);
704 
705 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
706 	if (di && !IS_ERR(di)) {
707 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
708 		if (location.objectid != objectid)
709 			goto out;
710 	} else
711 		goto out;
712 	match = 1;
713 out:
714 	btrfs_release_path(root, path);
715 	return match;
716 }
717 
718 /*
719  * helper function to check a log tree for a named back reference in
720  * an inode.  This is used to decide if a back reference that is
721  * found in the subvolume conflicts with what we find in the log.
722  *
723  * inode backreferences may have multiple refs in a single item,
724  * during replay we process one reference at a time, and we don't
725  * want to delete valid links to a file from the subvolume if that
726  * link is also in the log.
727  */
728 static noinline int backref_in_log(struct btrfs_root *log,
729 				   struct btrfs_key *key,
730 				   char *name, int namelen)
731 {
732 	struct btrfs_path *path;
733 	struct btrfs_inode_ref *ref;
734 	unsigned long ptr;
735 	unsigned long ptr_end;
736 	unsigned long name_ptr;
737 	int found_name_len;
738 	int item_size;
739 	int ret;
740 	int match = 0;
741 
742 	path = btrfs_alloc_path();
743 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
744 	if (ret != 0)
745 		goto out;
746 
747 	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
748 	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
749 	ptr_end = ptr + item_size;
750 	while (ptr < ptr_end) {
751 		ref = (struct btrfs_inode_ref *)ptr;
752 		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
753 		if (found_name_len == namelen) {
754 			name_ptr = (unsigned long)(ref + 1);
755 			ret = memcmp_extent_buffer(path->nodes[0], name,
756 						   name_ptr, namelen);
757 			if (ret == 0) {
758 				match = 1;
759 				goto out;
760 			}
761 		}
762 		ptr = (unsigned long)(ref + 1) + found_name_len;
763 	}
764 out:
765 	btrfs_free_path(path);
766 	return match;
767 }
768 
769 
770 /*
771  * replay one inode back reference item found in the log tree.
772  * eb, slot and key refer to the buffer and key found in the log tree.
773  * root is the destination we are replaying into, and path is for temp
774  * use by this function.  (it should be released on return).
775  */
776 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
777 				  struct btrfs_root *root,
778 				  struct btrfs_root *log,
779 				  struct btrfs_path *path,
780 				  struct extent_buffer *eb, int slot,
781 				  struct btrfs_key *key)
782 {
783 	struct inode *dir;
784 	int ret;
785 	struct btrfs_key location;
786 	struct btrfs_inode_ref *ref;
787 	struct btrfs_dir_item *di;
788 	struct inode *inode;
789 	char *name;
790 	int namelen;
791 	unsigned long ref_ptr;
792 	unsigned long ref_end;
793 
794 	location.objectid = key->objectid;
795 	location.type = BTRFS_INODE_ITEM_KEY;
796 	location.offset = 0;
797 
798 	/*
799 	 * it is possible that we didn't log all the parent directories
800 	 * for a given inode.  If we don't find the dir, just don't
801 	 * copy the back ref in.  The link count fixup code will take
802 	 * care of the rest
803 	 */
804 	dir = read_one_inode(root, key->offset);
805 	if (!dir)
806 		return -ENOENT;
807 
808 	inode = read_one_inode(root, key->objectid);
809 	BUG_ON(!inode);
810 
811 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
812 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
813 
814 again:
815 	ref = (struct btrfs_inode_ref *)ref_ptr;
816 
817 	namelen = btrfs_inode_ref_name_len(eb, ref);
818 	name = kmalloc(namelen, GFP_NOFS);
819 	BUG_ON(!name);
820 
821 	read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
822 
823 	/* if we already have a perfect match, we're done */
824 	if (inode_in_dir(root, path, dir->i_ino, inode->i_ino,
825 			 btrfs_inode_ref_index(eb, ref),
826 			 name, namelen)) {
827 		goto out;
828 	}
829 
830 	/*
831 	 * look for a conflicting back reference in the metadata.
832 	 * if we find one we have to unlink that name of the file
833 	 * before we add our new link.  Later on, we overwrite any
834 	 * existing back reference, and we don't want to create
835 	 * dangling pointers in the directory.
836 	 */
837 conflict_again:
838 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
839 	if (ret == 0) {
840 		char *victim_name;
841 		int victim_name_len;
842 		struct btrfs_inode_ref *victim_ref;
843 		unsigned long ptr;
844 		unsigned long ptr_end;
845 		struct extent_buffer *leaf = path->nodes[0];
846 
847 		/* are we trying to overwrite a back ref for the root directory
848 		 * if so, just jump out, we're done
849 		 */
850 		if (key->objectid == key->offset)
851 			goto out_nowrite;
852 
853 		/* check all the names in this back reference to see
854 		 * if they are in the log.  if so, we allow them to stay
855 		 * otherwise they must be unlinked as a conflict
856 		 */
857 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
858 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
859 		while (ptr < ptr_end) {
860 			victim_ref = (struct btrfs_inode_ref *)ptr;
861 			victim_name_len = btrfs_inode_ref_name_len(leaf,
862 								   victim_ref);
863 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
864 			BUG_ON(!victim_name);
865 
866 			read_extent_buffer(leaf, victim_name,
867 					   (unsigned long)(victim_ref + 1),
868 					   victim_name_len);
869 
870 			if (!backref_in_log(log, key, victim_name,
871 					    victim_name_len)) {
872 				btrfs_inc_nlink(inode);
873 				btrfs_release_path(root, path);
874 
875 				ret = btrfs_unlink_inode(trans, root, dir,
876 							 inode, victim_name,
877 							 victim_name_len);
878 				kfree(victim_name);
879 				btrfs_release_path(root, path);
880 				goto conflict_again;
881 			}
882 			kfree(victim_name);
883 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
884 		}
885 		BUG_ON(ret);
886 	}
887 	btrfs_release_path(root, path);
888 
889 	/* look for a conflicting sequence number */
890 	di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
891 					 btrfs_inode_ref_index(eb, ref),
892 					 name, namelen, 0);
893 	if (di && !IS_ERR(di)) {
894 		ret = drop_one_dir_item(trans, root, path, dir, di);
895 		BUG_ON(ret);
896 	}
897 	btrfs_release_path(root, path);
898 
899 
900 	/* look for a conflicting name */
901 	di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
902 				   name, namelen, 0);
903 	if (di && !IS_ERR(di)) {
904 		ret = drop_one_dir_item(trans, root, path, dir, di);
905 		BUG_ON(ret);
906 	}
907 	btrfs_release_path(root, path);
908 
909 	/* insert our name */
910 	ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
911 			     btrfs_inode_ref_index(eb, ref));
912 	BUG_ON(ret);
913 
914 	btrfs_update_inode(trans, root, inode);
915 
916 out:
917 	ref_ptr = (unsigned long)(ref + 1) + namelen;
918 	kfree(name);
919 	if (ref_ptr < ref_end)
920 		goto again;
921 
922 	/* finally write the back reference in the inode */
923 	ret = overwrite_item(trans, root, path, eb, slot, key);
924 	BUG_ON(ret);
925 
926 out_nowrite:
927 	btrfs_release_path(root, path);
928 	iput(dir);
929 	iput(inode);
930 	return 0;
931 }
932 
933 /*
934  * There are a few corners where the link count of the file can't
935  * be properly maintained during replay.  So, instead of adding
936  * lots of complexity to the log code, we just scan the backrefs
937  * for any file that has been through replay.
938  *
939  * The scan will update the link count on the inode to reflect the
940  * number of back refs found.  If it goes down to zero, the iput
941  * will free the inode.
942  */
943 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
944 					   struct btrfs_root *root,
945 					   struct inode *inode)
946 {
947 	struct btrfs_path *path;
948 	int ret;
949 	struct btrfs_key key;
950 	u64 nlink = 0;
951 	unsigned long ptr;
952 	unsigned long ptr_end;
953 	int name_len;
954 
955 	key.objectid = inode->i_ino;
956 	key.type = BTRFS_INODE_REF_KEY;
957 	key.offset = (u64)-1;
958 
959 	path = btrfs_alloc_path();
960 
961 	while (1) {
962 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
963 		if (ret < 0)
964 			break;
965 		if (ret > 0) {
966 			if (path->slots[0] == 0)
967 				break;
968 			path->slots[0]--;
969 		}
970 		btrfs_item_key_to_cpu(path->nodes[0], &key,
971 				      path->slots[0]);
972 		if (key.objectid != inode->i_ino ||
973 		    key.type != BTRFS_INODE_REF_KEY)
974 			break;
975 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
976 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
977 						   path->slots[0]);
978 		while (ptr < ptr_end) {
979 			struct btrfs_inode_ref *ref;
980 
981 			ref = (struct btrfs_inode_ref *)ptr;
982 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
983 							    ref);
984 			ptr = (unsigned long)(ref + 1) + name_len;
985 			nlink++;
986 		}
987 
988 		if (key.offset == 0)
989 			break;
990 		key.offset--;
991 		btrfs_release_path(root, path);
992 	}
993 	btrfs_release_path(root, path);
994 	if (nlink != inode->i_nlink) {
995 		inode->i_nlink = nlink;
996 		btrfs_update_inode(trans, root, inode);
997 	}
998 	BTRFS_I(inode)->index_cnt = (u64)-1;
999 
1000 	if (inode->i_nlink == 0 && S_ISDIR(inode->i_mode)) {
1001 		ret = replay_dir_deletes(trans, root, NULL, path,
1002 					 inode->i_ino, 1);
1003 		BUG_ON(ret);
1004 	}
1005 	btrfs_free_path(path);
1006 
1007 	return 0;
1008 }
1009 
1010 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1011 					    struct btrfs_root *root,
1012 					    struct btrfs_path *path)
1013 {
1014 	int ret;
1015 	struct btrfs_key key;
1016 	struct inode *inode;
1017 
1018 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1019 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1020 	key.offset = (u64)-1;
1021 	while (1) {
1022 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1023 		if (ret < 0)
1024 			break;
1025 
1026 		if (ret == 1) {
1027 			if (path->slots[0] == 0)
1028 				break;
1029 			path->slots[0]--;
1030 		}
1031 
1032 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1033 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1034 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1035 			break;
1036 
1037 		ret = btrfs_del_item(trans, root, path);
1038 		BUG_ON(ret);
1039 
1040 		btrfs_release_path(root, path);
1041 		inode = read_one_inode(root, key.offset);
1042 		BUG_ON(!inode);
1043 
1044 		ret = fixup_inode_link_count(trans, root, inode);
1045 		BUG_ON(ret);
1046 
1047 		iput(inode);
1048 
1049 		/*
1050 		 * fixup on a directory may create new entries,
1051 		 * make sure we always look for the highset possible
1052 		 * offset
1053 		 */
1054 		key.offset = (u64)-1;
1055 	}
1056 	btrfs_release_path(root, path);
1057 	return 0;
1058 }
1059 
1060 
1061 /*
1062  * record a given inode in the fixup dir so we can check its link
1063  * count when replay is done.  The link count is incremented here
1064  * so the inode won't go away until we check it
1065  */
1066 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1067 				      struct btrfs_root *root,
1068 				      struct btrfs_path *path,
1069 				      u64 objectid)
1070 {
1071 	struct btrfs_key key;
1072 	int ret = 0;
1073 	struct inode *inode;
1074 
1075 	inode = read_one_inode(root, objectid);
1076 	BUG_ON(!inode);
1077 
1078 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1079 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1080 	key.offset = objectid;
1081 
1082 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1083 
1084 	btrfs_release_path(root, path);
1085 	if (ret == 0) {
1086 		btrfs_inc_nlink(inode);
1087 		btrfs_update_inode(trans, root, inode);
1088 	} else if (ret == -EEXIST) {
1089 		ret = 0;
1090 	} else {
1091 		BUG();
1092 	}
1093 	iput(inode);
1094 
1095 	return ret;
1096 }
1097 
1098 /*
1099  * when replaying the log for a directory, we only insert names
1100  * for inodes that actually exist.  This means an fsync on a directory
1101  * does not implicitly fsync all the new files in it
1102  */
1103 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1104 				    struct btrfs_root *root,
1105 				    struct btrfs_path *path,
1106 				    u64 dirid, u64 index,
1107 				    char *name, int name_len, u8 type,
1108 				    struct btrfs_key *location)
1109 {
1110 	struct inode *inode;
1111 	struct inode *dir;
1112 	int ret;
1113 
1114 	inode = read_one_inode(root, location->objectid);
1115 	if (!inode)
1116 		return -ENOENT;
1117 
1118 	dir = read_one_inode(root, dirid);
1119 	if (!dir) {
1120 		iput(inode);
1121 		return -EIO;
1122 	}
1123 	ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1124 
1125 	/* FIXME, put inode into FIXUP list */
1126 
1127 	iput(inode);
1128 	iput(dir);
1129 	return ret;
1130 }
1131 
1132 /*
1133  * take a single entry in a log directory item and replay it into
1134  * the subvolume.
