1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/blkdev.h> 9 #include <linux/list_sort.h> 10 #include <linux/iversion.h> 11 #include "misc.h" 12 #include "ctree.h" 13 #include "tree-log.h" 14 #include "disk-io.h" 15 #include "locking.h" 16 #include "backref.h" 17 #include "compression.h" 18 #include "qgroup.h" 19 #include "block-group.h" 20 #include "space-info.h" 21 #include "inode-item.h" 22 #include "fs.h" 23 #include "accessors.h" 24 #include "extent-tree.h" 25 #include "root-tree.h" 26 #include "dir-item.h" 27 #include "file-item.h" 28 #include "file.h" 29 #include "orphan.h" 30 #include "tree-checker.h" 31 32 #define MAX_CONFLICT_INODES 10 33 34 /* magic values for the inode_only field in btrfs_log_inode: 35 * 36 * LOG_INODE_ALL means to log everything 37 * LOG_INODE_EXISTS means to log just enough to recreate the inode 38 * during log replay 39 */ 40 enum { 41 LOG_INODE_ALL, 42 LOG_INODE_EXISTS, 43 }; 44 45 /* 46 * directory trouble cases 47 * 48 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync 49 * log, we must force a full commit before doing an fsync of the directory 50 * where the unlink was done. 51 * ---> record transid of last unlink/rename per directory 52 * 53 * mkdir foo/some_dir 54 * normal commit 55 * rename foo/some_dir foo2/some_dir 56 * mkdir foo/some_dir 57 * fsync foo/some_dir/some_file 58 * 59 * The fsync above will unlink the original some_dir without recording 60 * it in its new location (foo2). After a crash, some_dir will be gone 61 * unless the fsync of some_file forces a full commit 62 * 63 * 2) we must log any new names for any file or dir that is in the fsync 64 * log. ---> check inode while renaming/linking. 65 * 66 * 2a) we must log any new names for any file or dir during rename 67 * when the directory they are being removed from was logged. 68 * ---> check inode and old parent dir during rename 69 * 70 * 2a is actually the more important variant. With the extra logging 71 * a crash might unlink the old name without recreating the new one 72 * 73 * 3) after a crash, we must go through any directories with a link count 74 * of zero and redo the rm -rf 75 * 76 * mkdir f1/foo 77 * normal commit 78 * rm -rf f1/foo 79 * fsync(f1) 80 * 81 * The directory f1 was fully removed from the FS, but fsync was never 82 * called on f1, only its parent dir. After a crash the rm -rf must 83 * be replayed. This must be able to recurse down the entire 84 * directory tree. The inode link count fixup code takes care of the 85 * ugly details. 86 */ 87 88 /* 89 * stages for the tree walking. The first 90 * stage (0) is to only pin down the blocks we find 91 * the second stage (1) is to make sure that all the inodes 92 * we find in the log are created in the subvolume. 93 * 94 * The last stage is to deal with directories and links and extents 95 * and all the other fun semantics 96 */ 97 enum { 98 LOG_WALK_PIN_ONLY, 99 LOG_WALK_REPLAY_INODES, 100 LOG_WALK_REPLAY_DIR_INDEX, 101 LOG_WALK_REPLAY_ALL, 102 }; 103 104 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 105 struct btrfs_inode *inode, 106 int inode_only, 107 struct btrfs_log_ctx *ctx); 108 static int link_to_fixup_dir(struct btrfs_trans_handle *trans, 109 struct btrfs_root *root, 110 struct btrfs_path *path, u64 objectid); 111 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 112 struct btrfs_root *root, 113 struct btrfs_root *log, 114 struct btrfs_path *path, 115 u64 dirid, bool del_all); 116 static void wait_log_commit(struct btrfs_root *root, int transid); 117 118 /* 119 * tree logging is a special write ahead log used to make sure that 120 * fsyncs and O_SYNCs can happen without doing full tree commits. 121 * 122 * Full tree commits are expensive because they require commonly 123 * modified blocks to be recowed, creating many dirty pages in the 124 * extent tree an 4x-6x higher write load than ext3. 125 * 126 * Instead of doing a tree commit on every fsync, we use the 127 * key ranges and transaction ids to find items for a given file or directory 128 * that have changed in this transaction. Those items are copied into 129 * a special tree (one per subvolume root), that tree is written to disk 130 * and then the fsync is considered complete. 131 * 132 * After a crash, items are copied out of the log-tree back into the 133 * subvolume tree. Any file data extents found are recorded in the extent 134 * allocation tree, and the log-tree freed. 135 * 136 * The log tree is read three times, once to pin down all the extents it is 137 * using in ram and once, once to create all the inodes logged in the tree 138 * and once to do all the other items. 139 */ 140 141 static struct btrfs_inode *btrfs_iget_logging(u64 objectid, struct btrfs_root *root) 142 { 143 unsigned int nofs_flag; 144 struct btrfs_inode *inode; 145 146 /* Only meant to be called for subvolume roots and not for log roots. */ 147 ASSERT(btrfs_is_fstree(btrfs_root_id(root))); 148 149 /* 150 * We're holding a transaction handle whether we are logging or 151 * replaying a log tree, so we must make sure NOFS semantics apply 152 * because btrfs_alloc_inode() may be triggered and it uses GFP_KERNEL 153 * to allocate an inode, which can recurse back into the filesystem and 154 * attempt a transaction commit, resulting in a deadlock. 155 */ 156 nofs_flag = memalloc_nofs_save(); 157 inode = btrfs_iget(objectid, root); 158 memalloc_nofs_restore(nofs_flag); 159 160 return inode; 161 } 162 163 /* 164 * start a sub transaction and setup the log tree 165 * this increments the log tree writer count to make the people 166 * syncing the tree wait for us to finish 167 */ 168 static int start_log_trans(struct btrfs_trans_handle *trans, 169 struct btrfs_root *root, 170 struct btrfs_log_ctx *ctx) 171 { 172 struct btrfs_fs_info *fs_info = root->fs_info; 173 struct btrfs_root *tree_root = fs_info->tree_root; 174 const bool zoned = btrfs_is_zoned(fs_info); 175 int ret = 0; 176 bool created = false; 177 178 /* 179 * First check if the log root tree was already created. If not, create 180 * it before locking the root's log_mutex, just to keep lockdep happy. 181 */ 182 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) { 183 mutex_lock(&tree_root->log_mutex); 184 if (!fs_info->log_root_tree) { 185 ret = btrfs_init_log_root_tree(trans, fs_info); 186 if (!ret) { 187 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state); 188 created = true; 189 } 190 } 191 mutex_unlock(&tree_root->log_mutex); 192 if (ret) 193 return ret; 194 } 195 196 mutex_lock(&root->log_mutex); 197 198 again: 199 if (root->log_root) { 200 int index = (root->log_transid + 1) % 2; 201 202 if (btrfs_need_log_full_commit(trans)) { 203 ret = BTRFS_LOG_FORCE_COMMIT; 204 goto out; 205 } 206 207 if (zoned && atomic_read(&root->log_commit[index])) { 208 wait_log_commit(root, root->log_transid - 1); 209 goto again; 210 } 211 212 if (!root->log_start_pid) { 213 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 214 root->log_start_pid = current->pid; 215 } else if (root->log_start_pid != current->pid) { 216 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 217 } 218 } else { 219 /* 220 * This means fs_info->log_root_tree was already created 221 * for some other FS trees. Do the full commit not to mix 222 * nodes from multiple log transactions to do sequential 223 * writing. 224 */ 225 if (zoned && !created) { 226 ret = BTRFS_LOG_FORCE_COMMIT; 227 goto out; 228 } 229 230 ret = btrfs_add_log_tree(trans, root); 231 if (ret) 232 goto out; 233 234 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state); 235 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 236 root->log_start_pid = current->pid; 237 } 238 239 atomic_inc(&root->log_writers); 240 if (!ctx->logging_new_name) { 241 int index = root->log_transid % 2; 242 list_add_tail(&ctx->list, &root->log_ctxs[index]); 243 ctx->log_transid = root->log_transid; 244 } 245 246 out: 247 mutex_unlock(&root->log_mutex); 248 return ret; 249 } 250 251 /* 252 * returns 0 if there was a log transaction running and we were able 253 * to join, or returns -ENOENT if there were not transactions 254 * in progress 255 */ 256 static int join_running_log_trans(struct btrfs_root *root) 257 { 258 const bool zoned = btrfs_is_zoned(root->fs_info); 259 int ret = -ENOENT; 260 261 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state)) 262 return ret; 263 264 mutex_lock(&root->log_mutex); 265 again: 266 if (root->log_root) { 267 int index = (root->log_transid + 1) % 2; 268 269 ret = 0; 270 if (zoned && atomic_read(&root->log_commit[index])) { 271 wait_log_commit(root, root->log_transid - 1); 272 goto again; 273 } 274 atomic_inc(&root->log_writers); 275 } 276 mutex_unlock(&root->log_mutex); 277 return ret; 278 } 279 280 /* 281 * This either makes the current running log transaction wait 282 * until you call btrfs_end_log_trans() or it makes any future 283 * log transactions wait until you call btrfs_end_log_trans() 284 */ 285 void btrfs_pin_log_trans(struct btrfs_root *root) 286 { 287 atomic_inc(&root->log_writers); 288 } 289 290 /* 291 * indicate we're done making changes to the log tree 292 * and wake up anyone waiting to do a sync 293 */ 294 void btrfs_end_log_trans(struct btrfs_root *root) 295 { 296 if (atomic_dec_and_test(&root->log_writers)) { 297 /* atomic_dec_and_test implies a barrier */ 298 cond_wake_up_nomb(&root->log_writer_wait); 299 } 300 } 301 302 /* 303 * the walk control struct is used to pass state down the chain when 304 * processing the log tree. The stage field tells us which part 305 * of the log tree processing we are currently doing. The others 306 * are state fields used for that specific part 307 */ 308 struct walk_control { 309 /* should we free the extent on disk when done? This is used 310 * at transaction commit time while freeing a log tree 311 */ 312 int free; 313 314 /* pin only walk, we record which extents on disk belong to the 315 * log trees 316 */ 317 int pin; 318 319 /* what stage of the replay code we're currently in */ 320 int stage; 321 322 /* 323 * Ignore any items from the inode currently being processed. Needs 324 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in 325 * the LOG_WALK_REPLAY_INODES stage. 326 */ 327 bool ignore_cur_inode; 328 329 /* the root we are currently replaying */ 330 struct btrfs_root *replay_dest; 331 332 /* the trans handle for the current replay */ 333 struct btrfs_trans_handle *trans; 334 335 /* the function that gets used to process blocks we find in the 336 * tree. Note the extent_buffer might not be up to date when it is 337 * passed in, and it must be checked or read if you need the data 338 * inside it 339 */ 340 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb, 341 struct walk_control *wc, u64 gen, int level); 342 }; 343 344 /* 345 * process_func used to pin down extents, write them or wait on them 346 */ 347 static int process_one_buffer(struct btrfs_root *log, 348 struct extent_buffer *eb, 349 struct walk_control *wc, u64 gen, int level) 350 { 351 struct btrfs_fs_info *fs_info = log->fs_info; 352 int ret = 0; 353 354 /* 355 * If this fs is mixed then we need to be able to process the leaves to 356 * pin down any logged extents, so we have to read the block. 357 */ 358 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 359 struct btrfs_tree_parent_check check = { 360 .level = level, 361 .transid = gen 362 }; 363 364 ret = btrfs_read_extent_buffer(eb, &check); 365 if (ret) 366 return ret; 367 } 368 369 if (wc->pin) { 370 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb); 371 if (ret) 372 return ret; 373 374 if (btrfs_buffer_uptodate(eb, gen, 0) && 375 btrfs_header_level(eb) == 0) 376 ret = btrfs_exclude_logged_extents(eb); 377 } 378 return ret; 379 } 380 381 /* 382 * Item overwrite used by log replay. The given eb, slot and key all refer to 383 * the source data we are copying out. 384 * 385 * The given root is for the tree we are copying into, and path is a scratch 386 * path for use in this function (it should be released on entry and will be 387 * released on exit). 388 * 389 * If the key is already in the destination tree the existing item is 390 * overwritten. If the existing item isn't big enough, it is extended. 391 * If it is too large, it is truncated. 392 * 393 * If the key isn't in the destination yet, a new item is inserted. 394 */ 395 static int overwrite_item(struct btrfs_trans_handle *trans, 396 struct btrfs_root *root, 397 struct btrfs_path *path, 398 struct extent_buffer *eb, int slot, 399 struct btrfs_key *key) 400 { 401 int ret; 402 u32 item_size; 403 u64 saved_i_size = 0; 404 int save_old_i_size = 0; 405 unsigned long src_ptr; 406 unsigned long dst_ptr; 407 struct extent_buffer *dst_eb; 408 int dst_slot; 409 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY; 410 411 /* 412 * This is only used during log replay, so the root is always from a 413 * fs/subvolume tree. In case we ever need to support a log root, then 414 * we'll have to clone the leaf in the path, release the path and use 415 * the leaf before writing into the log tree. See the comments at 416 * copy_items() for more details. 417 */ 418 ASSERT(btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID); 419 420 item_size = btrfs_item_size(eb, slot); 421 src_ptr = btrfs_item_ptr_offset(eb, slot); 422 423 /* Look for the key in the destination tree. */ 424 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 425 if (ret < 0) 426 return ret; 427 428 dst_eb = path->nodes[0]; 429 dst_slot = path->slots[0]; 430 431 if (ret == 0) { 432 char *src_copy; 433 const u32 dst_size = btrfs_item_size(dst_eb, dst_slot); 434 435 if (dst_size != item_size) 436 goto insert; 437 438 if (item_size == 0) { 439 btrfs_release_path(path); 440 return 0; 441 } 442 src_copy = kmalloc(item_size, GFP_NOFS); 443 if (!src_copy) { 444 btrfs_release_path(path); 445 return -ENOMEM; 446 } 447 448 read_extent_buffer(eb, src_copy, src_ptr, item_size); 449 dst_ptr = btrfs_item_ptr_offset(dst_eb, dst_slot); 450 ret = memcmp_extent_buffer(dst_eb, src_copy, dst_ptr, item_size); 451 452 kfree(src_copy); 453 /* 454 * they have the same contents, just return, this saves 455 * us from cowing blocks in the destination tree and doing 456 * extra writes that may not have been done by a previous 457 * sync 458 */ 459 if (ret == 0) { 460 btrfs_release_path(path); 461 return 0; 462 } 463 464 /* 465 * We need to load the old nbytes into the inode so when we 466 * replay the extents we've logged we get the right nbytes. 467 */ 468 if (inode_item) { 469 struct btrfs_inode_item *item; 470 u64 nbytes; 471 u32 mode; 472 473 item = btrfs_item_ptr(dst_eb, dst_slot, 474 struct btrfs_inode_item); 475 nbytes = btrfs_inode_nbytes(dst_eb, item); 476 item = btrfs_item_ptr(eb, slot, 477 struct btrfs_inode_item); 478 btrfs_set_inode_nbytes(eb, item, nbytes); 479 480 /* 481 * If this is a directory we need to reset the i_size to 482 * 0 so that we can set it up properly when replaying 483 * the rest of the items in this log. 484 */ 485 mode = btrfs_inode_mode(eb, item); 486 if (S_ISDIR(mode)) 487 btrfs_set_inode_size(eb, item, 0); 488 } 489 } else if (inode_item) { 490 struct btrfs_inode_item *item; 491 u32 mode; 492 493 /* 494 * New inode, set nbytes to 0 so that the nbytes comes out 495 * properly when we replay the extents. 496 */ 497 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 498 btrfs_set_inode_nbytes(eb, item, 0); 499 500 /* 501 * If this is a directory we need to reset the i_size to 0 so 502 * that we can set it up properly when replaying the rest of 503 * the items in this log. 504 */ 505 mode = btrfs_inode_mode(eb, item); 506 if (S_ISDIR(mode)) 507 btrfs_set_inode_size(eb, item, 0); 508 } 509 insert: 510 btrfs_release_path(path); 511 /* try to insert the key into the destination tree */ 512 path->skip_release_on_error = 1; 513 ret = btrfs_insert_empty_item(trans, root, path, 514 key, item_size); 515 path->skip_release_on_error = 0; 516 517 dst_eb = path->nodes[0]; 518 dst_slot = path->slots[0]; 519 520 /* make sure any existing item is the correct size */ 521 if (ret == -EEXIST || ret == -EOVERFLOW) { 522 const u32 found_size = btrfs_item_size(dst_eb, dst_slot); 523 524 if (found_size > item_size) 525 btrfs_truncate_item(trans, path, item_size, 1); 526 else if (found_size < item_size) 527 btrfs_extend_item(trans, path, item_size - found_size); 528 } else if (ret) { 529 return ret; 530 } 531 dst_ptr = btrfs_item_ptr_offset(dst_eb, dst_slot); 532 533 /* don't overwrite an existing inode if the generation number 534 * was logged as zero. This is done when the tree logging code 535 * is just logging an inode to make sure it exists after recovery. 536 * 537 * Also, don't overwrite i_size on directories during replay. 538 * log replay inserts and removes directory items based on the 539 * state of the tree found in the subvolume, and i_size is modified 540 * as it goes 541 */ 542 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) { 543 struct btrfs_inode_item *src_item; 544 struct btrfs_inode_item *dst_item; 545 546 src_item = (struct btrfs_inode_item *)src_ptr; 547 dst_item = (struct btrfs_inode_item *)dst_ptr; 548 549 if (btrfs_inode_generation(eb, src_item) == 0) { 550 const u64 ino_size = btrfs_inode_size(eb, src_item); 551 552 /* 553 * For regular files an ino_size == 0 is used only when 554 * logging that an inode exists, as part of a directory 555 * fsync, and the inode wasn't fsynced before. In this 556 * case don't set the size of the inode in the fs/subvol 557 * tree, otherwise we would be throwing valid data away. 558 */ 559 if (S_ISREG(btrfs_inode_mode(eb, src_item)) && 560 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) && 561 ino_size != 0) 562 btrfs_set_inode_size(dst_eb, dst_item, ino_size); 563 goto no_copy; 564 } 565 566 if (S_ISDIR(btrfs_inode_mode(eb, src_item)) && 567 S_ISDIR(btrfs_inode_mode(dst_eb, dst_item))) { 568 save_old_i_size = 1; 569 saved_i_size = btrfs_inode_size(dst_eb, dst_item); 570 } 571 } 572 573 copy_extent_buffer(dst_eb, eb, dst_ptr, src_ptr, item_size); 574 575 if (save_old_i_size) { 576 struct btrfs_inode_item *dst_item; 577 578 dst_item = (struct btrfs_inode_item *)dst_ptr; 579 btrfs_set_inode_size(dst_eb, dst_item, saved_i_size); 580 } 581 582 /* make sure the generation is filled in */ 583 if (key->type == BTRFS_INODE_ITEM_KEY) { 584 struct btrfs_inode_item *dst_item; 585 586 dst_item = (struct btrfs_inode_item *)dst_ptr; 587 if (btrfs_inode_generation(dst_eb, dst_item) == 0) 588 btrfs_set_inode_generation(dst_eb, dst_item, trans->transid); 589 } 590 no_copy: 591 btrfs_release_path(path); 592 return 0; 593 } 594 595 static int read_alloc_one_name(struct extent_buffer *eb, void *start, int len, 596 struct fscrypt_str *name) 597 { 598 char *buf; 599 600 buf = kmalloc(len, GFP_NOFS); 601 if (!buf) 602 return -ENOMEM; 603 604 read_extent_buffer(eb, buf, (unsigned long)start, len); 605 name->name = buf; 606 name->len = len; 607 return 0; 608 } 609 610 /* replays a single extent in 'eb' at 'slot' with 'key' into the 611 * subvolume 'root'. path is released on entry and should be released 612 * on exit. 613 * 614 * extents in the log tree have not been allocated out of the extent 615 * tree yet. So, this completes the allocation, taking a reference 616 * as required if the extent already exists or creating a new extent 617 * if it isn't in the extent allocation tree yet. 618 * 619 * The extent is inserted into the file, dropping any existing extents 620 * from the file that overlap the new one. 621 */ 622 static noinline int replay_one_extent(struct btrfs_trans_handle *trans, 623 struct btrfs_root *root, 624 struct btrfs_path *path, 625 struct extent_buffer *eb, int slot, 626 struct btrfs_key *key) 627 { 628 struct btrfs_drop_extents_args drop_args = { 0 }; 629 struct btrfs_fs_info *fs_info = root->fs_info; 630 int found_type; 631 u64 extent_end; 632 u64 start = key->offset; 633 u64 nbytes = 0; 634 struct btrfs_file_extent_item *item; 635 struct btrfs_inode *inode = NULL; 636 unsigned long size; 637 int ret = 0; 638 639 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 640 found_type = btrfs_file_extent_type(eb, item); 641 642 if (found_type == BTRFS_FILE_EXTENT_REG || 643 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 644 nbytes = btrfs_file_extent_num_bytes(eb, item); 645 extent_end = start + nbytes; 646 647 /* 648 * We don't add to the inodes nbytes if we are prealloc or a 649 * hole. 650 */ 651 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 652 nbytes = 0; 653 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 654 size = btrfs_file_extent_ram_bytes(eb, item); 655 nbytes = btrfs_file_extent_ram_bytes(eb, item); 656 extent_end = ALIGN(start + size, 657 fs_info->sectorsize); 658 } else { 659 btrfs_err(fs_info, 660 "unexpected extent type=%d root=%llu inode=%llu offset=%llu", 661 found_type, btrfs_root_id(root), key->objectid, key->offset); 662 return -EUCLEAN; 663 } 664 665 inode = btrfs_iget_logging(key->objectid, root); 666 if (IS_ERR(inode)) 667 return PTR_ERR(inode); 668 669 /* 670 * first check to see if we already have this extent in the 671 * file. This must be done before the btrfs_drop_extents run 672 * so we don't try to drop this extent. 673 */ 674 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode), start, 0); 675 676 if (ret == 0 && 677 (found_type == BTRFS_FILE_EXTENT_REG || 678 found_type == BTRFS_FILE_EXTENT_PREALLOC)) { 679 struct btrfs_file_extent_item existing; 680 unsigned long ptr; 681 682 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 683 read_extent_buffer(path->nodes[0], &existing, ptr, sizeof(existing)); 684 685 /* 686 * we already have a pointer to this exact extent, 687 * we don't have to do anything 688 */ 689 if (memcmp_extent_buffer(eb, &existing, (unsigned long)item, 690 sizeof(existing)) == 0) { 691 btrfs_release_path(path); 692 goto out; 693 } 694 } 695 btrfs_release_path(path); 696 697 /* drop any overlapping extents */ 698 drop_args.start = start; 699 drop_args.end = extent_end; 700 drop_args.drop_cache = true; 701 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 702 if (ret) 703 goto out; 704 705 if (found_type == BTRFS_FILE_EXTENT_REG || 706 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 707 u64 offset; 708 unsigned long dest_offset; 709 struct btrfs_key ins; 710 711 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 && 712 btrfs_fs_incompat(fs_info, NO_HOLES)) 713 goto update_inode; 714 715 ret = btrfs_insert_empty_item(trans, root, path, key, 716 sizeof(*item)); 717 if (ret) 718 goto out; 719 dest_offset = btrfs_item_ptr_offset(path->nodes[0], 720 path->slots[0]); 721 copy_extent_buffer(path->nodes[0], eb, dest_offset, 722 (unsigned long)item, sizeof(*item)); 723 724 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item); 725 ins.type = BTRFS_EXTENT_ITEM_KEY; 726 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item); 727 offset = key->offset - btrfs_file_extent_offset(eb, item); 728 729 /* 730 * Manually record dirty extent, as here we did a shallow 731 * file extent item copy and skip normal backref update, 732 * but modifying extent tree all by ourselves. 733 * So need to manually record dirty extent for qgroup, 734 * as the owner of the file extent changed from log tree 735 * (doesn't affect qgroup) to fs/file tree(affects qgroup) 736 */ 737 ret = btrfs_qgroup_trace_extent(trans, 738 btrfs_file_extent_disk_bytenr(eb, item), 739 btrfs_file_extent_disk_num_bytes(eb, item)); 740 if (ret < 0) 741 goto out; 742 743 if (ins.objectid > 0) { 744 u64 csum_start; 745 u64 csum_end; 746 LIST_HEAD(ordered_sums); 747 748 /* 749 * is this extent already allocated in the extent 750 * allocation tree? If so, just add a reference 751 */ 752 ret = btrfs_lookup_data_extent(fs_info, ins.objectid, 753 ins.offset); 754 if (ret < 0) { 755 goto out; 756 } else if (ret == 0) { 757 struct btrfs_ref ref = { 758 .action = BTRFS_ADD_DELAYED_REF, 759 .bytenr = ins.objectid, 760 .num_bytes = ins.offset, 761 .owning_root = btrfs_root_id(root), 762 .ref_root = btrfs_root_id(root), 763 }; 764 btrfs_init_data_ref(&ref, key->objectid, offset, 765 0, false); 766 ret = btrfs_inc_extent_ref(trans, &ref); 767 if (ret) 768 goto out; 769 } else { 770 /* 771 * insert the extent pointer in the extent 772 * allocation tree 773 */ 774 ret = btrfs_alloc_logged_file_extent(trans, 775 btrfs_root_id(root), 776 key->objectid, offset, &ins); 777 if (ret) 778 goto out; 779 } 780 btrfs_release_path(path); 781 782 if (btrfs_file_extent_compression(eb, item)) { 783 csum_start = ins.objectid; 784 csum_end = csum_start + ins.offset; 785 } else { 786 csum_start = ins.objectid + 787 btrfs_file_extent_offset(eb, item); 788 csum_end = csum_start + 789 btrfs_file_extent_num_bytes(eb, item); 790 } 791 792 ret = btrfs_lookup_csums_list(root->log_root, 793 csum_start, csum_end - 1, 794 &ordered_sums, false); 795 if (ret < 0) 796 goto out; 797 ret = 0; 798 /* 799 * Now delete all existing cums in the csum root that 800 * cover our range. We do this because we can have an 801 * extent that is completely referenced by one file 802 * extent item and partially referenced by another 803 * file extent item (like after using the clone or 804 * extent_same ioctls). In this case if we end up doing 805 * the replay of the one that partially references the 806 * extent first, and we do not do the csum deletion 807 * below, we can get 2 csum items in the csum tree that 808 * overlap each other. For example, imagine our log has 809 * the two following file extent items: 810 * 811 * key (257 EXTENT_DATA 409600) 812 * extent data disk byte 12845056 nr 102400 813 * extent data offset 20480 nr 20480 ram 102400 814 * 815 * key (257 EXTENT_DATA 819200) 816 * extent data disk byte 12845056 nr 102400 817 * extent data offset 0 nr 102400 ram 102400 818 * 819 * Where the second one fully references the 100K extent 820 * that starts at disk byte 12845056, and the log tree 821 * has a single csum item that covers the entire range 822 * of the extent: 823 * 824 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 825 * 826 * After the first file extent item is replayed, the 827 * csum tree gets the following csum item: 828 * 829 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 830 * 831 * Which covers the 20K sub-range starting at offset 20K 832 * of our extent. Now when we replay the second file 833 * extent item, if we do not delete existing csum items 834 * that cover any of its blocks, we end up getting two 835 * csum items in our csum tree that overlap each other: 836 * 837 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 838 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 839 * 840 * Which is a problem, because after this anyone trying 841 * to lookup up for the checksum of any block of our 842 * extent starting at an offset of 40K or higher, will 843 * end up looking at the second csum item only, which 844 * does not contain the checksum for any block starting 845 * at offset 40K or higher of our extent. 846 */ 847 while (!list_empty(&ordered_sums)) { 848 struct btrfs_ordered_sum *sums; 849 struct btrfs_root *csum_root; 850 851 sums = list_first_entry(&ordered_sums, 852 struct btrfs_ordered_sum, 853 list); 854 csum_root = btrfs_csum_root(fs_info, 855 sums->logical); 856 if (!ret) 857 ret = btrfs_del_csums(trans, csum_root, 858 sums->logical, 859 sums->len); 860 if (!ret) 861 ret = btrfs_csum_file_blocks(trans, 862 csum_root, 863 sums); 864 list_del(&sums->list); 865 kfree(sums); 866 } 867 if (ret) 868 goto out; 869 } else { 870 btrfs_release_path(path); 871 } 872 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 873 /* inline extents are easy, we just overwrite them */ 874 ret = overwrite_item(trans, root, path, eb, slot, key); 875 if (ret) 876 goto out; 877 } 878 879 ret = btrfs_inode_set_file_extent_range(inode, start, extent_end - start); 880 if (ret) 881 goto out; 882 883 update_inode: 884 btrfs_update_inode_bytes(inode, nbytes, drop_args.bytes_found); 885 ret = btrfs_update_inode(trans, inode); 886 out: 887 iput(&inode->vfs_inode); 888 return ret; 889 } 890 891 static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans, 892 struct btrfs_inode *dir, 893 struct btrfs_inode *inode, 894 const struct fscrypt_str *name) 895 { 896 int ret; 897 898 ret = btrfs_unlink_inode(trans, dir, inode, name); 899 if (ret) 900 return ret; 901 /* 902 * Whenever we need to check if a name exists or not, we check the 903 * fs/subvolume tree. So after an unlink we must run delayed items, so 904 * that future checks for a name during log replay see that the name 905 * does not exists anymore. 906 */ 907 return btrfs_run_delayed_items(trans); 908 } 909 910 /* 911 * when cleaning up conflicts between the directory names in the 912 * subvolume, directory names in the log and directory names in the 913 * inode back references, we may have to unlink inodes from directories. 914 * 915 * This is a helper function to do the unlink of a specific directory 916 * item 917 */ 918 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans, 919 struct btrfs_path *path, 920 struct btrfs_inode *dir, 921 struct btrfs_dir_item *di) 922 { 923 struct btrfs_root *root = dir->root; 924 struct btrfs_inode *inode; 925 struct fscrypt_str name; 926 struct extent_buffer *leaf; 927 struct btrfs_key location; 928 int ret; 929 930 leaf = path->nodes[0]; 931 932 btrfs_dir_item_key_to_cpu(leaf, di, &location); 933 ret = read_alloc_one_name(leaf, di + 1, btrfs_dir_name_len(leaf, di), &name); 934 if (ret) 935 return -ENOMEM; 936 937 btrfs_release_path(path); 938 939 inode = btrfs_iget_logging(location.objectid, root); 940 if (IS_ERR(inode)) { 941 ret = PTR_ERR(inode); 942 inode = NULL; 943 goto out; 944 } 945 946 ret = link_to_fixup_dir(trans, root, path, location.objectid); 947 if (ret) 948 goto out; 949 950 ret = unlink_inode_for_log_replay(trans, dir, inode, &name); 951 out: 952 kfree(name.name); 953 if (inode) 954 iput(&inode->vfs_inode); 955 return ret; 956 } 957 958 /* 959 * See if a given name and sequence number found in an inode back reference are 960 * already in a directory and correctly point to this inode. 