1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/blkdev.h> 9 #include <linux/list_sort.h> 10 #include <linux/iversion.h> 11 #include "misc.h" 12 #include "ctree.h" 13 #include "tree-log.h" 14 #include "disk-io.h" 15 #include "locking.h" 16 #include "backref.h" 17 #include "compression.h" 18 #include "qgroup.h" 19 #include "block-group.h" 20 #include "space-info.h" 21 #include "inode-item.h" 22 #include "fs.h" 23 #include "accessors.h" 24 #include "extent-tree.h" 25 #include "root-tree.h" 26 #include "dir-item.h" 27 #include "file-item.h" 28 #include "file.h" 29 #include "orphan.h" 30 #include "tree-checker.h" 31 32 #define MAX_CONFLICT_INODES 10 33 34 /* magic values for the inode_only field in btrfs_log_inode: 35 * 36 * LOG_INODE_ALL means to log everything 37 * LOG_INODE_EXISTS means to log just enough to recreate the inode 38 * during log replay 39 */ 40 enum { 41 LOG_INODE_ALL, 42 LOG_INODE_EXISTS, 43 }; 44 45 /* 46 * directory trouble cases 47 * 48 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync 49 * log, we must force a full commit before doing an fsync of the directory 50 * where the unlink was done. 51 * ---> record transid of last unlink/rename per directory 52 * 53 * mkdir foo/some_dir 54 * normal commit 55 * rename foo/some_dir foo2/some_dir 56 * mkdir foo/some_dir 57 * fsync foo/some_dir/some_file 58 * 59 * The fsync above will unlink the original some_dir without recording 60 * it in its new location (foo2). After a crash, some_dir will be gone 61 * unless the fsync of some_file forces a full commit 62 * 63 * 2) we must log any new names for any file or dir that is in the fsync 64 * log. ---> check inode while renaming/linking. 65 * 66 * 2a) we must log any new names for any file or dir during rename 67 * when the directory they are being removed from was logged. 68 * ---> check inode and old parent dir during rename 69 * 70 * 2a is actually the more important variant. With the extra logging 71 * a crash might unlink the old name without recreating the new one 72 * 73 * 3) after a crash, we must go through any directories with a link count 74 * of zero and redo the rm -rf 75 * 76 * mkdir f1/foo 77 * normal commit 78 * rm -rf f1/foo 79 * fsync(f1) 80 * 81 * The directory f1 was fully removed from the FS, but fsync was never 82 * called on f1, only its parent dir. After a crash the rm -rf must 83 * be replayed. This must be able to recurse down the entire 84 * directory tree. The inode link count fixup code takes care of the 85 * ugly details. 86 */ 87 88 /* 89 * stages for the tree walking. The first 90 * stage (0) is to only pin down the blocks we find 91 * the second stage (1) is to make sure that all the inodes 92 * we find in the log are created in the subvolume. 93 * 94 * The last stage is to deal with directories and links and extents 95 * and all the other fun semantics 96 */ 97 enum { 98 LOG_WALK_PIN_ONLY, 99 LOG_WALK_REPLAY_INODES, 100 LOG_WALK_REPLAY_DIR_INDEX, 101 LOG_WALK_REPLAY_ALL, 102 }; 103 104 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 105 struct btrfs_inode *inode, 106 int inode_only, 107 struct btrfs_log_ctx *ctx); 108 static int link_to_fixup_dir(struct btrfs_trans_handle *trans, 109 struct btrfs_root *root, 110 struct btrfs_path *path, u64 objectid); 111 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 112 struct btrfs_root *root, 113 struct btrfs_root *log, 114 struct btrfs_path *path, 115 u64 dirid, bool del_all); 116 static void wait_log_commit(struct btrfs_root *root, int transid); 117 118 /* 119 * tree logging is a special write ahead log used to make sure that 120 * fsyncs and O_SYNCs can happen without doing full tree commits. 121 * 122 * Full tree commits are expensive because they require commonly 123 * modified blocks to be recowed, creating many dirty pages in the 124 * extent tree an 4x-6x higher write load than ext3. 125 * 126 * Instead of doing a tree commit on every fsync, we use the 127 * key ranges and transaction ids to find items for a given file or directory 128 * that have changed in this transaction. Those items are copied into 129 * a special tree (one per subvolume root), that tree is written to disk 130 * and then the fsync is considered complete. 131 * 132 * After a crash, items are copied out of the log-tree back into the 133 * subvolume tree. Any file data extents found are recorded in the extent 134 * allocation tree, and the log-tree freed. 135 * 136 * The log tree is read three times, once to pin down all the extents it is 137 * using in ram and once, once to create all the inodes logged in the tree 138 * and once to do all the other items. 139 */ 140 141 static struct btrfs_inode *btrfs_iget_logging(u64 objectid, struct btrfs_root *root) 142 { 143 unsigned int nofs_flag; 144 struct btrfs_inode *inode; 145 146 /* Only meant to be called for subvolume roots and not for log roots. */ 147 ASSERT(btrfs_is_fstree(btrfs_root_id(root))); 148 149 /* 150 * We're holding a transaction handle whether we are logging or 151 * replaying a log tree, so we must make sure NOFS semantics apply 152 * because btrfs_alloc_inode() may be triggered and it uses GFP_KERNEL 153 * to allocate an inode, which can recurse back into the filesystem and 154 * attempt a transaction commit, resulting in a deadlock. 155 */ 156 nofs_flag = memalloc_nofs_save(); 157 inode = btrfs_iget(objectid, root); 158 memalloc_nofs_restore(nofs_flag); 159 160 return inode; 161 } 162 163 /* 164 * start a sub transaction and setup the log tree 165 * this increments the log tree writer count to make the people 166 * syncing the tree wait for us to finish 167 */ 168 static int start_log_trans(struct btrfs_trans_handle *trans, 169 struct btrfs_root *root, 170 struct btrfs_log_ctx *ctx) 171 { 172 struct btrfs_fs_info *fs_info = root->fs_info; 173 struct btrfs_root *tree_root = fs_info->tree_root; 174 const bool zoned = btrfs_is_zoned(fs_info); 175 int ret = 0; 176 bool created = false; 177 178 /* 179 * First check if the log root tree was already created. If not, create 180 * it before locking the root's log_mutex, just to keep lockdep happy. 181 */ 182 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) { 183 mutex_lock(&tree_root->log_mutex); 184 if (!fs_info->log_root_tree) { 185 ret = btrfs_init_log_root_tree(trans, fs_info); 186 if (!ret) { 187 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state); 188 created = true; 189 } 190 } 191 mutex_unlock(&tree_root->log_mutex); 192 if (ret) 193 return ret; 194 } 195 196 mutex_lock(&root->log_mutex); 197 198 again: 199 if (root->log_root) { 200 int index = (root->log_transid + 1) % 2; 201 202 if (btrfs_need_log_full_commit(trans)) { 203 ret = BTRFS_LOG_FORCE_COMMIT; 204 goto out; 205 } 206 207 if (zoned && atomic_read(&root->log_commit[index])) { 208 wait_log_commit(root, root->log_transid - 1); 209 goto again; 210 } 211 212 if (!root->log_start_pid) { 213 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 214 root->log_start_pid = current->pid; 215 } else if (root->log_start_pid != current->pid) { 216 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 217 } 218 } else { 219 /* 220 * This means fs_info->log_root_tree was already created 221 * for some other FS trees. Do the full commit not to mix 222 * nodes from multiple log transactions to do sequential 223 * writing. 224 */ 225 if (zoned && !created) { 226 ret = BTRFS_LOG_FORCE_COMMIT; 227 goto out; 228 } 229 230 ret = btrfs_add_log_tree(trans, root); 231 if (ret) 232 goto out; 233 234 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state); 235 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 236 root->log_start_pid = current->pid; 237 } 238 239 atomic_inc(&root->log_writers); 240 if (!ctx->logging_new_name) { 241 int index = root->log_transid % 2; 242 list_add_tail(&ctx->list, &root->log_ctxs[index]); 243 ctx->log_transid = root->log_transid; 244 } 245 246 out: 247 mutex_unlock(&root->log_mutex); 248 return ret; 249 } 250 251 /* 252 * returns 0 if there was a log transaction running and we were able 253 * to join, or returns -ENOENT if there were not transactions 254 * in progress 255 */ 256 static int join_running_log_trans(struct btrfs_root *root) 257 { 258 const bool zoned = btrfs_is_zoned(root->fs_info); 259 int ret = -ENOENT; 260 261 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state)) 262 return ret; 263 264 mutex_lock(&root->log_mutex); 265 again: 266 if (root->log_root) { 267 int index = (root->log_transid + 1) % 2; 268 269 ret = 0; 270 if (zoned && atomic_read(&root->log_commit[index])) { 271 wait_log_commit(root, root->log_transid - 1); 272 goto again; 273 } 274 atomic_inc(&root->log_writers); 275 } 276 mutex_unlock(&root->log_mutex); 277 return ret; 278 } 279 280 /* 281 * This either makes the current running log transaction wait 282 * until you call btrfs_end_log_trans() or it makes any future 283 * log transactions wait until you call btrfs_end_log_trans() 284 */ 285 void btrfs_pin_log_trans(struct btrfs_root *root) 286 { 287 atomic_inc(&root->log_writers); 288 } 289 290 /* 291 * indicate we're done making changes to the log tree 292 * and wake up anyone waiting to do a sync 293 */ 294 void btrfs_end_log_trans(struct btrfs_root *root) 295 { 296 if (atomic_dec_and_test(&root->log_writers)) { 297 /* atomic_dec_and_test implies a barrier */ 298 cond_wake_up_nomb(&root->log_writer_wait); 299 } 300 } 301 302 /* 303 * the walk control struct is used to pass state down the chain when 304 * processing the log tree. The stage field tells us which part 305 * of the log tree processing we are currently doing. The others 306 * are state fields used for that specific part 307 */ 308 struct walk_control { 309 /* should we free the extent on disk when done? This is used 310 * at transaction commit time while freeing a log tree 311 */ 312 int free; 313 314 /* pin only walk, we record which extents on disk belong to the 315 * log trees 316 */ 317 int pin; 318 319 /* what stage of the replay code we're currently in */ 320 int stage; 321 322 /* 323 * Ignore any items from the inode currently being processed. Needs 324 * to be set every time we find a BTRFS_INODE_ITEM_KEY. 325 */ 326 bool ignore_cur_inode; 327 328 /* the root we are currently replaying */ 329 struct btrfs_root *replay_dest; 330 331 /* the trans handle for the current replay */ 332 struct btrfs_trans_handle *trans; 333 334 /* the function that gets used to process blocks we find in the 335 * tree. Note the extent_buffer might not be up to date when it is 336 * passed in, and it must be checked or read if you need the data 337 * inside it 338 */ 339 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb, 340 struct walk_control *wc, u64 gen, int level); 341 }; 342 343 /* 344 * process_func used to pin down extents, write them or wait on them 345 */ 346 static int process_one_buffer(struct btrfs_root *log, 347 struct extent_buffer *eb, 348 struct walk_control *wc, u64 gen, int level) 349 { 350 struct btrfs_fs_info *fs_info = log->fs_info; 351 int ret = 0; 352 353 /* 354 * If this fs is mixed then we need to be able to process the leaves to 355 * pin down any logged extents, so we have to read the block. 356 */ 357 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 358 struct btrfs_tree_parent_check check = { 359 .level = level, 360 .transid = gen 361 }; 362 363 ret = btrfs_read_extent_buffer(eb, &check); 364 if (ret) 365 return ret; 366 } 367 368 if (wc->pin) { 369 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb); 370 if (ret) 371 return ret; 372 373 if (btrfs_buffer_uptodate(eb, gen, 0) && 374 btrfs_header_level(eb) == 0) 375 ret = btrfs_exclude_logged_extents(eb); 376 } 377 return ret; 378 } 379 380 /* 381 * Item overwrite used by log replay. The given eb, slot and key all refer to 382 * the source data we are copying out. 383 * 384 * The given root is for the tree we are copying into, and path is a scratch 385 * path for use in this function (it should be released on entry and will be 386 * released on exit). 387 * 388 * If the key is already in the destination tree the existing item is 389 * overwritten. If the existing item isn't big enough, it is extended. 390 * If it is too large, it is truncated. 391 * 392 * If the key isn't in the destination yet, a new item is inserted. 393 */ 394 static int overwrite_item(struct btrfs_trans_handle *trans, 395 struct btrfs_root *root, 396 struct btrfs_path *path, 397 struct extent_buffer *eb, int slot, 398 struct btrfs_key *key) 399 { 400 int ret; 401 u32 item_size; 402 u64 saved_i_size = 0; 403 int save_old_i_size = 0; 404 unsigned long src_ptr; 405 unsigned long dst_ptr; 406 struct extent_buffer *dst_eb; 407 int dst_slot; 408 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY; 409 410 /* 411 * This is only used during log replay, so the root is always from a 412 * fs/subvolume tree. In case we ever need to support a log root, then 413 * we'll have to clone the leaf in the path, release the path and use 414 * the leaf before writing into the log tree. See the comments at 415 * copy_items() for more details. 416 */ 417 ASSERT(btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID); 418 419 item_size = btrfs_item_size(eb, slot); 420 src_ptr = btrfs_item_ptr_offset(eb, slot); 421 422 /* Look for the key in the destination tree. */ 423 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 424 if (ret < 0) 425 return ret; 426 427 dst_eb = path->nodes[0]; 428 dst_slot = path->slots[0]; 429 430 if (ret == 0) { 431 char *src_copy; 432 const u32 dst_size = btrfs_item_size(dst_eb, dst_slot); 433 434 if (dst_size != item_size) 435 goto insert; 436 437 if (item_size == 0) { 438 btrfs_release_path(path); 439 return 0; 440 } 441 src_copy = kmalloc(item_size, GFP_NOFS); 442 if (!src_copy) { 443 btrfs_release_path(path); 444 return -ENOMEM; 445 } 446 447 read_extent_buffer(eb, src_copy, src_ptr, item_size); 448 dst_ptr = btrfs_item_ptr_offset(dst_eb, dst_slot); 449 ret = memcmp_extent_buffer(dst_eb, src_copy, dst_ptr, item_size); 450 451 kfree(src_copy); 452 /* 453 * they have the same contents, just return, this saves 454 * us from cowing blocks in the destination tree and doing 455 * extra writes that may not have been done by a previous 456 * sync 457 */ 458 if (ret == 0) { 459 btrfs_release_path(path); 460 return 0; 461 } 462 463 /* 464 * We need to load the old nbytes into the inode so when we 465 * replay the extents we've logged we get the right nbytes. 466 */ 467 if (inode_item) { 468 struct btrfs_inode_item *item; 469 u64 nbytes; 470 u32 mode; 471 472 item = btrfs_item_ptr(dst_eb, dst_slot, 473 struct btrfs_inode_item); 474 nbytes = btrfs_inode_nbytes(dst_eb, item); 475 item = btrfs_item_ptr(eb, slot, 476 struct btrfs_inode_item); 477 btrfs_set_inode_nbytes(eb, item, nbytes); 478 479 /* 480 * If this is a directory we need to reset the i_size to 481 * 0 so that we can set it up properly when replaying 482 * the rest of the items in this log. 483 */ 484 mode = btrfs_inode_mode(eb, item); 485 if (S_ISDIR(mode)) 486 btrfs_set_inode_size(eb, item, 0); 487 } 488 } else if (inode_item) { 489 struct btrfs_inode_item *item; 490 u32 mode; 491 492 /* 493 * New inode, set nbytes to 0 so that the nbytes comes out 494 * properly when we replay the extents. 495 */ 496 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 497 btrfs_set_inode_nbytes(eb, item, 0); 498 499 /* 500 * If this is a directory we need to reset the i_size to 0 so 501 * that we can set it up properly when replaying the rest of 502 * the items in this log. 503 */ 504 mode = btrfs_inode_mode(eb, item); 505 if (S_ISDIR(mode)) 506 btrfs_set_inode_size(eb, item, 0); 507 } 508 insert: 509 btrfs_release_path(path); 510 /* try to insert the key into the destination tree */ 511 path->skip_release_on_error = 1; 512 ret = btrfs_insert_empty_item(trans, root, path, 513 key, item_size); 514 path->skip_release_on_error = 0; 515 516 dst_eb = path->nodes[0]; 517 dst_slot = path->slots[0]; 518 519 /* make sure any existing item is the correct size */ 520 if (ret == -EEXIST || ret == -EOVERFLOW) { 521 const u32 found_size = btrfs_item_size(dst_eb, dst_slot); 522 523 if (found_size > item_size) 524 btrfs_truncate_item(trans, path, item_size, 1); 525 else if (found_size < item_size) 526 btrfs_extend_item(trans, path, item_size - found_size); 527 } else if (ret) { 528 return ret; 529 } 530 dst_ptr = btrfs_item_ptr_offset(dst_eb, dst_slot); 531 532 /* don't overwrite an existing inode if the generation number 533 * was logged as zero. This is done when the tree logging code 534 * is just logging an inode to make sure it exists after recovery. 535 * 536 * Also, don't overwrite i_size on directories during replay. 537 * log replay inserts and removes directory items based on the 538 * state of the tree found in the subvolume, and i_size is modified 539 * as it goes 540 */ 541 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) { 542 struct btrfs_inode_item *src_item; 543 struct btrfs_inode_item *dst_item; 544 545 src_item = (struct btrfs_inode_item *)src_ptr; 546 dst_item = (struct btrfs_inode_item *)dst_ptr; 547 548 if (btrfs_inode_generation(eb, src_item) == 0) { 549 const u64 ino_size = btrfs_inode_size(eb, src_item); 550 551 /* 552 * For regular files an ino_size == 0 is used only when 553 * logging that an inode exists, as part of a directory 554 * fsync, and the inode wasn't fsynced before. In this 555 * case don't set the size of the inode in the fs/subvol 556 * tree, otherwise we would be throwing valid data away. 557 */ 558 if (S_ISREG(btrfs_inode_mode(eb, src_item)) && 559 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) && 560 ino_size != 0) 561 btrfs_set_inode_size(dst_eb, dst_item, ino_size); 562 goto no_copy; 563 } 564 565 if (S_ISDIR(btrfs_inode_mode(eb, src_item)) && 566 S_ISDIR(btrfs_inode_mode(dst_eb, dst_item))) { 567 save_old_i_size = 1; 568 saved_i_size = btrfs_inode_size(dst_eb, dst_item); 569 } 570 } 571 572 copy_extent_buffer(dst_eb, eb, dst_ptr, src_ptr, item_size); 573 574 if (save_old_i_size) { 575 struct btrfs_inode_item *dst_item; 576 577 dst_item = (struct btrfs_inode_item *)dst_ptr; 578 btrfs_set_inode_size(dst_eb, dst_item, saved_i_size); 579 } 580 581 /* make sure the generation is filled in */ 582 if (key->type == BTRFS_INODE_ITEM_KEY) { 583 struct btrfs_inode_item *dst_item; 584 585 dst_item = (struct btrfs_inode_item *)dst_ptr; 586 if (btrfs_inode_generation(dst_eb, dst_item) == 0) 587 btrfs_set_inode_generation(dst_eb, dst_item, trans->transid); 588 } 589 no_copy: 590 btrfs_release_path(path); 591 return 0; 592 } 593 594 static int read_alloc_one_name(struct extent_buffer *eb, void *start, int len, 595 struct fscrypt_str *name) 596 { 597 char *buf; 598 599 buf = kmalloc(len, GFP_NOFS); 600 if (!buf) 601 return -ENOMEM; 602 603 read_extent_buffer(eb, buf, (unsigned long)start, len); 604 name->name = buf; 605 name->len = len; 606 return 0; 607 } 608 609 /* replays a single extent in 'eb' at 'slot' with 'key' into the 610 * subvolume 'root'. path is released on entry and should be released 611 * on exit. 612 * 613 * extents in the log tree have not been allocated out of the extent 614 * tree yet. So, this completes the allocation, taking a reference 615 * as required if the extent already exists or creating a new extent 616 * if it isn't in the extent allocation tree yet. 617 * 618 * The extent is inserted into the file, dropping any existing extents 619 * from the file that overlap the new one. 620 */ 621 static noinline int replay_one_extent(struct btrfs_trans_handle *trans, 622 struct btrfs_root *root, 623 struct btrfs_path *path, 624 struct extent_buffer *eb, int slot, 625 struct btrfs_key *key) 626 { 627 struct btrfs_drop_extents_args drop_args = { 0 }; 628 struct btrfs_fs_info *fs_info = root->fs_info; 629 int found_type; 630 u64 extent_end; 631 u64 start = key->offset; 632 u64 nbytes = 0; 633 struct btrfs_file_extent_item *item; 634 struct btrfs_inode *inode = NULL; 635 unsigned long size; 636 int ret = 0; 637 638 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 639 found_type = btrfs_file_extent_type(eb, item); 640 641 if (found_type == BTRFS_FILE_EXTENT_REG || 642 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 643 nbytes = btrfs_file_extent_num_bytes(eb, item); 644 extent_end = start + nbytes; 645 646 /* 647 * We don't add to the inodes nbytes if we are prealloc or a 648 * hole. 649 */ 650 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 651 nbytes = 0; 652 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 653 size = btrfs_file_extent_ram_bytes(eb, item); 654 nbytes = btrfs_file_extent_ram_bytes(eb, item); 655 extent_end = ALIGN(start + size, 656 fs_info->sectorsize); 657 } else { 658 btrfs_err(fs_info, 659 "unexpected extent type=%d root=%llu inode=%llu offset=%llu", 660 found_type, btrfs_root_id(root), key->objectid, key->offset); 661 return -EUCLEAN; 662 } 663 664 inode = btrfs_iget_logging(key->objectid, root); 665 if (IS_ERR(inode)) 666 return PTR_ERR(inode); 667 668 /* 669 * first check to see if we already have this extent in the 670 * file. This must be done before the btrfs_drop_extents run 671 * so we don't try to drop this extent. 672 */ 673 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode), start, 0); 674 675 if (ret == 0 && 676 (found_type == BTRFS_FILE_EXTENT_REG || 677 found_type == BTRFS_FILE_EXTENT_PREALLOC)) { 678 struct btrfs_file_extent_item existing; 679 unsigned long ptr; 680 681 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 682 read_extent_buffer(path->nodes[0], &existing, ptr, sizeof(existing)); 683 684 /* 685 * we already have a pointer to this exact extent, 686 * we don't have to do anything 687 */ 688 if (memcmp_extent_buffer(eb, &existing, (unsigned long)item, 689 sizeof(existing)) == 0) { 690 btrfs_release_path(path); 691 goto out; 692 } 693 } 694 btrfs_release_path(path); 695 696 /* drop any overlapping extents */ 697 drop_args.start = start; 698 drop_args.end = extent_end; 699 drop_args.drop_cache = true; 700 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 701 if (ret) 702 goto out; 703 704 if (found_type == BTRFS_FILE_EXTENT_REG || 705 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 706 u64 offset; 707 unsigned long dest_offset; 708 struct btrfs_key ins; 709 710 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 && 711 btrfs_fs_incompat(fs_info, NO_HOLES)) 712 goto update_inode; 713 714 ret = btrfs_insert_empty_item(trans, root, path, key, 715 sizeof(*item)); 716 if (ret) 717 goto out; 718 dest_offset = btrfs_item_ptr_offset(path->nodes[0], 719 path->slots[0]); 720 copy_extent_buffer(path->nodes[0], eb, dest_offset, 721 (unsigned long)item, sizeof(*item)); 722 723 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item); 724 ins.type = BTRFS_EXTENT_ITEM_KEY; 725 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item); 726 offset = key->offset - btrfs_file_extent_offset(eb, item); 727 728 /* 729 * Manually record dirty extent, as here we did a shallow 730 * file extent item copy and skip normal backref update, 731 * but modifying extent tree all by ourselves. 732 * So need to manually record dirty extent for qgroup, 733 * as the owner of the file extent changed from log tree 734 * (doesn't affect qgroup) to fs/file tree(affects qgroup) 735 */ 736 ret = btrfs_qgroup_trace_extent(trans, 737 btrfs_file_extent_disk_bytenr(eb, item), 738 btrfs_file_extent_disk_num_bytes(eb, item)); 739 if (ret < 0) 740 goto out; 741 742 if (ins.objectid > 0) { 743 u64 csum_start; 744 u64 csum_end; 745 LIST_HEAD(ordered_sums); 746 747 /* 748 * is this extent already allocated in the extent 749 * allocation tree? If so, just add a reference 750 */ 751 ret = btrfs_lookup_data_extent(fs_info, ins.objectid, 752 ins.offset); 753 if (ret < 0) { 754 goto out; 755 } else if (ret == 0) { 756 struct btrfs_ref ref = { 757 .action = BTRFS_ADD_DELAYED_REF, 758 .bytenr = ins.objectid, 759 .num_bytes = ins.offset, 760 .owning_root = btrfs_root_id(root), 761 .ref_root = btrfs_root_id(root), 762 }; 763 btrfs_init_data_ref(&ref, key->objectid, offset, 764 0, false); 765 ret = btrfs_inc_extent_ref(trans, &ref); 766 if (ret) 767 goto out; 768 } else { 769 /* 770 * insert the extent pointer in the extent 771 * allocation tree 772 */ 773 ret = btrfs_alloc_logged_file_extent(trans, 774 btrfs_root_id(root), 775 key->objectid, offset, &ins); 776 if (ret) 777 goto out; 778 } 779 btrfs_release_path(path); 780 781 if (btrfs_file_extent_compression(eb, item)) { 782 csum_start = ins.objectid; 783 csum_end = csum_start + ins.offset; 784 } else { 785 csum_start = ins.objectid + 786 btrfs_file_extent_offset(eb, item); 787 csum_end = csum_start + 788 btrfs_file_extent_num_bytes(eb, item); 789 } 790 791 ret = btrfs_lookup_csums_list(root->log_root, 792 csum_start, csum_end - 1, 793 &ordered_sums, false); 794 if (ret < 0) 795 goto out; 796 ret = 0; 797 /* 798 * Now delete all existing cums in the csum root that 799 * cover our range. We do this because we can have an 800 * extent that is completely referenced by one file 801 * extent item and partially referenced by another 802 * file extent item (like after using the clone or 803 * extent_same ioctls). In this case if we end up doing 804 * the replay of the one that partially references the 805 * extent first, and we do not do the csum deletion 806 * below, we can get 2 csum items in the csum tree that 807 * overlap each other. For example, imagine our log has 808 * the two following file extent items: 809 * 810 * key (257 EXTENT_DATA 409600) 811 * extent data disk byte 12845056 nr 102400 812 * extent data offset 20480 nr 20480 ram 102400 813 * 814 * key (257 EXTENT_DATA 819200) 815 * extent data disk byte 12845056 nr 102400 816 * extent data offset 0 nr 102400 ram 102400 817 * 818 * Where the second one fully references the 100K extent 819 * that starts at disk byte 12845056, and the log tree 820 * has a single csum item that covers the entire range 821 * of the extent: 822 * 823 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 824 * 825 * After the first file extent item is replayed, the 826 * csum tree gets the following csum item: 827 * 828 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 829 * 830 * Which covers the 20K sub-range starting at offset 20K 831 * of our extent. Now when we replay the second file 832 * extent item, if we do not delete existing csum items 833 * that cover any of its blocks, we end up getting two 834 * csum items in our csum tree that overlap each other: 835 * 836 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 837 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 838 * 839 * Which is a problem, because after this anyone trying 840 * to lookup up for the checksum of any block of our 841 * extent starting at an offset of 40K or higher, will 842 * end up looking at the second csum item only, which 843 * does not contain the checksum for any block starting 844 * at offset 40K or higher of our extent. 845 */ 846 while (!list_empty(&ordered_sums)) { 847 struct btrfs_ordered_sum *sums; 848 struct btrfs_root *csum_root; 849 850 sums = list_first_entry(&ordered_sums, 851 struct btrfs_ordered_sum, 852 list); 853 csum_root = btrfs_csum_root(fs_info, 854 sums->logical); 855 if (!ret) 856 ret = btrfs_del_csums(trans, csum_root, 857 sums->logical, 858 sums->len); 859 if (!ret) 860 ret = btrfs_csum_file_blocks(trans, 861 csum_root, 862 sums); 863 list_del(&sums->list); 864 kfree(sums); 865 } 866 if (ret) 867 goto out; 868 } else { 869 btrfs_release_path(path); 870 } 871 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 872 /* inline extents are easy, we just overwrite them */ 873 ret = overwrite_item(trans, root, path, eb, slot, key); 874 if (ret) 875 goto out; 876 } 877 878 ret = btrfs_inode_set_file_extent_range(inode, start, extent_end - start); 879 if (ret) 880 goto out; 881 882 update_inode: 883 btrfs_update_inode_bytes(inode, nbytes, drop_args.bytes_found); 884 ret = btrfs_update_inode(trans, inode); 885 out: 886 iput(&inode->vfs_inode); 887 return ret; 888 } 889 890 static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans, 891 struct btrfs_inode *dir, 892 struct btrfs_inode *inode, 893 const struct fscrypt_str *name) 894 { 895 int ret; 896 897 ret = btrfs_unlink_inode(trans, dir, inode, name); 898 if (ret) 899 return ret; 900 /* 901 * Whenever we need to check if a name exists or not, we check the 902 * fs/subvolume tree. So after an unlink we must run delayed items, so 903 * that future checks for a name during log replay see that the name 904 * does not exists anymore. 905 */ 906 return btrfs_run_delayed_items(trans); 907 } 908 909 /* 910 * when cleaning up conflicts between the directory names in the 911 * subvolume, directory names in the log and directory names in the 912 * inode back references, we may have to unlink inodes from directories. 913 * 914 * This is a helper function to do the unlink of a specific directory 915 * item 916 */ 917 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans, 918 struct btrfs_path *path, 919 struct btrfs_inode *dir, 920 struct btrfs_dir_item *di) 921 { 922 struct btrfs_root *root = dir->root; 923 struct btrfs_inode *inode; 924 struct fscrypt_str name; 925 struct extent_buffer *leaf; 926 struct btrfs_key location; 927 int ret; 928 929 leaf = path->nodes[0]; 930 931 btrfs_dir_item_key_to_cpu(leaf, di, &location); 932 ret = read_alloc_one_name(leaf, di + 1, btrfs_dir_name_len(leaf, di), &name); 933 if (ret) 934 return -ENOMEM; 935 936 btrfs_release_path(path); 937 938 inode = btrfs_iget_logging(location.objectid, root); 939 if (IS_ERR(inode)) { 940 ret = PTR_ERR(inode); 941 inode = NULL; 942 goto out; 943 } 944 945 ret = link_to_fixup_dir(trans, root, path, location.objectid); 946 if (ret) 947 goto out; 948 949 ret = unlink_inode_for_log_replay(trans, dir, inode, &name); 950 out: 951 kfree(name.name); 952 if (inode) 953 iput(&inode->vfs_inode); 954 return ret; 955 } 956 957 /* 958 * See if a given name and sequence number found in an inode back reference are 959 * already in a directory and correctly point to this inode. 