1135  *
1136  * if a conflicting item exists in the subdirectory already,
1137  * the inode it points to is unlinked and put into the link count
1138  * fix up tree.
1139  *
1140  * If a name from the log points to a file or directory that does
1141  * not exist in the FS, it is skipped.  fsyncs on directories
1142  * do not force down inodes inside that directory, just changes to the
1143  * names or unlinks in a directory.
1144  */
1145 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1146 				    struct btrfs_root *root,
1147 				    struct btrfs_path *path,
1148 				    struct extent_buffer *eb,
1149 				    struct btrfs_dir_item *di,
1150 				    struct btrfs_key *key)
1151 {
1152 	char *name;
1153 	int name_len;
1154 	struct btrfs_dir_item *dst_di;
1155 	struct btrfs_key found_key;
1156 	struct btrfs_key log_key;
1157 	struct inode *dir;
1158 	u8 log_type;
1159 	int exists;
1160 	int ret;
1161 
1162 	dir = read_one_inode(root, key->objectid);
1163 	BUG_ON(!dir);
1164 
1165 	name_len = btrfs_dir_name_len(eb, di);
1166 	name = kmalloc(name_len, GFP_NOFS);
1167 	log_type = btrfs_dir_type(eb, di);
1168 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1169 		   name_len);
1170 
1171 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1172 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1173 	if (exists == 0)
1174 		exists = 1;
1175 	else
1176 		exists = 0;
1177 	btrfs_release_path(root, path);
1178 
1179 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1180 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1181 				       name, name_len, 1);
1182 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1183 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1184 						     key->objectid,
1185 						     key->offset, name,
1186 						     name_len, 1);
1187 	} else {
1188 		BUG();
1189 	}
1190 	if (!dst_di || IS_ERR(dst_di)) {
1191 		/* we need a sequence number to insert, so we only
1192 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1193 		 */
1194 		if (key->type != BTRFS_DIR_INDEX_KEY)
1195 			goto out;
1196 		goto insert;
1197 	}
1198 
1199 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1200 	/* the existing item matches the logged item */
1201 	if (found_key.objectid == log_key.objectid &&
1202 	    found_key.type == log_key.type &&
1203 	    found_key.offset == log_key.offset &&
1204 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1205 		goto out;
1206 	}
1207 
1208 	/*
1209 	 * don't drop the conflicting directory entry if the inode
1210 	 * for the new entry doesn't exist
1211 	 */
1212 	if (!exists)
1213 		goto out;
1214 
1215 	ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1216 	BUG_ON(ret);
1217 
1218 	if (key->type == BTRFS_DIR_INDEX_KEY)
1219 		goto insert;
1220 out:
1221 	btrfs_release_path(root, path);
1222 	kfree(name);
1223 	iput(dir);
1224 	return 0;
1225 
1226 insert:
1227 	btrfs_release_path(root, path);
1228 	ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1229 			      name, name_len, log_type, &log_key);
1230 
1231 	BUG_ON(ret && ret != -ENOENT);
1232 	goto out;
1233 }
1234 
1235 /*
1236  * find all the names in a directory item and reconcile them into
1237  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1238  * one name in a directory item, but the same code gets used for
1239  * both directory index types
1240  */
1241 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1242 					struct btrfs_root *root,
1243 					struct btrfs_path *path,
1244 					struct extent_buffer *eb, int slot,
1245 					struct btrfs_key *key)
1246 {
1247 	int ret;
1248 	u32 item_size = btrfs_item_size_nr(eb, slot);
1249 	struct btrfs_dir_item *di;
1250 	int name_len;
1251 	unsigned long ptr;
1252 	unsigned long ptr_end;
1253 
1254 	ptr = btrfs_item_ptr_offset(eb, slot);
1255 	ptr_end = ptr + item_size;
1256 	while (ptr < ptr_end) {
1257 		di = (struct btrfs_dir_item *)ptr;
1258 		name_len = btrfs_dir_name_len(eb, di);
1259 		ret = replay_one_name(trans, root, path, eb, di, key);
1260 		BUG_ON(ret);
1261 		ptr = (unsigned long)(di + 1);
1262 		ptr += name_len;
1263 	}
1264 	return 0;
1265 }
1266 
1267 /*
1268  * directory replay has two parts.  There are the standard directory
1269  * items in the log copied from the subvolume, and range items
1270  * created in the log while the subvolume was logged.
1271  *
1272  * The range items tell us which parts of the key space the log
1273  * is authoritative for.  During replay, if a key in the subvolume
1274  * directory is in a logged range item, but not actually in the log
1275  * that means it was deleted from the directory before the fsync
1276  * and should be removed.
1277  */
1278 static noinline int find_dir_range(struct btrfs_root *root,
1279 				   struct btrfs_path *path,
1280 				   u64 dirid, int key_type,
1281 				   u64 *start_ret, u64 *end_ret)
1282 {
1283 	struct btrfs_key key;
1284 	u64 found_end;
1285 	struct btrfs_dir_log_item *item;
1286 	int ret;
1287 	int nritems;
1288 
1289 	if (*start_ret == (u64)-1)
1290 		return 1;
1291 
1292 	key.objectid = dirid;
1293 	key.type = key_type;
1294 	key.offset = *start_ret;
1295 
1296 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1297 	if (ret < 0)
1298 		goto out;
1299 	if (ret > 0) {
1300 		if (path->slots[0] == 0)
1301 			goto out;
1302 		path->slots[0]--;
1303 	}
1304 	if (ret != 0)
1305 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1306 
1307 	if (key.type != key_type || key.objectid != dirid) {
1308 		ret = 1;
1309 		goto next;
1310 	}
1311 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1312 			      struct btrfs_dir_log_item);
1313 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1314 
1315 	if (*start_ret >= key.offset && *start_ret <= found_end) {
1316 		ret = 0;
1317 		*start_ret = key.offset;
1318 		*end_ret = found_end;
1319 		goto out;
1320 	}
1321 	ret = 1;
1322 next:
1323 	/* check the next slot in the tree to see if it is a valid item */
1324 	nritems = btrfs_header_nritems(path->nodes[0]);
1325 	if (path->slots[0] >= nritems) {
1326 		ret = btrfs_next_leaf(root, path);
1327 		if (ret)
1328 			goto out;
1329 	} else {
1330 		path->slots[0]++;
1331 	}
1332 
1333 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1334 
1335 	if (key.type != key_type || key.objectid != dirid) {
1336 		ret = 1;
1337 		goto out;
1338 	}
1339 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1340 			      struct btrfs_dir_log_item);
1341 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1342 	*start_ret = key.offset;
1343 	*end_ret = found_end;
1344 	ret = 0;
1345 out:
1346 	btrfs_release_path(root, path);
1347 	return ret;
1348 }
1349 
1350 /*
1351  * this looks for a given directory item in the log.  If the directory
1352  * item is not in the log, the item is removed and the inode it points
1353  * to is unlinked
1354  */
1355 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1356 				      struct btrfs_root *root,
1357 				      struct btrfs_root *log,
1358 				      struct btrfs_path *path,
1359 				      struct btrfs_path *log_path,
1360 				      struct inode *dir,
1361 				      struct btrfs_key *dir_key)
1362 {
1363 	int ret;
1364 	struct extent_buffer *eb;
1365 	int slot;
1366 	u32 item_size;
1367 	struct btrfs_dir_item *di;
1368 	struct btrfs_dir_item *log_di;
1369 	int name_len;
1370 	unsigned long ptr;
1371 	unsigned long ptr_end;
1372 	char *name;
1373 	struct inode *inode;
1374 	struct btrfs_key location;
1375 
1376 again:
1377 	eb = path->nodes[0];
1378 	slot = path->slots[0];
1379 	item_size = btrfs_item_size_nr(eb, slot);
1380 	ptr = btrfs_item_ptr_offset(eb, slot);
1381 	ptr_end = ptr + item_size;
1382 	while (ptr < ptr_end) {
1383 		di = (struct btrfs_dir_item *)ptr;
1384 		name_len = btrfs_dir_name_len(eb, di);
1385 		name = kmalloc(name_len, GFP_NOFS);
1386 		if (!name) {
1387 			ret = -ENOMEM;
1388 			goto out;
1389 		}
1390 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
1391 				  name_len);
1392 		log_di = NULL;
1393 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1394 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
1395 						       dir_key->objectid,
1396 						       name, name_len, 0);
1397 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1398 			log_di = btrfs_lookup_dir_index_item(trans, log,
1399 						     log_path,
1400 						     dir_key->objectid,
1401 						     dir_key->offset,
1402 						     name, name_len, 0);
1403 		}
1404 		if (!log_di || IS_ERR(log_di)) {
1405 			btrfs_dir_item_key_to_cpu(eb, di, &location);
1406 			btrfs_release_path(root, path);
1407 			btrfs_release_path(log, log_path);
1408 			inode = read_one_inode(root, location.objectid);
1409 			BUG_ON(!inode);
1410 
1411 			ret = link_to_fixup_dir(trans, root,
1412 						path, location.objectid);
1413 			BUG_ON(ret);
1414 			btrfs_inc_nlink(inode);
1415 			ret = btrfs_unlink_inode(trans, root, dir, inode,
1416 						 name, name_len);
1417 			BUG_ON(ret);
1418 			kfree(name);
1419 			iput(inode);
1420 
1421 			/* there might still be more names under this key
1422 			 * check and repeat if required
1423 			 */
1424 			ret = btrfs_search_slot(NULL, root, dir_key, path,
1425 						0, 0);
1426 			if (ret == 0)
1427 				goto again;
1428 			ret = 0;
1429 			goto out;
1430 		}
1431 		btrfs_release_path(log, log_path);
1432 		kfree(name);
1433 
1434 		ptr = (unsigned long)(di + 1);
1435 		ptr += name_len;
1436 	}
1437 	ret = 0;
1438 out:
1439 	btrfs_release_path(root, path);
1440 	btrfs_release_path(log, log_path);
1441 	return ret;
1442 }
1443 
1444 /*
1445  * deletion replay happens before we copy any new directory items
1446  * out of the log or out of backreferences from inodes.  It
1447  * scans the log to find ranges of keys that log is authoritative for,
1448  * and then scans the directory to find items in those ranges that are
1449  * not present in the log.
