xref: /linux/fs/btrfs/tree-log.c (revision 12871a0bd67dd4db4418e1daafcd46e9d329ef10)
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include "ctree.h"
22 #include "transaction.h"
23 #include "disk-io.h"
24 #include "locking.h"
25 #include "print-tree.h"
26 #include "compat.h"
27 #include "tree-log.h"
28 
29 /* magic values for the inode_only field in btrfs_log_inode:
30  *
31  * LOG_INODE_ALL means to log everything
32  * LOG_INODE_EXISTS means to log just enough to recreate the inode
33  * during log replay
34  */
35 #define LOG_INODE_ALL 0
36 #define LOG_INODE_EXISTS 1
37 
38 /*
39  * directory trouble cases
40  *
41  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
42  * log, we must force a full commit before doing an fsync of the directory
43  * where the unlink was done.
44  * ---> record transid of last unlink/rename per directory
45  *
46  * mkdir foo/some_dir
47  * normal commit
48  * rename foo/some_dir foo2/some_dir
49  * mkdir foo/some_dir
50  * fsync foo/some_dir/some_file
51  *
52  * The fsync above will unlink the original some_dir without recording
53  * it in its new location (foo2).  After a crash, some_dir will be gone
54  * unless the fsync of some_file forces a full commit
55  *
56  * 2) we must log any new names for any file or dir that is in the fsync
57  * log. ---> check inode while renaming/linking.
58  *
59  * 2a) we must log any new names for any file or dir during rename
60  * when the directory they are being removed from was logged.
61  * ---> check inode and old parent dir during rename
62  *
63  *  2a is actually the more important variant.  With the extra logging
64  *  a crash might unlink the old name without recreating the new one
65  *
66  * 3) after a crash, we must go through any directories with a link count
67  * of zero and redo the rm -rf
68  *
69  * mkdir f1/foo
70  * normal commit
71  * rm -rf f1/foo
72  * fsync(f1)
73  *
74  * The directory f1 was fully removed from the FS, but fsync was never
75  * called on f1, only its parent dir.  After a crash the rm -rf must
76  * be replayed.  This must be able to recurse down the entire
77  * directory tree.  The inode link count fixup code takes care of the
78  * ugly details.
79  */
80 
81 /*
82  * stages for the tree walking.  The first
83  * stage (0) is to only pin down the blocks we find
84  * the second stage (1) is to make sure that all the inodes
85  * we find in the log are created in the subvolume.
86  *
87  * The last stage is to deal with directories and links and extents
88  * and all the other fun semantics
89  */
90 #define LOG_WALK_PIN_ONLY 0
91 #define LOG_WALK_REPLAY_INODES 1
92 #define LOG_WALK_REPLAY_ALL 2
93 
94 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
95 			     struct btrfs_root *root, struct inode *inode,
96 			     int inode_only);
97 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
98 			     struct btrfs_root *root,
99 			     struct btrfs_path *path, u64 objectid);
100 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
101 				       struct btrfs_root *root,
102 				       struct btrfs_root *log,
103 				       struct btrfs_path *path,
104 				       u64 dirid, int del_all);
105 
106 /*
107  * tree logging is a special write ahead log used to make sure that
108  * fsyncs and O_SYNCs can happen without doing full tree commits.
109  *
110  * Full tree commits are expensive because they require commonly
111  * modified blocks to be recowed, creating many dirty pages in the
112  * extent tree an 4x-6x higher write load than ext3.
113  *
114  * Instead of doing a tree commit on every fsync, we use the
115  * key ranges and transaction ids to find items for a given file or directory
116  * that have changed in this transaction.  Those items are copied into
117  * a special tree (one per subvolume root), that tree is written to disk
118  * and then the fsync is considered complete.
119  *
120  * After a crash, items are copied out of the log-tree back into the
121  * subvolume tree.  Any file data extents found are recorded in the extent
122  * allocation tree, and the log-tree freed.
123  *
124  * The log tree is read three times, once to pin down all the extents it is
125  * using in ram and once, once to create all the inodes logged in the tree
126  * and once to do all the other items.
127  */
128 
129 /*
130  * start a sub transaction and setup the log tree
131  * this increments the log tree writer count to make the people
132  * syncing the tree wait for us to finish
133  */
134 static int start_log_trans(struct btrfs_trans_handle *trans,
135 			   struct btrfs_root *root)
136 {
137 	int ret;
138 	int err = 0;
139 
140 	mutex_lock(&root->log_mutex);
141 	if (root->log_root) {
142 		if (!root->log_start_pid) {
143 			root->log_start_pid = current->pid;
144 			root->log_multiple_pids = false;
145 		} else if (root->log_start_pid != current->pid) {
146 			root->log_multiple_pids = true;
147 		}
148 
149 		root->log_batch++;
150 		atomic_inc(&root->log_writers);
151 		mutex_unlock(&root->log_mutex);
152 		return 0;
153 	}
154 	root->log_multiple_pids = false;
155 	root->log_start_pid = current->pid;
156 	mutex_lock(&root->fs_info->tree_log_mutex);
157 	if (!root->fs_info->log_root_tree) {
158 		ret = btrfs_init_log_root_tree(trans, root->fs_info);
159 		if (ret)
160 			err = ret;
161 	}
162 	if (err == 0 && !root->log_root) {
163 		ret = btrfs_add_log_tree(trans, root);
164 		if (ret)
165 			err = ret;
166 	}
167 	mutex_unlock(&root->fs_info->tree_log_mutex);
168 	root->log_batch++;
169 	atomic_inc(&root->log_writers);
170 	mutex_unlock(&root->log_mutex);
171 	return err;
172 }
173 
174 /*
175  * returns 0 if there was a log transaction running and we were able
176  * to join, or returns -ENOENT if there were not transactions
177  * in progress
178  */
179 static int join_running_log_trans(struct btrfs_root *root)
180 {
181 	int ret = -ENOENT;
182 
183 	smp_mb();
184 	if (!root->log_root)
185 		return -ENOENT;
186 
187 	mutex_lock(&root->log_mutex);
188 	if (root->log_root) {
189 		ret = 0;
190 		atomic_inc(&root->log_writers);
191 	}
192 	mutex_unlock(&root->log_mutex);
193 	return ret;
194 }
195 
196 /*
197  * This either makes the current running log transaction wait
198  * until you call btrfs_end_log_trans() or it makes any future
199  * log transactions wait until you call btrfs_end_log_trans()
200  */
201 int btrfs_pin_log_trans(struct btrfs_root *root)
202 {
203 	int ret = -ENOENT;
204 
205 	mutex_lock(&root->log_mutex);
206 	atomic_inc(&root->log_writers);
207 	mutex_unlock(&root->log_mutex);
208 	return ret;
209 }
210 
211 /*
212  * indicate we're done making changes to the log tree
213  * and wake up anyone waiting to do a sync
214  */
215 int btrfs_end_log_trans(struct btrfs_root *root)
216 {
217 	if (atomic_dec_and_test(&root->log_writers)) {
218 		smp_mb();
219 		if (waitqueue_active(&root->log_writer_wait))
220 			wake_up(&root->log_writer_wait);
221 	}
222 	return 0;
223 }
224 
225 
226 /*
227  * the walk control struct is used to pass state down the chain when
228  * processing the log tree.  The stage field tells us which part
229  * of the log tree processing we are currently doing.  The others
230  * are state fields used for that specific part
231  */
232 struct walk_control {
233 	/* should we free the extent on disk when done?  This is used
234 	 * at transaction commit time while freeing a log tree
235 	 */
236 	int free;
237 
238 	/* should we write out the extent buffer?  This is used
239 	 * while flushing the log tree to disk during a sync
240 	 */
241 	int write;
242 
243 	/* should we wait for the extent buffer io to finish?  Also used
244 	 * while flushing the log tree to disk for a sync
245 	 */
246 	int wait;
247 
248 	/* pin only walk, we record which extents on disk belong to the
249 	 * log trees
250 	 */
251 	int pin;
252 
253 	/* what stage of the replay code we're currently in */
254 	int stage;
255 
256 	/* the root we are currently replaying */
257 	struct btrfs_root *replay_dest;
258 
259 	/* the trans handle for the current replay */
260 	struct btrfs_trans_handle *trans;
261 
262 	/* the function that gets used to process blocks we find in the
263 	 * tree.  Note the extent_buffer might not be up to date when it is
264 	 * passed in, and it must be checked or read if you need the data
265 	 * inside it
266 	 */
267 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
268 			    struct walk_control *wc, u64 gen);
269 };
270 
271 /*
272  * process_func used to pin down extents, write them or wait on them
273  */
274 static int process_one_buffer(struct btrfs_root *log,
275 			      struct extent_buffer *eb,
276 			      struct walk_control *wc, u64 gen)
277 {
278 	if (wc->pin)
279 		btrfs_pin_extent(log->fs_info->extent_root,
280 				 eb->start, eb->len, 0);
281 
282 	if (btrfs_buffer_uptodate(eb, gen)) {
283 		if (wc->write)
284 			btrfs_write_tree_block(eb);
285 		if (wc->wait)
286 			btrfs_wait_tree_block_writeback(eb);
287 	}
288 	return 0;
289 }
290 
291 /*
292  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
293  * to the src data we are copying out.
294  *
295  * root is the tree we are copying into, and path is a scratch
296  * path for use in this function (it should be released on entry and
297  * will be released on exit).
298  *
299  * If the key is already in the destination tree the existing item is
300  * overwritten.  If the existing item isn't big enough, it is extended.
301  * If it is too large, it is truncated.
302  *
303  * If the key isn't in the destination yet, a new item is inserted.