961 * 962 * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it 963 * exists. 964 */ 965 static noinline int inode_in_dir(struct btrfs_root *root, 966 struct btrfs_path *path, 967 u64 dirid, u64 objectid, u64 index, 968 struct fscrypt_str *name) 969 { 970 struct btrfs_dir_item *di; 971 struct btrfs_key location; 972 int ret = 0; 973 974 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid, 975 index, name, 0); 976 if (IS_ERR(di)) { 977 ret = PTR_ERR(di); 978 goto out; 979 } else if (di) { 980 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 981 if (location.objectid != objectid) 982 goto out; 983 } else { 984 goto out; 985 } 986 987 btrfs_release_path(path); 988 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, 0); 989 if (IS_ERR(di)) { 990 ret = PTR_ERR(di); 991 goto out; 992 } else if (di) { 993 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 994 if (location.objectid == objectid) 995 ret = 1; 996 } 997 out: 998 btrfs_release_path(path); 999 return ret; 1000 } 1001 1002 /* 1003 * helper function to check a log tree for a named back reference in 1004 * an inode. This is used to decide if a back reference that is 1005 * found in the subvolume conflicts with what we find in the log. 1006 * 1007 * inode backreferences may have multiple refs in a single item, 1008 * during replay we process one reference at a time, and we don't 1009 * want to delete valid links to a file from the subvolume if that 1010 * link is also in the log. 1011 */ 1012 static noinline int backref_in_log(struct btrfs_root *log, 1013 struct btrfs_key *key, 1014 u64 ref_objectid, 1015 const struct fscrypt_str *name) 1016 { 1017 struct btrfs_path *path; 1018 int ret; 1019 1020 path = btrfs_alloc_path(); 1021 if (!path) 1022 return -ENOMEM; 1023 1024 ret = btrfs_search_slot(NULL, log, key, path, 0, 0); 1025 if (ret < 0) { 1026 goto out; 1027 } else if (ret == 1) { 1028 ret = 0; 1029 goto out; 1030 } 1031 1032 if (key->type == BTRFS_INODE_EXTREF_KEY) 1033 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0], 1034 path->slots[0], 1035 ref_objectid, name); 1036 else 1037 ret = !!btrfs_find_name_in_backref(path->nodes[0], 1038 path->slots[0], name); 1039 out: 1040 btrfs_free_path(path); 1041 return ret; 1042 } 1043 1044 static int unlink_refs_not_in_log(struct btrfs_trans_handle *trans, 1045 struct btrfs_path *path, 1046 struct btrfs_root *log_root, 1047 struct btrfs_key *search_key, 1048 struct btrfs_inode *dir, 1049 struct btrfs_inode *inode, 1050 u64 parent_objectid) 1051 { 1052 struct extent_buffer *leaf = path->nodes[0]; 1053 unsigned long ptr; 1054 unsigned long ptr_end; 1055 1056 /* 1057 * Check all the names in this back reference to see if they are in the 1058 * log. If so, we allow them to stay otherwise they must be unlinked as 1059 * a conflict. 1060 */ 1061 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1062 ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]); 1063 while (ptr < ptr_end) { 1064 struct fscrypt_str victim_name; 1065 struct btrfs_inode_ref *victim_ref; 1066 int ret; 1067 1068 victim_ref = (struct btrfs_inode_ref *)ptr; 1069 ret = read_alloc_one_name(leaf, (victim_ref + 1), 1070 btrfs_inode_ref_name_len(leaf, victim_ref), 1071 &victim_name); 1072 if (ret) 1073 return ret; 1074 1075 ret = backref_in_log(log_root, search_key, parent_objectid, &victim_name); 1076 if (ret) { 1077 kfree(victim_name.name); 1078 if (ret < 0) 1079 return ret; 1080 ptr = (unsigned long)(victim_ref + 1) + victim_name.len; 1081 continue; 1082 } 1083 1084 inc_nlink(&inode->vfs_inode); 1085 btrfs_release_path(path); 1086 1087 ret = unlink_inode_for_log_replay(trans, dir, inode, &victim_name); 1088 kfree(victim_name.name); 1089 if (ret) 1090 return ret; 1091 return -EAGAIN; 1092 } 1093 1094 return 0; 1095 } 1096 1097 static int unlink_extrefs_not_in_log(struct btrfs_trans_handle *trans, 1098 struct btrfs_path *path, 1099 struct btrfs_root *root, 1100 struct btrfs_root *log_root, 1101 struct btrfs_key *search_key, 1102 struct btrfs_inode *inode, 1103 u64 inode_objectid, 1104 u64 parent_objectid) 1105 { 1106 struct extent_buffer *leaf = path->nodes[0]; 1107 const unsigned long base = btrfs_item_ptr_offset(leaf, path->slots[0]); 1108 const u32 item_size = btrfs_item_size(leaf, path->slots[0]); 1109 u32 cur_offset = 0; 1110 1111 while (cur_offset < item_size) { 1112 struct btrfs_inode_extref *extref; 1113 struct btrfs_inode *victim_parent; 1114 struct fscrypt_str victim_name; 1115 int ret; 1116 1117 extref = (struct btrfs_inode_extref *)(base + cur_offset); 1118 victim_name.len = btrfs_inode_extref_name_len(leaf, extref); 1119 1120 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid) 1121 goto next; 1122 1123 ret = read_alloc_one_name(leaf, &extref->name, victim_name.len, 1124 &victim_name); 1125 if (ret) 1126 return ret; 1127 1128 search_key->objectid = inode_objectid; 1129 search_key->type = BTRFS_INODE_EXTREF_KEY; 1130 search_key->offset = btrfs_extref_hash(parent_objectid, 1131 victim_name.name, 1132 victim_name.len); 1133 ret = backref_in_log(log_root, search_key, parent_objectid, &victim_name); 1134 if (ret) { 1135 kfree(victim_name.name); 1136 if (ret < 0) 1137 return ret; 1138 next: 1139 cur_offset += victim_name.len + sizeof(*extref); 1140 continue; 1141 } 1142 1143 victim_parent = btrfs_iget_logging(parent_objectid, root); 1144 if (IS_ERR(victim_parent)) { 1145 kfree(victim_name.name); 1146 return PTR_ERR(victim_parent); 1147 } 1148 1149 inc_nlink(&inode->vfs_inode); 1150 btrfs_release_path(path); 1151 1152 ret = unlink_inode_for_log_replay(trans, victim_parent, inode, 1153 &victim_name); 1154 iput(&victim_parent->vfs_inode); 1155 kfree(victim_name.name); 1156 if (ret) 1157 return ret; 1158 return -EAGAIN; 1159 } 1160 1161 return 0; 1162 } 1163 1164 static inline int __add_inode_ref(struct btrfs_trans_handle *trans, 1165 struct btrfs_root *root, 1166 struct btrfs_path *path, 1167 struct btrfs_root *log_root, 1168 struct btrfs_inode *dir, 1169 struct btrfs_inode *inode, 1170 u64 inode_objectid, u64 parent_objectid, 1171 u64 ref_index, struct fscrypt_str *name) 1172 { 1173 int ret; 1174 struct btrfs_dir_item *di; 1175 struct btrfs_key search_key; 1176 struct btrfs_inode_extref *extref; 1177 1178 again: 1179 /* Search old style refs */ 1180 search_key.objectid = inode_objectid; 1181 search_key.type = BTRFS_INODE_REF_KEY; 1182 search_key.offset = parent_objectid; 1183 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 1184 if (ret < 0) { 1185 return ret; 1186 } else if (ret == 0) { 1187 /* 1188 * Are we trying to overwrite a back ref for the root directory? 1189 * If so, we're done. 1190 */ 1191 if (search_key.objectid == search_key.offset) 1192 return 1; 1193 1194 ret = unlink_refs_not_in_log(trans, path, log_root, &search_key, 1195 dir, inode, parent_objectid); 1196 if (ret == -EAGAIN) 1197 goto again; 1198 else if (ret) 1199 return ret; 1200 } 1201 btrfs_release_path(path); 1202 1203 /* Same search but for extended refs */ 1204 extref = btrfs_lookup_inode_extref(root, path, name, inode_objectid, parent_objectid); 1205 if (IS_ERR(extref)) { 1206 return PTR_ERR(extref); 1207 } else if (extref) { 1208 ret = unlink_extrefs_not_in_log(trans, path, root, log_root, 1209 &search_key, inode, 1210 inode_objectid, parent_objectid); 1211 if (ret == -EAGAIN) 1212 goto again; 1213 else if (ret) 1214 return ret; 1215 } 1216 btrfs_release_path(path); 1217 1218 /* look for a conflicting sequence number */ 1219 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir), 1220 ref_index, name, 0); 1221 if (IS_ERR(di)) { 1222 return PTR_ERR(di); 1223 } else if (di) { 1224 ret = drop_one_dir_item(trans, path, dir, di); 1225 if (ret) 1226 return ret; 1227 } 1228 btrfs_release_path(path); 1229 1230 /* look for a conflicting name */ 1231 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), name, 0); 1232 if (IS_ERR(di)) { 1233 return PTR_ERR(di); 1234 } else if (di) { 1235 ret = drop_one_dir_item(trans, path, dir, di); 1236 if (ret) 1237 return ret; 1238 } 1239 btrfs_release_path(path); 1240 1241 return 0; 1242 } 1243 1244 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1245 struct fscrypt_str *name, u64 *index, 1246 u64 *parent_objectid) 1247 { 1248 struct btrfs_inode_extref *extref; 1249 int ret; 1250 1251 extref = (struct btrfs_inode_extref *)ref_ptr; 1252 1253 ret = read_alloc_one_name(eb, &extref->name, 1254 btrfs_inode_extref_name_len(eb, extref), name); 1255 if (ret) 1256 return ret; 1257 1258 if (index) 1259 *index = btrfs_inode_extref_index(eb, extref); 1260 if (parent_objectid) 1261 *parent_objectid = btrfs_inode_extref_parent(eb, extref); 1262 1263 return 0; 1264 } 1265 1266 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1267 struct fscrypt_str *name, u64 *index) 1268 { 1269 struct btrfs_inode_ref *ref; 1270 int ret; 1271 1272 ref = (struct btrfs_inode_ref *)ref_ptr; 1273 1274 ret = read_alloc_one_name(eb, ref + 1, btrfs_inode_ref_name_len(eb, ref), 1275 name); 1276 if (ret) 1277 return ret; 1278 1279 if (index) 1280 *index = btrfs_inode_ref_index(eb, ref); 1281 1282 return 0; 1283 } 1284 1285 /* 1286 * Take an inode reference item from the log tree and iterate all names from the 1287 * inode reference item in the subvolume tree with the same key (if it exists). 1288 * For any name that is not in the inode reference item from the log tree, do a 1289 * proper unlink of that name (that is, remove its entry from the inode 1290 * reference item and both dir index keys). 1291 */ 1292 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans, 1293 struct btrfs_root *root, 1294 struct btrfs_path *path, 1295 struct btrfs_inode *inode, 1296 struct extent_buffer *log_eb, 1297 int log_slot, 1298 struct btrfs_key *key) 1299 { 1300 int ret; 1301 unsigned long ref_ptr; 1302 unsigned long ref_end; 1303 struct extent_buffer *eb; 1304 1305 again: 1306 btrfs_release_path(path); 1307 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 1308 if (ret > 0) { 1309 ret = 0; 1310 goto out; 1311 } 1312 if (ret < 0) 1313 goto out; 1314 1315 eb = path->nodes[0]; 1316 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]); 1317 ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]); 1318 while (ref_ptr < ref_end) { 1319 struct fscrypt_str name; 1320 u64 parent_id; 1321 1322 if (key->type == BTRFS_INODE_EXTREF_KEY) { 1323 ret = extref_get_fields(eb, ref_ptr, &name, 1324 NULL, &parent_id); 1325 } else { 1326 parent_id = key->offset; 1327 ret = ref_get_fields(eb, ref_ptr, &name, NULL); 1328 } 1329 if (ret) 1330 goto out; 1331 1332 if (key->type == BTRFS_INODE_EXTREF_KEY) 1333 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot, 1334 parent_id, &name); 1335 else 1336 ret = !!btrfs_find_name_in_backref(log_eb, log_slot, &name); 1337 1338 if (!ret) { 1339 struct btrfs_inode *dir; 1340 1341 btrfs_release_path(path); 1342 dir = btrfs_iget_logging(parent_id, root); 1343 if (IS_ERR(dir)) { 1344 ret = PTR_ERR(dir); 1345 kfree(name.name); 1346 goto out; 1347 } 1348 ret = unlink_inode_for_log_replay(trans, dir, inode, &name); 1349 kfree(name.name); 1350 iput(&dir->vfs_inode); 1351 if (ret) 1352 goto out; 1353 goto again; 1354 } 1355 1356 kfree(name.name); 1357 ref_ptr += name.len; 1358 if (key->type == BTRFS_INODE_EXTREF_KEY) 1359 ref_ptr += sizeof(struct btrfs_inode_extref); 1360 else 1361 ref_ptr += sizeof(struct btrfs_inode_ref); 1362 } 1363 ret = 0; 1364 out: 1365 btrfs_release_path(path); 1366 return ret; 1367 } 1368 1369 /* 1370 * replay one inode back reference item found in the log tree. 1371 * eb, slot and key refer to the buffer and key found in the log tree. 1372 * root is the destination we are replaying into, and path is for temp 1373 * use by this function. (it should be released on return). 1374 */ 1375 static noinline int add_inode_ref(struct btrfs_trans_handle *trans, 1376 struct btrfs_root *root, 1377 struct btrfs_root *log, 1378 struct btrfs_path *path, 1379 struct extent_buffer *eb, int slot, 1380 struct btrfs_key *key) 1381 { 1382 struct btrfs_inode *dir = NULL; 1383 struct btrfs_inode *inode = NULL; 1384 unsigned long ref_ptr; 1385 unsigned long ref_end; 1386 struct fscrypt_str name = { 0 }; 1387 int ret; 1388 const bool is_extref_item = (key->type == BTRFS_INODE_EXTREF_KEY); 1389 u64 parent_objectid; 1390 u64 inode_objectid; 1391 u64 ref_index = 0; 1392 int ref_struct_size; 1393 1394 ref_ptr = btrfs_item_ptr_offset(eb, slot); 1395 ref_end = ref_ptr + btrfs_item_size(eb, slot); 1396 1397 if (is_extref_item) { 1398 struct btrfs_inode_extref *r; 1399 1400 ref_struct_size = sizeof(struct btrfs_inode_extref); 1401 r = (struct btrfs_inode_extref *)ref_ptr; 1402 parent_objectid = btrfs_inode_extref_parent(eb, r); 1403 } else { 1404 ref_struct_size = sizeof(struct btrfs_inode_ref); 1405 parent_objectid = key->offset; 1406 } 1407 inode_objectid = key->objectid; 1408 1409 /* 1410 * it is possible that we didn't log all the parent directories 1411 * for a given inode. If we don't find the dir, just don't 1412 * copy the back ref in. The link count fixup code will take 1413 * care of the rest 1414 */ 1415 dir = btrfs_iget_logging(parent_objectid, root); 1416 if (IS_ERR(dir)) { 1417 ret = PTR_ERR(dir); 1418 if (ret == -ENOENT) 1419 ret = 0; 1420 dir = NULL; 1421 goto out; 1422 } 1423 1424 inode = btrfs_iget_logging(inode_objectid, root); 1425 if (IS_ERR(inode)) { 1426 ret = PTR_ERR(inode); 1427 inode = NULL; 1428 goto out; 1429 } 1430 1431 while (ref_ptr < ref_end) { 1432 if (is_extref_item) { 1433 ret = extref_get_fields(eb, ref_ptr, &name, 1434 &ref_index, &parent_objectid); 1435 if (ret) 1436 goto out; 1437 /* 1438 * parent object can change from one array 1439 * item to another. 1440 */ 1441 if (!dir) { 1442 dir = btrfs_iget_logging(parent_objectid, root); 1443 if (IS_ERR(dir)) { 1444 ret = PTR_ERR(dir); 1445 dir = NULL; 1446 /* 1447 * A new parent dir may have not been 1448 * logged and not exist in the subvolume 1449 * tree, see the comment above before 1450 * the loop when getting the first 1451 * parent dir. 1452 */ 1453 if (ret == -ENOENT) { 1454 /* 1455 * The next extref may refer to 1456 * another parent dir that 1457 * exists, so continue. 1458 */ 1459 ret = 0; 1460 goto next; 1461 } 1462 goto out; 1463 } 1464 } 1465 } else { 1466 ret = ref_get_fields(eb, ref_ptr, &name, &ref_index); 1467 if (ret) 1468 goto out; 1469 } 1470 1471 ret = inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode), 1472 ref_index, &name); 1473 if (ret < 0) { 1474 goto out; 1475 } else if (ret == 0) { 1476 /* 1477 * look for a conflicting back reference in the 1478 * metadata. if we find one we have to unlink that name 1479 * of the file before we add our new link. Later on, we 1480 * overwrite any existing back reference, and we don't 1481 * want to create dangling pointers in the directory. 1482 */ 1483 ret = __add_inode_ref(trans, root, path, log, dir, inode, 1484 inode_objectid, parent_objectid, 1485 ref_index, &name); 1486 if (ret) { 1487 if (ret == 1) 1488 ret = 0; 1489 goto out; 1490 } 1491 1492 /* insert our name */ 1493 ret = btrfs_add_link(trans, dir, inode, &name, 0, ref_index); 1494 if (ret) 1495 goto out; 1496 1497 ret = btrfs_update_inode(trans, inode); 1498 if (ret) 1499 goto out; 1500 } 1501 /* Else, ret == 1, we already have a perfect match, we're done. */ 1502 1503 next: 1504 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + name.len; 1505 kfree(name.name); 1506 name.name = NULL; 1507 if (is_extref_item && dir) { 1508 iput(&dir->vfs_inode); 1509 dir = NULL; 1510 } 1511 } 1512 1513 /* 1514 * Before we overwrite the inode reference item in the subvolume tree 1515 * with the item from the log tree, we must unlink all names from the 1516 * parent directory that are in the subvolume's tree inode reference 1517 * item, otherwise we end up with an inconsistent subvolume tree where 1518 * dir index entries exist for a name but there is no inode reference 1519 * item with the same name. 1520 */ 1521 ret = unlink_old_inode_refs(trans, root, path, inode, eb, slot, key); 1522 if (ret) 1523 goto out; 1524 1525 /* finally write the back reference in the inode */ 1526 ret = overwrite_item(trans, root, path, eb, slot, key); 1527 out: 1528 btrfs_release_path(path); 1529 kfree(name.name); 1530 if (dir) 1531 iput(&dir->vfs_inode); 1532 if (inode) 1533 iput(&inode->vfs_inode); 1534 return ret; 1535 } 1536 1537 static int count_inode_extrefs(struct btrfs_inode *inode, struct btrfs_path *path) 1538 { 1539 int ret = 0; 1540 int name_len; 1541 unsigned int nlink = 0; 1542 u32 item_size; 1543 u32 cur_offset = 0; 1544 u64 inode_objectid = btrfs_ino(inode); 1545 u64 offset = 0; 1546 unsigned long ptr; 1547 struct btrfs_inode_extref *extref; 1548 struct extent_buffer *leaf; 1549 1550 while (1) { 1551 ret = btrfs_find_one_extref(inode->root, inode_objectid, offset, 1552 path, &extref, &offset); 1553 if (ret) 1554 break; 1555 1556 leaf = path->nodes[0]; 1557 item_size = btrfs_item_size(leaf, path->slots[0]); 1558 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1559 cur_offset = 0; 1560 1561 while (cur_offset < item_size) { 1562 extref = (struct btrfs_inode_extref *) (ptr + cur_offset); 1563 name_len = btrfs_inode_extref_name_len(leaf, extref); 1564 1565 nlink++; 1566 1567 cur_offset += name_len + sizeof(*extref); 1568 } 1569 1570 offset++; 1571 btrfs_release_path(path); 1572 } 1573 btrfs_release_path(path); 1574 1575 if (ret < 0 && ret != -ENOENT) 1576 return ret; 1577 return nlink; 1578 } 1579 1580 static int count_inode_refs(struct btrfs_inode *inode, struct btrfs_path *path) 1581 { 1582 int ret; 1583 struct btrfs_key key; 1584 unsigned int nlink = 0; 1585 unsigned long ptr; 1586 unsigned long ptr_end; 1587 int name_len; 1588 u64 ino = btrfs_ino(inode); 1589 1590 key.objectid = ino; 1591 key.type = BTRFS_INODE_REF_KEY; 1592 key.offset = (u64)-1; 1593 1594 while (1) { 1595 ret = btrfs_search_slot(NULL, inode->root, &key, path, 0, 0); 1596 if (ret < 0) 1597 break; 1598 if (ret > 0) { 1599 if (path->slots[0] == 0) 1600 break; 1601 path->slots[0]--; 1602 } 1603 process_slot: 1604 btrfs_item_key_to_cpu(path->nodes[0], &key, 1605 path->slots[0]); 1606 if (key.objectid != ino || 1607 key.type != BTRFS_INODE_REF_KEY) 1608 break; 1609 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 1610 ptr_end = ptr + btrfs_item_size(path->nodes[0], 1611 path->slots[0]); 1612 while (ptr < ptr_end) { 1613 struct btrfs_inode_ref *ref; 1614 1615 ref = (struct btrfs_inode_ref *)ptr; 1616 name_len = btrfs_inode_ref_name_len(path->nodes[0], 1617 ref); 1618 ptr = (unsigned long)(ref + 1) + name_len; 1619 nlink++; 1620 } 1621 1622 if (key.offset == 0) 1623 break; 1624 if (path->slots[0] > 0) { 1625 path->slots[0]--; 1626 goto process_slot; 1627 } 1628 key.offset--; 1629 btrfs_release_path(path); 1630 } 1631 btrfs_release_path(path); 1632 1633 return nlink; 1634 } 1635 1636 /* 1637 * There are a few corners where the link count of the file can't 1638 * be properly maintained during replay. So, instead of adding 1639 * lots of complexity to the log code, we just scan the backrefs 1640 * for any file that has been through replay. 1641 * 1642 * The scan will update the link count on the inode to reflect the 1643 * number of back refs found. If it goes down to zero, the iput 1644 * will free the inode. 1645 */ 1646 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans, 1647 struct btrfs_inode *inode) 1648 { 1649 struct btrfs_root *root = inode->root; 1650 struct btrfs_path *path; 1651 int ret; 1652 u64 nlink = 0; 1653 const u64 ino = btrfs_ino(inode); 1654 1655 path = btrfs_alloc_path(); 1656 if (!path) 1657 return -ENOMEM; 1658 1659 ret = count_inode_refs(inode, path); 1660 if (ret < 0) 1661 goto out; 1662 1663 nlink = ret; 1664 1665 ret = count_inode_extrefs(inode, path); 1666 if (ret < 0) 1667 goto out; 1668 1669 nlink += ret; 1670 1671 ret = 0; 1672 1673 if (nlink != inode->vfs_inode.i_nlink) { 1674 set_nlink(&inode->vfs_inode, nlink); 1675 ret = btrfs_update_inode(trans, inode); 1676 if (ret) 1677 goto out; 1678 } 1679 if (S_ISDIR(inode->vfs_inode.i_mode)) 1680 inode->index_cnt = (u64)-1; 1681 1682 if (inode->vfs_inode.i_nlink == 0) { 1683 if (S_ISDIR(inode->vfs_inode.i_mode)) { 1684 ret = replay_dir_deletes(trans, root, NULL, path, ino, true); 1685 if (ret) 1686 goto out; 1687 } 1688 ret = btrfs_insert_orphan_item(trans, root, ino); 1689 if (ret == -EEXIST) 1690 ret = 0; 1691 } 1692 1693 out: 1694 btrfs_free_path(path); 1695 return ret; 1696 } 1697 1698 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans, 1699 struct btrfs_root *root, 1700 struct btrfs_path *path) 1701 { 1702 int ret; 1703 struct btrfs_key key; 1704 1705 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1706 key.type = BTRFS_ORPHAN_ITEM_KEY; 1707 key.offset = (u64)-1; 1708 while (1) { 1709 struct btrfs_inode *inode; 1710 1711 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1712 if (ret < 0) 1713 break; 1714 1715 if (ret == 1) { 1716 ret = 0; 1717 if (path->slots[0] == 0) 1718 break; 1719 path->slots[0]--; 1720 } 1721 1722 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1723 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID || 1724 key.type != BTRFS_ORPHAN_ITEM_KEY) 1725 break; 1726 1727 ret = btrfs_del_item(trans, root, path); 1728 if (ret) 1729 break; 1730 1731 btrfs_release_path(path); 1732 inode = btrfs_iget_logging(key.offset, root); 1733 if (IS_ERR(inode)) { 1734 ret = PTR_ERR(inode); 1735 break; 1736 } 1737 1738 ret = fixup_inode_link_count(trans, inode); 1739 iput(&inode->vfs_inode); 1740 if (ret) 1741 break; 1742 1743 /* 1744 * fixup on a directory may create new entries, 1745 * make sure we always look for the highset possible 1746 * offset 1747 */ 1748 key.offset = (u64)-1; 1749 } 1750 btrfs_release_path(path); 1751 return ret; 1752 } 1753 1754 1755 /* 1756 * record a given inode in the fixup dir so we can check its link 1757 * count when replay is done. The link count is incremented here 1758 * so the inode won't go away until we check it 1759 */ 1760 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans, 1761 struct btrfs_root *root, 1762 struct btrfs_path *path, 1763 u64 objectid) 1764 { 1765 struct btrfs_key key; 1766 int ret = 0; 1767 struct btrfs_inode *inode; 1768 struct inode *vfs_inode; 1769 1770 inode = btrfs_iget_logging(objectid, root); 1771 if (IS_ERR(inode)) 1772 return PTR_ERR(inode); 1773 1774 vfs_inode = &inode->vfs_inode; 1775 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1776 key.type = BTRFS_ORPHAN_ITEM_KEY; 1777 key.offset = objectid; 1778 1779 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1780 1781 btrfs_release_path(path); 1782 if (ret == 0) { 1783 if (!vfs_inode->i_nlink) 1784 set_nlink(vfs_inode, 1); 1785 else 1786 inc_nlink(vfs_inode); 1787 ret = btrfs_update_inode(trans, inode); 1788 } else if (ret == -EEXIST) { 1789 ret = 0; 1790 } 1791 iput(vfs_inode); 1792 1793 return ret; 1794 } 1795 1796 /* 1797 * when replaying the log for a directory, we only insert names 1798 * for inodes that actually exist. This means an fsync on a directory 1799 * does not implicitly fsync all the new files in it 1800 */ 1801 static noinline int insert_one_name(struct btrfs_trans_handle *trans, 1802 struct btrfs_root *root, 1803 u64 dirid, u64 index, 1804 const struct fscrypt_str *name, 1805 struct btrfs_key *location) 1806 { 1807 struct btrfs_inode *inode; 1808 struct btrfs_inode *dir; 1809 int ret; 1810 1811 inode = btrfs_iget_logging(location->objectid, root); 1812 if (IS_ERR(inode)) 1813 return PTR_ERR(inode); 1814 1815 dir = btrfs_iget_logging(dirid, root); 1816 if (IS_ERR(dir)) { 1817 iput(&inode->vfs_inode); 1818 return PTR_ERR(dir); 1819 } 1820 1821 ret = btrfs_add_link(trans, dir, inode, name, 1, index); 1822 1823 /* FIXME, put inode into FIXUP list */ 1824 1825 iput(&inode->vfs_inode); 1826 iput(&dir->vfs_inode); 1827 return ret; 1828 } 1829 1830 static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans, 1831 struct btrfs_inode *dir, 1832 struct btrfs_path *path, 1833 struct btrfs_dir_item *dst_di, 1834 const struct btrfs_key *log_key, 1835 u8 log_flags, 1836 bool exists) 1837 { 1838 struct btrfs_key found_key; 1839 1840 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key); 1841 /* The existing dentry points to the same inode, don't delete it. */ 1842 if (found_key.objectid == log_key->objectid && 1843 found_key.type == log_key->type && 1844 found_key.offset == log_key->offset && 1845 btrfs_dir_flags(path->nodes[0], dst_di) == log_flags) 1846 return 1; 1847 1848 /* 1849 * Don't drop the conflicting directory entry if the inode for the new 1850 * entry doesn't exist. 1851 */ 1852 if (!exists) 1853 return 0; 1854 1855 return drop_one_dir_item(trans, path, dir, dst_di); 1856 } 1857 1858 /* 1859 * take a single entry in a log directory item and replay it into 1860 * the subvolume. 1861 * 1862 * if a conflicting item exists in the subdirectory already, 1863 * the inode it points to is unlinked and put into the link count 1864 * fix up tree. 1865 * 1866 * If a name from the log points to a file or directory that does 1867 * not exist in the FS, it is skipped. fsyncs on directories 1868 * do not force down inodes inside that directory, just changes to the 1869 * names or unlinks in a directory. 1870 * 1871 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a 1872 * non-existing inode) and 1 if the name was replayed. 1873 */ 1874 static noinline int replay_one_name(struct btrfs_trans_handle *trans, 1875 struct btrfs_root *root, 1876 struct btrfs_path *path, 1877 struct extent_buffer *eb, 1878 struct btrfs_dir_item *di, 1879 struct btrfs_key *key) 1880 { 1881 struct fscrypt_str name = { 0 }; 1882 struct btrfs_dir_item *dir_dst_di; 1883 struct btrfs_dir_item *index_dst_di; 1884 bool dir_dst_matches = false; 1885 bool index_dst_matches = false; 1886 struct btrfs_key log_key; 1887 struct btrfs_key search_key; 1888 struct btrfs_inode *dir; 1889 u8 log_flags; 1890 bool exists; 1891 int ret; 1892 bool update_size = true; 1893 bool name_added = false; 1894 1895 dir = btrfs_iget_logging(key->objectid, root); 1896 if (IS_ERR(dir)) 1897 return PTR_ERR(dir); 1898 1899 ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name); 1900 if (ret) 1901 goto out; 1902 1903 log_flags = btrfs_dir_flags(eb, di); 1904 btrfs_dir_item_key_to_cpu(eb, di, &log_key); 1905 ret = btrfs_lookup_inode(trans, root, path, &log_key, 0); 1906 btrfs_release_path(path); 1907 if (ret < 0) 1908 goto out; 1909 exists = (ret == 0); 1910 ret = 0; 1911 1912 dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid, 1913 &name, 1); 1914 if (IS_ERR(dir_dst_di)) { 1915 ret = PTR_ERR(dir_dst_di); 1916 goto out; 1917 } else if (dir_dst_di) { 1918 ret = delete_conflicting_dir_entry(trans, dir, path, dir_dst_di, 1919 &log_key, log_flags, exists); 1920 if (ret < 0) 1921 goto out; 1922 dir_dst_matches = (ret == 1); 1923 } 1924 1925 btrfs_release_path(path); 1926 1927 index_dst_di = btrfs_lookup_dir_index_item(trans, root, path, 1928 key->objectid, key->offset, 1929 &name, 1); 1930 if (IS_ERR(index_dst_di)) { 1931 ret = PTR_ERR(index_dst_di); 1932 goto out; 1933 } else if (index_dst_di) { 1934 ret = delete_conflicting_dir_entry(trans, dir, path, index_dst_di, 1935 &log_key, log_flags, exists); 1936 if (ret < 0) 1937 goto out; 1938 index_dst_matches = (ret == 1); 1939 } 1940 1941 btrfs_release_path(path); 1942 1943 if (dir_dst_matches && index_dst_matches) { 1944 ret = 0; 1945 update_size = false; 1946 goto out; 1947 } 1948 1949 /* 1950 * Check if the inode reference exists in the log for the given name, 1951 * inode and parent inode 1952 */ 1953 search_key.objectid = log_key.objectid; 1954 search_key.type = BTRFS_INODE_REF_KEY; 1955 search_key.offset = key->objectid; 1956 ret = backref_in_log(root->log_root, &search_key, 0, &name); 1957 if (ret < 0) { 1958 goto out; 1959 } else if (ret) { 1960 /* The dentry will be added later. */ 1961 ret = 0; 1962 update_size = false; 1963 goto out; 1964 } 1965 1966 search_key.objectid = log_key.objectid; 1967 search_key.type = BTRFS_INODE_EXTREF_KEY; 1968 search_key.offset = key->objectid; 1969 ret = backref_in_log(root->log_root, &search_key, key->objectid, &name); 1970 if (ret < 0) { 1971 goto out; 1972 } else if (ret) { 1973 /* The dentry will be added later. */ 1974 ret = 0; 1975 update_size = false; 1976 goto out; 1977 } 1978 btrfs_release_path(path); 1979 ret = insert_one_name(trans, root, key->objectid, key->offset, 1980 &name, &log_key); 1981 if (ret && ret != -ENOENT && ret != -EEXIST) 1982 goto out; 1983 if (!ret) 1984 name_added = true; 1985 update_size = false; 1986 ret = 0; 1987 1988 out: 1989 if (!ret && update_size) { 1990 btrfs_i_size_write(dir, dir->vfs_inode.i_size + name.len * 2); 1991 ret = btrfs_update_inode(trans, dir); 1992 } 1993 kfree(name.name); 1994 iput(&dir->vfs_inode); 1995 if (!ret && name_added) 1996 ret = 1; 1997 return ret; 1998 } 1999 2000 /* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */ 2001 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans, 2002 struct btrfs_root *root, 2003 struct btrfs_path *path, 2004 struct extent_buffer *eb, int slot, 2005 struct btrfs_key *key) 2006 { 2007 int ret; 2008 struct btrfs_dir_item *di; 2009 2010 /* We only log dir index keys, which only contain a single dir item. */ 2011 ASSERT(key->type == BTRFS_DIR_INDEX_KEY); 2012 2013 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 2014 ret = replay_one_name(trans, root, path, eb, di, key); 2015 if (ret < 0) 2016 return ret; 2017 2018 /* 2019 * If this entry refers to a non-directory (directories can not have a 2020 * link count > 1) and it was added in the transaction that was not 2021 * committed, make sure we fixup the link count of the inode the entry 2022 * points to. Otherwise something like the following would result in a 2023 * directory pointing to an inode with a wrong link that does not account 2024 * for this dir entry: 2025 * 2026 * mkdir testdir 2027 * touch testdir/foo 2028 * touch testdir/bar 2029 * sync 2030 * 2031 * ln testdir/bar testdir/bar_link 2032 * ln testdir/foo testdir/foo_link 2033 * xfs_io -c "fsync" testdir/bar 2034 * 2035 * <power failure> 2036 * 2037 * mount fs, log replay happens 2038 * 2039 * File foo would remain with a link count of 1 when it has two entries 2040 * pointing to it in the directory testdir. This would make it impossible 2041 * to ever delete the parent directory has it would result in stale 2042 * dentries that can never be deleted. 