1450  *
1451  * Anything we don't find in the log is unlinked and removed from the
1452  * directory.
1453  */
1454 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1455 				       struct btrfs_root *root,
1456 				       struct btrfs_root *log,
1457 				       struct btrfs_path *path,
1458 				       u64 dirid, int del_all)
1459 {
1460 	u64 range_start;
1461 	u64 range_end;
1462 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1463 	int ret = 0;
1464 	struct btrfs_key dir_key;
1465 	struct btrfs_key found_key;
1466 	struct btrfs_path *log_path;
1467 	struct inode *dir;
1468 
1469 	dir_key.objectid = dirid;
1470 	dir_key.type = BTRFS_DIR_ITEM_KEY;
1471 	log_path = btrfs_alloc_path();
1472 	if (!log_path)
1473 		return -ENOMEM;
1474 
1475 	dir = read_one_inode(root, dirid);
1476 	/* it isn't an error if the inode isn't there, that can happen
1477 	 * because we replay the deletes before we copy in the inode item
1478 	 * from the log
1479 	 */
1480 	if (!dir) {
1481 		btrfs_free_path(log_path);
1482 		return 0;
1483 	}
1484 again:
1485 	range_start = 0;
1486 	range_end = 0;
1487 	while (1) {
1488 		if (del_all)
1489 			range_end = (u64)-1;
1490 		else {
1491 			ret = find_dir_range(log, path, dirid, key_type,
1492 					     &range_start, &range_end);
1493 			if (ret != 0)
1494 				break;
1495 		}
1496 
1497 		dir_key.offset = range_start;
1498 		while (1) {
1499 			int nritems;
1500 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
1501 						0, 0);
1502 			if (ret < 0)
1503 				goto out;
1504 
1505 			nritems = btrfs_header_nritems(path->nodes[0]);
1506 			if (path->slots[0] >= nritems) {
1507 				ret = btrfs_next_leaf(root, path);
1508 				if (ret)
1509 					break;
1510 			}
1511 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1512 					      path->slots[0]);
1513 			if (found_key.objectid != dirid ||
1514 			    found_key.type != dir_key.type)
1515 				goto next_type;
1516 
1517 			if (found_key.offset > range_end)
1518 				break;
1519 
1520 			ret = check_item_in_log(trans, root, log, path,
1521 						log_path, dir,
1522 						&found_key);
1523 			BUG_ON(ret);
1524 			if (found_key.offset == (u64)-1)
1525 				break;
1526 			dir_key.offset = found_key.offset + 1;
1527 		}
1528 		btrfs_release_path(root, path);
1529 		if (range_end == (u64)-1)
1530 			break;
1531 		range_start = range_end + 1;
1532 	}
1533 
1534 next_type:
1535 	ret = 0;
1536 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1537 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
1538 		dir_key.type = BTRFS_DIR_INDEX_KEY;
1539 		btrfs_release_path(root, path);
1540 		goto again;
1541 	}
1542 out:
1543 	btrfs_release_path(root, path);
1544 	btrfs_free_path(log_path);
1545 	iput(dir);
1546 	return ret;
1547 }
1548 
1549 /*
1550  * the process_func used to replay items from the log tree.  This
1551  * gets called in two different stages.  The first stage just looks
1552  * for inodes and makes sure they are all copied into the subvolume.
1553  *
1554  * The second stage copies all the other item types from the log into
1555  * the subvolume.  The two stage approach is slower, but gets rid of
1556  * lots of complexity around inodes referencing other inodes that exist
1557  * only in the log (references come from either directory items or inode
1558  * back refs).
1559  */
1560 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1561 			     struct walk_control *wc, u64 gen)
1562 {
1563 	int nritems;
1564 	struct btrfs_path *path;
1565 	struct btrfs_root *root = wc->replay_dest;
1566 	struct btrfs_key key;
1567 	u32 item_size;
1568 	int level;
1569 	int i;
1570 	int ret;
1571 
1572 	btrfs_read_buffer(eb, gen);
1573 
1574 	level = btrfs_header_level(eb);
1575 
1576 	if (level != 0)
1577 		return 0;
1578 
1579 	path = btrfs_alloc_path();
1580 	BUG_ON(!path);
1581 
1582 	nritems = btrfs_header_nritems(eb);
1583 	for (i = 0; i < nritems; i++) {
1584 		btrfs_item_key_to_cpu(eb, &key, i);
1585 		item_size = btrfs_item_size_nr(eb, i);
1586 
1587 		/* inode keys are done during the first stage */
1588 		if (key.type == BTRFS_INODE_ITEM_KEY &&
1589 		    wc->stage == LOG_WALK_REPLAY_INODES) {
1590 			struct inode *inode;
1591 			struct btrfs_inode_item *inode_item;
1592 			u32 mode;
1593 
1594 			inode_item = btrfs_item_ptr(eb, i,
1595 					    struct btrfs_inode_item);
1596 			mode = btrfs_inode_mode(eb, inode_item);
1597 			if (S_ISDIR(mode)) {
1598 				ret = replay_dir_deletes(wc->trans,
1599 					 root, log, path, key.objectid, 0);
1600 				BUG_ON(ret);
1601 			}
1602 			ret = overwrite_item(wc->trans, root, path,
1603 					     eb, i, &key);
1604 			BUG_ON(ret);
1605 
1606 			/* for regular files, truncate away
1607 			 * extents past the new EOF
1608 			 */
1609 			if (S_ISREG(mode)) {
1610 				inode = read_one_inode(root,
1611 						       key.objectid);
1612 				BUG_ON(!inode);
1613 
1614 				ret = btrfs_truncate_inode_items(wc->trans,
1615 					root, inode, inode->i_size,
1616 					BTRFS_EXTENT_DATA_KEY);
1617 				BUG_ON(ret);
1618 
1619 				/* if the nlink count is zero here, the iput
1620 				 * will free the inode.  We bump it to make
1621 				 * sure it doesn't get freed until the link
1622 				 * count fixup is done
1623 				 */
1624 				if (inode->i_nlink == 0) {
1625 					btrfs_inc_nlink(inode);
1626 					btrfs_update_inode(wc->trans,
1627 							   root, inode);
1628 				}
1629 				iput(inode);
1630 			}
1631 			ret = link_to_fixup_dir(wc->trans, root,
1632 						path, key.objectid);
1633 			BUG_ON(ret);
1634 		}
1635 		if (wc->stage < LOG_WALK_REPLAY_ALL)
1636 			continue;
1637 
1638 		/* these keys are simply copied */
1639 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
1640 			ret = overwrite_item(wc->trans, root, path,
1641 					     eb, i, &key);
1642 			BUG_ON(ret);
1643 		} else if (key.type == BTRFS_INODE_REF_KEY) {
1644 			ret = add_inode_ref(wc->trans, root, log, path,
1645 					    eb, i, &key);
1646 			BUG_ON(ret && ret != -ENOENT);
1647 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1648 			ret = replay_one_extent(wc->trans, root, path,
1649 						eb, i, &key);
1650 			BUG_ON(ret);
1651 		} else if (key.type == BTRFS_DIR_ITEM_KEY ||
1652 			   key.type == BTRFS_DIR_INDEX_KEY) {
1653 			ret = replay_one_dir_item(wc->trans, root, path,
1654 						  eb, i, &key);
1655 			BUG_ON(ret);
1656 		}
1657 	}
1658 	btrfs_free_path(path);
1659 	return 0;
1660 }
1661 
1662 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
1663 				   struct btrfs_root *root,
1664 				   struct btrfs_path *path, int *level,
1665 				   struct walk_control *wc)
1666 {
1667 	u64 root_owner;
1668 	u64 root_gen;
1669 	u64 bytenr;
1670 	u64 ptr_gen;
1671 	struct extent_buffer *next;
1672 	struct extent_buffer *cur;
1673 	struct extent_buffer *parent;
1674 	u32 blocksize;
1675 	int ret = 0;
1676 
1677 	WARN_ON(*level < 0);
1678 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
1679 
1680 	while (*level > 0) {
1681 		WARN_ON(*level < 0);
1682 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
1683 		cur = path->nodes[*level];
1684 
1685 		if (btrfs_header_level(cur) != *level)
1686 			WARN_ON(1);
1687 
1688 		if (path->slots[*level] >=
1689 		    btrfs_header_nritems(cur))
1690 			break;
1691 
1692 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1693 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1694 		blocksize = btrfs_level_size(root, *level - 1);
1695 
1696 		parent = path->nodes[*level];
1697 		root_owner = btrfs_header_owner(parent);
1698 		root_gen = btrfs_header_generation(parent);
1699 
1700 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
1701 
1702 		wc->process_func(root, next, wc, ptr_gen);
1703 
1704 		if (*level == 1) {
1705 			path->slots[*level]++;
1706 			if (wc->free) {
1707 				btrfs_read_buffer(next, ptr_gen);
1708 
1709 				btrfs_tree_lock(next);
1710 				clean_tree_block(trans, root, next);
1711 				btrfs_set_lock_blocking(next);
1712 				btrfs_wait_tree_block_writeback(next);
1713 				btrfs_tree_unlock(next);
1714 