304  */
305 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
306 				   struct btrfs_root *root,
307 				   struct btrfs_path *path,
308 				   struct extent_buffer *eb, int slot,
309 				   struct btrfs_key *key)
310 {
311 	int ret;
312 	u32 item_size;
313 	u64 saved_i_size = 0;
314 	int save_old_i_size = 0;
315 	unsigned long src_ptr;
316 	unsigned long dst_ptr;
317 	int overwrite_root = 0;
318 
319 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
320 		overwrite_root = 1;
321 
322 	item_size = btrfs_item_size_nr(eb, slot);
323 	src_ptr = btrfs_item_ptr_offset(eb, slot);
324 
325 	/* look for the key in the destination tree */
326 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
327 	if (ret == 0) {
328 		char *src_copy;
329 		char *dst_copy;
330 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
331 						  path->slots[0]);
332 		if (dst_size != item_size)
333 			goto insert;
334 
335 		if (item_size == 0) {
336 			btrfs_release_path(path);
337 			return 0;
338 		}
339 		dst_copy = kmalloc(item_size, GFP_NOFS);
340 		src_copy = kmalloc(item_size, GFP_NOFS);
341 		if (!dst_copy || !src_copy) {
342 			btrfs_release_path(path);
343 			kfree(dst_copy);
344 			kfree(src_copy);
345 			return -ENOMEM;
346 		}
347 
348 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
349 
350 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
351 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
352 				   item_size);
353 		ret = memcmp(dst_copy, src_copy, item_size);
354 
355 		kfree(dst_copy);
356 		kfree(src_copy);
357 		/*
358 		 * they have the same contents, just return, this saves
359 		 * us from cowing blocks in the destination tree and doing
360 		 * extra writes that may not have been done by a previous
361 		 * sync
362 		 */
363 		if (ret == 0) {
364 			btrfs_release_path(path);
365 			return 0;
366 		}
367 
368 	}
369 insert:
370 	btrfs_release_path(path);
371 	/* try to insert the key into the destination tree */
372 	ret = btrfs_insert_empty_item(trans, root, path,
373 				      key, item_size);
374 
375 	/* make sure any existing item is the correct size */
376 	if (ret == -EEXIST) {
377 		u32 found_size;
378 		found_size = btrfs_item_size_nr(path->nodes[0],
379 						path->slots[0]);
380 		if (found_size > item_size) {
381 			btrfs_truncate_item(trans, root, path, item_size, 1);
382 		} else if (found_size < item_size) {
383 			ret = btrfs_extend_item(trans, root, path,
384 						item_size - found_size);
385 		}
386 	} else if (ret) {
387 		return ret;
388 	}
389 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
390 					path->slots[0]);
391 
392 	/* don't overwrite an existing inode if the generation number
393 	 * was logged as zero.  This is done when the tree logging code
394 	 * is just logging an inode to make sure it exists after recovery.
395 	 *
396 	 * Also, don't overwrite i_size on directories during replay.
397 	 * log replay inserts and removes directory items based on the
398 	 * state of the tree found in the subvolume, and i_size is modified
399 	 * as it goes
400 	 */
401 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
402 		struct btrfs_inode_item *src_item;
403 		struct btrfs_inode_item *dst_item;
404 
405 		src_item = (struct btrfs_inode_item *)src_ptr;
406 		dst_item = (struct btrfs_inode_item *)dst_ptr;
407 
408 		if (btrfs_inode_generation(eb, src_item) == 0)
409 			goto no_copy;
410 
411 		if (overwrite_root &&
412 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
413 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
414 			save_old_i_size = 1;
415 			saved_i_size = btrfs_inode_size(path->nodes[0],
416 							dst_item);
417 		}
418 	}
419 
420 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
421 			   src_ptr, item_size);
422 
423 	if (save_old_i_size) {
424 		struct btrfs_inode_item *dst_item;
425 		dst_item = (struct btrfs_inode_item *)dst_ptr;
426 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
427 	}
428 
429 	/* make sure the generation is filled in */
430 	if (key->type == BTRFS_INODE_ITEM_KEY) {
431 		struct btrfs_inode_item *dst_item;
432 		dst_item = (struct btrfs_inode_item *)dst_ptr;
433 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
434 			btrfs_set_inode_generation(path->nodes[0], dst_item,
435 						   trans->transid);
436 		}
437 	}
438 no_copy:
439 	btrfs_mark_buffer_dirty(path->nodes[0]);
440 	btrfs_release_path(path);
441 	return 0;
442 }
443 
444 /*
445  * simple helper to read an inode off the disk from a given root
446  * This can only be called for subvolume roots and not for the log
447  */
448 static noinline struct inode *read_one_inode(struct btrfs_root *root,
449 					     u64 objectid)
450 {
451 	struct btrfs_key key;
452 	struct inode *inode;
453 
454 	key.objectid = objectid;
455 	key.type = BTRFS_INODE_ITEM_KEY;
456 	key.offset = 0;
457 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
458 	if (IS_ERR(inode)) {
459 		inode = NULL;
460 	} else if (is_bad_inode(inode)) {
461 		iput(inode);
462 		inode = NULL;
463 	}
464 	return inode;
465 }
466 
467 /* replays a single extent in 'eb' at 'slot' with 'key' into the
468  * subvolume 'root'.  path is released on entry and should be released
469  * on exit.
470  *
471  * extents in the log tree have not been allocated out of the extent
472  * tree yet.  So, this completes the allocation, taking a reference
473  * as required if the extent already exists or creating a new extent
474  * if it isn't in the extent allocation tree yet.
475  *
476  * The extent is inserted into the file, dropping any existing extents
477  * from the file that overlap the new one.
478  */
479 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
480 				      struct btrfs_root *root,
481 				      struct btrfs_path *path,
482 				      struct extent_buffer *eb, int slot,
483 				      struct btrfs_key *key)
484 {
485 	int found_type;
486 	u64 mask = root->sectorsize - 1;
487 	u64 extent_end;
488 	u64 alloc_hint;
489 	u64 start = key->offset;
490 	u64 saved_nbytes;
491 	struct btrfs_file_extent_item *item;
492 	struct inode *inode = NULL;
493 	unsigned long size;
494 	int ret = 0;
495 
496 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
497 	found_type = btrfs_file_extent_type(eb, item);
498 
499 	if (found_type == BTRFS_FILE_EXTENT_REG ||
500 	    found_type == BTRFS_FILE_EXTENT_PREALLOC)
501 		extent_end = start + btrfs_file_extent_num_bytes(eb, item);
502 	else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
503 		size = btrfs_file_extent_inline_len(eb, item);
504 		extent_end = (start + size + mask) & ~mask;
505 	} else {
506 		ret = 0;
507 		goto out;
508 	}
509 
510 	inode = read_one_inode(root, key->objectid);
511 	if (!inode) {
512 		ret = -EIO;
513 		goto out;
514 	}
515 
516 	/*
517 	 * first check to see if we already have this extent in the
518 	 * file.  This must be done before the btrfs_drop_extents run
519 	 * so we don't try to drop this extent.
520 	 */
521 	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
522 				       start, 0);
523 
524 	if (ret == 0 &&
525 	    (found_type == BTRFS_FILE_EXTENT_REG ||
526 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
527 		struct btrfs_file_extent_item cmp1;
528 		struct btrfs_file_extent_item cmp2;
529 		struct btrfs_file_extent_item *existing;
530 		struct extent_buffer *leaf;
531 
532 		leaf = path->nodes[0];
533 		existing = btrfs_item_ptr(leaf, path->slots[0],
534 					  struct btrfs_file_extent_item);
535 
536 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
537 				   sizeof(cmp1));
538 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
539 				   sizeof(cmp2));
540 
541 		/*
542 		 * we already have a pointer to this exact extent,
543 		 * we don't have to do anything
544 		 */
545 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
546 			btrfs_release_path(path);
547 			goto out;
548 		}
549 	}
550 	btrfs_release_path(path);
551 
552 	saved_nbytes = inode_get_bytes(inode);
553 	/* drop any overlapping extents */
554 	ret = btrfs_drop_extents(trans, inode, start, extent_end,
555 				 &alloc_hint, 1);
556 	BUG_ON(ret);
557 
558 	if (found_type == BTRFS_FILE_EXTENT_REG ||
559 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
560 		u64 offset;
561 		unsigned long dest_offset;
562 		struct btrfs_key ins;
563 
564 		ret = btrfs_insert_empty_item(trans, root, path, key,
565 					      sizeof(*item));
566 		BUG_ON(ret);
567 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
568 						    path->slots[0]);
569 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
570 				(unsigned long)item,  sizeof(*item));
571 
572 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
573 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
574 		ins.type = BTRFS_EXTENT_ITEM_KEY;
575 		offset = key->offset - btrfs_file_extent_offset(eb, item);
576 
577 		if (ins.objectid > 0) {
578 			u64 csum_start;
579 			u64 csum_end;
580 			LIST_HEAD(ordered_sums);
581 			/*
582 			 * is this extent already allocated in the extent
583 			 * allocation tree?  If so, just add a reference
584 			 */
585 			ret = btrfs_lookup_extent(root, ins.objectid,
586 						ins.offset);
587 			if (ret == 0) {
588 				ret = btrfs_inc_extent_ref(trans, root,
589 						ins.objectid, ins.offset,
590 						0, root->root_key.objectid,
591 						key->objectid, offset);
592 				BUG_ON(ret);
593 			} else {
594 				/*
595 				 * insert the extent pointer in the extent
596 				 * allocation tree
597 				 */
598 				ret = btrfs_alloc_logged_file_extent(trans,
599 						root, root->root_key.objectid,
600 						key->objectid, offset, &ins);
601 				BUG_ON(ret);
602 			}
603 			btrfs_release_path(path);
604 
605 			if (btrfs_file_extent_compression(eb, item)) {
606 				csum_start = ins.objectid;
607 				csum_end = csum_start + ins.offset;
608 			} else {
609 				csum_start = ins.objectid +
610 					btrfs_file_extent_offset(eb, item);
611 				csum_end = csum_start +
612 					btrfs_file_extent_num_bytes(eb, item);
613 			}
614 
615 			ret = btrfs_lookup_csums_range(root->log_root,
616 						csum_start, csum_end - 1,
617 						&ordered_sums, 0);
618 			BUG_ON(ret);
619 			while (!list_empty(&ordered_sums)) {
620 				struct btrfs_ordered_sum *sums;
621 				sums = list_entry(ordered_sums.next,
622 						struct btrfs_ordered_sum,
623 						list);
624 				ret = btrfs_csum_file_blocks(trans,
625 						root->fs_info->csum_root,
626 						sums);
627 				BUG_ON(ret);
628 				list_del(&sums->list);
629 				kfree(sums);
630 			}
631 		} else {
632 			btrfs_release_path(path);
633 		}
634 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
635 		/* inline extents are easy, we just overwrite them */
636 		ret = overwrite_item(trans, root, path, eb, slot, key);
637 		BUG_ON(ret);
638 	}
639 
640 	inode_set_bytes(inode, saved_nbytes);
641 	btrfs_update_inode(trans, root, inode);
642 out:
643 	if (inode)
644 		iput(inode);
645 	return ret;
646 }
647 
648 /*
649  * when cleaning up conflicts between the directory names in the
650  * subvolume, directory names in the log and directory names in the
651  * inode back references, we may have to unlink inodes from directories.