2043 */ 2044 if (ret == 1 && btrfs_dir_ftype(eb, di) != BTRFS_FT_DIR) { 2045 struct btrfs_path *fixup_path; 2046 struct btrfs_key di_key; 2047 2048 fixup_path = btrfs_alloc_path(); 2049 if (!fixup_path) 2050 return -ENOMEM; 2051 2052 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2053 ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid); 2054 btrfs_free_path(fixup_path); 2055 } 2056 2057 return ret; 2058 } 2059 2060 /* 2061 * directory replay has two parts. There are the standard directory 2062 * items in the log copied from the subvolume, and range items 2063 * created in the log while the subvolume was logged. 2064 * 2065 * The range items tell us which parts of the key space the log 2066 * is authoritative for. During replay, if a key in the subvolume 2067 * directory is in a logged range item, but not actually in the log 2068 * that means it was deleted from the directory before the fsync 2069 * and should be removed. 2070 */ 2071 static noinline int find_dir_range(struct btrfs_root *root, 2072 struct btrfs_path *path, 2073 u64 dirid, 2074 u64 *start_ret, u64 *end_ret) 2075 { 2076 struct btrfs_key key; 2077 u64 found_end; 2078 struct btrfs_dir_log_item *item; 2079 int ret; 2080 int nritems; 2081 2082 if (*start_ret == (u64)-1) 2083 return 1; 2084 2085 key.objectid = dirid; 2086 key.type = BTRFS_DIR_LOG_INDEX_KEY; 2087 key.offset = *start_ret; 2088 2089 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2090 if (ret < 0) 2091 goto out; 2092 if (ret > 0) { 2093 if (path->slots[0] == 0) 2094 goto out; 2095 path->slots[0]--; 2096 } 2097 if (ret != 0) 2098 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2099 2100 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) { 2101 ret = 1; 2102 goto next; 2103 } 2104 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2105 struct btrfs_dir_log_item); 2106 found_end = btrfs_dir_log_end(path->nodes[0], item); 2107 2108 if (*start_ret >= key.offset && *start_ret <= found_end) { 2109 ret = 0; 2110 *start_ret = key.offset; 2111 *end_ret = found_end; 2112 goto out; 2113 } 2114 ret = 1; 2115 next: 2116 /* check the next slot in the tree to see if it is a valid item */ 2117 nritems = btrfs_header_nritems(path->nodes[0]); 2118 path->slots[0]++; 2119 if (path->slots[0] >= nritems) { 2120 ret = btrfs_next_leaf(root, path); 2121 if (ret) 2122 goto out; 2123 } 2124 2125 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2126 2127 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) { 2128 ret = 1; 2129 goto out; 2130 } 2131 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2132 struct btrfs_dir_log_item); 2133 found_end = btrfs_dir_log_end(path->nodes[0], item); 2134 *start_ret = key.offset; 2135 *end_ret = found_end; 2136 ret = 0; 2137 out: 2138 btrfs_release_path(path); 2139 return ret; 2140 } 2141 2142 /* 2143 * this looks for a given directory item in the log. If the directory 2144 * item is not in the log, the item is removed and the inode it points 2145 * to is unlinked 2146 */ 2147 static noinline int check_item_in_log(struct btrfs_trans_handle *trans, 2148 struct btrfs_root *log, 2149 struct btrfs_path *path, 2150 struct btrfs_path *log_path, 2151 struct btrfs_inode *dir, 2152 struct btrfs_key *dir_key) 2153 { 2154 struct btrfs_root *root = dir->root; 2155 int ret; 2156 struct extent_buffer *eb; 2157 int slot; 2158 struct btrfs_dir_item *di; 2159 struct fscrypt_str name = { 0 }; 2160 struct btrfs_inode *inode = NULL; 2161 struct btrfs_key location; 2162 2163 /* 2164 * Currently we only log dir index keys. Even if we replay a log created 2165 * by an older kernel that logged both dir index and dir item keys, all 2166 * we need to do is process the dir index keys, we (and our caller) can 2167 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY). 2168 */ 2169 ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY); 2170 2171 eb = path->nodes[0]; 2172 slot = path->slots[0]; 2173 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 2174 ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name); 2175 if (ret) 2176 goto out; 2177 2178 if (log) { 2179 struct btrfs_dir_item *log_di; 2180 2181 log_di = btrfs_lookup_dir_index_item(trans, log, log_path, 2182 dir_key->objectid, 2183 dir_key->offset, &name, 0); 2184 if (IS_ERR(log_di)) { 2185 ret = PTR_ERR(log_di); 2186 goto out; 2187 } else if (log_di) { 2188 /* The dentry exists in the log, we have nothing to do. */ 2189 ret = 0; 2190 goto out; 2191 } 2192 } 2193 2194 btrfs_dir_item_key_to_cpu(eb, di, &location); 2195 btrfs_release_path(path); 2196 btrfs_release_path(log_path); 2197 inode = btrfs_iget_logging(location.objectid, root); 2198 if (IS_ERR(inode)) { 2199 ret = PTR_ERR(inode); 2200 inode = NULL; 2201 goto out; 2202 } 2203 2204 ret = link_to_fixup_dir(trans, root, path, location.objectid); 2205 if (ret) 2206 goto out; 2207 2208 inc_nlink(&inode->vfs_inode); 2209 ret = unlink_inode_for_log_replay(trans, dir, inode, &name); 2210 /* 2211 * Unlike dir item keys, dir index keys can only have one name (entry) in 2212 * them, as there are no key collisions since each key has a unique offset 2213 * (an index number), so we're done. 2214 */ 2215 out: 2216 btrfs_release_path(path); 2217 btrfs_release_path(log_path); 2218 kfree(name.name); 2219 if (inode) 2220 iput(&inode->vfs_inode); 2221 return ret; 2222 } 2223 2224 static int replay_xattr_deletes(struct btrfs_trans_handle *trans, 2225 struct btrfs_root *root, 2226 struct btrfs_root *log, 2227 struct btrfs_path *path, 2228 const u64 ino) 2229 { 2230 struct btrfs_key search_key; 2231 struct btrfs_path *log_path; 2232 int i; 2233 int nritems; 2234 int ret; 2235 2236 log_path = btrfs_alloc_path(); 2237 if (!log_path) 2238 return -ENOMEM; 2239 2240 search_key.objectid = ino; 2241 search_key.type = BTRFS_XATTR_ITEM_KEY; 2242 search_key.offset = 0; 2243 again: 2244 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 2245 if (ret < 0) 2246 goto out; 2247 process_leaf: 2248 nritems = btrfs_header_nritems(path->nodes[0]); 2249 for (i = path->slots[0]; i < nritems; i++) { 2250 struct btrfs_key key; 2251 struct btrfs_dir_item *di; 2252 struct btrfs_dir_item *log_di; 2253 u32 total_size; 2254 u32 cur; 2255 2256 btrfs_item_key_to_cpu(path->nodes[0], &key, i); 2257 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) { 2258 ret = 0; 2259 goto out; 2260 } 2261 2262 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item); 2263 total_size = btrfs_item_size(path->nodes[0], i); 2264 cur = 0; 2265 while (cur < total_size) { 2266 u16 name_len = btrfs_dir_name_len(path->nodes[0], di); 2267 u16 data_len = btrfs_dir_data_len(path->nodes[0], di); 2268 u32 this_len = sizeof(*di) + name_len + data_len; 2269 char *name; 2270 2271 name = kmalloc(name_len, GFP_NOFS); 2272 if (!name) { 2273 ret = -ENOMEM; 2274 goto out; 2275 } 2276 read_extent_buffer(path->nodes[0], name, 2277 (unsigned long)(di + 1), name_len); 2278 2279 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino, 2280 name, name_len, 0); 2281 btrfs_release_path(log_path); 2282 if (!log_di) { 2283 /* Doesn't exist in log tree, so delete it. */ 2284 btrfs_release_path(path); 2285 di = btrfs_lookup_xattr(trans, root, path, ino, 2286 name, name_len, -1); 2287 kfree(name); 2288 if (IS_ERR(di)) { 2289 ret = PTR_ERR(di); 2290 goto out; 2291 } 2292 ASSERT(di); 2293 ret = btrfs_delete_one_dir_name(trans, root, 2294 path, di); 2295 if (ret) 2296 goto out; 2297 btrfs_release_path(path); 2298 search_key = key; 2299 goto again; 2300 } 2301 kfree(name); 2302 if (IS_ERR(log_di)) { 2303 ret = PTR_ERR(log_di); 2304 goto out; 2305 } 2306 cur += this_len; 2307 di = (struct btrfs_dir_item *)((char *)di + this_len); 2308 } 2309 } 2310 ret = btrfs_next_leaf(root, path); 2311 if (ret > 0) 2312 ret = 0; 2313 else if (ret == 0) 2314 goto process_leaf; 2315 out: 2316 btrfs_free_path(log_path); 2317 btrfs_release_path(path); 2318 return ret; 2319 } 2320 2321 2322 /* 2323 * deletion replay happens before we copy any new directory items 2324 * out of the log or out of backreferences from inodes. It 2325 * scans the log to find ranges of keys that log is authoritative for, 2326 * and then scans the directory to find items in those ranges that are 2327 * not present in the log. 2328 * 2329 * Anything we don't find in the log is unlinked and removed from the 2330 * directory. 2331 */ 2332 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 2333 struct btrfs_root *root, 2334 struct btrfs_root *log, 2335 struct btrfs_path *path, 2336 u64 dirid, bool del_all) 2337 { 2338 u64 range_start; 2339 u64 range_end; 2340 int ret = 0; 2341 struct btrfs_key dir_key; 2342 struct btrfs_key found_key; 2343 struct btrfs_path *log_path; 2344 struct btrfs_inode *dir; 2345 2346 dir_key.objectid = dirid; 2347 dir_key.type = BTRFS_DIR_INDEX_KEY; 2348 log_path = btrfs_alloc_path(); 2349 if (!log_path) 2350 return -ENOMEM; 2351 2352 dir = btrfs_iget_logging(dirid, root); 2353 /* 2354 * It isn't an error if the inode isn't there, that can happen because 2355 * we replay the deletes before we copy in the inode item from the log. 2356 */ 2357 if (IS_ERR(dir)) { 2358 btrfs_free_path(log_path); 2359 ret = PTR_ERR(dir); 2360 if (ret == -ENOENT) 2361 ret = 0; 2362 return ret; 2363 } 2364 2365 range_start = 0; 2366 range_end = 0; 2367 while (1) { 2368 if (del_all) 2369 range_end = (u64)-1; 2370 else { 2371 ret = find_dir_range(log, path, dirid, 2372 &range_start, &range_end); 2373 if (ret < 0) 2374 goto out; 2375 else if (ret > 0) 2376 break; 2377 } 2378 2379 dir_key.offset = range_start; 2380 while (1) { 2381 int nritems; 2382 ret = btrfs_search_slot(NULL, root, &dir_key, path, 2383 0, 0); 2384 if (ret < 0) 2385 goto out; 2386 2387 nritems = btrfs_header_nritems(path->nodes[0]); 2388 if (path->slots[0] >= nritems) { 2389 ret = btrfs_next_leaf(root, path); 2390 if (ret == 1) 2391 break; 2392 else if (ret < 0) 2393 goto out; 2394 } 2395 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2396 path->slots[0]); 2397 if (found_key.objectid != dirid || 2398 found_key.type != dir_key.type) { 2399 ret = 0; 2400 goto out; 2401 } 2402 2403 if (found_key.offset > range_end) 2404 break; 2405 2406 ret = check_item_in_log(trans, log, path, 2407 log_path, dir, 2408 &found_key); 2409 if (ret) 2410 goto out; 2411 if (found_key.offset == (u64)-1) 2412 break; 2413 dir_key.offset = found_key.offset + 1; 2414 } 2415 btrfs_release_path(path); 2416 if (range_end == (u64)-1) 2417 break; 2418 range_start = range_end + 1; 2419 } 2420 ret = 0; 2421 out: 2422 btrfs_release_path(path); 2423 btrfs_free_path(log_path); 2424 iput(&dir->vfs_inode); 2425 return ret; 2426 } 2427 2428 /* 2429 * the process_func used to replay items from the log tree. This 2430 * gets called in two different stages. The first stage just looks 2431 * for inodes and makes sure they are all copied into the subvolume. 2432 * 2433 * The second stage copies all the other item types from the log into 2434 * the subvolume. The two stage approach is slower, but gets rid of 2435 * lots of complexity around inodes referencing other inodes that exist 2436 * only in the log (references come from either directory items or inode 2437 * back refs). 2438 */ 2439 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb, 2440 struct walk_control *wc, u64 gen, int level) 2441 { 2442 int nritems; 2443 struct btrfs_tree_parent_check check = { 2444 .transid = gen, 2445 .level = level 2446 }; 2447 struct btrfs_path *path; 2448 struct btrfs_root *root = wc->replay_dest; 2449 struct btrfs_key key; 2450 int i; 2451 int ret; 2452 2453 ret = btrfs_read_extent_buffer(eb, &check); 2454 if (ret) 2455 return ret; 2456 2457 level = btrfs_header_level(eb); 2458 2459 if (level != 0) 2460 return 0; 2461 2462 path = btrfs_alloc_path(); 2463 if (!path) 2464 return -ENOMEM; 2465 2466 nritems = btrfs_header_nritems(eb); 2467 for (i = 0; i < nritems; i++) { 2468 btrfs_item_key_to_cpu(eb, &key, i); 2469 2470 /* inode keys are done during the first stage */ 2471 if (key.type == BTRFS_INODE_ITEM_KEY && 2472 wc->stage == LOG_WALK_REPLAY_INODES) { 2473 struct btrfs_inode_item *inode_item; 2474 u32 mode; 2475 2476 inode_item = btrfs_item_ptr(eb, i, 2477 struct btrfs_inode_item); 2478 /* 2479 * If we have a tmpfile (O_TMPFILE) that got fsync'ed 2480 * and never got linked before the fsync, skip it, as 2481 * replaying it is pointless since it would be deleted 2482 * later. We skip logging tmpfiles, but it's always 2483 * possible we are replaying a log created with a kernel 2484 * that used to log tmpfiles. 2485 */ 2486 if (btrfs_inode_nlink(eb, inode_item) == 0) { 2487 wc->ignore_cur_inode = true; 2488 continue; 2489 } else { 2490 wc->ignore_cur_inode = false; 2491 } 2492 ret = replay_xattr_deletes(wc->trans, root, log, 2493 path, key.objectid); 2494 if (ret) 2495 break; 2496 mode = btrfs_inode_mode(eb, inode_item); 2497 if (S_ISDIR(mode)) { 2498 ret = replay_dir_deletes(wc->trans, root, log, path, 2499 key.objectid, false); 2500 if (ret) 2501 break; 2502 } 2503 ret = overwrite_item(wc->trans, root, path, 2504 eb, i, &key); 2505 if (ret) 2506 break; 2507 2508 /* 2509 * Before replaying extents, truncate the inode to its 2510 * size. We need to do it now and not after log replay 2511 * because before an fsync we can have prealloc extents 2512 * added beyond the inode's i_size. If we did it after, 2513 * through orphan cleanup for example, we would drop 2514 * those prealloc extents just after replaying them. 2515 */ 2516 if (S_ISREG(mode)) { 2517 struct btrfs_drop_extents_args drop_args = { 0 }; 2518 struct btrfs_inode *inode; 2519 u64 from; 2520 2521 inode = btrfs_iget_logging(key.objectid, root); 2522 if (IS_ERR(inode)) { 2523 ret = PTR_ERR(inode); 2524 break; 2525 } 2526 from = ALIGN(i_size_read(&inode->vfs_inode), 2527 root->fs_info->sectorsize); 2528 drop_args.start = from; 2529 drop_args.end = (u64)-1; 2530 drop_args.drop_cache = true; 2531 ret = btrfs_drop_extents(wc->trans, root, inode, 2532 &drop_args); 2533 if (!ret) { 2534 inode_sub_bytes(&inode->vfs_inode, 2535 drop_args.bytes_found); 2536 /* Update the inode's nbytes. */ 2537 ret = btrfs_update_inode(wc->trans, inode); 2538 } 2539 iput(&inode->vfs_inode); 2540 if (ret) 2541 break; 2542 } 2543 2544 ret = link_to_fixup_dir(wc->trans, root, 2545 path, key.objectid); 2546 if (ret) 2547 break; 2548 } 2549 2550 if (wc->ignore_cur_inode) 2551 continue; 2552 2553 if (key.type == BTRFS_DIR_INDEX_KEY && 2554 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) { 2555 ret = replay_one_dir_item(wc->trans, root, path, 2556 eb, i, &key); 2557 if (ret) 2558 break; 2559 } 2560 2561 if (wc->stage < LOG_WALK_REPLAY_ALL) 2562 continue; 2563 2564 /* these keys are simply copied */ 2565 if (key.type == BTRFS_XATTR_ITEM_KEY) { 2566 ret = overwrite_item(wc->trans, root, path, 2567 eb, i, &key); 2568 if (ret) 2569 break; 2570 } else if (key.type == BTRFS_INODE_REF_KEY || 2571 key.type == BTRFS_INODE_EXTREF_KEY) { 2572 ret = add_inode_ref(wc->trans, root, log, path, 2573 eb, i, &key); 2574 if (ret) 2575 break; 2576 } else if (key.type == BTRFS_EXTENT_DATA_KEY) { 2577 ret = replay_one_extent(wc->trans, root, path, 2578 eb, i, &key); 2579 if (ret) 2580 break; 2581 } 2582 /* 2583 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the 2584 * BTRFS_DIR_INDEX_KEY items which we use to derive the 2585 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an 2586 * older kernel with such keys, ignore them. 2587 */ 2588 } 2589 btrfs_free_path(path); 2590 return ret; 2591 } 2592 2593 /* 2594 * Correctly adjust the reserved bytes occupied by a log tree extent buffer 2595 */ 2596 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start) 2597 { 2598 struct btrfs_block_group *cache; 2599 2600 cache = btrfs_lookup_block_group(fs_info, start); 2601 if (!cache) { 2602 btrfs_err(fs_info, "unable to find block group for %llu", start); 2603 return; 2604 } 2605 2606 spin_lock(&cache->space_info->lock); 2607 spin_lock(&cache->lock); 2608 cache->reserved -= fs_info->nodesize; 2609 cache->space_info->bytes_reserved -= fs_info->nodesize; 2610 spin_unlock(&cache->lock); 2611 spin_unlock(&cache->space_info->lock); 2612 2613 btrfs_put_block_group(cache); 2614 } 2615 2616 static int clean_log_buffer(struct btrfs_trans_handle *trans, 2617 struct extent_buffer *eb) 2618 { 2619 int ret; 2620 2621 btrfs_tree_lock(eb); 2622 btrfs_clear_buffer_dirty(trans, eb); 2623 wait_on_extent_buffer_writeback(eb); 2624 btrfs_tree_unlock(eb); 2625 2626 if (trans) { 2627 ret = btrfs_pin_reserved_extent(trans, eb); 2628 if (ret) 2629 return ret; 2630 } else { 2631 unaccount_log_buffer(eb->fs_info, eb->start); 2632 } 2633 2634 return 0; 2635 } 2636 2637 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans, 2638 struct btrfs_root *root, 2639 struct btrfs_path *path, int *level, 2640 struct walk_control *wc) 2641 { 2642 struct btrfs_fs_info *fs_info = root->fs_info; 2643 u64 bytenr; 2644 u64 ptr_gen; 2645 struct extent_buffer *next; 2646 struct extent_buffer *cur; 2647 int ret = 0; 2648 2649 while (*level > 0) { 2650 struct btrfs_tree_parent_check check = { 0 }; 2651 2652 cur = path->nodes[*level]; 2653 2654 WARN_ON(btrfs_header_level(cur) != *level); 2655 2656 if (path->slots[*level] >= 2657 btrfs_header_nritems(cur)) 2658 break; 2659 2660 bytenr = btrfs_node_blockptr(cur, path->slots[*level]); 2661 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); 2662 check.transid = ptr_gen; 2663 check.level = *level - 1; 2664 check.has_first_key = true; 2665 btrfs_node_key_to_cpu(cur, &check.first_key, path->slots[*level]); 2666 2667 next = btrfs_find_create_tree_block(fs_info, bytenr, 2668 btrfs_header_owner(cur), 2669 *level - 1); 2670 if (IS_ERR(next)) 2671 return PTR_ERR(next); 2672 2673 if (*level == 1) { 2674 ret = wc->process_func(root, next, wc, ptr_gen, 2675 *level - 1); 2676 if (ret) { 2677 free_extent_buffer(next); 2678 return ret; 2679 } 2680 2681 path->slots[*level]++; 2682 if (wc->free) { 2683 ret = btrfs_read_extent_buffer(next, &check); 2684 if (ret) { 2685 free_extent_buffer(next); 2686 return ret; 2687 } 2688 2689 ret = clean_log_buffer(trans, next); 2690 if (ret) { 2691 free_extent_buffer(next); 2692 return ret; 2693 } 2694 } 2695 free_extent_buffer(next); 2696 continue; 2697 } 2698 ret = btrfs_read_extent_buffer(next, &check); 2699 if (ret) { 2700 free_extent_buffer(next); 2701 return ret; 2702 } 2703 2704 if (path->nodes[*level-1]) 2705 free_extent_buffer(path->nodes[*level-1]); 2706 path->nodes[*level-1] = next; 2707 *level = btrfs_header_level(next); 2708 path->slots[*level] = 0; 2709 cond_resched(); 2710 } 2711 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]); 2712 2713 cond_resched(); 2714 return 0; 2715 } 2716 2717 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans, 2718 struct btrfs_root *root, 2719 struct btrfs_path *path, int *level, 2720 struct walk_control *wc) 2721 { 2722 int i; 2723 int slot; 2724 int ret; 2725 2726 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { 2727 slot = path->slots[i]; 2728 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) { 2729 path->slots[i]++; 2730 *level = i; 2731 WARN_ON(*level == 0); 2732 return 0; 2733 } else { 2734 ret = wc->process_func(root, path->nodes[*level], wc, 2735 btrfs_header_generation(path->nodes[*level]), 2736 *level); 2737 if (ret) 2738 return ret; 2739 2740 if (wc->free) { 2741 ret = clean_log_buffer(trans, path->nodes[*level]); 2742 if (ret) 2743 return ret; 2744 } 2745 free_extent_buffer(path->nodes[*level]); 2746 path->nodes[*level] = NULL; 2747 *level = i + 1; 2748 } 2749 } 2750 return 1; 2751 } 2752 2753 /* 2754 * drop the reference count on the tree rooted at 'snap'. This traverses 2755 * the tree freeing any blocks that have a ref count of zero after being 2756 * decremented. 2757 */ 2758 static int walk_log_tree(struct btrfs_trans_handle *trans, 2759 struct btrfs_root *log, struct walk_control *wc) 2760 { 2761 int ret = 0; 2762 int wret; 2763 int level; 2764 struct btrfs_path *path; 2765 int orig_level; 2766 2767 path = btrfs_alloc_path(); 2768 if (!path) 2769 return -ENOMEM; 2770 2771 level = btrfs_header_level(log->node); 2772 orig_level = level; 2773 path->nodes[level] = log->node; 2774 refcount_inc(&log->node->refs); 2775 path->slots[level] = 0; 2776 2777 while (1) { 2778 wret = walk_down_log_tree(trans, log, path, &level, wc); 2779 if (wret > 0) 2780 break; 2781 if (wret < 0) { 2782 ret = wret; 2783 goto out; 2784 } 2785 2786 wret = walk_up_log_tree(trans, log, path, &level, wc); 2787 if (wret > 0) 2788 break; 2789 if (wret < 0) { 2790 ret = wret; 2791 goto out; 2792 } 2793 } 2794 2795 /* was the root node processed? if not, catch it here */ 2796 if (path->nodes[orig_level]) { 2797 ret = wc->process_func(log, path->nodes[orig_level], wc, 2798 btrfs_header_generation(path->nodes[orig_level]), 2799 orig_level); 2800 if (ret) 2801 goto out; 2802 if (wc->free) 2803 ret = clean_log_buffer(trans, path->nodes[orig_level]); 2804 } 2805 2806 out: 2807 btrfs_free_path(path); 2808 return ret; 2809 } 2810 2811 /* 2812 * helper function to update the item for a given subvolumes log root 2813 * in the tree of log roots 2814 */ 2815 static int update_log_root(struct btrfs_trans_handle *trans, 2816 struct btrfs_root *log, 2817 struct btrfs_root_item *root_item) 2818 { 2819 struct btrfs_fs_info *fs_info = log->fs_info; 2820 int ret; 2821 2822 if (log->log_transid == 1) { 2823 /* insert root item on the first sync */ 2824 ret = btrfs_insert_root(trans, fs_info->log_root_tree, 2825 &log->root_key, root_item); 2826 } else { 2827 ret = btrfs_update_root(trans, fs_info->log_root_tree, 2828 &log->root_key, root_item); 2829 } 2830 return ret; 2831 } 2832 2833 static void wait_log_commit(struct btrfs_root *root, int transid) 2834 { 2835 DEFINE_WAIT(wait); 2836 int index = transid % 2; 2837 2838 /* 2839 * we only allow two pending log transactions at a time, 2840 * so we know that if ours is more than 2 older than the 2841 * current transaction, we're done 2842 */ 2843 for (;;) { 2844 prepare_to_wait(&root->log_commit_wait[index], 2845 &wait, TASK_UNINTERRUPTIBLE); 2846 2847 if (!(root->log_transid_committed < transid && 2848 atomic_read(&root->log_commit[index]))) 2849 break; 2850 2851 mutex_unlock(&root->log_mutex); 2852 schedule(); 2853 mutex_lock(&root->log_mutex); 2854 } 2855 finish_wait(&root->log_commit_wait[index], &wait); 2856 } 2857 2858 static void wait_for_writer(struct btrfs_root *root) 2859 { 2860 DEFINE_WAIT(wait); 2861 2862 for (;;) { 2863 prepare_to_wait(&root->log_writer_wait, &wait, 2864 TASK_UNINTERRUPTIBLE); 2865 if (!atomic_read(&root->log_writers)) 2866 break; 2867 2868 mutex_unlock(&root->log_mutex); 2869 schedule(); 2870 mutex_lock(&root->log_mutex); 2871 } 2872 finish_wait(&root->log_writer_wait, &wait); 2873 } 2874 2875 void btrfs_init_log_ctx(struct btrfs_log_ctx *ctx, struct btrfs_inode *inode) 2876 { 2877 ctx->log_ret = 0; 2878 ctx->log_transid = 0; 2879 ctx->log_new_dentries = false; 2880 ctx->logging_new_name = false; 2881 ctx->logging_new_delayed_dentries = false; 2882 ctx->logged_before = false; 2883 ctx->inode = inode; 2884 INIT_LIST_HEAD(&ctx->list); 2885 INIT_LIST_HEAD(&ctx->ordered_extents); 2886 INIT_LIST_HEAD(&ctx->conflict_inodes); 2887 ctx->num_conflict_inodes = 0; 2888 ctx->logging_conflict_inodes = false; 2889 ctx->scratch_eb = NULL; 2890 } 2891 2892 void btrfs_init_log_ctx_scratch_eb(struct btrfs_log_ctx *ctx) 2893 { 2894 struct btrfs_inode *inode = ctx->inode; 2895 2896 if (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) && 2897 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags)) 2898 return; 2899 2900 /* 2901 * Don't care about allocation failure. This is just for optimization, 2902 * if we fail to allocate here, we will try again later if needed. 2903 */ 2904 ctx->scratch_eb = alloc_dummy_extent_buffer(inode->root->fs_info, 0); 2905 } 2906 2907 void btrfs_release_log_ctx_extents(struct btrfs_log_ctx *ctx) 2908 { 2909 struct btrfs_ordered_extent *ordered; 2910 struct btrfs_ordered_extent *tmp; 2911 2912 btrfs_assert_inode_locked(ctx->inode); 2913 2914 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) { 2915 list_del_init(&ordered->log_list); 2916 btrfs_put_ordered_extent(ordered); 2917 } 2918 } 2919 2920 2921 static inline void btrfs_remove_log_ctx(struct btrfs_root *root, 2922 struct btrfs_log_ctx *ctx) 2923 { 2924 mutex_lock(&root->log_mutex); 2925 list_del_init(&ctx->list); 2926 mutex_unlock(&root->log_mutex); 2927 } 2928 2929 /* 2930 * Invoked in log mutex context, or be sure there is no other task which 2931 * can access the list. 2932 */ 2933 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root, 2934 int index, int error) 2935 { 2936 struct btrfs_log_ctx *ctx; 2937 struct btrfs_log_ctx *safe; 2938 2939 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) { 2940 list_del_init(&ctx->list); 2941 ctx->log_ret = error; 2942 } 2943 } 2944 2945 /* 2946 * Sends a given tree log down to the disk and updates the super blocks to 2947 * record it. When this call is done, you know that any inodes previously 2948 * logged are safely on disk only if it returns 0. 2949 * 2950 * Any other return value means you need to call btrfs_commit_transaction. 2951 * Some of the edge cases for fsyncing directories that have had unlinks 2952 * or renames done in the past mean that sometimes the only safe 2953 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN, 2954 * that has happened. 2955 */ 2956 int btrfs_sync_log(struct btrfs_trans_handle *trans, 2957 struct btrfs_root *root, struct btrfs_log_ctx *ctx) 2958 { 2959 int index1; 2960 int index2; 2961 int mark; 2962 int ret; 2963 struct btrfs_fs_info *fs_info = root->fs_info; 2964 struct btrfs_root *log = root->log_root; 2965 struct btrfs_root *log_root_tree = fs_info->log_root_tree; 2966 struct btrfs_root_item new_root_item; 2967 int log_transid = 0; 2968 struct btrfs_log_ctx root_log_ctx; 2969 struct blk_plug plug; 2970 u64 log_root_start; 2971 u64 log_root_level; 2972 2973 mutex_lock(&root->log_mutex); 2974 log_transid = ctx->log_transid; 2975 if (root->log_transid_committed >= log_transid) { 2976 mutex_unlock(&root->log_mutex); 2977 return ctx->log_ret; 2978 } 2979 2980 index1 = log_transid % 2; 2981 if (atomic_read(&root->log_commit[index1])) { 2982 wait_log_commit(root, log_transid); 2983 mutex_unlock(&root->log_mutex); 2984 return ctx->log_ret; 2985 } 2986 ASSERT(log_transid == root->log_transid); 2987 atomic_set(&root->log_commit[index1], 1); 2988 2989 /* wait for previous tree log sync to complete */ 2990 if (atomic_read(&root->log_commit[(index1 + 1) % 2])) 2991 wait_log_commit(root, log_transid - 1); 2992 2993 while (1) { 2994 int batch = atomic_read(&root->log_batch); 2995 /* when we're on an ssd, just kick the log commit out */ 2996 if (!btrfs_test_opt(fs_info, SSD) && 2997 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) { 2998 mutex_unlock(&root->log_mutex); 2999 schedule_timeout_uninterruptible(1); 3000 mutex_lock(&root->log_mutex); 3001 } 3002 wait_for_writer(root); 3003 if (batch == atomic_read(&root->log_batch)) 3004 break; 3005 } 3006 3007 /* bail out if we need to do a full commit */ 3008 if (btrfs_need_log_full_commit(trans)) { 3009 ret = BTRFS_LOG_FORCE_COMMIT; 3010 mutex_unlock(&root->log_mutex); 3011 goto out; 3012 } 3013 3014 if (log_transid % 2 == 0) 3015 mark = EXTENT_DIRTY_LOG1; 3016 else 3017 mark = EXTENT_DIRTY_LOG2; 3018 3019 /* we start IO on all the marked extents here, but we don't actually 3020 * wait for them until later. 3021 */ 3022 blk_start_plug(&plug); 3023 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark); 3024 /* 3025 * -EAGAIN happens when someone, e.g., a concurrent transaction 3026 * commit, writes a dirty extent in this tree-log commit. This 3027 * concurrent write will create a hole writing out the extents, 3028 * and we cannot proceed on a zoned filesystem, requiring 3029 * sequential writing. While we can bail out to a full commit 3030 * here, but we can continue hoping the concurrent writing fills 3031 * the hole. 3032 */ 3033 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) 3034 ret = 0; 3035 if (ret) { 3036 blk_finish_plug(&plug); 3037 btrfs_set_log_full_commit(trans); 3038 mutex_unlock(&root->log_mutex); 3039 goto out; 3040 } 3041 3042 /* 3043 * We _must_ update under the root->log_mutex in order to make sure we 3044 * have a consistent view of the log root we are trying to commit at 3045 * this moment. 