960 * 961 * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it 962 * exists. 963 */ 964 static noinline int inode_in_dir(struct btrfs_root *root, 965 struct btrfs_path *path, 966 u64 dirid, u64 objectid, u64 index, 967 struct fscrypt_str *name) 968 { 969 struct btrfs_dir_item *di; 970 struct btrfs_key location; 971 int ret = 0; 972 973 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid, 974 index, name, 0); 975 if (IS_ERR(di)) { 976 ret = PTR_ERR(di); 977 goto out; 978 } else if (di) { 979 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 980 if (location.objectid != objectid) 981 goto out; 982 } else { 983 goto out; 984 } 985 986 btrfs_release_path(path); 987 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, 0); 988 if (IS_ERR(di)) { 989 ret = PTR_ERR(di); 990 goto out; 991 } else if (di) { 992 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 993 if (location.objectid == objectid) 994 ret = 1; 995 } 996 out: 997 btrfs_release_path(path); 998 return ret; 999 } 1000 1001 /* 1002 * helper function to check a log tree for a named back reference in 1003 * an inode. This is used to decide if a back reference that is 1004 * found in the subvolume conflicts with what we find in the log. 1005 * 1006 * inode backreferences may have multiple refs in a single item, 1007 * during replay we process one reference at a time, and we don't 1008 * want to delete valid links to a file from the subvolume if that 1009 * link is also in the log. 1010 */ 1011 static noinline int backref_in_log(struct btrfs_root *log, 1012 struct btrfs_key *key, 1013 u64 ref_objectid, 1014 const struct fscrypt_str *name) 1015 { 1016 struct btrfs_path *path; 1017 int ret; 1018 1019 path = btrfs_alloc_path(); 1020 if (!path) 1021 return -ENOMEM; 1022 1023 ret = btrfs_search_slot(NULL, log, key, path, 0, 0); 1024 if (ret < 0) { 1025 goto out; 1026 } else if (ret == 1) { 1027 ret = 0; 1028 goto out; 1029 } 1030 1031 if (key->type == BTRFS_INODE_EXTREF_KEY) 1032 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0], 1033 path->slots[0], 1034 ref_objectid, name); 1035 else 1036 ret = !!btrfs_find_name_in_backref(path->nodes[0], 1037 path->slots[0], name); 1038 out: 1039 btrfs_free_path(path); 1040 return ret; 1041 } 1042 1043 static int unlink_refs_not_in_log(struct btrfs_trans_handle *trans, 1044 struct btrfs_path *path, 1045 struct btrfs_root *log_root, 1046 struct btrfs_key *search_key, 1047 struct btrfs_inode *dir, 1048 struct btrfs_inode *inode, 1049 u64 parent_objectid) 1050 { 1051 struct extent_buffer *leaf = path->nodes[0]; 1052 unsigned long ptr; 1053 unsigned long ptr_end; 1054 1055 /* 1056 * Check all the names in this back reference to see if they are in the 1057 * log. If so, we allow them to stay otherwise they must be unlinked as 1058 * a conflict. 1059 */ 1060 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1061 ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]); 1062 while (ptr < ptr_end) { 1063 struct fscrypt_str victim_name; 1064 struct btrfs_inode_ref *victim_ref; 1065 int ret; 1066 1067 victim_ref = (struct btrfs_inode_ref *)ptr; 1068 ret = read_alloc_one_name(leaf, (victim_ref + 1), 1069 btrfs_inode_ref_name_len(leaf, victim_ref), 1070 &victim_name); 1071 if (ret) 1072 return ret; 1073 1074 ret = backref_in_log(log_root, search_key, parent_objectid, &victim_name); 1075 if (ret) { 1076 kfree(victim_name.name); 1077 if (ret < 0) 1078 return ret; 1079 ptr = (unsigned long)(victim_ref + 1) + victim_name.len; 1080 continue; 1081 } 1082 1083 inc_nlink(&inode->vfs_inode); 1084 btrfs_release_path(path); 1085 1086 ret = unlink_inode_for_log_replay(trans, dir, inode, &victim_name); 1087 kfree(victim_name.name); 1088 if (ret) 1089 return ret; 1090 return -EAGAIN; 1091 } 1092 1093 return 0; 1094 } 1095 1096 static int unlink_extrefs_not_in_log(struct btrfs_trans_handle *trans, 1097 struct btrfs_path *path, 1098 struct btrfs_root *root, 1099 struct btrfs_root *log_root, 1100 struct btrfs_key *search_key, 1101 struct btrfs_inode *inode, 1102 u64 inode_objectid, 1103 u64 parent_objectid) 1104 { 1105 struct extent_buffer *leaf = path->nodes[0]; 1106 const unsigned long base = btrfs_item_ptr_offset(leaf, path->slots[0]); 1107 const u32 item_size = btrfs_item_size(leaf, path->slots[0]); 1108 u32 cur_offset = 0; 1109 1110 while (cur_offset < item_size) { 1111 struct btrfs_inode_extref *extref; 1112 struct btrfs_inode *victim_parent; 1113 struct fscrypt_str victim_name; 1114 int ret; 1115 1116 extref = (struct btrfs_inode_extref *)(base + cur_offset); 1117 victim_name.len = btrfs_inode_extref_name_len(leaf, extref); 1118 1119 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid) 1120 goto next; 1121 1122 ret = read_alloc_one_name(leaf, &extref->name, victim_name.len, 1123 &victim_name); 1124 if (ret) 1125 return ret; 1126 1127 search_key->objectid = inode_objectid; 1128 search_key->type = BTRFS_INODE_EXTREF_KEY; 1129 search_key->offset = btrfs_extref_hash(parent_objectid, 1130 victim_name.name, 1131 victim_name.len); 1132 ret = backref_in_log(log_root, search_key, parent_objectid, &victim_name); 1133 if (ret) { 1134 kfree(victim_name.name); 1135 if (ret < 0) 1136 return ret; 1137 next: 1138 cur_offset += victim_name.len + sizeof(*extref); 1139 continue; 1140 } 1141 1142 victim_parent = btrfs_iget_logging(parent_objectid, root); 1143 if (IS_ERR(victim_parent)) { 1144 kfree(victim_name.name); 1145 return PTR_ERR(victim_parent); 1146 } 1147 1148 inc_nlink(&inode->vfs_inode); 1149 btrfs_release_path(path); 1150 1151 ret = unlink_inode_for_log_replay(trans, victim_parent, inode, 1152 &victim_name); 1153 iput(&victim_parent->vfs_inode); 1154 kfree(victim_name.name); 1155 if (ret) 1156 return ret; 1157 return -EAGAIN; 1158 } 1159 1160 return 0; 1161 } 1162 1163 static inline int __add_inode_ref(struct btrfs_trans_handle *trans, 1164 struct btrfs_root *root, 1165 struct btrfs_path *path, 1166 struct btrfs_root *log_root, 1167 struct btrfs_inode *dir, 1168 struct btrfs_inode *inode, 1169 u64 inode_objectid, u64 parent_objectid, 1170 u64 ref_index, struct fscrypt_str *name) 1171 { 1172 int ret; 1173 struct btrfs_dir_item *di; 1174 struct btrfs_key search_key; 1175 struct btrfs_inode_extref *extref; 1176 1177 again: 1178 /* Search old style refs */ 1179 search_key.objectid = inode_objectid; 1180 search_key.type = BTRFS_INODE_REF_KEY; 1181 search_key.offset = parent_objectid; 1182 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 1183 if (ret < 0) { 1184 return ret; 1185 } else if (ret == 0) { 1186 /* 1187 * Are we trying to overwrite a back ref for the root directory? 1188 * If so, we're done. 1189 */ 1190 if (search_key.objectid == search_key.offset) 1191 return 1; 1192 1193 ret = unlink_refs_not_in_log(trans, path, log_root, &search_key, 1194 dir, inode, parent_objectid); 1195 if (ret == -EAGAIN) 1196 goto again; 1197 else if (ret) 1198 return ret; 1199 } 1200 btrfs_release_path(path); 1201 1202 /* Same search but for extended refs */ 1203 extref = btrfs_lookup_inode_extref(root, path, name, inode_objectid, parent_objectid); 1204 if (IS_ERR(extref)) { 1205 return PTR_ERR(extref); 1206 } else if (extref) { 1207 ret = unlink_extrefs_not_in_log(trans, path, root, log_root, 1208 &search_key, inode, 1209 inode_objectid, parent_objectid); 1210 if (ret == -EAGAIN) 1211 goto again; 1212 else if (ret) 1213 return ret; 1214 } 1215 btrfs_release_path(path); 1216 1217 /* look for a conflicting sequence number */ 1218 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir), 1219 ref_index, name, 0); 1220 if (IS_ERR(di)) { 1221 return PTR_ERR(di); 1222 } else if (di) { 1223 ret = drop_one_dir_item(trans, path, dir, di); 1224 if (ret) 1225 return ret; 1226 } 1227 btrfs_release_path(path); 1228 1229 /* look for a conflicting name */ 1230 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), name, 0); 1231 if (IS_ERR(di)) { 1232 return PTR_ERR(di); 1233 } else if (di) { 1234 ret = drop_one_dir_item(trans, path, dir, di); 1235 if (ret) 1236 return ret; 1237 } 1238 btrfs_release_path(path); 1239 1240 return 0; 1241 } 1242 1243 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1244 struct fscrypt_str *name, u64 *index, 1245 u64 *parent_objectid) 1246 { 1247 struct btrfs_inode_extref *extref; 1248 int ret; 1249 1250 extref = (struct btrfs_inode_extref *)ref_ptr; 1251 1252 ret = read_alloc_one_name(eb, &extref->name, 1253 btrfs_inode_extref_name_len(eb, extref), name); 1254 if (ret) 1255 return ret; 1256 1257 if (index) 1258 *index = btrfs_inode_extref_index(eb, extref); 1259 if (parent_objectid) 1260 *parent_objectid = btrfs_inode_extref_parent(eb, extref); 1261 1262 return 0; 1263 } 1264 1265 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1266 struct fscrypt_str *name, u64 *index) 1267 { 1268 struct btrfs_inode_ref *ref; 1269 int ret; 1270 1271 ref = (struct btrfs_inode_ref *)ref_ptr; 1272 1273 ret = read_alloc_one_name(eb, ref + 1, btrfs_inode_ref_name_len(eb, ref), 1274 name); 1275 if (ret) 1276 return ret; 1277 1278 if (index) 1279 *index = btrfs_inode_ref_index(eb, ref); 1280 1281 return 0; 1282 } 1283 1284 /* 1285 * Take an inode reference item from the log tree and iterate all names from the 1286 * inode reference item in the subvolume tree with the same key (if it exists). 1287 * For any name that is not in the inode reference item from the log tree, do a 1288 * proper unlink of that name (that is, remove its entry from the inode 1289 * reference item and both dir index keys). 1290 */ 1291 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans, 1292 struct btrfs_root *root, 1293 struct btrfs_path *path, 1294 struct btrfs_inode *inode, 1295 struct extent_buffer *log_eb, 1296 int log_slot, 1297 struct btrfs_key *key) 1298 { 1299 int ret; 1300 unsigned long ref_ptr; 1301 unsigned long ref_end; 1302 struct extent_buffer *eb; 1303 1304 again: 1305 btrfs_release_path(path); 1306 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 1307 if (ret > 0) { 1308 ret = 0; 1309 goto out; 1310 } 1311 if (ret < 0) 1312 goto out; 1313 1314 eb = path->nodes[0]; 1315 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]); 1316 ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]); 1317 while (ref_ptr < ref_end) { 1318 struct fscrypt_str name; 1319 u64 parent_id; 1320 1321 if (key->type == BTRFS_INODE_EXTREF_KEY) { 1322 ret = extref_get_fields(eb, ref_ptr, &name, 1323 NULL, &parent_id); 1324 } else { 1325 parent_id = key->offset; 1326 ret = ref_get_fields(eb, ref_ptr, &name, NULL); 1327 } 1328 if (ret) 1329 goto out; 1330 1331 if (key->type == BTRFS_INODE_EXTREF_KEY) 1332 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot, 1333 parent_id, &name); 1334 else 1335 ret = !!btrfs_find_name_in_backref(log_eb, log_slot, &name); 1336 1337 if (!ret) { 1338 struct btrfs_inode *dir; 1339 1340 btrfs_release_path(path); 1341 dir = btrfs_iget_logging(parent_id, root); 1342 if (IS_ERR(dir)) { 1343 ret = PTR_ERR(dir); 1344 kfree(name.name); 1345 goto out; 1346 } 1347 ret = unlink_inode_for_log_replay(trans, dir, inode, &name); 1348 kfree(name.name); 1349 iput(&dir->vfs_inode); 1350 if (ret) 1351 goto out; 1352 goto again; 1353 } 1354 1355 kfree(name.name); 1356 ref_ptr += name.len; 1357 if (key->type == BTRFS_INODE_EXTREF_KEY) 1358 ref_ptr += sizeof(struct btrfs_inode_extref); 1359 else 1360 ref_ptr += sizeof(struct btrfs_inode_ref); 1361 } 1362 ret = 0; 1363 out: 1364 btrfs_release_path(path); 1365 return ret; 1366 } 1367 1368 /* 1369 * replay one inode back reference item found in the log tree. 1370 * eb, slot and key refer to the buffer and key found in the log tree. 1371 * root is the destination we are replaying into, and path is for temp 1372 * use by this function. (it should be released on return). 1373 */ 1374 static noinline int add_inode_ref(struct btrfs_trans_handle *trans, 1375 struct btrfs_root *root, 1376 struct btrfs_root *log, 1377 struct btrfs_path *path, 1378 struct extent_buffer *eb, int slot, 1379 struct btrfs_key *key) 1380 { 1381 struct btrfs_inode *dir = NULL; 1382 struct btrfs_inode *inode = NULL; 1383 unsigned long ref_ptr; 1384 unsigned long ref_end; 1385 struct fscrypt_str name = { 0 }; 1386 int ret; 1387 const bool is_extref_item = (key->type == BTRFS_INODE_EXTREF_KEY); 1388 u64 parent_objectid; 1389 u64 inode_objectid; 1390 u64 ref_index = 0; 1391 int ref_struct_size; 1392 1393 ref_ptr = btrfs_item_ptr_offset(eb, slot); 1394 ref_end = ref_ptr + btrfs_item_size(eb, slot); 1395 1396 if (is_extref_item) { 1397 struct btrfs_inode_extref *r; 1398 1399 ref_struct_size = sizeof(struct btrfs_inode_extref); 1400 r = (struct btrfs_inode_extref *)ref_ptr; 1401 parent_objectid = btrfs_inode_extref_parent(eb, r); 1402 } else { 1403 ref_struct_size = sizeof(struct btrfs_inode_ref); 1404 parent_objectid = key->offset; 1405 } 1406 inode_objectid = key->objectid; 1407 1408 /* 1409 * it is possible that we didn't log all the parent directories 1410 * for a given inode. If we don't find the dir, just don't 1411 * copy the back ref in. The link count fixup code will take 1412 * care of the rest 1413 */ 1414 dir = btrfs_iget_logging(parent_objectid, root); 1415 if (IS_ERR(dir)) { 1416 ret = PTR_ERR(dir); 1417 if (ret == -ENOENT) 1418 ret = 0; 1419 dir = NULL; 1420 goto out; 1421 } 1422 1423 inode = btrfs_iget_logging(inode_objectid, root); 1424 if (IS_ERR(inode)) { 1425 ret = PTR_ERR(inode); 1426 inode = NULL; 1427 goto out; 1428 } 1429 1430 while (ref_ptr < ref_end) { 1431 if (is_extref_item) { 1432 ret = extref_get_fields(eb, ref_ptr, &name, 1433 &ref_index, &parent_objectid); 1434 if (ret) 1435 goto out; 1436 /* 1437 * parent object can change from one array 1438 * item to another. 1439 */ 1440 if (!dir) { 1441 dir = btrfs_iget_logging(parent_objectid, root); 1442 if (IS_ERR(dir)) { 1443 ret = PTR_ERR(dir); 1444 dir = NULL; 1445 /* 1446 * A new parent dir may have not been 1447 * logged and not exist in the subvolume 1448 * tree, see the comment above before 1449 * the loop when getting the first 1450 * parent dir. 1451 */ 1452 if (ret == -ENOENT) { 1453 /* 1454 * The next extref may refer to 1455 * another parent dir that 1456 * exists, so continue. 1457 */ 1458 ret = 0; 1459 goto next; 1460 } 1461 goto out; 1462 } 1463 } 1464 } else { 1465 ret = ref_get_fields(eb, ref_ptr, &name, &ref_index); 1466 if (ret) 1467 goto out; 1468 } 1469 1470 ret = inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode), 1471 ref_index, &name); 1472 if (ret < 0) { 1473 goto out; 1474 } else if (ret == 0) { 1475 /* 1476 * look for a conflicting back reference in the 1477 * metadata. if we find one we have to unlink that name 1478 * of the file before we add our new link. Later on, we 1479 * overwrite any existing back reference, and we don't 1480 * want to create dangling pointers in the directory. 1481 */ 1482 ret = __add_inode_ref(trans, root, path, log, dir, inode, 1483 inode_objectid, parent_objectid, 1484 ref_index, &name); 1485 if (ret) { 1486 if (ret == 1) 1487 ret = 0; 1488 goto out; 1489 } 1490 1491 /* insert our name */ 1492 ret = btrfs_add_link(trans, dir, inode, &name, 0, ref_index); 1493 if (ret) 1494 goto out; 1495 1496 ret = btrfs_update_inode(trans, inode); 1497 if (ret) 1498 goto out; 1499 } 1500 /* Else, ret == 1, we already have a perfect match, we're done. */ 1501 1502 next: 1503 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + name.len; 1504 kfree(name.name); 1505 name.name = NULL; 1506 if (is_extref_item && dir) { 1507 iput(&dir->vfs_inode); 1508 dir = NULL; 1509 } 1510 } 1511 1512 /* 1513 * Before we overwrite the inode reference item in the subvolume tree 1514 * with the item from the log tree, we must unlink all names from the 1515 * parent directory that are in the subvolume's tree inode reference 1516 * item, otherwise we end up with an inconsistent subvolume tree where 1517 * dir index entries exist for a name but there is no inode reference 1518 * item with the same name. 1519 */ 1520 ret = unlink_old_inode_refs(trans, root, path, inode, eb, slot, key); 1521 if (ret) 1522 goto out; 1523 1524 /* finally write the back reference in the inode */ 1525 ret = overwrite_item(trans, root, path, eb, slot, key); 1526 out: 1527 btrfs_release_path(path); 1528 kfree(name.name); 1529 if (dir) 1530 iput(&dir->vfs_inode); 1531 if (inode) 1532 iput(&inode->vfs_inode); 1533 return ret; 1534 } 1535 1536 static int count_inode_extrefs(struct btrfs_inode *inode, struct btrfs_path *path) 1537 { 1538 int ret = 0; 1539 int name_len; 1540 unsigned int nlink = 0; 1541 u32 item_size; 1542 u32 cur_offset = 0; 1543 u64 inode_objectid = btrfs_ino(inode); 1544 u64 offset = 0; 1545 unsigned long ptr; 1546 struct btrfs_inode_extref *extref; 1547 struct extent_buffer *leaf; 1548 1549 while (1) { 1550 ret = btrfs_find_one_extref(inode->root, inode_objectid, offset, 1551 path, &extref, &offset); 1552 if (ret) 1553 break; 1554 1555 leaf = path->nodes[0]; 1556 item_size = btrfs_item_size(leaf, path->slots[0]); 1557 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1558 cur_offset = 0; 1559 1560 while (cur_offset < item_size) { 1561 extref = (struct btrfs_inode_extref *) (ptr + cur_offset); 1562 name_len = btrfs_inode_extref_name_len(leaf, extref); 1563 1564 nlink++; 1565 1566 cur_offset += name_len + sizeof(*extref); 1567 } 1568 1569 offset++; 1570 btrfs_release_path(path); 1571 } 1572 btrfs_release_path(path); 1573 1574 if (ret < 0 && ret != -ENOENT) 1575 return ret; 1576 return nlink; 1577 } 1578 1579 static int count_inode_refs(struct btrfs_inode *inode, struct btrfs_path *path) 1580 { 1581 int ret; 1582 struct btrfs_key key; 1583 unsigned int nlink = 0; 1584 unsigned long ptr; 1585 unsigned long ptr_end; 1586 int name_len; 1587 u64 ino = btrfs_ino(inode); 1588 1589 key.objectid = ino; 1590 key.type = BTRFS_INODE_REF_KEY; 1591 key.offset = (u64)-1; 1592 1593 while (1) { 1594 ret = btrfs_search_slot(NULL, inode->root, &key, path, 0, 0); 1595 if (ret < 0) 1596 break; 1597 if (ret > 0) { 1598 if (path->slots[0] == 0) 1599 break; 1600 path->slots[0]--; 1601 } 1602 process_slot: 1603 btrfs_item_key_to_cpu(path->nodes[0], &key, 1604 path->slots[0]); 1605 if (key.objectid != ino || 1606 key.type != BTRFS_INODE_REF_KEY) 1607 break; 1608 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 1609 ptr_end = ptr + btrfs_item_size(path->nodes[0], 1610 path->slots[0]); 1611 while (ptr < ptr_end) { 1612 struct btrfs_inode_ref *ref; 1613 1614 ref = (struct btrfs_inode_ref *)ptr; 1615 name_len = btrfs_inode_ref_name_len(path->nodes[0], 1616 ref); 1617 ptr = (unsigned long)(ref + 1) + name_len; 1618 nlink++; 1619 } 1620 1621 if (key.offset == 0) 1622 break; 1623 if (path->slots[0] > 0) { 1624 path->slots[0]--; 1625 goto process_slot; 1626 } 1627 key.offset--; 1628 btrfs_release_path(path); 1629 } 1630 btrfs_release_path(path); 1631 1632 return nlink; 1633 } 1634 1635 /* 1636 * There are a few corners where the link count of the file can't 1637 * be properly maintained during replay. So, instead of adding 1638 * lots of complexity to the log code, we just scan the backrefs 1639 * for any file that has been through replay. 1640 * 1641 * The scan will update the link count on the inode to reflect the 1642 * number of back refs found. If it goes down to zero, the iput 1643 * will free the inode. 1644 */ 1645 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans, 1646 struct btrfs_inode *inode) 1647 { 1648 struct btrfs_root *root = inode->root; 1649 struct btrfs_path *path; 1650 int ret; 1651 u64 nlink = 0; 1652 const u64 ino = btrfs_ino(inode); 1653 1654 path = btrfs_alloc_path(); 1655 if (!path) 1656 return -ENOMEM; 1657 1658 ret = count_inode_refs(inode, path); 1659 if (ret < 0) 1660 goto out; 1661 1662 nlink = ret; 1663 1664 ret = count_inode_extrefs(inode, path); 1665 if (ret < 0) 1666 goto out; 1667 1668 nlink += ret; 1669 1670 ret = 0; 1671 1672 if (nlink != inode->vfs_inode.i_nlink) { 1673 set_nlink(&inode->vfs_inode, nlink); 1674 ret = btrfs_update_inode(trans, inode); 1675 if (ret) 1676 goto out; 1677 } 1678 if (S_ISDIR(inode->vfs_inode.i_mode)) 1679 inode->index_cnt = (u64)-1; 1680 1681 if (inode->vfs_inode.i_nlink == 0) { 1682 if (S_ISDIR(inode->vfs_inode.i_mode)) { 1683 ret = replay_dir_deletes(trans, root, NULL, path, ino, true); 1684 if (ret) 1685 goto out; 1686 } 1687 ret = btrfs_insert_orphan_item(trans, root, ino); 1688 if (ret == -EEXIST) 1689 ret = 0; 1690 } 1691 1692 out: 1693 btrfs_free_path(path); 1694 return ret; 1695 } 1696 1697 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans, 1698 struct btrfs_root *root, 1699 struct btrfs_path *path) 1700 { 1701 int ret; 1702 struct btrfs_key key; 1703 1704 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1705 key.type = BTRFS_ORPHAN_ITEM_KEY; 1706 key.offset = (u64)-1; 1707 while (1) { 1708 struct btrfs_inode *inode; 1709 1710 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1711 if (ret < 0) 1712 break; 1713 1714 if (ret == 1) { 1715 ret = 0; 1716 if (path->slots[0] == 0) 1717 break; 1718 path->slots[0]--; 1719 } 1720 1721 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1722 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID || 1723 key.type != BTRFS_ORPHAN_ITEM_KEY) 1724 break; 1725 1726 ret = btrfs_del_item(trans, root, path); 1727 if (ret) 1728 break; 1729 1730 btrfs_release_path(path); 1731 inode = btrfs_iget_logging(key.offset, root); 1732 if (IS_ERR(inode)) { 1733 ret = PTR_ERR(inode); 1734 break; 1735 } 1736 1737 ret = fixup_inode_link_count(trans, inode); 1738 iput(&inode->vfs_inode); 1739 if (ret) 1740 break; 1741 1742 /* 1743 * fixup on a directory may create new entries, 1744 * make sure we always look for the highset possible 1745 * offset 1746 */ 1747 key.offset = (u64)-1; 1748 } 1749 btrfs_release_path(path); 1750 return ret; 1751 } 1752 1753 1754 /* 1755 * record a given inode in the fixup dir so we can check its link 1756 * count when replay is done. The link count is incremented here 1757 * so the inode won't go away until we check it 1758 */ 1759 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans, 1760 struct btrfs_root *root, 1761 struct btrfs_path *path, 1762 u64 objectid) 1763 { 1764 struct btrfs_key key; 1765 int ret = 0; 1766 struct btrfs_inode *inode; 1767 struct inode *vfs_inode; 1768 1769 inode = btrfs_iget_logging(objectid, root); 1770 if (IS_ERR(inode)) 1771 return PTR_ERR(inode); 1772 1773 vfs_inode = &inode->vfs_inode; 1774 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1775 key.type = BTRFS_ORPHAN_ITEM_KEY; 1776 key.offset = objectid; 1777 1778 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1779 1780 btrfs_release_path(path); 1781 if (ret == 0) { 1782 if (!vfs_inode->i_nlink) 1783 set_nlink(vfs_inode, 1); 1784 else 1785 inc_nlink(vfs_inode); 1786 ret = btrfs_update_inode(trans, inode); 1787 } else if (ret == -EEXIST) { 1788 ret = 0; 1789 } 1790 iput(vfs_inode); 1791 1792 return ret; 1793 } 1794 1795 /* 1796 * when replaying the log for a directory, we only insert names 1797 * for inodes that actually exist. This means an fsync on a directory 1798 * does not implicitly fsync all the new files in it 1799 */ 1800 static noinline int insert_one_name(struct btrfs_trans_handle *trans, 1801 struct btrfs_root *root, 1802 u64 dirid, u64 index, 1803 const struct fscrypt_str *name, 1804 struct btrfs_key *location) 1805 { 1806 struct btrfs_inode *inode; 1807 struct btrfs_inode *dir; 1808 int ret; 1809 1810 inode = btrfs_iget_logging(location->objectid, root); 1811 if (IS_ERR(inode)) 1812 return PTR_ERR(inode); 1813 1814 dir = btrfs_iget_logging(dirid, root); 1815 if (IS_ERR(dir)) { 1816 iput(&inode->vfs_inode); 1817 return PTR_ERR(dir); 1818 } 1819 1820 ret = btrfs_add_link(trans, dir, inode, name, 1, index); 1821 1822 /* FIXME, put inode into FIXUP list */ 1823 1824 iput(&inode->vfs_inode); 1825 iput(&dir->vfs_inode); 1826 return ret; 1827 } 1828 1829 static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans, 1830 struct btrfs_inode *dir, 1831 struct btrfs_path *path, 1832 struct btrfs_dir_item *dst_di, 1833 const struct btrfs_key *log_key, 1834 u8 log_flags, 1835 bool exists) 1836 { 1837 struct btrfs_key found_key; 1838 1839 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key); 1840 /* The existing dentry points to the same inode, don't delete it. */ 1841 if (found_key.objectid == log_key->objectid && 1842 found_key.type == log_key->type && 1843 found_key.offset == log_key->offset && 1844 btrfs_dir_flags(path->nodes[0], dst_di) == log_flags) 1845 return 1; 1846 1847 /* 1848 * Don't drop the conflicting directory entry if the inode for the new 1849 * entry doesn't exist. 1850 */ 1851 if (!exists) 1852 return 0; 1853 1854 return drop_one_dir_item(trans, path, dir, dst_di); 1855 } 1856 1857 /* 1858 * take a single entry in a log directory item and replay it into 1859 * the subvolume. 1860 * 1861 * if a conflicting item exists in the subdirectory already, 1862 * the inode it points to is unlinked and put into the link count 1863 * fix up tree. 1864 * 1865 * If a name from the log points to a file or directory that does 1866 * not exist in the FS, it is skipped. fsyncs on directories 1867 * do not force down inodes inside that directory, just changes to the 1868 * names or unlinks in a directory. 1869 * 1870 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a 1871 * non-existing inode) and 1 if the name was replayed. 1872 */ 1873 static noinline int replay_one_name(struct btrfs_trans_handle *trans, 1874 struct btrfs_root *root, 1875 struct btrfs_path *path, 1876 struct extent_buffer *eb, 1877 struct btrfs_dir_item *di, 1878 struct btrfs_key *key) 1879 { 1880 struct fscrypt_str name = { 0 }; 1881 struct btrfs_dir_item *dir_dst_di; 1882 struct btrfs_dir_item *index_dst_di; 1883 bool dir_dst_matches = false; 1884 bool index_dst_matches = false; 1885 struct btrfs_key log_key; 1886 struct btrfs_key search_key; 1887 struct btrfs_inode *dir; 1888 u8 log_flags; 1889 bool exists; 1890 int ret; 1891 bool update_size = true; 1892 bool name_added = false; 1893 1894 dir = btrfs_iget_logging(key->objectid, root); 1895 if (IS_ERR(dir)) 1896 return PTR_ERR(dir); 1897 1898 ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name); 1899 if (ret) 1900 goto out; 1901 1902 log_flags = btrfs_dir_flags(eb, di); 1903 btrfs_dir_item_key_to_cpu(eb, di, &log_key); 1904 ret = btrfs_lookup_inode(trans, root, path, &log_key, 0); 1905 btrfs_release_path(path); 1906 if (ret < 0) 1907 goto out; 1908 exists = (ret == 0); 1909 ret = 0; 1910 1911 dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid, 1912 &name, 1); 1913 if (IS_ERR(dir_dst_di)) { 1914 ret = PTR_ERR(dir_dst_di); 1915 goto out; 1916 } else if (dir_dst_di) { 1917 ret = delete_conflicting_dir_entry(trans, dir, path, dir_dst_di, 1918 &log_key, log_flags, exists); 1919 if (ret < 0) 1920 goto out; 1921 dir_dst_matches = (ret == 1); 1922 } 1923 1924 btrfs_release_path(path); 1925 1926 index_dst_di = btrfs_lookup_dir_index_item(trans, root, path, 1927 key->objectid, key->offset, 1928 &name, 1); 1929 if (IS_ERR(index_dst_di)) { 1930 ret = PTR_ERR(index_dst_di); 1931 goto out; 1932 } else if (index_dst_di) { 1933 ret = delete_conflicting_dir_entry(trans, dir, path, index_dst_di, 1934 &log_key, log_flags, exists); 1935 if (ret < 0) 1936 goto out; 1937 index_dst_matches = (ret == 1); 1938 } 1939 1940 btrfs_release_path(path); 1941 1942 if (dir_dst_matches && index_dst_matches) { 1943 ret = 0; 1944 update_size = false; 1945 goto out; 1946 } 1947 1948 /* 1949 * Check if the inode reference exists in the log for the given name, 1950 * inode and parent inode 1951 */ 1952 search_key.objectid = log_key.objectid; 1953 search_key.type = BTRFS_INODE_REF_KEY; 1954 search_key.offset = key->objectid; 1955 ret = backref_in_log(root->log_root, &search_key, 0, &name); 1956 if (ret < 0) { 1957 goto out; 1958 } else if (ret) { 1959 /* The dentry will be added later. */ 1960 ret = 0; 1961 update_size = false; 1962 goto out; 1963 } 1964 1965 search_key.objectid = log_key.objectid; 1966 search_key.type = BTRFS_INODE_EXTREF_KEY; 1967 search_key.offset = key->objectid; 1968 ret = backref_in_log(root->log_root, &search_key, key->objectid, &name); 1969 if (ret < 0) { 1970 goto out; 1971 } else if (ret) { 1972 /* The dentry will be added later. */ 1973 ret = 0; 1974 update_size = false; 1975 goto out; 1976 } 1977 btrfs_release_path(path); 1978 ret = insert_one_name(trans, root, key->objectid, key->offset, 1979 &name, &log_key); 1980 if (ret && ret != -ENOENT && ret != -EEXIST) 1981 goto out; 1982 if (!ret) 1983 name_added = true; 1984 update_size = false; 1985 ret = 0; 1986 1987 out: 1988 if (!ret && update_size) { 1989 btrfs_i_size_write(dir, dir->vfs_inode.i_size + name.len * 2); 1990 ret = btrfs_update_inode(trans, dir); 1991 } 1992 kfree(name.name); 1993 iput(&dir->vfs_inode); 1994 if (!ret && name_added) 1995 ret = 1; 1996 return ret; 1997 } 1998 1999 /* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */ 2000 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans, 2001 struct btrfs_root *root, 2002 struct btrfs_path *path, 2003 struct extent_buffer *eb, int slot, 2004 struct btrfs_key *key) 2005 { 2006 int ret; 2007 struct btrfs_dir_item *di; 2008 2009 /* We only log dir index keys, which only contain a single dir item. */ 2010 ASSERT(key->type == BTRFS_DIR_INDEX_KEY); 2011 2012 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 2013 ret = replay_one_name(trans, root, path, eb, di, key); 2014 if (ret < 0) 2015 return ret; 2016 2017 /* 2018 * If this entry refers to a non-directory (directories can not have a 2019 * link count > 1) and it was added in the transaction that was not 2020 * committed, make sure we fixup the link count of the inode the entry 2021 * points to. Otherwise something like the following would result in a 2022 * directory pointing to an inode with a wrong link that does not account 2023 * for this dir entry: 2024 * 2025 * mkdir testdir 2026 * touch testdir/foo 2027 * touch testdir/bar 2028 * sync 2029 * 2030 * ln testdir/bar testdir/bar_link 2031 * ln testdir/foo testdir/foo_link 2032 * xfs_io -c "fsync" testdir/bar 2033 * 2034 * <power failure> 2035 * 2036 * mount fs, log replay happens 2037 * 2038 * File foo would remain with a link count of 1 when it has two entries 2039 * pointing to it in the directory testdir. This would make it impossible 2040 * to ever delete the parent directory has it would result in stale 2041 * dentries that can never be deleted. 