652  *
653  * This is a helper function to do the unlink of a specific directory
654  * item
655  */
656 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
657 				      struct btrfs_root *root,
658 				      struct btrfs_path *path,
659 				      struct inode *dir,
660 				      struct btrfs_dir_item *di)
661 {
662 	struct inode *inode;
663 	char *name;
664 	int name_len;
665 	struct extent_buffer *leaf;
666 	struct btrfs_key location;
667 	int ret;
668 
669 	leaf = path->nodes[0];
670 
671 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
672 	name_len = btrfs_dir_name_len(leaf, di);
673 	name = kmalloc(name_len, GFP_NOFS);
674 	if (!name)
675 		return -ENOMEM;
676 
677 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
678 	btrfs_release_path(path);
679 
680 	inode = read_one_inode(root, location.objectid);
681 	if (!inode) {
682 		kfree(name);
683 		return -EIO;
684 	}
685 
686 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
687 	BUG_ON(ret);
688 
689 	ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
690 	BUG_ON(ret);
691 	kfree(name);
692 
693 	iput(inode);
694 	return ret;
695 }
696 
697 /*
698  * helper function to see if a given name and sequence number found
699  * in an inode back reference are already in a directory and correctly
700  * point to this inode
701  */
702 static noinline int inode_in_dir(struct btrfs_root *root,
703 				 struct btrfs_path *path,
704 				 u64 dirid, u64 objectid, u64 index,
705 				 const char *name, int name_len)
706 {
707 	struct btrfs_dir_item *di;
708 	struct btrfs_key location;
709 	int match = 0;
710 
711 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
712 					 index, name, name_len, 0);
713 	if (di && !IS_ERR(di)) {
714 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
715 		if (location.objectid != objectid)
716 			goto out;
717 	} else
718 		goto out;
719 	btrfs_release_path(path);
720 
721 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
722 	if (di && !IS_ERR(di)) {
723 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
724 		if (location.objectid != objectid)
725 			goto out;
726 	} else
727 		goto out;
728 	match = 1;
729 out:
730 	btrfs_release_path(path);
731 	return match;
732 }
733 
734 /*
735  * helper function to check a log tree for a named back reference in
736  * an inode.  This is used to decide if a back reference that is
737  * found in the subvolume conflicts with what we find in the log.
738  *
739  * inode backreferences may have multiple refs in a single item,
740  * during replay we process one reference at a time, and we don't
741  * want to delete valid links to a file from the subvolume if that
742  * link is also in the log.
743  */
744 static noinline int backref_in_log(struct btrfs_root *log,
745 				   struct btrfs_key *key,
746 				   char *name, int namelen)
747 {
748 	struct btrfs_path *path;
749 	struct btrfs_inode_ref *ref;
750 	unsigned long ptr;
751 	unsigned long ptr_end;
752 	unsigned long name_ptr;
753 	int found_name_len;
754 	int item_size;
755 	int ret;
756 	int match = 0;
757 
758 	path = btrfs_alloc_path();
759 	if (!path)
760 		return -ENOMEM;
761 
762 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
763 	if (ret != 0)
764 		goto out;
765 
766 	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
767 	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
768 	ptr_end = ptr + item_size;
769 	while (ptr < ptr_end) {
770 		ref = (struct btrfs_inode_ref *)ptr;
771 		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
772 		if (found_name_len == namelen) {
773 			name_ptr = (unsigned long)(ref + 1);
774 			ret = memcmp_extent_buffer(path->nodes[0], name,
775 						   name_ptr, namelen);
776 			if (ret == 0) {
777 				match = 1;
778 				goto out;
779 			}
780 		}
781 		ptr = (unsigned long)(ref + 1) + found_name_len;
782 	}
783 out:
784 	btrfs_free_path(path);
785 	return match;
786 }
787 
788 
789 /*
790  * replay one inode back reference item found in the log tree.
791  * eb, slot and key refer to the buffer and key found in the log tree.
792  * root is the destination we are replaying into, and path is for temp
793  * use by this function.  (it should be released on return).
794  */
795 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
796 				  struct btrfs_root *root,
797 				  struct btrfs_root *log,
798 				  struct btrfs_path *path,
799 				  struct extent_buffer *eb, int slot,
800 				  struct btrfs_key *key)
801 {
802 	struct inode *dir;
803 	int ret;
804 	struct btrfs_inode_ref *ref;
805 	struct inode *inode;
806 	char *name;
807 	int namelen;
808 	unsigned long ref_ptr;
809 	unsigned long ref_end;
810 	int search_done = 0;
811 
812 	/*
813 	 * it is possible that we didn't log all the parent directories
814 	 * for a given inode.  If we don't find the dir, just don't
815 	 * copy the back ref in.  The link count fixup code will take
816 	 * care of the rest
817 	 */
818 	dir = read_one_inode(root, key->offset);
819 	if (!dir)
820 		return -ENOENT;
821 
822 	inode = read_one_inode(root, key->objectid);
823 	if (!inode) {
824 		iput(dir);
825 		return -EIO;
826 	}
827 
828 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
829 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
830 
831 again:
832 	ref = (struct btrfs_inode_ref *)ref_ptr;
833 
834 	namelen = btrfs_inode_ref_name_len(eb, ref);
835 	name = kmalloc(namelen, GFP_NOFS);
836 	BUG_ON(!name);
837 
838 	read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
839 
840 	/* if we already have a perfect match, we're done */
841 	if (inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
842 			 btrfs_inode_ref_index(eb, ref),
843 			 name, namelen)) {
844 		goto out;
845 	}
846 
847 	/*
848 	 * look for a conflicting back reference in the metadata.
849 	 * if we find one we have to unlink that name of the file
850 	 * before we add our new link.  Later on, we overwrite any
851 	 * existing back reference, and we don't want to create
852 	 * dangling pointers in the directory.
853 	 */
854 
855 	if (search_done)
856 		goto insert;
857 
858 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
859 	if (ret == 0) {
860 		char *victim_name;
861 		int victim_name_len;
862 		struct btrfs_inode_ref *victim_ref;
863 		unsigned long ptr;
864 		unsigned long ptr_end;
865 		struct extent_buffer *leaf = path->nodes[0];
866 
867 		/* are we trying to overwrite a back ref for the root directory
868 		 * if so, just jump out, we're done
869 		 */
870 		if (key->objectid == key->offset)
871 			goto out_nowrite;
872 
873 		/* check all the names in this back reference to see
874 		 * if they are in the log.  if so, we allow them to stay
875 		 * otherwise they must be unlinked as a conflict
876 		 */
877 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
878 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
879 		while (ptr < ptr_end) {
880 			victim_ref = (struct btrfs_inode_ref *)ptr;
881 			victim_name_len = btrfs_inode_ref_name_len(leaf,
882 								   victim_ref);
883 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
884 			BUG_ON(!victim_name);
885 
886 			read_extent_buffer(leaf, victim_name,
887 					   (unsigned long)(victim_ref + 1),
888 					   victim_name_len);
889 
890 			if (!backref_in_log(log, key, victim_name,
891 					    victim_name_len)) {
892 				btrfs_inc_nlink(inode);
893 				btrfs_release_path(path);
894 
895 				ret = btrfs_unlink_inode(trans, root, dir,
896 							 inode, victim_name,
897 							 victim_name_len);
898 			}
899 			kfree(victim_name);
900 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
901 		}
902 		BUG_ON(ret);
903 
904 		/*
905 		 * NOTE: we have searched root tree and checked the
906 		 * coresponding ref, it does not need to check again.
907 		 */
908 		search_done = 1;
909 	}
910 	btrfs_release_path(path);
911 
912 insert:
913 	/* insert our name */
914 	ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
915 			     btrfs_inode_ref_index(eb, ref));
916 	BUG_ON(ret);
917 
918 	btrfs_update_inode(trans, root, inode);
919 
920 out:
921 	ref_ptr = (unsigned long)(ref + 1) + namelen;
922 	kfree(name);
923 	if (ref_ptr < ref_end)
924 		goto again;
925 
926 	/* finally write the back reference in the inode */
927 	ret = overwrite_item(trans, root, path, eb, slot, key);
928 	BUG_ON(ret);
929 
930 out_nowrite:
931 	btrfs_release_path(path);
932 	iput(dir);
933 	iput(inode);
934 	return 0;
935 }
936 
937 static int insert_orphan_item(struct btrfs_trans_handle *trans,
938 			      struct btrfs_root *root, u64 offset)
939 {
940 	int ret;
941 	ret = btrfs_find_orphan_item(root, offset);
942 	if (ret > 0)
943 		ret = btrfs_insert_orphan_item(trans, root, offset);
944 	return ret;
945 }
946 
947 
948 /*
949  * There are a few corners where the link count of the file can't
950  * be properly maintained during replay.  So, instead of adding
951  * lots of complexity to the log code, we just scan the backrefs
952  * for any file that has been through replay.