3046 * 3047 * We _must_ copy this into a local copy, because we are not holding the 3048 * log_root_tree->log_mutex yet. This is important because when we 3049 * commit the log_root_tree we must have a consistent view of the 3050 * log_root_tree when we update the super block to point at the 3051 * log_root_tree bytenr. If we update the log_root_tree here we'll race 3052 * with the commit and possibly point at the new block which we may not 3053 * have written out. 3054 */ 3055 btrfs_set_root_node(&log->root_item, log->node); 3056 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item)); 3057 3058 btrfs_set_root_log_transid(root, root->log_transid + 1); 3059 log->log_transid = root->log_transid; 3060 root->log_start_pid = 0; 3061 /* 3062 * IO has been started, blocks of the log tree have WRITTEN flag set 3063 * in their headers. new modifications of the log will be written to 3064 * new positions. so it's safe to allow log writers to go in. 3065 */ 3066 mutex_unlock(&root->log_mutex); 3067 3068 if (btrfs_is_zoned(fs_info)) { 3069 mutex_lock(&fs_info->tree_root->log_mutex); 3070 if (!log_root_tree->node) { 3071 ret = btrfs_alloc_log_tree_node(trans, log_root_tree); 3072 if (ret) { 3073 mutex_unlock(&fs_info->tree_root->log_mutex); 3074 blk_finish_plug(&plug); 3075 goto out; 3076 } 3077 } 3078 mutex_unlock(&fs_info->tree_root->log_mutex); 3079 } 3080 3081 btrfs_init_log_ctx(&root_log_ctx, NULL); 3082 3083 mutex_lock(&log_root_tree->log_mutex); 3084 3085 index2 = log_root_tree->log_transid % 2; 3086 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]); 3087 root_log_ctx.log_transid = log_root_tree->log_transid; 3088 3089 /* 3090 * Now we are safe to update the log_root_tree because we're under the 3091 * log_mutex, and we're a current writer so we're holding the commit 3092 * open until we drop the log_mutex. 3093 */ 3094 ret = update_log_root(trans, log, &new_root_item); 3095 if (ret) { 3096 list_del_init(&root_log_ctx.list); 3097 blk_finish_plug(&plug); 3098 btrfs_set_log_full_commit(trans); 3099 if (ret != -ENOSPC) 3100 btrfs_err(fs_info, 3101 "failed to update log for root %llu ret %d", 3102 btrfs_root_id(root), ret); 3103 btrfs_wait_tree_log_extents(log, mark); 3104 mutex_unlock(&log_root_tree->log_mutex); 3105 goto out; 3106 } 3107 3108 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) { 3109 blk_finish_plug(&plug); 3110 list_del_init(&root_log_ctx.list); 3111 mutex_unlock(&log_root_tree->log_mutex); 3112 ret = root_log_ctx.log_ret; 3113 goto out; 3114 } 3115 3116 if (atomic_read(&log_root_tree->log_commit[index2])) { 3117 blk_finish_plug(&plug); 3118 ret = btrfs_wait_tree_log_extents(log, mark); 3119 wait_log_commit(log_root_tree, 3120 root_log_ctx.log_transid); 3121 mutex_unlock(&log_root_tree->log_mutex); 3122 if (!ret) 3123 ret = root_log_ctx.log_ret; 3124 goto out; 3125 } 3126 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid); 3127 atomic_set(&log_root_tree->log_commit[index2], 1); 3128 3129 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) { 3130 wait_log_commit(log_root_tree, 3131 root_log_ctx.log_transid - 1); 3132 } 3133 3134 /* 3135 * now that we've moved on to the tree of log tree roots, 3136 * check the full commit flag again 3137 */ 3138 if (btrfs_need_log_full_commit(trans)) { 3139 blk_finish_plug(&plug); 3140 btrfs_wait_tree_log_extents(log, mark); 3141 mutex_unlock(&log_root_tree->log_mutex); 3142 ret = BTRFS_LOG_FORCE_COMMIT; 3143 goto out_wake_log_root; 3144 } 3145 3146 ret = btrfs_write_marked_extents(fs_info, 3147 &log_root_tree->dirty_log_pages, 3148 EXTENT_DIRTY_LOG1 | EXTENT_DIRTY_LOG2); 3149 blk_finish_plug(&plug); 3150 /* 3151 * As described above, -EAGAIN indicates a hole in the extents. We 3152 * cannot wait for these write outs since the waiting cause a 3153 * deadlock. Bail out to the full commit instead. 3154 */ 3155 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) { 3156 btrfs_set_log_full_commit(trans); 3157 btrfs_wait_tree_log_extents(log, mark); 3158 mutex_unlock(&log_root_tree->log_mutex); 3159 goto out_wake_log_root; 3160 } else if (ret) { 3161 btrfs_set_log_full_commit(trans); 3162 mutex_unlock(&log_root_tree->log_mutex); 3163 goto out_wake_log_root; 3164 } 3165 ret = btrfs_wait_tree_log_extents(log, mark); 3166 if (!ret) 3167 ret = btrfs_wait_tree_log_extents(log_root_tree, 3168 EXTENT_DIRTY_LOG1 | EXTENT_DIRTY_LOG2); 3169 if (ret) { 3170 btrfs_set_log_full_commit(trans); 3171 mutex_unlock(&log_root_tree->log_mutex); 3172 goto out_wake_log_root; 3173 } 3174 3175 log_root_start = log_root_tree->node->start; 3176 log_root_level = btrfs_header_level(log_root_tree->node); 3177 log_root_tree->log_transid++; 3178 mutex_unlock(&log_root_tree->log_mutex); 3179 3180 /* 3181 * Here we are guaranteed that nobody is going to write the superblock 3182 * for the current transaction before us and that neither we do write 3183 * our superblock before the previous transaction finishes its commit 3184 * and writes its superblock, because: 3185 * 3186 * 1) We are holding a handle on the current transaction, so no body 3187 * can commit it until we release the handle; 3188 * 3189 * 2) Before writing our superblock we acquire the tree_log_mutex, so 3190 * if the previous transaction is still committing, and hasn't yet 3191 * written its superblock, we wait for it to do it, because a 3192 * transaction commit acquires the tree_log_mutex when the commit 3193 * begins and releases it only after writing its superblock. 3194 */ 3195 mutex_lock(&fs_info->tree_log_mutex); 3196 3197 /* 3198 * The previous transaction writeout phase could have failed, and thus 3199 * marked the fs in an error state. We must not commit here, as we 3200 * could have updated our generation in the super_for_commit and 3201 * writing the super here would result in transid mismatches. If there 3202 * is an error here just bail. 3203 */ 3204 if (BTRFS_FS_ERROR(fs_info)) { 3205 ret = -EIO; 3206 btrfs_set_log_full_commit(trans); 3207 btrfs_abort_transaction(trans, ret); 3208 mutex_unlock(&fs_info->tree_log_mutex); 3209 goto out_wake_log_root; 3210 } 3211 3212 btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start); 3213 btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level); 3214 ret = write_all_supers(fs_info, 1); 3215 mutex_unlock(&fs_info->tree_log_mutex); 3216 if (ret) { 3217 btrfs_set_log_full_commit(trans); 3218 btrfs_abort_transaction(trans, ret); 3219 goto out_wake_log_root; 3220 } 3221 3222 /* 3223 * We know there can only be one task here, since we have not yet set 3224 * root->log_commit[index1] to 0 and any task attempting to sync the 3225 * log must wait for the previous log transaction to commit if it's 3226 * still in progress or wait for the current log transaction commit if 3227 * someone else already started it. We use <= and not < because the 3228 * first log transaction has an ID of 0. 3229 */ 3230 ASSERT(btrfs_get_root_last_log_commit(root) <= log_transid); 3231 btrfs_set_root_last_log_commit(root, log_transid); 3232 3233 out_wake_log_root: 3234 mutex_lock(&log_root_tree->log_mutex); 3235 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret); 3236 3237 log_root_tree->log_transid_committed++; 3238 atomic_set(&log_root_tree->log_commit[index2], 0); 3239 mutex_unlock(&log_root_tree->log_mutex); 3240 3241 /* 3242 * The barrier before waitqueue_active (in cond_wake_up) is needed so 3243 * all the updates above are seen by the woken threads. It might not be 3244 * necessary, but proving that seems to be hard. 3245 */ 3246 cond_wake_up(&log_root_tree->log_commit_wait[index2]); 3247 out: 3248 mutex_lock(&root->log_mutex); 3249 btrfs_remove_all_log_ctxs(root, index1, ret); 3250 root->log_transid_committed++; 3251 atomic_set(&root->log_commit[index1], 0); 3252 mutex_unlock(&root->log_mutex); 3253 3254 /* 3255 * The barrier before waitqueue_active (in cond_wake_up) is needed so 3256 * all the updates above are seen by the woken threads. It might not be 3257 * necessary, but proving that seems to be hard. 3258 */ 3259 cond_wake_up(&root->log_commit_wait[index1]); 3260 return ret; 3261 } 3262 3263 static void free_log_tree(struct btrfs_trans_handle *trans, 3264 struct btrfs_root *log) 3265 { 3266 int ret; 3267 struct walk_control wc = { 3268 .free = 1, 3269 .process_func = process_one_buffer 3270 }; 3271 3272 if (log->node) { 3273 ret = walk_log_tree(trans, log, &wc); 3274 if (ret) { 3275 /* 3276 * We weren't able to traverse the entire log tree, the 3277 * typical scenario is getting an -EIO when reading an 3278 * extent buffer of the tree, due to a previous writeback 3279 * failure of it. 3280 */ 3281 set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR, 3282 &log->fs_info->fs_state); 3283 3284 /* 3285 * Some extent buffers of the log tree may still be dirty 3286 * and not yet written back to storage, because we may 3287 * have updates to a log tree without syncing a log tree, 3288 * such as during rename and link operations. So flush 3289 * them out and wait for their writeback to complete, so 3290 * that we properly cleanup their state and pages. 3291 */ 3292 btrfs_write_marked_extents(log->fs_info, 3293 &log->dirty_log_pages, 3294 EXTENT_DIRTY_LOG1 | EXTENT_DIRTY_LOG2); 3295 btrfs_wait_tree_log_extents(log, 3296 EXTENT_DIRTY_LOG1 | EXTENT_DIRTY_LOG2); 3297 3298 if (trans) 3299 btrfs_abort_transaction(trans, ret); 3300 else 3301 btrfs_handle_fs_error(log->fs_info, ret, NULL); 3302 } 3303 } 3304 3305 btrfs_extent_io_tree_release(&log->dirty_log_pages); 3306 btrfs_extent_io_tree_release(&log->log_csum_range); 3307 3308 btrfs_put_root(log); 3309 } 3310 3311 /* 3312 * free all the extents used by the tree log. This should be called 3313 * at commit time of the full transaction 3314 */ 3315 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root) 3316 { 3317 if (root->log_root) { 3318 free_log_tree(trans, root->log_root); 3319 root->log_root = NULL; 3320 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state); 3321 } 3322 return 0; 3323 } 3324 3325 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans, 3326 struct btrfs_fs_info *fs_info) 3327 { 3328 if (fs_info->log_root_tree) { 3329 free_log_tree(trans, fs_info->log_root_tree); 3330 fs_info->log_root_tree = NULL; 3331 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state); 3332 } 3333 return 0; 3334 } 3335 3336 /* 3337 * Check if an inode was logged in the current transaction. This correctly deals 3338 * with the case where the inode was logged but has a logged_trans of 0, which 3339 * happens if the inode is evicted and loaded again, as logged_trans is an in 3340 * memory only field (not persisted). 3341 * 3342 * Returns 1 if the inode was logged before in the transaction, 0 if it was not, 3343 * and < 0 on error. 3344 */ 3345 static int inode_logged(const struct btrfs_trans_handle *trans, 3346 struct btrfs_inode *inode, 3347 struct btrfs_path *path_in) 3348 { 3349 struct btrfs_path *path = path_in; 3350 struct btrfs_key key; 3351 int ret; 3352 3353 if (inode->logged_trans == trans->transid) 3354 return 1; 3355 3356 /* 3357 * If logged_trans is not 0, then we know the inode logged was not logged 3358 * in this transaction, so we can return false right away. 3359 */ 3360 if (inode->logged_trans > 0) 3361 return 0; 3362 3363 /* 3364 * If no log tree was created for this root in this transaction, then 3365 * the inode can not have been logged in this transaction. In that case 3366 * set logged_trans to anything greater than 0 and less than the current 3367 * transaction's ID, to avoid the search below in a future call in case 3368 * a log tree gets created after this. 3369 */ 3370 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) { 3371 inode->logged_trans = trans->transid - 1; 3372 return 0; 3373 } 3374 3375 /* 3376 * We have a log tree and the inode's logged_trans is 0. We can't tell 3377 * for sure if the inode was logged before in this transaction by looking 3378 * only at logged_trans. We could be pessimistic and assume it was, but 3379 * that can lead to unnecessarily logging an inode during rename and link 3380 * operations, and then further updating the log in followup rename and 3381 * link operations, specially if it's a directory, which adds latency 3382 * visible to applications doing a series of rename or link operations. 3383 * 3384 * A logged_trans of 0 here can mean several things: 3385 * 3386 * 1) The inode was never logged since the filesystem was mounted, and may 3387 * or may have not been evicted and loaded again; 3388 * 3389 * 2) The inode was logged in a previous transaction, then evicted and 3390 * then loaded again; 3391 * 3392 * 3) The inode was logged in the current transaction, then evicted and 3393 * then loaded again. 3394 * 3395 * For cases 1) and 2) we don't want to return true, but we need to detect 3396 * case 3) and return true. So we do a search in the log root for the inode 3397 * item. 3398 */ 3399 key.objectid = btrfs_ino(inode); 3400 key.type = BTRFS_INODE_ITEM_KEY; 3401 key.offset = 0; 3402 3403 if (!path) { 3404 path = btrfs_alloc_path(); 3405 if (!path) 3406 return -ENOMEM; 3407 } 3408 3409 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0); 3410 3411 if (path_in) 3412 btrfs_release_path(path); 3413 else 3414 btrfs_free_path(path); 3415 3416 /* 3417 * Logging an inode always results in logging its inode item. So if we 3418 * did not find the item we know the inode was not logged for sure. 3419 */ 3420 if (ret < 0) { 3421 return ret; 3422 } else if (ret > 0) { 3423 /* 3424 * Set logged_trans to a value greater than 0 and less then the 3425 * current transaction to avoid doing the search in future calls. 3426 */ 3427 inode->logged_trans = trans->transid - 1; 3428 return 0; 3429 } 3430 3431 /* 3432 * The inode was previously logged and then evicted, set logged_trans to 3433 * the current transacion's ID, to avoid future tree searches as long as 3434 * the inode is not evicted again. 3435 */ 3436 inode->logged_trans = trans->transid; 3437 3438 /* 3439 * If it's a directory, then we must set last_dir_index_offset to the 3440 * maximum possible value, so that the next attempt to log the inode does 3441 * not skip checking if dir index keys found in modified subvolume tree 3442 * leaves have been logged before, otherwise it would result in attempts 3443 * to insert duplicate dir index keys in the log tree. This must be done 3444 * because last_dir_index_offset is an in-memory only field, not persisted 3445 * in the inode item or any other on-disk structure, so its value is lost 3446 * once the inode is evicted. 3447 */ 3448 if (S_ISDIR(inode->vfs_inode.i_mode)) 3449 inode->last_dir_index_offset = (u64)-1; 3450 3451 return 1; 3452 } 3453 3454 /* 3455 * Delete a directory entry from the log if it exists. 3456 * 3457 * Returns < 0 on error 3458 * 1 if the entry does not exists 3459 * 0 if the entry existed and was successfully deleted 3460 */ 3461 static int del_logged_dentry(struct btrfs_trans_handle *trans, 3462 struct btrfs_root *log, 3463 struct btrfs_path *path, 3464 u64 dir_ino, 3465 const struct fscrypt_str *name, 3466 u64 index) 3467 { 3468 struct btrfs_dir_item *di; 3469 3470 /* 3471 * We only log dir index items of a directory, so we don't need to look 3472 * for dir item keys. 3473 */ 3474 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino, 3475 index, name, -1); 3476 if (IS_ERR(di)) 3477 return PTR_ERR(di); 3478 else if (!di) 3479 return 1; 3480 3481 /* 3482 * We do not need to update the size field of the directory's 3483 * inode item because on log replay we update the field to reflect 3484 * all existing entries in the directory (see overwrite_item()). 3485 */ 3486 return btrfs_del_item(trans, log, path); 3487 } 3488 3489 /* 3490 * If both a file and directory are logged, and unlinks or renames are 3491 * mixed in, we have a few interesting corners: 3492 * 3493 * create file X in dir Y 3494 * link file X to X.link in dir Y 3495 * fsync file X 3496 * unlink file X but leave X.link 3497 * fsync dir Y 3498 * 3499 * After a crash we would expect only X.link to exist. But file X 3500 * didn't get fsync'd again so the log has back refs for X and X.link. 3501 * 3502 * We solve this by removing directory entries and inode backrefs from the 3503 * log when a file that was logged in the current transaction is 3504 * unlinked. Any later fsync will include the updated log entries, and 3505 * we'll be able to reconstruct the proper directory items from backrefs. 3506 * 3507 * This optimizations allows us to avoid relogging the entire inode 3508 * or the entire directory. 3509 */ 3510 void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans, 3511 struct btrfs_root *root, 3512 const struct fscrypt_str *name, 3513 struct btrfs_inode *dir, u64 index) 3514 { 3515 struct btrfs_path *path; 3516 int ret; 3517 3518 ret = inode_logged(trans, dir, NULL); 3519 if (ret == 0) 3520 return; 3521 else if (ret < 0) { 3522 btrfs_set_log_full_commit(trans); 3523 return; 3524 } 3525 3526 path = btrfs_alloc_path(); 3527 if (!path) { 3528 btrfs_set_log_full_commit(trans); 3529 return; 3530 } 3531 3532 ret = join_running_log_trans(root); 3533 ASSERT(ret == 0, "join_running_log_trans() ret=%d", ret); 3534 if (WARN_ON(ret)) 3535 goto out; 3536 3537 mutex_lock(&dir->log_mutex); 3538 3539 ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir), 3540 name, index); 3541 mutex_unlock(&dir->log_mutex); 3542 if (ret < 0) 3543 btrfs_set_log_full_commit(trans); 3544 btrfs_end_log_trans(root); 3545 out: 3546 btrfs_free_path(path); 3547 } 3548 3549 /* see comments for btrfs_del_dir_entries_in_log */ 3550 void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans, 3551 struct btrfs_root *root, 3552 const struct fscrypt_str *name, 3553 struct btrfs_inode *inode, u64 dirid) 3554 { 3555 struct btrfs_root *log; 3556 int ret; 3557 3558 ret = inode_logged(trans, inode, NULL); 3559 if (ret == 0) 3560 return; 3561 else if (ret < 0) { 3562 btrfs_set_log_full_commit(trans); 3563 return; 3564 } 3565 3566 ret = join_running_log_trans(root); 3567 ASSERT(ret == 0, "join_running_log_trans() ret=%d", ret); 3568 if (WARN_ON(ret)) 3569 return; 3570 log = root->log_root; 3571 mutex_lock(&inode->log_mutex); 3572 3573 ret = btrfs_del_inode_ref(trans, log, name, btrfs_ino(inode), dirid, NULL); 3574 mutex_unlock(&inode->log_mutex); 3575 if (ret < 0 && ret != -ENOENT) 3576 btrfs_set_log_full_commit(trans); 3577 btrfs_end_log_trans(root); 3578 } 3579 3580 /* 3581 * creates a range item in the log for 'dirid'. first_offset and 3582 * last_offset tell us which parts of the key space the log should 3583 * be considered authoritative for. 3584 */ 3585 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans, 3586 struct btrfs_root *log, 3587 struct btrfs_path *path, 3588 u64 dirid, 3589 u64 first_offset, u64 last_offset) 3590 { 3591 int ret; 3592 struct btrfs_key key; 3593 struct btrfs_dir_log_item *item; 3594 3595 key.objectid = dirid; 3596 key.type = BTRFS_DIR_LOG_INDEX_KEY; 3597 key.offset = first_offset; 3598 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item)); 3599 /* 3600 * -EEXIST is fine and can happen sporadically when we are logging a 3601 * directory and have concurrent insertions in the subvolume's tree for 3602 * items from other inodes and that result in pushing off some dir items 3603 * from one leaf to another in order to accommodate for the new items. 3604 * This results in logging the same dir index range key. 3605 */ 3606 if (ret && ret != -EEXIST) 3607 return ret; 3608 3609 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3610 struct btrfs_dir_log_item); 3611 if (ret == -EEXIST) { 3612 const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item); 3613 3614 /* 3615 * btrfs_del_dir_entries_in_log() might have been called during 3616 * an unlink between the initial insertion of this key and the 3617 * current update, or we might be logging a single entry deletion 3618 * during a rename, so set the new last_offset to the max value. 3619 */ 3620 last_offset = max(last_offset, curr_end); 3621 } 3622 btrfs_set_dir_log_end(path->nodes[0], item, last_offset); 3623 btrfs_release_path(path); 3624 return 0; 3625 } 3626 3627 static int flush_dir_items_batch(struct btrfs_trans_handle *trans, 3628 struct btrfs_inode *inode, 3629 struct extent_buffer *src, 3630 struct btrfs_path *dst_path, 3631 int start_slot, 3632 int count) 3633 { 3634 struct btrfs_root *log = inode->root->log_root; 3635 char *ins_data = NULL; 3636 struct btrfs_item_batch batch; 3637 struct extent_buffer *dst; 3638 unsigned long src_offset; 3639 unsigned long dst_offset; 3640 u64 last_index; 3641 struct btrfs_key key; 3642 u32 item_size; 3643 int ret; 3644 int i; 3645 3646 ASSERT(count > 0); 3647 batch.nr = count; 3648 3649 if (count == 1) { 3650 btrfs_item_key_to_cpu(src, &key, start_slot); 3651 item_size = btrfs_item_size(src, start_slot); 3652 batch.keys = &key; 3653 batch.data_sizes = &item_size; 3654 batch.total_data_size = item_size; 3655 } else { 3656 struct btrfs_key *ins_keys; 3657 u32 *ins_sizes; 3658 3659 ins_data = kmalloc(count * sizeof(u32) + 3660 count * sizeof(struct btrfs_key), GFP_NOFS); 3661 if (!ins_data) 3662 return -ENOMEM; 3663 3664 ins_sizes = (u32 *)ins_data; 3665 ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32)); 3666 batch.keys = ins_keys; 3667 batch.data_sizes = ins_sizes; 3668 batch.total_data_size = 0; 3669 3670 for (i = 0; i < count; i++) { 3671 const int slot = start_slot + i; 3672 3673 btrfs_item_key_to_cpu(src, &ins_keys[i], slot); 3674 ins_sizes[i] = btrfs_item_size(src, slot); 3675 batch.total_data_size += ins_sizes[i]; 3676 } 3677 } 3678 3679 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch); 3680 if (ret) 3681 goto out; 3682 3683 dst = dst_path->nodes[0]; 3684 /* 3685 * Copy all the items in bulk, in a single copy operation. Item data is 3686 * organized such that it's placed at the end of a leaf and from right 3687 * to left. For example, the data for the second item ends at an offset 3688 * that matches the offset where the data for the first item starts, the 3689 * data for the third item ends at an offset that matches the offset 3690 * where the data of the second items starts, and so on. 3691 * Therefore our source and destination start offsets for copy match the 3692 * offsets of the last items (highest slots). 3693 */ 3694 dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1); 3695 src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1); 3696 copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size); 3697 btrfs_release_path(dst_path); 3698 3699 last_index = batch.keys[count - 1].offset; 3700 ASSERT(last_index > inode->last_dir_index_offset); 3701 3702 /* 3703 * If for some unexpected reason the last item's index is not greater 3704 * than the last index we logged, warn and force a transaction commit. 3705 */ 3706 if (WARN_ON(last_index <= inode->last_dir_index_offset)) 3707 ret = BTRFS_LOG_FORCE_COMMIT; 3708 else 3709 inode->last_dir_index_offset = last_index; 3710 3711 if (btrfs_get_first_dir_index_to_log(inode) == 0) 3712 btrfs_set_first_dir_index_to_log(inode, batch.keys[0].offset); 3713 out: 3714 kfree(ins_data); 3715 3716 return ret; 3717 } 3718 3719 static int clone_leaf(struct btrfs_path *path, struct btrfs_log_ctx *ctx) 3720 { 3721 const int slot = path->slots[0]; 3722 3723 if (ctx->scratch_eb) { 3724 copy_extent_buffer_full(ctx->scratch_eb, path->nodes[0]); 3725 } else { 3726 ctx->scratch_eb = btrfs_clone_extent_buffer(path->nodes[0]); 3727 if (!ctx->scratch_eb) 3728 return -ENOMEM; 3729 } 3730 3731 btrfs_release_path(path); 3732 path->nodes[0] = ctx->scratch_eb; 3733 path->slots[0] = slot; 3734 /* 3735 * Add extra ref to scratch eb so that it is not freed when callers 3736 * release the path, so we can reuse it later if needed. 3737 */ 3738 refcount_inc(&ctx->scratch_eb->refs); 3739 3740 return 0; 3741 } 3742 3743 static int process_dir_items_leaf(struct btrfs_trans_handle *trans, 3744 struct btrfs_inode *inode, 3745 struct btrfs_path *path, 3746 struct btrfs_path *dst_path, 3747 struct btrfs_log_ctx *ctx, 3748 u64 *last_old_dentry_offset) 3749 { 3750 struct btrfs_root *log = inode->root->log_root; 3751 struct extent_buffer *src; 3752 const int nritems = btrfs_header_nritems(path->nodes[0]); 3753 const u64 ino = btrfs_ino(inode); 3754 bool last_found = false; 3755 int batch_start = 0; 3756 int batch_size = 0; 3757 int ret; 3758 3759 /* 3760 * We need to clone the leaf, release the read lock on it, and use the 3761 * clone before modifying the log tree. See the comment at copy_items() 3762 * about why we need to do this. 3763 */ 3764 ret = clone_leaf(path, ctx); 3765 if (ret < 0) 3766 return ret; 3767 3768 src = path->nodes[0]; 3769 3770 for (int i = path->slots[0]; i < nritems; i++) { 3771 struct btrfs_dir_item *di; 3772 struct btrfs_key key; 3773 int ret; 3774 3775 btrfs_item_key_to_cpu(src, &key, i); 3776 3777 if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) { 3778 last_found = true; 3779 break; 3780 } 3781 3782 di = btrfs_item_ptr(src, i, struct btrfs_dir_item); 3783 3784 /* 3785 * Skip ranges of items that consist only of dir item keys created 3786 * in past transactions. However if we find a gap, we must log a 3787 * dir index range item for that gap, so that index keys in that 3788 * gap are deleted during log replay. 3789 */ 3790 if (btrfs_dir_transid(src, di) < trans->transid) { 3791 if (key.offset > *last_old_dentry_offset + 1) { 3792 ret = insert_dir_log_key(trans, log, dst_path, 3793 ino, *last_old_dentry_offset + 1, 3794 key.offset - 1); 3795 if (ret < 0) 3796 return ret; 3797 } 3798 3799 *last_old_dentry_offset = key.offset; 3800 continue; 3801 } 3802 3803 /* If we logged this dir index item before, we can skip it. */ 3804 if (key.offset <= inode->last_dir_index_offset) 3805 continue; 3806 3807 /* 3808 * We must make sure that when we log a directory entry, the 3809 * corresponding inode, after log replay, has a matching link 3810 * count. For example: 3811 * 3812 * touch foo 3813 * mkdir mydir 3814 * sync 3815 * ln foo mydir/bar 3816 * xfs_io -c "fsync" mydir 3817 * <crash> 3818 * <mount fs and log replay> 3819 * 3820 * Would result in a fsync log that when replayed, our file inode 3821 * would have a link count of 1, but we get two directory entries 3822 * pointing to the same inode. After removing one of the names, 3823 * it would not be possible to remove the other name, which 3824 * resulted always in stale file handle errors, and would not be 3825 * possible to rmdir the parent directory, since its i_size could 3826 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE, 3827 * resulting in -ENOTEMPTY errors. 3828 */ 3829 if (!ctx->log_new_dentries) { 3830 struct btrfs_key di_key; 3831 3832 btrfs_dir_item_key_to_cpu(src, di, &di_key); 3833 if (di_key.type != BTRFS_ROOT_ITEM_KEY) 3834 ctx->log_new_dentries = true; 3835 } 3836 3837 if (batch_size == 0) 3838 batch_start = i; 3839 batch_size++; 3840 } 3841 3842 if (batch_size > 0) { 3843 int ret; 3844 3845 ret = flush_dir_items_batch(trans, inode, src, dst_path, 3846 batch_start, batch_size); 3847 if (ret < 0) 3848 return ret; 3849 } 3850 3851 return last_found ? 1 : 0; 3852 } 3853 3854 /* 3855 * log all the items included in the current transaction for a given 3856 * directory. This also creates the range items in the log tree required 3857 * to replay anything deleted before the fsync 3858 */ 3859 static noinline int log_dir_items(struct btrfs_trans_handle *trans, 3860 struct btrfs_inode *inode, 3861 struct btrfs_path *path, 3862 struct btrfs_path *dst_path, 3863 struct btrfs_log_ctx *ctx, 3864 u64 min_offset, u64 *last_offset_ret) 3865 { 3866 struct btrfs_key min_key; 3867 struct btrfs_root *root = inode->root; 3868 struct btrfs_root *log = root->log_root; 3869 int ret; 3870 u64 last_old_dentry_offset = min_offset - 1; 3871 u64 last_offset = (u64)-1; 3872 u64 ino = btrfs_ino(inode); 3873 3874 min_key.objectid = ino; 3875 min_key.type = BTRFS_DIR_INDEX_KEY; 3876 min_key.offset = min_offset; 3877 3878 ret = btrfs_search_forward(root, &min_key, path, trans->transid); 3879 3880 /* 3881 * we didn't find anything from this transaction, see if there 3882 * is anything at all 3883 */ 3884 if (ret != 0 || min_key.objectid != ino || 3885 min_key.type != BTRFS_DIR_INDEX_KEY) { 3886 min_key.objectid = ino; 3887 min_key.type = BTRFS_DIR_INDEX_KEY; 3888 min_key.offset = (u64)-1; 3889 btrfs_release_path(path); 3890 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 3891 if (ret < 0) { 3892 btrfs_release_path(path); 3893 return ret; 3894 } 3895 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY); 3896 3897 /* if ret == 0 there are items for this type, 3898 * create a range to tell us the last key of this type. 3899 * otherwise, there are no items in this directory after 3900 * *min_offset, and we create a range to indicate that. 3901 */ 3902 if (ret == 0) { 3903 struct btrfs_key tmp; 3904 3905 btrfs_item_key_to_cpu(path->nodes[0], &tmp, 3906 path->slots[0]); 3907 if (tmp.type == BTRFS_DIR_INDEX_KEY) 3908 last_old_dentry_offset = tmp.offset; 3909 } else if (ret > 0) { 3910 ret = 0; 3911 } 3912 3913 goto done; 3914 } 3915 3916 /* go backward to find any previous key */ 3917 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY); 3918 if (ret == 0) { 3919 struct btrfs_key tmp; 3920 3921 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 3922 /* 3923 * The dir index key before the first one we found that needs to 3924 * be logged might be in a previous leaf, and there might be a 3925 * gap between these keys, meaning that we had deletions that 3926 * happened. So the key range item we log (key type 3927 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the 3928 * previous key's offset plus 1, so that those deletes are replayed. 