2042 */ 2043 if (ret == 1 && btrfs_dir_ftype(eb, di) != BTRFS_FT_DIR) { 2044 struct btrfs_path *fixup_path; 2045 struct btrfs_key di_key; 2046 2047 fixup_path = btrfs_alloc_path(); 2048 if (!fixup_path) 2049 return -ENOMEM; 2050 2051 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2052 ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid); 2053 btrfs_free_path(fixup_path); 2054 } 2055 2056 return ret; 2057 } 2058 2059 /* 2060 * directory replay has two parts. There are the standard directory 2061 * items in the log copied from the subvolume, and range items 2062 * created in the log while the subvolume was logged. 2063 * 2064 * The range items tell us which parts of the key space the log 2065 * is authoritative for. During replay, if a key in the subvolume 2066 * directory is in a logged range item, but not actually in the log 2067 * that means it was deleted from the directory before the fsync 2068 * and should be removed. 2069 */ 2070 static noinline int find_dir_range(struct btrfs_root *root, 2071 struct btrfs_path *path, 2072 u64 dirid, 2073 u64 *start_ret, u64 *end_ret) 2074 { 2075 struct btrfs_key key; 2076 u64 found_end; 2077 struct btrfs_dir_log_item *item; 2078 int ret; 2079 int nritems; 2080 2081 if (*start_ret == (u64)-1) 2082 return 1; 2083 2084 key.objectid = dirid; 2085 key.type = BTRFS_DIR_LOG_INDEX_KEY; 2086 key.offset = *start_ret; 2087 2088 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2089 if (ret < 0) 2090 goto out; 2091 if (ret > 0) { 2092 if (path->slots[0] == 0) 2093 goto out; 2094 path->slots[0]--; 2095 } 2096 if (ret != 0) 2097 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2098 2099 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) { 2100 ret = 1; 2101 goto next; 2102 } 2103 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2104 struct btrfs_dir_log_item); 2105 found_end = btrfs_dir_log_end(path->nodes[0], item); 2106 2107 if (*start_ret >= key.offset && *start_ret <= found_end) { 2108 ret = 0; 2109 *start_ret = key.offset; 2110 *end_ret = found_end; 2111 goto out; 2112 } 2113 ret = 1; 2114 next: 2115 /* check the next slot in the tree to see if it is a valid item */ 2116 nritems = btrfs_header_nritems(path->nodes[0]); 2117 path->slots[0]++; 2118 if (path->slots[0] >= nritems) { 2119 ret = btrfs_next_leaf(root, path); 2120 if (ret) 2121 goto out; 2122 } 2123 2124 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2125 2126 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) { 2127 ret = 1; 2128 goto out; 2129 } 2130 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2131 struct btrfs_dir_log_item); 2132 found_end = btrfs_dir_log_end(path->nodes[0], item); 2133 *start_ret = key.offset; 2134 *end_ret = found_end; 2135 ret = 0; 2136 out: 2137 btrfs_release_path(path); 2138 return ret; 2139 } 2140 2141 /* 2142 * this looks for a given directory item in the log. If the directory 2143 * item is not in the log, the item is removed and the inode it points 2144 * to is unlinked 2145 */ 2146 static noinline int check_item_in_log(struct btrfs_trans_handle *trans, 2147 struct btrfs_root *log, 2148 struct btrfs_path *path, 2149 struct btrfs_path *log_path, 2150 struct btrfs_inode *dir, 2151 struct btrfs_key *dir_key) 2152 { 2153 struct btrfs_root *root = dir->root; 2154 int ret; 2155 struct extent_buffer *eb; 2156 int slot; 2157 struct btrfs_dir_item *di; 2158 struct fscrypt_str name = { 0 }; 2159 struct btrfs_inode *inode = NULL; 2160 struct btrfs_key location; 2161 2162 /* 2163 * Currently we only log dir index keys. Even if we replay a log created 2164 * by an older kernel that logged both dir index and dir item keys, all 2165 * we need to do is process the dir index keys, we (and our caller) can 2166 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY). 2167 */ 2168 ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY); 2169 2170 eb = path->nodes[0]; 2171 slot = path->slots[0]; 2172 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 2173 ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name); 2174 if (ret) 2175 goto out; 2176 2177 if (log) { 2178 struct btrfs_dir_item *log_di; 2179 2180 log_di = btrfs_lookup_dir_index_item(trans, log, log_path, 2181 dir_key->objectid, 2182 dir_key->offset, &name, 0); 2183 if (IS_ERR(log_di)) { 2184 ret = PTR_ERR(log_di); 2185 goto out; 2186 } else if (log_di) { 2187 /* The dentry exists in the log, we have nothing to do. */ 2188 ret = 0; 2189 goto out; 2190 } 2191 } 2192 2193 btrfs_dir_item_key_to_cpu(eb, di, &location); 2194 btrfs_release_path(path); 2195 btrfs_release_path(log_path); 2196 inode = btrfs_iget_logging(location.objectid, root); 2197 if (IS_ERR(inode)) { 2198 ret = PTR_ERR(inode); 2199 inode = NULL; 2200 goto out; 2201 } 2202 2203 ret = link_to_fixup_dir(trans, root, path, location.objectid); 2204 if (ret) 2205 goto out; 2206 2207 inc_nlink(&inode->vfs_inode); 2208 ret = unlink_inode_for_log_replay(trans, dir, inode, &name); 2209 /* 2210 * Unlike dir item keys, dir index keys can only have one name (entry) in 2211 * them, as there are no key collisions since each key has a unique offset 2212 * (an index number), so we're done. 2213 */ 2214 out: 2215 btrfs_release_path(path); 2216 btrfs_release_path(log_path); 2217 kfree(name.name); 2218 if (inode) 2219 iput(&inode->vfs_inode); 2220 return ret; 2221 } 2222 2223 static int replay_xattr_deletes(struct btrfs_trans_handle *trans, 2224 struct btrfs_root *root, 2225 struct btrfs_root *log, 2226 struct btrfs_path *path, 2227 const u64 ino) 2228 { 2229 struct btrfs_key search_key; 2230 struct btrfs_path *log_path; 2231 int i; 2232 int nritems; 2233 int ret; 2234 2235 log_path = btrfs_alloc_path(); 2236 if (!log_path) 2237 return -ENOMEM; 2238 2239 search_key.objectid = ino; 2240 search_key.type = BTRFS_XATTR_ITEM_KEY; 2241 search_key.offset = 0; 2242 again: 2243 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 2244 if (ret < 0) 2245 goto out; 2246 process_leaf: 2247 nritems = btrfs_header_nritems(path->nodes[0]); 2248 for (i = path->slots[0]; i < nritems; i++) { 2249 struct btrfs_key key; 2250 struct btrfs_dir_item *di; 2251 struct btrfs_dir_item *log_di; 2252 u32 total_size; 2253 u32 cur; 2254 2255 btrfs_item_key_to_cpu(path->nodes[0], &key, i); 2256 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) { 2257 ret = 0; 2258 goto out; 2259 } 2260 2261 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item); 2262 total_size = btrfs_item_size(path->nodes[0], i); 2263 cur = 0; 2264 while (cur < total_size) { 2265 u16 name_len = btrfs_dir_name_len(path->nodes[0], di); 2266 u16 data_len = btrfs_dir_data_len(path->nodes[0], di); 2267 u32 this_len = sizeof(*di) + name_len + data_len; 2268 char *name; 2269 2270 name = kmalloc(name_len, GFP_NOFS); 2271 if (!name) { 2272 ret = -ENOMEM; 2273 goto out; 2274 } 2275 read_extent_buffer(path->nodes[0], name, 2276 (unsigned long)(di + 1), name_len); 2277 2278 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino, 2279 name, name_len, 0); 2280 btrfs_release_path(log_path); 2281 if (!log_di) { 2282 /* Doesn't exist in log tree, so delete it. */ 2283 btrfs_release_path(path); 2284 di = btrfs_lookup_xattr(trans, root, path, ino, 2285 name, name_len, -1); 2286 kfree(name); 2287 if (IS_ERR(di)) { 2288 ret = PTR_ERR(di); 2289 goto out; 2290 } 2291 ASSERT(di); 2292 ret = btrfs_delete_one_dir_name(trans, root, 2293 path, di); 2294 if (ret) 2295 goto out; 2296 btrfs_release_path(path); 2297 search_key = key; 2298 goto again; 2299 } 2300 kfree(name); 2301 if (IS_ERR(log_di)) { 2302 ret = PTR_ERR(log_di); 2303 goto out; 2304 } 2305 cur += this_len; 2306 di = (struct btrfs_dir_item *)((char *)di + this_len); 2307 } 2308 } 2309 ret = btrfs_next_leaf(root, path); 2310 if (ret > 0) 2311 ret = 0; 2312 else if (ret == 0) 2313 goto process_leaf; 2314 out: 2315 btrfs_free_path(log_path); 2316 btrfs_release_path(path); 2317 return ret; 2318 } 2319 2320 2321 /* 2322 * deletion replay happens before we copy any new directory items 2323 * out of the log or out of backreferences from inodes. It 2324 * scans the log to find ranges of keys that log is authoritative for, 2325 * and then scans the directory to find items in those ranges that are 2326 * not present in the log. 2327 * 2328 * Anything we don't find in the log is unlinked and removed from the 2329 * directory. 2330 */ 2331 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 2332 struct btrfs_root *root, 2333 struct btrfs_root *log, 2334 struct btrfs_path *path, 2335 u64 dirid, bool del_all) 2336 { 2337 u64 range_start; 2338 u64 range_end; 2339 int ret = 0; 2340 struct btrfs_key dir_key; 2341 struct btrfs_key found_key; 2342 struct btrfs_path *log_path; 2343 struct btrfs_inode *dir; 2344 2345 dir_key.objectid = dirid; 2346 dir_key.type = BTRFS_DIR_INDEX_KEY; 2347 log_path = btrfs_alloc_path(); 2348 if (!log_path) 2349 return -ENOMEM; 2350 2351 dir = btrfs_iget_logging(dirid, root); 2352 /* 2353 * It isn't an error if the inode isn't there, that can happen because 2354 * we replay the deletes before we copy in the inode item from the log. 2355 */ 2356 if (IS_ERR(dir)) { 2357 btrfs_free_path(log_path); 2358 ret = PTR_ERR(dir); 2359 if (ret == -ENOENT) 2360 ret = 0; 2361 return ret; 2362 } 2363 2364 range_start = 0; 2365 range_end = 0; 2366 while (1) { 2367 if (del_all) 2368 range_end = (u64)-1; 2369 else { 2370 ret = find_dir_range(log, path, dirid, 2371 &range_start, &range_end); 2372 if (ret < 0) 2373 goto out; 2374 else if (ret > 0) 2375 break; 2376 } 2377 2378 dir_key.offset = range_start; 2379 while (1) { 2380 int nritems; 2381 ret = btrfs_search_slot(NULL, root, &dir_key, path, 2382 0, 0); 2383 if (ret < 0) 2384 goto out; 2385 2386 nritems = btrfs_header_nritems(path->nodes[0]); 2387 if (path->slots[0] >= nritems) { 2388 ret = btrfs_next_leaf(root, path); 2389 if (ret == 1) 2390 break; 2391 else if (ret < 0) 2392 goto out; 2393 } 2394 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2395 path->slots[0]); 2396 if (found_key.objectid != dirid || 2397 found_key.type != dir_key.type) { 2398 ret = 0; 2399 goto out; 2400 } 2401 2402 if (found_key.offset > range_end) 2403 break; 2404 2405 ret = check_item_in_log(trans, log, path, 2406 log_path, dir, 2407 &found_key); 2408 if (ret) 2409 goto out; 2410 if (found_key.offset == (u64)-1) 2411 break; 2412 dir_key.offset = found_key.offset + 1; 2413 } 2414 btrfs_release_path(path); 2415 if (range_end == (u64)-1) 2416 break; 2417 range_start = range_end + 1; 2418 } 2419 ret = 0; 2420 out: 2421 btrfs_release_path(path); 2422 btrfs_free_path(log_path); 2423 iput(&dir->vfs_inode); 2424 return ret; 2425 } 2426 2427 /* 2428 * the process_func used to replay items from the log tree. This 2429 * gets called in two different stages. The first stage just looks 2430 * for inodes and makes sure they are all copied into the subvolume. 2431 * 2432 * The second stage copies all the other item types from the log into 2433 * the subvolume. The two stage approach is slower, but gets rid of 2434 * lots of complexity around inodes referencing other inodes that exist 2435 * only in the log (references come from either directory items or inode 2436 * back refs). 2437 */ 2438 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb, 2439 struct walk_control *wc, u64 gen, int level) 2440 { 2441 int nritems; 2442 struct btrfs_tree_parent_check check = { 2443 .transid = gen, 2444 .level = level 2445 }; 2446 struct btrfs_path *path; 2447 struct btrfs_root *root = wc->replay_dest; 2448 struct btrfs_key key; 2449 int i; 2450 int ret; 2451 2452 ret = btrfs_read_extent_buffer(eb, &check); 2453 if (ret) 2454 return ret; 2455 2456 level = btrfs_header_level(eb); 2457 2458 if (level != 0) 2459 return 0; 2460 2461 path = btrfs_alloc_path(); 2462 if (!path) 2463 return -ENOMEM; 2464 2465 nritems = btrfs_header_nritems(eb); 2466 for (i = 0; i < nritems; i++) { 2467 struct btrfs_inode_item *inode_item; 2468 2469 btrfs_item_key_to_cpu(eb, &key, i); 2470 2471 if (key.type == BTRFS_INODE_ITEM_KEY) { 2472 inode_item = btrfs_item_ptr(eb, i, struct btrfs_inode_item); 2473 /* 2474 * An inode with no links is either: 2475 * 2476 * 1) A tmpfile (O_TMPFILE) that got fsync'ed and never 2477 * got linked before the fsync, skip it, as replaying 2478 * it is pointless since it would be deleted later. 2479 * We skip logging tmpfiles, but it's always possible 2480 * we are replaying a log created with a kernel that 2481 * used to log tmpfiles; 2482 * 2483 * 2) A non-tmpfile which got its last link deleted 2484 * while holding an open fd on it and later got 2485 * fsynced through that fd. We always log the 2486 * parent inodes when inode->last_unlink_trans is 2487 * set to the current transaction, so ignore all the 2488 * inode items for this inode. We will delete the 2489 * inode when processing the parent directory with 2490 * replay_dir_deletes(). 2491 */ 2492 if (btrfs_inode_nlink(eb, inode_item) == 0) { 2493 wc->ignore_cur_inode = true; 2494 continue; 2495 } else { 2496 wc->ignore_cur_inode = false; 2497 } 2498 } 2499 2500 /* Inode keys are done during the first stage. */ 2501 if (key.type == BTRFS_INODE_ITEM_KEY && 2502 wc->stage == LOG_WALK_REPLAY_INODES) { 2503 u32 mode; 2504 2505 ret = replay_xattr_deletes(wc->trans, root, log, path, key.objectid); 2506 if (ret) 2507 break; 2508 mode = btrfs_inode_mode(eb, inode_item); 2509 if (S_ISDIR(mode)) { 2510 ret = replay_dir_deletes(wc->trans, root, log, path, 2511 key.objectid, false); 2512 if (ret) 2513 break; 2514 } 2515 ret = overwrite_item(wc->trans, root, path, 2516 eb, i, &key); 2517 if (ret) 2518 break; 2519 2520 /* 2521 * Before replaying extents, truncate the inode to its 2522 * size. We need to do it now and not after log replay 2523 * because before an fsync we can have prealloc extents 2524 * added beyond the inode's i_size. If we did it after, 2525 * through orphan cleanup for example, we would drop 2526 * those prealloc extents just after replaying them. 2527 */ 2528 if (S_ISREG(mode)) { 2529 struct btrfs_drop_extents_args drop_args = { 0 }; 2530 struct btrfs_inode *inode; 2531 u64 from; 2532 2533 inode = btrfs_iget_logging(key.objectid, root); 2534 if (IS_ERR(inode)) { 2535 ret = PTR_ERR(inode); 2536 break; 2537 } 2538 from = ALIGN(i_size_read(&inode->vfs_inode), 2539 root->fs_info->sectorsize); 2540 drop_args.start = from; 2541 drop_args.end = (u64)-1; 2542 drop_args.drop_cache = true; 2543 ret = btrfs_drop_extents(wc->trans, root, inode, 2544 &drop_args); 2545 if (!ret) { 2546 inode_sub_bytes(&inode->vfs_inode, 2547 drop_args.bytes_found); 2548 /* Update the inode's nbytes. */ 2549 ret = btrfs_update_inode(wc->trans, inode); 2550 } 2551 iput(&inode->vfs_inode); 2552 if (ret) 2553 break; 2554 } 2555 2556 ret = link_to_fixup_dir(wc->trans, root, 2557 path, key.objectid); 2558 if (ret) 2559 break; 2560 } 2561 2562 if (wc->ignore_cur_inode) 2563 continue; 2564 2565 if (key.type == BTRFS_DIR_INDEX_KEY && 2566 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) { 2567 ret = replay_one_dir_item(wc->trans, root, path, 2568 eb, i, &key); 2569 if (ret) 2570 break; 2571 } 2572 2573 if (wc->stage < LOG_WALK_REPLAY_ALL) 2574 continue; 2575 2576 /* these keys are simply copied */ 2577 if (key.type == BTRFS_XATTR_ITEM_KEY) { 2578 ret = overwrite_item(wc->trans, root, path, 2579 eb, i, &key); 2580 if (ret) 2581 break; 2582 } else if (key.type == BTRFS_INODE_REF_KEY || 2583 key.type == BTRFS_INODE_EXTREF_KEY) { 2584 ret = add_inode_ref(wc->trans, root, log, path, 2585 eb, i, &key); 2586 if (ret) 2587 break; 2588 } else if (key.type == BTRFS_EXTENT_DATA_KEY) { 2589 ret = replay_one_extent(wc->trans, root, path, 2590 eb, i, &key); 2591 if (ret) 2592 break; 2593 } 2594 /* 2595 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the 2596 * BTRFS_DIR_INDEX_KEY items which we use to derive the 2597 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an 2598 * older kernel with such keys, ignore them. 2599 */ 2600 } 2601 btrfs_free_path(path); 2602 return ret; 2603 } 2604 2605 /* 2606 * Correctly adjust the reserved bytes occupied by a log tree extent buffer 2607 */ 2608 static int unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start) 2609 { 2610 struct btrfs_block_group *cache; 2611 2612 cache = btrfs_lookup_block_group(fs_info, start); 2613 if (!cache) { 2614 btrfs_err(fs_info, "unable to find block group for %llu", start); 2615 return -ENOENT; 2616 } 2617 2618 spin_lock(&cache->space_info->lock); 2619 spin_lock(&cache->lock); 2620 cache->reserved -= fs_info->nodesize; 2621 cache->space_info->bytes_reserved -= fs_info->nodesize; 2622 spin_unlock(&cache->lock); 2623 spin_unlock(&cache->space_info->lock); 2624 2625 btrfs_put_block_group(cache); 2626 2627 return 0; 2628 } 2629 2630 static int clean_log_buffer(struct btrfs_trans_handle *trans, 2631 struct extent_buffer *eb) 2632 { 2633 btrfs_tree_lock(eb); 2634 btrfs_clear_buffer_dirty(trans, eb); 2635 wait_on_extent_buffer_writeback(eb); 2636 btrfs_tree_unlock(eb); 2637 2638 if (trans) 2639 return btrfs_pin_reserved_extent(trans, eb); 2640 2641 return unaccount_log_buffer(eb->fs_info, eb->start); 2642 } 2643 2644 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans, 2645 struct btrfs_root *root, 2646 struct btrfs_path *path, int *level, 2647 struct walk_control *wc) 2648 { 2649 struct btrfs_fs_info *fs_info = root->fs_info; 2650 u64 bytenr; 2651 u64 ptr_gen; 2652 struct extent_buffer *next; 2653 struct extent_buffer *cur; 2654 int ret = 0; 2655 2656 while (*level > 0) { 2657 struct btrfs_tree_parent_check check = { 0 }; 2658 2659 cur = path->nodes[*level]; 2660 2661 WARN_ON(btrfs_header_level(cur) != *level); 2662 2663 if (path->slots[*level] >= 2664 btrfs_header_nritems(cur)) 2665 break; 2666 2667 bytenr = btrfs_node_blockptr(cur, path->slots[*level]); 2668 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); 2669 check.transid = ptr_gen; 2670 check.level = *level - 1; 2671 check.has_first_key = true; 2672 btrfs_node_key_to_cpu(cur, &check.first_key, path->slots[*level]); 2673 2674 next = btrfs_find_create_tree_block(fs_info, bytenr, 2675 btrfs_header_owner(cur), 2676 *level - 1); 2677 if (IS_ERR(next)) 2678 return PTR_ERR(next); 2679 2680 if (*level == 1) { 2681 ret = wc->process_func(root, next, wc, ptr_gen, 2682 *level - 1); 2683 if (ret) { 2684 free_extent_buffer(next); 2685 return ret; 2686 } 2687 2688 path->slots[*level]++; 2689 if (wc->free) { 2690 ret = btrfs_read_extent_buffer(next, &check); 2691 if (ret) { 2692 free_extent_buffer(next); 2693 return ret; 2694 } 2695 2696 ret = clean_log_buffer(trans, next); 2697 if (ret) { 2698 free_extent_buffer(next); 2699 return ret; 2700 } 2701 } 2702 free_extent_buffer(next); 2703 continue; 2704 } 2705 ret = btrfs_read_extent_buffer(next, &check); 2706 if (ret) { 2707 free_extent_buffer(next); 2708 return ret; 2709 } 2710 2711 if (path->nodes[*level-1]) 2712 free_extent_buffer(path->nodes[*level-1]); 2713 path->nodes[*level-1] = next; 2714 *level = btrfs_header_level(next); 2715 path->slots[*level] = 0; 2716 cond_resched(); 2717 } 2718 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]); 2719 2720 cond_resched(); 2721 return 0; 2722 } 2723 2724 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans, 2725 struct btrfs_root *root, 2726 struct btrfs_path *path, int *level, 2727 struct walk_control *wc) 2728 { 2729 int i; 2730 int slot; 2731 int ret; 2732 2733 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { 2734 slot = path->slots[i]; 2735 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) { 2736 path->slots[i]++; 2737 *level = i; 2738 WARN_ON(*level == 0); 2739 return 0; 2740 } else { 2741 ret = wc->process_func(root, path->nodes[*level], wc, 2742 btrfs_header_generation(path->nodes[*level]), 2743 *level); 2744 if (ret) 2745 return ret; 2746 2747 if (wc->free) { 2748 ret = clean_log_buffer(trans, path->nodes[*level]); 2749 if (ret) 2750 return ret; 2751 } 2752 free_extent_buffer(path->nodes[*level]); 2753 path->nodes[*level] = NULL; 2754 *level = i + 1; 2755 } 2756 } 2757 return 1; 2758 } 2759 2760 /* 2761 * drop the reference count on the tree rooted at 'snap'. This traverses 2762 * the tree freeing any blocks that have a ref count of zero after being 2763 * decremented. 2764 */ 2765 static int walk_log_tree(struct btrfs_trans_handle *trans, 2766 struct btrfs_root *log, struct walk_control *wc) 2767 { 2768 int ret = 0; 2769 int wret; 2770 int level; 2771 struct btrfs_path *path; 2772 int orig_level; 2773 2774 path = btrfs_alloc_path(); 2775 if (!path) 2776 return -ENOMEM; 2777 2778 level = btrfs_header_level(log->node); 2779 orig_level = level; 2780 path->nodes[level] = log->node; 2781 refcount_inc(&log->node->refs); 2782 path->slots[level] = 0; 2783 2784 while (1) { 2785 wret = walk_down_log_tree(trans, log, path, &level, wc); 2786 if (wret > 0) 2787 break; 2788 if (wret < 0) { 2789 ret = wret; 2790 goto out; 2791 } 2792 2793 wret = walk_up_log_tree(trans, log, path, &level, wc); 2794 if (wret > 0) 2795 break; 2796 if (wret < 0) { 2797 ret = wret; 2798 goto out; 2799 } 2800 } 2801 2802 /* was the root node processed? if not, catch it here */ 2803 if (path->nodes[orig_level]) { 2804 ret = wc->process_func(log, path->nodes[orig_level], wc, 2805 btrfs_header_generation(path->nodes[orig_level]), 2806 orig_level); 2807 if (ret) 2808 goto out; 2809 if (wc->free) 2810 ret = clean_log_buffer(trans, path->nodes[orig_level]); 2811 } 2812 2813 out: 2814 btrfs_free_path(path); 2815 return ret; 2816 } 2817 2818 /* 2819 * helper function to update the item for a given subvolumes log root 2820 * in the tree of log roots 2821 */ 2822 static int update_log_root(struct btrfs_trans_handle *trans, 2823 struct btrfs_root *log, 2824 struct btrfs_root_item *root_item) 2825 { 2826 struct btrfs_fs_info *fs_info = log->fs_info; 2827 int ret; 2828 2829 if (log->log_transid == 1) { 2830 /* insert root item on the first sync */ 2831 ret = btrfs_insert_root(trans, fs_info->log_root_tree, 2832 &log->root_key, root_item); 2833 } else { 2834 ret = btrfs_update_root(trans, fs_info->log_root_tree, 2835 &log->root_key, root_item); 2836 } 2837 return ret; 2838 } 2839 2840 static void wait_log_commit(struct btrfs_root *root, int transid) 2841 { 2842 DEFINE_WAIT(wait); 2843 int index = transid % 2; 2844 2845 /* 2846 * we only allow two pending log transactions at a time, 2847 * so we know that if ours is more than 2 older than the 2848 * current transaction, we're done 2849 */ 2850 for (;;) { 2851 prepare_to_wait(&root->log_commit_wait[index], 2852 &wait, TASK_UNINTERRUPTIBLE); 2853 2854 if (!(root->log_transid_committed < transid && 2855 atomic_read(&root->log_commit[index]))) 2856 break; 2857 2858 mutex_unlock(&root->log_mutex); 2859 schedule(); 2860 mutex_lock(&root->log_mutex); 2861 } 2862 finish_wait(&root->log_commit_wait[index], &wait); 2863 } 2864 2865 static void wait_for_writer(struct btrfs_root *root) 2866 { 2867 DEFINE_WAIT(wait); 2868 2869 for (;;) { 2870 prepare_to_wait(&root->log_writer_wait, &wait, 2871 TASK_UNINTERRUPTIBLE); 2872 if (!atomic_read(&root->log_writers)) 2873 break; 2874 2875 mutex_unlock(&root->log_mutex); 2876 schedule(); 2877 mutex_lock(&root->log_mutex); 2878 } 2879 finish_wait(&root->log_writer_wait, &wait); 2880 } 2881 2882 void btrfs_init_log_ctx(struct btrfs_log_ctx *ctx, struct btrfs_inode *inode) 2883 { 2884 ctx->log_ret = 0; 2885 ctx->log_transid = 0; 2886 ctx->log_new_dentries = false; 2887 ctx->logging_new_name = false; 2888 ctx->logging_new_delayed_dentries = false; 2889 ctx->logged_before = false; 2890 ctx->inode = inode; 2891 INIT_LIST_HEAD(&ctx->list); 2892 INIT_LIST_HEAD(&ctx->ordered_extents); 2893 INIT_LIST_HEAD(&ctx->conflict_inodes); 2894 ctx->num_conflict_inodes = 0; 2895 ctx->logging_conflict_inodes = false; 2896 ctx->scratch_eb = NULL; 2897 } 2898 2899 void btrfs_init_log_ctx_scratch_eb(struct btrfs_log_ctx *ctx) 2900 { 2901 struct btrfs_inode *inode = ctx->inode; 2902 2903 if (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) && 2904 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags)) 2905 return; 2906 2907 /* 2908 * Don't care about allocation failure. This is just for optimization, 2909 * if we fail to allocate here, we will try again later if needed. 2910 */ 2911 ctx->scratch_eb = alloc_dummy_extent_buffer(inode->root->fs_info, 0); 2912 } 2913 2914 void btrfs_release_log_ctx_extents(struct btrfs_log_ctx *ctx) 2915 { 2916 struct btrfs_ordered_extent *ordered; 2917 struct btrfs_ordered_extent *tmp; 2918 2919 btrfs_assert_inode_locked(ctx->inode); 2920 2921 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) { 2922 list_del_init(&ordered->log_list); 2923 btrfs_put_ordered_extent(ordered); 2924 } 2925 } 2926 2927 2928 static inline void btrfs_remove_log_ctx(struct btrfs_root *root, 2929 struct btrfs_log_ctx *ctx) 2930 { 2931 mutex_lock(&root->log_mutex); 2932 list_del_init(&ctx->list); 2933 mutex_unlock(&root->log_mutex); 2934 } 2935 2936 /* 2937 * Invoked in log mutex context, or be sure there is no other task which 2938 * can access the list. 2939 */ 2940 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root, 2941 int index, int error) 2942 { 2943 struct btrfs_log_ctx *ctx; 2944 struct btrfs_log_ctx *safe; 2945 2946 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) { 2947 list_del_init(&ctx->list); 2948 ctx->log_ret = error; 2949 } 2950 } 2951 2952 /* 2953 * Sends a given tree log down to the disk and updates the super blocks to 2954 * record it. When this call is done, you know that any inodes previously 2955 * logged are safely on disk only if it returns 0. 2956 * 2957 * Any other return value means you need to call btrfs_commit_transaction. 2958 * Some of the edge cases for fsyncing directories that have had unlinks 2959 * or renames done in the past mean that sometimes the only safe 2960 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN, 2961 * that has happened. 2962 */ 2963 int btrfs_sync_log(struct btrfs_trans_handle *trans, 2964 struct btrfs_root *root, struct btrfs_log_ctx *ctx) 2965 { 2966 int index1; 2967 int index2; 2968 int mark; 2969 int ret; 2970 struct btrfs_fs_info *fs_info = root->fs_info; 2971 struct btrfs_root *log = root->log_root; 2972 struct btrfs_root *log_root_tree = fs_info->log_root_tree; 2973 struct btrfs_root_item new_root_item; 2974 int log_transid = 0; 2975 struct btrfs_log_ctx root_log_ctx; 2976 struct blk_plug plug; 2977 u64 log_root_start; 2978 u64 log_root_level; 2979 2980 mutex_lock(&root->log_mutex); 2981 log_transid = ctx->log_transid; 2982 if (root->log_transid_committed >= log_transid) { 2983 mutex_unlock(&root->log_mutex); 2984 return ctx->log_ret; 2985 } 2986 2987 index1 = log_transid % 2; 2988 if (atomic_read(&root->log_commit[index1])) { 2989 wait_log_commit(root, log_transid); 2990 mutex_unlock(&root->log_mutex); 2991 return ctx->log_ret; 2992 } 2993 ASSERT(log_transid == root->log_transid); 2994 atomic_set(&root->log_commit[index1], 1); 2995 2996 /* wait for previous tree log sync to complete */ 2997 if (atomic_read(&root->log_commit[(index1 + 1) % 2])) 2998 wait_log_commit(root, log_transid - 1); 2999 3000 while (1) { 3001 int batch = atomic_read(&root->log_batch); 3002 /* when we're on an ssd, just kick the log commit out */ 3003 if (!btrfs_test_opt(fs_info, SSD) && 3004 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) { 3005 mutex_unlock(&root->log_mutex); 3006 schedule_timeout_uninterruptible(1); 3007 mutex_lock(&root->log_mutex); 3008 } 3009 wait_for_writer(root); 3010 if (batch == atomic_read(&root->log_batch)) 3011 break; 3012 } 3013 3014 /* bail out if we need to do a full commit */ 3015 if (btrfs_need_log_full_commit(trans)) { 3016 ret = BTRFS_LOG_FORCE_COMMIT; 3017 mutex_unlock(&root->log_mutex); 3018 goto out; 3019 } 3020 3021 if (log_transid % 2 == 0) 3022 mark = EXTENT_DIRTY_LOG1; 3023 else 3024 mark = EXTENT_DIRTY_LOG2; 3025 3026 /* we start IO on all the marked extents here, but we don't actually 3027 * wait for them until later. 3028 */ 3029 blk_start_plug(&plug); 3030 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark); 3031 /* 3032 * -EAGAIN happens when someone, e.g., a concurrent transaction 3033 * commit, writes a dirty extent in this tree-log commit. This 3034 * concurrent write will create a hole writing out the extents, 3035 * and we cannot proceed on a zoned filesystem, requiring 3036 * sequential writing. While we can bail out to a full commit 3037 * here, but we can continue hoping the concurrent writing fills 3038 * the hole. 3039 */ 3040 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) 3041 ret = 0; 3042 if (ret) { 3043 blk_finish_plug(&plug); 3044 btrfs_set_log_full_commit(trans); 3045 mutex_unlock(&root->log_mutex); 3046 goto out; 3047 } 3048 3049 /* 3050 * We _must_ update under the root->log_mutex in order to make sure we 3051 * have a consistent view of the log root we are trying to commit at 3052 * this moment. 