953  *
954  * The scan will update the link count on the inode to reflect the
955  * number of back refs found.  If it goes down to zero, the iput
956  * will free the inode.
957  */
958 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
959 					   struct btrfs_root *root,
960 					   struct inode *inode)
961 {
962 	struct btrfs_path *path;
963 	int ret;
964 	struct btrfs_key key;
965 	u64 nlink = 0;
966 	unsigned long ptr;
967 	unsigned long ptr_end;
968 	int name_len;
969 	u64 ino = btrfs_ino(inode);
970 
971 	key.objectid = ino;
972 	key.type = BTRFS_INODE_REF_KEY;
973 	key.offset = (u64)-1;
974 
975 	path = btrfs_alloc_path();
976 	if (!path)
977 		return -ENOMEM;
978 
979 	while (1) {
980 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
981 		if (ret < 0)
982 			break;
983 		if (ret > 0) {
984 			if (path->slots[0] == 0)
985 				break;
986 			path->slots[0]--;
987 		}
988 		btrfs_item_key_to_cpu(path->nodes[0], &key,
989 				      path->slots[0]);
990 		if (key.objectid != ino ||
991 		    key.type != BTRFS_INODE_REF_KEY)
992 			break;
993 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
994 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
995 						   path->slots[0]);
996 		while (ptr < ptr_end) {
997 			struct btrfs_inode_ref *ref;
998 
999 			ref = (struct btrfs_inode_ref *)ptr;
1000 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1001 							    ref);
1002 			ptr = (unsigned long)(ref + 1) + name_len;
1003 			nlink++;
1004 		}
1005 
1006 		if (key.offset == 0)
1007 			break;
1008 		key.offset--;
1009 		btrfs_release_path(path);
1010 	}
1011 	btrfs_release_path(path);
1012 	if (nlink != inode->i_nlink) {
1013 		inode->i_nlink = nlink;
1014 		btrfs_update_inode(trans, root, inode);
1015 	}
1016 	BTRFS_I(inode)->index_cnt = (u64)-1;
1017 
1018 	if (inode->i_nlink == 0) {
1019 		if (S_ISDIR(inode->i_mode)) {
1020 			ret = replay_dir_deletes(trans, root, NULL, path,
1021 						 ino, 1);
1022 			BUG_ON(ret);
1023 		}
1024 		ret = insert_orphan_item(trans, root, ino);
1025 		BUG_ON(ret);
1026 	}
1027 	btrfs_free_path(path);
1028 
1029 	return 0;
1030 }
1031 
1032 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1033 					    struct btrfs_root *root,
1034 					    struct btrfs_path *path)
1035 {
1036 	int ret;
1037 	struct btrfs_key key;
1038 	struct inode *inode;
1039 
1040 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1041 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1042 	key.offset = (u64)-1;
1043 	while (1) {
1044 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1045 		if (ret < 0)
1046 			break;
1047 
1048 		if (ret == 1) {
1049 			if (path->slots[0] == 0)
1050 				break;
1051 			path->slots[0]--;
1052 		}
1053 
1054 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1055 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1056 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1057 			break;
1058 
1059 		ret = btrfs_del_item(trans, root, path);
1060 		if (ret)
1061 			goto out;
1062 
1063 		btrfs_release_path(path);
1064 		inode = read_one_inode(root, key.offset);
1065 		if (!inode)
1066 			return -EIO;
1067 
1068 		ret = fixup_inode_link_count(trans, root, inode);
1069 		BUG_ON(ret);
1070 
1071 		iput(inode);
1072 
1073 		/*
1074 		 * fixup on a directory may create new entries,
1075 		 * make sure we always look for the highset possible
1076 		 * offset
1077 		 */
1078 		key.offset = (u64)-1;
1079 	}
1080 	ret = 0;
1081 out:
1082 	btrfs_release_path(path);
1083 	return ret;
1084 }
1085 
1086 
1087 /*
1088  * record a given inode in the fixup dir so we can check its link
1089  * count when replay is done.  The link count is incremented here
1090  * so the inode won't go away until we check it
1091  */
1092 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1093 				      struct btrfs_root *root,
1094 				      struct btrfs_path *path,
1095 				      u64 objectid)
1096 {
1097 	struct btrfs_key key;
1098 	int ret = 0;
1099 	struct inode *inode;
1100 
1101 	inode = read_one_inode(root, objectid);
1102 	if (!inode)
1103 		return -EIO;
1104 
1105 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1106 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1107 	key.offset = objectid;
1108 
1109 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1110 
1111 	btrfs_release_path(path);
1112 	if (ret == 0) {
1113 		btrfs_inc_nlink(inode);
1114 		btrfs_update_inode(trans, root, inode);
1115 	} else if (ret == -EEXIST) {
1116 		ret = 0;
1117 	} else {
1118 		BUG();
1119 	}
1120 	iput(inode);
1121 
1122 	return ret;
1123 }
1124 
1125 /*
1126  * when replaying the log for a directory, we only insert names
1127  * for inodes that actually exist.  This means an fsync on a directory
1128  * does not implicitly fsync all the new files in it
1129  */
1130 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1131 				    struct btrfs_root *root,
1132 				    struct btrfs_path *path,
1133 				    u64 dirid, u64 index,
1134 				    char *name, int name_len, u8 type,
1135 				    struct btrfs_key *location)
1136 {
1137 	struct inode *inode;
1138 	struct inode *dir;
1139 	int ret;
1140 
1141 	inode = read_one_inode(root, location->objectid);
1142 	if (!inode)
1143 		return -ENOENT;
1144 
1145 	dir = read_one_inode(root, dirid);
1146 	if (!dir) {
1147 		iput(inode);
1148 		return -EIO;
1149 	}
1150 	ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1151 
1152 	/* FIXME, put inode into FIXUP list */
1153 
1154 	iput(inode);
1155 	iput(dir);
1156 	return ret;
1157 }
1158 
1159 /*
1160  * take a single entry in a log directory item and replay it into
1161  * the subvolume.
1162  *
1163  * if a conflicting item exists in the subdirectory already,
1164  * the inode it points to is unlinked and put into the link count
1165  * fix up tree.
1166  *
1167  * If a name from the log points to a file or directory that does
1168  * not exist in the FS, it is skipped.  fsyncs on directories
1169  * do not force down inodes inside that directory, just changes to the
1170  * names or unlinks in a directory.
1171  */
1172 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1173 				    struct btrfs_root *root,
1174 				    struct btrfs_path *path,
1175 				    struct extent_buffer *eb,
1176 				    struct btrfs_dir_item *di,
1177 				    struct btrfs_key *key)
1178 {
1179 	char *name;
1180 	int name_len;
1181 	struct btrfs_dir_item *dst_di;
1182 	struct btrfs_key found_key;
1183 	struct btrfs_key log_key;
1184 	struct inode *dir;
1185 	u8 log_type;
1186 	int exists;
1187 	int ret;
1188 
1189 	dir = read_one_inode(root, key->objectid);
1190 	if (!dir)
1191 		return -EIO;
1192 
1193 	name_len = btrfs_dir_name_len(eb, di);
1194 	name = kmalloc(name_len, GFP_NOFS);
1195 	if (!name)
1196 		return -ENOMEM;
1197 
1198 	log_type = btrfs_dir_type(eb, di);
1199 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1200 		   name_len);
1201 
1202 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1203 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1204 	if (exists == 0)
1205 		exists = 1;
1206 	else
1207 		exists = 0;
1208 	btrfs_release_path(path);
1209 
1210 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1211 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1212 				       name, name_len, 1);
1213 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1214 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1215 						     key->objectid,
1216 						     key->offset, name,
1217 						     name_len, 1);
1218 	} else {
1219 		BUG();
1220 	}
1221 	if (IS_ERR_OR_NULL(dst_di)) {
1222 		/* we need a sequence number to insert, so we only
1223 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1224 		 */
1225 		if (key->type != BTRFS_DIR_INDEX_KEY)
1226 			goto out;
1227 		goto insert;
1228 	}
1229 
1230 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1231 	/* the existing item matches the logged item */
1232 	if (found_key.objectid == log_key.objectid &&
1233 	    found_key.type == log_key.type &&
1234 	    found_key.offset == log_key.offset &&
1235 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1236 		goto out;
1237 	}
1238 
1239 	/*
1240 	 * don't drop the conflicting directory entry if the inode
1241 	 * for the new entry doesn't exist
1242 	 */
1243 	if (!exists)
1244 		goto out;
1245 
1246 	ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1247 	BUG_ON(ret);
1248 
1249 	if (key->type == BTRFS_DIR_INDEX_KEY)
1250 		goto insert;
1251 out:
1252 	btrfs_release_path(path);
1253 	kfree(name);
1254 	iput(dir);
1255 	return 0;
1256 
1257 insert:
1258 	btrfs_release_path(path);
1259 	ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1260 			      name, name_len, log_type, &log_key);
1261 
1262 	BUG_ON(ret && ret != -ENOENT);
1263 	goto out;
1264 }
1265 
1266 /*
1267  * find all the names in a directory item and reconcile them into
1268  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1269  * one name in a directory item, but the same code gets used for
1270  * both directory index types
1271  */
1272 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1273 					struct btrfs_root *root,
1274 					struct btrfs_path *path,
1275 					struct extent_buffer *eb, int slot,
1276 					struct btrfs_key *key)
1277 {
1278 	int ret;
1279 	u32 item_size = btrfs_item_size_nr(eb, slot);
1280 	struct btrfs_dir_item *di;
1281 	int name_len;
1282 	unsigned long ptr;
1283 	unsigned long ptr_end;
1284 
1285 	ptr = btrfs_item_ptr_offset(eb, slot);
1286 	ptr_end = ptr + item_size;
1287 	while (ptr < ptr_end) {
1288 		di = (struct btrfs_dir_item *)ptr;
1289 		if (verify_dir_item(root, eb, di))
1290 			return -EIO;
1291 		name_len = btrfs_dir_name_len(eb, di);
1292 		ret = replay_one_name(trans, root, path, eb, di, key);
1293 		BUG_ON(ret);
1294 		ptr = (unsigned long)(di + 1);
1295 		ptr += name_len;
1296 	}
1297 	return 0;
1298 }
1299 
1300 /*
1301  * directory replay has two parts.  There are the standard directory
1302  * items in the log copied from the subvolume, and range items
1303  * created in the log while the subvolume was logged.