1715 				WARN_ON(root_owner !=
1716 					BTRFS_TREE_LOG_OBJECTID);
1717 				ret = btrfs_free_reserved_extent(root,
1718 							 bytenr, blocksize);
1719 				BUG_ON(ret);
1720 			}
1721 			free_extent_buffer(next);
1722 			continue;
1723 		}
1724 		btrfs_read_buffer(next, ptr_gen);
1725 
1726 		WARN_ON(*level <= 0);
1727 		if (path->nodes[*level-1])
1728 			free_extent_buffer(path->nodes[*level-1]);
1729 		path->nodes[*level-1] = next;
1730 		*level = btrfs_header_level(next);
1731 		path->slots[*level] = 0;
1732 		cond_resched();
1733 	}
1734 	WARN_ON(*level < 0);
1735 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
1736 
1737 	if (path->nodes[*level] == root->node)
1738 		parent = path->nodes[*level];
1739 	else
1740 		parent = path->nodes[*level + 1];
1741 
1742 	bytenr = path->nodes[*level]->start;
1743 
1744 	blocksize = btrfs_level_size(root, *level);
1745 	root_owner = btrfs_header_owner(parent);
1746 	root_gen = btrfs_header_generation(parent);
1747 
1748 	wc->process_func(root, path->nodes[*level], wc,
1749 			 btrfs_header_generation(path->nodes[*level]));
1750 
1751 	if (wc->free) {
1752 		next = path->nodes[*level];
1753 		btrfs_tree_lock(next);
1754 		clean_tree_block(trans, root, next);
1755 		btrfs_set_lock_blocking(next);
1756 		btrfs_wait_tree_block_writeback(next);
1757 		btrfs_tree_unlock(next);
1758 
1759 		WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1760 		ret = btrfs_free_reserved_extent(root, bytenr, blocksize);
1761 		BUG_ON(ret);
1762 	}
1763 	free_extent_buffer(path->nodes[*level]);
1764 	path->nodes[*level] = NULL;
1765 	*level += 1;
1766 
1767 	cond_resched();
1768 	return 0;
1769 }
1770 
1771 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
1772 				 struct btrfs_root *root,
1773 				 struct btrfs_path *path, int *level,
1774 				 struct walk_control *wc)
1775 {
1776 	u64 root_owner;
1777 	u64 root_gen;
1778 	int i;
1779 	int slot;
1780 	int ret;
1781 
1782 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
1783 		slot = path->slots[i];
1784 		if (slot < btrfs_header_nritems(path->nodes[i]) - 1) {
1785 			struct extent_buffer *node;
1786 			node = path->nodes[i];
1787 			path->slots[i]++;
1788 			*level = i;
1789 			WARN_ON(*level == 0);
1790 			return 0;
1791 		} else {
1792 			struct extent_buffer *parent;
1793 			if (path->nodes[*level] == root->node)
1794 				parent = path->nodes[*level];
1795 			else
1796 				parent = path->nodes[*level + 1];
1797 
1798 			root_owner = btrfs_header_owner(parent);
1799 			root_gen = btrfs_header_generation(parent);
1800 			wc->process_func(root, path->nodes[*level], wc,
1801 				 btrfs_header_generation(path->nodes[*level]));
1802 			if (wc->free) {
1803 				struct extent_buffer *next;
1804 
1805 				next = path->nodes[*level];
1806 
1807 				btrfs_tree_lock(next);
1808 				clean_tree_block(trans, root, next);
1809 				btrfs_set_lock_blocking(next);
1810 				btrfs_wait_tree_block_writeback(next);
1811 				btrfs_tree_unlock(next);
1812 
1813 				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1814 				ret = btrfs_free_reserved_extent(root,
1815 						path->nodes[*level]->start,
1816 						path->nodes[*level]->len);
1817 				BUG_ON(ret);
1818 			}
1819 			free_extent_buffer(path->nodes[*level]);
1820 			path->nodes[*level] = NULL;
1821 			*level = i + 1;
1822 		}
1823 	}
1824 	return 1;
1825 }
1826 
1827 /*
1828  * drop the reference count on the tree rooted at 'snap'.  This traverses
1829  * the tree freeing any blocks that have a ref count of zero after being
1830  * decremented.
1831  */
1832 static int walk_log_tree(struct btrfs_trans_handle *trans,
1833 			 struct btrfs_root *log, struct walk_control *wc)
1834 {
1835 	int ret = 0;
1836 	int wret;
1837 	int level;
1838 	struct btrfs_path *path;
1839 	int i;
1840 	int orig_level;
1841 
1842 	path = btrfs_alloc_path();
1843 	BUG_ON(!path);
1844 
1845 	level = btrfs_header_level(log->node);
1846 	orig_level = level;
1847 	path->nodes[level] = log->node;
1848 	extent_buffer_get(log->node);
1849 	path->slots[level] = 0;
1850 
1851 	while (1) {
1852 		wret = walk_down_log_tree(trans, log, path, &level, wc);
1853 		if (wret > 0)
1854 			break;
1855 		if (wret < 0)
1856 			ret = wret;
1857 
1858 		wret = walk_up_log_tree(trans, log, path, &level, wc);
1859 		if (wret > 0)
1860 			break;
1861 		if (wret < 0)
1862 			ret = wret;
1863 	}
1864 
1865 	/* was the root node processed? if not, catch it here */
1866 	if (path->nodes[orig_level]) {
1867 		wc->process_func(log, path->nodes[orig_level], wc,
1868 			 btrfs_header_generation(path->nodes[orig_level]));
1869 		if (wc->free) {
1870 			struct extent_buffer *next;
1871 
1872 			next = path->nodes[orig_level];
1873 
1874 			btrfs_tree_lock(next);
1875 			clean_tree_block(trans, log, next);
1876 			btrfs_set_lock_blocking(next);
1877 			btrfs_wait_tree_block_writeback(next);
1878 			btrfs_tree_unlock(next);
1879 
1880 			WARN_ON(log->root_key.objectid !=
1881 				BTRFS_TREE_LOG_OBJECTID);
1882 			ret = btrfs_free_reserved_extent(log, next->start,
1883 							 next->len);
1884 			BUG_ON(ret);
1885 		}
1886 	}
1887 
1888 	for (i = 0; i <= orig_level; i++) {
1889 		if (path->nodes[i]) {
1890 			free_extent_buffer(path->nodes[i]);
1891 			path->nodes[i] = NULL;
1892 		}
1893 	}
1894 	btrfs_free_path(path);
1895 	return ret;
1896 }
1897 
1898 /*
1899  * helper function to update the item for a given subvolumes log root
1900  * in the tree of log roots
1901  */
1902 static int update_log_root(struct btrfs_trans_handle *trans,
1903 			   struct btrfs_root *log)
1904 {
1905 	int ret;
1906 
1907 	if (log->log_transid == 1) {
1908 		/* insert root item on the first sync */
1909 		ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
1910 				&log->root_key, &log->root_item);
1911 	} else {
1912 		ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
1913 				&log->root_key, &log->root_item);
1914 	}
1915 	return ret;
1916 }
1917 
1918 static int wait_log_commit(struct btrfs_trans_handle *trans,
1919 			   struct btrfs_root *root, unsigned long transid)
1920 {
1921 	DEFINE_WAIT(wait);
1922 	int index = transid % 2;
1923 
1924 	/*
1925 	 * we only allow two pending log transactions at a time,
1926 	 * so we know that if ours is more than 2 older than the
1927 	 * current transaction, we're done
1928 	 */
1929 	do {
1930 		prepare_to_wait(&root->log_commit_wait[index],
1931 				&wait, TASK_UNINTERRUPTIBLE);
1932 		mutex_unlock(&root->log_mutex);
1933 
1934 		if (root->fs_info->last_trans_log_full_commit !=
1935 		    trans->transid && root->log_transid < transid + 2 &&
1936 		    atomic_read(&root->log_commit[index]))
1937 			schedule();
1938 
1939 		finish_wait(&root->log_commit_wait[index], &wait);
1940 		mutex_lock(&root->log_mutex);
1941 	} while (root->log_transid < transid + 2 &&
1942 		 atomic_read(&root->log_commit[index]));
1943 	return 0;
1944 }
1945 
1946 static int wait_for_writer(struct btrfs_trans_handle *trans,
1947 			   struct btrfs_root *root)
1948 {
1949 	DEFINE_WAIT(wait);
1950 	while (atomic_read(&root->log_writers)) {
1951 		prepare_to_wait(&root->log_writer_wait,
1952 				&wait, TASK_UNINTERRUPTIBLE);
1953 		mutex_unlock(&root->log_mutex);
1954 		if (root->fs_info->last_trans_log_full_commit !=
1955 		    trans->transid && atomic_read(&root->log_writers))
1956 			schedule();
1957 		mutex_lock(&root->log_mutex);
1958 		finish_wait(&root->log_writer_wait, &wait);
1959 	}
1960 	return 0;
1961 }
1962 
1963 /*
1964  * btrfs_sync_log does sends a given tree log down to the disk and
1965  * updates the super blocks to record it.  When this call is done,
1966  * you know that any inodes previously logged are safely on disk only
1967  * if it returns 0.
1968  *
1969  * Any other return value means you need to call btrfs_commit_transaction.
1970  * Some of the edge cases for fsyncing directories that have had unlinks
1971  * or renames done in the past mean that sometimes the only safe
1972  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
1973  * that has happened.