3929 */ 3930 if (tmp.type == BTRFS_DIR_INDEX_KEY) 3931 last_old_dentry_offset = tmp.offset; 3932 } else if (ret < 0) { 3933 goto done; 3934 } 3935 3936 btrfs_release_path(path); 3937 3938 /* 3939 * Find the first key from this transaction again or the one we were at 3940 * in the loop below in case we had to reschedule. We may be logging the 3941 * directory without holding its VFS lock, which happen when logging new 3942 * dentries (through log_new_dir_dentries()) or in some cases when we 3943 * need to log the parent directory of an inode. This means a dir index 3944 * key might be deleted from the inode's root, and therefore we may not 3945 * find it anymore. If we can't find it, just move to the next key. We 3946 * can not bail out and ignore, because if we do that we will simply 3947 * not log dir index keys that come after the one that was just deleted 3948 * and we can end up logging a dir index range that ends at (u64)-1 3949 * (@last_offset is initialized to that), resulting in removing dir 3950 * entries we should not remove at log replay time. 3951 */ 3952 search: 3953 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 3954 if (ret > 0) { 3955 ret = btrfs_next_item(root, path); 3956 if (ret > 0) { 3957 /* There are no more keys in the inode's root. */ 3958 ret = 0; 3959 goto done; 3960 } 3961 } 3962 if (ret < 0) 3963 goto done; 3964 3965 /* 3966 * we have a block from this transaction, log every item in it 3967 * from our directory 3968 */ 3969 while (1) { 3970 ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx, 3971 &last_old_dentry_offset); 3972 if (ret != 0) { 3973 if (ret > 0) 3974 ret = 0; 3975 goto done; 3976 } 3977 path->slots[0] = btrfs_header_nritems(path->nodes[0]); 3978 3979 /* 3980 * look ahead to the next item and see if it is also 3981 * from this directory and from this transaction 3982 */ 3983 ret = btrfs_next_leaf(root, path); 3984 if (ret) { 3985 if (ret == 1) { 3986 last_offset = (u64)-1; 3987 ret = 0; 3988 } 3989 goto done; 3990 } 3991 btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]); 3992 if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) { 3993 last_offset = (u64)-1; 3994 goto done; 3995 } 3996 if (btrfs_header_generation(path->nodes[0]) != trans->transid) { 3997 /* 3998 * The next leaf was not changed in the current transaction 3999 * and has at least one dir index key. 4000 * We check for the next key because there might have been 4001 * one or more deletions between the last key we logged and 4002 * that next key. So the key range item we log (key type 4003 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's 4004 * offset minus 1, so that those deletes are replayed. 4005 */ 4006 last_offset = min_key.offset - 1; 4007 goto done; 4008 } 4009 if (need_resched()) { 4010 btrfs_release_path(path); 4011 cond_resched(); 4012 goto search; 4013 } 4014 } 4015 done: 4016 btrfs_release_path(path); 4017 btrfs_release_path(dst_path); 4018 4019 if (ret == 0) { 4020 *last_offset_ret = last_offset; 4021 /* 4022 * In case the leaf was changed in the current transaction but 4023 * all its dir items are from a past transaction, the last item 4024 * in the leaf is a dir item and there's no gap between that last 4025 * dir item and the first one on the next leaf (which did not 4026 * change in the current transaction), then we don't need to log 4027 * a range, last_old_dentry_offset is == to last_offset. 4028 */ 4029 ASSERT(last_old_dentry_offset <= last_offset); 4030 if (last_old_dentry_offset < last_offset) 4031 ret = insert_dir_log_key(trans, log, path, ino, 4032 last_old_dentry_offset + 1, 4033 last_offset); 4034 } 4035 4036 return ret; 4037 } 4038 4039 /* 4040 * If the inode was logged before and it was evicted, then its 4041 * last_dir_index_offset is (u64)-1, so we don't the value of the last index 4042 * key offset. If that's the case, search for it and update the inode. This 4043 * is to avoid lookups in the log tree every time we try to insert a dir index 4044 * key from a leaf changed in the current transaction, and to allow us to always 4045 * do batch insertions of dir index keys. 4046 */ 4047 static int update_last_dir_index_offset(struct btrfs_inode *inode, 4048 struct btrfs_path *path, 4049 const struct btrfs_log_ctx *ctx) 4050 { 4051 const u64 ino = btrfs_ino(inode); 4052 struct btrfs_key key; 4053 int ret; 4054 4055 lockdep_assert_held(&inode->log_mutex); 4056 4057 if (inode->last_dir_index_offset != (u64)-1) 4058 return 0; 4059 4060 if (!ctx->logged_before) { 4061 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1; 4062 return 0; 4063 } 4064 4065 key.objectid = ino; 4066 key.type = BTRFS_DIR_INDEX_KEY; 4067 key.offset = (u64)-1; 4068 4069 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0); 4070 /* 4071 * An error happened or we actually have an index key with an offset 4072 * value of (u64)-1. Bail out, we're done. 4073 */ 4074 if (ret <= 0) 4075 goto out; 4076 4077 ret = 0; 4078 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1; 4079 4080 /* 4081 * No dir index items, bail out and leave last_dir_index_offset with 4082 * the value right before the first valid index value. 4083 */ 4084 if (path->slots[0] == 0) 4085 goto out; 4086 4087 /* 4088 * btrfs_search_slot() left us at one slot beyond the slot with the last 4089 * index key, or beyond the last key of the directory that is not an 4090 * index key. If we have an index key before, set last_dir_index_offset 4091 * to its offset value, otherwise leave it with a value right before the 4092 * first valid index value, as it means we have an empty directory. 4093 */ 4094 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 4095 if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY) 4096 inode->last_dir_index_offset = key.offset; 4097 4098 out: 4099 btrfs_release_path(path); 4100 4101 return ret; 4102 } 4103 4104 /* 4105 * logging directories is very similar to logging inodes, We find all the items 4106 * from the current transaction and write them to the log. 4107 * 4108 * The recovery code scans the directory in the subvolume, and if it finds a 4109 * key in the range logged that is not present in the log tree, then it means 4110 * that dir entry was unlinked during the transaction. 4111 * 4112 * In order for that scan to work, we must include one key smaller than 4113 * the smallest logged by this transaction and one key larger than the largest 4114 * key logged by this transaction. 4115 */ 4116 static noinline int log_directory_changes(struct btrfs_trans_handle *trans, 4117 struct btrfs_inode *inode, 4118 struct btrfs_path *path, 4119 struct btrfs_path *dst_path, 4120 struct btrfs_log_ctx *ctx) 4121 { 4122 u64 min_key; 4123 u64 max_key; 4124 int ret; 4125 4126 ret = update_last_dir_index_offset(inode, path, ctx); 4127 if (ret) 4128 return ret; 4129 4130 min_key = BTRFS_DIR_START_INDEX; 4131 max_key = 0; 4132 4133 while (1) { 4134 ret = log_dir_items(trans, inode, path, dst_path, 4135 ctx, min_key, &max_key); 4136 if (ret) 4137 return ret; 4138 if (max_key == (u64)-1) 4139 break; 4140 min_key = max_key + 1; 4141 } 4142 4143 return 0; 4144 } 4145 4146 /* 4147 * a helper function to drop items from the log before we relog an 4148 * inode. max_key_type indicates the highest item type to remove. 4149 * This cannot be run for file data extents because it does not 4150 * free the extents they point to. 4151 */ 4152 static int drop_inode_items(struct btrfs_trans_handle *trans, 4153 struct btrfs_root *log, 4154 struct btrfs_path *path, 4155 struct btrfs_inode *inode, 4156 int max_key_type) 4157 { 4158 int ret; 4159 struct btrfs_key key; 4160 struct btrfs_key found_key; 4161 int start_slot; 4162 4163 key.objectid = btrfs_ino(inode); 4164 key.type = max_key_type; 4165 key.offset = (u64)-1; 4166 4167 while (1) { 4168 ret = btrfs_search_slot(trans, log, &key, path, -1, 1); 4169 if (ret < 0) { 4170 break; 4171 } else if (ret > 0) { 4172 if (path->slots[0] == 0) 4173 break; 4174 path->slots[0]--; 4175 } 4176 4177 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 4178 path->slots[0]); 4179 4180 if (found_key.objectid != key.objectid) 4181 break; 4182 4183 found_key.offset = 0; 4184 found_key.type = 0; 4185 ret = btrfs_bin_search(path->nodes[0], 0, &found_key, &start_slot); 4186 if (ret < 0) 4187 break; 4188 4189 ret = btrfs_del_items(trans, log, path, start_slot, 4190 path->slots[0] - start_slot + 1); 4191 /* 4192 * If start slot isn't 0 then we don't need to re-search, we've 4193 * found the last guy with the objectid in this tree. 4194 */ 4195 if (ret || start_slot != 0) 4196 break; 4197 btrfs_release_path(path); 4198 } 4199 btrfs_release_path(path); 4200 if (ret > 0) 4201 ret = 0; 4202 return ret; 4203 } 4204 4205 static int truncate_inode_items(struct btrfs_trans_handle *trans, 4206 struct btrfs_root *log_root, 4207 struct btrfs_inode *inode, 4208 u64 new_size, u32 min_type) 4209 { 4210 struct btrfs_truncate_control control = { 4211 .new_size = new_size, 4212 .ino = btrfs_ino(inode), 4213 .min_type = min_type, 4214 .skip_ref_updates = true, 4215 }; 4216 4217 return btrfs_truncate_inode_items(trans, log_root, &control); 4218 } 4219 4220 static void fill_inode_item(struct btrfs_trans_handle *trans, 4221 struct extent_buffer *leaf, 4222 struct btrfs_inode_item *item, 4223 struct inode *inode, int log_inode_only, 4224 u64 logged_isize) 4225 { 4226 u64 flags; 4227 4228 if (log_inode_only) { 4229 /* set the generation to zero so the recover code 4230 * can tell the difference between an logging 4231 * just to say 'this inode exists' and a logging 4232 * to say 'update this inode with these values' 4233 */ 4234 btrfs_set_inode_generation(leaf, item, 0); 4235 btrfs_set_inode_size(leaf, item, logged_isize); 4236 } else { 4237 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation); 4238 btrfs_set_inode_size(leaf, item, inode->i_size); 4239 } 4240 4241 btrfs_set_inode_uid(leaf, item, i_uid_read(inode)); 4242 btrfs_set_inode_gid(leaf, item, i_gid_read(inode)); 4243 btrfs_set_inode_mode(leaf, item, inode->i_mode); 4244 btrfs_set_inode_nlink(leaf, item, inode->i_nlink); 4245 4246 btrfs_set_timespec_sec(leaf, &item->atime, inode_get_atime_sec(inode)); 4247 btrfs_set_timespec_nsec(leaf, &item->atime, inode_get_atime_nsec(inode)); 4248 4249 btrfs_set_timespec_sec(leaf, &item->mtime, inode_get_mtime_sec(inode)); 4250 btrfs_set_timespec_nsec(leaf, &item->mtime, inode_get_mtime_nsec(inode)); 4251 4252 btrfs_set_timespec_sec(leaf, &item->ctime, inode_get_ctime_sec(inode)); 4253 btrfs_set_timespec_nsec(leaf, &item->ctime, inode_get_ctime_nsec(inode)); 4254 4255 btrfs_set_timespec_sec(leaf, &item->otime, BTRFS_I(inode)->i_otime_sec); 4256 btrfs_set_timespec_nsec(leaf, &item->otime, BTRFS_I(inode)->i_otime_nsec); 4257 4258 /* 4259 * We do not need to set the nbytes field, in fact during a fast fsync 4260 * its value may not even be correct, since a fast fsync does not wait 4261 * for ordered extent completion, which is where we update nbytes, it 4262 * only waits for writeback to complete. During log replay as we find 4263 * file extent items and replay them, we adjust the nbytes field of the 4264 * inode item in subvolume tree as needed (see overwrite_item()). 4265 */ 4266 4267 btrfs_set_inode_sequence(leaf, item, inode_peek_iversion(inode)); 4268 btrfs_set_inode_transid(leaf, item, trans->transid); 4269 btrfs_set_inode_rdev(leaf, item, inode->i_rdev); 4270 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 4271 BTRFS_I(inode)->ro_flags); 4272 btrfs_set_inode_flags(leaf, item, flags); 4273 btrfs_set_inode_block_group(leaf, item, 0); 4274 } 4275 4276 static int log_inode_item(struct btrfs_trans_handle *trans, 4277 struct btrfs_root *log, struct btrfs_path *path, 4278 struct btrfs_inode *inode, bool inode_item_dropped) 4279 { 4280 struct btrfs_inode_item *inode_item; 4281 struct btrfs_key key; 4282 int ret; 4283 4284 btrfs_get_inode_key(inode, &key); 4285 /* 4286 * If we are doing a fast fsync and the inode was logged before in the 4287 * current transaction, then we know the inode was previously logged and 4288 * it exists in the log tree. For performance reasons, in this case use 4289 * btrfs_search_slot() directly with ins_len set to 0 so that we never 4290 * attempt a write lock on the leaf's parent, which adds unnecessary lock 4291 * contention in case there are concurrent fsyncs for other inodes of the 4292 * same subvolume. Using btrfs_insert_empty_item() when the inode item 4293 * already exists can also result in unnecessarily splitting a leaf. 4294 */ 4295 if (!inode_item_dropped && inode->logged_trans == trans->transid) { 4296 ret = btrfs_search_slot(trans, log, &key, path, 0, 1); 4297 ASSERT(ret <= 0); 4298 if (ret > 0) 4299 ret = -ENOENT; 4300 } else { 4301 /* 4302 * This means it is the first fsync in the current transaction, 4303 * so the inode item is not in the log and we need to insert it. 4304 * We can never get -EEXIST because we are only called for a fast 4305 * fsync and in case an inode eviction happens after the inode was 4306 * logged before in the current transaction, when we load again 4307 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime 4308 * flags and set ->logged_trans to 0. 4309 */ 4310 ret = btrfs_insert_empty_item(trans, log, path, &key, 4311 sizeof(*inode_item)); 4312 ASSERT(ret != -EEXIST); 4313 } 4314 if (ret) 4315 return ret; 4316 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4317 struct btrfs_inode_item); 4318 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode, 4319 0, 0); 4320 btrfs_release_path(path); 4321 return 0; 4322 } 4323 4324 static int log_csums(struct btrfs_trans_handle *trans, 4325 struct btrfs_inode *inode, 4326 struct btrfs_root *log_root, 4327 struct btrfs_ordered_sum *sums) 4328 { 4329 const u64 lock_end = sums->logical + sums->len - 1; 4330 struct extent_state *cached_state = NULL; 4331 int ret; 4332 4333 /* 4334 * If this inode was not used for reflink operations in the current 4335 * transaction with new extents, then do the fast path, no need to 4336 * worry about logging checksum items with overlapping ranges. 4337 */ 4338 if (inode->last_reflink_trans < trans->transid) 4339 return btrfs_csum_file_blocks(trans, log_root, sums); 4340 4341 /* 4342 * Serialize logging for checksums. This is to avoid racing with the 4343 * same checksum being logged by another task that is logging another 4344 * file which happens to refer to the same extent as well. Such races 4345 * can leave checksum items in the log with overlapping ranges. 4346 */ 4347 ret = btrfs_lock_extent(&log_root->log_csum_range, sums->logical, lock_end, 4348 &cached_state); 4349 if (ret) 4350 return ret; 4351 /* 4352 * Due to extent cloning, we might have logged a csum item that covers a 4353 * subrange of a cloned extent, and later we can end up logging a csum 4354 * item for a larger subrange of the same extent or the entire range. 4355 * This would leave csum items in the log tree that cover the same range 4356 * and break the searches for checksums in the log tree, resulting in 4357 * some checksums missing in the fs/subvolume tree. So just delete (or 4358 * trim and adjust) any existing csum items in the log for this range. 4359 */ 4360 ret = btrfs_del_csums(trans, log_root, sums->logical, sums->len); 4361 if (!ret) 4362 ret = btrfs_csum_file_blocks(trans, log_root, sums); 4363 4364 btrfs_unlock_extent(&log_root->log_csum_range, sums->logical, lock_end, 4365 &cached_state); 4366 4367 return ret; 4368 } 4369 4370 static noinline int copy_items(struct btrfs_trans_handle *trans, 4371 struct btrfs_inode *inode, 4372 struct btrfs_path *dst_path, 4373 struct btrfs_path *src_path, 4374 int start_slot, int nr, int inode_only, 4375 u64 logged_isize, struct btrfs_log_ctx *ctx) 4376 { 4377 struct btrfs_root *log = inode->root->log_root; 4378 struct btrfs_file_extent_item *extent; 4379 struct extent_buffer *src; 4380 int ret; 4381 struct btrfs_key *ins_keys; 4382 u32 *ins_sizes; 4383 struct btrfs_item_batch batch; 4384 char *ins_data; 4385 int dst_index; 4386 const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM); 4387 const u64 i_size = i_size_read(&inode->vfs_inode); 4388 4389 /* 4390 * To keep lockdep happy and avoid deadlocks, clone the source leaf and 4391 * use the clone. This is because otherwise we would be changing the log 4392 * tree, to insert items from the subvolume tree or insert csum items, 4393 * while holding a read lock on a leaf from the subvolume tree, which 4394 * creates a nasty lock dependency when COWing log tree nodes/leaves: 4395 * 4396 * 1) Modifying the log tree triggers an extent buffer allocation while 4397 * holding a write lock on a parent extent buffer from the log tree. 4398 * Allocating the pages for an extent buffer, or the extent buffer 4399 * struct, can trigger inode eviction and finally the inode eviction 4400 * will trigger a release/remove of a delayed node, which requires 4401 * taking the delayed node's mutex; 4402 * 4403 * 2) Allocating a metadata extent for a log tree can trigger the async 4404 * reclaim thread and make us wait for it to release enough space and 4405 * unblock our reservation ticket. The reclaim thread can start 4406 * flushing delayed items, and that in turn results in the need to 4407 * lock delayed node mutexes and in the need to write lock extent 4408 * buffers of a subvolume tree - all this while holding a write lock 4409 * on the parent extent buffer in the log tree. 4410 * 4411 * So one task in scenario 1) running in parallel with another task in 4412 * scenario 2) could lead to a deadlock, one wanting to lock a delayed 4413 * node mutex while having a read lock on a leaf from the subvolume, 4414 * while the other is holding the delayed node's mutex and wants to 4415 * write lock the same subvolume leaf for flushing delayed items. 4416 */ 4417 ret = clone_leaf(src_path, ctx); 4418 if (ret < 0) 4419 return ret; 4420 4421 src = src_path->nodes[0]; 4422 4423 ins_data = kmalloc(nr * sizeof(struct btrfs_key) + 4424 nr * sizeof(u32), GFP_NOFS); 4425 if (!ins_data) 4426 return -ENOMEM; 4427 4428 ins_sizes = (u32 *)ins_data; 4429 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32)); 4430 batch.keys = ins_keys; 4431 batch.data_sizes = ins_sizes; 4432 batch.total_data_size = 0; 4433 batch.nr = 0; 4434 4435 dst_index = 0; 4436 for (int i = 0; i < nr; i++) { 4437 const int src_slot = start_slot + i; 4438 struct btrfs_root *csum_root; 4439 struct btrfs_ordered_sum *sums; 4440 struct btrfs_ordered_sum *sums_next; 4441 LIST_HEAD(ordered_sums); 4442 u64 disk_bytenr; 4443 u64 disk_num_bytes; 4444 u64 extent_offset; 4445 u64 extent_num_bytes; 4446 bool is_old_extent; 4447 4448 btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot); 4449 4450 if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY) 4451 goto add_to_batch; 4452 4453 extent = btrfs_item_ptr(src, src_slot, 4454 struct btrfs_file_extent_item); 4455 4456 is_old_extent = (btrfs_file_extent_generation(src, extent) < 4457 trans->transid); 4458 4459 /* 4460 * Don't copy extents from past generations. That would make us 4461 * log a lot more metadata for common cases like doing only a 4462 * few random writes into a file and then fsync it for the first 4463 * time or after the full sync flag is set on the inode. We can 4464 * get leaves full of extent items, most of which are from past 4465 * generations, so we can skip them - as long as the inode has 4466 * not been the target of a reflink operation in this transaction, 4467 * as in that case it might have had file extent items with old 4468 * generations copied into it. We also must always log prealloc 4469 * extents that start at or beyond eof, otherwise we would lose 4470 * them on log replay. 4471 */ 4472 if (is_old_extent && 4473 ins_keys[dst_index].offset < i_size && 4474 inode->last_reflink_trans < trans->transid) 4475 continue; 4476 4477 if (skip_csum) 4478 goto add_to_batch; 4479 4480 /* Only regular extents have checksums. */ 4481 if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG) 4482 goto add_to_batch; 4483 4484 /* 4485 * If it's an extent created in a past transaction, then its 4486 * checksums are already accessible from the committed csum tree, 4487 * no need to log them. 4488 */ 4489 if (is_old_extent) 4490 goto add_to_batch; 4491 4492 disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent); 4493 /* If it's an explicit hole, there are no checksums. */ 4494 if (disk_bytenr == 0) 4495 goto add_to_batch; 4496 4497 disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent); 4498 4499 if (btrfs_file_extent_compression(src, extent)) { 4500 extent_offset = 0; 4501 extent_num_bytes = disk_num_bytes; 4502 } else { 4503 extent_offset = btrfs_file_extent_offset(src, extent); 4504 extent_num_bytes = btrfs_file_extent_num_bytes(src, extent); 4505 } 4506 4507 csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr); 4508 disk_bytenr += extent_offset; 4509 ret = btrfs_lookup_csums_list(csum_root, disk_bytenr, 4510 disk_bytenr + extent_num_bytes - 1, 4511 &ordered_sums, false); 4512 if (ret < 0) 4513 goto out; 4514 ret = 0; 4515 4516 list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) { 4517 if (!ret) 4518 ret = log_csums(trans, inode, log, sums); 4519 list_del(&sums->list); 4520 kfree(sums); 4521 } 4522 if (ret) 4523 goto out; 4524 4525 add_to_batch: 4526 ins_sizes[dst_index] = btrfs_item_size(src, src_slot); 4527 batch.total_data_size += ins_sizes[dst_index]; 4528 batch.nr++; 4529 dst_index++; 4530 } 4531 4532 /* 4533 * We have a leaf full of old extent items that don't need to be logged, 4534 * so we don't need to do anything. 4535 */ 4536 if (batch.nr == 0) 4537 goto out; 4538 4539 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch); 4540 if (ret) 4541 goto out; 4542 4543 dst_index = 0; 4544 for (int i = 0; i < nr; i++) { 4545 const int src_slot = start_slot + i; 4546 const int dst_slot = dst_path->slots[0] + dst_index; 4547 struct btrfs_key key; 4548 unsigned long src_offset; 4549 unsigned long dst_offset; 4550 4551 /* 4552 * We're done, all the remaining items in the source leaf 4553 * correspond to old file extent items. 4554 */ 4555 if (dst_index >= batch.nr) 4556 break; 4557 4558 btrfs_item_key_to_cpu(src, &key, src_slot); 4559 4560 if (key.type != BTRFS_EXTENT_DATA_KEY) 4561 goto copy_item; 4562 4563 extent = btrfs_item_ptr(src, src_slot, 4564 struct btrfs_file_extent_item); 4565 4566 /* See the comment in the previous loop, same logic. */ 4567 if (btrfs_file_extent_generation(src, extent) < trans->transid && 4568 key.offset < i_size && 4569 inode->last_reflink_trans < trans->transid) 4570 continue; 4571 4572 copy_item: 4573 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot); 4574 src_offset = btrfs_item_ptr_offset(src, src_slot); 4575 4576 if (key.type == BTRFS_INODE_ITEM_KEY) { 4577 struct btrfs_inode_item *inode_item; 4578 4579 inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot, 4580 struct btrfs_inode_item); 4581 fill_inode_item(trans, dst_path->nodes[0], inode_item, 4582 &inode->vfs_inode, 4583 inode_only == LOG_INODE_EXISTS, 4584 logged_isize); 4585 } else { 4586 copy_extent_buffer(dst_path->nodes[0], src, dst_offset, 4587 src_offset, ins_sizes[dst_index]); 4588 } 4589 4590 dst_index++; 4591 } 4592 4593 btrfs_release_path(dst_path); 4594 out: 4595 kfree(ins_data); 4596 4597 return ret; 4598 } 4599 4600 static int extent_cmp(void *priv, const struct list_head *a, 4601 const struct list_head *b) 4602 { 4603 const struct extent_map *em1, *em2; 4604 4605 em1 = list_entry(a, struct extent_map, list); 4606 em2 = list_entry(b, struct extent_map, list); 4607 4608 if (em1->start < em2->start) 4609 return -1; 4610 else if (em1->start > em2->start) 4611 return 1; 4612 return 0; 4613 } 4614 4615 static int log_extent_csums(struct btrfs_trans_handle *trans, 4616 struct btrfs_inode *inode, 4617 struct btrfs_root *log_root, 4618 const struct extent_map *em, 4619 struct btrfs_log_ctx *ctx) 4620 { 4621 struct btrfs_ordered_extent *ordered; 4622 struct btrfs_root *csum_root; 4623 u64 block_start; 4624 u64 csum_offset; 4625 u64 csum_len; 4626 u64 mod_start = em->start; 4627 u64 mod_len = em->len; 4628 LIST_HEAD(ordered_sums); 4629 int ret = 0; 4630 4631 if (inode->flags & BTRFS_INODE_NODATASUM || 4632 (em->flags & EXTENT_FLAG_PREALLOC) || 4633 em->disk_bytenr == EXTENT_MAP_HOLE) 4634 return 0; 4635 4636 list_for_each_entry(ordered, &ctx->ordered_extents, log_list) { 4637 const u64 ordered_end = ordered->file_offset + ordered->num_bytes; 4638 const u64 mod_end = mod_start + mod_len; 4639 struct btrfs_ordered_sum *sums; 4640 4641 if (mod_len == 0) 4642 break; 4643 4644 if (ordered_end <= mod_start) 4645 continue; 4646 if (mod_end <= ordered->file_offset) 4647 break; 4648 4649 /* 4650 * We are going to copy all the csums on this ordered extent, so 4651 * go ahead and adjust mod_start and mod_len in case this ordered 4652 * extent has already been logged. 4653 */ 4654 if (ordered->file_offset > mod_start) { 4655 if (ordered_end >= mod_end) 4656 mod_len = ordered->file_offset - mod_start; 4657 /* 4658 * If we have this case 4659 * 4660 * |--------- logged extent ---------| 4661 * |----- ordered extent ----| 4662 * 4663 * Just don't mess with mod_start and mod_len, we'll 4664 * just end up logging more csums than we need and it 4665 * will be ok. 4666 */ 4667 } else { 4668 if (ordered_end < mod_end) { 4669 mod_len = mod_end - ordered_end; 4670 mod_start = ordered_end; 4671 } else { 4672 mod_len = 0; 4673 } 4674 } 4675 4676 /* 4677 * To keep us from looping for the above case of an ordered 4678 * extent that falls inside of the logged extent. 4679 */ 4680 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags)) 4681 continue; 4682 4683 list_for_each_entry(sums, &ordered->list, list) { 4684 ret = log_csums(trans, inode, log_root, sums); 4685 if (ret) 4686 return ret; 4687 } 4688 } 4689 4690 /* We're done, found all csums in the ordered extents. */ 4691 if (mod_len == 0) 4692 return 0; 4693 4694 /* If we're compressed we have to save the entire range of csums. */ 4695 if (btrfs_extent_map_is_compressed(em)) { 4696 csum_offset = 0; 4697 csum_len = em->disk_num_bytes; 4698 } else { 4699 csum_offset = mod_start - em->start; 4700 csum_len = mod_len; 4701 } 4702 4703 /* block start is already adjusted for the file extent offset. */ 4704 block_start = btrfs_extent_map_block_start(em); 4705 csum_root = btrfs_csum_root(trans->fs_info, block_start); 4706 ret = btrfs_lookup_csums_list(csum_root, block_start + csum_offset, 4707 block_start + csum_offset + csum_len - 1, 4708 &ordered_sums, false); 4709 if (ret < 0) 4710 return ret; 4711 ret = 0; 4712 4713 while (!list_empty(&ordered_sums)) { 4714 struct btrfs_ordered_sum *sums = list_first_entry(&ordered_sums, 4715 struct btrfs_ordered_sum, 4716 list); 4717 if (!ret) 4718 ret = log_csums(trans, inode, log_root, sums); 4719 list_del(&sums->list); 4720 kfree(sums); 4721 } 4722 4723 return ret; 4724 } 4725 4726 static int log_one_extent(struct btrfs_trans_handle *trans, 4727 struct btrfs_inode *inode, 4728 const struct extent_map *em, 4729 struct btrfs_path *path, 4730 struct btrfs_log_ctx *ctx) 4731 { 4732 struct btrfs_drop_extents_args drop_args = { 0 }; 4733 struct btrfs_root *log = inode->root->log_root; 4734 struct btrfs_file_extent_item fi = { 0 }; 4735 struct extent_buffer *leaf; 4736 struct btrfs_key key; 4737 enum btrfs_compression_type compress_type; 4738 u64 extent_offset = em->offset; 4739 u64 block_start = btrfs_extent_map_block_start(em); 4740 u64 block_len; 4741 int ret; 4742 4743 btrfs_set_stack_file_extent_generation(&fi, trans->transid); 4744 if (em->flags & EXTENT_FLAG_PREALLOC) 4745 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC); 4746 else 4747 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG); 4748 4749 block_len = em->disk_num_bytes; 4750 compress_type = btrfs_extent_map_compression(em); 4751 if (compress_type != BTRFS_COMPRESS_NONE) { 4752 btrfs_set_stack_file_extent_disk_bytenr(&fi, block_start); 4753 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len); 4754 } else if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) { 4755 btrfs_set_stack_file_extent_disk_bytenr(&fi, block_start - extent_offset); 4756 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len); 4757 } 4758 4759 btrfs_set_stack_file_extent_offset(&fi, extent_offset); 4760 btrfs_set_stack_file_extent_num_bytes(&fi, em->len); 4761 btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes); 4762 btrfs_set_stack_file_extent_compression(&fi, compress_type); 4763 4764 ret = log_extent_csums(trans, inode, log, em, ctx); 4765 if (ret) 4766 return ret; 4767 4768 /* 4769 * If this is the first time we are logging the inode in the current 4770 * transaction, we can avoid btrfs_drop_extents(), which is expensive 4771 * because it does a deletion search, which always acquires write locks 4772 * for extent buffers at levels 2, 1 and 0. This not only wastes time 4773 * but also adds significant contention in a log tree, since log trees 4774 * are small, with a root at level 2 or 3 at most, due to their short 4775 * life span. 4776 */ 4777 if (ctx->logged_before) { 4778 drop_args.path = path; 4779 drop_args.start = em->start; 4780 drop_args.end = em->start + em->len; 4781 drop_args.replace_extent = true; 4782 drop_args.extent_item_size = sizeof(fi); 4783 ret = btrfs_drop_extents(trans, log, inode, &drop_args); 4784 if (ret) 4785 return ret; 4786 } 4787 4788 if (!drop_args.extent_inserted) { 4789 key.objectid = btrfs_ino(inode); 4790 key.type = BTRFS_EXTENT_DATA_KEY; 4791 key.offset = em->start; 4792 4793 ret = btrfs_insert_empty_item(trans, log, path, &key, 4794 sizeof(fi)); 4795 if (ret) 4796 return ret; 4797 } 4798 leaf = path->nodes[0]; 4799 write_extent_buffer(leaf, &fi, 4800 btrfs_item_ptr_offset(leaf, path->slots[0]), 4801 sizeof(fi)); 4802 4803 btrfs_release_path(path); 4804 4805 return ret; 4806 } 4807 4808 /* 4809 * Log all prealloc extents beyond the inode's i_size to make sure we do not 4810 * lose them after doing a full/fast fsync and replaying the log. We scan the 4811 * subvolume's root instead of iterating the inode's extent map tree because 4812 * otherwise we can log incorrect extent items based on extent map conversion. 4813 * That can happen due to the fact that extent maps are merged when they 4814 * are not in the extent map tree's list of modified extents. 4815 */ 4816 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans, 4817 struct btrfs_inode *inode, 4818 struct btrfs_path *path, 4819 struct btrfs_log_ctx *ctx) 4820 { 4821 struct btrfs_root *root = inode->root; 4822 struct btrfs_key key; 4823 const u64 i_size = i_size_read(&inode->vfs_inode); 4824 const u64 ino = btrfs_ino(inode); 4825 struct btrfs_path *dst_path = NULL; 4826 bool dropped_extents = false; 4827 u64 truncate_offset = i_size; 4828 struct extent_buffer *leaf; 4829 int slot; 4830 int ins_nr = 0; 4831 int start_slot = 0; 4832 int ret; 4833 4834 if (!