1304  *
1305  * The range items tell us which parts of the key space the log
1306  * is authoritative for.  During replay, if a key in the subvolume
1307  * directory is in a logged range item, but not actually in the log
1308  * that means it was deleted from the directory before the fsync
1309  * and should be removed.
1310  */
1311 static noinline int find_dir_range(struct btrfs_root *root,
1312 				   struct btrfs_path *path,
1313 				   u64 dirid, int key_type,
1314 				   u64 *start_ret, u64 *end_ret)
1315 {
1316 	struct btrfs_key key;
1317 	u64 found_end;
1318 	struct btrfs_dir_log_item *item;
1319 	int ret;
1320 	int nritems;
1321 
1322 	if (*start_ret == (u64)-1)
1323 		return 1;
1324 
1325 	key.objectid = dirid;
1326 	key.type = key_type;
1327 	key.offset = *start_ret;
1328 
1329 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1330 	if (ret < 0)
1331 		goto out;
1332 	if (ret > 0) {
1333 		if (path->slots[0] == 0)
1334 			goto out;
1335 		path->slots[0]--;
1336 	}
1337 	if (ret != 0)
1338 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1339 
1340 	if (key.type != key_type || key.objectid != dirid) {
1341 		ret = 1;
1342 		goto next;
1343 	}
1344 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1345 			      struct btrfs_dir_log_item);
1346 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1347 
1348 	if (*start_ret >= key.offset && *start_ret <= found_end) {
1349 		ret = 0;
1350 		*start_ret = key.offset;
1351 		*end_ret = found_end;
1352 		goto out;
1353 	}
1354 	ret = 1;
1355 next:
1356 	/* check the next slot in the tree to see if it is a valid item */
1357 	nritems = btrfs_header_nritems(path->nodes[0]);
1358 	if (path->slots[0] >= nritems) {
1359 		ret = btrfs_next_leaf(root, path);
1360 		if (ret)
1361 			goto out;
1362 	} else {
1363 		path->slots[0]++;
1364 	}
1365 
1366 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1367 
1368 	if (key.type != key_type || key.objectid != dirid) {
1369 		ret = 1;
1370 		goto out;
1371 	}
1372 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1373 			      struct btrfs_dir_log_item);
1374 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1375 	*start_ret = key.offset;
1376 	*end_ret = found_end;
1377 	ret = 0;
1378 out:
1379 	btrfs_release_path(path);
1380 	return ret;
1381 }
1382 
1383 /*
1384  * this looks for a given directory item in the log.  If the directory
1385  * item is not in the log, the item is removed and the inode it points
1386  * to is unlinked
1387  */
1388 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1389 				      struct btrfs_root *root,
1390 				      struct btrfs_root *log,
1391 				      struct btrfs_path *path,
1392 				      struct btrfs_path *log_path,
1393 				      struct inode *dir,
1394 				      struct btrfs_key *dir_key)
1395 {
1396 	int ret;
1397 	struct extent_buffer *eb;
1398 	int slot;
1399 	u32 item_size;
1400 	struct btrfs_dir_item *di;
1401 	struct btrfs_dir_item *log_di;
1402 	int name_len;
1403 	unsigned long ptr;
1404 	unsigned long ptr_end;
1405 	char *name;
1406 	struct inode *inode;
1407 	struct btrfs_key location;
1408 
1409 again:
1410 	eb = path->nodes[0];
1411 	slot = path->slots[0];
1412 	item_size = btrfs_item_size_nr(eb, slot);
1413 	ptr = btrfs_item_ptr_offset(eb, slot);
1414 	ptr_end = ptr + item_size;
1415 	while (ptr < ptr_end) {
1416 		di = (struct btrfs_dir_item *)ptr;
1417 		if (verify_dir_item(root, eb, di)) {
1418 			ret = -EIO;
1419 			goto out;
1420 		}
1421 
1422 		name_len = btrfs_dir_name_len(eb, di);
1423 		name = kmalloc(name_len, GFP_NOFS);
1424 		if (!name) {
1425 			ret = -ENOMEM;
1426 			goto out;
1427 		}
1428 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
1429 				  name_len);
1430 		log_di = NULL;
1431 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1432 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
1433 						       dir_key->objectid,
1434 						       name, name_len, 0);
1435 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1436 			log_di = btrfs_lookup_dir_index_item(trans, log,
1437 						     log_path,
1438 						     dir_key->objectid,
1439 						     dir_key->offset,
1440 						     name, name_len, 0);
1441 		}
1442 		if (IS_ERR_OR_NULL(log_di)) {
1443 			btrfs_dir_item_key_to_cpu(eb, di, &location);
1444 			btrfs_release_path(path);
1445 			btrfs_release_path(log_path);
1446 			inode = read_one_inode(root, location.objectid);
1447 			if (!inode) {
1448 				kfree(name);
1449 				return -EIO;
1450 			}
1451 
1452 			ret = link_to_fixup_dir(trans, root,
1453 						path, location.objectid);
1454 			BUG_ON(ret);
1455 			btrfs_inc_nlink(inode);
1456 			ret = btrfs_unlink_inode(trans, root, dir, inode,
1457 						 name, name_len);
1458 			BUG_ON(ret);
1459 			kfree(name);
1460 			iput(inode);
1461 
1462 			/* there might still be more names under this key
1463 			 * check and repeat if required
1464 			 */
1465 			ret = btrfs_search_slot(NULL, root, dir_key, path,
1466 						0, 0);
1467 			if (ret == 0)
1468 				goto again;
1469 			ret = 0;
1470 			goto out;
1471 		}
1472 		btrfs_release_path(log_path);
1473 		kfree(name);
1474 
1475 		ptr = (unsigned long)(di + 1);
1476 		ptr += name_len;
1477 	}
1478 	ret = 0;
1479 out:
1480 	btrfs_release_path(path);
1481 	btrfs_release_path(log_path);
1482 	return ret;
1483 }
1484 
1485 /*
1486  * deletion replay happens before we copy any new directory items
1487  * out of the log or out of backreferences from inodes.  It
1488  * scans the log to find ranges of keys that log is authoritative for,
1489  * and then scans the directory to find items in those ranges that are
1490  * not present in the log.
1491  *
1492  * Anything we don't find in the log is unlinked and removed from the
1493  * directory.
1494  */
1495 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1496 				       struct btrfs_root *root,
1497 				       struct btrfs_root *log,
1498 				       struct btrfs_path *path,
1499 				       u64 dirid, int del_all)
1500 {
1501 	u64 range_start;
1502 	u64 range_end;
1503 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1504 	int ret = 0;
1505 	struct btrfs_key dir_key;
1506 	struct btrfs_key found_key;
1507 	struct btrfs_path *log_path;
1508 	struct inode *dir;
1509 
1510 	dir_key.objectid = dirid;
1511 	dir_key.type = BTRFS_DIR_ITEM_KEY;
1512 	log_path = btrfs_alloc_path();
1513 	if (!log_path)
1514 		return -ENOMEM;
1515 
1516 	dir = read_one_inode(root, dirid);
1517 	/* it isn't an error if the inode isn't there, that can happen
1518 	 * because we replay the deletes before we copy in the inode item
1519 	 * from the log
1520 	 */
1521 	if (!dir) {
1522 		btrfs_free_path(log_path);
1523 		return 0;
1524 	}
1525 again:
1526 	range_start = 0;
1527 	range_end = 0;
1528 	while (1) {
1529 		if (del_all)
1530 			range_end = (u64)-1;
1531 		else {
1532 			ret = find_dir_range(log, path, dirid, key_type,
1533 					     &range_start, &range_end);
1534 			if (ret != 0)
1535 				break;
1536 		}
1537 
1538 		dir_key.offset = range_start;
1539 		while (1) {
1540 			int nritems;
1541 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
1542 						0, 0);
1543 			if (ret < 0)
1544 				goto out;
1545 
1546 			nritems = btrfs_header_nritems(path->nodes[0]);
1547 			if (path->slots[0] >= nritems) {
1548 				ret = btrfs_next_leaf(root, path);
1549 				if (ret)
1550 					break;
1551 			}
1552 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1553 					      path->slots[0]);
1554 			if (found_key.objectid != dirid ||
1555 			    found_key.type != dir_key.type)
1556 				goto next_type;
1557 
1558 			if (found_key.offset > range_end)
1559 				break;
1560 
1561 			ret = check_item_in_log(trans, root, log, path,
1562 						log_path, dir,
1563 						&found_key);
1564 			BUG_ON(ret);
1565 			if (found_key.offset == (u64)-1)
1566 				break;
1567 			dir_key.offset = found_key.offset + 1;
1568 		}
1569 		btrfs_release_path(path);
1570 		if (range_end == (u64)-1)
1571 			break;
1572 		range_start = range_end + 1;
1573 	}
1574 
1575 next_type:
1576 	ret = 0;
1577 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1578 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
1579 		dir_key.type = BTRFS_DIR_INDEX_KEY;
1580 		btrfs_release_path(path);
1581 		goto again;
1582 	}
1583 out:
1584 	btrfs_release_path(path);
1585 	btrfs_free_path(log_path);
1586 	iput(dir);
1587 	return ret;
1588 }
1589 
1590 /*
1591  * the process_func used to replay items from the log tree.  This
1592  * gets called in two different stages.  The first stage just looks
1593  * for inodes and makes sure they are all copied into the subvolume.