3053 * 3054 * We _must_ copy this into a local copy, because we are not holding the 3055 * log_root_tree->log_mutex yet. This is important because when we 3056 * commit the log_root_tree we must have a consistent view of the 3057 * log_root_tree when we update the super block to point at the 3058 * log_root_tree bytenr. If we update the log_root_tree here we'll race 3059 * with the commit and possibly point at the new block which we may not 3060 * have written out. 3061 */ 3062 btrfs_set_root_node(&log->root_item, log->node); 3063 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item)); 3064 3065 btrfs_set_root_log_transid(root, root->log_transid + 1); 3066 log->log_transid = root->log_transid; 3067 root->log_start_pid = 0; 3068 /* 3069 * IO has been started, blocks of the log tree have WRITTEN flag set 3070 * in their headers. new modifications of the log will be written to 3071 * new positions. so it's safe to allow log writers to go in. 3072 */ 3073 mutex_unlock(&root->log_mutex); 3074 3075 if (btrfs_is_zoned(fs_info)) { 3076 mutex_lock(&fs_info->tree_root->log_mutex); 3077 if (!log_root_tree->node) { 3078 ret = btrfs_alloc_log_tree_node(trans, log_root_tree); 3079 if (ret) { 3080 mutex_unlock(&fs_info->tree_root->log_mutex); 3081 blk_finish_plug(&plug); 3082 goto out; 3083 } 3084 } 3085 mutex_unlock(&fs_info->tree_root->log_mutex); 3086 } 3087 3088 btrfs_init_log_ctx(&root_log_ctx, NULL); 3089 3090 mutex_lock(&log_root_tree->log_mutex); 3091 3092 index2 = log_root_tree->log_transid % 2; 3093 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]); 3094 root_log_ctx.log_transid = log_root_tree->log_transid; 3095 3096 /* 3097 * Now we are safe to update the log_root_tree because we're under the 3098 * log_mutex, and we're a current writer so we're holding the commit 3099 * open until we drop the log_mutex. 3100 */ 3101 ret = update_log_root(trans, log, &new_root_item); 3102 if (ret) { 3103 list_del_init(&root_log_ctx.list); 3104 blk_finish_plug(&plug); 3105 btrfs_set_log_full_commit(trans); 3106 if (ret != -ENOSPC) 3107 btrfs_err(fs_info, 3108 "failed to update log for root %llu ret %d", 3109 btrfs_root_id(root), ret); 3110 btrfs_wait_tree_log_extents(log, mark); 3111 mutex_unlock(&log_root_tree->log_mutex); 3112 goto out; 3113 } 3114 3115 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) { 3116 blk_finish_plug(&plug); 3117 list_del_init(&root_log_ctx.list); 3118 mutex_unlock(&log_root_tree->log_mutex); 3119 ret = root_log_ctx.log_ret; 3120 goto out; 3121 } 3122 3123 if (atomic_read(&log_root_tree->log_commit[index2])) { 3124 blk_finish_plug(&plug); 3125 ret = btrfs_wait_tree_log_extents(log, mark); 3126 wait_log_commit(log_root_tree, 3127 root_log_ctx.log_transid); 3128 mutex_unlock(&log_root_tree->log_mutex); 3129 if (!ret) 3130 ret = root_log_ctx.log_ret; 3131 goto out; 3132 } 3133 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid); 3134 atomic_set(&log_root_tree->log_commit[index2], 1); 3135 3136 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) { 3137 wait_log_commit(log_root_tree, 3138 root_log_ctx.log_transid - 1); 3139 } 3140 3141 /* 3142 * now that we've moved on to the tree of log tree roots, 3143 * check the full commit flag again 3144 */ 3145 if (btrfs_need_log_full_commit(trans)) { 3146 blk_finish_plug(&plug); 3147 btrfs_wait_tree_log_extents(log, mark); 3148 mutex_unlock(&log_root_tree->log_mutex); 3149 ret = BTRFS_LOG_FORCE_COMMIT; 3150 goto out_wake_log_root; 3151 } 3152 3153 ret = btrfs_write_marked_extents(fs_info, 3154 &log_root_tree->dirty_log_pages, 3155 EXTENT_DIRTY_LOG1 | EXTENT_DIRTY_LOG2); 3156 blk_finish_plug(&plug); 3157 /* 3158 * As described above, -EAGAIN indicates a hole in the extents. We 3159 * cannot wait for these write outs since the waiting cause a 3160 * deadlock. Bail out to the full commit instead. 3161 */ 3162 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) { 3163 btrfs_set_log_full_commit(trans); 3164 btrfs_wait_tree_log_extents(log, mark); 3165 mutex_unlock(&log_root_tree->log_mutex); 3166 goto out_wake_log_root; 3167 } else if (ret) { 3168 btrfs_set_log_full_commit(trans); 3169 mutex_unlock(&log_root_tree->log_mutex); 3170 goto out_wake_log_root; 3171 } 3172 ret = btrfs_wait_tree_log_extents(log, mark); 3173 if (!ret) 3174 ret = btrfs_wait_tree_log_extents(log_root_tree, 3175 EXTENT_DIRTY_LOG1 | EXTENT_DIRTY_LOG2); 3176 if (ret) { 3177 btrfs_set_log_full_commit(trans); 3178 mutex_unlock(&log_root_tree->log_mutex); 3179 goto out_wake_log_root; 3180 } 3181 3182 log_root_start = log_root_tree->node->start; 3183 log_root_level = btrfs_header_level(log_root_tree->node); 3184 log_root_tree->log_transid++; 3185 mutex_unlock(&log_root_tree->log_mutex); 3186 3187 /* 3188 * Here we are guaranteed that nobody is going to write the superblock 3189 * for the current transaction before us and that neither we do write 3190 * our superblock before the previous transaction finishes its commit 3191 * and writes its superblock, because: 3192 * 3193 * 1) We are holding a handle on the current transaction, so no body 3194 * can commit it until we release the handle; 3195 * 3196 * 2) Before writing our superblock we acquire the tree_log_mutex, so 3197 * if the previous transaction is still committing, and hasn't yet 3198 * written its superblock, we wait for it to do it, because a 3199 * transaction commit acquires the tree_log_mutex when the commit 3200 * begins and releases it only after writing its superblock. 3201 */ 3202 mutex_lock(&fs_info->tree_log_mutex); 3203 3204 /* 3205 * The previous transaction writeout phase could have failed, and thus 3206 * marked the fs in an error state. We must not commit here, as we 3207 * could have updated our generation in the super_for_commit and 3208 * writing the super here would result in transid mismatches. If there 3209 * is an error here just bail. 3210 */ 3211 if (BTRFS_FS_ERROR(fs_info)) { 3212 ret = -EIO; 3213 btrfs_set_log_full_commit(trans); 3214 btrfs_abort_transaction(trans, ret); 3215 mutex_unlock(&fs_info->tree_log_mutex); 3216 goto out_wake_log_root; 3217 } 3218 3219 btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start); 3220 btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level); 3221 ret = write_all_supers(fs_info, 1); 3222 mutex_unlock(&fs_info->tree_log_mutex); 3223 if (ret) { 3224 btrfs_set_log_full_commit(trans); 3225 btrfs_abort_transaction(trans, ret); 3226 goto out_wake_log_root; 3227 } 3228 3229 /* 3230 * We know there can only be one task here, since we have not yet set 3231 * root->log_commit[index1] to 0 and any task attempting to sync the 3232 * log must wait for the previous log transaction to commit if it's 3233 * still in progress or wait for the current log transaction commit if 3234 * someone else already started it. We use <= and not < because the 3235 * first log transaction has an ID of 0. 3236 */ 3237 ASSERT(btrfs_get_root_last_log_commit(root) <= log_transid); 3238 btrfs_set_root_last_log_commit(root, log_transid); 3239 3240 out_wake_log_root: 3241 mutex_lock(&log_root_tree->log_mutex); 3242 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret); 3243 3244 log_root_tree->log_transid_committed++; 3245 atomic_set(&log_root_tree->log_commit[index2], 0); 3246 mutex_unlock(&log_root_tree->log_mutex); 3247 3248 /* 3249 * The barrier before waitqueue_active (in cond_wake_up) is needed so 3250 * all the updates above are seen by the woken threads. It might not be 3251 * necessary, but proving that seems to be hard. 3252 */ 3253 cond_wake_up(&log_root_tree->log_commit_wait[index2]); 3254 out: 3255 mutex_lock(&root->log_mutex); 3256 btrfs_remove_all_log_ctxs(root, index1, ret); 3257 root->log_transid_committed++; 3258 atomic_set(&root->log_commit[index1], 0); 3259 mutex_unlock(&root->log_mutex); 3260 3261 /* 3262 * The barrier before waitqueue_active (in cond_wake_up) is needed so 3263 * all the updates above are seen by the woken threads. It might not be 3264 * necessary, but proving that seems to be hard. 3265 */ 3266 cond_wake_up(&root->log_commit_wait[index1]); 3267 return ret; 3268 } 3269 3270 static void free_log_tree(struct btrfs_trans_handle *trans, 3271 struct btrfs_root *log) 3272 { 3273 int ret; 3274 struct walk_control wc = { 3275 .free = 1, 3276 .process_func = process_one_buffer 3277 }; 3278 3279 if (log->node) { 3280 ret = walk_log_tree(trans, log, &wc); 3281 if (ret) { 3282 /* 3283 * We weren't able to traverse the entire log tree, the 3284 * typical scenario is getting an -EIO when reading an 3285 * extent buffer of the tree, due to a previous writeback 3286 * failure of it. 3287 */ 3288 set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR, 3289 &log->fs_info->fs_state); 3290 3291 /* 3292 * Some extent buffers of the log tree may still be dirty 3293 * and not yet written back to storage, because we may 3294 * have updates to a log tree without syncing a log tree, 3295 * such as during rename and link operations. So flush 3296 * them out and wait for their writeback to complete, so 3297 * that we properly cleanup their state and pages. 3298 */ 3299 btrfs_write_marked_extents(log->fs_info, 3300 &log->dirty_log_pages, 3301 EXTENT_DIRTY_LOG1 | EXTENT_DIRTY_LOG2); 3302 btrfs_wait_tree_log_extents(log, 3303 EXTENT_DIRTY_LOG1 | EXTENT_DIRTY_LOG2); 3304 3305 if (trans) 3306 btrfs_abort_transaction(trans, ret); 3307 else 3308 btrfs_handle_fs_error(log->fs_info, ret, NULL); 3309 } 3310 } 3311 3312 btrfs_extent_io_tree_release(&log->dirty_log_pages); 3313 btrfs_extent_io_tree_release(&log->log_csum_range); 3314 3315 btrfs_put_root(log); 3316 } 3317 3318 /* 3319 * free all the extents used by the tree log. This should be called 3320 * at commit time of the full transaction 3321 */ 3322 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root) 3323 { 3324 if (root->log_root) { 3325 free_log_tree(trans, root->log_root); 3326 root->log_root = NULL; 3327 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state); 3328 } 3329 return 0; 3330 } 3331 3332 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans, 3333 struct btrfs_fs_info *fs_info) 3334 { 3335 if (fs_info->log_root_tree) { 3336 free_log_tree(trans, fs_info->log_root_tree); 3337 fs_info->log_root_tree = NULL; 3338 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state); 3339 } 3340 return 0; 3341 } 3342 3343 /* 3344 * Check if an inode was logged in the current transaction. This correctly deals 3345 * with the case where the inode was logged but has a logged_trans of 0, which 3346 * happens if the inode is evicted and loaded again, as logged_trans is an in 3347 * memory only field (not persisted). 3348 * 3349 * Returns 1 if the inode was logged before in the transaction, 0 if it was not, 3350 * and < 0 on error. 3351 */ 3352 static int inode_logged(const struct btrfs_trans_handle *trans, 3353 struct btrfs_inode *inode, 3354 struct btrfs_path *path_in) 3355 { 3356 struct btrfs_path *path = path_in; 3357 struct btrfs_key key; 3358 int ret; 3359 3360 if (inode->logged_trans == trans->transid) 3361 return 1; 3362 3363 /* 3364 * If logged_trans is not 0, then we know the inode logged was not logged 3365 * in this transaction, so we can return false right away. 3366 */ 3367 if (inode->logged_trans > 0) 3368 return 0; 3369 3370 /* 3371 * If no log tree was created for this root in this transaction, then 3372 * the inode can not have been logged in this transaction. In that case 3373 * set logged_trans to anything greater than 0 and less than the current 3374 * transaction's ID, to avoid the search below in a future call in case 3375 * a log tree gets created after this. 3376 */ 3377 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) { 3378 inode->logged_trans = trans->transid - 1; 3379 return 0; 3380 } 3381 3382 /* 3383 * We have a log tree and the inode's logged_trans is 0. We can't tell 3384 * for sure if the inode was logged before in this transaction by looking 3385 * only at logged_trans. We could be pessimistic and assume it was, but 3386 * that can lead to unnecessarily logging an inode during rename and link 3387 * operations, and then further updating the log in followup rename and 3388 * link operations, specially if it's a directory, which adds latency 3389 * visible to applications doing a series of rename or link operations. 3390 * 3391 * A logged_trans of 0 here can mean several things: 3392 * 3393 * 1) The inode was never logged since the filesystem was mounted, and may 3394 * or may have not been evicted and loaded again; 3395 * 3396 * 2) The inode was logged in a previous transaction, then evicted and 3397 * then loaded again; 3398 * 3399 * 3) The inode was logged in the current transaction, then evicted and 3400 * then loaded again. 3401 * 3402 * For cases 1) and 2) we don't want to return true, but we need to detect 3403 * case 3) and return true. So we do a search in the log root for the inode 3404 * item. 3405 */ 3406 key.objectid = btrfs_ino(inode); 3407 key.type = BTRFS_INODE_ITEM_KEY; 3408 key.offset = 0; 3409 3410 if (!path) { 3411 path = btrfs_alloc_path(); 3412 if (!path) 3413 return -ENOMEM; 3414 } 3415 3416 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0); 3417 3418 if (path_in) 3419 btrfs_release_path(path); 3420 else 3421 btrfs_free_path(path); 3422 3423 /* 3424 * Logging an inode always results in logging its inode item. So if we 3425 * did not find the item we know the inode was not logged for sure. 3426 */ 3427 if (ret < 0) { 3428 return ret; 3429 } else if (ret > 0) { 3430 /* 3431 * Set logged_trans to a value greater than 0 and less then the 3432 * current transaction to avoid doing the search in future calls. 3433 */ 3434 inode->logged_trans = trans->transid - 1; 3435 return 0; 3436 } 3437 3438 /* 3439 * The inode was previously logged and then evicted, set logged_trans to 3440 * the current transacion's ID, to avoid future tree searches as long as 3441 * the inode is not evicted again. 3442 */ 3443 inode->logged_trans = trans->transid; 3444 3445 /* 3446 * If it's a directory, then we must set last_dir_index_offset to the 3447 * maximum possible value, so that the next attempt to log the inode does 3448 * not skip checking if dir index keys found in modified subvolume tree 3449 * leaves have been logged before, otherwise it would result in attempts 3450 * to insert duplicate dir index keys in the log tree. This must be done 3451 * because last_dir_index_offset is an in-memory only field, not persisted 3452 * in the inode item or any other on-disk structure, so its value is lost 3453 * once the inode is evicted. 3454 */ 3455 if (S_ISDIR(inode->vfs_inode.i_mode)) 3456 inode->last_dir_index_offset = (u64)-1; 3457 3458 return 1; 3459 } 3460 3461 /* 3462 * Delete a directory entry from the log if it exists. 3463 * 3464 * Returns < 0 on error 3465 * 1 if the entry does not exists 3466 * 0 if the entry existed and was successfully deleted 3467 */ 3468 static int del_logged_dentry(struct btrfs_trans_handle *trans, 3469 struct btrfs_root *log, 3470 struct btrfs_path *path, 3471 u64 dir_ino, 3472 const struct fscrypt_str *name, 3473 u64 index) 3474 { 3475 struct btrfs_dir_item *di; 3476 3477 /* 3478 * We only log dir index items of a directory, so we don't need to look 3479 * for dir item keys. 3480 */ 3481 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino, 3482 index, name, -1); 3483 if (IS_ERR(di)) 3484 return PTR_ERR(di); 3485 else if (!di) 3486 return 1; 3487 3488 /* 3489 * We do not need to update the size field of the directory's 3490 * inode item because on log replay we update the field to reflect 3491 * all existing entries in the directory (see overwrite_item()). 3492 */ 3493 return btrfs_del_item(trans, log, path); 3494 } 3495 3496 /* 3497 * If both a file and directory are logged, and unlinks or renames are 3498 * mixed in, we have a few interesting corners: 3499 * 3500 * create file X in dir Y 3501 * link file X to X.link in dir Y 3502 * fsync file X 3503 * unlink file X but leave X.link 3504 * fsync dir Y 3505 * 3506 * After a crash we would expect only X.link to exist. But file X 3507 * didn't get fsync'd again so the log has back refs for X and X.link. 3508 * 3509 * We solve this by removing directory entries and inode backrefs from the 3510 * log when a file that was logged in the current transaction is 3511 * unlinked. Any later fsync will include the updated log entries, and 3512 * we'll be able to reconstruct the proper directory items from backrefs. 3513 * 3514 * This optimizations allows us to avoid relogging the entire inode 3515 * or the entire directory. 3516 */ 3517 void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans, 3518 struct btrfs_root *root, 3519 const struct fscrypt_str *name, 3520 struct btrfs_inode *dir, u64 index) 3521 { 3522 struct btrfs_path *path; 3523 int ret; 3524 3525 ret = inode_logged(trans, dir, NULL); 3526 if (ret == 0) 3527 return; 3528 else if (ret < 0) { 3529 btrfs_set_log_full_commit(trans); 3530 return; 3531 } 3532 3533 path = btrfs_alloc_path(); 3534 if (!path) { 3535 btrfs_set_log_full_commit(trans); 3536 return; 3537 } 3538 3539 ret = join_running_log_trans(root); 3540 ASSERT(ret == 0, "join_running_log_trans() ret=%d", ret); 3541 if (WARN_ON(ret)) 3542 goto out; 3543 3544 mutex_lock(&dir->log_mutex); 3545 3546 ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir), 3547 name, index); 3548 mutex_unlock(&dir->log_mutex); 3549 if (ret < 0) 3550 btrfs_set_log_full_commit(trans); 3551 btrfs_end_log_trans(root); 3552 out: 3553 btrfs_free_path(path); 3554 } 3555 3556 /* see comments for btrfs_del_dir_entries_in_log */ 3557 void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans, 3558 struct btrfs_root *root, 3559 const struct fscrypt_str *name, 3560 struct btrfs_inode *inode, u64 dirid) 3561 { 3562 struct btrfs_root *log; 3563 int ret; 3564 3565 ret = inode_logged(trans, inode, NULL); 3566 if (ret == 0) 3567 return; 3568 else if (ret < 0) { 3569 btrfs_set_log_full_commit(trans); 3570 return; 3571 } 3572 3573 ret = join_running_log_trans(root); 3574 ASSERT(ret == 0, "join_running_log_trans() ret=%d", ret); 3575 if (WARN_ON(ret)) 3576 return; 3577 log = root->log_root; 3578 mutex_lock(&inode->log_mutex); 3579 3580 ret = btrfs_del_inode_ref(trans, log, name, btrfs_ino(inode), dirid, NULL); 3581 mutex_unlock(&inode->log_mutex); 3582 if (ret < 0 && ret != -ENOENT) 3583 btrfs_set_log_full_commit(trans); 3584 btrfs_end_log_trans(root); 3585 } 3586 3587 /* 3588 * creates a range item in the log for 'dirid'. first_offset and 3589 * last_offset tell us which parts of the key space the log should 3590 * be considered authoritative for. 3591 */ 3592 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans, 3593 struct btrfs_root *log, 3594 struct btrfs_path *path, 3595 u64 dirid, 3596 u64 first_offset, u64 last_offset) 3597 { 3598 int ret; 3599 struct btrfs_key key; 3600 struct btrfs_dir_log_item *item; 3601 3602 key.objectid = dirid; 3603 key.type = BTRFS_DIR_LOG_INDEX_KEY; 3604 key.offset = first_offset; 3605 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item)); 3606 /* 3607 * -EEXIST is fine and can happen sporadically when we are logging a 3608 * directory and have concurrent insertions in the subvolume's tree for 3609 * items from other inodes and that result in pushing off some dir items 3610 * from one leaf to another in order to accommodate for the new items. 3611 * This results in logging the same dir index range key. 3612 */ 3613 if (ret && ret != -EEXIST) 3614 return ret; 3615 3616 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3617 struct btrfs_dir_log_item); 3618 if (ret == -EEXIST) { 3619 const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item); 3620 3621 /* 3622 * btrfs_del_dir_entries_in_log() might have been called during 3623 * an unlink between the initial insertion of this key and the 3624 * current update, or we might be logging a single entry deletion 3625 * during a rename, so set the new last_offset to the max value. 3626 */ 3627 last_offset = max(last_offset, curr_end); 3628 } 3629 btrfs_set_dir_log_end(path->nodes[0], item, last_offset); 3630 btrfs_release_path(path); 3631 return 0; 3632 } 3633 3634 static int flush_dir_items_batch(struct btrfs_trans_handle *trans, 3635 struct btrfs_inode *inode, 3636 struct extent_buffer *src, 3637 struct btrfs_path *dst_path, 3638 int start_slot, 3639 int count) 3640 { 3641 struct btrfs_root *log = inode->root->log_root; 3642 char *ins_data = NULL; 3643 struct btrfs_item_batch batch; 3644 struct extent_buffer *dst; 3645 unsigned long src_offset; 3646 unsigned long dst_offset; 3647 u64 last_index; 3648 struct btrfs_key key; 3649 u32 item_size; 3650 int ret; 3651 int i; 3652 3653 ASSERT(count > 0); 3654 batch.nr = count; 3655 3656 if (count == 1) { 3657 btrfs_item_key_to_cpu(src, &key, start_slot); 3658 item_size = btrfs_item_size(src, start_slot); 3659 batch.keys = &key; 3660 batch.data_sizes = &item_size; 3661 batch.total_data_size = item_size; 3662 } else { 3663 struct btrfs_key *ins_keys; 3664 u32 *ins_sizes; 3665 3666 ins_data = kmalloc(count * sizeof(u32) + 3667 count * sizeof(struct btrfs_key), GFP_NOFS); 3668 if (!ins_data) 3669 return -ENOMEM; 3670 3671 ins_sizes = (u32 *)ins_data; 3672 ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32)); 3673 batch.keys = ins_keys; 3674 batch.data_sizes = ins_sizes; 3675 batch.total_data_size = 0; 3676 3677 for (i = 0; i < count; i++) { 3678 const int slot = start_slot + i; 3679 3680 btrfs_item_key_to_cpu(src, &ins_keys[i], slot); 3681 ins_sizes[i] = btrfs_item_size(src, slot); 3682 batch.total_data_size += ins_sizes[i]; 3683 } 3684 } 3685 3686 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch); 3687 if (ret) 3688 goto out; 3689 3690 dst = dst_path->nodes[0]; 3691 /* 3692 * Copy all the items in bulk, in a single copy operation. Item data is 3693 * organized such that it's placed at the end of a leaf and from right 3694 * to left. For example, the data for the second item ends at an offset 3695 * that matches the offset where the data for the first item starts, the 3696 * data for the third item ends at an offset that matches the offset 3697 * where the data of the second items starts, and so on. 3698 * Therefore our source and destination start offsets for copy match the 3699 * offsets of the last items (highest slots). 3700 */ 3701 dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1); 3702 src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1); 3703 copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size); 3704 btrfs_release_path(dst_path); 3705 3706 last_index = batch.keys[count - 1].offset; 3707 ASSERT(last_index > inode->last_dir_index_offset); 3708 3709 /* 3710 * If for some unexpected reason the last item's index is not greater 3711 * than the last index we logged, warn and force a transaction commit. 3712 */ 3713 if (WARN_ON(last_index <= inode->last_dir_index_offset)) 3714 ret = BTRFS_LOG_FORCE_COMMIT; 3715 else 3716 inode->last_dir_index_offset = last_index; 3717 3718 if (btrfs_get_first_dir_index_to_log(inode) == 0) 3719 btrfs_set_first_dir_index_to_log(inode, batch.keys[0].offset); 3720 out: 3721 kfree(ins_data); 3722 3723 return ret; 3724 } 3725 3726 static int clone_leaf(struct btrfs_path *path, struct btrfs_log_ctx *ctx) 3727 { 3728 const int slot = path->slots[0]; 3729 3730 if (ctx->scratch_eb) { 3731 copy_extent_buffer_full(ctx->scratch_eb, path->nodes[0]); 3732 } else { 3733 ctx->scratch_eb = btrfs_clone_extent_buffer(path->nodes[0]); 3734 if (!ctx->scratch_eb) 3735 return -ENOMEM; 3736 } 3737 3738 btrfs_release_path(path); 3739 path->nodes[0] = ctx->scratch_eb; 3740 path->slots[0] = slot; 3741 /* 3742 * Add extra ref to scratch eb so that it is not freed when callers 3743 * release the path, so we can reuse it later if needed. 3744 */ 3745 refcount_inc(&ctx->scratch_eb->refs); 3746 3747 return 0; 3748 } 3749 3750 static int process_dir_items_leaf(struct btrfs_trans_handle *trans, 3751 struct btrfs_inode *inode, 3752 struct btrfs_path *path, 3753 struct btrfs_path *dst_path, 3754 struct btrfs_log_ctx *ctx, 3755 u64 *last_old_dentry_offset) 3756 { 3757 struct btrfs_root *log = inode->root->log_root; 3758 struct extent_buffer *src; 3759 const int nritems = btrfs_header_nritems(path->nodes[0]); 3760 const u64 ino = btrfs_ino(inode); 3761 bool last_found = false; 3762 int batch_start = 0; 3763 int batch_size = 0; 3764 int ret; 3765 3766 /* 3767 * We need to clone the leaf, release the read lock on it, and use the 3768 * clone before modifying the log tree. See the comment at copy_items() 3769 * about why we need to do this. 3770 */ 3771 ret = clone_leaf(path, ctx); 3772 if (ret < 0) 3773 return ret; 3774 3775 src = path->nodes[0]; 3776 3777 for (int i = path->slots[0]; i < nritems; i++) { 3778 struct btrfs_dir_item *di; 3779 struct btrfs_key key; 3780 int ret; 3781 3782 btrfs_item_key_to_cpu(src, &key, i); 3783 3784 if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) { 3785 last_found = true; 3786 break; 3787 } 3788 3789 di = btrfs_item_ptr(src, i, struct btrfs_dir_item); 3790 3791 /* 3792 * Skip ranges of items that consist only of dir item keys created 3793 * in past transactions. However if we find a gap, we must log a 3794 * dir index range item for that gap, so that index keys in that 3795 * gap are deleted during log replay. 3796 */ 3797 if (btrfs_dir_transid(src, di) < trans->transid) { 3798 if (key.offset > *last_old_dentry_offset + 1) { 3799 ret = insert_dir_log_key(trans, log, dst_path, 3800 ino, *last_old_dentry_offset + 1, 3801 key.offset - 1); 3802 if (ret < 0) 3803 return ret; 3804 } 3805 3806 *last_old_dentry_offset = key.offset; 3807 continue; 3808 } 3809 3810 /* If we logged this dir index item before, we can skip it. */ 3811 if (key.offset <= inode->last_dir_index_offset) 3812 continue; 3813 3814 /* 3815 * We must make sure that when we log a directory entry, the 3816 * corresponding inode, after log replay, has a matching link 3817 * count. For example: 3818 * 3819 * touch foo 3820 * mkdir mydir 3821 * sync 3822 * ln foo mydir/bar 3823 * xfs_io -c "fsync" mydir 3824 * <crash> 3825 * <mount fs and log replay> 3826 * 3827 * Would result in a fsync log that when replayed, our file inode 3828 * would have a link count of 1, but we get two directory entries 3829 * pointing to the same inode. After removing one of the names, 3830 * it would not be possible to remove the other name, which 3831 * resulted always in stale file handle errors, and would not be 3832 * possible to rmdir the parent directory, since its i_size could 3833 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE, 3834 * resulting in -ENOTEMPTY errors. 3835 */ 3836 if (!ctx->log_new_dentries) { 3837 struct btrfs_key di_key; 3838 3839 btrfs_dir_item_key_to_cpu(src, di, &di_key); 3840 if (di_key.type != BTRFS_ROOT_ITEM_KEY) 3841 ctx->log_new_dentries = true; 3842 } 3843 3844 if (batch_size == 0) 3845 batch_start = i; 3846 batch_size++; 3847 } 3848 3849 if (batch_size > 0) { 3850 int ret; 3851 3852 ret = flush_dir_items_batch(trans, inode, src, dst_path, 3853 batch_start, batch_size); 3854 if (ret < 0) 3855 return ret; 3856 } 3857 3858 return last_found ? 1 : 0; 3859 } 3860 3861 /* 3862 * log all the items included in the current transaction for a given 3863 * directory. This also creates the range items in the log tree required 3864 * to replay anything deleted before the fsync 3865 */ 3866 static noinline int log_dir_items(struct btrfs_trans_handle *trans, 3867 struct btrfs_inode *inode, 3868 struct btrfs_path *path, 3869 struct btrfs_path *dst_path, 3870 struct btrfs_log_ctx *ctx, 3871 u64 min_offset, u64 *last_offset_ret) 3872 { 3873 struct btrfs_key min_key; 3874 struct btrfs_root *root = inode->root; 3875 struct btrfs_root *log = root->log_root; 3876 int ret; 3877 u64 last_old_dentry_offset = min_offset - 1; 3878 u64 last_offset = (u64)-1; 3879 u64 ino = btrfs_ino(inode); 3880 3881 min_key.objectid = ino; 3882 min_key.type = BTRFS_DIR_INDEX_KEY; 3883 min_key.offset = min_offset; 3884 3885 ret = btrfs_search_forward(root, &min_key, path, trans->transid); 3886 3887 /* 3888 * we didn't find anything from this transaction, see if there 3889 * is anything at all 3890 */ 3891 if (ret != 0 || min_key.objectid != ino || 3892 min_key.type != BTRFS_DIR_INDEX_KEY) { 3893 min_key.objectid = ino; 3894 min_key.type = BTRFS_DIR_INDEX_KEY; 3895 min_key.offset = (u64)-1; 3896 btrfs_release_path(path); 3897 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 3898 if (ret < 0) { 3899 btrfs_release_path(path); 3900 return ret; 3901 } 3902 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY); 3903 3904 /* if ret == 0 there are items for this type, 3905 * create a range to tell us the last key of this type. 3906 * otherwise, there are no items in this directory after 3907 * *min_offset, and we create a range to indicate that. 3908 */ 3909 if (ret == 0) { 3910 struct btrfs_key tmp; 3911 3912 btrfs_item_key_to_cpu(path->nodes[0], &tmp, 3913 path->slots[0]); 3914 if (tmp.type == BTRFS_DIR_INDEX_KEY) 3915 last_old_dentry_offset = tmp.offset; 3916 } else if (ret > 0) { 3917 ret = 0; 3918 } 3919 3920 goto done; 3921 } 3922 3923 /* go backward to find any previous key */ 3924 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY); 3925 if (ret == 0) { 3926 struct btrfs_key tmp; 3927 3928 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 3929 /* 3930 * The dir index key before the first one we found that needs to 3931 * be logged might be in a previous leaf, and there might be a 3932 * gap between these keys, meaning that we had deletions that 3933 * happened. So the key range item we log (key type 3934 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the 3935 * previous key's offset plus 1, so that those deletes are replayed. 