(inode->flags & BTRFS_INODE_PREALLOC)) 4835 return 0; 4836 4837 key.objectid = ino; 4838 key.type = BTRFS_EXTENT_DATA_KEY; 4839 key.offset = i_size; 4840 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4841 if (ret < 0) 4842 goto out; 4843 4844 /* 4845 * We must check if there is a prealloc extent that starts before the 4846 * i_size and crosses the i_size boundary. This is to ensure later we 4847 * truncate down to the end of that extent and not to the i_size, as 4848 * otherwise we end up losing part of the prealloc extent after a log 4849 * replay and with an implicit hole if there is another prealloc extent 4850 * that starts at an offset beyond i_size. 4851 */ 4852 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY); 4853 if (ret < 0) 4854 goto out; 4855 4856 if (ret == 0) { 4857 struct btrfs_file_extent_item *ei; 4858 4859 leaf = path->nodes[0]; 4860 slot = path->slots[0]; 4861 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 4862 4863 if (btrfs_file_extent_type(leaf, ei) == 4864 BTRFS_FILE_EXTENT_PREALLOC) { 4865 u64 extent_end; 4866 4867 btrfs_item_key_to_cpu(leaf, &key, slot); 4868 extent_end = key.offset + 4869 btrfs_file_extent_num_bytes(leaf, ei); 4870 4871 if (extent_end > i_size) 4872 truncate_offset = extent_end; 4873 } 4874 } else { 4875 ret = 0; 4876 } 4877 4878 while (true) { 4879 leaf = path->nodes[0]; 4880 slot = path->slots[0]; 4881 4882 if (slot >= btrfs_header_nritems(leaf)) { 4883 if (ins_nr > 0) { 4884 ret = copy_items(trans, inode, dst_path, path, 4885 start_slot, ins_nr, 1, 0, ctx); 4886 if (ret < 0) 4887 goto out; 4888 ins_nr = 0; 4889 } 4890 ret = btrfs_next_leaf(root, path); 4891 if (ret < 0) 4892 goto out; 4893 if (ret > 0) { 4894 ret = 0; 4895 break; 4896 } 4897 continue; 4898 } 4899 4900 btrfs_item_key_to_cpu(leaf, &key, slot); 4901 if (key.objectid > ino) 4902 break; 4903 if (WARN_ON_ONCE(key.objectid < ino) || 4904 key.type < BTRFS_EXTENT_DATA_KEY || 4905 key.offset < i_size) { 4906 path->slots[0]++; 4907 continue; 4908 } 4909 /* 4910 * Avoid overlapping items in the log tree. The first time we 4911 * get here, get rid of everything from a past fsync. After 4912 * that, if the current extent starts before the end of the last 4913 * extent we copied, truncate the last one. This can happen if 4914 * an ordered extent completion modifies the subvolume tree 4915 * while btrfs_next_leaf() has the tree unlocked. 4916 */ 4917 if (!dropped_extents || key.offset < truncate_offset) { 4918 ret = truncate_inode_items(trans, root->log_root, inode, 4919 min(key.offset, truncate_offset), 4920 BTRFS_EXTENT_DATA_KEY); 4921 if (ret) 4922 goto out; 4923 dropped_extents = true; 4924 } 4925 truncate_offset = btrfs_file_extent_end(path); 4926 if (ins_nr == 0) 4927 start_slot = slot; 4928 ins_nr++; 4929 path->slots[0]++; 4930 if (!dst_path) { 4931 dst_path = btrfs_alloc_path(); 4932 if (!dst_path) { 4933 ret = -ENOMEM; 4934 goto out; 4935 } 4936 } 4937 } 4938 if (ins_nr > 0) 4939 ret = copy_items(trans, inode, dst_path, path, 4940 start_slot, ins_nr, 1, 0, ctx); 4941 out: 4942 btrfs_release_path(path); 4943 btrfs_free_path(dst_path); 4944 return ret; 4945 } 4946 4947 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans, 4948 struct btrfs_inode *inode, 4949 struct btrfs_path *path, 4950 struct btrfs_log_ctx *ctx) 4951 { 4952 struct btrfs_ordered_extent *ordered; 4953 struct btrfs_ordered_extent *tmp; 4954 struct extent_map *em, *n; 4955 LIST_HEAD(extents); 4956 struct extent_map_tree *tree = &inode->extent_tree; 4957 int ret = 0; 4958 int num = 0; 4959 4960 write_lock(&tree->lock); 4961 4962 list_for_each_entry_safe(em, n, &tree->modified_extents, list) { 4963 list_del_init(&em->list); 4964 /* 4965 * Just an arbitrary number, this can be really CPU intensive 4966 * once we start getting a lot of extents, and really once we 4967 * have a bunch of extents we just want to commit since it will 4968 * be faster. 4969 */ 4970 if (++num > 32768) { 4971 list_del_init(&tree->modified_extents); 4972 ret = -EFBIG; 4973 goto process; 4974 } 4975 4976 if (em->generation < trans->transid) 4977 continue; 4978 4979 /* We log prealloc extents beyond eof later. */ 4980 if ((em->flags & EXTENT_FLAG_PREALLOC) && 4981 em->start >= i_size_read(&inode->vfs_inode)) 4982 continue; 4983 4984 /* Need a ref to keep it from getting evicted from cache */ 4985 refcount_inc(&em->refs); 4986 em->flags |= EXTENT_FLAG_LOGGING; 4987 list_add_tail(&em->list, &extents); 4988 num++; 4989 } 4990 4991 list_sort(NULL, &extents, extent_cmp); 4992 process: 4993 while (!list_empty(&extents)) { 4994 em = list_first_entry(&extents, struct extent_map, list); 4995 4996 list_del_init(&em->list); 4997 4998 /* 4999 * If we had an error we just need to delete everybody from our 5000 * private list. 5001 */ 5002 if (ret) { 5003 btrfs_clear_em_logging(inode, em); 5004 btrfs_free_extent_map(em); 5005 continue; 5006 } 5007 5008 write_unlock(&tree->lock); 5009 5010 ret = log_one_extent(trans, inode, em, path, ctx); 5011 write_lock(&tree->lock); 5012 btrfs_clear_em_logging(inode, em); 5013 btrfs_free_extent_map(em); 5014 } 5015 WARN_ON(!list_empty(&extents)); 5016 write_unlock(&tree->lock); 5017 5018 if (!ret) 5019 ret = btrfs_log_prealloc_extents(trans, inode, path, ctx); 5020 if (ret) 5021 return ret; 5022 5023 /* 5024 * We have logged all extents successfully, now make sure the commit of 5025 * the current transaction waits for the ordered extents to complete 5026 * before it commits and wipes out the log trees, otherwise we would 5027 * lose data if an ordered extents completes after the transaction 5028 * commits and a power failure happens after the transaction commit. 5029 */ 5030 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) { 5031 list_del_init(&ordered->log_list); 5032 set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags); 5033 5034 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) { 5035 spin_lock_irq(&inode->ordered_tree_lock); 5036 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) { 5037 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags); 5038 atomic_inc(&trans->transaction->pending_ordered); 5039 } 5040 spin_unlock_irq(&inode->ordered_tree_lock); 5041 } 5042 btrfs_put_ordered_extent(ordered); 5043 } 5044 5045 return 0; 5046 } 5047 5048 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode, 5049 struct btrfs_path *path, u64 *size_ret) 5050 { 5051 struct btrfs_key key; 5052 int ret; 5053 5054 key.objectid = btrfs_ino(inode); 5055 key.type = BTRFS_INODE_ITEM_KEY; 5056 key.offset = 0; 5057 5058 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0); 5059 if (ret < 0) { 5060 return ret; 5061 } else if (ret > 0) { 5062 *size_ret = 0; 5063 } else { 5064 struct btrfs_inode_item *item; 5065 5066 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 5067 struct btrfs_inode_item); 5068 *size_ret = btrfs_inode_size(path->nodes[0], item); 5069 /* 5070 * If the in-memory inode's i_size is smaller then the inode 5071 * size stored in the btree, return the inode's i_size, so 5072 * that we get a correct inode size after replaying the log 5073 * when before a power failure we had a shrinking truncate 5074 * followed by addition of a new name (rename / new hard link). 5075 * Otherwise return the inode size from the btree, to avoid 5076 * data loss when replaying a log due to previously doing a 5077 * write that expands the inode's size and logging a new name 5078 * immediately after. 5079 */ 5080 if (*size_ret > inode->vfs_inode.i_size) 5081 *size_ret = inode->vfs_inode.i_size; 5082 } 5083 5084 btrfs_release_path(path); 5085 return 0; 5086 } 5087 5088 /* 5089 * At the moment we always log all xattrs. This is to figure out at log replay 5090 * time which xattrs must have their deletion replayed. If a xattr is missing 5091 * in the log tree and exists in the fs/subvol tree, we delete it. This is 5092 * because if a xattr is deleted, the inode is fsynced and a power failure 5093 * happens, causing the log to be replayed the next time the fs is mounted, 5094 * we want the xattr to not exist anymore (same behaviour as other filesystems 5095 * with a journal, ext3/4, xfs, f2fs, etc). 5096 */ 5097 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans, 5098 struct btrfs_inode *inode, 5099 struct btrfs_path *path, 5100 struct btrfs_path *dst_path, 5101 struct btrfs_log_ctx *ctx) 5102 { 5103 struct btrfs_root *root = inode->root; 5104 int ret; 5105 struct btrfs_key key; 5106 const u64 ino = btrfs_ino(inode); 5107 int ins_nr = 0; 5108 int start_slot = 0; 5109 bool found_xattrs = false; 5110 5111 if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags)) 5112 return 0; 5113 5114 key.objectid = ino; 5115 key.type = BTRFS_XATTR_ITEM_KEY; 5116 key.offset = 0; 5117 5118 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5119 if (ret < 0) 5120 return ret; 5121 5122 while (true) { 5123 int slot = path->slots[0]; 5124 struct extent_buffer *leaf = path->nodes[0]; 5125 int nritems = btrfs_header_nritems(leaf); 5126 5127 if (slot >= nritems) { 5128 if (ins_nr > 0) { 5129 ret = copy_items(trans, inode, dst_path, path, 5130 start_slot, ins_nr, 1, 0, ctx); 5131 if (ret < 0) 5132 return ret; 5133 ins_nr = 0; 5134 } 5135 ret = btrfs_next_leaf(root, path); 5136 if (ret < 0) 5137 return ret; 5138 else if (ret > 0) 5139 break; 5140 continue; 5141 } 5142 5143 btrfs_item_key_to_cpu(leaf, &key, slot); 5144 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) 5145 break; 5146 5147 if (ins_nr == 0) 5148 start_slot = slot; 5149 ins_nr++; 5150 path->slots[0]++; 5151 found_xattrs = true; 5152 cond_resched(); 5153 } 5154 if (ins_nr > 0) { 5155 ret = copy_items(trans, inode, dst_path, path, 5156 start_slot, ins_nr, 1, 0, ctx); 5157 if (ret < 0) 5158 return ret; 5159 } 5160 5161 if (!found_xattrs) 5162 set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags); 5163 5164 return 0; 5165 } 5166 5167 /* 5168 * When using the NO_HOLES feature if we punched a hole that causes the 5169 * deletion of entire leafs or all the extent items of the first leaf (the one 5170 * that contains the inode item and references) we may end up not processing 5171 * any extents, because there are no leafs with a generation matching the 5172 * current transaction that have extent items for our inode. So we need to find 5173 * if any holes exist and then log them. We also need to log holes after any 5174 * truncate operation that changes the inode's size. 5175 */ 5176 static int btrfs_log_holes(struct btrfs_trans_handle *trans, 5177 struct btrfs_inode *inode, 5178 struct btrfs_path *path) 5179 { 5180 struct btrfs_root *root = inode->root; 5181 struct btrfs_fs_info *fs_info = root->fs_info; 5182 struct btrfs_key key; 5183 const u64 ino = btrfs_ino(inode); 5184 const u64 i_size = i_size_read(&inode->vfs_inode); 5185 u64 prev_extent_end = 0; 5186 int ret; 5187 5188 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0) 5189 return 0; 5190 5191 key.objectid = ino; 5192 key.type = BTRFS_EXTENT_DATA_KEY; 5193 key.offset = 0; 5194 5195 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5196 if (ret < 0) 5197 return ret; 5198 5199 while (true) { 5200 struct extent_buffer *leaf = path->nodes[0]; 5201 5202 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 5203 ret = btrfs_next_leaf(root, path); 5204 if (ret < 0) 5205 return ret; 5206 if (ret > 0) { 5207 ret = 0; 5208 break; 5209 } 5210 leaf = path->nodes[0]; 5211 } 5212 5213 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 5214 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 5215 break; 5216 5217 /* We have a hole, log it. */ 5218 if (prev_extent_end < key.offset) { 5219 const u64 hole_len = key.offset - prev_extent_end; 5220 5221 /* 5222 * Release the path to avoid deadlocks with other code 5223 * paths that search the root while holding locks on 5224 * leafs from the log root. 5225 */ 5226 btrfs_release_path(path); 5227 ret = btrfs_insert_hole_extent(trans, root->log_root, 5228 ino, prev_extent_end, 5229 hole_len); 5230 if (ret < 0) 5231 return ret; 5232 5233 /* 5234 * Search for the same key again in the root. Since it's 5235 * an extent item and we are holding the inode lock, the 5236 * key must still exist. If it doesn't just emit warning 5237 * and return an error to fall back to a transaction 5238 * commit. 5239 */ 5240 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5241 if (ret < 0) 5242 return ret; 5243 if (WARN_ON(ret > 0)) 5244 return -ENOENT; 5245 leaf = path->nodes[0]; 5246 } 5247 5248 prev_extent_end = btrfs_file_extent_end(path); 5249 path->slots[0]++; 5250 cond_resched(); 5251 } 5252 5253 if (prev_extent_end < i_size) { 5254 u64 hole_len; 5255 5256 btrfs_release_path(path); 5257 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize); 5258 ret = btrfs_insert_hole_extent(trans, root->log_root, ino, 5259 prev_extent_end, hole_len); 5260 if (ret < 0) 5261 return ret; 5262 } 5263 5264 return 0; 5265 } 5266 5267 /* 5268 * When we are logging a new inode X, check if it doesn't have a reference that 5269 * matches the reference from some other inode Y created in a past transaction 5270 * and that was renamed in the current transaction. If we don't do this, then at 5271 * log replay time we can lose inode Y (and all its files if it's a directory): 5272 * 5273 * mkdir /mnt/x 5274 * echo "hello world" > /mnt/x/foobar 5275 * sync 5276 * mv /mnt/x /mnt/y 5277 * mkdir /mnt/x # or touch /mnt/x 5278 * xfs_io -c fsync /mnt/x 5279 * <power fail> 5280 * mount fs, trigger log replay 5281 * 5282 * After the log replay procedure, we would lose the first directory and all its 5283 * files (file foobar). 5284 * For the case where inode Y is not a directory we simply end up losing it: 5285 * 5286 * echo "123" > /mnt/foo 5287 * sync 5288 * mv /mnt/foo /mnt/bar 5289 * echo "abc" > /mnt/foo 5290 * xfs_io -c fsync /mnt/foo 5291 * <power fail> 5292 * 5293 * We also need this for cases where a snapshot entry is replaced by some other 5294 * entry (file or directory) otherwise we end up with an unreplayable log due to 5295 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as 5296 * if it were a regular entry: 5297 * 5298 * mkdir /mnt/x 5299 * btrfs subvolume snapshot /mnt /mnt/x/snap 5300 * btrfs subvolume delete /mnt/x/snap 5301 * rmdir /mnt/x 5302 * mkdir /mnt/x 5303 * fsync /mnt/x or fsync some new file inside it 5304 * <power fail> 5305 * 5306 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in 5307 * the same transaction. 5308 */ 5309 static int btrfs_check_ref_name_override(struct extent_buffer *eb, 5310 const int slot, 5311 const struct btrfs_key *key, 5312 struct btrfs_inode *inode, 5313 u64 *other_ino, u64 *other_parent) 5314 { 5315 int ret; 5316 struct btrfs_path *search_path; 5317 char *name = NULL; 5318 u32 name_len = 0; 5319 u32 item_size = btrfs_item_size(eb, slot); 5320 u32 cur_offset = 0; 5321 unsigned long ptr = btrfs_item_ptr_offset(eb, slot); 5322 5323 search_path = btrfs_alloc_path(); 5324 if (!search_path) 5325 return -ENOMEM; 5326 search_path->search_commit_root = 1; 5327 search_path->skip_locking = 1; 5328 5329 while (cur_offset < item_size) { 5330 u64 parent; 5331 u32 this_name_len; 5332 u32 this_len; 5333 unsigned long name_ptr; 5334 struct btrfs_dir_item *di; 5335 struct fscrypt_str name_str; 5336 5337 if (key->type == BTRFS_INODE_REF_KEY) { 5338 struct btrfs_inode_ref *iref; 5339 5340 iref = (struct btrfs_inode_ref *)(ptr + cur_offset); 5341 parent = key->offset; 5342 this_name_len = btrfs_inode_ref_name_len(eb, iref); 5343 name_ptr = (unsigned long)(iref + 1); 5344 this_len = sizeof(*iref) + this_name_len; 5345 } else { 5346 struct btrfs_inode_extref *extref; 5347 5348 extref = (struct btrfs_inode_extref *)(ptr + 5349 cur_offset); 5350 parent = btrfs_inode_extref_parent(eb, extref); 5351 this_name_len = btrfs_inode_extref_name_len(eb, extref); 5352 name_ptr = (unsigned long)&extref->name; 5353 this_len = sizeof(*extref) + this_name_len; 5354 } 5355 5356 if (this_name_len > name_len) { 5357 char *new_name; 5358 5359 new_name = krealloc(name, this_name_len, GFP_NOFS); 5360 if (!new_name) { 5361 ret = -ENOMEM; 5362 goto out; 5363 } 5364 name_len = this_name_len; 5365 name = new_name; 5366 } 5367 5368 read_extent_buffer(eb, name, name_ptr, this_name_len); 5369 5370 name_str.name = name; 5371 name_str.len = this_name_len; 5372 di = btrfs_lookup_dir_item(NULL, inode->root, search_path, 5373 parent, &name_str, 0); 5374 if (di && !IS_ERR(di)) { 5375 struct btrfs_key di_key; 5376 5377 btrfs_dir_item_key_to_cpu(search_path->nodes[0], 5378 di, &di_key); 5379 if (di_key.type == BTRFS_INODE_ITEM_KEY) { 5380 if (di_key.objectid != key->objectid) { 5381 ret = 1; 5382 *other_ino = di_key.objectid; 5383 *other_parent = parent; 5384 } else { 5385 ret = 0; 5386 } 5387 } else { 5388 ret = -EAGAIN; 5389 } 5390 goto out; 5391 } else if (IS_ERR(di)) { 5392 ret = PTR_ERR(di); 5393 goto out; 5394 } 5395 btrfs_release_path(search_path); 5396 5397 cur_offset += this_len; 5398 } 5399 ret = 0; 5400 out: 5401 btrfs_free_path(search_path); 5402 kfree(name); 5403 return ret; 5404 } 5405 5406 /* 5407 * Check if we need to log an inode. This is used in contexts where while 5408 * logging an inode we need to log another inode (either that it exists or in 5409 * full mode). This is used instead of btrfs_inode_in_log() because the later 5410 * requires the inode to be in the log and have the log transaction committed, 5411 * while here we do not care if the log transaction was already committed - our 5412 * caller will commit the log later - and we want to avoid logging an inode 5413 * multiple times when multiple tasks have joined the same log transaction. 5414 */ 5415 static bool need_log_inode(const struct btrfs_trans_handle *trans, 5416 struct btrfs_inode *inode) 5417 { 5418 /* 5419 * If a directory was not modified, no dentries added or removed, we can 5420 * and should avoid logging it. 5421 */ 5422 if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid) 5423 return false; 5424 5425 /* 5426 * If this inode does not have new/updated/deleted xattrs since the last 5427 * time it was logged and is flagged as logged in the current transaction, 5428 * we can skip logging it. As for new/deleted names, those are updated in 5429 * the log by link/unlink/rename operations. 5430 * In case the inode was logged and then evicted and reloaded, its 5431 * logged_trans will be 0, in which case we have to fully log it since 5432 * logged_trans is a transient field, not persisted. 5433 */ 5434 if (inode_logged(trans, inode, NULL) == 1 && 5435 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags)) 5436 return false; 5437 5438 return true; 5439 } 5440 5441 struct btrfs_dir_list { 5442 u64 ino; 5443 struct list_head list; 5444 }; 5445 5446 /* 5447 * Log the inodes of the new dentries of a directory. 5448 * See process_dir_items_leaf() for details about why it is needed. 5449 * This is a recursive operation - if an existing dentry corresponds to a 5450 * directory, that directory's new entries are logged too (same behaviour as 5451 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes 5452 * the dentries point to we do not acquire their VFS lock, otherwise lockdep 5453 * complains about the following circular lock dependency / possible deadlock: 5454 * 5455 * CPU0 CPU1 5456 * ---- ---- 5457 * lock(&type->i_mutex_dir_key#3/2); 5458 * lock(sb_internal#2); 5459 * lock(&type->i_mutex_dir_key#3/2); 5460 * lock(&sb->s_type->i_mutex_key#14); 5461 * 5462 * Where sb_internal is the lock (a counter that works as a lock) acquired by 5463 * sb_start_intwrite() in btrfs_start_transaction(). 5464 * Not acquiring the VFS lock of the inodes is still safe because: 5465 * 5466 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible 5467 * that while logging the inode new references (names) are added or removed 5468 * from the inode, leaving the logged inode item with a link count that does 5469 * not match the number of logged inode reference items. This is fine because 5470 * at log replay time we compute the real number of links and correct the 5471 * link count in the inode item (see replay_one_buffer() and 5472 * link_to_fixup_dir()); 5473 * 5474 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that 5475 * while logging the inode's items new index items (key type 5476 * BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item 5477 * has a size that doesn't match the sum of the lengths of all the logged 5478 * names - this is ok, not a problem, because at log replay time we set the 5479 * directory's i_size to the correct value (see replay_one_name() and 5480 * overwrite_item()). 5481 */ 5482 static int log_new_dir_dentries(struct btrfs_trans_handle *trans, 5483 struct btrfs_inode *start_inode, 5484 struct btrfs_log_ctx *ctx) 5485 { 5486 struct btrfs_root *root = start_inode->root; 5487 struct btrfs_path *path; 5488 LIST_HEAD(dir_list); 5489 struct btrfs_dir_list *dir_elem; 5490 u64 ino = btrfs_ino(start_inode); 5491 struct btrfs_inode *curr_inode = start_inode; 5492 int ret = 0; 5493 5494 /* 5495 * If we are logging a new name, as part of a link or rename operation, 5496 * don't bother logging new dentries, as we just want to log the names 5497 * of an inode and that any new parents exist. 5498 */ 5499 if (ctx->logging_new_name) 5500 return 0; 5501 5502 path = btrfs_alloc_path(); 5503 if (!path) 5504 return -ENOMEM; 5505 5506 /* Pairs with btrfs_add_delayed_iput below. */ 5507 ihold(&curr_inode->vfs_inode); 5508 5509 while (true) { 5510 struct btrfs_key key; 5511 struct btrfs_key found_key; 5512 u64 next_index; 5513 bool continue_curr_inode = true; 5514 int iter_ret; 5515 5516 key.objectid = ino; 5517 key.type = BTRFS_DIR_INDEX_KEY; 5518 key.offset = btrfs_get_first_dir_index_to_log(curr_inode); 5519 next_index = key.offset; 5520 again: 5521 btrfs_for_each_slot(root->log_root, &key, &found_key, path, iter_ret) { 5522 struct extent_buffer *leaf = path->nodes[0]; 5523 struct btrfs_dir_item *di; 5524 struct btrfs_key di_key; 5525 struct btrfs_inode *di_inode; 5526 int log_mode = LOG_INODE_EXISTS; 5527 int type; 5528 5529 if (found_key.objectid != ino || 5530 found_key.type != BTRFS_DIR_INDEX_KEY) { 5531 continue_curr_inode = false; 5532 break; 5533 } 5534 5535 next_index = found_key.offset + 1; 5536 5537 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item); 5538 type = btrfs_dir_ftype(leaf, di); 5539 if (btrfs_dir_transid(leaf, di) < trans->transid) 5540 continue; 5541 btrfs_dir_item_key_to_cpu(leaf, di, &di_key); 5542 if (di_key.type == BTRFS_ROOT_ITEM_KEY) 5543 continue; 5544 5545 btrfs_release_path(path); 5546 di_inode = btrfs_iget_logging(di_key.objectid, root); 5547 if (IS_ERR(di_inode)) { 5548 ret = PTR_ERR(di_inode); 5549 goto out; 5550 } 5551 5552 if (!need_log_inode(trans, di_inode)) { 5553 btrfs_add_delayed_iput(di_inode); 5554 break; 5555 } 5556 5557 ctx->log_new_dentries = false; 5558 if (type == BTRFS_FT_DIR) 5559 log_mode = LOG_INODE_ALL; 5560 ret = btrfs_log_inode(trans, di_inode, log_mode, ctx); 5561 btrfs_add_delayed_iput(di_inode); 5562 if (ret) 5563 goto out; 5564 if (ctx->log_new_dentries) { 5565 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS); 5566 if (!dir_elem) { 5567 ret = -ENOMEM; 5568 goto out; 5569 } 5570 dir_elem->ino = di_key.objectid; 5571 list_add_tail(&dir_elem->list, &dir_list); 5572 } 5573 break; 5574 } 5575 5576 btrfs_release_path(path); 5577 5578 if (iter_ret < 0) { 5579 ret = iter_ret; 5580 goto out; 5581 } else if (iter_ret > 0) { 5582 continue_curr_inode = false; 5583 } else { 5584 key = found_key; 5585 } 5586 5587 if (continue_curr_inode && key.offset < (u64)-1) { 5588 key.offset++; 5589 goto again; 5590 } 5591 5592 btrfs_set_first_dir_index_to_log(curr_inode, next_index); 5593 5594 if (list_empty(&dir_list)) 5595 break; 5596 5597 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list); 5598 ino = dir_elem->ino; 5599 list_del(&dir_elem->list); 5600 kfree(dir_elem); 5601 5602 btrfs_add_delayed_iput(curr_inode); 5603 5604 curr_inode = btrfs_iget_logging(ino, root); 5605 if (IS_ERR(curr_inode)) { 5606 ret = PTR_ERR(curr_inode); 5607 curr_inode = NULL; 5608 break; 5609 } 5610 } 5611 out: 5612 btrfs_free_path(path); 5613 if (curr_inode) 5614 btrfs_add_delayed_iput(curr_inode); 5615 5616 if (ret) { 5617 struct btrfs_dir_list *next; 5618 5619 list_for_each_entry_safe(dir_elem, next, &dir_list, list) 5620 kfree(dir_elem); 5621 } 5622 5623 return ret; 5624 } 5625 5626 struct btrfs_ino_list { 5627 u64 ino; 5628 u64 parent; 5629 struct list_head list; 5630 }; 5631 5632 static void free_conflicting_inodes(struct btrfs_log_ctx *ctx) 5633 { 5634 struct btrfs_ino_list *curr; 5635 struct btrfs_ino_list *next; 5636 5637 list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) { 5638 list_del(&curr->list); 5639 kfree(curr); 5640 } 5641 } 5642 5643 static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino, 5644 struct btrfs_path *path) 5645 { 5646 struct btrfs_key key; 5647 int ret; 5648 5649 key.objectid = ino; 5650 key.type = BTRFS_INODE_ITEM_KEY; 5651 key.offset = 0; 5652 5653 path->search_commit_root = 1; 5654 path->skip_locking = 1; 5655 5656 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5657 if (WARN_ON_ONCE(ret > 0)) { 5658 /* 5659 * We have previously found the inode through the commit root 5660 * so this should not happen. If it does, just error out and 5661 * fallback to a transaction commit. 5662 */ 5663 ret = -ENOENT; 5664 } else if (ret == 0) { 5665 struct btrfs_inode_item *item; 5666 5667 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 5668 struct btrfs_inode_item); 5669 if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item))) 5670 ret = 1; 5671 } 5672 5673 btrfs_release_path(path); 5674 path->search_commit_root = 0; 5675 path->skip_locking = 0; 5676 5677 return ret; 5678 } 5679 5680 static int add_conflicting_inode(struct btrfs_trans_handle *trans, 5681 struct btrfs_root *root, 5682 struct btrfs_path *path, 5683 u64 ino, u64 parent, 5684 struct btrfs_log_ctx *ctx) 5685 { 5686 struct btrfs_ino_list *ino_elem; 5687 struct btrfs_inode *inode; 5688 5689 /* 5690 * It's rare to have a lot of conflicting inodes, in practice it is not 5691 * common to have more than 1 or 2. We don't want to collect too many, 5692 * as we could end up logging too many inodes (even if only in 5693 * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction 5694 * commits. 5695 */ 5696 if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES) 5697 return BTRFS_LOG_FORCE_COMMIT; 5698 5699 inode = btrfs_iget_logging(ino, root); 5700 /* 5701 * If the other inode that had a conflicting dir entry was deleted in 5702 * the current transaction then we either: 5703 * 5704 * 1) Log the parent directory (later after adding it to the list) if 5705 * the inode is a directory. This is because it may be a deleted 5706 * subvolume/snapshot or it may be a regular directory that had 5707 * deleted subvolumes/snapshots (or subdirectories that had them), 5708 * and at the moment we can't deal with dropping subvolumes/snapshots 5709 * during log replay. So we just log the parent, which will result in 5710 * a fallback to a transaction commit if we are dealing with those 5711 * cases (last_unlink_trans will match the current transaction); 5712 * 5713 * 2) Do nothing if it's not a directory. During log replay we simply 5714 * unlink the conflicting dentry from the parent directory and then 5715 * add the dentry for our inode. Like this we can avoid logging the 5716 * parent directory (and maybe fallback to a transaction commit in 5717 * case it has a last_unlink_trans == trans->transid, due to moving 5718 * some inode from it to some other directory). 5719 */ 5720 if (IS_ERR(inode)) { 5721 int ret = PTR_ERR(inode); 5722 5723 if (ret != -ENOENT) 5724 return ret; 5725 5726 ret = conflicting_inode_is_dir(root, ino, path); 5727 /* Not a directory or we got an error. */ 5728 if (ret <= 0) 5729 return ret; 5730 5731 /* Conflicting inode is a directory, so we'll log its parent. */ 5732 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS); 5733 if (!ino_elem) 5734 return -ENOMEM; 5735 ino_elem->ino = ino; 5736 ino_elem->parent = parent; 5737 list_add_tail(&ino_elem->list, &ctx->conflict_inodes); 5738 ctx->num_conflict_inodes++; 5739 5740 return 0; 5741 } 5742 5743 /* 5744 * If the inode was already logged skip it - otherwise we can hit an 5745 * infinite loop. Example: 5746 * 5747 * From the commit root (previous transaction) we have the following 5748 * inodes: 5749 * 5750 * inode 257 a directory 5751 * inode 258 with references "zz" and "zz_link" on inode 257 5752 * inode 259 with reference "a" on inode 257 5753 * 5754 * And in the current (uncommitted) transaction we have: 5755 * 5756 * inode 257 a directory, unchanged 5757 * inode 258 with references "a" and "a2" on inode 257 5758 * inode 259 with reference "zz_link" on inode 257 5759 * inode 261 with reference "zz" on inode 257 5760 * 5761 * When logging inode 261 the following infinite loop could 5762 * happen if we don't skip already logged inodes: 5763 * 5764 * - we detect inode 258 as a conflicting inode, with inode 261 5765 * on reference "zz", and log it; 5766 * 5767 * - we detect inode 259 as a conflicting inode, with inode 258 5768 * on reference "a", and log it; 5769 * 5770 * - we detect inode 258 as a conflicting inode, with inode 259 5771 * on reference "zz_link", and log it - again! After this we 5772 * repeat the above steps forever. 