1594  *
1595  * The second stage copies all the other item types from the log into
1596  * the subvolume.  The two stage approach is slower, but gets rid of
1597  * lots of complexity around inodes referencing other inodes that exist
1598  * only in the log (references come from either directory items or inode
1599  * back refs).
1600  */
1601 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1602 			     struct walk_control *wc, u64 gen)
1603 {
1604 	int nritems;
1605 	struct btrfs_path *path;
1606 	struct btrfs_root *root = wc->replay_dest;
1607 	struct btrfs_key key;
1608 	int level;
1609 	int i;
1610 	int ret;
1611 
1612 	btrfs_read_buffer(eb, gen);
1613 
1614 	level = btrfs_header_level(eb);
1615 
1616 	if (level != 0)
1617 		return 0;
1618 
1619 	path = btrfs_alloc_path();
1620 	BUG_ON(!path);
1621 
1622 	nritems = btrfs_header_nritems(eb);
1623 	for (i = 0; i < nritems; i++) {
1624 		btrfs_item_key_to_cpu(eb, &key, i);
1625 
1626 		/* inode keys are done during the first stage */
1627 		if (key.type == BTRFS_INODE_ITEM_KEY &&
1628 		    wc->stage == LOG_WALK_REPLAY_INODES) {
1629 			struct btrfs_inode_item *inode_item;
1630 			u32 mode;
1631 
1632 			inode_item = btrfs_item_ptr(eb, i,
1633 					    struct btrfs_inode_item);
1634 			mode = btrfs_inode_mode(eb, inode_item);
1635 			if (S_ISDIR(mode)) {
1636 				ret = replay_dir_deletes(wc->trans,
1637 					 root, log, path, key.objectid, 0);
1638 				BUG_ON(ret);
1639 			}
1640 			ret = overwrite_item(wc->trans, root, path,
1641 					     eb, i, &key);
1642 			BUG_ON(ret);
1643 
1644 			/* for regular files, make sure corresponding
1645 			 * orhpan item exist. extents past the new EOF
1646 			 * will be truncated later by orphan cleanup.
1647 			 */
1648 			if (S_ISREG(mode)) {
1649 				ret = insert_orphan_item(wc->trans, root,
1650 							 key.objectid);
1651 				BUG_ON(ret);
1652 			}
1653 
1654 			ret = link_to_fixup_dir(wc->trans, root,
1655 						path, key.objectid);
1656 			BUG_ON(ret);
1657 		}
1658 		if (wc->stage < LOG_WALK_REPLAY_ALL)
1659 			continue;
1660 
1661 		/* these keys are simply copied */
1662 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
1663 			ret = overwrite_item(wc->trans, root, path,
1664 					     eb, i, &key);
1665 			BUG_ON(ret);
1666 		} else if (key.type == BTRFS_INODE_REF_KEY) {
1667 			ret = add_inode_ref(wc->trans, root, log, path,
1668 					    eb, i, &key);
1669 			BUG_ON(ret && ret != -ENOENT);
1670 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1671 			ret = replay_one_extent(wc->trans, root, path,
1672 						eb, i, &key);
1673 			BUG_ON(ret);
1674 		} else if (key.type == BTRFS_DIR_ITEM_KEY ||
1675 			   key.type == BTRFS_DIR_INDEX_KEY) {
1676 			ret = replay_one_dir_item(wc->trans, root, path,
1677 						  eb, i, &key);
1678 			BUG_ON(ret);
1679 		}
1680 	}
1681 	btrfs_free_path(path);
1682 	return 0;
1683 }
1684 
1685 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
1686 				   struct btrfs_root *root,
1687 				   struct btrfs_path *path, int *level,
1688 				   struct walk_control *wc)
1689 {
1690 	u64 root_owner;
1691 	u64 bytenr;
1692 	u64 ptr_gen;
1693 	struct extent_buffer *next;
1694 	struct extent_buffer *cur;
1695 	struct extent_buffer *parent;
1696 	u32 blocksize;
1697 	int ret = 0;
1698 
1699 	WARN_ON(*level < 0);
1700 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
1701 
1702 	while (*level > 0) {
1703 		WARN_ON(*level < 0);
1704 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
1705 		cur = path->nodes[*level];
1706 
1707 		if (btrfs_header_level(cur) != *level)
1708 			WARN_ON(1);
1709 
1710 		if (path->slots[*level] >=
1711 		    btrfs_header_nritems(cur))
1712 			break;
1713 
1714 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1715 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1716 		blocksize = btrfs_level_size(root, *level - 1);
1717 
1718 		parent = path->nodes[*level];
1719 		root_owner = btrfs_header_owner(parent);
1720 
1721 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
1722 		if (!next)
1723 			return -ENOMEM;
1724 
1725 		if (*level == 1) {
1726 			wc->process_func(root, next, wc, ptr_gen);
1727 
1728 			path->slots[*level]++;
1729 			if (wc->free) {
1730 				btrfs_read_buffer(next, ptr_gen);
1731 
1732 				btrfs_tree_lock(next);
1733 				clean_tree_block(trans, root, next);
1734 				btrfs_set_lock_blocking(next);
1735 				btrfs_wait_tree_block_writeback(next);
1736 				btrfs_tree_unlock(next);
1737 
1738 				WARN_ON(root_owner !=
1739 					BTRFS_TREE_LOG_OBJECTID);
1740 				ret = btrfs_free_reserved_extent(root,
1741 							 bytenr, blocksize);
1742 				BUG_ON(ret);
1743 			}
1744 			free_extent_buffer(next);
1745 			continue;
1746 		}
1747 		btrfs_read_buffer(next, ptr_gen);
1748 
1749 		WARN_ON(*level <= 0);
1750 		if (path->nodes[*level-1])
1751 			free_extent_buffer(path->nodes[*level-1]);
1752 		path->nodes[*level-1] = next;
1753 		*level = btrfs_header_level(next);
1754 		path->slots[*level] = 0;
1755 		cond_resched();
1756 	}
1757 	WARN_ON(*level < 0);
1758 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
1759 
1760 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
1761 
1762 	cond_resched();
1763 	return 0;
1764 }
1765 
1766 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
1767 				 struct btrfs_root *root,
1768 				 struct btrfs_path *path, int *level,
1769 				 struct walk_control *wc)
1770 {
1771 	u64 root_owner;
1772 	int i;
1773 	int slot;
1774 	int ret;
1775 
1776 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
1777 		slot = path->slots[i];
1778 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
1779 			path->slots[i]++;
1780 			*level = i;
1781 			WARN_ON(*level == 0);
1782 			return 0;
1783 		} else {
1784 			struct extent_buffer *parent;
1785 			if (path->nodes[*level] == root->node)
1786 				parent = path->nodes[*level];
1787 			else
1788 				parent = path->nodes[*level + 1];
1789 
1790 			root_owner = btrfs_header_owner(parent);
1791 			wc->process_func(root, path->nodes[*level], wc,
1792 				 btrfs_header_generation(path->nodes[*level]));
1793 			if (wc->free) {
1794 				struct extent_buffer *next;
1795 
1796 				next = path->nodes[*level];
1797 
1798 				btrfs_tree_lock(next);
1799 				clean_tree_block(trans, root, next);
1800 				btrfs_set_lock_blocking(next);
1801 				btrfs_wait_tree_block_writeback(next);
1802 				btrfs_tree_unlock(next);
1803 
1804 				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1805 				ret = btrfs_free_reserved_extent(root,
1806 						path->nodes[*level]->start,
1807 						path->nodes[*level]->len);
1808 				BUG_ON(ret);
1809 			}
1810 			free_extent_buffer(path->nodes[*level]);
1811 			path->nodes[*level] = NULL;
1812 			*level = i + 1;
1813 		}
1814 	}
1815 	return 1;
1816 }
1817 
1818 /*
1819  * drop the reference count on the tree rooted at 'snap'.  This traverses
1820  * the tree freeing any blocks that have a ref count of zero after being
1821  * decremented.