3936 */ 3937 if (tmp.type == BTRFS_DIR_INDEX_KEY) 3938 last_old_dentry_offset = tmp.offset; 3939 } else if (ret < 0) { 3940 goto done; 3941 } 3942 3943 btrfs_release_path(path); 3944 3945 /* 3946 * Find the first key from this transaction again or the one we were at 3947 * in the loop below in case we had to reschedule. We may be logging the 3948 * directory without holding its VFS lock, which happen when logging new 3949 * dentries (through log_new_dir_dentries()) or in some cases when we 3950 * need to log the parent directory of an inode. This means a dir index 3951 * key might be deleted from the inode's root, and therefore we may not 3952 * find it anymore. If we can't find it, just move to the next key. We 3953 * can not bail out and ignore, because if we do that we will simply 3954 * not log dir index keys that come after the one that was just deleted 3955 * and we can end up logging a dir index range that ends at (u64)-1 3956 * (@last_offset is initialized to that), resulting in removing dir 3957 * entries we should not remove at log replay time. 3958 */ 3959 search: 3960 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 3961 if (ret > 0) { 3962 ret = btrfs_next_item(root, path); 3963 if (ret > 0) { 3964 /* There are no more keys in the inode's root. */ 3965 ret = 0; 3966 goto done; 3967 } 3968 } 3969 if (ret < 0) 3970 goto done; 3971 3972 /* 3973 * we have a block from this transaction, log every item in it 3974 * from our directory 3975 */ 3976 while (1) { 3977 ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx, 3978 &last_old_dentry_offset); 3979 if (ret != 0) { 3980 if (ret > 0) 3981 ret = 0; 3982 goto done; 3983 } 3984 path->slots[0] = btrfs_header_nritems(path->nodes[0]); 3985 3986 /* 3987 * look ahead to the next item and see if it is also 3988 * from this directory and from this transaction 3989 */ 3990 ret = btrfs_next_leaf(root, path); 3991 if (ret) { 3992 if (ret == 1) { 3993 last_offset = (u64)-1; 3994 ret = 0; 3995 } 3996 goto done; 3997 } 3998 btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]); 3999 if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) { 4000 last_offset = (u64)-1; 4001 goto done; 4002 } 4003 if (btrfs_header_generation(path->nodes[0]) != trans->transid) { 4004 /* 4005 * The next leaf was not changed in the current transaction 4006 * and has at least one dir index key. 4007 * We check for the next key because there might have been 4008 * one or more deletions between the last key we logged and 4009 * that next key. So the key range item we log (key type 4010 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's 4011 * offset minus 1, so that those deletes are replayed. 4012 */ 4013 last_offset = min_key.offset - 1; 4014 goto done; 4015 } 4016 if (need_resched()) { 4017 btrfs_release_path(path); 4018 cond_resched(); 4019 goto search; 4020 } 4021 } 4022 done: 4023 btrfs_release_path(path); 4024 btrfs_release_path(dst_path); 4025 4026 if (ret == 0) { 4027 *last_offset_ret = last_offset; 4028 /* 4029 * In case the leaf was changed in the current transaction but 4030 * all its dir items are from a past transaction, the last item 4031 * in the leaf is a dir item and there's no gap between that last 4032 * dir item and the first one on the next leaf (which did not 4033 * change in the current transaction), then we don't need to log 4034 * a range, last_old_dentry_offset is == to last_offset. 4035 */ 4036 ASSERT(last_old_dentry_offset <= last_offset); 4037 if (last_old_dentry_offset < last_offset) 4038 ret = insert_dir_log_key(trans, log, path, ino, 4039 last_old_dentry_offset + 1, 4040 last_offset); 4041 } 4042 4043 return ret; 4044 } 4045 4046 /* 4047 * If the inode was logged before and it was evicted, then its 4048 * last_dir_index_offset is (u64)-1, so we don't the value of the last index 4049 * key offset. If that's the case, search for it and update the inode. This 4050 * is to avoid lookups in the log tree every time we try to insert a dir index 4051 * key from a leaf changed in the current transaction, and to allow us to always 4052 * do batch insertions of dir index keys. 4053 */ 4054 static int update_last_dir_index_offset(struct btrfs_inode *inode, 4055 struct btrfs_path *path, 4056 const struct btrfs_log_ctx *ctx) 4057 { 4058 const u64 ino = btrfs_ino(inode); 4059 struct btrfs_key key; 4060 int ret; 4061 4062 lockdep_assert_held(&inode->log_mutex); 4063 4064 if (inode->last_dir_index_offset != (u64)-1) 4065 return 0; 4066 4067 if (!ctx->logged_before) { 4068 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1; 4069 return 0; 4070 } 4071 4072 key.objectid = ino; 4073 key.type = BTRFS_DIR_INDEX_KEY; 4074 key.offset = (u64)-1; 4075 4076 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0); 4077 /* 4078 * An error happened or we actually have an index key with an offset 4079 * value of (u64)-1. Bail out, we're done. 4080 */ 4081 if (ret <= 0) 4082 goto out; 4083 4084 ret = 0; 4085 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1; 4086 4087 /* 4088 * No dir index items, bail out and leave last_dir_index_offset with 4089 * the value right before the first valid index value. 4090 */ 4091 if (path->slots[0] == 0) 4092 goto out; 4093 4094 /* 4095 * btrfs_search_slot() left us at one slot beyond the slot with the last 4096 * index key, or beyond the last key of the directory that is not an 4097 * index key. If we have an index key before, set last_dir_index_offset 4098 * to its offset value, otherwise leave it with a value right before the 4099 * first valid index value, as it means we have an empty directory. 4100 */ 4101 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 4102 if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY) 4103 inode->last_dir_index_offset = key.offset; 4104 4105 out: 4106 btrfs_release_path(path); 4107 4108 return ret; 4109 } 4110 4111 /* 4112 * logging directories is very similar to logging inodes, We find all the items 4113 * from the current transaction and write them to the log. 4114 * 4115 * The recovery code scans the directory in the subvolume, and if it finds a 4116 * key in the range logged that is not present in the log tree, then it means 4117 * that dir entry was unlinked during the transaction. 4118 * 4119 * In order for that scan to work, we must include one key smaller than 4120 * the smallest logged by this transaction and one key larger than the largest 4121 * key logged by this transaction. 4122 */ 4123 static noinline int log_directory_changes(struct btrfs_trans_handle *trans, 4124 struct btrfs_inode *inode, 4125 struct btrfs_path *path, 4126 struct btrfs_path *dst_path, 4127 struct btrfs_log_ctx *ctx) 4128 { 4129 u64 min_key; 4130 u64 max_key; 4131 int ret; 4132 4133 ret = update_last_dir_index_offset(inode, path, ctx); 4134 if (ret) 4135 return ret; 4136 4137 min_key = BTRFS_DIR_START_INDEX; 4138 max_key = 0; 4139 4140 while (1) { 4141 ret = log_dir_items(trans, inode, path, dst_path, 4142 ctx, min_key, &max_key); 4143 if (ret) 4144 return ret; 4145 if (max_key == (u64)-1) 4146 break; 4147 min_key = max_key + 1; 4148 } 4149 4150 return 0; 4151 } 4152 4153 /* 4154 * a helper function to drop items from the log before we relog an 4155 * inode. max_key_type indicates the highest item type to remove. 4156 * This cannot be run for file data extents because it does not 4157 * free the extents they point to. 4158 */ 4159 static int drop_inode_items(struct btrfs_trans_handle *trans, 4160 struct btrfs_root *log, 4161 struct btrfs_path *path, 4162 struct btrfs_inode *inode, 4163 int max_key_type) 4164 { 4165 int ret; 4166 struct btrfs_key key; 4167 struct btrfs_key found_key; 4168 int start_slot; 4169 4170 key.objectid = btrfs_ino(inode); 4171 key.type = max_key_type; 4172 key.offset = (u64)-1; 4173 4174 while (1) { 4175 ret = btrfs_search_slot(trans, log, &key, path, -1, 1); 4176 if (ret < 0) { 4177 break; 4178 } else if (ret > 0) { 4179 if (path->slots[0] == 0) 4180 break; 4181 path->slots[0]--; 4182 } 4183 4184 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 4185 path->slots[0]); 4186 4187 if (found_key.objectid != key.objectid) 4188 break; 4189 4190 found_key.offset = 0; 4191 found_key.type = 0; 4192 ret = btrfs_bin_search(path->nodes[0], 0, &found_key, &start_slot); 4193 if (ret < 0) 4194 break; 4195 4196 ret = btrfs_del_items(trans, log, path, start_slot, 4197 path->slots[0] - start_slot + 1); 4198 /* 4199 * If start slot isn't 0 then we don't need to re-search, we've 4200 * found the last guy with the objectid in this tree. 4201 */ 4202 if (ret || start_slot != 0) 4203 break; 4204 btrfs_release_path(path); 4205 } 4206 btrfs_release_path(path); 4207 if (ret > 0) 4208 ret = 0; 4209 return ret; 4210 } 4211 4212 static int truncate_inode_items(struct btrfs_trans_handle *trans, 4213 struct btrfs_root *log_root, 4214 struct btrfs_inode *inode, 4215 u64 new_size, u32 min_type) 4216 { 4217 struct btrfs_truncate_control control = { 4218 .new_size = new_size, 4219 .ino = btrfs_ino(inode), 4220 .min_type = min_type, 4221 .skip_ref_updates = true, 4222 }; 4223 4224 return btrfs_truncate_inode_items(trans, log_root, &control); 4225 } 4226 4227 static void fill_inode_item(struct btrfs_trans_handle *trans, 4228 struct extent_buffer *leaf, 4229 struct btrfs_inode_item *item, 4230 struct inode *inode, int log_inode_only, 4231 u64 logged_isize) 4232 { 4233 u64 flags; 4234 4235 if (log_inode_only) { 4236 /* set the generation to zero so the recover code 4237 * can tell the difference between an logging 4238 * just to say 'this inode exists' and a logging 4239 * to say 'update this inode with these values' 4240 */ 4241 btrfs_set_inode_generation(leaf, item, 0); 4242 btrfs_set_inode_size(leaf, item, logged_isize); 4243 } else { 4244 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation); 4245 btrfs_set_inode_size(leaf, item, inode->i_size); 4246 } 4247 4248 btrfs_set_inode_uid(leaf, item, i_uid_read(inode)); 4249 btrfs_set_inode_gid(leaf, item, i_gid_read(inode)); 4250 btrfs_set_inode_mode(leaf, item, inode->i_mode); 4251 btrfs_set_inode_nlink(leaf, item, inode->i_nlink); 4252 4253 btrfs_set_timespec_sec(leaf, &item->atime, inode_get_atime_sec(inode)); 4254 btrfs_set_timespec_nsec(leaf, &item->atime, inode_get_atime_nsec(inode)); 4255 4256 btrfs_set_timespec_sec(leaf, &item->mtime, inode_get_mtime_sec(inode)); 4257 btrfs_set_timespec_nsec(leaf, &item->mtime, inode_get_mtime_nsec(inode)); 4258 4259 btrfs_set_timespec_sec(leaf, &item->ctime, inode_get_ctime_sec(inode)); 4260 btrfs_set_timespec_nsec(leaf, &item->ctime, inode_get_ctime_nsec(inode)); 4261 4262 btrfs_set_timespec_sec(leaf, &item->otime, BTRFS_I(inode)->i_otime_sec); 4263 btrfs_set_timespec_nsec(leaf, &item->otime, BTRFS_I(inode)->i_otime_nsec); 4264 4265 /* 4266 * We do not need to set the nbytes field, in fact during a fast fsync 4267 * its value may not even be correct, since a fast fsync does not wait 4268 * for ordered extent completion, which is where we update nbytes, it 4269 * only waits for writeback to complete. During log replay as we find 4270 * file extent items and replay them, we adjust the nbytes field of the 4271 * inode item in subvolume tree as needed (see overwrite_item()). 4272 */ 4273 4274 btrfs_set_inode_sequence(leaf, item, inode_peek_iversion(inode)); 4275 btrfs_set_inode_transid(leaf, item, trans->transid); 4276 btrfs_set_inode_rdev(leaf, item, inode->i_rdev); 4277 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 4278 BTRFS_I(inode)->ro_flags); 4279 btrfs_set_inode_flags(leaf, item, flags); 4280 btrfs_set_inode_block_group(leaf, item, 0); 4281 } 4282 4283 static int log_inode_item(struct btrfs_trans_handle *trans, 4284 struct btrfs_root *log, struct btrfs_path *path, 4285 struct btrfs_inode *inode, bool inode_item_dropped) 4286 { 4287 struct btrfs_inode_item *inode_item; 4288 struct btrfs_key key; 4289 int ret; 4290 4291 btrfs_get_inode_key(inode, &key); 4292 /* 4293 * If we are doing a fast fsync and the inode was logged before in the 4294 * current transaction, then we know the inode was previously logged and 4295 * it exists in the log tree. For performance reasons, in this case use 4296 * btrfs_search_slot() directly with ins_len set to 0 so that we never 4297 * attempt a write lock on the leaf's parent, which adds unnecessary lock 4298 * contention in case there are concurrent fsyncs for other inodes of the 4299 * same subvolume. Using btrfs_insert_empty_item() when the inode item 4300 * already exists can also result in unnecessarily splitting a leaf. 4301 */ 4302 if (!inode_item_dropped && inode->logged_trans == trans->transid) { 4303 ret = btrfs_search_slot(trans, log, &key, path, 0, 1); 4304 ASSERT(ret <= 0); 4305 if (ret > 0) 4306 ret = -ENOENT; 4307 } else { 4308 /* 4309 * This means it is the first fsync in the current transaction, 4310 * so the inode item is not in the log and we need to insert it. 4311 * We can never get -EEXIST because we are only called for a fast 4312 * fsync and in case an inode eviction happens after the inode was 4313 * logged before in the current transaction, when we load again 4314 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime 4315 * flags and set ->logged_trans to 0. 4316 */ 4317 ret = btrfs_insert_empty_item(trans, log, path, &key, 4318 sizeof(*inode_item)); 4319 ASSERT(ret != -EEXIST); 4320 } 4321 if (ret) 4322 return ret; 4323 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4324 struct btrfs_inode_item); 4325 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode, 4326 0, 0); 4327 btrfs_release_path(path); 4328 return 0; 4329 } 4330 4331 static int log_csums(struct btrfs_trans_handle *trans, 4332 struct btrfs_inode *inode, 4333 struct btrfs_root *log_root, 4334 struct btrfs_ordered_sum *sums) 4335 { 4336 const u64 lock_end = sums->logical + sums->len - 1; 4337 struct extent_state *cached_state = NULL; 4338 int ret; 4339 4340 /* 4341 * If this inode was not used for reflink operations in the current 4342 * transaction with new extents, then do the fast path, no need to 4343 * worry about logging checksum items with overlapping ranges. 4344 */ 4345 if (inode->last_reflink_trans < trans->transid) 4346 return btrfs_csum_file_blocks(trans, log_root, sums); 4347 4348 /* 4349 * Serialize logging for checksums. This is to avoid racing with the 4350 * same checksum being logged by another task that is logging another 4351 * file which happens to refer to the same extent as well. Such races 4352 * can leave checksum items in the log with overlapping ranges. 4353 */ 4354 ret = btrfs_lock_extent(&log_root->log_csum_range, sums->logical, lock_end, 4355 &cached_state); 4356 if (ret) 4357 return ret; 4358 /* 4359 * Due to extent cloning, we might have logged a csum item that covers a 4360 * subrange of a cloned extent, and later we can end up logging a csum 4361 * item for a larger subrange of the same extent or the entire range. 4362 * This would leave csum items in the log tree that cover the same range 4363 * and break the searches for checksums in the log tree, resulting in 4364 * some checksums missing in the fs/subvolume tree. So just delete (or 4365 * trim and adjust) any existing csum items in the log for this range. 4366 */ 4367 ret = btrfs_del_csums(trans, log_root, sums->logical, sums->len); 4368 if (!ret) 4369 ret = btrfs_csum_file_blocks(trans, log_root, sums); 4370 4371 btrfs_unlock_extent(&log_root->log_csum_range, sums->logical, lock_end, 4372 &cached_state); 4373 4374 return ret; 4375 } 4376 4377 static noinline int copy_items(struct btrfs_trans_handle *trans, 4378 struct btrfs_inode *inode, 4379 struct btrfs_path *dst_path, 4380 struct btrfs_path *src_path, 4381 int start_slot, int nr, int inode_only, 4382 u64 logged_isize, struct btrfs_log_ctx *ctx) 4383 { 4384 struct btrfs_root *log = inode->root->log_root; 4385 struct btrfs_file_extent_item *extent; 4386 struct extent_buffer *src; 4387 int ret; 4388 struct btrfs_key *ins_keys; 4389 u32 *ins_sizes; 4390 struct btrfs_item_batch batch; 4391 char *ins_data; 4392 int dst_index; 4393 const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM); 4394 const u64 i_size = i_size_read(&inode->vfs_inode); 4395 4396 /* 4397 * To keep lockdep happy and avoid deadlocks, clone the source leaf and 4398 * use the clone. This is because otherwise we would be changing the log 4399 * tree, to insert items from the subvolume tree or insert csum items, 4400 * while holding a read lock on a leaf from the subvolume tree, which 4401 * creates a nasty lock dependency when COWing log tree nodes/leaves: 4402 * 4403 * 1) Modifying the log tree triggers an extent buffer allocation while 4404 * holding a write lock on a parent extent buffer from the log tree. 4405 * Allocating the pages for an extent buffer, or the extent buffer 4406 * struct, can trigger inode eviction and finally the inode eviction 4407 * will trigger a release/remove of a delayed node, which requires 4408 * taking the delayed node's mutex; 4409 * 4410 * 2) Allocating a metadata extent for a log tree can trigger the async 4411 * reclaim thread and make us wait for it to release enough space and 4412 * unblock our reservation ticket. The reclaim thread can start 4413 * flushing delayed items, and that in turn results in the need to 4414 * lock delayed node mutexes and in the need to write lock extent 4415 * buffers of a subvolume tree - all this while holding a write lock 4416 * on the parent extent buffer in the log tree. 4417 * 4418 * So one task in scenario 1) running in parallel with another task in 4419 * scenario 2) could lead to a deadlock, one wanting to lock a delayed 4420 * node mutex while having a read lock on a leaf from the subvolume, 4421 * while the other is holding the delayed node's mutex and wants to 4422 * write lock the same subvolume leaf for flushing delayed items. 4423 */ 4424 ret = clone_leaf(src_path, ctx); 4425 if (ret < 0) 4426 return ret; 4427 4428 src = src_path->nodes[0]; 4429 4430 ins_data = kmalloc(nr * sizeof(struct btrfs_key) + 4431 nr * sizeof(u32), GFP_NOFS); 4432 if (!ins_data) 4433 return -ENOMEM; 4434 4435 ins_sizes = (u32 *)ins_data; 4436 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32)); 4437 batch.keys = ins_keys; 4438 batch.data_sizes = ins_sizes; 4439 batch.total_data_size = 0; 4440 batch.nr = 0; 4441 4442 dst_index = 0; 4443 for (int i = 0; i < nr; i++) { 4444 const int src_slot = start_slot + i; 4445 struct btrfs_root *csum_root; 4446 struct btrfs_ordered_sum *sums; 4447 struct btrfs_ordered_sum *sums_next; 4448 LIST_HEAD(ordered_sums); 4449 u64 disk_bytenr; 4450 u64 disk_num_bytes; 4451 u64 extent_offset; 4452 u64 extent_num_bytes; 4453 bool is_old_extent; 4454 4455 btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot); 4456 4457 if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY) 4458 goto add_to_batch; 4459 4460 extent = btrfs_item_ptr(src, src_slot, 4461 struct btrfs_file_extent_item); 4462 4463 is_old_extent = (btrfs_file_extent_generation(src, extent) < 4464 trans->transid); 4465 4466 /* 4467 * Don't copy extents from past generations. That would make us 4468 * log a lot more metadata for common cases like doing only a 4469 * few random writes into a file and then fsync it for the first 4470 * time or after the full sync flag is set on the inode. We can 4471 * get leaves full of extent items, most of which are from past 4472 * generations, so we can skip them - as long as the inode has 4473 * not been the target of a reflink operation in this transaction, 4474 * as in that case it might have had file extent items with old 4475 * generations copied into it. We also must always log prealloc 4476 * extents that start at or beyond eof, otherwise we would lose 4477 * them on log replay. 4478 */ 4479 if (is_old_extent && 4480 ins_keys[dst_index].offset < i_size && 4481 inode->last_reflink_trans < trans->transid) 4482 continue; 4483 4484 if (skip_csum) 4485 goto add_to_batch; 4486 4487 /* Only regular extents have checksums. */ 4488 if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG) 4489 goto add_to_batch; 4490 4491 /* 4492 * If it's an extent created in a past transaction, then its 4493 * checksums are already accessible from the committed csum tree, 4494 * no need to log them. 4495 */ 4496 if (is_old_extent) 4497 goto add_to_batch; 4498 4499 disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent); 4500 /* If it's an explicit hole, there are no checksums. */ 4501 if (disk_bytenr == 0) 4502 goto add_to_batch; 4503 4504 disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent); 4505 4506 if (btrfs_file_extent_compression(src, extent)) { 4507 extent_offset = 0; 4508 extent_num_bytes = disk_num_bytes; 4509 } else { 4510 extent_offset = btrfs_file_extent_offset(src, extent); 4511 extent_num_bytes = btrfs_file_extent_num_bytes(src, extent); 4512 } 4513 4514 csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr); 4515 disk_bytenr += extent_offset; 4516 ret = btrfs_lookup_csums_list(csum_root, disk_bytenr, 4517 disk_bytenr + extent_num_bytes - 1, 4518 &ordered_sums, false); 4519 if (ret < 0) 4520 goto out; 4521 ret = 0; 4522 4523 list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) { 4524 if (!ret) 4525 ret = log_csums(trans, inode, log, sums); 4526 list_del(&sums->list); 4527 kfree(sums); 4528 } 4529 if (ret) 4530 goto out; 4531 4532 add_to_batch: 4533 ins_sizes[dst_index] = btrfs_item_size(src, src_slot); 4534 batch.total_data_size += ins_sizes[dst_index]; 4535 batch.nr++; 4536 dst_index++; 4537 } 4538 4539 /* 4540 * We have a leaf full of old extent items that don't need to be logged, 4541 * so we don't need to do anything. 4542 */ 4543 if (batch.nr == 0) 4544 goto out; 4545 4546 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch); 4547 if (ret) 4548 goto out; 4549 4550 dst_index = 0; 4551 for (int i = 0; i < nr; i++) { 4552 const int src_slot = start_slot + i; 4553 const int dst_slot = dst_path->slots[0] + dst_index; 4554 struct btrfs_key key; 4555 unsigned long src_offset; 4556 unsigned long dst_offset; 4557 4558 /* 4559 * We're done, all the remaining items in the source leaf 4560 * correspond to old file extent items. 4561 */ 4562 if (dst_index >= batch.nr) 4563 break; 4564 4565 btrfs_item_key_to_cpu(src, &key, src_slot); 4566 4567 if (key.type != BTRFS_EXTENT_DATA_KEY) 4568 goto copy_item; 4569 4570 extent = btrfs_item_ptr(src, src_slot, 4571 struct btrfs_file_extent_item); 4572 4573 /* See the comment in the previous loop, same logic. */ 4574 if (btrfs_file_extent_generation(src, extent) < trans->transid && 4575 key.offset < i_size && 4576 inode->last_reflink_trans < trans->transid) 4577 continue; 4578 4579 copy_item: 4580 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot); 4581 src_offset = btrfs_item_ptr_offset(src, src_slot); 4582 4583 if (key.type == BTRFS_INODE_ITEM_KEY) { 4584 struct btrfs_inode_item *inode_item; 4585 4586 inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot, 4587 struct btrfs_inode_item); 4588 fill_inode_item(trans, dst_path->nodes[0], inode_item, 4589 &inode->vfs_inode, 4590 inode_only == LOG_INODE_EXISTS, 4591 logged_isize); 4592 } else { 4593 copy_extent_buffer(dst_path->nodes[0], src, dst_offset, 4594 src_offset, ins_sizes[dst_index]); 4595 } 4596 4597 dst_index++; 4598 } 4599 4600 btrfs_release_path(dst_path); 4601 out: 4602 kfree(ins_data); 4603 4604 return ret; 4605 } 4606 4607 static int extent_cmp(void *priv, const struct list_head *a, 4608 const struct list_head *b) 4609 { 4610 const struct extent_map *em1, *em2; 4611 4612 em1 = list_entry(a, struct extent_map, list); 4613 em2 = list_entry(b, struct extent_map, list); 4614 4615 if (em1->start < em2->start) 4616 return -1; 4617 else if (em1->start > em2->start) 4618 return 1; 4619 return 0; 4620 } 4621 4622 static int log_extent_csums(struct btrfs_trans_handle *trans, 4623 struct btrfs_inode *inode, 4624 struct btrfs_root *log_root, 4625 const struct extent_map *em, 4626 struct btrfs_log_ctx *ctx) 4627 { 4628 struct btrfs_ordered_extent *ordered; 4629 struct btrfs_root *csum_root; 4630 u64 block_start; 4631 u64 csum_offset; 4632 u64 csum_len; 4633 u64 mod_start = em->start; 4634 u64 mod_len = em->len; 4635 LIST_HEAD(ordered_sums); 4636 int ret = 0; 4637 4638 if (inode->flags & BTRFS_INODE_NODATASUM || 4639 (em->flags & EXTENT_FLAG_PREALLOC) || 4640 em->disk_bytenr == EXTENT_MAP_HOLE) 4641 return 0; 4642 4643 list_for_each_entry(ordered, &ctx->ordered_extents, log_list) { 4644 const u64 ordered_end = ordered->file_offset + ordered->num_bytes; 4645 const u64 mod_end = mod_start + mod_len; 4646 struct btrfs_ordered_sum *sums; 4647 4648 if (mod_len == 0) 4649 break; 4650 4651 if (ordered_end <= mod_start) 4652 continue; 4653 if (mod_end <= ordered->file_offset) 4654 break; 4655 4656 /* 4657 * We are going to copy all the csums on this ordered extent, so 4658 * go ahead and adjust mod_start and mod_len in case this ordered 4659 * extent has already been logged. 4660 */ 4661 if (ordered->file_offset > mod_start) { 4662 if (ordered_end >= mod_end) 4663 mod_len = ordered->file_offset - mod_start; 4664 /* 4665 * If we have this case 4666 * 4667 * |--------- logged extent ---------| 4668 * |----- ordered extent ----| 4669 * 4670 * Just don't mess with mod_start and mod_len, we'll 4671 * just end up logging more csums than we need and it 4672 * will be ok. 4673 */ 4674 } else { 4675 if (ordered_end < mod_end) { 4676 mod_len = mod_end - ordered_end; 4677 mod_start = ordered_end; 4678 } else { 4679 mod_len = 0; 4680 } 4681 } 4682 4683 /* 4684 * To keep us from looping for the above case of an ordered 4685 * extent that falls inside of the logged extent. 4686 */ 4687 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags)) 4688 continue; 4689 4690 list_for_each_entry(sums, &ordered->list, list) { 4691 ret = log_csums(trans, inode, log_root, sums); 4692 if (ret) 4693 return ret; 4694 } 4695 } 4696 4697 /* We're done, found all csums in the ordered extents. */ 4698 if (mod_len == 0) 4699 return 0; 4700 4701 /* If we're compressed we have to save the entire range of csums. */ 4702 if (btrfs_extent_map_is_compressed(em)) { 4703 csum_offset = 0; 4704 csum_len = em->disk_num_bytes; 4705 } else { 4706 csum_offset = mod_start - em->start; 4707 csum_len = mod_len; 4708 } 4709 4710 /* block start is already adjusted for the file extent offset. */ 4711 block_start = btrfs_extent_map_block_start(em); 4712 csum_root = btrfs_csum_root(trans->fs_info, block_start); 4713 ret = btrfs_lookup_csums_list(csum_root, block_start + csum_offset, 4714 block_start + csum_offset + csum_len - 1, 4715 &ordered_sums, false); 4716 if (ret < 0) 4717 return ret; 4718 ret = 0; 4719 4720 while (!list_empty(&ordered_sums)) { 4721 struct btrfs_ordered_sum *sums = list_first_entry(&ordered_sums, 4722 struct btrfs_ordered_sum, 4723 list); 4724 if (!ret) 4725 ret = log_csums(trans, inode, log_root, sums); 4726 list_del(&sums->list); 4727 kfree(sums); 4728 } 4729 4730 return ret; 4731 } 4732 4733 static int log_one_extent(struct btrfs_trans_handle *trans, 4734 struct btrfs_inode *inode, 4735 const struct extent_map *em, 4736 struct btrfs_path *path, 4737 struct btrfs_log_ctx *ctx) 4738 { 4739 struct btrfs_drop_extents_args drop_args = { 0 }; 4740 struct btrfs_root *log = inode->root->log_root; 4741 struct btrfs_file_extent_item fi = { 0 }; 4742 struct extent_buffer *leaf; 4743 struct btrfs_key key; 4744 enum btrfs_compression_type compress_type; 4745 u64 extent_offset = em->offset; 4746 u64 block_start = btrfs_extent_map_block_start(em); 4747 u64 block_len; 4748 int ret; 4749 4750 btrfs_set_stack_file_extent_generation(&fi, trans->transid); 4751 if (em->flags & EXTENT_FLAG_PREALLOC) 4752 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC); 4753 else 4754 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG); 4755 4756 block_len = em->disk_num_bytes; 4757 compress_type = btrfs_extent_map_compression(em); 4758 if (compress_type != BTRFS_COMPRESS_NONE) { 4759 btrfs_set_stack_file_extent_disk_bytenr(&fi, block_start); 4760 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len); 4761 } else if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) { 4762 btrfs_set_stack_file_extent_disk_bytenr(&fi, block_start - extent_offset); 4763 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len); 4764 } 4765 4766 btrfs_set_stack_file_extent_offset(&fi, extent_offset); 4767 btrfs_set_stack_file_extent_num_bytes(&fi, em->len); 4768 btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes); 4769 btrfs_set_stack_file_extent_compression(&fi, compress_type); 4770 4771 ret = log_extent_csums(trans, inode, log, em, ctx); 4772 if (ret) 4773 return ret; 4774 4775 /* 4776 * If this is the first time we are logging the inode in the current 4777 * transaction, we can avoid btrfs_drop_extents(), which is expensive 4778 * because it does a deletion search, which always acquires write locks 4779 * for extent buffers at levels 2, 1 and 0. This not only wastes time 4780 * but also adds significant contention in a log tree, since log trees 4781 * are small, with a root at level 2 or 3 at most, due to their short 4782 * life span. 4783 */ 4784 if (ctx->logged_before) { 4785 drop_args.path = path; 4786 drop_args.start = em->start; 4787 drop_args.end = em->start + em->len; 4788 drop_args.replace_extent = true; 4789 drop_args.extent_item_size = sizeof(fi); 4790 ret = btrfs_drop_extents(trans, log, inode, &drop_args); 4791 if (ret) 4792 return ret; 4793 } 4794 4795 if (!drop_args.extent_inserted) { 4796 key.objectid = btrfs_ino(inode); 4797 key.type = BTRFS_EXTENT_DATA_KEY; 4798 key.offset = em->start; 4799 4800 ret = btrfs_insert_empty_item(trans, log, path, &key, 4801 sizeof(fi)); 4802 if (ret) 4803 return ret; 4804 } 4805 leaf = path->nodes[0]; 4806 write_extent_buffer(leaf, &fi, 4807 btrfs_item_ptr_offset(leaf, path->slots[0]), 4808 sizeof(fi)); 4809 4810 btrfs_release_path(path); 4811 4812 return ret; 4813 } 4814 4815 /* 4816 * Log all prealloc extents beyond the inode's i_size to make sure we do not 4817 * lose them after doing a full/fast fsync and replaying the log. We scan the 4818 * subvolume's root instead of iterating the inode's extent map tree because 4819 * otherwise we can log incorrect extent items based on extent map conversion. 4820 * That can happen due to the fact that extent maps are merged when they 4821 * are not in the extent map tree's list of modified extents. 4822 */ 4823 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans, 4824 struct btrfs_inode *inode, 4825 struct btrfs_path *path, 4826 struct btrfs_log_ctx *ctx) 4827 { 4828 struct btrfs_root *root = inode->root; 4829 struct btrfs_key key; 4830 const u64 i_size = i_size_read(&inode->vfs_inode); 4831 const u64 ino = btrfs_ino(inode); 4832 struct btrfs_path *dst_path = NULL; 4833 bool dropped_extents = false; 4834 u64 truncate_offset = i_size; 4835 struct extent_buffer *leaf; 4836 int slot; 4837 int ins_nr = 0; 4838 int start_slot = 0; 4839 int ret; 4840 4841 if (!