1974  */
1975 int btrfs_sync_log(struct btrfs_trans_handle *trans,
1976 		   struct btrfs_root *root)
1977 {
1978 	int index1;
1979 	int index2;
1980 	int ret;
1981 	struct btrfs_root *log = root->log_root;
1982 	struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
1983 	u64 log_transid = 0;
1984 
1985 	mutex_lock(&root->log_mutex);
1986 	index1 = root->log_transid % 2;
1987 	if (atomic_read(&root->log_commit[index1])) {
1988 		wait_log_commit(trans, root, root->log_transid);
1989 		mutex_unlock(&root->log_mutex);
1990 		return 0;
1991 	}
1992 	atomic_set(&root->log_commit[index1], 1);
1993 
1994 	/* wait for previous tree log sync to complete */
1995 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
1996 		wait_log_commit(trans, root, root->log_transid - 1);
1997 
1998 	while (1) {
1999 		unsigned long batch = root->log_batch;
2000 		if (root->log_multiple_pids) {
2001 			mutex_unlock(&root->log_mutex);
2002 			schedule_timeout_uninterruptible(1);
2003 			mutex_lock(&root->log_mutex);
2004 		}
2005 		wait_for_writer(trans, root);
2006 		if (batch == root->log_batch)
2007 			break;
2008 	}
2009 
2010 	/* bail out if we need to do a full commit */
2011 	if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2012 		ret = -EAGAIN;
2013 		mutex_unlock(&root->log_mutex);
2014 		goto out;
2015 	}
2016 
2017 	/* we start IO on  all the marked extents here, but we don't actually
2018 	 * wait for them until later.
2019 	 */
2020 	ret = btrfs_write_marked_extents(log, &log->dirty_log_pages);
2021 	BUG_ON(ret);
2022 
2023 	btrfs_set_root_node(&log->root_item, log->node);
2024 
2025 	root->log_batch = 0;
2026 	log_transid = root->log_transid;
2027 	root->log_transid++;
2028 	log->log_transid = root->log_transid;
2029 	root->log_start_pid = 0;
2030 	smp_mb();
2031 	/*
2032 	 * log tree has been flushed to disk, new modifications of
2033 	 * the log will be written to new positions. so it's safe to
2034 	 * allow log writers to go in.
2035 	 */
2036 	mutex_unlock(&root->log_mutex);
2037 
2038 	mutex_lock(&log_root_tree->log_mutex);
2039 	log_root_tree->log_batch++;
2040 	atomic_inc(&log_root_tree->log_writers);
2041 	mutex_unlock(&log_root_tree->log_mutex);
2042 
2043 	ret = update_log_root(trans, log);
2044 	BUG_ON(ret);
2045 
2046 	mutex_lock(&log_root_tree->log_mutex);
2047 	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2048 		smp_mb();
2049 		if (waitqueue_active(&log_root_tree->log_writer_wait))
2050 			wake_up(&log_root_tree->log_writer_wait);
2051 	}
2052 
2053 	index2 = log_root_tree->log_transid % 2;
2054 	if (atomic_read(&log_root_tree->log_commit[index2])) {
2055 		btrfs_wait_marked_extents(log, &log->dirty_log_pages);
2056 		wait_log_commit(trans, log_root_tree,
2057 				log_root_tree->log_transid);
2058 		mutex_unlock(&log_root_tree->log_mutex);
2059 		goto out;
2060 	}
2061 	atomic_set(&log_root_tree->log_commit[index2], 1);
2062 
2063 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2064 		wait_log_commit(trans, log_root_tree,
2065 				log_root_tree->log_transid - 1);
2066 	}
2067 
2068 	wait_for_writer(trans, log_root_tree);
2069 
2070 	/*
2071 	 * now that we've moved on to the tree of log tree roots,
2072 	 * check the full commit flag again
2073 	 */
2074 	if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2075 		btrfs_wait_marked_extents(log, &log->dirty_log_pages);
2076 		mutex_unlock(&log_root_tree->log_mutex);
2077 		ret = -EAGAIN;
2078 		goto out_wake_log_root;
2079 	}
2080 
2081 	ret = btrfs_write_and_wait_marked_extents(log_root_tree,
2082 				&log_root_tree->dirty_log_pages);
2083 	BUG_ON(ret);
2084 	btrfs_wait_marked_extents(log, &log->dirty_log_pages);
2085 
2086 	btrfs_set_super_log_root(&root->fs_info->super_for_commit,
2087 				log_root_tree->node->start);
2088 	btrfs_set_super_log_root_level(&root->fs_info->super_for_commit,
2089 				btrfs_header_level(log_root_tree->node));
2090 
2091 	log_root_tree->log_batch = 0;
2092 	log_root_tree->log_transid++;
2093 	smp_mb();
2094 
2095 	mutex_unlock(&log_root_tree->log_mutex);
2096 
2097 	/*
2098 	 * nobody else is going to jump in and write the the ctree
2099 	 * super here because the log_commit atomic below is protecting
2100 	 * us.  We must be called with a transaction handle pinning
2101 	 * the running transaction open, so a full commit can't hop
2102 	 * in and cause problems either.
2103 	 */
2104 	write_ctree_super(trans, root->fs_info->tree_root, 1);
2105 	ret = 0;
2106 
2107 	mutex_lock(&root->log_mutex);
2108 	if (root->last_log_commit < log_transid)
2109 		root->last_log_commit = log_transid;
2110 	mutex_unlock(&root->log_mutex);
2111 
2112 out_wake_log_root:
2113 	atomic_set(&log_root_tree->log_commit[index2], 0);
2114 	smp_mb();
2115 	if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2116 		wake_up(&log_root_tree->log_commit_wait[index2]);
2117 out:
2118 	atomic_set(&root->log_commit[index1], 0);
2119 	smp_mb();
2120 	if (waitqueue_active(&root->log_commit_wait[index1]))
2121 		wake_up(&root->log_commit_wait[index1]);
2122 	return 0;
2123 }
2124 
2125 /*
2126  * free all the extents used by the tree log.  This should be called
2127  * at commit time of the full transaction
2128  */
2129 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2130 {
2131 	int ret;
2132 	struct btrfs_root *log;
2133 	struct key;
2134 	u64 start;
2135 	u64 end;
2136 	struct walk_control wc = {
2137 		.free = 1,
2138 		.process_func = process_one_buffer
2139 	};
2140 
2141 	if (!root->log_root || root->fs_info->log_root_recovering)
2142 		return 0;
2143 
2144 	log = root->log_root;
2145 	ret = walk_log_tree(trans, log, &wc);
2146 	BUG_ON(ret);
2147 
2148 	while (1) {
2149 		ret = find_first_extent_bit(&log->dirty_log_pages,
2150 				    0, &start, &end, EXTENT_DIRTY);
2151 		if (ret)
2152 			break;
2153 
2154 		clear_extent_dirty(&log->dirty_log_pages,
2155 				   start, end, GFP_NOFS);
2156 	}
2157 
2158 	if (log->log_transid > 0) {
2159 		ret = btrfs_del_root(trans, root->fs_info->log_root_tree,
2160 				     &log->root_key);
2161 		BUG_ON(ret);
2162 	}
2163 	root->log_root = NULL;
2164 	free_extent_buffer(log->node);
2165 	kfree(log);
2166 	return 0;
2167 }
2168 
2169 /*
2170  * If both a file and directory are logged, and unlinks or renames are
2171  * mixed in, we have a few interesting corners:
2172  *
2173  * create file X in dir Y
2174  * link file X to X.link in dir Y
2175  * fsync file X
2176  * unlink file X but leave X.link
2177  * fsync dir Y
2178  *
2179  * After a crash we would expect only X.link to exist.  But file X
2180  * didn't get fsync'd again so the log has back refs for X and X.link.
2181  *
2182  * We solve this by removing directory entries and inode backrefs from the
2183  * log when a file that was logged in the current transaction is
2184  * unlinked.  Any later fsync will include the updated log entries, and
2185  * we'll be able to reconstruct the proper directory items from backrefs.
2186  *
2187  * This optimizations allows us to avoid relogging the entire inode
2188  * or the entire directory.
2189  */
2190 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2191 				 struct btrfs_root *root,
2192 				 const char *name, int name_len,
2193 				 struct inode *dir, u64 index)
2194 {
2195 	struct btrfs_root *log;
2196 	struct btrfs_dir_item *di;
2197 	struct btrfs_path *path;
2198 	int ret;
2199 	int bytes_del = 0;
2200 
2201 	if (BTRFS_I(dir)->logged_trans < trans->transid)
2202 		return 0;
2203 
2204 	ret = join_running_log_trans(root);
2205 	if (ret)
2206 		return 0;
2207 
2208 	mutex_lock(&BTRFS_I(dir)->log_mutex);
2209 
2210 	log = root->log_root;
2211 	path = btrfs_alloc_path();
2212 	di = btrfs_lookup_dir_item(trans, log, path, dir->i_ino,
2213 				   name, name_len, -1);
2214 	if (di && !IS_ERR(di)) {
2215 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2216 		bytes_del += name_len;
2217 		BUG_ON(ret);
2218 	}
2219 	btrfs_release_path(log, path);
2220 	di = btrfs_lookup_dir_index_item(trans, log, path, dir->i_ino,
2221 					 index, name, name_len, -1);
2222 	if (di && !IS_ERR(di)) {
2223 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2224 		bytes_del += name_len;
2225 		BUG_ON(ret);
2226 	}
2227 
2228 	/* update the directory size in the log to reflect the names
2229 	 * we have removed
2230 	 */
2231 	if (bytes_del) {
2232 		struct btrfs_key key;
2233 
2234 		key.objectid = dir->i_ino;
2235 		key.offset = 0;
2236 		key.type = BTRFS_INODE_ITEM_KEY;
2237 		btrfs_release_path(log, path);
2238 
2239 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2240 		if (ret == 0) {
2241 			struct btrfs_inode_item *item;
2242 			u64 i_size;
2243 
2244 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2245 					      struct btrfs_inode_item);
2246 			i_size = btrfs_inode_size(path->nodes[0], item);
2247 			if (i_size > bytes_del)
2248 				i_size -= bytes_del;
2249 			else
2250 				i_size = 0;
2251 			btrfs_set_inode_size(path->nodes[0], item, i_size);
2252 			btrfs_mark_buffer_dirty(path->nodes[0]);
2253 		} else
2254 			ret = 0;
2255 		btrfs_release_path(log, path);
2256 	}
2257 
2258 	btrfs_free_path(path);
2259 	mutex_unlock(&BTRFS_I(dir)->log_mutex);
2260 	btrfs_end_log_trans(root);
2261 
2262 	return 0;
2263 }
2264 
2265 /* see comments for btrfs_del_dir_entries_in_log */
2266 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2267 			       struct btrfs_root *root,
2268 			       const char *name, int name_len,
2269 			       struct inode *inode, u64 dirid)
2270 {
2271 	struct btrfs_root *log;
2272 	u64 index;
2273 	int ret;
2274 
2275 	if (BTRFS_I(inode)->logged_trans < trans->transid)
2276 		return 0;
2277 
2278 	ret = join_running_log_trans(root);
2279 	if (ret)
2280 		return 0;
2281 	log = root->log_root;
2282 	mutex_lock(&BTRFS_I(inode)->log_mutex);
2283 
2284 	ret = btrfs_del_inode_ref(trans, log, name, name_len, inode->i_ino,
2285 				  dirid, &index);
2286 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
2287 	btrfs_end_log_trans(root);
2288 
2289 	return ret;
2290 }
2291 
2292 /*
2293  * creates a range item in the log for 'dirid'.  first_offset and
2294  * last_offset tell us which parts of the key space the log should
2295  * be considered authoritative for.