1822  */
1823 static int walk_log_tree(struct btrfs_trans_handle *trans,
1824 			 struct btrfs_root *log, struct walk_control *wc)
1825 {
1826 	int ret = 0;
1827 	int wret;
1828 	int level;
1829 	struct btrfs_path *path;
1830 	int i;
1831 	int orig_level;
1832 
1833 	path = btrfs_alloc_path();
1834 	if (!path)
1835 		return -ENOMEM;
1836 
1837 	level = btrfs_header_level(log->node);
1838 	orig_level = level;
1839 	path->nodes[level] = log->node;
1840 	extent_buffer_get(log->node);
1841 	path->slots[level] = 0;
1842 
1843 	while (1) {
1844 		wret = walk_down_log_tree(trans, log, path, &level, wc);
1845 		if (wret > 0)
1846 			break;
1847 		if (wret < 0)
1848 			ret = wret;
1849 
1850 		wret = walk_up_log_tree(trans, log, path, &level, wc);
1851 		if (wret > 0)
1852 			break;
1853 		if (wret < 0)
1854 			ret = wret;
1855 	}
1856 
1857 	/* was the root node processed? if not, catch it here */
1858 	if (path->nodes[orig_level]) {
1859 		wc->process_func(log, path->nodes[orig_level], wc,
1860 			 btrfs_header_generation(path->nodes[orig_level]));
1861 		if (wc->free) {
1862 			struct extent_buffer *next;
1863 
1864 			next = path->nodes[orig_level];
1865 
1866 			btrfs_tree_lock(next);
1867 			clean_tree_block(trans, log, next);
1868 			btrfs_set_lock_blocking(next);
1869 			btrfs_wait_tree_block_writeback(next);
1870 			btrfs_tree_unlock(next);
1871 
1872 			WARN_ON(log->root_key.objectid !=
1873 				BTRFS_TREE_LOG_OBJECTID);
1874 			ret = btrfs_free_reserved_extent(log, next->start,
1875 							 next->len);
1876 			BUG_ON(ret);
1877 		}
1878 	}
1879 
1880 	for (i = 0; i <= orig_level; i++) {
1881 		if (path->nodes[i]) {
1882 			free_extent_buffer(path->nodes[i]);
1883 			path->nodes[i] = NULL;
1884 		}
1885 	}
1886 	btrfs_free_path(path);
1887 	return ret;
1888 }
1889 
1890 /*
1891  * helper function to update the item for a given subvolumes log root
1892  * in the tree of log roots
1893  */
1894 static int update_log_root(struct btrfs_trans_handle *trans,
1895 			   struct btrfs_root *log)
1896 {
1897 	int ret;
1898 
1899 	if (log->log_transid == 1) {
1900 		/* insert root item on the first sync */
1901 		ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
1902 				&log->root_key, &log->root_item);
1903 	} else {
1904 		ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
1905 				&log->root_key, &log->root_item);
1906 	}
1907 	return ret;
1908 }
1909 
1910 static int wait_log_commit(struct btrfs_trans_handle *trans,
1911 			   struct btrfs_root *root, unsigned long transid)
1912 {
1913 	DEFINE_WAIT(wait);
1914 	int index = transid % 2;
1915 
1916 	/*
1917 	 * we only allow two pending log transactions at a time,
1918 	 * so we know that if ours is more than 2 older than the
1919 	 * current transaction, we're done
1920 	 */
1921 	do {
1922 		prepare_to_wait(&root->log_commit_wait[index],
1923 				&wait, TASK_UNINTERRUPTIBLE);
1924 		mutex_unlock(&root->log_mutex);
1925 
1926 		if (root->fs_info->last_trans_log_full_commit !=
1927 		    trans->transid && root->log_transid < transid + 2 &&
1928 		    atomic_read(&root->log_commit[index]))
1929 			schedule();
1930 
1931 		finish_wait(&root->log_commit_wait[index], &wait);
1932 		mutex_lock(&root->log_mutex);
1933 	} while (root->log_transid < transid + 2 &&
1934 		 atomic_read(&root->log_commit[index]));
1935 	return 0;
1936 }
1937 
1938 static int wait_for_writer(struct btrfs_trans_handle *trans,
1939 			   struct btrfs_root *root)
1940 {
1941 	DEFINE_WAIT(wait);
1942 	while (atomic_read(&root->log_writers)) {
1943 		prepare_to_wait(&root->log_writer_wait,
1944 				&wait, TASK_UNINTERRUPTIBLE);
1945 		mutex_unlock(&root->log_mutex);
1946 		if (root->fs_info->last_trans_log_full_commit !=
1947 		    trans->transid && atomic_read(&root->log_writers))
1948 			schedule();
1949 		mutex_lock(&root->log_mutex);
1950 		finish_wait(&root->log_writer_wait, &wait);
1951 	}
1952 	return 0;
1953 }
1954 
1955 /*
1956  * btrfs_sync_log does sends a given tree log down to the disk and
1957  * updates the super blocks to record it.  When this call is done,
1958  * you know that any inodes previously logged are safely on disk only
1959  * if it returns 0.
1960  *
1961  * Any other return value means you need to call btrfs_commit_transaction.
1962  * Some of the edge cases for fsyncing directories that have had unlinks
1963  * or renames done in the past mean that sometimes the only safe
1964  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
1965  * that has happened.
1966  */
1967 int btrfs_sync_log(struct btrfs_trans_handle *trans,
1968 		   struct btrfs_root *root)
1969 {
1970 	int index1;
1971 	int index2;
1972 	int mark;
1973 	int ret;
1974 	struct btrfs_root *log = root->log_root;
1975 	struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
1976 	unsigned long log_transid = 0;
1977 
1978 	mutex_lock(&root->log_mutex);
1979 	index1 = root->log_transid % 2;
1980 	if (atomic_read(&root->log_commit[index1])) {
1981 		wait_log_commit(trans, root, root->log_transid);
1982 		mutex_unlock(&root->log_mutex);
1983 		return 0;
1984 	}
1985 	atomic_set(&root->log_commit[index1], 1);
1986 
1987 	/* wait for previous tree log sync to complete */
1988 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
1989 		wait_log_commit(trans, root, root->log_transid - 1);
1990 
1991 	while (1) {
1992 		unsigned long batch = root->log_batch;
1993 		if (root->log_multiple_pids) {
1994 			mutex_unlock(&root->log_mutex);
1995 			schedule_timeout_uninterruptible(1);
1996 			mutex_lock(&root->log_mutex);
1997 		}
1998 		wait_for_writer(trans, root);
1999 		if (batch == root->log_batch)
2000 			break;
2001 	}
2002 
2003 	/* bail out if we need to do a full commit */
2004 	if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2005 		ret = -EAGAIN;
2006 		mutex_unlock(&root->log_mutex);
2007 		goto out;
2008 	}
2009 
2010 	log_transid = root->log_transid;
2011 	if (log_transid % 2 == 0)
2012 		mark = EXTENT_DIRTY;
2013 	else
2014 		mark = EXTENT_NEW;
2015 
2016 	/* we start IO on  all the marked extents here, but we don't actually
2017 	 * wait for them until later.
2018 	 */
2019 	ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2020 	BUG_ON(ret);
2021 
2022 	btrfs_set_root_node(&log->root_item, log->node);
2023 
2024 	root->log_batch = 0;
2025 	root->log_transid++;
2026 	log->log_transid = root->log_transid;
2027 	root->log_start_pid = 0;
2028 	smp_mb();
2029 	/*
2030 	 * IO has been started, blocks of the log tree have WRITTEN flag set
2031 	 * in their headers. new modifications of the log will be written to
2032 	 * new positions. so it's safe to allow log writers to go in.
2033 	 */
2034 	mutex_unlock(&root->log_mutex);
2035 
2036 	mutex_lock(&log_root_tree->log_mutex);
2037 	log_root_tree->log_batch++;
2038 	atomic_inc(&log_root_tree->log_writers);
2039 	mutex_unlock(&log_root_tree->log_mutex);
2040 
2041 	ret = update_log_root(trans, log);
2042 
2043 	mutex_lock(&log_root_tree->log_mutex);
2044 	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2045 		smp_mb();
2046 		if (waitqueue_active(&log_root_tree->log_writer_wait))
2047 			wake_up(&log_root_tree->log_writer_wait);
2048 	}
2049 
2050 	if (ret) {
2051 		BUG_ON(ret != -ENOSPC);
2052 		root->fs_info->last_trans_log_full_commit = trans->transid;
2053 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2054 		mutex_unlock(&log_root_tree->log_mutex);
2055 		ret = -EAGAIN;
2056 		goto out;
2057 	}
2058 
2059 	index2 = log_root_tree->log_transid % 2;
2060 	if (atomic_read(&log_root_tree->log_commit[index2])) {
2061 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2062 		wait_log_commit(trans, log_root_tree,
2063 				log_root_tree->log_transid);
2064 		mutex_unlock(&log_root_tree->log_mutex);
2065 		ret = 0;
2066 		goto out;
2067 	}
2068 	atomic_set(&log_root_tree->log_commit[index2], 1);
2069 
2070 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2071 		wait_log_commit(trans, log_root_tree,
2072 				log_root_tree->log_transid - 1);
2073 	}
2074 
2075 	wait_for_writer(trans, log_root_tree);
2076 
2077 	/*
2078 	 * now that we've moved on to the tree of log tree roots,
2079 	 * check the full commit flag again
2080 	 */
2081 	if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2082 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2083 		mutex_unlock(&log_root_tree->log_mutex);
2084 		ret = -EAGAIN;
2085 		goto out_wake_log_root;
2086 	}
2087 
2088 	ret = btrfs_write_and_wait_marked_extents(log_root_tree,
2089 				&log_root_tree->dirty_log_pages,
2090 				EXTENT_DIRTY | EXTENT_NEW);
2091 	BUG_ON(ret);
2092 	btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2093 
2094 	btrfs_set_super_log_root(&root->fs_info->super_for_commit,
2095 				log_root_tree->node->start);
2096 	btrfs_set_super_log_root_level(&root->fs_info->super_for_commit,
2097 				btrfs_header_level(log_root_tree->node));
2098 
2099 	log_root_tree->log_batch = 0;
2100 	log_root_tree->log_transid++;
2101 	smp_mb();
2102 
2103 	mutex_unlock(&log_root_tree->log_mutex);
2104 
2105 	/*
2106 	 * nobody else is going to jump in and write the the ctree
2107 	 * super here because the log_commit atomic below is protecting
2108 	 * us.  We must be called with a transaction handle pinning
2109 	 * the running transaction open, so a full commit can't hop
2110 	 * in and cause problems either.