(inode->flags & BTRFS_INODE_PREALLOC)) 4842 return 0; 4843 4844 key.objectid = ino; 4845 key.type = BTRFS_EXTENT_DATA_KEY; 4846 key.offset = i_size; 4847 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4848 if (ret < 0) 4849 goto out; 4850 4851 /* 4852 * We must check if there is a prealloc extent that starts before the 4853 * i_size and crosses the i_size boundary. This is to ensure later we 4854 * truncate down to the end of that extent and not to the i_size, as 4855 * otherwise we end up losing part of the prealloc extent after a log 4856 * replay and with an implicit hole if there is another prealloc extent 4857 * that starts at an offset beyond i_size. 4858 */ 4859 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY); 4860 if (ret < 0) 4861 goto out; 4862 4863 if (ret == 0) { 4864 struct btrfs_file_extent_item *ei; 4865 4866 leaf = path->nodes[0]; 4867 slot = path->slots[0]; 4868 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 4869 4870 if (btrfs_file_extent_type(leaf, ei) == 4871 BTRFS_FILE_EXTENT_PREALLOC) { 4872 u64 extent_end; 4873 4874 btrfs_item_key_to_cpu(leaf, &key, slot); 4875 extent_end = key.offset + 4876 btrfs_file_extent_num_bytes(leaf, ei); 4877 4878 if (extent_end > i_size) 4879 truncate_offset = extent_end; 4880 } 4881 } else { 4882 ret = 0; 4883 } 4884 4885 while (true) { 4886 leaf = path->nodes[0]; 4887 slot = path->slots[0]; 4888 4889 if (slot >= btrfs_header_nritems(leaf)) { 4890 if (ins_nr > 0) { 4891 ret = copy_items(trans, inode, dst_path, path, 4892 start_slot, ins_nr, 1, 0, ctx); 4893 if (ret < 0) 4894 goto out; 4895 ins_nr = 0; 4896 } 4897 ret = btrfs_next_leaf(root, path); 4898 if (ret < 0) 4899 goto out; 4900 if (ret > 0) { 4901 ret = 0; 4902 break; 4903 } 4904 continue; 4905 } 4906 4907 btrfs_item_key_to_cpu(leaf, &key, slot); 4908 if (key.objectid > ino) 4909 break; 4910 if (WARN_ON_ONCE(key.objectid < ino) || 4911 key.type < BTRFS_EXTENT_DATA_KEY || 4912 key.offset < i_size) { 4913 path->slots[0]++; 4914 continue; 4915 } 4916 /* 4917 * Avoid overlapping items in the log tree. The first time we 4918 * get here, get rid of everything from a past fsync. After 4919 * that, if the current extent starts before the end of the last 4920 * extent we copied, truncate the last one. This can happen if 4921 * an ordered extent completion modifies the subvolume tree 4922 * while btrfs_next_leaf() has the tree unlocked. 4923 */ 4924 if (!dropped_extents || key.offset < truncate_offset) { 4925 ret = truncate_inode_items(trans, root->log_root, inode, 4926 min(key.offset, truncate_offset), 4927 BTRFS_EXTENT_DATA_KEY); 4928 if (ret) 4929 goto out; 4930 dropped_extents = true; 4931 } 4932 truncate_offset = btrfs_file_extent_end(path); 4933 if (ins_nr == 0) 4934 start_slot = slot; 4935 ins_nr++; 4936 path->slots[0]++; 4937 if (!dst_path) { 4938 dst_path = btrfs_alloc_path(); 4939 if (!dst_path) { 4940 ret = -ENOMEM; 4941 goto out; 4942 } 4943 } 4944 } 4945 if (ins_nr > 0) 4946 ret = copy_items(trans, inode, dst_path, path, 4947 start_slot, ins_nr, 1, 0, ctx); 4948 out: 4949 btrfs_release_path(path); 4950 btrfs_free_path(dst_path); 4951 return ret; 4952 } 4953 4954 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans, 4955 struct btrfs_inode *inode, 4956 struct btrfs_path *path, 4957 struct btrfs_log_ctx *ctx) 4958 { 4959 struct btrfs_ordered_extent *ordered; 4960 struct btrfs_ordered_extent *tmp; 4961 struct extent_map *em, *n; 4962 LIST_HEAD(extents); 4963 struct extent_map_tree *tree = &inode->extent_tree; 4964 int ret = 0; 4965 int num = 0; 4966 4967 write_lock(&tree->lock); 4968 4969 list_for_each_entry_safe(em, n, &tree->modified_extents, list) { 4970 list_del_init(&em->list); 4971 /* 4972 * Just an arbitrary number, this can be really CPU intensive 4973 * once we start getting a lot of extents, and really once we 4974 * have a bunch of extents we just want to commit since it will 4975 * be faster. 4976 */ 4977 if (++num > 32768) { 4978 list_del_init(&tree->modified_extents); 4979 ret = -EFBIG; 4980 goto process; 4981 } 4982 4983 if (em->generation < trans->transid) 4984 continue; 4985 4986 /* We log prealloc extents beyond eof later. */ 4987 if ((em->flags & EXTENT_FLAG_PREALLOC) && 4988 em->start >= i_size_read(&inode->vfs_inode)) 4989 continue; 4990 4991 /* Need a ref to keep it from getting evicted from cache */ 4992 refcount_inc(&em->refs); 4993 em->flags |= EXTENT_FLAG_LOGGING; 4994 list_add_tail(&em->list, &extents); 4995 num++; 4996 } 4997 4998 list_sort(NULL, &extents, extent_cmp); 4999 process: 5000 while (!list_empty(&extents)) { 5001 em = list_first_entry(&extents, struct extent_map, list); 5002 5003 list_del_init(&em->list); 5004 5005 /* 5006 * If we had an error we just need to delete everybody from our 5007 * private list. 5008 */ 5009 if (ret) { 5010 btrfs_clear_em_logging(inode, em); 5011 btrfs_free_extent_map(em); 5012 continue; 5013 } 5014 5015 write_unlock(&tree->lock); 5016 5017 ret = log_one_extent(trans, inode, em, path, ctx); 5018 write_lock(&tree->lock); 5019 btrfs_clear_em_logging(inode, em); 5020 btrfs_free_extent_map(em); 5021 } 5022 WARN_ON(!list_empty(&extents)); 5023 write_unlock(&tree->lock); 5024 5025 if (!ret) 5026 ret = btrfs_log_prealloc_extents(trans, inode, path, ctx); 5027 if (ret) 5028 return ret; 5029 5030 /* 5031 * We have logged all extents successfully, now make sure the commit of 5032 * the current transaction waits for the ordered extents to complete 5033 * before it commits and wipes out the log trees, otherwise we would 5034 * lose data if an ordered extents completes after the transaction 5035 * commits and a power failure happens after the transaction commit. 5036 */ 5037 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) { 5038 list_del_init(&ordered->log_list); 5039 set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags); 5040 5041 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) { 5042 spin_lock_irq(&inode->ordered_tree_lock); 5043 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) { 5044 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags); 5045 atomic_inc(&trans->transaction->pending_ordered); 5046 } 5047 spin_unlock_irq(&inode->ordered_tree_lock); 5048 } 5049 btrfs_put_ordered_extent(ordered); 5050 } 5051 5052 return 0; 5053 } 5054 5055 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode, 5056 struct btrfs_path *path, u64 *size_ret) 5057 { 5058 struct btrfs_key key; 5059 int ret; 5060 5061 key.objectid = btrfs_ino(inode); 5062 key.type = BTRFS_INODE_ITEM_KEY; 5063 key.offset = 0; 5064 5065 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0); 5066 if (ret < 0) { 5067 return ret; 5068 } else if (ret > 0) { 5069 *size_ret = 0; 5070 } else { 5071 struct btrfs_inode_item *item; 5072 5073 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 5074 struct btrfs_inode_item); 5075 *size_ret = btrfs_inode_size(path->nodes[0], item); 5076 /* 5077 * If the in-memory inode's i_size is smaller then the inode 5078 * size stored in the btree, return the inode's i_size, so 5079 * that we get a correct inode size after replaying the log 5080 * when before a power failure we had a shrinking truncate 5081 * followed by addition of a new name (rename / new hard link). 5082 * Otherwise return the inode size from the btree, to avoid 5083 * data loss when replaying a log due to previously doing a 5084 * write that expands the inode's size and logging a new name 5085 * immediately after. 5086 */ 5087 if (*size_ret > inode->vfs_inode.i_size) 5088 *size_ret = inode->vfs_inode.i_size; 5089 } 5090 5091 btrfs_release_path(path); 5092 return 0; 5093 } 5094 5095 /* 5096 * At the moment we always log all xattrs. This is to figure out at log replay 5097 * time which xattrs must have their deletion replayed. If a xattr is missing 5098 * in the log tree and exists in the fs/subvol tree, we delete it. This is 5099 * because if a xattr is deleted, the inode is fsynced and a power failure 5100 * happens, causing the log to be replayed the next time the fs is mounted, 5101 * we want the xattr to not exist anymore (same behaviour as other filesystems 5102 * with a journal, ext3/4, xfs, f2fs, etc). 5103 */ 5104 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans, 5105 struct btrfs_inode *inode, 5106 struct btrfs_path *path, 5107 struct btrfs_path *dst_path, 5108 struct btrfs_log_ctx *ctx) 5109 { 5110 struct btrfs_root *root = inode->root; 5111 int ret; 5112 struct btrfs_key key; 5113 const u64 ino = btrfs_ino(inode); 5114 int ins_nr = 0; 5115 int start_slot = 0; 5116 bool found_xattrs = false; 5117 5118 if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags)) 5119 return 0; 5120 5121 key.objectid = ino; 5122 key.type = BTRFS_XATTR_ITEM_KEY; 5123 key.offset = 0; 5124 5125 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5126 if (ret < 0) 5127 return ret; 5128 5129 while (true) { 5130 int slot = path->slots[0]; 5131 struct extent_buffer *leaf = path->nodes[0]; 5132 int nritems = btrfs_header_nritems(leaf); 5133 5134 if (slot >= nritems) { 5135 if (ins_nr > 0) { 5136 ret = copy_items(trans, inode, dst_path, path, 5137 start_slot, ins_nr, 1, 0, ctx); 5138 if (ret < 0) 5139 return ret; 5140 ins_nr = 0; 5141 } 5142 ret = btrfs_next_leaf(root, path); 5143 if (ret < 0) 5144 return ret; 5145 else if (ret > 0) 5146 break; 5147 continue; 5148 } 5149 5150 btrfs_item_key_to_cpu(leaf, &key, slot); 5151 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) 5152 break; 5153 5154 if (ins_nr == 0) 5155 start_slot = slot; 5156 ins_nr++; 5157 path->slots[0]++; 5158 found_xattrs = true; 5159 cond_resched(); 5160 } 5161 if (ins_nr > 0) { 5162 ret = copy_items(trans, inode, dst_path, path, 5163 start_slot, ins_nr, 1, 0, ctx); 5164 if (ret < 0) 5165 return ret; 5166 } 5167 5168 if (!found_xattrs) 5169 set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags); 5170 5171 return 0; 5172 } 5173 5174 /* 5175 * When using the NO_HOLES feature if we punched a hole that causes the 5176 * deletion of entire leafs or all the extent items of the first leaf (the one 5177 * that contains the inode item and references) we may end up not processing 5178 * any extents, because there are no leafs with a generation matching the 5179 * current transaction that have extent items for our inode. So we need to find 5180 * if any holes exist and then log them. We also need to log holes after any 5181 * truncate operation that changes the inode's size. 5182 */ 5183 static int btrfs_log_holes(struct btrfs_trans_handle *trans, 5184 struct btrfs_inode *inode, 5185 struct btrfs_path *path) 5186 { 5187 struct btrfs_root *root = inode->root; 5188 struct btrfs_fs_info *fs_info = root->fs_info; 5189 struct btrfs_key key; 5190 const u64 ino = btrfs_ino(inode); 5191 const u64 i_size = i_size_read(&inode->vfs_inode); 5192 u64 prev_extent_end = 0; 5193 int ret; 5194 5195 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0) 5196 return 0; 5197 5198 key.objectid = ino; 5199 key.type = BTRFS_EXTENT_DATA_KEY; 5200 key.offset = 0; 5201 5202 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5203 if (ret < 0) 5204 return ret; 5205 5206 while (true) { 5207 struct extent_buffer *leaf = path->nodes[0]; 5208 5209 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 5210 ret = btrfs_next_leaf(root, path); 5211 if (ret < 0) 5212 return ret; 5213 if (ret > 0) { 5214 ret = 0; 5215 break; 5216 } 5217 leaf = path->nodes[0]; 5218 } 5219 5220 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 5221 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 5222 break; 5223 5224 /* We have a hole, log it. */ 5225 if (prev_extent_end < key.offset) { 5226 const u64 hole_len = key.offset - prev_extent_end; 5227 5228 /* 5229 * Release the path to avoid deadlocks with other code 5230 * paths that search the root while holding locks on 5231 * leafs from the log root. 5232 */ 5233 btrfs_release_path(path); 5234 ret = btrfs_insert_hole_extent(trans, root->log_root, 5235 ino, prev_extent_end, 5236 hole_len); 5237 if (ret < 0) 5238 return ret; 5239 5240 /* 5241 * Search for the same key again in the root. Since it's 5242 * an extent item and we are holding the inode lock, the 5243 * key must still exist. If it doesn't just emit warning 5244 * and return an error to fall back to a transaction 5245 * commit. 5246 */ 5247 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5248 if (ret < 0) 5249 return ret; 5250 if (WARN_ON(ret > 0)) 5251 return -ENOENT; 5252 leaf = path->nodes[0]; 5253 } 5254 5255 prev_extent_end = btrfs_file_extent_end(path); 5256 path->slots[0]++; 5257 cond_resched(); 5258 } 5259 5260 if (prev_extent_end < i_size) { 5261 u64 hole_len; 5262 5263 btrfs_release_path(path); 5264 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize); 5265 ret = btrfs_insert_hole_extent(trans, root->log_root, ino, 5266 prev_extent_end, hole_len); 5267 if (ret < 0) 5268 return ret; 5269 } 5270 5271 return 0; 5272 } 5273 5274 /* 5275 * When we are logging a new inode X, check if it doesn't have a reference that 5276 * matches the reference from some other inode Y created in a past transaction 5277 * and that was renamed in the current transaction. If we don't do this, then at 5278 * log replay time we can lose inode Y (and all its files if it's a directory): 5279 * 5280 * mkdir /mnt/x 5281 * echo "hello world" > /mnt/x/foobar 5282 * sync 5283 * mv /mnt/x /mnt/y 5284 * mkdir /mnt/x # or touch /mnt/x 5285 * xfs_io -c fsync /mnt/x 5286 * <power fail> 5287 * mount fs, trigger log replay 5288 * 5289 * After the log replay procedure, we would lose the first directory and all its 5290 * files (file foobar). 5291 * For the case where inode Y is not a directory we simply end up losing it: 5292 * 5293 * echo "123" > /mnt/foo 5294 * sync 5295 * mv /mnt/foo /mnt/bar 5296 * echo "abc" > /mnt/foo 5297 * xfs_io -c fsync /mnt/foo 5298 * <power fail> 5299 * 5300 * We also need this for cases where a snapshot entry is replaced by some other 5301 * entry (file or directory) otherwise we end up with an unreplayable log due to 5302 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as 5303 * if it were a regular entry: 5304 * 5305 * mkdir /mnt/x 5306 * btrfs subvolume snapshot /mnt /mnt/x/snap 5307 * btrfs subvolume delete /mnt/x/snap 5308 * rmdir /mnt/x 5309 * mkdir /mnt/x 5310 * fsync /mnt/x or fsync some new file inside it 5311 * <power fail> 5312 * 5313 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in 5314 * the same transaction. 5315 */ 5316 static int btrfs_check_ref_name_override(struct extent_buffer *eb, 5317 const int slot, 5318 const struct btrfs_key *key, 5319 struct btrfs_inode *inode, 5320 u64 *other_ino, u64 *other_parent) 5321 { 5322 int ret; 5323 struct btrfs_path *search_path; 5324 char *name = NULL; 5325 u32 name_len = 0; 5326 u32 item_size = btrfs_item_size(eb, slot); 5327 u32 cur_offset = 0; 5328 unsigned long ptr = btrfs_item_ptr_offset(eb, slot); 5329 5330 search_path = btrfs_alloc_path(); 5331 if (!search_path) 5332 return -ENOMEM; 5333 search_path->search_commit_root = 1; 5334 search_path->skip_locking = 1; 5335 5336 while (cur_offset < item_size) { 5337 u64 parent; 5338 u32 this_name_len; 5339 u32 this_len; 5340 unsigned long name_ptr; 5341 struct btrfs_dir_item *di; 5342 struct fscrypt_str name_str; 5343 5344 if (key->type == BTRFS_INODE_REF_KEY) { 5345 struct btrfs_inode_ref *iref; 5346 5347 iref = (struct btrfs_inode_ref *)(ptr + cur_offset); 5348 parent = key->offset; 5349 this_name_len = btrfs_inode_ref_name_len(eb, iref); 5350 name_ptr = (unsigned long)(iref + 1); 5351 this_len = sizeof(*iref) + this_name_len; 5352 } else { 5353 struct btrfs_inode_extref *extref; 5354 5355 extref = (struct btrfs_inode_extref *)(ptr + 5356 cur_offset); 5357 parent = btrfs_inode_extref_parent(eb, extref); 5358 this_name_len = btrfs_inode_extref_name_len(eb, extref); 5359 name_ptr = (unsigned long)&extref->name; 5360 this_len = sizeof(*extref) + this_name_len; 5361 } 5362 5363 if (this_name_len > name_len) { 5364 char *new_name; 5365 5366 new_name = krealloc(name, this_name_len, GFP_NOFS); 5367 if (!new_name) { 5368 ret = -ENOMEM; 5369 goto out; 5370 } 5371 name_len = this_name_len; 5372 name = new_name; 5373 } 5374 5375 read_extent_buffer(eb, name, name_ptr, this_name_len); 5376 5377 name_str.name = name; 5378 name_str.len = this_name_len; 5379 di = btrfs_lookup_dir_item(NULL, inode->root, search_path, 5380 parent, &name_str, 0); 5381 if (di && !IS_ERR(di)) { 5382 struct btrfs_key di_key; 5383 5384 btrfs_dir_item_key_to_cpu(search_path->nodes[0], 5385 di, &di_key); 5386 if (di_key.type == BTRFS_INODE_ITEM_KEY) { 5387 if (di_key.objectid != key->objectid) { 5388 ret = 1; 5389 *other_ino = di_key.objectid; 5390 *other_parent = parent; 5391 } else { 5392 ret = 0; 5393 } 5394 } else { 5395 ret = -EAGAIN; 5396 } 5397 goto out; 5398 } else if (IS_ERR(di)) { 5399 ret = PTR_ERR(di); 5400 goto out; 5401 } 5402 btrfs_release_path(search_path); 5403 5404 cur_offset += this_len; 5405 } 5406 ret = 0; 5407 out: 5408 btrfs_free_path(search_path); 5409 kfree(name); 5410 return ret; 5411 } 5412 5413 /* 5414 * Check if we need to log an inode. This is used in contexts where while 5415 * logging an inode we need to log another inode (either that it exists or in 5416 * full mode). This is used instead of btrfs_inode_in_log() because the later 5417 * requires the inode to be in the log and have the log transaction committed, 5418 * while here we do not care if the log transaction was already committed - our 5419 * caller will commit the log later - and we want to avoid logging an inode 5420 * multiple times when multiple tasks have joined the same log transaction. 5421 */ 5422 static bool need_log_inode(const struct btrfs_trans_handle *trans, 5423 struct btrfs_inode *inode) 5424 { 5425 /* 5426 * If a directory was not modified, no dentries added or removed, we can 5427 * and should avoid logging it. 5428 */ 5429 if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid) 5430 return false; 5431 5432 /* 5433 * If this inode does not have new/updated/deleted xattrs since the last 5434 * time it was logged and is flagged as logged in the current transaction, 5435 * we can skip logging it. As for new/deleted names, those are updated in 5436 * the log by link/unlink/rename operations. 5437 * In case the inode was logged and then evicted and reloaded, its 5438 * logged_trans will be 0, in which case we have to fully log it since 5439 * logged_trans is a transient field, not persisted. 5440 */ 5441 if (inode_logged(trans, inode, NULL) == 1 && 5442 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags)) 5443 return false; 5444 5445 return true; 5446 } 5447 5448 struct btrfs_dir_list { 5449 u64 ino; 5450 struct list_head list; 5451 }; 5452 5453 /* 5454 * Log the inodes of the new dentries of a directory. 5455 * See process_dir_items_leaf() for details about why it is needed. 5456 * This is a recursive operation - if an existing dentry corresponds to a 5457 * directory, that directory's new entries are logged too (same behaviour as 5458 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes 5459 * the dentries point to we do not acquire their VFS lock, otherwise lockdep 5460 * complains about the following circular lock dependency / possible deadlock: 5461 * 5462 * CPU0 CPU1 5463 * ---- ---- 5464 * lock(&type->i_mutex_dir_key#3/2); 5465 * lock(sb_internal#2); 5466 * lock(&type->i_mutex_dir_key#3/2); 5467 * lock(&sb->s_type->i_mutex_key#14); 5468 * 5469 * Where sb_internal is the lock (a counter that works as a lock) acquired by 5470 * sb_start_intwrite() in btrfs_start_transaction(). 5471 * Not acquiring the VFS lock of the inodes is still safe because: 5472 * 5473 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible 5474 * that while logging the inode new references (names) are added or removed 5475 * from the inode, leaving the logged inode item with a link count that does 5476 * not match the number of logged inode reference items. This is fine because 5477 * at log replay time we compute the real number of links and correct the 5478 * link count in the inode item (see replay_one_buffer() and 5479 * link_to_fixup_dir()); 5480 * 5481 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that 5482 * while logging the inode's items new index items (key type 5483 * BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item 5484 * has a size that doesn't match the sum of the lengths of all the logged 5485 * names - this is ok, not a problem, because at log replay time we set the 5486 * directory's i_size to the correct value (see replay_one_name() and 5487 * overwrite_item()). 5488 */ 5489 static int log_new_dir_dentries(struct btrfs_trans_handle *trans, 5490 struct btrfs_inode *start_inode, 5491 struct btrfs_log_ctx *ctx) 5492 { 5493 struct btrfs_root *root = start_inode->root; 5494 struct btrfs_path *path; 5495 LIST_HEAD(dir_list); 5496 struct btrfs_dir_list *dir_elem; 5497 u64 ino = btrfs_ino(start_inode); 5498 struct btrfs_inode *curr_inode = start_inode; 5499 int ret = 0; 5500 5501 /* 5502 * If we are logging a new name, as part of a link or rename operation, 5503 * don't bother logging new dentries, as we just want to log the names 5504 * of an inode and that any new parents exist. 5505 */ 5506 if (ctx->logging_new_name) 5507 return 0; 5508 5509 path = btrfs_alloc_path(); 5510 if (!path) 5511 return -ENOMEM; 5512 5513 /* Pairs with btrfs_add_delayed_iput below. */ 5514 ihold(&curr_inode->vfs_inode); 5515 5516 while (true) { 5517 struct btrfs_key key; 5518 struct btrfs_key found_key; 5519 u64 next_index; 5520 bool continue_curr_inode = true; 5521 int iter_ret; 5522 5523 key.objectid = ino; 5524 key.type = BTRFS_DIR_INDEX_KEY; 5525 key.offset = btrfs_get_first_dir_index_to_log(curr_inode); 5526 next_index = key.offset; 5527 again: 5528 btrfs_for_each_slot(root->log_root, &key, &found_key, path, iter_ret) { 5529 struct extent_buffer *leaf = path->nodes[0]; 5530 struct btrfs_dir_item *di; 5531 struct btrfs_key di_key; 5532 struct btrfs_inode *di_inode; 5533 int log_mode = LOG_INODE_EXISTS; 5534 int type; 5535 5536 if (found_key.objectid != ino || 5537 found_key.type != BTRFS_DIR_INDEX_KEY) { 5538 continue_curr_inode = false; 5539 break; 5540 } 5541 5542 next_index = found_key.offset + 1; 5543 5544 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item); 5545 type = btrfs_dir_ftype(leaf, di); 5546 if (btrfs_dir_transid(leaf, di) < trans->transid) 5547 continue; 5548 btrfs_dir_item_key_to_cpu(leaf, di, &di_key); 5549 if (di_key.type == BTRFS_ROOT_ITEM_KEY) 5550 continue; 5551 5552 btrfs_release_path(path); 5553 di_inode = btrfs_iget_logging(di_key.objectid, root); 5554 if (IS_ERR(di_inode)) { 5555 ret = PTR_ERR(di_inode); 5556 goto out; 5557 } 5558 5559 if (!need_log_inode(trans, di_inode)) { 5560 btrfs_add_delayed_iput(di_inode); 5561 break; 5562 } 5563 5564 ctx->log_new_dentries = false; 5565 if (type == BTRFS_FT_DIR) 5566 log_mode = LOG_INODE_ALL; 5567 ret = btrfs_log_inode(trans, di_inode, log_mode, ctx); 5568 btrfs_add_delayed_iput(di_inode); 5569 if (ret) 5570 goto out; 5571 if (ctx->log_new_dentries) { 5572 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS); 5573 if (!dir_elem) { 5574 ret = -ENOMEM; 5575 goto out; 5576 } 5577 dir_elem->ino = di_key.objectid; 5578 list_add_tail(&dir_elem->list, &dir_list); 5579 } 5580 break; 5581 } 5582 5583 btrfs_release_path(path); 5584 5585 if (iter_ret < 0) { 5586 ret = iter_ret; 5587 goto out; 5588 } else if (iter_ret > 0) { 5589 continue_curr_inode = false; 5590 } else { 5591 key = found_key; 5592 } 5593 5594 if (continue_curr_inode && key.offset < (u64)-1) { 5595 key.offset++; 5596 goto again; 5597 } 5598 5599 btrfs_set_first_dir_index_to_log(curr_inode, next_index); 5600 5601 if (list_empty(&dir_list)) 5602 break; 5603 5604 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list); 5605 ino = dir_elem->ino; 5606 list_del(&dir_elem->list); 5607 kfree(dir_elem); 5608 5609 btrfs_add_delayed_iput(curr_inode); 5610 5611 curr_inode = btrfs_iget_logging(ino, root); 5612 if (IS_ERR(curr_inode)) { 5613 ret = PTR_ERR(curr_inode); 5614 curr_inode = NULL; 5615 break; 5616 } 5617 } 5618 out: 5619 btrfs_free_path(path); 5620 if (curr_inode) 5621 btrfs_add_delayed_iput(curr_inode); 5622 5623 if (ret) { 5624 struct btrfs_dir_list *next; 5625 5626 list_for_each_entry_safe(dir_elem, next, &dir_list, list) 5627 kfree(dir_elem); 5628 } 5629 5630 return ret; 5631 } 5632 5633 struct btrfs_ino_list { 5634 u64 ino; 5635 u64 parent; 5636 struct list_head list; 5637 }; 5638 5639 static void free_conflicting_inodes(struct btrfs_log_ctx *ctx) 5640 { 5641 struct btrfs_ino_list *curr; 5642 struct btrfs_ino_list *next; 5643 5644 list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) { 5645 list_del(&curr->list); 5646 kfree(curr); 5647 } 5648 } 5649 5650 static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino, 5651 struct btrfs_path *path) 5652 { 5653 struct btrfs_key key; 5654 int ret; 5655 5656 key.objectid = ino; 5657 key.type = BTRFS_INODE_ITEM_KEY; 5658 key.offset = 0; 5659 5660 path->search_commit_root = 1; 5661 path->skip_locking = 1; 5662 5663 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5664 if (WARN_ON_ONCE(ret > 0)) { 5665 /* 5666 * We have previously found the inode through the commit root 5667 * so this should not happen. If it does, just error out and 5668 * fallback to a transaction commit. 5669 */ 5670 ret = -ENOENT; 5671 } else if (ret == 0) { 5672 struct btrfs_inode_item *item; 5673 5674 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 5675 struct btrfs_inode_item); 5676 if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item))) 5677 ret = 1; 5678 } 5679 5680 btrfs_release_path(path); 5681 path->search_commit_root = 0; 5682 path->skip_locking = 0; 5683 5684 return ret; 5685 } 5686 5687 static int add_conflicting_inode(struct btrfs_trans_handle *trans, 5688 struct btrfs_root *root, 5689 struct btrfs_path *path, 5690 u64 ino, u64 parent, 5691 struct btrfs_log_ctx *ctx) 5692 { 5693 struct btrfs_ino_list *ino_elem; 5694 struct btrfs_inode *inode; 5695 5696 /* 5697 * It's rare to have a lot of conflicting inodes, in practice it is not 5698 * common to have more than 1 or 2. We don't want to collect too many, 5699 * as we could end up logging too many inodes (even if only in 5700 * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction 5701 * commits. 5702 */ 5703 if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES) 5704 return BTRFS_LOG_FORCE_COMMIT; 5705 5706 inode = btrfs_iget_logging(ino, root); 5707 /* 5708 * If the other inode that had a conflicting dir entry was deleted in 5709 * the current transaction then we either: 5710 * 5711 * 1) Log the parent directory (later after adding it to the list) if 5712 * the inode is a directory. This is because it may be a deleted 5713 * subvolume/snapshot or it may be a regular directory that had 5714 * deleted subvolumes/snapshots (or subdirectories that had them), 5715 * and at the moment we can't deal with dropping subvolumes/snapshots 5716 * during log replay. So we just log the parent, which will result in 5717 * a fallback to a transaction commit if we are dealing with those 5718 * cases (last_unlink_trans will match the current transaction); 5719 * 5720 * 2) Do nothing if it's not a directory. During log replay we simply 5721 * unlink the conflicting dentry from the parent directory and then 5722 * add the dentry for our inode. Like this we can avoid logging the 5723 * parent directory (and maybe fallback to a transaction commit in 5724 * case it has a last_unlink_trans == trans->transid, due to moving 5725 * some inode from it to some other directory). 5726 */ 5727 if (IS_ERR(inode)) { 5728 int ret = PTR_ERR(inode); 5729 5730 if (ret != -ENOENT) 5731 return ret; 5732 5733 ret = conflicting_inode_is_dir(root, ino, path); 5734 /* Not a directory or we got an error. */ 5735 if (ret <= 0) 5736 return ret; 5737 5738 /* Conflicting inode is a directory, so we'll log its parent. */ 5739 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS); 5740 if (!ino_elem) 5741 return -ENOMEM; 5742 ino_elem->ino = ino; 5743 ino_elem->parent = parent; 5744 list_add_tail(&ino_elem->list, &ctx->conflict_inodes); 5745 ctx->num_conflict_inodes++; 5746 5747 return 0; 5748 } 5749 5750 /* 5751 * If the inode was already logged skip it - otherwise we can hit an 5752 * infinite loop. Example: 5753 * 5754 * From the commit root (previous transaction) we have the following 5755 * inodes: 5756 * 5757 * inode 257 a directory 5758 * inode 258 with references "zz" and "zz_link" on inode 257 5759 * inode 259 with reference "a" on inode 257 5760 * 5761 * And in the current (uncommitted) transaction we have: 5762 * 5763 * inode 257 a directory, unchanged 5764 * inode 258 with references "a" and "a2" on inode 257 5765 * inode 259 with reference "zz_link" on inode 257 5766 * inode 261 with reference "zz" on inode 257 5767 * 5768 * When logging inode 261 the following infinite loop could 5769 * happen if we don't skip already logged inodes: 5770 * 5771 * - we detect inode 258 as a conflicting inode, with inode 261 5772 * on reference "zz", and log it; 5773 * 5774 * - we detect inode 259 as a conflicting inode, with inode 258 5775 * on reference "a", and log it; 5776 * 5777 * - we detect inode 258 as a conflicting inode, with inode 259 5778 * on reference "zz_link", and log it - again! After this we 5779 * repeat the above steps forever. 