2296  */
2297 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2298 				       struct btrfs_root *log,
2299 				       struct btrfs_path *path,
2300 				       int key_type, u64 dirid,
2301 				       u64 first_offset, u64 last_offset)
2302 {
2303 	int ret;
2304 	struct btrfs_key key;
2305 	struct btrfs_dir_log_item *item;
2306 
2307 	key.objectid = dirid;
2308 	key.offset = first_offset;
2309 	if (key_type == BTRFS_DIR_ITEM_KEY)
2310 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
2311 	else
2312 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
2313 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2314 	BUG_ON(ret);
2315 
2316 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2317 			      struct btrfs_dir_log_item);
2318 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2319 	btrfs_mark_buffer_dirty(path->nodes[0]);
2320 	btrfs_release_path(log, path);
2321 	return 0;
2322 }
2323 
2324 /*
2325  * log all the items included in the current transaction for a given
2326  * directory.  This also creates the range items in the log tree required
2327  * to replay anything deleted before the fsync
2328  */
2329 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2330 			  struct btrfs_root *root, struct inode *inode,
2331 			  struct btrfs_path *path,
2332 			  struct btrfs_path *dst_path, int key_type,
2333 			  u64 min_offset, u64 *last_offset_ret)
2334 {
2335 	struct btrfs_key min_key;
2336 	struct btrfs_key max_key;
2337 	struct btrfs_root *log = root->log_root;
2338 	struct extent_buffer *src;
2339 	int ret;
2340 	int i;
2341 	int nritems;
2342 	u64 first_offset = min_offset;
2343 	u64 last_offset = (u64)-1;
2344 
2345 	log = root->log_root;
2346 	max_key.objectid = inode->i_ino;
2347 	max_key.offset = (u64)-1;
2348 	max_key.type = key_type;
2349 
2350 	min_key.objectid = inode->i_ino;
2351 	min_key.type = key_type;
2352 	min_key.offset = min_offset;
2353 
2354 	path->keep_locks = 1;
2355 
2356 	ret = btrfs_search_forward(root, &min_key, &max_key,
2357 				   path, 0, trans->transid);
2358 
2359 	/*
2360 	 * we didn't find anything from this transaction, see if there
2361 	 * is anything at all
2362 	 */
2363 	if (ret != 0 || min_key.objectid != inode->i_ino ||
2364 	    min_key.type != key_type) {
2365 		min_key.objectid = inode->i_ino;
2366 		min_key.type = key_type;
2367 		min_key.offset = (u64)-1;
2368 		btrfs_release_path(root, path);
2369 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2370 		if (ret < 0) {
2371 			btrfs_release_path(root, path);
2372 			return ret;
2373 		}
2374 		ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2375 
2376 		/* if ret == 0 there are items for this type,
2377 		 * create a range to tell us the last key of this type.
2378 		 * otherwise, there are no items in this directory after
2379 		 * *min_offset, and we create a range to indicate that.
2380 		 */
2381 		if (ret == 0) {
2382 			struct btrfs_key tmp;
2383 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2384 					      path->slots[0]);
2385 			if (key_type == tmp.type)
2386 				first_offset = max(min_offset, tmp.offset) + 1;
2387 		}
2388 		goto done;
2389 	}
2390 
2391 	/* go backward to find any previous key */
2392 	ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2393 	if (ret == 0) {
2394 		struct btrfs_key tmp;
2395 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2396 		if (key_type == tmp.type) {
2397 			first_offset = tmp.offset;
2398 			ret = overwrite_item(trans, log, dst_path,
2399 					     path->nodes[0], path->slots[0],
2400 					     &tmp);
2401 		}
2402 	}
2403 	btrfs_release_path(root, path);
2404 
2405 	/* find the first key from this transaction again */
2406 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2407 	if (ret != 0) {
2408 		WARN_ON(1);
2409 		goto done;
2410 	}
2411 
2412 	/*
2413 	 * we have a block from this transaction, log every item in it
2414 	 * from our directory
2415 	 */
2416 	while (1) {
2417 		struct btrfs_key tmp;
2418 		src = path->nodes[0];
2419 		nritems = btrfs_header_nritems(src);
2420 		for (i = path->slots[0]; i < nritems; i++) {
2421 			btrfs_item_key_to_cpu(src, &min_key, i);
2422 
2423 			if (min_key.objectid != inode->i_ino ||
2424 			    min_key.type != key_type)
2425 				goto done;
2426 			ret = overwrite_item(trans, log, dst_path, src, i,
2427 					     &min_key);
2428 			BUG_ON(ret);
2429 		}
2430 		path->slots[0] = nritems;
2431 
2432 		/*
2433 		 * look ahead to the next item and see if it is also
2434 		 * from this directory and from this transaction
2435 		 */
2436 		ret = btrfs_next_leaf(root, path);
2437 		if (ret == 1) {
2438 			last_offset = (u64)-1;
2439 			goto done;
2440 		}
2441 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2442 		if (tmp.objectid != inode->i_ino || tmp.type != key_type) {
2443 			last_offset = (u64)-1;
2444 			goto done;
2445 		}
2446 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2447 			ret = overwrite_item(trans, log, dst_path,
2448 					     path->nodes[0], path->slots[0],
2449 					     &tmp);
2450 
2451 			BUG_ON(ret);
2452 			last_offset = tmp.offset;
2453 			goto done;
2454 		}
2455 	}
2456 done:
2457 	*last_offset_ret = last_offset;
2458 	btrfs_release_path(root, path);
2459 	btrfs_release_path(log, dst_path);
2460 
2461 	/* insert the log range keys to indicate where the log is valid */
2462 	ret = insert_dir_log_key(trans, log, path, key_type, inode->i_ino,
2463 				 first_offset, last_offset);
2464 	BUG_ON(ret);
2465 	return 0;
2466 }
2467 
2468 /*
2469  * logging directories is very similar to logging inodes, We find all the items
2470  * from the current transaction and write them to the log.
2471  *
2472  * The recovery code scans the directory in the subvolume, and if it finds a
2473  * key in the range logged that is not present in the log tree, then it means
2474  * that dir entry was unlinked during the transaction.
2475  *
2476  * In order for that scan to work, we must include one key smaller than
2477  * the smallest logged by this transaction and one key larger than the largest
2478  * key logged by this transaction.
2479  */
2480 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2481 			  struct btrfs_root *root, struct inode *inode,
2482 			  struct btrfs_path *path,
2483 			  struct btrfs_path *dst_path)
2484 {
2485 	u64 min_key;
2486 	u64 max_key;
2487 	int ret;
2488 	int key_type = BTRFS_DIR_ITEM_KEY;
2489 
2490 again:
2491 	min_key = 0;
2492 	max_key = 0;
2493 	while (1) {
2494 		ret = log_dir_items(trans, root, inode, path,
2495 				    dst_path, key_type, min_key,
2496 				    &max_key);
2497 		BUG_ON(ret);
2498 		if (max_key == (u64)-1)
2499 			break;
2500 		min_key = max_key + 1;
2501 	}
2502 
2503 	if (key_type == BTRFS_DIR_ITEM_KEY) {
2504 		key_type = BTRFS_DIR_INDEX_KEY;
2505 		goto again;
2506 	}
2507 	return 0;
2508 }
2509 
2510 /*
2511  * a helper function to drop items from the log before we relog an
2512  * inode.  max_key_type indicates the highest item type to remove.
2513  * This cannot be run for file data extents because it does not
2514  * free the extents they point to.