5773 * 5774 * Here we can use need_log_inode() because we only need to log the 5775 * inode in LOG_INODE_EXISTS mode and rename operations update the log, 5776 * so that the log ends up with the new name and without the old name. 5777 */ 5778 if (!need_log_inode(trans, inode)) { 5779 btrfs_add_delayed_iput(inode); 5780 return 0; 5781 } 5782 5783 btrfs_add_delayed_iput(inode); 5784 5785 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS); 5786 if (!ino_elem) 5787 return -ENOMEM; 5788 ino_elem->ino = ino; 5789 ino_elem->parent = parent; 5790 list_add_tail(&ino_elem->list, &ctx->conflict_inodes); 5791 ctx->num_conflict_inodes++; 5792 5793 return 0; 5794 } 5795 5796 static int log_conflicting_inodes(struct btrfs_trans_handle *trans, 5797 struct btrfs_root *root, 5798 struct btrfs_log_ctx *ctx) 5799 { 5800 int ret = 0; 5801 5802 /* 5803 * Conflicting inodes are logged by the first call to btrfs_log_inode(), 5804 * otherwise we could have unbounded recursion of btrfs_log_inode() 5805 * calls. This check guarantees we can have only 1 level of recursion. 5806 */ 5807 if (ctx->logging_conflict_inodes) 5808 return 0; 5809 5810 ctx->logging_conflict_inodes = true; 5811 5812 /* 5813 * New conflicting inodes may be found and added to the list while we 5814 * are logging a conflicting inode, so keep iterating while the list is 5815 * not empty. 5816 */ 5817 while (!list_empty(&ctx->conflict_inodes)) { 5818 struct btrfs_ino_list *curr; 5819 struct btrfs_inode *inode; 5820 u64 ino; 5821 u64 parent; 5822 5823 curr = list_first_entry(&ctx->conflict_inodes, 5824 struct btrfs_ino_list, list); 5825 ino = curr->ino; 5826 parent = curr->parent; 5827 list_del(&curr->list); 5828 kfree(curr); 5829 5830 inode = btrfs_iget_logging(ino, root); 5831 /* 5832 * If the other inode that had a conflicting dir entry was 5833 * deleted in the current transaction, we need to log its parent 5834 * directory. See the comment at add_conflicting_inode(). 5835 */ 5836 if (IS_ERR(inode)) { 5837 ret = PTR_ERR(inode); 5838 if (ret != -ENOENT) 5839 break; 5840 5841 inode = btrfs_iget_logging(parent, root); 5842 if (IS_ERR(inode)) { 5843 ret = PTR_ERR(inode); 5844 break; 5845 } 5846 5847 /* 5848 * Always log the directory, we cannot make this 5849 * conditional on need_log_inode() because the directory 5850 * might have been logged in LOG_INODE_EXISTS mode or 5851 * the dir index of the conflicting inode is not in a 5852 * dir index key range logged for the directory. So we 5853 * must make sure the deletion is recorded. 5854 */ 5855 ret = btrfs_log_inode(trans, inode, LOG_INODE_ALL, ctx); 5856 btrfs_add_delayed_iput(inode); 5857 if (ret) 5858 break; 5859 continue; 5860 } 5861 5862 /* 5863 * Here we can use need_log_inode() because we only need to log 5864 * the inode in LOG_INODE_EXISTS mode and rename operations 5865 * update the log, so that the log ends up with the new name and 5866 * without the old name. 5867 * 5868 * We did this check at add_conflicting_inode(), but here we do 5869 * it again because if some other task logged the inode after 5870 * that, we can avoid doing it again. 5871 */ 5872 if (!need_log_inode(trans, inode)) { 5873 btrfs_add_delayed_iput(inode); 5874 continue; 5875 } 5876 5877 /* 5878 * We are safe logging the other inode without acquiring its 5879 * lock as long as we log with the LOG_INODE_EXISTS mode. We 5880 * are safe against concurrent renames of the other inode as 5881 * well because during a rename we pin the log and update the 5882 * log with the new name before we unpin it. 5883 */ 5884 ret = btrfs_log_inode(trans, inode, LOG_INODE_EXISTS, ctx); 5885 btrfs_add_delayed_iput(inode); 5886 if (ret) 5887 break; 5888 } 5889 5890 ctx->logging_conflict_inodes = false; 5891 if (ret) 5892 free_conflicting_inodes(ctx); 5893 5894 return ret; 5895 } 5896 5897 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans, 5898 struct btrfs_inode *inode, 5899 struct btrfs_key *min_key, 5900 const struct btrfs_key *max_key, 5901 struct btrfs_path *path, 5902 struct btrfs_path *dst_path, 5903 const u64 logged_isize, 5904 const int inode_only, 5905 struct btrfs_log_ctx *ctx, 5906 bool *need_log_inode_item) 5907 { 5908 const u64 i_size = i_size_read(&inode->vfs_inode); 5909 struct btrfs_root *root = inode->root; 5910 int ins_start_slot = 0; 5911 int ins_nr = 0; 5912 int ret; 5913 5914 while (1) { 5915 ret = btrfs_search_forward(root, min_key, path, trans->transid); 5916 if (ret < 0) 5917 return ret; 5918 if (ret > 0) { 5919 ret = 0; 5920 break; 5921 } 5922 again: 5923 /* Note, ins_nr might be > 0 here, cleanup outside the loop */ 5924 if (min_key->objectid != max_key->objectid) 5925 break; 5926 if (min_key->type > max_key->type) 5927 break; 5928 5929 if (min_key->type == BTRFS_INODE_ITEM_KEY) { 5930 *need_log_inode_item = false; 5931 } else if (min_key->type == BTRFS_EXTENT_DATA_KEY && 5932 min_key->offset >= i_size) { 5933 /* 5934 * Extents at and beyond eof are logged with 5935 * btrfs_log_prealloc_extents(). 5936 * Only regular files have BTRFS_EXTENT_DATA_KEY keys, 5937 * and no keys greater than that, so bail out. 5938 */ 5939 break; 5940 } else if ((min_key->type == BTRFS_INODE_REF_KEY || 5941 min_key->type == BTRFS_INODE_EXTREF_KEY) && 5942 (inode->generation == trans->transid || 5943 ctx->logging_conflict_inodes)) { 5944 u64 other_ino = 0; 5945 u64 other_parent = 0; 5946 5947 ret = btrfs_check_ref_name_override(path->nodes[0], 5948 path->slots[0], min_key, inode, 5949 &other_ino, &other_parent); 5950 if (ret < 0) { 5951 return ret; 5952 } else if (ret > 0 && 5953 other_ino != btrfs_ino(ctx->inode)) { 5954 if (ins_nr > 0) { 5955 ins_nr++; 5956 } else { 5957 ins_nr = 1; 5958 ins_start_slot = path->slots[0]; 5959 } 5960 ret = copy_items(trans, inode, dst_path, path, 5961 ins_start_slot, ins_nr, 5962 inode_only, logged_isize, ctx); 5963 if (ret < 0) 5964 return ret; 5965 ins_nr = 0; 5966 5967 btrfs_release_path(path); 5968 ret = add_conflicting_inode(trans, root, path, 5969 other_ino, 5970 other_parent, ctx); 5971 if (ret) 5972 return ret; 5973 goto next_key; 5974 } 5975 } else if (min_key->type == BTRFS_XATTR_ITEM_KEY) { 5976 /* Skip xattrs, logged later with btrfs_log_all_xattrs() */ 5977 if (ins_nr == 0) 5978 goto next_slot; 5979 ret = copy_items(trans, inode, dst_path, path, 5980 ins_start_slot, 5981 ins_nr, inode_only, logged_isize, ctx); 5982 if (ret < 0) 5983 return ret; 5984 ins_nr = 0; 5985 goto next_slot; 5986 } 5987 5988 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) { 5989 ins_nr++; 5990 goto next_slot; 5991 } else if (!ins_nr) { 5992 ins_start_slot = path->slots[0]; 5993 ins_nr = 1; 5994 goto next_slot; 5995 } 5996 5997 ret = copy_items(trans, inode, dst_path, path, ins_start_slot, 5998 ins_nr, inode_only, logged_isize, ctx); 5999 if (ret < 0) 6000 return ret; 6001 ins_nr = 1; 6002 ins_start_slot = path->slots[0]; 6003 next_slot: 6004 path->slots[0]++; 6005 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) { 6006 btrfs_item_key_to_cpu(path->nodes[0], min_key, 6007 path->slots[0]); 6008 goto again; 6009 } 6010 if (ins_nr) { 6011 ret = copy_items(trans, inode, dst_path, path, 6012 ins_start_slot, ins_nr, inode_only, 6013 logged_isize, ctx); 6014 if (ret < 0) 6015 return ret; 6016 ins_nr = 0; 6017 } 6018 btrfs_release_path(path); 6019 next_key: 6020 if (min_key->offset < (u64)-1) { 6021 min_key->offset++; 6022 } else if (min_key->type < max_key->type) { 6023 min_key->type++; 6024 min_key->offset = 0; 6025 } else { 6026 break; 6027 } 6028 6029 /* 6030 * We may process many leaves full of items for our inode, so 6031 * avoid monopolizing a cpu for too long by rescheduling while 6032 * not holding locks on any tree. 6033 */ 6034 cond_resched(); 6035 } 6036 if (ins_nr) { 6037 ret = copy_items(trans, inode, dst_path, path, ins_start_slot, 6038 ins_nr, inode_only, logged_isize, ctx); 6039 if (ret) 6040 return ret; 6041 } 6042 6043 if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) { 6044 /* 6045 * Release the path because otherwise we might attempt to double 6046 * lock the same leaf with btrfs_log_prealloc_extents() below. 6047 */ 6048 btrfs_release_path(path); 6049 ret = btrfs_log_prealloc_extents(trans, inode, dst_path, ctx); 6050 } 6051 6052 return ret; 6053 } 6054 6055 static int insert_delayed_items_batch(struct btrfs_trans_handle *trans, 6056 struct btrfs_root *log, 6057 struct btrfs_path *path, 6058 const struct btrfs_item_batch *batch, 6059 const struct btrfs_delayed_item *first_item) 6060 { 6061 const struct btrfs_delayed_item *curr = first_item; 6062 int ret; 6063 6064 ret = btrfs_insert_empty_items(trans, log, path, batch); 6065 if (ret) 6066 return ret; 6067 6068 for (int i = 0; i < batch->nr; i++) { 6069 char *data_ptr; 6070 6071 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char); 6072 write_extent_buffer(path->nodes[0], &curr->data, 6073 (unsigned long)data_ptr, curr->data_len); 6074 curr = list_next_entry(curr, log_list); 6075 path->slots[0]++; 6076 } 6077 6078 btrfs_release_path(path); 6079 6080 return 0; 6081 } 6082 6083 static int log_delayed_insertion_items(struct btrfs_trans_handle *trans, 6084 struct btrfs_inode *inode, 6085 struct btrfs_path *path, 6086 const struct list_head *delayed_ins_list, 6087 struct btrfs_log_ctx *ctx) 6088 { 6089 /* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */ 6090 const int max_batch_size = 195; 6091 const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info); 6092 const u64 ino = btrfs_ino(inode); 6093 struct btrfs_root *log = inode->root->log_root; 6094 struct btrfs_item_batch batch = { 6095 .nr = 0, 6096 .total_data_size = 0, 6097 }; 6098 const struct btrfs_delayed_item *first = NULL; 6099 const struct btrfs_delayed_item *curr; 6100 char *ins_data; 6101 struct btrfs_key *ins_keys; 6102 u32 *ins_sizes; 6103 u64 curr_batch_size = 0; 6104 int batch_idx = 0; 6105 int ret; 6106 6107 /* We are adding dir index items to the log tree. */ 6108 lockdep_assert_held(&inode->log_mutex); 6109 6110 /* 6111 * We collect delayed items before copying index keys from the subvolume 6112 * to the log tree. However just after we collected them, they may have 6113 * been flushed (all of them or just some of them), and therefore we 6114 * could have copied them from the subvolume tree to the log tree. 6115 * So find the first delayed item that was not yet logged (they are 6116 * sorted by index number). 6117 */ 6118 list_for_each_entry(curr, delayed_ins_list, log_list) { 6119 if (curr->index > inode->last_dir_index_offset) { 6120 first = curr; 6121 break; 6122 } 6123 } 6124 6125 /* Empty list or all delayed items were already logged. */ 6126 if (!first) 6127 return 0; 6128 6129 ins_data = kmalloc(max_batch_size * sizeof(u32) + 6130 max_batch_size * sizeof(struct btrfs_key), GFP_NOFS); 6131 if (!ins_data) 6132 return -ENOMEM; 6133 ins_sizes = (u32 *)ins_data; 6134 batch.data_sizes = ins_sizes; 6135 ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32)); 6136 batch.keys = ins_keys; 6137 6138 curr = first; 6139 while (!list_entry_is_head(curr, delayed_ins_list, log_list)) { 6140 const u32 curr_size = curr->data_len + sizeof(struct btrfs_item); 6141 6142 if (curr_batch_size + curr_size > leaf_data_size || 6143 batch.nr == max_batch_size) { 6144 ret = insert_delayed_items_batch(trans, log, path, 6145 &batch, first); 6146 if (ret) 6147 goto out; 6148 batch_idx = 0; 6149 batch.nr = 0; 6150 batch.total_data_size = 0; 6151 curr_batch_size = 0; 6152 first = curr; 6153 } 6154 6155 ins_sizes[batch_idx] = curr->data_len; 6156 ins_keys[batch_idx].objectid = ino; 6157 ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY; 6158 ins_keys[batch_idx].offset = curr->index; 6159 curr_batch_size += curr_size; 6160 batch.total_data_size += curr->data_len; 6161 batch.nr++; 6162 batch_idx++; 6163 curr = list_next_entry(curr, log_list); 6164 } 6165 6166 ASSERT(batch.nr >= 1); 6167 ret = insert_delayed_items_batch(trans, log, path, &batch, first); 6168 6169 curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item, 6170 log_list); 6171 inode->last_dir_index_offset = curr->index; 6172 out: 6173 kfree(ins_data); 6174 6175 return ret; 6176 } 6177 6178 static int log_delayed_deletions_full(struct btrfs_trans_handle *trans, 6179 struct btrfs_inode *inode, 6180 struct btrfs_path *path, 6181 const struct list_head *delayed_del_list, 6182 struct btrfs_log_ctx *ctx) 6183 { 6184 const u64 ino = btrfs_ino(inode); 6185 const struct btrfs_delayed_item *curr; 6186 6187 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item, 6188 log_list); 6189 6190 while (!list_entry_is_head(curr, delayed_del_list, log_list)) { 6191 u64 first_dir_index = curr->index; 6192 u64 last_dir_index; 6193 const struct btrfs_delayed_item *next; 6194 int ret; 6195 6196 /* 6197 * Find a range of consecutive dir index items to delete. Like 6198 * this we log a single dir range item spanning several contiguous 6199 * dir items instead of logging one range item per dir index item. 6200 */ 6201 next = list_next_entry(curr, log_list); 6202 while (!list_entry_is_head(next, delayed_del_list, log_list)) { 6203 if (next->index != curr->index + 1) 6204 break; 6205 curr = next; 6206 next = list_next_entry(next, log_list); 6207 } 6208 6209 last_dir_index = curr->index; 6210 ASSERT(last_dir_index >= first_dir_index); 6211 6212 ret = insert_dir_log_key(trans, inode->root->log_root, path, 6213 ino, first_dir_index, last_dir_index); 6214 if (ret) 6215 return ret; 6216 curr = list_next_entry(curr, log_list); 6217 } 6218 6219 return 0; 6220 } 6221 6222 static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans, 6223 struct btrfs_inode *inode, 6224 struct btrfs_path *path, 6225 const struct list_head *delayed_del_list, 6226 const struct btrfs_delayed_item *first, 6227 const struct btrfs_delayed_item **last_ret) 6228 { 6229 const struct btrfs_delayed_item *next; 6230 struct extent_buffer *leaf = path->nodes[0]; 6231 const int last_slot = btrfs_header_nritems(leaf) - 1; 6232 int slot = path->slots[0] + 1; 6233 const u64 ino = btrfs_ino(inode); 6234 6235 next = list_next_entry(first, log_list); 6236 6237 while (slot < last_slot && 6238 !list_entry_is_head(next, delayed_del_list, log_list)) { 6239 struct btrfs_key key; 6240 6241 btrfs_item_key_to_cpu(leaf, &key, slot); 6242 if (key.objectid != ino || 6243 key.type != BTRFS_DIR_INDEX_KEY || 6244 key.offset != next->index) 6245 break; 6246 6247 slot++; 6248 *last_ret = next; 6249 next = list_next_entry(next, log_list); 6250 } 6251 6252 return btrfs_del_items(trans, inode->root->log_root, path, 6253 path->slots[0], slot - path->slots[0]); 6254 } 6255 6256 static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans, 6257 struct btrfs_inode *inode, 6258 struct btrfs_path *path, 6259 const struct list_head *delayed_del_list, 6260 struct btrfs_log_ctx *ctx) 6261 { 6262 struct btrfs_root *log = inode->root->log_root; 6263 const struct btrfs_delayed_item *curr; 6264 u64 last_range_start = 0; 6265 u64 last_range_end = 0; 6266 struct btrfs_key key; 6267 6268 key.objectid = btrfs_ino(inode); 6269 key.type = BTRFS_DIR_INDEX_KEY; 6270 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item, 6271 log_list); 6272 6273 while (!list_entry_is_head(curr, delayed_del_list, log_list)) { 6274 const struct btrfs_delayed_item *last = curr; 6275 u64 first_dir_index = curr->index; 6276 u64 last_dir_index; 6277 bool deleted_items = false; 6278 int ret; 6279 6280 key.offset = curr->index; 6281 ret = btrfs_search_slot(trans, log, &key, path, -1, 1); 6282 if (ret < 0) { 6283 return ret; 6284 } else if (ret == 0) { 6285 ret = batch_delete_dir_index_items(trans, inode, path, 6286 delayed_del_list, curr, 6287 &last); 6288 if (ret) 6289 return ret; 6290 deleted_items = true; 6291 } 6292 6293 btrfs_release_path(path); 6294 6295 /* 6296 * If we deleted items from the leaf, it means we have a range 6297 * item logging their range, so no need to add one or update an 6298 * existing one. Otherwise we have to log a dir range item. 6299 */ 6300 if (deleted_items) 6301 goto next_batch; 6302 6303 last_dir_index = last->index; 6304 ASSERT(last_dir_index >= first_dir_index); 6305 /* 6306 * If this range starts right after where the previous one ends, 6307 * then we want to reuse the previous range item and change its 6308 * end offset to the end of this range. This is just to minimize 6309 * leaf space usage, by avoiding adding a new range item. 6310 */ 6311 if (last_range_end != 0 && first_dir_index == last_range_end + 1) 6312 first_dir_index = last_range_start; 6313 6314 ret = insert_dir_log_key(trans, log, path, key.objectid, 6315 first_dir_index, last_dir_index); 6316 if (ret) 6317 return ret; 6318 6319 last_range_start = first_dir_index; 6320 last_range_end = last_dir_index; 6321 next_batch: 6322 curr = list_next_entry(last, log_list); 6323 } 6324 6325 return 0; 6326 } 6327 6328 static int log_delayed_deletion_items(struct btrfs_trans_handle *trans, 6329 struct btrfs_inode *inode, 6330 struct btrfs_path *path, 6331 const struct list_head *delayed_del_list, 6332 struct btrfs_log_ctx *ctx) 6333 { 6334 /* 6335 * We are deleting dir index items from the log tree or adding range 6336 * items to it. 6337 */ 6338 lockdep_assert_held(&inode->log_mutex); 6339 6340 if (list_empty(delayed_del_list)) 6341 return 0; 6342 6343 if (ctx->logged_before) 6344 return log_delayed_deletions_incremental(trans, inode, path, 6345 delayed_del_list, ctx); 6346 6347 return log_delayed_deletions_full(trans, inode, path, delayed_del_list, 6348 ctx); 6349 } 6350 6351 /* 6352 * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed 6353 * items instead of the subvolume tree. 6354 */ 6355 static int log_new_delayed_dentries(struct btrfs_trans_handle *trans, 6356 struct btrfs_inode *inode, 6357 const struct list_head *delayed_ins_list, 6358 struct btrfs_log_ctx *ctx) 6359 { 6360 const bool orig_log_new_dentries = ctx->log_new_dentries; 6361 struct btrfs_delayed_item *item; 6362 int ret = 0; 6363 6364 /* 6365 * No need for the log mutex, plus to avoid potential deadlocks or 6366 * lockdep annotations due to nesting of delayed inode mutexes and log 6367 * mutexes. 6368 */ 6369 lockdep_assert_not_held(&inode->log_mutex); 6370 6371 ASSERT(!ctx->logging_new_delayed_dentries); 6372 ctx->logging_new_delayed_dentries = true; 6373 6374 list_for_each_entry(item, delayed_ins_list, log_list) { 6375 struct btrfs_dir_item *dir_item; 6376 struct btrfs_inode *di_inode; 6377 struct btrfs_key key; 6378 int log_mode = LOG_INODE_EXISTS; 6379 6380 dir_item = (struct btrfs_dir_item *)item->data; 6381 btrfs_disk_key_to_cpu(&key, &dir_item->location); 6382 6383 if (key.type == BTRFS_ROOT_ITEM_KEY) 6384 continue; 6385 6386 di_inode = btrfs_iget_logging(key.objectid, inode->root); 6387 if (IS_ERR(di_inode)) { 6388 ret = PTR_ERR(di_inode); 6389 break; 6390 } 6391 6392 if (!need_log_inode(trans, di_inode)) { 6393 btrfs_add_delayed_iput(di_inode); 6394 continue; 6395 } 6396 6397 if (btrfs_stack_dir_ftype(dir_item) == BTRFS_FT_DIR) 6398 log_mode = LOG_INODE_ALL; 6399 6400 ctx->log_new_dentries = false; 6401 ret = btrfs_log_inode(trans, di_inode, log_mode, ctx); 6402 6403 if (!ret && ctx->log_new_dentries) 6404 ret = log_new_dir_dentries(trans, di_inode, ctx); 6405 6406 btrfs_add_delayed_iput(di_inode); 6407 6408 if (ret) 6409 break; 6410 } 6411 6412 ctx->log_new_dentries = orig_log_new_dentries; 6413 ctx->logging_new_delayed_dentries = false; 6414 6415 return ret; 6416 } 6417 6418 /* log a single inode in the tree log. 6419 * At least one parent directory for this inode must exist in the tree 6420 * or be logged already. 6421 * 6422 * Any items from this inode changed by the current transaction are copied 6423 * to the log tree. An extra reference is taken on any extents in this 6424 * file, allowing us to avoid a whole pile of corner cases around logging 6425 * blocks that have been removed from the tree. 6426 * 6427 * See LOG_INODE_ALL and related defines for a description of what inode_only 6428 * does. 6429 * 6430 * This handles both files and directories. 6431 */ 6432 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 6433 struct btrfs_inode *inode, 6434 int inode_only, 6435 struct btrfs_log_ctx *ctx) 6436 { 6437 struct btrfs_path *path; 6438 struct btrfs_path *dst_path; 6439 struct btrfs_key min_key; 6440 struct btrfs_key max_key; 6441 struct btrfs_root *log = inode->root->log_root; 6442 int ret; 6443 bool fast_search = false; 6444 u64 ino = btrfs_ino(inode); 6445 struct extent_map_tree *em_tree = &inode->extent_tree; 6446 u64 logged_isize = 0; 6447 bool need_log_inode_item = true; 6448 bool xattrs_logged = false; 6449 bool inode_item_dropped = true; 6450 bool full_dir_logging = false; 6451 LIST_HEAD(delayed_ins_list); 6452 LIST_HEAD(delayed_del_list); 6453 6454 path = btrfs_alloc_path(); 6455 if (!path) 6456 return -ENOMEM; 6457 dst_path = btrfs_alloc_path(); 6458 if (!dst_path) { 6459 btrfs_free_path(path); 6460 return -ENOMEM; 6461 } 6462 6463 min_key.objectid = ino; 6464 min_key.type = BTRFS_INODE_ITEM_KEY; 6465 min_key.offset = 0; 6466 6467 max_key.objectid = ino; 6468 6469 6470 /* today the code can only do partial logging of directories */ 6471 if (S_ISDIR(inode->vfs_inode.i_mode) || 6472 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 6473 &inode->runtime_flags) && 6474 inode_only >= LOG_INODE_EXISTS)) 6475 max_key.type = BTRFS_XATTR_ITEM_KEY; 6476 else 6477 max_key.type = (u8)-1; 6478 max_key.offset = (u64)-1; 6479 6480 if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL) 6481 full_dir_logging = true; 6482 6483 /* 6484 * If we are logging a directory while we are logging dentries of the 6485 * delayed items of some other inode, then we need to flush the delayed 6486 * items of this directory and not log the delayed items directly. This 6487 * is to prevent more than one level of recursion into btrfs_log_inode() 6488 * by having something like this: 6489 * 6490 * $ mkdir -p a/b/c/d/e/f/g/h/... 6491 * $ xfs_io -c "fsync" a 6492 * 6493 * Where all directories in the path did not exist before and are 6494 * created in the current transaction. 6495 * So in such a case we directly log the delayed items of the main 6496 * directory ("a") without flushing them first, while for each of its 6497 * subdirectories we flush their delayed items before logging them. 6498 * This prevents a potential unbounded recursion like this: 6499 * 6500 * btrfs_log_inode() 6501 * log_new_delayed_dentries() 6502 * btrfs_log_inode() 6503 * log_new_delayed_dentries() 6504 * btrfs_log_inode() 6505 * log_new_delayed_dentries() 6506 * (...) 6507 * 6508 * We have thresholds for the maximum number of delayed items to have in 6509 * memory, and once they are hit, the items are flushed asynchronously. 6510 * However the limit is quite high, so lets prevent deep levels of 6511 * recursion to happen by limiting the maximum depth to be 1. 6512 */ 6513 if (full_dir_logging && ctx->logging_new_delayed_dentries) { 6514 ret = btrfs_commit_inode_delayed_items(trans, inode); 6515 if (ret) 6516 goto out; 6517 } 6518 6519 mutex_lock(&inode->log_mutex); 6520 6521 /* 6522 * For symlinks, we must always log their content, which is stored in an 6523 * inline extent, otherwise we could end up with an empty symlink after 6524 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if 6525 * one attempts to create an empty symlink). 6526 * We don't need to worry about flushing delalloc, because when we create 6527 * the inline extent when the symlink is created (we never have delalloc 6528 * for symlinks). 6529 */ 6530 if (S_ISLNK(inode->vfs_inode.i_mode)) 6531 inode_only = LOG_INODE_ALL; 6532 6533 /* 6534 * Before logging the inode item, cache the value returned by 6535 * inode_logged(), because after that we have the need to figure out if 6536 * the inode was previously logged in this transaction. 6537 */ 6538 ret = inode_logged(trans, inode, path); 6539 if (ret < 0) 6540 goto out_unlock; 6541 ctx->logged_before = (ret == 1); 6542 ret = 0; 6543 6544 /* 6545 * This is for cases where logging a directory could result in losing a 6546 * a file after replaying the log. For example, if we move a file from a 6547 * directory A to a directory B, then fsync directory A, we have no way 6548 * to known the file was moved from A to B, so logging just A would 6549 * result in losing the file after a log replay. 6550 */ 6551 if (full_dir_logging && inode->last_unlink_trans >= trans->transid) { 6552 ret = BTRFS_LOG_FORCE_COMMIT; 6553 goto out_unlock; 6554 } 6555 6556 /* 6557 * a brute force approach to making sure we get the most uptodate 6558 * copies of everything. 6559 */ 6560 if (S_ISDIR(inode->vfs_inode.i_mode)) { 6561 clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags); 6562 if (ctx->logged_before) 6563 ret = drop_inode_items(trans, log, path, inode, 6564 BTRFS_XATTR_ITEM_KEY); 6565 } else { 6566 if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) { 6567 /* 6568 * Make sure the new inode item we write to the log has 6569 * the same isize as the current one (if it exists). 6570 * This is necessary to prevent data loss after log 6571 * replay, and also to prevent doing a wrong expanding 6572 * truncate - for e.g. create file, write 4K into offset 6573 * 0, fsync, write 4K into offset 4096, add hard link, 6574 * fsync some other file (to sync log), power fail - if 6575 * we use the inode's current i_size, after log replay 6576 * we get a 8Kb file, with the last 4Kb extent as a hole 6577 * (zeroes), as if an expanding truncate happened, 6578 * instead of getting a file of 4Kb only. 6579 */ 6580 ret = logged_inode_size(log, inode, path, &logged_isize); 6581 if (ret) 6582 goto out_unlock; 6583 } 6584 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 6585 &inode->runtime_flags)) { 6586 if (inode_only == LOG_INODE_EXISTS) { 6587 max_key.type = BTRFS_XATTR_ITEM_KEY; 6588 if (ctx->logged_before) 6589 ret = drop_inode_items(trans, log, path, 6590 inode, max_key.type); 6591 } else { 6592 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 6593 &inode->runtime_flags); 6594 clear_bit(BTRFS_INODE_COPY_EVERYTHING, 6595 &inode->runtime_flags); 6596 if (ctx->logged_before) 6597 ret = truncate_inode_items(trans, log, 6598 inode, 0, 0); 6599 } 6600 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING, 6601 &inode->runtime_flags) || 6602 inode_only == LOG_INODE_EXISTS) { 6603 if (inode_only == LOG_INODE_ALL) 6604 fast_search = true; 6605 max_key.type = BTRFS_XATTR_ITEM_KEY; 6606 if (ctx->logged_before) 6607 ret = drop_inode_items(trans, log, path, inode, 6608 max_key.type); 6609 } else { 6610 if (inode_only == LOG_INODE_ALL) 6611 fast_search = true; 6612 inode_item_dropped = false; 6613 goto log_extents; 6614 } 6615 6616 } 6617 if (ret) 6618 goto out_unlock; 6619 6620 /* 6621 * If we are logging a directory in full mode, collect the delayed items 6622 * before iterating the subvolume tree, so that we don't miss any new 6623 * dir index items in case they get flushed while or right after we are 6624 * iterating the subvolume tree. 6625 */ 6626 if (full_dir_logging && !ctx->logging_new_delayed_dentries) 6627 btrfs_log_get_delayed_items(inode, &delayed_ins_list, 6628 &delayed_del_list); 6629 6630 /* 6631 * If we are fsyncing a file with 0 hard links, then commit the delayed 6632 * inode because the last inode ref (or extref) item may still be in the 6633 * subvolume tree and if we log it the file will still exist after a log 6634 * replay. So commit the delayed inode to delete that last ref and we 6635 * skip logging it. 6636 */ 6637 if (inode->vfs_inode.i_nlink == 0) { 6638 ret = btrfs_commit_inode_delayed_inode(inode); 6639 if (ret) 6640 goto out_unlock; 6641 } 6642 6643 ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key, 6644 path, dst_path, logged_isize, 6645 inode_only, ctx, 6646 &need_log_inode_item); 6647 if (ret) 6648 goto out_unlock; 6649 6650 btrfs_release_path(path); 6651 btrfs_release_path(dst_path); 6652 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx); 6653 if (ret) 6654 goto out_unlock; 6655 xattrs_logged = true; 6656 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) { 6657 btrfs_release_path(path); 6658 btrfs_release_path(dst_path); 6659 ret = btrfs_log_holes(trans, inode, path); 6660 if (ret) 6661 goto out_unlock; 6662 } 6663 log_extents: 6664 btrfs_release_path(path); 6665 btrfs_release_path(dst_path); 6666 if (need_log_inode_item) { 6667 ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped); 6668 if (ret) 6669 goto out_unlock; 6670 /* 6671 * If we are doing a fast fsync and the inode was logged before 6672 * in this transaction, we don't need to log the xattrs because 6673 * they were logged before. If xattrs were added, changed or 6674 * deleted since the last time we logged the inode, then we have 6675 * already logged them because the inode had the runtime flag 6676 * BTRFS_INODE_COPY_EVERYTHING set. 6677 */ 6678 if (!xattrs_logged && inode->logged_trans < trans->transid) { 6679 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx); 6680 if (ret) 6681 goto out_unlock; 6682 btrfs_release_path(path); 6683 } 6684 } 6685 if (fast_search) { 6686 ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx); 6687 if (ret) 6688 goto out_unlock; 6689 } else if (inode_only == LOG_INODE_ALL) { 6690 struct extent_map *em, *n; 6691 6692 write_lock(&em_tree->lock); 6693 list_for_each_entry_safe(em, n, &em_tree->modified_extents, list) 6694 list_del_init(&em->list); 6695 write_unlock(&em_tree->lock); 6696 } 6697 6698 if (full_dir_logging) { 6699 ret = log_directory_changes(trans, inode, path, dst_path, ctx); 6700 if (ret) 6701 goto out_unlock; 6702 ret = log_delayed_insertion_items(trans, inode, path, 6703 &delayed_ins_list, ctx); 6704 if (ret) 6705 goto out_unlock; 6706 ret = log_delayed_deletion_items(trans, inode, path, 6707 &delayed_del_list, ctx); 6708 if (ret) 6709 goto out_unlock; 6710 } 6711 6712 spin_lock(&inode->lock); 6713 inode->logged_trans = trans->transid; 6714 /* 6715 * Don't update last_log_commit if we logged that an inode exists. 6716 * We do this for three reasons: 6717 * 6718 * 1) We might have had buffered writes to this inode that were 6719 * flushed and had their ordered extents completed in this 6720 * transaction, but we did not previously log the inode with 6721 * LOG_INODE_ALL. Later the inode was evicted and after that 6722 * it was loaded again and this LOG_INODE_EXISTS log operation 6723 * happened. We must make sure that if an explicit fsync against 6724 * the inode is performed later, it logs the new extents, an 6725 * updated inode item, etc, and syncs the log. The same logic 6726 * applies to direct IO writes instead of buffered writes. 