5780 * 5781 * Here we can use need_log_inode() because we only need to log the 5782 * inode in LOG_INODE_EXISTS mode and rename operations update the log, 5783 * so that the log ends up with the new name and without the old name. 5784 */ 5785 if (!need_log_inode(trans, inode)) { 5786 btrfs_add_delayed_iput(inode); 5787 return 0; 5788 } 5789 5790 btrfs_add_delayed_iput(inode); 5791 5792 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS); 5793 if (!ino_elem) 5794 return -ENOMEM; 5795 ino_elem->ino = ino; 5796 ino_elem->parent = parent; 5797 list_add_tail(&ino_elem->list, &ctx->conflict_inodes); 5798 ctx->num_conflict_inodes++; 5799 5800 return 0; 5801 } 5802 5803 static int log_conflicting_inodes(struct btrfs_trans_handle *trans, 5804 struct btrfs_root *root, 5805 struct btrfs_log_ctx *ctx) 5806 { 5807 int ret = 0; 5808 5809 /* 5810 * Conflicting inodes are logged by the first call to btrfs_log_inode(), 5811 * otherwise we could have unbounded recursion of btrfs_log_inode() 5812 * calls. This check guarantees we can have only 1 level of recursion. 5813 */ 5814 if (ctx->logging_conflict_inodes) 5815 return 0; 5816 5817 ctx->logging_conflict_inodes = true; 5818 5819 /* 5820 * New conflicting inodes may be found and added to the list while we 5821 * are logging a conflicting inode, so keep iterating while the list is 5822 * not empty. 5823 */ 5824 while (!list_empty(&ctx->conflict_inodes)) { 5825 struct btrfs_ino_list *curr; 5826 struct btrfs_inode *inode; 5827 u64 ino; 5828 u64 parent; 5829 5830 curr = list_first_entry(&ctx->conflict_inodes, 5831 struct btrfs_ino_list, list); 5832 ino = curr->ino; 5833 parent = curr->parent; 5834 list_del(&curr->list); 5835 kfree(curr); 5836 5837 inode = btrfs_iget_logging(ino, root); 5838 /* 5839 * If the other inode that had a conflicting dir entry was 5840 * deleted in the current transaction, we need to log its parent 5841 * directory. See the comment at add_conflicting_inode(). 5842 */ 5843 if (IS_ERR(inode)) { 5844 ret = PTR_ERR(inode); 5845 if (ret != -ENOENT) 5846 break; 5847 5848 inode = btrfs_iget_logging(parent, root); 5849 if (IS_ERR(inode)) { 5850 ret = PTR_ERR(inode); 5851 break; 5852 } 5853 5854 /* 5855 * Always log the directory, we cannot make this 5856 * conditional on need_log_inode() because the directory 5857 * might have been logged in LOG_INODE_EXISTS mode or 5858 * the dir index of the conflicting inode is not in a 5859 * dir index key range logged for the directory. So we 5860 * must make sure the deletion is recorded. 5861 */ 5862 ret = btrfs_log_inode(trans, inode, LOG_INODE_ALL, ctx); 5863 btrfs_add_delayed_iput(inode); 5864 if (ret) 5865 break; 5866 continue; 5867 } 5868 5869 /* 5870 * Here we can use need_log_inode() because we only need to log 5871 * the inode in LOG_INODE_EXISTS mode and rename operations 5872 * update the log, so that the log ends up with the new name and 5873 * without the old name. 5874 * 5875 * We did this check at add_conflicting_inode(), but here we do 5876 * it again because if some other task logged the inode after 5877 * that, we can avoid doing it again. 5878 */ 5879 if (!need_log_inode(trans, inode)) { 5880 btrfs_add_delayed_iput(inode); 5881 continue; 5882 } 5883 5884 /* 5885 * We are safe logging the other inode without acquiring its 5886 * lock as long as we log with the LOG_INODE_EXISTS mode. We 5887 * are safe against concurrent renames of the other inode as 5888 * well because during a rename we pin the log and update the 5889 * log with the new name before we unpin it. 5890 */ 5891 ret = btrfs_log_inode(trans, inode, LOG_INODE_EXISTS, ctx); 5892 btrfs_add_delayed_iput(inode); 5893 if (ret) 5894 break; 5895 } 5896 5897 ctx->logging_conflict_inodes = false; 5898 if (ret) 5899 free_conflicting_inodes(ctx); 5900 5901 return ret; 5902 } 5903 5904 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans, 5905 struct btrfs_inode *inode, 5906 struct btrfs_key *min_key, 5907 const struct btrfs_key *max_key, 5908 struct btrfs_path *path, 5909 struct btrfs_path *dst_path, 5910 const u64 logged_isize, 5911 const int inode_only, 5912 struct btrfs_log_ctx *ctx, 5913 bool *need_log_inode_item) 5914 { 5915 const u64 i_size = i_size_read(&inode->vfs_inode); 5916 struct btrfs_root *root = inode->root; 5917 int ins_start_slot = 0; 5918 int ins_nr = 0; 5919 int ret; 5920 5921 while (1) { 5922 ret = btrfs_search_forward(root, min_key, path, trans->transid); 5923 if (ret < 0) 5924 return ret; 5925 if (ret > 0) { 5926 ret = 0; 5927 break; 5928 } 5929 again: 5930 /* Note, ins_nr might be > 0 here, cleanup outside the loop */ 5931 if (min_key->objectid != max_key->objectid) 5932 break; 5933 if (min_key->type > max_key->type) 5934 break; 5935 5936 if (min_key->type == BTRFS_INODE_ITEM_KEY) { 5937 *need_log_inode_item = false; 5938 } else if (min_key->type == BTRFS_EXTENT_DATA_KEY && 5939 min_key->offset >= i_size) { 5940 /* 5941 * Extents at and beyond eof are logged with 5942 * btrfs_log_prealloc_extents(). 5943 * Only regular files have BTRFS_EXTENT_DATA_KEY keys, 5944 * and no keys greater than that, so bail out. 5945 */ 5946 break; 5947 } else if ((min_key->type == BTRFS_INODE_REF_KEY || 5948 min_key->type == BTRFS_INODE_EXTREF_KEY) && 5949 (inode->generation == trans->transid || 5950 ctx->logging_conflict_inodes)) { 5951 u64 other_ino = 0; 5952 u64 other_parent = 0; 5953 5954 ret = btrfs_check_ref_name_override(path->nodes[0], 5955 path->slots[0], min_key, inode, 5956 &other_ino, &other_parent); 5957 if (ret < 0) { 5958 return ret; 5959 } else if (ret > 0 && 5960 other_ino != btrfs_ino(ctx->inode)) { 5961 if (ins_nr > 0) { 5962 ins_nr++; 5963 } else { 5964 ins_nr = 1; 5965 ins_start_slot = path->slots[0]; 5966 } 5967 ret = copy_items(trans, inode, dst_path, path, 5968 ins_start_slot, ins_nr, 5969 inode_only, logged_isize, ctx); 5970 if (ret < 0) 5971 return ret; 5972 ins_nr = 0; 5973 5974 btrfs_release_path(path); 5975 ret = add_conflicting_inode(trans, root, path, 5976 other_ino, 5977 other_parent, ctx); 5978 if (ret) 5979 return ret; 5980 goto next_key; 5981 } 5982 } else if (min_key->type == BTRFS_XATTR_ITEM_KEY) { 5983 /* Skip xattrs, logged later with btrfs_log_all_xattrs() */ 5984 if (ins_nr == 0) 5985 goto next_slot; 5986 ret = copy_items(trans, inode, dst_path, path, 5987 ins_start_slot, 5988 ins_nr, inode_only, logged_isize, ctx); 5989 if (ret < 0) 5990 return ret; 5991 ins_nr = 0; 5992 goto next_slot; 5993 } 5994 5995 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) { 5996 ins_nr++; 5997 goto next_slot; 5998 } else if (!ins_nr) { 5999 ins_start_slot = path->slots[0]; 6000 ins_nr = 1; 6001 goto next_slot; 6002 } 6003 6004 ret = copy_items(trans, inode, dst_path, path, ins_start_slot, 6005 ins_nr, inode_only, logged_isize, ctx); 6006 if (ret < 0) 6007 return ret; 6008 ins_nr = 1; 6009 ins_start_slot = path->slots[0]; 6010 next_slot: 6011 path->slots[0]++; 6012 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) { 6013 btrfs_item_key_to_cpu(path->nodes[0], min_key, 6014 path->slots[0]); 6015 goto again; 6016 } 6017 if (ins_nr) { 6018 ret = copy_items(trans, inode, dst_path, path, 6019 ins_start_slot, ins_nr, inode_only, 6020 logged_isize, ctx); 6021 if (ret < 0) 6022 return ret; 6023 ins_nr = 0; 6024 } 6025 btrfs_release_path(path); 6026 next_key: 6027 if (min_key->offset < (u64)-1) { 6028 min_key->offset++; 6029 } else if (min_key->type < max_key->type) { 6030 min_key->type++; 6031 min_key->offset = 0; 6032 } else { 6033 break; 6034 } 6035 6036 /* 6037 * We may process many leaves full of items for our inode, so 6038 * avoid monopolizing a cpu for too long by rescheduling while 6039 * not holding locks on any tree. 6040 */ 6041 cond_resched(); 6042 } 6043 if (ins_nr) { 6044 ret = copy_items(trans, inode, dst_path, path, ins_start_slot, 6045 ins_nr, inode_only, logged_isize, ctx); 6046 if (ret) 6047 return ret; 6048 } 6049 6050 if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) { 6051 /* 6052 * Release the path because otherwise we might attempt to double 6053 * lock the same leaf with btrfs_log_prealloc_extents() below. 6054 */ 6055 btrfs_release_path(path); 6056 ret = btrfs_log_prealloc_extents(trans, inode, dst_path, ctx); 6057 } 6058 6059 return ret; 6060 } 6061 6062 static int insert_delayed_items_batch(struct btrfs_trans_handle *trans, 6063 struct btrfs_root *log, 6064 struct btrfs_path *path, 6065 const struct btrfs_item_batch *batch, 6066 const struct btrfs_delayed_item *first_item) 6067 { 6068 const struct btrfs_delayed_item *curr = first_item; 6069 int ret; 6070 6071 ret = btrfs_insert_empty_items(trans, log, path, batch); 6072 if (ret) 6073 return ret; 6074 6075 for (int i = 0; i < batch->nr; i++) { 6076 char *data_ptr; 6077 6078 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char); 6079 write_extent_buffer(path->nodes[0], &curr->data, 6080 (unsigned long)data_ptr, curr->data_len); 6081 curr = list_next_entry(curr, log_list); 6082 path->slots[0]++; 6083 } 6084 6085 btrfs_release_path(path); 6086 6087 return 0; 6088 } 6089 6090 static int log_delayed_insertion_items(struct btrfs_trans_handle *trans, 6091 struct btrfs_inode *inode, 6092 struct btrfs_path *path, 6093 const struct list_head *delayed_ins_list, 6094 struct btrfs_log_ctx *ctx) 6095 { 6096 /* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */ 6097 const int max_batch_size = 195; 6098 const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info); 6099 const u64 ino = btrfs_ino(inode); 6100 struct btrfs_root *log = inode->root->log_root; 6101 struct btrfs_item_batch batch = { 6102 .nr = 0, 6103 .total_data_size = 0, 6104 }; 6105 const struct btrfs_delayed_item *first = NULL; 6106 const struct btrfs_delayed_item *curr; 6107 char *ins_data; 6108 struct btrfs_key *ins_keys; 6109 u32 *ins_sizes; 6110 u64 curr_batch_size = 0; 6111 int batch_idx = 0; 6112 int ret; 6113 6114 /* We are adding dir index items to the log tree. */ 6115 lockdep_assert_held(&inode->log_mutex); 6116 6117 /* 6118 * We collect delayed items before copying index keys from the subvolume 6119 * to the log tree. However just after we collected them, they may have 6120 * been flushed (all of them or just some of them), and therefore we 6121 * could have copied them from the subvolume tree to the log tree. 6122 * So find the first delayed item that was not yet logged (they are 6123 * sorted by index number). 6124 */ 6125 list_for_each_entry(curr, delayed_ins_list, log_list) { 6126 if (curr->index > inode->last_dir_index_offset) { 6127 first = curr; 6128 break; 6129 } 6130 } 6131 6132 /* Empty list or all delayed items were already logged. */ 6133 if (!first) 6134 return 0; 6135 6136 ins_data = kmalloc(max_batch_size * sizeof(u32) + 6137 max_batch_size * sizeof(struct btrfs_key), GFP_NOFS); 6138 if (!ins_data) 6139 return -ENOMEM; 6140 ins_sizes = (u32 *)ins_data; 6141 batch.data_sizes = ins_sizes; 6142 ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32)); 6143 batch.keys = ins_keys; 6144 6145 curr = first; 6146 while (!list_entry_is_head(curr, delayed_ins_list, log_list)) { 6147 const u32 curr_size = curr->data_len + sizeof(struct btrfs_item); 6148 6149 if (curr_batch_size + curr_size > leaf_data_size || 6150 batch.nr == max_batch_size) { 6151 ret = insert_delayed_items_batch(trans, log, path, 6152 &batch, first); 6153 if (ret) 6154 goto out; 6155 batch_idx = 0; 6156 batch.nr = 0; 6157 batch.total_data_size = 0; 6158 curr_batch_size = 0; 6159 first = curr; 6160 } 6161 6162 ins_sizes[batch_idx] = curr->data_len; 6163 ins_keys[batch_idx].objectid = ino; 6164 ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY; 6165 ins_keys[batch_idx].offset = curr->index; 6166 curr_batch_size += curr_size; 6167 batch.total_data_size += curr->data_len; 6168 batch.nr++; 6169 batch_idx++; 6170 curr = list_next_entry(curr, log_list); 6171 } 6172 6173 ASSERT(batch.nr >= 1); 6174 ret = insert_delayed_items_batch(trans, log, path, &batch, first); 6175 6176 curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item, 6177 log_list); 6178 inode->last_dir_index_offset = curr->index; 6179 out: 6180 kfree(ins_data); 6181 6182 return ret; 6183 } 6184 6185 static int log_delayed_deletions_full(struct btrfs_trans_handle *trans, 6186 struct btrfs_inode *inode, 6187 struct btrfs_path *path, 6188 const struct list_head *delayed_del_list, 6189 struct btrfs_log_ctx *ctx) 6190 { 6191 const u64 ino = btrfs_ino(inode); 6192 const struct btrfs_delayed_item *curr; 6193 6194 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item, 6195 log_list); 6196 6197 while (!list_entry_is_head(curr, delayed_del_list, log_list)) { 6198 u64 first_dir_index = curr->index; 6199 u64 last_dir_index; 6200 const struct btrfs_delayed_item *next; 6201 int ret; 6202 6203 /* 6204 * Find a range of consecutive dir index items to delete. Like 6205 * this we log a single dir range item spanning several contiguous 6206 * dir items instead of logging one range item per dir index item. 6207 */ 6208 next = list_next_entry(curr, log_list); 6209 while (!list_entry_is_head(next, delayed_del_list, log_list)) { 6210 if (next->index != curr->index + 1) 6211 break; 6212 curr = next; 6213 next = list_next_entry(next, log_list); 6214 } 6215 6216 last_dir_index = curr->index; 6217 ASSERT(last_dir_index >= first_dir_index); 6218 6219 ret = insert_dir_log_key(trans, inode->root->log_root, path, 6220 ino, first_dir_index, last_dir_index); 6221 if (ret) 6222 return ret; 6223 curr = list_next_entry(curr, log_list); 6224 } 6225 6226 return 0; 6227 } 6228 6229 static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans, 6230 struct btrfs_inode *inode, 6231 struct btrfs_path *path, 6232 const struct list_head *delayed_del_list, 6233 const struct btrfs_delayed_item *first, 6234 const struct btrfs_delayed_item **last_ret) 6235 { 6236 const struct btrfs_delayed_item *next; 6237 struct extent_buffer *leaf = path->nodes[0]; 6238 const int last_slot = btrfs_header_nritems(leaf) - 1; 6239 int slot = path->slots[0] + 1; 6240 const u64 ino = btrfs_ino(inode); 6241 6242 next = list_next_entry(first, log_list); 6243 6244 while (slot < last_slot && 6245 !list_entry_is_head(next, delayed_del_list, log_list)) { 6246 struct btrfs_key key; 6247 6248 btrfs_item_key_to_cpu(leaf, &key, slot); 6249 if (key.objectid != ino || 6250 key.type != BTRFS_DIR_INDEX_KEY || 6251 key.offset != next->index) 6252 break; 6253 6254 slot++; 6255 *last_ret = next; 6256 next = list_next_entry(next, log_list); 6257 } 6258 6259 return btrfs_del_items(trans, inode->root->log_root, path, 6260 path->slots[0], slot - path->slots[0]); 6261 } 6262 6263 static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans, 6264 struct btrfs_inode *inode, 6265 struct btrfs_path *path, 6266 const struct list_head *delayed_del_list, 6267 struct btrfs_log_ctx *ctx) 6268 { 6269 struct btrfs_root *log = inode->root->log_root; 6270 const struct btrfs_delayed_item *curr; 6271 u64 last_range_start = 0; 6272 u64 last_range_end = 0; 6273 struct btrfs_key key; 6274 6275 key.objectid = btrfs_ino(inode); 6276 key.type = BTRFS_DIR_INDEX_KEY; 6277 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item, 6278 log_list); 6279 6280 while (!list_entry_is_head(curr, delayed_del_list, log_list)) { 6281 const struct btrfs_delayed_item *last = curr; 6282 u64 first_dir_index = curr->index; 6283 u64 last_dir_index; 6284 bool deleted_items = false; 6285 int ret; 6286 6287 key.offset = curr->index; 6288 ret = btrfs_search_slot(trans, log, &key, path, -1, 1); 6289 if (ret < 0) { 6290 return ret; 6291 } else if (ret == 0) { 6292 ret = batch_delete_dir_index_items(trans, inode, path, 6293 delayed_del_list, curr, 6294 &last); 6295 if (ret) 6296 return ret; 6297 deleted_items = true; 6298 } 6299 6300 btrfs_release_path(path); 6301 6302 /* 6303 * If we deleted items from the leaf, it means we have a range 6304 * item logging their range, so no need to add one or update an 6305 * existing one. Otherwise we have to log a dir range item. 6306 */ 6307 if (deleted_items) 6308 goto next_batch; 6309 6310 last_dir_index = last->index; 6311 ASSERT(last_dir_index >= first_dir_index); 6312 /* 6313 * If this range starts right after where the previous one ends, 6314 * then we want to reuse the previous range item and change its 6315 * end offset to the end of this range. This is just to minimize 6316 * leaf space usage, by avoiding adding a new range item. 6317 */ 6318 if (last_range_end != 0 && first_dir_index == last_range_end + 1) 6319 first_dir_index = last_range_start; 6320 6321 ret = insert_dir_log_key(trans, log, path, key.objectid, 6322 first_dir_index, last_dir_index); 6323 if (ret) 6324 return ret; 6325 6326 last_range_start = first_dir_index; 6327 last_range_end = last_dir_index; 6328 next_batch: 6329 curr = list_next_entry(last, log_list); 6330 } 6331 6332 return 0; 6333 } 6334 6335 static int log_delayed_deletion_items(struct btrfs_trans_handle *trans, 6336 struct btrfs_inode *inode, 6337 struct btrfs_path *path, 6338 const struct list_head *delayed_del_list, 6339 struct btrfs_log_ctx *ctx) 6340 { 6341 /* 6342 * We are deleting dir index items from the log tree or adding range 6343 * items to it. 6344 */ 6345 lockdep_assert_held(&inode->log_mutex); 6346 6347 if (list_empty(delayed_del_list)) 6348 return 0; 6349 6350 if (ctx->logged_before) 6351 return log_delayed_deletions_incremental(trans, inode, path, 6352 delayed_del_list, ctx); 6353 6354 return log_delayed_deletions_full(trans, inode, path, delayed_del_list, 6355 ctx); 6356 } 6357 6358 /* 6359 * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed 6360 * items instead of the subvolume tree. 6361 */ 6362 static int log_new_delayed_dentries(struct btrfs_trans_handle *trans, 6363 struct btrfs_inode *inode, 6364 const struct list_head *delayed_ins_list, 6365 struct btrfs_log_ctx *ctx) 6366 { 6367 const bool orig_log_new_dentries = ctx->log_new_dentries; 6368 struct btrfs_delayed_item *item; 6369 int ret = 0; 6370 6371 /* 6372 * No need for the log mutex, plus to avoid potential deadlocks or 6373 * lockdep annotations due to nesting of delayed inode mutexes and log 6374 * mutexes. 6375 */ 6376 lockdep_assert_not_held(&inode->log_mutex); 6377 6378 ASSERT(!ctx->logging_new_delayed_dentries); 6379 ctx->logging_new_delayed_dentries = true; 6380 6381 list_for_each_entry(item, delayed_ins_list, log_list) { 6382 struct btrfs_dir_item *dir_item; 6383 struct btrfs_inode *di_inode; 6384 struct btrfs_key key; 6385 int log_mode = LOG_INODE_EXISTS; 6386 6387 dir_item = (struct btrfs_dir_item *)item->data; 6388 btrfs_disk_key_to_cpu(&key, &dir_item->location); 6389 6390 if (key.type == BTRFS_ROOT_ITEM_KEY) 6391 continue; 6392 6393 di_inode = btrfs_iget_logging(key.objectid, inode->root); 6394 if (IS_ERR(di_inode)) { 6395 ret = PTR_ERR(di_inode); 6396 break; 6397 } 6398 6399 if (!need_log_inode(trans, di_inode)) { 6400 btrfs_add_delayed_iput(di_inode); 6401 continue; 6402 } 6403 6404 if (btrfs_stack_dir_ftype(dir_item) == BTRFS_FT_DIR) 6405 log_mode = LOG_INODE_ALL; 6406 6407 ctx->log_new_dentries = false; 6408 ret = btrfs_log_inode(trans, di_inode, log_mode, ctx); 6409 6410 if (!ret && ctx->log_new_dentries) 6411 ret = log_new_dir_dentries(trans, di_inode, ctx); 6412 6413 btrfs_add_delayed_iput(di_inode); 6414 6415 if (ret) 6416 break; 6417 } 6418 6419 ctx->log_new_dentries = orig_log_new_dentries; 6420 ctx->logging_new_delayed_dentries = false; 6421 6422 return ret; 6423 } 6424 6425 /* log a single inode in the tree log. 6426 * At least one parent directory for this inode must exist in the tree 6427 * or be logged already. 6428 * 6429 * Any items from this inode changed by the current transaction are copied 6430 * to the log tree. An extra reference is taken on any extents in this 6431 * file, allowing us to avoid a whole pile of corner cases around logging 6432 * blocks that have been removed from the tree. 6433 * 6434 * See LOG_INODE_ALL and related defines for a description of what inode_only 6435 * does. 6436 * 6437 * This handles both files and directories. 6438 */ 6439 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 6440 struct btrfs_inode *inode, 6441 int inode_only, 6442 struct btrfs_log_ctx *ctx) 6443 { 6444 struct btrfs_path *path; 6445 struct btrfs_path *dst_path; 6446 struct btrfs_key min_key; 6447 struct btrfs_key max_key; 6448 struct btrfs_root *log = inode->root->log_root; 6449 int ret; 6450 bool fast_search = false; 6451 u64 ino = btrfs_ino(inode); 6452 struct extent_map_tree *em_tree = &inode->extent_tree; 6453 u64 logged_isize = 0; 6454 bool need_log_inode_item = true; 6455 bool xattrs_logged = false; 6456 bool inode_item_dropped = true; 6457 bool full_dir_logging = false; 6458 LIST_HEAD(delayed_ins_list); 6459 LIST_HEAD(delayed_del_list); 6460 6461 path = btrfs_alloc_path(); 6462 if (!path) 6463 return -ENOMEM; 6464 dst_path = btrfs_alloc_path(); 6465 if (!dst_path) { 6466 btrfs_free_path(path); 6467 return -ENOMEM; 6468 } 6469 6470 min_key.objectid = ino; 6471 min_key.type = BTRFS_INODE_ITEM_KEY; 6472 min_key.offset = 0; 6473 6474 max_key.objectid = ino; 6475 6476 6477 /* today the code can only do partial logging of directories */ 6478 if (S_ISDIR(inode->vfs_inode.i_mode) || 6479 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 6480 &inode->runtime_flags) && 6481 inode_only >= LOG_INODE_EXISTS)) 6482 max_key.type = BTRFS_XATTR_ITEM_KEY; 6483 else 6484 max_key.type = (u8)-1; 6485 max_key.offset = (u64)-1; 6486 6487 if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL) 6488 full_dir_logging = true; 6489 6490 /* 6491 * If we are logging a directory while we are logging dentries of the 6492 * delayed items of some other inode, then we need to flush the delayed 6493 * items of this directory and not log the delayed items directly. This 6494 * is to prevent more than one level of recursion into btrfs_log_inode() 6495 * by having something like this: 6496 * 6497 * $ mkdir -p a/b/c/d/e/f/g/h/... 6498 * $ xfs_io -c "fsync" a 6499 * 6500 * Where all directories in the path did not exist before and are 6501 * created in the current transaction. 6502 * So in such a case we directly log the delayed items of the main 6503 * directory ("a") without flushing them first, while for each of its 6504 * subdirectories we flush their delayed items before logging them. 6505 * This prevents a potential unbounded recursion like this: 6506 * 6507 * btrfs_log_inode() 6508 * log_new_delayed_dentries() 6509 * btrfs_log_inode() 6510 * log_new_delayed_dentries() 6511 * btrfs_log_inode() 6512 * log_new_delayed_dentries() 6513 * (...) 6514 * 6515 * We have thresholds for the maximum number of delayed items to have in 6516 * memory, and once they are hit, the items are flushed asynchronously. 6517 * However the limit is quite high, so lets prevent deep levels of 6518 * recursion to happen by limiting the maximum depth to be 1. 6519 */ 6520 if (full_dir_logging && ctx->logging_new_delayed_dentries) { 6521 ret = btrfs_commit_inode_delayed_items(trans, inode); 6522 if (ret) 6523 goto out; 6524 } 6525 6526 mutex_lock(&inode->log_mutex); 6527 6528 /* 6529 * For symlinks, we must always log their content, which is stored in an 6530 * inline extent, otherwise we could end up with an empty symlink after 6531 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if 6532 * one attempts to create an empty symlink). 6533 * We don't need to worry about flushing delalloc, because when we create 6534 * the inline extent when the symlink is created (we never have delalloc 6535 * for symlinks). 6536 */ 6537 if (S_ISLNK(inode->vfs_inode.i_mode)) 6538 inode_only = LOG_INODE_ALL; 6539 6540 /* 6541 * Before logging the inode item, cache the value returned by 6542 * inode_logged(), because after that we have the need to figure out if 6543 * the inode was previously logged in this transaction. 6544 */ 6545 ret = inode_logged(trans, inode, path); 6546 if (ret < 0) 6547 goto out_unlock; 6548 ctx->logged_before = (ret == 1); 6549 ret = 0; 6550 6551 /* 6552 * This is for cases where logging a directory could result in losing a 6553 * a file after replaying the log. For example, if we move a file from a 6554 * directory A to a directory B, then fsync directory A, we have no way 6555 * to known the file was moved from A to B, so logging just A would 6556 * result in losing the file after a log replay. 6557 */ 6558 if (full_dir_logging && inode->last_unlink_trans >= trans->transid) { 6559 ret = BTRFS_LOG_FORCE_COMMIT; 6560 goto out_unlock; 6561 } 6562 6563 /* 6564 * a brute force approach to making sure we get the most uptodate 6565 * copies of everything. 6566 */ 6567 if (S_ISDIR(inode->vfs_inode.i_mode)) { 6568 clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags); 6569 if (ctx->logged_before) 6570 ret = drop_inode_items(trans, log, path, inode, 6571 BTRFS_XATTR_ITEM_KEY); 6572 } else { 6573 if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) { 6574 /* 6575 * Make sure the new inode item we write to the log has 6576 * the same isize as the current one (if it exists). 6577 * This is necessary to prevent data loss after log 6578 * replay, and also to prevent doing a wrong expanding 6579 * truncate - for e.g. create file, write 4K into offset 6580 * 0, fsync, write 4K into offset 4096, add hard link, 6581 * fsync some other file (to sync log), power fail - if 6582 * we use the inode's current i_size, after log replay 6583 * we get a 8Kb file, with the last 4Kb extent as a hole 6584 * (zeroes), as if an expanding truncate happened, 6585 * instead of getting a file of 4Kb only. 6586 */ 6587 ret = logged_inode_size(log, inode, path, &logged_isize); 6588 if (ret) 6589 goto out_unlock; 6590 } 6591 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 6592 &inode->runtime_flags)) { 6593 if (inode_only == LOG_INODE_EXISTS) { 6594 max_key.type = BTRFS_XATTR_ITEM_KEY; 6595 if (ctx->logged_before) 6596 ret = drop_inode_items(trans, log, path, 6597 inode, max_key.type); 6598 } else { 6599 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 6600 &inode->runtime_flags); 6601 clear_bit(BTRFS_INODE_COPY_EVERYTHING, 6602 &inode->runtime_flags); 6603 if (ctx->logged_before) 6604 ret = truncate_inode_items(trans, log, 6605 inode, 0, 0); 6606 } 6607 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING, 6608 &inode->runtime_flags) || 6609 inode_only == LOG_INODE_EXISTS) { 6610 if (inode_only == LOG_INODE_ALL) 6611 fast_search = true; 6612 max_key.type = BTRFS_XATTR_ITEM_KEY; 6613 if (ctx->logged_before) 6614 ret = drop_inode_items(trans, log, path, inode, 6615 max_key.type); 6616 } else { 6617 if (inode_only == LOG_INODE_ALL) 6618 fast_search = true; 6619 inode_item_dropped = false; 6620 goto log_extents; 6621 } 6622 6623 } 6624 if (ret) 6625 goto out_unlock; 6626 6627 /* 6628 * If we are logging a directory in full mode, collect the delayed items 6629 * before iterating the subvolume tree, so that we don't miss any new 6630 * dir index items in case they get flushed while or right after we are 6631 * iterating the subvolume tree. 6632 */ 6633 if (full_dir_logging && !ctx->logging_new_delayed_dentries) 6634 btrfs_log_get_delayed_items(inode, &delayed_ins_list, 6635 &delayed_del_list); 6636 6637 /* 6638 * If we are fsyncing a file with 0 hard links, then commit the delayed 6639 * inode because the last inode ref (or extref) item may still be in the 6640 * subvolume tree and if we log it the file will still exist after a log 6641 * replay. So commit the delayed inode to delete that last ref and we 6642 * skip logging it. 6643 */ 6644 if (inode->vfs_inode.i_nlink == 0) { 6645 ret = btrfs_commit_inode_delayed_inode(inode); 6646 if (ret) 6647 goto out_unlock; 6648 } 6649 6650 ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key, 6651 path, dst_path, logged_isize, 6652 inode_only, ctx, 6653 &need_log_inode_item); 6654 if (ret) 6655 goto out_unlock; 6656 6657 btrfs_release_path(path); 6658 btrfs_release_path(dst_path); 6659 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx); 6660 if (ret) 6661 goto out_unlock; 6662 xattrs_logged = true; 6663 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) { 6664 btrfs_release_path(path); 6665 btrfs_release_path(dst_path); 6666 ret = btrfs_log_holes(trans, inode, path); 6667 if (ret) 6668 goto out_unlock; 6669 } 6670 log_extents: 6671 btrfs_release_path(path); 6672 btrfs_release_path(dst_path); 6673 if (need_log_inode_item) { 6674 ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped); 6675 if (ret) 6676 goto out_unlock; 6677 /* 6678 * If we are doing a fast fsync and the inode was logged before 6679 * in this transaction, we don't need to log the xattrs because 6680 * they were logged before. If xattrs were added, changed or 6681 * deleted since the last time we logged the inode, then we have 6682 * already logged them because the inode had the runtime flag 6683 * BTRFS_INODE_COPY_EVERYTHING set. 6684 */ 6685 if (!xattrs_logged && inode->logged_trans < trans->transid) { 6686 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx); 6687 if (ret) 6688 goto out_unlock; 6689 btrfs_release_path(path); 6690 } 6691 } 6692 if (fast_search) { 6693 ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx); 6694 if (ret) 6695 goto out_unlock; 6696 } else if (inode_only == LOG_INODE_ALL) { 6697 struct extent_map *em, *n; 6698 6699 write_lock(&em_tree->lock); 6700 list_for_each_entry_safe(em, n, &em_tree->modified_extents, list) 6701 list_del_init(&em->list); 6702 write_unlock(&em_tree->lock); 6703 } 6704 6705 if (full_dir_logging) { 6706 ret = log_directory_changes(trans, inode, path, dst_path, ctx); 6707 if (ret) 6708 goto out_unlock; 6709 ret = log_delayed_insertion_items(trans, inode, path, 6710 &delayed_ins_list, ctx); 6711 if (ret) 6712 goto out_unlock; 6713 ret = log_delayed_deletion_items(trans, inode, path, 6714 &delayed_del_list, ctx); 6715 if (ret) 6716 goto out_unlock; 6717 } 6718 6719 spin_lock(&inode->lock); 6720 inode->logged_trans = trans->transid; 6721 /* 6722 * Don't update last_log_commit if we logged that an inode exists. 6723 * We do this for three reasons: 6724 * 6725 * 1) We might have had buffered writes to this inode that were 6726 * flushed and had their ordered extents completed in this 6727 * transaction, but we did not previously log the inode with 6728 * LOG_INODE_ALL. Later the inode was evicted and after that 6729 * it was loaded again and this LOG_INODE_EXISTS log operation 6730 * happened. We must make sure that if an explicit fsync against 6731 * the inode is performed later, it logs the new extents, an 6732 * updated inode item, etc, and syncs the log. The same logic 6733 * applies to direct IO writes instead of buffered writes. 