2515  */
2516 static int drop_objectid_items(struct btrfs_trans_handle *trans,
2517 				  struct btrfs_root *log,
2518 				  struct btrfs_path *path,
2519 				  u64 objectid, int max_key_type)
2520 {
2521 	int ret;
2522 	struct btrfs_key key;
2523 	struct btrfs_key found_key;
2524 
2525 	key.objectid = objectid;
2526 	key.type = max_key_type;
2527 	key.offset = (u64)-1;
2528 
2529 	while (1) {
2530 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2531 
2532 		if (ret != 1)
2533 			break;
2534 
2535 		if (path->slots[0] == 0)
2536 			break;
2537 
2538 		path->slots[0]--;
2539 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2540 				      path->slots[0]);
2541 
2542 		if (found_key.objectid != objectid)
2543 			break;
2544 
2545 		ret = btrfs_del_item(trans, log, path);
2546 		BUG_ON(ret);
2547 		btrfs_release_path(log, path);
2548 	}
2549 	btrfs_release_path(log, path);
2550 	return 0;
2551 }
2552 
2553 static noinline int copy_items(struct btrfs_trans_handle *trans,
2554 			       struct btrfs_root *log,
2555 			       struct btrfs_path *dst_path,
2556 			       struct extent_buffer *src,
2557 			       int start_slot, int nr, int inode_only)
2558 {
2559 	unsigned long src_offset;
2560 	unsigned long dst_offset;
2561 	struct btrfs_file_extent_item *extent;
2562 	struct btrfs_inode_item *inode_item;
2563 	int ret;
2564 	struct btrfs_key *ins_keys;
2565 	u32 *ins_sizes;
2566 	char *ins_data;
2567 	int i;
2568 	struct list_head ordered_sums;
2569 
2570 	INIT_LIST_HEAD(&ordered_sums);
2571 
2572 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2573 			   nr * sizeof(u32), GFP_NOFS);
2574 	ins_sizes = (u32 *)ins_data;
2575 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2576 
2577 	for (i = 0; i < nr; i++) {
2578 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2579 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2580 	}
2581 	ret = btrfs_insert_empty_items(trans, log, dst_path,
2582 				       ins_keys, ins_sizes, nr);
2583 	BUG_ON(ret);
2584 
2585 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
2586 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2587 						   dst_path->slots[0]);
2588 
2589 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2590 
2591 		copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2592 				   src_offset, ins_sizes[i]);
2593 
2594 		if (inode_only == LOG_INODE_EXISTS &&
2595 		    ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2596 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
2597 						    dst_path->slots[0],
2598 						    struct btrfs_inode_item);
2599 			btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
2600 
2601 			/* set the generation to zero so the recover code
2602 			 * can tell the difference between an logging
2603 			 * just to say 'this inode exists' and a logging
2604 			 * to say 'update this inode with these values'
2605 			 */
2606 			btrfs_set_inode_generation(dst_path->nodes[0],
2607 						   inode_item, 0);
2608 		}
2609 		/* take a reference on file data extents so that truncates
2610 		 * or deletes of this inode don't have to relog the inode
2611 		 * again
2612 		 */
2613 		if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
2614 			int found_type;
2615 			extent = btrfs_item_ptr(src, start_slot + i,
2616 						struct btrfs_file_extent_item);
2617 
2618 			found_type = btrfs_file_extent_type(src, extent);
2619 			if (found_type == BTRFS_FILE_EXTENT_REG ||
2620 			    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
2621 				u64 ds, dl, cs, cl;
2622 				ds = btrfs_file_extent_disk_bytenr(src,
2623 								extent);
2624 				/* ds == 0 is a hole */
2625 				if (ds == 0)
2626 					continue;
2627 
2628 				dl = btrfs_file_extent_disk_num_bytes(src,
2629 								extent);
2630 				cs = btrfs_file_extent_offset(src, extent);
2631 				cl = btrfs_file_extent_num_bytes(src,
2632 								extent);
2633 				if (btrfs_file_extent_compression(src,
2634 								  extent)) {
2635 					cs = 0;
2636 					cl = dl;
2637 				}
2638 
2639 				ret = btrfs_lookup_csums_range(
2640 						log->fs_info->csum_root,
2641 						ds + cs, ds + cs + cl - 1,
2642 						&ordered_sums);
2643 				BUG_ON(ret);
2644 			}
2645 		}
2646 	}
2647 
2648 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2649 	btrfs_release_path(log, dst_path);
2650 	kfree(ins_data);
2651 
2652 	/*
2653 	 * we have to do this after the loop above to avoid changing the
2654 	 * log tree while trying to change the log tree.
2655 	 */
2656 	while (!list_empty(&ordered_sums)) {
2657 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
2658 						   struct btrfs_ordered_sum,
2659 						   list);
2660 		ret = btrfs_csum_file_blocks(trans, log, sums);
2661 		BUG_ON(ret);
2662 		list_del(&sums->list);
2663 		kfree(sums);
2664 	}
2665 	return 0;
2666 }
2667 
2668 /* log a single inode in the tree log.
2669  * At least one parent directory for this inode must exist in the tree
2670  * or be logged already.
2671  *
2672  * Any items from this inode changed by the current transaction are copied
2673  * to the log tree.  An extra reference is taken on any extents in this
2674  * file, allowing us to avoid a whole pile of corner cases around logging
2675  * blocks that have been removed from the tree.
2676  *
2677  * See LOG_INODE_ALL and related defines for a description of what inode_only
2678  * does.
2679  *
2680  * This handles both files and directories.
2681  */
2682 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
2683 			     struct btrfs_root *root, struct inode *inode,
2684 			     int inode_only)
2685 {
2686 	struct btrfs_path *path;
2687 	struct btrfs_path *dst_path;
2688 	struct btrfs_key min_key;
2689 	struct btrfs_key max_key;
2690 	struct btrfs_root *log = root->log_root;
2691 	struct extent_buffer *src = NULL;
2692 	u32 size;
2693 	int ret;
2694 	int nritems;
2695 	int ins_start_slot = 0;
2696 	int ins_nr;
2697 
2698 	log = root->log_root;
2699 
2700 	path = btrfs_alloc_path();
2701 	dst_path = btrfs_alloc_path();
2702 
2703 	min_key.objectid = inode->i_ino;
2704 	min_key.type = BTRFS_INODE_ITEM_KEY;
2705 	min_key.offset = 0;
2706 
2707 	max_key.objectid = inode->i_ino;
2708 
2709 	/* today the code can only do partial logging of directories */
2710 	if (!S_ISDIR(inode->i_mode))
2711 	    inode_only = LOG_INODE_ALL;
2712 
2713 	if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
2714 		max_key.type = BTRFS_XATTR_ITEM_KEY;
2715 	else
2716 		max_key.type = (u8)-1;
2717 	max_key.offset = (u64)-1;
2718 
2719 	mutex_lock(&BTRFS_I(inode)->log_mutex);
2720 
2721 	/*
2722 	 * a brute force approach to making sure we get the most uptodate
2723 	 * copies of everything.
2724 	 */
2725 	if (S_ISDIR(inode->i_mode)) {
2726 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2727 
2728 		if (inode_only == LOG_INODE_EXISTS)
2729 			max_key_type = BTRFS_XATTR_ITEM_KEY;
2730 		ret = drop_objectid_items(trans, log, path,
2731 					  inode->i_ino, max_key_type);
2732 	} else {
2733 		ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
2734 	}
2735 	BUG_ON(ret);
2736 	path->keep_locks = 1;
2737 
2738 	while (1) {
2739 		ins_nr = 0;
2740 		ret = btrfs_search_forward(root, &min_key, &max_key,
2741 					   path, 0, trans->transid);
2742 		if (ret != 0)
2743 			break;
2744 again:
2745 		/* note, ins_nr might be > 0 here, cleanup outside the loop */
2746 		if (min_key.objectid != inode->i_ino)
2747 			break;
2748 		if (min_key.type > max_key.type)
2749 			break;
2750 
2751 		src = path->nodes[0];
2752 		size = btrfs_item_size_nr(src, path->slots[0]);
2753 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2754 			ins_nr++;
2755 			goto next_slot;
2756 		} else if (!ins_nr) {
2757 			ins_start_slot = path->slots[0];
2758 			ins_nr = 1;
2759 			goto next_slot;
2760 		}
2761 
2762 		ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2763 				 ins_nr, inode_only);
2764 		BUG_ON(ret);
2765 		ins_nr = 1;
2766 		ins_start_slot = path->slots[0];
2767 next_slot:
2768 
2769 		nritems = btrfs_header_nritems(path->nodes[0]);
2770 		path->slots[0]++;
2771 		if (path->slots[0] < nritems) {
2772 			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2773 					      path->slots[0]);
2774 			goto again;
2775 		}
2776 		if (ins_nr) {
2777 			ret = copy_items(trans, log, dst_path, src,
2778 					 ins_start_slot,
2779 					 ins_nr, inode_only);
2780 			BUG_ON(ret);
2781 			ins_nr = 0;
2782 		}
2783 		btrfs_release_path(root, path);
2784 
2785 		if (min_key.offset < (u64)-1)
2786 			min_key.offset++;
2787 		else if (min_key.type < (u8)-1)
2788 			min_key.type++;
2789 		else if (min_key.objectid < (u64)-1)
2790 			min_key.objectid++;
2791 		else
2792 			break;
2793 	}
2794 	if (ins_nr) {
2795 		ret = copy_items(trans, log, dst_path, src,
2796 				 ins_start_slot,
2797 				 ins_nr, inode_only);
2798 		BUG_ON(ret);
2799 		ins_nr = 0;
2800 	}
2801 	WARN_ON(ins_nr);
2802 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
2803 		btrfs_release_path(root, path);
2804 		btrfs_release_path(log, dst_path);
2805 		ret = log_directory_changes(trans, root, inode, path, dst_path);
2806 		BUG_ON(ret);
2807 	}
2808 	BTRFS_I(inode)->logged_trans = trans->transid;
2809 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
2810 
2811 	btrfs_free_path(path);
2812 	btrfs_free_path(dst_path);
2813 	return 0;
2814 }
2815 
2816 /*
2817  * follow the dentry parent pointers up the chain and see if any
2818  * of the directories in it require a full commit before they can
2819  * be logged.  Returns zero if nothing special needs to be done or 1 if
2820  * a full commit is required.
2821  */
2822 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
2823 					       struct inode *inode,
2824 					       struct dentry *parent,
2825 					       struct super_block *sb,
2826 					       u64 last_committed)
2827 {
2828 	int ret = 0;
2829 	struct btrfs_root *root;
2830 
2831 	/*
2832 	 * for regular files, if its inode is already on disk, we don't
2833 	 * have to worry about the parents at all.  This is because
2834 	 * we can use the last_unlink_trans field to record renames
2835 	 * and other fun in this file.