6727 * 6728 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item 6729 * is logged with an i_size of 0 or whatever value was logged 6730 * before. If later the i_size of the inode is increased by a 6731 * truncate operation, the log is synced through an fsync of 6732 * some other inode and then finally an explicit fsync against 6733 * this inode is made, we must make sure this fsync logs the 6734 * inode with the new i_size, the hole between old i_size and 6735 * the new i_size, and syncs the log. 6736 * 6737 * 3) If we are logging that an ancestor inode exists as part of 6738 * logging a new name from a link or rename operation, don't update 6739 * its last_log_commit - otherwise if an explicit fsync is made 6740 * against an ancestor, the fsync considers the inode in the log 6741 * and doesn't sync the log, resulting in the ancestor missing after 6742 * a power failure unless the log was synced as part of an fsync 6743 * against any other unrelated inode. 6744 */ 6745 if (inode_only != LOG_INODE_EXISTS) 6746 inode->last_log_commit = inode->last_sub_trans; 6747 spin_unlock(&inode->lock); 6748 6749 /* 6750 * Reset the last_reflink_trans so that the next fsync does not need to 6751 * go through the slower path when logging extents and their checksums. 6752 */ 6753 if (inode_only == LOG_INODE_ALL) 6754 inode->last_reflink_trans = 0; 6755 6756 out_unlock: 6757 mutex_unlock(&inode->log_mutex); 6758 out: 6759 btrfs_free_path(path); 6760 btrfs_free_path(dst_path); 6761 6762 if (ret) 6763 free_conflicting_inodes(ctx); 6764 else 6765 ret = log_conflicting_inodes(trans, inode->root, ctx); 6766 6767 if (full_dir_logging && !ctx->logging_new_delayed_dentries) { 6768 if (!ret) 6769 ret = log_new_delayed_dentries(trans, inode, 6770 &delayed_ins_list, ctx); 6771 6772 btrfs_log_put_delayed_items(inode, &delayed_ins_list, 6773 &delayed_del_list); 6774 } 6775 6776 return ret; 6777 } 6778 6779 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans, 6780 struct btrfs_inode *inode, 6781 struct btrfs_log_ctx *ctx) 6782 { 6783 int ret; 6784 struct btrfs_path *path; 6785 struct btrfs_key key; 6786 struct btrfs_root *root = inode->root; 6787 const u64 ino = btrfs_ino(inode); 6788 6789 path = btrfs_alloc_path(); 6790 if (!path) 6791 return -ENOMEM; 6792 path->skip_locking = 1; 6793 path->search_commit_root = 1; 6794 6795 key.objectid = ino; 6796 key.type = BTRFS_INODE_REF_KEY; 6797 key.offset = 0; 6798 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6799 if (ret < 0) 6800 goto out; 6801 6802 while (true) { 6803 struct extent_buffer *leaf = path->nodes[0]; 6804 int slot = path->slots[0]; 6805 u32 cur_offset = 0; 6806 u32 item_size; 6807 unsigned long ptr; 6808 6809 if (slot >= btrfs_header_nritems(leaf)) { 6810 ret = btrfs_next_leaf(root, path); 6811 if (ret < 0) 6812 goto out; 6813 else if (ret > 0) 6814 break; 6815 continue; 6816 } 6817 6818 btrfs_item_key_to_cpu(leaf, &key, slot); 6819 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */ 6820 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY) 6821 break; 6822 6823 item_size = btrfs_item_size(leaf, slot); 6824 ptr = btrfs_item_ptr_offset(leaf, slot); 6825 while (cur_offset < item_size) { 6826 struct btrfs_key inode_key; 6827 struct btrfs_inode *dir_inode; 6828 6829 inode_key.type = BTRFS_INODE_ITEM_KEY; 6830 inode_key.offset = 0; 6831 6832 if (key.type == BTRFS_INODE_EXTREF_KEY) { 6833 struct btrfs_inode_extref *extref; 6834 6835 extref = (struct btrfs_inode_extref *) 6836 (ptr + cur_offset); 6837 inode_key.objectid = btrfs_inode_extref_parent( 6838 leaf, extref); 6839 cur_offset += sizeof(*extref); 6840 cur_offset += btrfs_inode_extref_name_len(leaf, 6841 extref); 6842 } else { 6843 inode_key.objectid = key.offset; 6844 cur_offset = item_size; 6845 } 6846 6847 dir_inode = btrfs_iget_logging(inode_key.objectid, root); 6848 /* 6849 * If the parent inode was deleted, return an error to 6850 * fallback to a transaction commit. This is to prevent 6851 * getting an inode that was moved from one parent A to 6852 * a parent B, got its former parent A deleted and then 6853 * it got fsync'ed, from existing at both parents after 6854 * a log replay (and the old parent still existing). 6855 * Example: 6856 * 6857 * mkdir /mnt/A 6858 * mkdir /mnt/B 6859 * touch /mnt/B/bar 6860 * sync 6861 * mv /mnt/B/bar /mnt/A/bar 6862 * mv -T /mnt/A /mnt/B 6863 * fsync /mnt/B/bar 6864 * <power fail> 6865 * 6866 * If we ignore the old parent B which got deleted, 6867 * after a log replay we would have file bar linked 6868 * at both parents and the old parent B would still 6869 * exist. 6870 */ 6871 if (IS_ERR(dir_inode)) { 6872 ret = PTR_ERR(dir_inode); 6873 goto out; 6874 } 6875 6876 if (!need_log_inode(trans, dir_inode)) { 6877 btrfs_add_delayed_iput(dir_inode); 6878 continue; 6879 } 6880 6881 ctx->log_new_dentries = false; 6882 ret = btrfs_log_inode(trans, dir_inode, LOG_INODE_ALL, ctx); 6883 if (!ret && ctx->log_new_dentries) 6884 ret = log_new_dir_dentries(trans, dir_inode, ctx); 6885 btrfs_add_delayed_iput(dir_inode); 6886 if (ret) 6887 goto out; 6888 } 6889 path->slots[0]++; 6890 } 6891 ret = 0; 6892 out: 6893 btrfs_free_path(path); 6894 return ret; 6895 } 6896 6897 static int log_new_ancestors(struct btrfs_trans_handle *trans, 6898 struct btrfs_root *root, 6899 struct btrfs_path *path, 6900 struct btrfs_log_ctx *ctx) 6901 { 6902 struct btrfs_key found_key; 6903 6904 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 6905 6906 while (true) { 6907 struct extent_buffer *leaf; 6908 int slot; 6909 struct btrfs_key search_key; 6910 struct btrfs_inode *inode; 6911 u64 ino; 6912 int ret = 0; 6913 6914 btrfs_release_path(path); 6915 6916 ino = found_key.offset; 6917 6918 search_key.objectid = found_key.offset; 6919 search_key.type = BTRFS_INODE_ITEM_KEY; 6920 search_key.offset = 0; 6921 inode = btrfs_iget_logging(ino, root); 6922 if (IS_ERR(inode)) 6923 return PTR_ERR(inode); 6924 6925 if (inode->generation >= trans->transid && 6926 need_log_inode(trans, inode)) 6927 ret = btrfs_log_inode(trans, inode, LOG_INODE_EXISTS, ctx); 6928 btrfs_add_delayed_iput(inode); 6929 if (ret) 6930 return ret; 6931 6932 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID) 6933 break; 6934 6935 search_key.type = BTRFS_INODE_REF_KEY; 6936 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 6937 if (ret < 0) 6938 return ret; 6939 6940 leaf = path->nodes[0]; 6941 slot = path->slots[0]; 6942 if (slot >= btrfs_header_nritems(leaf)) { 6943 ret = btrfs_next_leaf(root, path); 6944 if (ret < 0) 6945 return ret; 6946 else if (ret > 0) 6947 return -ENOENT; 6948 leaf = path->nodes[0]; 6949 slot = path->slots[0]; 6950 } 6951 6952 btrfs_item_key_to_cpu(leaf, &found_key, slot); 6953 if (found_key.objectid != search_key.objectid || 6954 found_key.type != BTRFS_INODE_REF_KEY) 6955 return -ENOENT; 6956 } 6957 return 0; 6958 } 6959 6960 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans, 6961 struct btrfs_inode *inode, 6962 struct dentry *parent, 6963 struct btrfs_log_ctx *ctx) 6964 { 6965 struct btrfs_root *root = inode->root; 6966 struct dentry *old_parent = NULL; 6967 struct super_block *sb = inode->vfs_inode.i_sb; 6968 int ret = 0; 6969 6970 while (true) { 6971 if (!parent || d_really_is_negative(parent) || 6972 sb != parent->d_sb) 6973 break; 6974 6975 inode = BTRFS_I(d_inode(parent)); 6976 if (root != inode->root) 6977 break; 6978 6979 if (inode->generation >= trans->transid && 6980 need_log_inode(trans, inode)) { 6981 ret = btrfs_log_inode(trans, inode, 6982 LOG_INODE_EXISTS, ctx); 6983 if (ret) 6984 break; 6985 } 6986 if (IS_ROOT(parent)) 6987 break; 6988 6989 parent = dget_parent(parent); 6990 dput(old_parent); 6991 old_parent = parent; 6992 } 6993 dput(old_parent); 6994 6995 return ret; 6996 } 6997 6998 static int log_all_new_ancestors(struct btrfs_trans_handle *trans, 6999 struct btrfs_inode *inode, 7000 struct dentry *parent, 7001 struct btrfs_log_ctx *ctx) 7002 { 7003 struct btrfs_root *root = inode->root; 7004 const u64 ino = btrfs_ino(inode); 7005 struct btrfs_path *path; 7006 struct btrfs_key search_key; 7007 int ret; 7008 7009 /* 7010 * For a single hard link case, go through a fast path that does not 7011 * need to iterate the fs/subvolume tree. 7012 */ 7013 if (inode->vfs_inode.i_nlink < 2) 7014 return log_new_ancestors_fast(trans, inode, parent, ctx); 7015 7016 path = btrfs_alloc_path(); 7017 if (!path) 7018 return -ENOMEM; 7019 7020 search_key.objectid = ino; 7021 search_key.type = BTRFS_INODE_REF_KEY; 7022 search_key.offset = 0; 7023 again: 7024 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 7025 if (ret < 0) 7026 goto out; 7027 if (ret == 0) 7028 path->slots[0]++; 7029 7030 while (true) { 7031 struct extent_buffer *leaf = path->nodes[0]; 7032 int slot = path->slots[0]; 7033 struct btrfs_key found_key; 7034 7035 if (slot >= btrfs_header_nritems(leaf)) { 7036 ret = btrfs_next_leaf(root, path); 7037 if (ret < 0) 7038 goto out; 7039 else if (ret > 0) 7040 break; 7041 continue; 7042 } 7043 7044 btrfs_item_key_to_cpu(leaf, &found_key, slot); 7045 if (found_key.objectid != ino || 7046 found_key.type > BTRFS_INODE_EXTREF_KEY) 7047 break; 7048 7049 /* 7050 * Don't deal with extended references because they are rare 7051 * cases and too complex to deal with (we would need to keep 7052 * track of which subitem we are processing for each item in 7053 * this loop, etc). So just return some error to fallback to 7054 * a transaction commit. 7055 */ 7056 if (found_key.type == BTRFS_INODE_EXTREF_KEY) { 7057 ret = -EMLINK; 7058 goto out; 7059 } 7060 7061 /* 7062 * Logging ancestors needs to do more searches on the fs/subvol 7063 * tree, so it releases the path as needed to avoid deadlocks. 7064 * Keep track of the last inode ref key and resume from that key 7065 * after logging all new ancestors for the current hard link. 7066 */ 7067 memcpy(&search_key, &found_key, sizeof(search_key)); 7068 7069 ret = log_new_ancestors(trans, root, path, ctx); 7070 if (ret) 7071 goto out; 7072 btrfs_release_path(path); 7073 goto again; 7074 } 7075 ret = 0; 7076 out: 7077 btrfs_free_path(path); 7078 return ret; 7079 } 7080 7081 /* 7082 * helper function around btrfs_log_inode to make sure newly created 7083 * parent directories also end up in the log. A minimal inode and backref 7084 * only logging is done of any parent directories that are older than 7085 * the last committed transaction 7086 */ 7087 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans, 7088 struct btrfs_inode *inode, 7089 struct dentry *parent, 7090 int inode_only, 7091 struct btrfs_log_ctx *ctx) 7092 { 7093 struct btrfs_root *root = inode->root; 7094 struct btrfs_fs_info *fs_info = root->fs_info; 7095 int ret = 0; 7096 bool log_dentries; 7097 7098 if (btrfs_test_opt(fs_info, NOTREELOG)) 7099 return BTRFS_LOG_FORCE_COMMIT; 7100 7101 if (btrfs_root_refs(&root->root_item) == 0) 7102 return BTRFS_LOG_FORCE_COMMIT; 7103 7104 /* 7105 * If we're logging an inode from a subvolume created in the current 7106 * transaction we must force a commit since the root is not persisted. 7107 */ 7108 if (btrfs_root_generation(&root->root_item) == trans->transid) 7109 return BTRFS_LOG_FORCE_COMMIT; 7110 7111 /* Skip already logged inodes and without new extents. */ 7112 if (btrfs_inode_in_log(inode, trans->transid) && 7113 list_empty(&ctx->ordered_extents)) 7114 return BTRFS_NO_LOG_SYNC; 7115 7116 ret = start_log_trans(trans, root, ctx); 7117 if (ret) 7118 return ret; 7119 7120 ret = btrfs_log_inode(trans, inode, inode_only, ctx); 7121 if (ret) 7122 goto end_trans; 7123 7124 /* 7125 * for regular files, if its inode is already on disk, we don't 7126 * have to worry about the parents at all. This is because 7127 * we can use the last_unlink_trans field to record renames 7128 * and other fun in this file. 7129 */ 7130 if (S_ISREG(inode->vfs_inode.i_mode) && 7131 inode->generation < trans->transid && 7132 inode->last_unlink_trans < trans->transid) { 7133 ret = 0; 7134 goto end_trans; 7135 } 7136 7137 /* 7138 * Track if we need to log dentries because ctx->log_new_dentries can 7139 * be modified in the call chains below. 7140 */ 7141 log_dentries = ctx->log_new_dentries; 7142 7143 /* 7144 * On unlink we must make sure all our current and old parent directory 7145 * inodes are fully logged. This is to prevent leaving dangling 7146 * directory index entries in directories that were our parents but are 7147 * not anymore. Not doing this results in old parent directory being 7148 * impossible to delete after log replay (rmdir will always fail with 7149 * error -ENOTEMPTY). 7150 * 7151 * Example 1: 7152 * 7153 * mkdir testdir 7154 * touch testdir/foo 7155 * ln testdir/foo testdir/bar 7156 * sync 7157 * unlink testdir/bar 7158 * xfs_io -c fsync testdir/foo 7159 * <power failure> 7160 * mount fs, triggers log replay 7161 * 7162 * If we don't log the parent directory (testdir), after log replay the 7163 * directory still has an entry pointing to the file inode using the bar 7164 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and 7165 * the file inode has a link count of 1. 7166 * 7167 * Example 2: 7168 * 7169 * mkdir testdir 7170 * touch foo 7171 * ln foo testdir/foo2 7172 * ln foo testdir/foo3 7173 * sync 7174 * unlink testdir/foo3 7175 * xfs_io -c fsync foo 7176 * <power failure> 7177 * mount fs, triggers log replay 7178 * 7179 * Similar as the first example, after log replay the parent directory 7180 * testdir still has an entry pointing to the inode file with name foo3 7181 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item 7182 * and has a link count of 2. 7183 */ 7184 if (inode->last_unlink_trans >= trans->transid) { 7185 ret = btrfs_log_all_parents(trans, inode, ctx); 7186 if (ret) 7187 goto end_trans; 7188 } 7189 7190 ret = log_all_new_ancestors(trans, inode, parent, ctx); 7191 if (ret) 7192 goto end_trans; 7193 7194 if (log_dentries) 7195 ret = log_new_dir_dentries(trans, inode, ctx); 7196 end_trans: 7197 if (ret < 0) { 7198 btrfs_set_log_full_commit(trans); 7199 ret = BTRFS_LOG_FORCE_COMMIT; 7200 } 7201 7202 if (ret) 7203 btrfs_remove_log_ctx(root, ctx); 7204 btrfs_end_log_trans(root); 7205 7206 return ret; 7207 } 7208 7209 /* 7210 * it is not safe to log dentry if the chunk root has added new 7211 * chunks. This returns 0 if the dentry was logged, and 1 otherwise. 7212 * If this returns 1, you must commit the transaction to safely get your 7213 * data on disk. 7214 */ 7215 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans, 7216 struct dentry *dentry, 7217 struct btrfs_log_ctx *ctx) 7218 { 7219 struct dentry *parent = dget_parent(dentry); 7220 int ret; 7221 7222 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent, 7223 LOG_INODE_ALL, ctx); 7224 dput(parent); 7225 7226 return ret; 7227 } 7228 7229 /* 7230 * should be called during mount to recover any replay any log trees 7231 * from the FS 7232 */ 7233 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree) 7234 { 7235 int ret; 7236 struct btrfs_path *path; 7237 struct btrfs_trans_handle *trans; 7238 struct btrfs_key key; 7239 struct btrfs_fs_info *fs_info = log_root_tree->fs_info; 7240 struct walk_control wc = { 7241 .process_func = process_one_buffer, 7242 .stage = LOG_WALK_PIN_ONLY, 7243 }; 7244 7245 path = btrfs_alloc_path(); 7246 if (!path) 7247 return -ENOMEM; 7248 7249 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 7250 7251 trans = btrfs_start_transaction(fs_info->tree_root, 0); 7252 if (IS_ERR(trans)) { 7253 ret = PTR_ERR(trans); 7254 goto error; 7255 } 7256 7257 wc.trans = trans; 7258 wc.pin = 1; 7259 7260 ret = walk_log_tree(trans, log_root_tree, &wc); 7261 if (ret) { 7262 btrfs_abort_transaction(trans, ret); 7263 goto error; 7264 } 7265 7266 again: 7267 key.objectid = BTRFS_TREE_LOG_OBJECTID; 7268 key.type = BTRFS_ROOT_ITEM_KEY; 7269 key.offset = (u64)-1; 7270 7271 while (1) { 7272 struct btrfs_root *log; 7273 struct btrfs_key found_key; 7274 7275 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0); 7276 7277 if (ret < 0) { 7278 btrfs_abort_transaction(trans, ret); 7279 goto error; 7280 } 7281 if (ret > 0) { 7282 if (path->slots[0] == 0) 7283 break; 7284 path->slots[0]--; 7285 } 7286 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 7287 path->slots[0]); 7288 btrfs_release_path(path); 7289 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID) 7290 break; 7291 7292 log = btrfs_read_tree_root(log_root_tree, &found_key); 7293 if (IS_ERR(log)) { 7294 ret = PTR_ERR(log); 7295 btrfs_abort_transaction(trans, ret); 7296 goto error; 7297 } 7298 7299 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset, 7300 true); 7301 if (IS_ERR(wc.replay_dest)) { 7302 ret = PTR_ERR(wc.replay_dest); 7303 wc.replay_dest = NULL; 7304 if (ret != -ENOENT) { 7305 btrfs_put_root(log); 7306 btrfs_abort_transaction(trans, ret); 7307 goto error; 7308 } 7309 7310 /* 7311 * We didn't find the subvol, likely because it was 7312 * deleted. This is ok, simply skip this log and go to 7313 * the next one. 7314 * 7315 * We need to exclude the root because we can't have 7316 * other log replays overwriting this log as we'll read 7317 * it back in a few more times. This will keep our 7318 * block from being modified, and we'll just bail for 7319 * each subsequent pass. 7320 */ 7321 ret = btrfs_pin_extent_for_log_replay(trans, log->node); 7322 if (ret) { 7323 btrfs_put_root(log); 7324 btrfs_abort_transaction(trans, ret); 7325 goto error; 7326 } 7327 goto next; 7328 } 7329 7330 wc.replay_dest->log_root = log; 7331 ret = btrfs_record_root_in_trans(trans, wc.replay_dest); 7332 if (ret) { 7333 btrfs_abort_transaction(trans, ret); 7334 goto next; 7335 } 7336 7337 ret = walk_log_tree(trans, log, &wc); 7338 if (ret) { 7339 btrfs_abort_transaction(trans, ret); 7340 goto next; 7341 } 7342 7343 if (wc.stage == LOG_WALK_REPLAY_ALL) { 7344 struct btrfs_root *root = wc.replay_dest; 7345 7346 ret = fixup_inode_link_counts(trans, wc.replay_dest, path); 7347 if (ret) { 7348 btrfs_abort_transaction(trans, ret); 7349 goto next; 7350 } 7351 /* 7352 * We have just replayed everything, and the highest 7353 * objectid of fs roots probably has changed in case 7354 * some inode_item's got replayed. 7355 * 7356 * root->objectid_mutex is not acquired as log replay 7357 * could only happen during mount. 7358 */ 7359 ret = btrfs_init_root_free_objectid(root); 7360 if (ret) { 7361 btrfs_abort_transaction(trans, ret); 7362 goto next; 7363 } 7364 } 7365 next: 7366 if (wc.replay_dest) { 7367 wc.replay_dest->log_root = NULL; 7368 btrfs_put_root(wc.replay_dest); 7369 } 7370 btrfs_put_root(log); 7371 7372 if (ret) 7373 goto error; 7374 if (found_key.offset == 0) 7375 break; 7376 key.offset = found_key.offset - 1; 7377 } 7378 btrfs_release_path(path); 7379 7380 /* step one is to pin it all, step two is to replay just inodes */ 7381 if (wc.pin) { 7382 wc.pin = 0; 7383 wc.process_func = replay_one_buffer; 7384 wc.stage = LOG_WALK_REPLAY_INODES; 7385 goto again; 7386 } 7387 /* step three is to replay everything */ 7388 if (wc.stage < LOG_WALK_REPLAY_ALL) { 7389 wc.stage++; 7390 goto again; 7391 } 7392 7393 btrfs_free_path(path); 7394 7395 /* step 4: commit the transaction, which also unpins the blocks */ 7396 ret = btrfs_commit_transaction(trans); 7397 if (ret) 7398 return ret; 7399 7400 log_root_tree->log_root = NULL; 7401 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 7402 btrfs_put_root(log_root_tree); 7403 7404 return 0; 7405 error: 7406 if (wc.trans) 7407 btrfs_end_transaction(wc.trans); 7408 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 7409 btrfs_free_path(path); 7410 return ret; 7411 } 7412 7413 /* 7414 * there are some corner cases where we want to force a full 7415 * commit instead of allowing a directory to be logged. 7416 * 7417 * They revolve around files there were unlinked from the directory, and 7418 * this function updates the parent directory so that a full commit is 7419 * properly done if it is fsync'd later after the unlinks are done. 7420 * 7421 * Must be called before the unlink operations (updates to the subvolume tree, 7422 * inodes, etc) are done. 7423 */ 7424 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans, 7425 struct btrfs_inode *dir, struct btrfs_inode *inode, 7426 bool for_rename) 7427 { 7428 /* 7429 * when we're logging a file, if it hasn't been renamed 7430 * or unlinked, and its inode is fully committed on disk, 7431 * we don't have to worry about walking up the directory chain 7432 * to log its parents. 7433 * 7434 * So, we use the last_unlink_trans field to put this transid 7435 * into the file. When the file is logged we check it and 7436 * don't log the parents if the file is fully on disk. 7437 */ 7438 mutex_lock(&inode->log_mutex); 7439 inode->last_unlink_trans = trans->transid; 7440 mutex_unlock(&inode->log_mutex); 7441 7442 if (!for_rename) 7443 return; 7444 7445 /* 7446 * If this directory was already logged, any new names will be logged 7447 * with btrfs_log_new_name() and old names will be deleted from the log 7448 * tree with btrfs_del_dir_entries_in_log() or with 7449 * btrfs_del_inode_ref_in_log(). 7450 */ 7451 if (inode_logged(trans, dir, NULL) == 1) 7452 return; 7453 7454 /* 7455 * If the inode we're about to unlink was logged before, the log will be 7456 * properly updated with the new name with btrfs_log_new_name() and the 7457 * old name removed with btrfs_del_dir_entries_in_log() or with 7458 * btrfs_del_inode_ref_in_log(). 7459 */ 7460 if (inode_logged(trans, inode, NULL) == 1) 7461 return; 7462 7463 /* 7464 * when renaming files across directories, if the directory 7465 * there we're unlinking from gets fsync'd later on, there's 7466 * no way to find the destination directory later and fsync it 7467 * properly. So, we have to be conservative and force commits 7468 * so the new name gets discovered. 7469 */ 7470 mutex_lock(&dir->log_mutex); 7471 dir->last_unlink_trans = trans->transid; 7472 mutex_unlock(&dir->log_mutex); 7473 } 7474 7475 /* 7476 * Make sure that if someone attempts to fsync the parent directory of a deleted 7477 * snapshot, it ends up triggering a transaction commit. This is to guarantee 7478 * that after replaying the log tree of the parent directory's root we will not 7479 * see the snapshot anymore and at log replay time we will not see any log tree 7480 * corresponding to the deleted snapshot's root, which could lead to replaying 7481 * it after replaying the log tree of the parent directory (which would replay 7482 * the snapshot delete operation). 7483 * 7484 * Must be called before the actual snapshot destroy operation (updates to the 7485 * parent root and tree of tree roots trees, etc) are done. 7486 */ 7487 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans, 7488 struct btrfs_inode *dir) 7489 { 7490 mutex_lock(&dir->log_mutex); 7491 dir->last_unlink_trans = trans->transid; 7492 mutex_unlock(&dir->log_mutex); 7493 } 7494 7495 /* 7496 * Call this when creating a subvolume in a directory. 7497 * Because we don't commit a transaction when creating a subvolume, we can't 7498 * allow the directory pointing to the subvolume to be logged with an entry that 7499 * points to an unpersisted root if we are still in the transaction used to 7500 * create the subvolume, so make any attempt to log the directory to result in a 7501 * full log sync. 7502 * Also we don't need to worry with renames, since btrfs_rename() marks the log 7503 * for full commit when renaming a subvolume. 7504 * 7505 * Must be called before creating the subvolume entry in its parent directory. 7506 */ 7507 void btrfs_record_new_subvolume(const struct btrfs_trans_handle *trans, 7508 struct btrfs_inode *dir) 7509 { 7510 mutex_lock(&dir->log_mutex); 7511 dir->last_unlink_trans = trans->transid; 7512 mutex_unlock(&dir->log_mutex); 7513 } 7514 7515 /* 7516 * Update the log after adding a new name for an inode. 7517 * 7518 * @trans: Transaction handle. 7519 * @old_dentry: The dentry associated with the old name and the old 7520 * parent directory. 7521 * @old_dir: The inode of the previous parent directory for the case 7522 * of a rename. For a link operation, it must be NULL. 7523 * @old_dir_index: The index number associated with the old name, meaningful 7524 * only for rename operations (when @old_dir is not NULL). 7525 * Ignored for link operations. 7526 * @parent: The dentry associated with the directory under which the 7527 * new name is located. 7528 * 7529 * Call this after adding a new name for an inode, as a result of a link or 7530 * rename operation, and it will properly update the log to reflect the new name. 7531 */ 7532 void btrfs_log_new_name(struct btrfs_trans_handle *trans, 7533 struct dentry *old_dentry, struct btrfs_inode *old_dir, 7534 u64 old_dir_index, struct dentry *parent) 7535 { 7536 struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry)); 7537 struct btrfs_root *root = inode->root; 7538 struct btrfs_log_ctx ctx; 7539 bool log_pinned = false; 7540 int ret; 7541 7542 btrfs_init_log_ctx(&ctx, inode); 7543 ctx.logging_new_name = true; 7544 7545 /* 7546 * this will force the logging code to walk the dentry chain 7547 * up for the file 7548 */ 7549 if (!S_ISDIR(inode->vfs_inode.i_mode)) 7550 inode->last_unlink_trans = trans->transid; 7551 7552 /* 7553 * if this inode hasn't been logged and directory we're renaming it 7554 * from hasn't been logged, we don't need to log it 7555 */ 7556 ret = inode_logged(trans, inode, NULL); 7557 if (ret < 0) { 7558 goto out; 7559 } else if (ret == 0) { 7560 if (!old_dir) 7561 return; 7562 /* 7563 * If the inode was not logged and we are doing a rename (old_dir is not 7564 * NULL), check if old_dir was logged - if it was not we can return and 7565 * do nothing. 7566 */ 7567 ret = inode_logged(trans, old_dir, NULL); 7568 if (ret < 0) 7569 goto out; 7570 else if (ret == 0) 7571 return; 7572 } 7573 ret = 0; 7574 7575 /* 7576 * Now that we know we need to update the log, allocate the scratch eb 7577 * for the context before joining a log transaction below, as this can 7578 * take time and therefore we could delay log commits from other tasks. 7579 */ 7580 btrfs_init_log_ctx_scratch_eb(&ctx); 7581 7582 /* 7583 * If we are doing a rename (old_dir is not NULL) from a directory that 7584 * was previously logged, make sure that on log replay we get the old 7585 * dir entry deleted. This is needed because we will also log the new 7586 * name of the renamed inode, so we need to make sure that after log 7587 * replay we don't end up with both the new and old dir entries existing. 7588 */ 7589 if (old_dir && old_dir->logged_trans == trans->transid) { 7590 struct btrfs_root *log = old_dir->root->log_root; 7591 struct btrfs_path *path; 7592 struct fscrypt_name fname; 7593 7594 ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX); 7595 7596 ret = fscrypt_setup_filename(&old_dir->vfs_inode, 7597 &old_dentry->d_name, 0, &fname); 7598 if (ret) 7599 goto out; 7600 7601 path = btrfs_alloc_path(); 7602 if (!path) { 7603 ret = -ENOMEM; 7604 fscrypt_free_filename(&fname); 7605 goto out; 7606 } 7607 7608 /* 7609 * We have two inodes to update in the log, the old directory and 7610 * the inode that got renamed, so we must pin the log to prevent 7611 * anyone from syncing the log until we have updated both inodes 7612 * in the log. 7613 */ 7614 ret = join_running_log_trans(root); 7615 /* 7616 * At least one of the inodes was logged before, so this should 7617 * not fail, but if it does, it's not serious, just bail out and 7618 * mark the log for a full commit. 7619 */ 7620 if (WARN_ON_ONCE(ret < 0)) { 7621 btrfs_free_path(path); 7622 fscrypt_free_filename(&fname); 7623 goto out; 7624 } 7625 7626 log_pinned = true; 7627 7628 /* 7629 * Other concurrent task might be logging the old directory, 7630 * as it can be triggered when logging other inode that had or 7631 * still has a dentry in the old directory. We lock the old 7632 * directory's log_mutex to ensure the deletion of the old 7633 * name is persisted, because during directory logging we 7634 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of 7635 * the old name's dir index item is in the delayed items, so 7636 * it could be missed by an in progress directory logging. 7637 */ 7638 mutex_lock(&old_dir->log_mutex); 7639 ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir), 7640 &fname.disk_name, old_dir_index); 7641 if (ret > 0) { 7642 /* 7643 * The dentry does not exist in the log, so record its 7644 * deletion. 7645 */ 7646 btrfs_release_path(path); 7647 ret = insert_dir_log_key(trans, log, path, 7648 btrfs_ino(old_dir), 7649 old_dir_index, old_dir_index); 7650 } 7651 mutex_unlock(&old_dir->log_mutex); 7652 7653 btrfs_free_path(path); 7654 fscrypt_free_filename(&fname); 7655 if (ret < 0) 7656 goto out; 7657 } 7658 7659 /* 7660 * We don't care about the return value. If we fail to log the new name 7661 * then we know the next attempt to sync the log will fallback to a full 7662 * transaction commit (due to a call to btrfs_set_log_full_commit()), so 7663 * we don't need to worry about getting a log committed that has an 7664 * inconsistent state after a rename operation. 7665 */ 7666 btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx); 7667 ASSERT(list_empty(&ctx.conflict_inodes)); 7668 out: 7669 /* 7670 * If an error happened mark the log for a full commit because it's not 7671 * consistent and up to date or we couldn't find out if one of the 7672 * inodes was logged before in this transaction. Do it before unpinning 7673 * the log, to avoid any races with someone else trying to commit it. 7674 */ 7675 if (ret < 0) 7676 btrfs_set_log_full_commit(trans); 7677 if (log_pinned) 7678 btrfs_end_log_trans(root); 7679 free_extent_buffer(ctx.scratch_eb); 7680 } 7681 7682