6734 * 6735 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item 6736 * is logged with an i_size of 0 or whatever value was logged 6737 * before. If later the i_size of the inode is increased by a 6738 * truncate operation, the log is synced through an fsync of 6739 * some other inode and then finally an explicit fsync against 6740 * this inode is made, we must make sure this fsync logs the 6741 * inode with the new i_size, the hole between old i_size and 6742 * the new i_size, and syncs the log. 6743 * 6744 * 3) If we are logging that an ancestor inode exists as part of 6745 * logging a new name from a link or rename operation, don't update 6746 * its last_log_commit - otherwise if an explicit fsync is made 6747 * against an ancestor, the fsync considers the inode in the log 6748 * and doesn't sync the log, resulting in the ancestor missing after 6749 * a power failure unless the log was synced as part of an fsync 6750 * against any other unrelated inode. 6751 */ 6752 if (inode_only != LOG_INODE_EXISTS) 6753 inode->last_log_commit = inode->last_sub_trans; 6754 spin_unlock(&inode->lock); 6755 6756 /* 6757 * Reset the last_reflink_trans so that the next fsync does not need to 6758 * go through the slower path when logging extents and their checksums. 6759 */ 6760 if (inode_only == LOG_INODE_ALL) 6761 inode->last_reflink_trans = 0; 6762 6763 out_unlock: 6764 mutex_unlock(&inode->log_mutex); 6765 out: 6766 btrfs_free_path(path); 6767 btrfs_free_path(dst_path); 6768 6769 if (ret) 6770 free_conflicting_inodes(ctx); 6771 else 6772 ret = log_conflicting_inodes(trans, inode->root, ctx); 6773 6774 if (full_dir_logging && !ctx->logging_new_delayed_dentries) { 6775 if (!ret) 6776 ret = log_new_delayed_dentries(trans, inode, 6777 &delayed_ins_list, ctx); 6778 6779 btrfs_log_put_delayed_items(inode, &delayed_ins_list, 6780 &delayed_del_list); 6781 } 6782 6783 return ret; 6784 } 6785 6786 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans, 6787 struct btrfs_inode *inode, 6788 struct btrfs_log_ctx *ctx) 6789 { 6790 int ret; 6791 struct btrfs_path *path; 6792 struct btrfs_key key; 6793 struct btrfs_root *root = inode->root; 6794 const u64 ino = btrfs_ino(inode); 6795 6796 path = btrfs_alloc_path(); 6797 if (!path) 6798 return -ENOMEM; 6799 path->skip_locking = 1; 6800 path->search_commit_root = 1; 6801 6802 key.objectid = ino; 6803 key.type = BTRFS_INODE_REF_KEY; 6804 key.offset = 0; 6805 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6806 if (ret < 0) 6807 goto out; 6808 6809 while (true) { 6810 struct extent_buffer *leaf = path->nodes[0]; 6811 int slot = path->slots[0]; 6812 u32 cur_offset = 0; 6813 u32 item_size; 6814 unsigned long ptr; 6815 6816 if (slot >= btrfs_header_nritems(leaf)) { 6817 ret = btrfs_next_leaf(root, path); 6818 if (ret < 0) 6819 goto out; 6820 else if (ret > 0) 6821 break; 6822 continue; 6823 } 6824 6825 btrfs_item_key_to_cpu(leaf, &key, slot); 6826 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */ 6827 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY) 6828 break; 6829 6830 item_size = btrfs_item_size(leaf, slot); 6831 ptr = btrfs_item_ptr_offset(leaf, slot); 6832 while (cur_offset < item_size) { 6833 struct btrfs_key inode_key; 6834 struct btrfs_inode *dir_inode; 6835 6836 inode_key.type = BTRFS_INODE_ITEM_KEY; 6837 inode_key.offset = 0; 6838 6839 if (key.type == BTRFS_INODE_EXTREF_KEY) { 6840 struct btrfs_inode_extref *extref; 6841 6842 extref = (struct btrfs_inode_extref *) 6843 (ptr + cur_offset); 6844 inode_key.objectid = btrfs_inode_extref_parent( 6845 leaf, extref); 6846 cur_offset += sizeof(*extref); 6847 cur_offset += btrfs_inode_extref_name_len(leaf, 6848 extref); 6849 } else { 6850 inode_key.objectid = key.offset; 6851 cur_offset = item_size; 6852 } 6853 6854 dir_inode = btrfs_iget_logging(inode_key.objectid, root); 6855 /* 6856 * If the parent inode was deleted, return an error to 6857 * fallback to a transaction commit. This is to prevent 6858 * getting an inode that was moved from one parent A to 6859 * a parent B, got its former parent A deleted and then 6860 * it got fsync'ed, from existing at both parents after 6861 * a log replay (and the old parent still existing). 6862 * Example: 6863 * 6864 * mkdir /mnt/A 6865 * mkdir /mnt/B 6866 * touch /mnt/B/bar 6867 * sync 6868 * mv /mnt/B/bar /mnt/A/bar 6869 * mv -T /mnt/A /mnt/B 6870 * fsync /mnt/B/bar 6871 * <power fail> 6872 * 6873 * If we ignore the old parent B which got deleted, 6874 * after a log replay we would have file bar linked 6875 * at both parents and the old parent B would still 6876 * exist. 6877 */ 6878 if (IS_ERR(dir_inode)) { 6879 ret = PTR_ERR(dir_inode); 6880 goto out; 6881 } 6882 6883 if (!need_log_inode(trans, dir_inode)) { 6884 btrfs_add_delayed_iput(dir_inode); 6885 continue; 6886 } 6887 6888 ctx->log_new_dentries = false; 6889 ret = btrfs_log_inode(trans, dir_inode, LOG_INODE_ALL, ctx); 6890 if (!ret && ctx->log_new_dentries) 6891 ret = log_new_dir_dentries(trans, dir_inode, ctx); 6892 btrfs_add_delayed_iput(dir_inode); 6893 if (ret) 6894 goto out; 6895 } 6896 path->slots[0]++; 6897 } 6898 ret = 0; 6899 out: 6900 btrfs_free_path(path); 6901 return ret; 6902 } 6903 6904 static int log_new_ancestors(struct btrfs_trans_handle *trans, 6905 struct btrfs_root *root, 6906 struct btrfs_path *path, 6907 struct btrfs_log_ctx *ctx) 6908 { 6909 struct btrfs_key found_key; 6910 6911 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 6912 6913 while (true) { 6914 struct extent_buffer *leaf; 6915 int slot; 6916 struct btrfs_key search_key; 6917 struct btrfs_inode *inode; 6918 u64 ino; 6919 int ret = 0; 6920 6921 btrfs_release_path(path); 6922 6923 ino = found_key.offset; 6924 6925 search_key.objectid = found_key.offset; 6926 search_key.type = BTRFS_INODE_ITEM_KEY; 6927 search_key.offset = 0; 6928 inode = btrfs_iget_logging(ino, root); 6929 if (IS_ERR(inode)) 6930 return PTR_ERR(inode); 6931 6932 if (inode->generation >= trans->transid && 6933 need_log_inode(trans, inode)) 6934 ret = btrfs_log_inode(trans, inode, LOG_INODE_EXISTS, ctx); 6935 btrfs_add_delayed_iput(inode); 6936 if (ret) 6937 return ret; 6938 6939 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID) 6940 break; 6941 6942 search_key.type = BTRFS_INODE_REF_KEY; 6943 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 6944 if (ret < 0) 6945 return ret; 6946 6947 leaf = path->nodes[0]; 6948 slot = path->slots[0]; 6949 if (slot >= btrfs_header_nritems(leaf)) { 6950 ret = btrfs_next_leaf(root, path); 6951 if (ret < 0) 6952 return ret; 6953 else if (ret > 0) 6954 return -ENOENT; 6955 leaf = path->nodes[0]; 6956 slot = path->slots[0]; 6957 } 6958 6959 btrfs_item_key_to_cpu(leaf, &found_key, slot); 6960 if (found_key.objectid != search_key.objectid || 6961 found_key.type != BTRFS_INODE_REF_KEY) 6962 return -ENOENT; 6963 } 6964 return 0; 6965 } 6966 6967 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans, 6968 struct btrfs_inode *inode, 6969 struct dentry *parent, 6970 struct btrfs_log_ctx *ctx) 6971 { 6972 struct btrfs_root *root = inode->root; 6973 struct dentry *old_parent = NULL; 6974 struct super_block *sb = inode->vfs_inode.i_sb; 6975 int ret = 0; 6976 6977 while (true) { 6978 if (!parent || d_really_is_negative(parent) || 6979 sb != parent->d_sb) 6980 break; 6981 6982 inode = BTRFS_I(d_inode(parent)); 6983 if (root != inode->root) 6984 break; 6985 6986 if (inode->generation >= trans->transid && 6987 need_log_inode(trans, inode)) { 6988 ret = btrfs_log_inode(trans, inode, 6989 LOG_INODE_EXISTS, ctx); 6990 if (ret) 6991 break; 6992 } 6993 if (IS_ROOT(parent)) 6994 break; 6995 6996 parent = dget_parent(parent); 6997 dput(old_parent); 6998 old_parent = parent; 6999 } 7000 dput(old_parent); 7001 7002 return ret; 7003 } 7004 7005 static int log_all_new_ancestors(struct btrfs_trans_handle *trans, 7006 struct btrfs_inode *inode, 7007 struct dentry *parent, 7008 struct btrfs_log_ctx *ctx) 7009 { 7010 struct btrfs_root *root = inode->root; 7011 const u64 ino = btrfs_ino(inode); 7012 struct btrfs_path *path; 7013 struct btrfs_key search_key; 7014 int ret; 7015 7016 /* 7017 * For a single hard link case, go through a fast path that does not 7018 * need to iterate the fs/subvolume tree. 7019 */ 7020 if (inode->vfs_inode.i_nlink < 2) 7021 return log_new_ancestors_fast(trans, inode, parent, ctx); 7022 7023 path = btrfs_alloc_path(); 7024 if (!path) 7025 return -ENOMEM; 7026 7027 search_key.objectid = ino; 7028 search_key.type = BTRFS_INODE_REF_KEY; 7029 search_key.offset = 0; 7030 again: 7031 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 7032 if (ret < 0) 7033 goto out; 7034 if (ret == 0) 7035 path->slots[0]++; 7036 7037 while (true) { 7038 struct extent_buffer *leaf = path->nodes[0]; 7039 int slot = path->slots[0]; 7040 struct btrfs_key found_key; 7041 7042 if (slot >= btrfs_header_nritems(leaf)) { 7043 ret = btrfs_next_leaf(root, path); 7044 if (ret < 0) 7045 goto out; 7046 else if (ret > 0) 7047 break; 7048 continue; 7049 } 7050 7051 btrfs_item_key_to_cpu(leaf, &found_key, slot); 7052 if (found_key.objectid != ino || 7053 found_key.type > BTRFS_INODE_EXTREF_KEY) 7054 break; 7055 7056 /* 7057 * Don't deal with extended references because they are rare 7058 * cases and too complex to deal with (we would need to keep 7059 * track of which subitem we are processing for each item in 7060 * this loop, etc). So just return some error to fallback to 7061 * a transaction commit. 7062 */ 7063 if (found_key.type == BTRFS_INODE_EXTREF_KEY) { 7064 ret = -EMLINK; 7065 goto out; 7066 } 7067 7068 /* 7069 * Logging ancestors needs to do more searches on the fs/subvol 7070 * tree, so it releases the path as needed to avoid deadlocks. 7071 * Keep track of the last inode ref key and resume from that key 7072 * after logging all new ancestors for the current hard link. 7073 */ 7074 memcpy(&search_key, &found_key, sizeof(search_key)); 7075 7076 ret = log_new_ancestors(trans, root, path, ctx); 7077 if (ret) 7078 goto out; 7079 btrfs_release_path(path); 7080 goto again; 7081 } 7082 ret = 0; 7083 out: 7084 btrfs_free_path(path); 7085 return ret; 7086 } 7087 7088 /* 7089 * helper function around btrfs_log_inode to make sure newly created 7090 * parent directories also end up in the log. A minimal inode and backref 7091 * only logging is done of any parent directories that are older than 7092 * the last committed transaction 7093 */ 7094 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans, 7095 struct btrfs_inode *inode, 7096 struct dentry *parent, 7097 int inode_only, 7098 struct btrfs_log_ctx *ctx) 7099 { 7100 struct btrfs_root *root = inode->root; 7101 struct btrfs_fs_info *fs_info = root->fs_info; 7102 int ret = 0; 7103 bool log_dentries; 7104 7105 if (btrfs_test_opt(fs_info, NOTREELOG)) 7106 return BTRFS_LOG_FORCE_COMMIT; 7107 7108 if (btrfs_root_refs(&root->root_item) == 0) 7109 return BTRFS_LOG_FORCE_COMMIT; 7110 7111 /* 7112 * If we're logging an inode from a subvolume created in the current 7113 * transaction we must force a commit since the root is not persisted. 7114 */ 7115 if (btrfs_root_generation(&root->root_item) == trans->transid) 7116 return BTRFS_LOG_FORCE_COMMIT; 7117 7118 /* Skip already logged inodes and without new extents. */ 7119 if (btrfs_inode_in_log(inode, trans->transid) && 7120 list_empty(&ctx->ordered_extents)) 7121 return BTRFS_NO_LOG_SYNC; 7122 7123 ret = start_log_trans(trans, root, ctx); 7124 if (ret) 7125 return ret; 7126 7127 ret = btrfs_log_inode(trans, inode, inode_only, ctx); 7128 if (ret) 7129 goto end_trans; 7130 7131 /* 7132 * for regular files, if its inode is already on disk, we don't 7133 * have to worry about the parents at all. This is because 7134 * we can use the last_unlink_trans field to record renames 7135 * and other fun in this file. 7136 */ 7137 if (S_ISREG(inode->vfs_inode.i_mode) && 7138 inode->generation < trans->transid && 7139 inode->last_unlink_trans < trans->transid) { 7140 ret = 0; 7141 goto end_trans; 7142 } 7143 7144 /* 7145 * Track if we need to log dentries because ctx->log_new_dentries can 7146 * be modified in the call chains below. 7147 */ 7148 log_dentries = ctx->log_new_dentries; 7149 7150 /* 7151 * On unlink we must make sure all our current and old parent directory 7152 * inodes are fully logged. This is to prevent leaving dangling 7153 * directory index entries in directories that were our parents but are 7154 * not anymore. Not doing this results in old parent directory being 7155 * impossible to delete after log replay (rmdir will always fail with 7156 * error -ENOTEMPTY). 7157 * 7158 * Example 1: 7159 * 7160 * mkdir testdir 7161 * touch testdir/foo 7162 * ln testdir/foo testdir/bar 7163 * sync 7164 * unlink testdir/bar 7165 * xfs_io -c fsync testdir/foo 7166 * <power failure> 7167 * mount fs, triggers log replay 7168 * 7169 * If we don't log the parent directory (testdir), after log replay the 7170 * directory still has an entry pointing to the file inode using the bar 7171 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and 7172 * the file inode has a link count of 1. 7173 * 7174 * Example 2: 7175 * 7176 * mkdir testdir 7177 * touch foo 7178 * ln foo testdir/foo2 7179 * ln foo testdir/foo3 7180 * sync 7181 * unlink testdir/foo3 7182 * xfs_io -c fsync foo 7183 * <power failure> 7184 * mount fs, triggers log replay 7185 * 7186 * Similar as the first example, after log replay the parent directory 7187 * testdir still has an entry pointing to the inode file with name foo3 7188 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item 7189 * and has a link count of 2. 7190 */ 7191 if (inode->last_unlink_trans >= trans->transid) { 7192 ret = btrfs_log_all_parents(trans, inode, ctx); 7193 if (ret) 7194 goto end_trans; 7195 } 7196 7197 ret = log_all_new_ancestors(trans, inode, parent, ctx); 7198 if (ret) 7199 goto end_trans; 7200 7201 if (log_dentries) 7202 ret = log_new_dir_dentries(trans, inode, ctx); 7203 end_trans: 7204 if (ret < 0) { 7205 btrfs_set_log_full_commit(trans); 7206 ret = BTRFS_LOG_FORCE_COMMIT; 7207 } 7208 7209 if (ret) 7210 btrfs_remove_log_ctx(root, ctx); 7211 btrfs_end_log_trans(root); 7212 7213 return ret; 7214 } 7215 7216 /* 7217 * it is not safe to log dentry if the chunk root has added new 7218 * chunks. This returns 0 if the dentry was logged, and 1 otherwise. 7219 * If this returns 1, you must commit the transaction to safely get your 7220 * data on disk. 7221 */ 7222 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans, 7223 struct dentry *dentry, 7224 struct btrfs_log_ctx *ctx) 7225 { 7226 struct dentry *parent = dget_parent(dentry); 7227 int ret; 7228 7229 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent, 7230 LOG_INODE_ALL, ctx); 7231 dput(parent); 7232 7233 return ret; 7234 } 7235 7236 /* 7237 * should be called during mount to recover any replay any log trees 7238 * from the FS 7239 */ 7240 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree) 7241 { 7242 int ret; 7243 struct btrfs_path *path; 7244 struct btrfs_trans_handle *trans; 7245 struct btrfs_key key; 7246 struct btrfs_fs_info *fs_info = log_root_tree->fs_info; 7247 struct walk_control wc = { 7248 .process_func = process_one_buffer, 7249 .stage = LOG_WALK_PIN_ONLY, 7250 }; 7251 7252 path = btrfs_alloc_path(); 7253 if (!path) 7254 return -ENOMEM; 7255 7256 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 7257 7258 trans = btrfs_start_transaction(fs_info->tree_root, 0); 7259 if (IS_ERR(trans)) { 7260 ret = PTR_ERR(trans); 7261 goto error; 7262 } 7263 7264 wc.trans = trans; 7265 wc.pin = 1; 7266 7267 ret = walk_log_tree(trans, log_root_tree, &wc); 7268 if (ret) { 7269 btrfs_abort_transaction(trans, ret); 7270 goto error; 7271 } 7272 7273 again: 7274 key.objectid = BTRFS_TREE_LOG_OBJECTID; 7275 key.type = BTRFS_ROOT_ITEM_KEY; 7276 key.offset = (u64)-1; 7277 7278 while (1) { 7279 struct btrfs_root *log; 7280 struct btrfs_key found_key; 7281 7282 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0); 7283 7284 if (ret < 0) { 7285 btrfs_abort_transaction(trans, ret); 7286 goto error; 7287 } 7288 if (ret > 0) { 7289 if (path->slots[0] == 0) 7290 break; 7291 path->slots[0]--; 7292 } 7293 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 7294 path->slots[0]); 7295 btrfs_release_path(path); 7296 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID) 7297 break; 7298 7299 log = btrfs_read_tree_root(log_root_tree, &found_key); 7300 if (IS_ERR(log)) { 7301 ret = PTR_ERR(log); 7302 btrfs_abort_transaction(trans, ret); 7303 goto error; 7304 } 7305 7306 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset, 7307 true); 7308 if (IS_ERR(wc.replay_dest)) { 7309 ret = PTR_ERR(wc.replay_dest); 7310 wc.replay_dest = NULL; 7311 if (ret != -ENOENT) { 7312 btrfs_put_root(log); 7313 btrfs_abort_transaction(trans, ret); 7314 goto error; 7315 } 7316 7317 /* 7318 * We didn't find the subvol, likely because it was 7319 * deleted. This is ok, simply skip this log and go to 7320 * the next one. 7321 * 7322 * We need to exclude the root because we can't have 7323 * other log replays overwriting this log as we'll read 7324 * it back in a few more times. This will keep our 7325 * block from being modified, and we'll just bail for 7326 * each subsequent pass. 7327 */ 7328 ret = btrfs_pin_extent_for_log_replay(trans, log->node); 7329 if (ret) { 7330 btrfs_put_root(log); 7331 btrfs_abort_transaction(trans, ret); 7332 goto error; 7333 } 7334 goto next; 7335 } 7336 7337 wc.replay_dest->log_root = log; 7338 ret = btrfs_record_root_in_trans(trans, wc.replay_dest); 7339 if (ret) { 7340 btrfs_abort_transaction(trans, ret); 7341 goto next; 7342 } 7343 7344 ret = walk_log_tree(trans, log, &wc); 7345 if (ret) { 7346 btrfs_abort_transaction(trans, ret); 7347 goto next; 7348 } 7349 7350 if (wc.stage == LOG_WALK_REPLAY_ALL) { 7351 struct btrfs_root *root = wc.replay_dest; 7352 7353 ret = fixup_inode_link_counts(trans, wc.replay_dest, path); 7354 if (ret) { 7355 btrfs_abort_transaction(trans, ret); 7356 goto next; 7357 } 7358 /* 7359 * We have just replayed everything, and the highest 7360 * objectid of fs roots probably has changed in case 7361 * some inode_item's got replayed. 7362 * 7363 * root->objectid_mutex is not acquired as log replay 7364 * could only happen during mount. 7365 */ 7366 ret = btrfs_init_root_free_objectid(root); 7367 if (ret) { 7368 btrfs_abort_transaction(trans, ret); 7369 goto next; 7370 } 7371 } 7372 next: 7373 if (wc.replay_dest) { 7374 wc.replay_dest->log_root = NULL; 7375 btrfs_put_root(wc.replay_dest); 7376 } 7377 btrfs_put_root(log); 7378 7379 if (ret) 7380 goto error; 7381 if (found_key.offset == 0) 7382 break; 7383 key.offset = found_key.offset - 1; 7384 } 7385 btrfs_release_path(path); 7386 7387 /* step one is to pin it all, step two is to replay just inodes */ 7388 if (wc.pin) { 7389 wc.pin = 0; 7390 wc.process_func = replay_one_buffer; 7391 wc.stage = LOG_WALK_REPLAY_INODES; 7392 goto again; 7393 } 7394 /* step three is to replay everything */ 7395 if (wc.stage < LOG_WALK_REPLAY_ALL) { 7396 wc.stage++; 7397 goto again; 7398 } 7399 7400 btrfs_free_path(path); 7401 7402 /* step 4: commit the transaction, which also unpins the blocks */ 7403 ret = btrfs_commit_transaction(trans); 7404 if (ret) 7405 return ret; 7406 7407 log_root_tree->log_root = NULL; 7408 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 7409 btrfs_put_root(log_root_tree); 7410 7411 return 0; 7412 error: 7413 if (wc.trans) 7414 btrfs_end_transaction(wc.trans); 7415 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 7416 btrfs_free_path(path); 7417 return ret; 7418 } 7419 7420 /* 7421 * there are some corner cases where we want to force a full 7422 * commit instead of allowing a directory to be logged. 7423 * 7424 * They revolve around files there were unlinked from the directory, and 7425 * this function updates the parent directory so that a full commit is 7426 * properly done if it is fsync'd later after the unlinks are done. 7427 * 7428 * Must be called before the unlink operations (updates to the subvolume tree, 7429 * inodes, etc) are done. 7430 */ 7431 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans, 7432 struct btrfs_inode *dir, struct btrfs_inode *inode, 7433 bool for_rename) 7434 { 7435 /* 7436 * when we're logging a file, if it hasn't been renamed 7437 * or unlinked, and its inode is fully committed on disk, 7438 * we don't have to worry about walking up the directory chain 7439 * to log its parents. 7440 * 7441 * So, we use the last_unlink_trans field to put this transid 7442 * into the file. When the file is logged we check it and 7443 * don't log the parents if the file is fully on disk. 7444 */ 7445 mutex_lock(&inode->log_mutex); 7446 inode->last_unlink_trans = trans->transid; 7447 mutex_unlock(&inode->log_mutex); 7448 7449 if (!for_rename) 7450 return; 7451 7452 /* 7453 * If this directory was already logged, any new names will be logged 7454 * with btrfs_log_new_name() and old names will be deleted from the log 7455 * tree with btrfs_del_dir_entries_in_log() or with 7456 * btrfs_del_inode_ref_in_log(). 7457 */ 7458 if (inode_logged(trans, dir, NULL) == 1) 7459 return; 7460 7461 /* 7462 * If the inode we're about to unlink was logged before, the log will be 7463 * properly updated with the new name with btrfs_log_new_name() and the 7464 * old name removed with btrfs_del_dir_entries_in_log() or with 7465 * btrfs_del_inode_ref_in_log(). 7466 */ 7467 if (inode_logged(trans, inode, NULL) == 1) 7468 return; 7469 7470 /* 7471 * when renaming files across directories, if the directory 7472 * there we're unlinking from gets fsync'd later on, there's 7473 * no way to find the destination directory later and fsync it 7474 * properly. So, we have to be conservative and force commits 7475 * so the new name gets discovered. 7476 */ 7477 mutex_lock(&dir->log_mutex); 7478 dir->last_unlink_trans = trans->transid; 7479 mutex_unlock(&dir->log_mutex); 7480 } 7481 7482 /* 7483 * Make sure that if someone attempts to fsync the parent directory of a deleted 7484 * snapshot, it ends up triggering a transaction commit. This is to guarantee 7485 * that after replaying the log tree of the parent directory's root we will not 7486 * see the snapshot anymore and at log replay time we will not see any log tree 7487 * corresponding to the deleted snapshot's root, which could lead to replaying 7488 * it after replaying the log tree of the parent directory (which would replay 7489 * the snapshot delete operation). 7490 * 7491 * Must be called before the actual snapshot destroy operation (updates to the 7492 * parent root and tree of tree roots trees, etc) are done. 7493 */ 7494 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans, 7495 struct btrfs_inode *dir) 7496 { 7497 mutex_lock(&dir->log_mutex); 7498 dir->last_unlink_trans = trans->transid; 7499 mutex_unlock(&dir->log_mutex); 7500 } 7501 7502 /* 7503 * Call this when creating a subvolume in a directory. 7504 * Because we don't commit a transaction when creating a subvolume, we can't 7505 * allow the directory pointing to the subvolume to be logged with an entry that 7506 * points to an unpersisted root if we are still in the transaction used to 7507 * create the subvolume, so make any attempt to log the directory to result in a 7508 * full log sync. 7509 * Also we don't need to worry with renames, since btrfs_rename() marks the log 7510 * for full commit when renaming a subvolume. 7511 * 7512 * Must be called before creating the subvolume entry in its parent directory. 7513 */ 7514 void btrfs_record_new_subvolume(const struct btrfs_trans_handle *trans, 7515 struct btrfs_inode *dir) 7516 { 7517 mutex_lock(&dir->log_mutex); 7518 dir->last_unlink_trans = trans->transid; 7519 mutex_unlock(&dir->log_mutex); 7520 } 7521 7522 /* 7523 * Update the log after adding a new name for an inode. 7524 * 7525 * @trans: Transaction handle. 7526 * @old_dentry: The dentry associated with the old name and the old 7527 * parent directory. 7528 * @old_dir: The inode of the previous parent directory for the case 7529 * of a rename. For a link operation, it must be NULL. 7530 * @old_dir_index: The index number associated with the old name, meaningful 7531 * only for rename operations (when @old_dir is not NULL). 7532 * Ignored for link operations. 7533 * @parent: The dentry associated with the directory under which the 7534 * new name is located. 7535 * 7536 * Call this after adding a new name for an inode, as a result of a link or 7537 * rename operation, and it will properly update the log to reflect the new name. 7538 */ 7539 void btrfs_log_new_name(struct btrfs_trans_handle *trans, 7540 struct dentry *old_dentry, struct btrfs_inode *old_dir, 7541 u64 old_dir_index, struct dentry *parent) 7542 { 7543 struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry)); 7544 struct btrfs_root *root = inode->root; 7545 struct btrfs_log_ctx ctx; 7546 bool log_pinned = false; 7547 int ret; 7548 7549 btrfs_init_log_ctx(&ctx, inode); 7550 ctx.logging_new_name = true; 7551 7552 /* 7553 * this will force the logging code to walk the dentry chain 7554 * up for the file 7555 */ 7556 if (!S_ISDIR(inode->vfs_inode.i_mode)) 7557 inode->last_unlink_trans = trans->transid; 7558 7559 /* 7560 * if this inode hasn't been logged and directory we're renaming it 7561 * from hasn't been logged, we don't need to log it 7562 */ 7563 ret = inode_logged(trans, inode, NULL); 7564 if (ret < 0) { 7565 goto out; 7566 } else if (ret == 0) { 7567 if (!old_dir) 7568 return; 7569 /* 7570 * If the inode was not logged and we are doing a rename (old_dir is not 7571 * NULL), check if old_dir was logged - if it was not we can return and 7572 * do nothing. 7573 */ 7574 ret = inode_logged(trans, old_dir, NULL); 7575 if (ret < 0) 7576 goto out; 7577 else if (ret == 0) 7578 return; 7579 } 7580 ret = 0; 7581 7582 /* 7583 * Now that we know we need to update the log, allocate the scratch eb 7584 * for the context before joining a log transaction below, as this can 7585 * take time and therefore we could delay log commits from other tasks. 7586 */ 7587 btrfs_init_log_ctx_scratch_eb(&ctx); 7588 7589 /* 7590 * If we are doing a rename (old_dir is not NULL) from a directory that 7591 * was previously logged, make sure that on log replay we get the old 7592 * dir entry deleted. This is needed because we will also log the new 7593 * name of the renamed inode, so we need to make sure that after log 7594 * replay we don't end up with both the new and old dir entries existing. 7595 */ 7596 if (old_dir && old_dir->logged_trans == trans->transid) { 7597 struct btrfs_root *log = old_dir->root->log_root; 7598 struct btrfs_path *path; 7599 struct fscrypt_name fname; 7600 7601 ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX); 7602 7603 ret = fscrypt_setup_filename(&old_dir->vfs_inode, 7604 &old_dentry->d_name, 0, &fname); 7605 if (ret) 7606 goto out; 7607 7608 path = btrfs_alloc_path(); 7609 if (!path) { 7610 ret = -ENOMEM; 7611 fscrypt_free_filename(&fname); 7612 goto out; 7613 } 7614 7615 /* 7616 * We have two inodes to update in the log, the old directory and 7617 * the inode that got renamed, so we must pin the log to prevent 7618 * anyone from syncing the log until we have updated both inodes 7619 * in the log. 7620 */ 7621 ret = join_running_log_trans(root); 7622 /* 7623 * At least one of the inodes was logged before, so this should 7624 * not fail, but if it does, it's not serious, just bail out and 7625 * mark the log for a full commit. 7626 */ 7627 if (WARN_ON_ONCE(ret < 0)) { 7628 btrfs_free_path(path); 7629 fscrypt_free_filename(&fname); 7630 goto out; 7631 } 7632 7633 log_pinned = true; 7634 7635 /* 7636 * Other concurrent task might be logging the old directory, 7637 * as it can be triggered when logging other inode that had or 7638 * still has a dentry in the old directory. We lock the old 7639 * directory's log_mutex to ensure the deletion of the old 7640 * name is persisted, because during directory logging we 7641 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of 7642 * the old name's dir index item is in the delayed items, so 7643 * it could be missed by an in progress directory logging. 7644 */ 7645 mutex_lock(&old_dir->log_mutex); 7646 ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir), 7647 &fname.disk_name, old_dir_index); 7648 if (ret > 0) { 7649 /* 7650 * The dentry does not exist in the log, so record its 7651 * deletion. 7652 */ 7653 btrfs_release_path(path); 7654 ret = insert_dir_log_key(trans, log, path, 7655 btrfs_ino(old_dir), 7656 old_dir_index, old_dir_index); 7657 } 7658 mutex_unlock(&old_dir->log_mutex); 7659 7660 btrfs_free_path(path); 7661 fscrypt_free_filename(&fname); 7662 if (ret < 0) 7663 goto out; 7664 } 7665 7666 /* 7667 * We don't care about the return value. If we fail to log the new name 7668 * then we know the next attempt to sync the log will fallback to a full 7669 * transaction commit (due to a call to btrfs_set_log_full_commit()), so 7670 * we don't need to worry about getting a log committed that has an 7671 * inconsistent state after a rename operation. 7672 */ 7673 btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx); 7674 ASSERT(list_empty(&ctx.conflict_inodes)); 7675 out: 7676 /* 7677 * If an error happened mark the log for a full commit because it's not 7678 * consistent and up to date or we couldn't find out if one of the 7679 * inodes was logged before in this transaction. Do it before unpinning 7680 * the log, to avoid any races with someone else trying to commit it. 7681 */ 7682 if (ret < 0) 7683 btrfs_set_log_full_commit(trans); 7684 if (log_pinned) 7685 btrfs_end_log_trans(root); 7686 free_extent_buffer(ctx.scratch_eb); 7687 } 7688 7689