2836 	 */
2837 	if (S_ISREG(inode->i_mode) &&
2838 	    BTRFS_I(inode)->generation <= last_committed &&
2839 	    BTRFS_I(inode)->last_unlink_trans <= last_committed)
2840 			goto out;
2841 
2842 	if (!S_ISDIR(inode->i_mode)) {
2843 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2844 			goto out;
2845 		inode = parent->d_inode;
2846 	}
2847 
2848 	while (1) {
2849 		BTRFS_I(inode)->logged_trans = trans->transid;
2850 		smp_mb();
2851 
2852 		if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
2853 			root = BTRFS_I(inode)->root;
2854 
2855 			/*
2856 			 * make sure any commits to the log are forced
2857 			 * to be full commits
2858 			 */
2859 			root->fs_info->last_trans_log_full_commit =
2860 				trans->transid;
2861 			ret = 1;
2862 			break;
2863 		}
2864 
2865 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2866 			break;
2867 
2868 		if (IS_ROOT(parent))
2869 			break;
2870 
2871 		parent = parent->d_parent;
2872 		inode = parent->d_inode;
2873 
2874 	}
2875 out:
2876 	return ret;
2877 }
2878 
2879 static int inode_in_log(struct btrfs_trans_handle *trans,
2880 		 struct inode *inode)
2881 {
2882 	struct btrfs_root *root = BTRFS_I(inode)->root;
2883 	int ret = 0;
2884 
2885 	mutex_lock(&root->log_mutex);
2886 	if (BTRFS_I(inode)->logged_trans == trans->transid &&
2887 	    BTRFS_I(inode)->last_sub_trans <= root->last_log_commit)
2888 		ret = 1;
2889 	mutex_unlock(&root->log_mutex);
2890 	return ret;
2891 }
2892 
2893 
2894 /*
2895  * helper function around btrfs_log_inode to make sure newly created
2896  * parent directories also end up in the log.  A minimal inode and backref
2897  * only logging is done of any parent directories that are older than
2898  * the last committed transaction
2899  */
2900 int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
2901 		    struct btrfs_root *root, struct inode *inode,
2902 		    struct dentry *parent, int exists_only)
2903 {
2904 	int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
2905 	struct super_block *sb;
2906 	int ret = 0;
2907 	u64 last_committed = root->fs_info->last_trans_committed;
2908 
2909 	sb = inode->i_sb;
2910 
2911 	if (btrfs_test_opt(root, NOTREELOG)) {
2912 		ret = 1;
2913 		goto end_no_trans;
2914 	}
2915 
2916 	if (root->fs_info->last_trans_log_full_commit >
2917 	    root->fs_info->last_trans_committed) {
2918 		ret = 1;
2919 		goto end_no_trans;
2920 	}
2921 
2922 	if (root != BTRFS_I(inode)->root ||
2923 	    btrfs_root_refs(&root->root_item) == 0) {
2924 		ret = 1;
2925 		goto end_no_trans;
2926 	}
2927 
2928 	ret = check_parent_dirs_for_sync(trans, inode, parent,
2929 					 sb, last_committed);
2930 	if (ret)
2931 		goto end_no_trans;
2932 
2933 	if (inode_in_log(trans, inode)) {
2934 		ret = BTRFS_NO_LOG_SYNC;
2935 		goto end_no_trans;
2936 	}
2937 
2938 	start_log_trans(trans, root);
2939 
2940 	ret = btrfs_log_inode(trans, root, inode, inode_only);
2941 	BUG_ON(ret);
2942 
2943 	/*
2944 	 * for regular files, if its inode is already on disk, we don't
2945 	 * have to worry about the parents at all.  This is because
2946 	 * we can use the last_unlink_trans field to record renames
2947 	 * and other fun in this file.
2948 	 */
2949 	if (S_ISREG(inode->i_mode) &&
2950 	    BTRFS_I(inode)->generation <= last_committed &&
2951 	    BTRFS_I(inode)->last_unlink_trans <= last_committed)
2952 			goto no_parent;
2953 
2954 	inode_only = LOG_INODE_EXISTS;
2955 	while (1) {
2956 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2957 			break;
2958 
2959 		inode = parent->d_inode;
2960 		if (root != BTRFS_I(inode)->root)
2961 			break;
2962 
2963 		if (BTRFS_I(inode)->generation >
2964 		    root->fs_info->last_trans_committed) {
2965 			ret = btrfs_log_inode(trans, root, inode, inode_only);
2966 			BUG_ON(ret);
2967 		}
2968 		if (IS_ROOT(parent))
2969 			break;
2970 
2971 		parent = parent->d_parent;
2972 	}
2973 no_parent:
2974 	ret = 0;
2975 	btrfs_end_log_trans(root);
2976 end_no_trans:
2977 	return ret;
2978 }
2979 
2980 /*
2981  * it is not safe to log dentry if the chunk root has added new
2982  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
2983  * If this returns 1, you must commit the transaction to safely get your
2984  * data on disk.
2985  */
2986 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
2987 			  struct btrfs_root *root, struct dentry *dentry)
2988 {
2989 	return btrfs_log_inode_parent(trans, root, dentry->d_inode,
2990 				      dentry->d_parent, 0);
2991 }
2992 
2993 /*
2994  * should be called during mount to recover any replay any log trees
2995  * from the FS
2996  */
2997 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
2998 {
2999 	int ret;
3000 	struct btrfs_path *path;
3001 	struct btrfs_trans_handle *trans;
3002 	struct btrfs_key key;
3003 	struct btrfs_key found_key;
3004 	struct btrfs_key tmp_key;
3005 	struct btrfs_root *log;
3006 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
3007 	struct walk_control wc = {
3008 		.process_func = process_one_buffer,
3009 		.stage = 0,
3010 	};
3011 
3012 	fs_info->log_root_recovering = 1;
3013 	path = btrfs_alloc_path();
3014 	BUG_ON(!path);
3015 
3016 	trans = btrfs_start_transaction(fs_info->tree_root, 1);
3017 
3018 	wc.trans = trans;
3019 	wc.pin = 1;
3020 
3021 	walk_log_tree(trans, log_root_tree, &wc);
3022 
3023 again:
3024 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
3025 	key.offset = (u64)-1;
3026 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
3027 
3028 	while (1) {
3029 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
3030 		if (ret < 0)
3031 			break;
3032 		if (ret > 0) {
3033 			if (path->slots[0] == 0)
3034 				break;
3035 			path->slots[0]--;
3036 		}
3037 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3038 				      path->slots[0]);
3039 		btrfs_release_path(log_root_tree, path);
3040 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
3041 			break;
3042 
3043 		log = btrfs_read_fs_root_no_radix(log_root_tree,
3044 						  &found_key);
3045 		BUG_ON(!log);
3046 
3047 
3048 		tmp_key.objectid = found_key.offset;
3049 		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
3050 		tmp_key.offset = (u64)-1;
3051 
3052 		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
3053 		BUG_ON(!wc.replay_dest);
3054 
3055 		wc.replay_dest->log_root = log;
3056 		btrfs_record_root_in_trans(trans, wc.replay_dest);
3057 		ret = walk_log_tree(trans, log, &wc);
3058 		BUG_ON(ret);
3059 
3060 		if (wc.stage == LOG_WALK_REPLAY_ALL) {
3061 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
3062 						      path);
3063 			BUG_ON(ret);
3064 		}
3065 
3066 		key.offset = found_key.offset - 1;
3067 		wc.replay_dest->log_root = NULL;
3068 		free_extent_buffer(log->node);
3069 		free_extent_buffer(log->commit_root);
3070 		kfree(log);
3071 
3072 		if (found_key.offset == 0)
3073 			break;
3074 	}
3075 	btrfs_release_path(log_root_tree, path);
3076 
3077 	/* step one is to pin it all, step two is to replay just inodes */
3078 	if (wc.pin) {
3079 		wc.pin = 0;
3080 		wc.process_func = replay_one_buffer;
3081 		wc.stage = LOG_WALK_REPLAY_INODES;
3082 		goto again;
3083 	}
3084 	/* step three is to replay everything */
3085 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
3086 		wc.stage++;
3087 		goto again;
3088 	}
3089 
3090 	btrfs_free_path(path);
3091 
3092 	free_extent_buffer(log_root_tree->node);
3093 	log_root_tree->log_root = NULL;
3094 	fs_info->log_root_recovering = 0;
3095 
3096 	/* step 4: commit the transaction, which also unpins the blocks */
3097 	btrfs_commit_transaction(trans, fs_info->tree_root);
3098 
3099 	kfree(log_root_tree);
3100 	return 0;
3101 }
3102 
3103 /*
3104  * there are some corner cases where we want to force a full
3105  * commit instead of allowing a directory to be logged.
3106  *
3107  * They revolve around files there were unlinked from the directory, and
3108  * this function updates the parent directory so that a full commit is
3109  * properly done if it is fsync'd later after the unlinks are done.
3110  */
3111 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
3112 			     struct inode *dir, struct inode *inode,
3113 			     int for_rename)
3114 {
3115 	/*
3116 	 * when we're logging a file, if it hasn't been renamed
3117 	 * or unlinked, and its inode is fully committed on disk,
3118 	 * we don't have to worry about walking up the directory chain
3119 	 * to log its parents.
3120 	 *
3121 	 * So, we use the last_unlink_trans field to put this transid
3122 	 * into the file.  When the file is logged we check it and
3123 	 * don't log the parents if the file is fully on disk.
3124 	 */
3125 	if (S_ISREG(inode->i_mode))
3126 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
3127 
3128 	/*
3129 	 * if this directory was already logged any new
3130 	 * names for this file/dir will get recorded
3131 	 */
3132 	smp_mb();
3133 	if (BTRFS_I(dir)->logged_trans == trans->transid)
3134 		return;
3135 
3136 	/*
3137 	 * if the inode we're about to unlink was logged,
3138 	 * the log will be properly updated for any new names
3139 	 */
3140 	if (BTRFS_I(inode)->logged_trans == trans->transid)
3141 		return;
3142 
3143 	/*
3144 	 * when renaming files across directories, if the directory
3145 	 * there we're unlinking from gets fsync'd later on, there's
3146 	 * no way to find the destination directory later and fsync it
3147 	 * properly.  So, we have to be conservative and force commits
3148 	 * so the new name gets discovered.
3149 	 */
3150 	if (for_rename)
3151 		goto record;
3152 
3153 	/* we can safely do the unlink without any special recording */
3154 	return;
3155 
3156 record:
3157 	BTRFS_I(dir)->last_unlink_trans = trans->transid;
3158 }
3159 
3160 /*
3161  * Call this after adding a new name for a file and it will properly
3162  * update the log to reflect the new name.
3163  *
3164  * It will return zero if all goes well, and it will return 1 if a
3165  * full transaction commit is required.
3166  */
3167 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
3168 			struct inode *inode, struct inode *old_dir,
3169 			struct dentry *parent)
3170 {
3171 	struct btrfs_root * root = BTRFS_I(inode)->root;
3172 
3173 	/*
3174 	 * this will force the logging code to walk the dentry chain
3175 	 * up for the file
3176 	 */
3177 	if (S_ISREG(inode->i_mode))
3178 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
3179 
3180 	/*
3181 	 * if this inode hasn't been logged and directory we're renaming it
3182 	 * from hasn't been logged, we don't need to log it
3183 	 */
3184 	if (BTRFS_I(inode)->logged_trans <=
3185 	    root->fs_info->last_trans_committed &&
3186 	    (!old_dir || BTRFS_I(old_dir)->logged_trans <=
3187 		    root->fs_info->last_trans_committed))
3188 		return 0;
3189 
3190 	return btrfs_log_inode_parent(trans, root, inode, parent, 1);
3191 }
3192 
3193