2111 	 */
2112 	btrfs_scrub_pause_super(root);
2113 	write_ctree_super(trans, root->fs_info->tree_root, 1);
2114 	btrfs_scrub_continue_super(root);
2115 	ret = 0;
2116 
2117 	mutex_lock(&root->log_mutex);
2118 	if (root->last_log_commit < log_transid)
2119 		root->last_log_commit = log_transid;
2120 	mutex_unlock(&root->log_mutex);
2121 
2122 out_wake_log_root:
2123 	atomic_set(&log_root_tree->log_commit[index2], 0);
2124 	smp_mb();
2125 	if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2126 		wake_up(&log_root_tree->log_commit_wait[index2]);
2127 out:
2128 	atomic_set(&root->log_commit[index1], 0);
2129 	smp_mb();
2130 	if (waitqueue_active(&root->log_commit_wait[index1]))
2131 		wake_up(&root->log_commit_wait[index1]);
2132 	return ret;
2133 }
2134 
2135 static void free_log_tree(struct btrfs_trans_handle *trans,
2136 			  struct btrfs_root *log)
2137 {
2138 	int ret;
2139 	u64 start;
2140 	u64 end;
2141 	struct walk_control wc = {
2142 		.free = 1,
2143 		.process_func = process_one_buffer
2144 	};
2145 
2146 	ret = walk_log_tree(trans, log, &wc);
2147 	BUG_ON(ret);
2148 
2149 	while (1) {
2150 		ret = find_first_extent_bit(&log->dirty_log_pages,
2151 				0, &start, &end, EXTENT_DIRTY | EXTENT_NEW);
2152 		if (ret)
2153 			break;
2154 
2155 		clear_extent_bits(&log->dirty_log_pages, start, end,
2156 				  EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2157 	}
2158 
2159 	free_extent_buffer(log->node);
2160 	kfree(log);
2161 }
2162 
2163 /*
2164  * free all the extents used by the tree log.  This should be called
2165  * at commit time of the full transaction
2166  */
2167 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2168 {
2169 	if (root->log_root) {
2170 		free_log_tree(trans, root->log_root);
2171 		root->log_root = NULL;
2172 	}
2173 	return 0;
2174 }
2175 
2176 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2177 			     struct btrfs_fs_info *fs_info)
2178 {
2179 	if (fs_info->log_root_tree) {
2180 		free_log_tree(trans, fs_info->log_root_tree);
2181 		fs_info->log_root_tree = NULL;
2182 	}
2183 	return 0;
2184 }
2185 
2186 /*
2187  * If both a file and directory are logged, and unlinks or renames are
2188  * mixed in, we have a few interesting corners:
2189  *
2190  * create file X in dir Y
2191  * link file X to X.link in dir Y
2192  * fsync file X
2193  * unlink file X but leave X.link
2194  * fsync dir Y
2195  *
2196  * After a crash we would expect only X.link to exist.  But file X
2197  * didn't get fsync'd again so the log has back refs for X and X.link.
2198  *
2199  * We solve this by removing directory entries and inode backrefs from the
2200  * log when a file that was logged in the current transaction is
2201  * unlinked.  Any later fsync will include the updated log entries, and
2202  * we'll be able to reconstruct the proper directory items from backrefs.
2203  *
2204  * This optimizations allows us to avoid relogging the entire inode
2205  * or the entire directory.
2206  */
2207 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2208 				 struct btrfs_root *root,
2209 				 const char *name, int name_len,
2210 				 struct inode *dir, u64 index)
2211 {
2212 	struct btrfs_root *log;
2213 	struct btrfs_dir_item *di;
2214 	struct btrfs_path *path;
2215 	int ret;
2216 	int err = 0;
2217 	int bytes_del = 0;
2218 	u64 dir_ino = btrfs_ino(dir);
2219 
2220 	if (BTRFS_I(dir)->logged_trans < trans->transid)
2221 		return 0;
2222 
2223 	ret = join_running_log_trans(root);
2224 	if (ret)
2225 		return 0;
2226 
2227 	mutex_lock(&BTRFS_I(dir)->log_mutex);
2228 
2229 	log = root->log_root;
2230 	path = btrfs_alloc_path();
2231 	if (!path) {
2232 		err = -ENOMEM;
2233 		goto out_unlock;
2234 	}
2235 
2236 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
2237 				   name, name_len, -1);
2238 	if (IS_ERR(di)) {
2239 		err = PTR_ERR(di);
2240 		goto fail;
2241 	}
2242 	if (di) {
2243 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2244 		bytes_del += name_len;
2245 		BUG_ON(ret);
2246 	}
2247 	btrfs_release_path(path);
2248 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
2249 					 index, name, name_len, -1);
2250 	if (IS_ERR(di)) {
2251 		err = PTR_ERR(di);
2252 		goto fail;
2253 	}
2254 	if (di) {
2255 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2256 		bytes_del += name_len;
2257 		BUG_ON(ret);
2258 	}
2259 
2260 	/* update the directory size in the log to reflect the names
2261 	 * we have removed
2262 	 */
2263 	if (bytes_del) {
2264 		struct btrfs_key key;
2265 
2266 		key.objectid = dir_ino;
2267 		key.offset = 0;
2268 		key.type = BTRFS_INODE_ITEM_KEY;
2269 		btrfs_release_path(path);
2270 
2271 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2272 		if (ret < 0) {
2273 			err = ret;
2274 			goto fail;
2275 		}
2276 		if (ret == 0) {
2277 			struct btrfs_inode_item *item;
2278 			u64 i_size;
2279 
2280 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2281 					      struct btrfs_inode_item);
2282 			i_size = btrfs_inode_size(path->nodes[0], item);
2283 			if (i_size > bytes_del)
2284 				i_size -= bytes_del;
2285 			else
2286 				i_size = 0;
2287 			btrfs_set_inode_size(path->nodes[0], item, i_size);
2288 			btrfs_mark_buffer_dirty(path->nodes[0]);
2289 		} else
2290 			ret = 0;
2291 		btrfs_release_path(path);
2292 	}
2293 fail:
2294 	btrfs_free_path(path);
2295 out_unlock:
2296 	mutex_unlock(&BTRFS_I(dir)->log_mutex);
2297 	if (ret == -ENOSPC) {
2298 		root->fs_info->last_trans_log_full_commit = trans->transid;
2299 		ret = 0;
2300 	}
2301 	btrfs_end_log_trans(root);
2302 
2303 	return err;
2304 }
2305 
2306 /* see comments for btrfs_del_dir_entries_in_log */
2307 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2308 			       struct btrfs_root *root,
2309 			       const char *name, int name_len,
2310 			       struct inode *inode, u64 dirid)
2311 {
2312 	struct btrfs_root *log;
2313 	u64 index;
2314 	int ret;
2315 
2316 	if (BTRFS_I(inode)->logged_trans < trans->transid)
2317 		return 0;
2318 
2319 	ret = join_running_log_trans(root);
2320 	if (ret)
2321 		return 0;
2322 	log = root->log_root;
2323 	mutex_lock(&BTRFS_I(inode)->log_mutex);
2324 
2325 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
2326 				  dirid, &index);
2327 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
2328 	if (ret == -ENOSPC) {
2329 		root->fs_info->last_trans_log_full_commit = trans->transid;
2330 		ret = 0;
2331 	}
2332 	btrfs_end_log_trans(root);
2333 
2334 	return ret;
2335 }
2336 
2337 /*
2338  * creates a range item in the log for 'dirid'.  first_offset and
2339  * last_offset tell us which parts of the key space the log should
2340  * be considered authoritative for.
2341  */
2342 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2343 				       struct btrfs_root *log,
2344 				       struct btrfs_path *path,
2345 				       int key_type, u64 dirid,
2346 				       u64 first_offset, u64 last_offset)
2347 {
2348 	int ret;
2349 	struct btrfs_key key;
2350 	struct btrfs_dir_log_item *item;
2351 
2352 	key.objectid = dirid;
2353 	key.offset = first_offset;
2354 	if (key_type == BTRFS_DIR_ITEM_KEY)
2355 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
2356 	else
2357 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
2358 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2359 	if (ret)
2360 		return ret;
2361 
2362 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2363 			      struct btrfs_dir_log_item);
2364 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2365 	btrfs_mark_buffer_dirty(path->nodes[0]);
2366 	btrfs_release_path(path);
2367 	return 0;
2368 }
2369 
2370 /*
2371  * log all the items included in the current transaction for a given
2372  * directory.  This also creates the range items in the log tree required
2373  * to replay anything deleted before the fsync
2374  */
2375 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2376 			  struct btrfs_root *root, struct inode *inode,
2377 			  struct btrfs_path *path,
2378 			  struct btrfs_path *dst_path, int key_type,
2379 			  u64 min_offset, u64 *last_offset_ret)
2380 {
2381 	struct btrfs_key min_key;
2382 	struct btrfs_key max_key;
2383 	struct btrfs_root *log = root->log_root;
2384 	struct extent_buffer *src;
2385 	int err = 0;
2386 	int ret;
2387 	int i;
2388 	int nritems;
2389 	u64 first_offset = min_offset;
2390 	u64 last_offset = (u64)-1;
2391 	u64 ino = btrfs_ino(inode);
2392 
2393 	log = root->log_root;
2394 	max_key.objectid = ino;
2395 	max_key.offset = (u64)-1;
2396 	max_key.type = key_type;
2397 
2398 	min_key.objectid = ino;
2399 	min_key.type = key_type;
2400 	min_key.offset = min_offset;
2401 
2402 	path->keep_locks = 1;
2403 
2404 	ret = btrfs_search_forward(root, &min_key, &max_key,
2405 				   path, 0, trans->transid);
2406 
2407 	/*
2408 	 * we didn't find anything from this transaction, see if there
2409 	 * is anything at all
2410 	 */
2411 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
2412 		min_key.objectid = ino;
2413 		min_key.type = key_type;
2414 		min_key.offset = (u64)-1;
2415 		btrfs_release_path(path);
2416 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2417 		if (ret < 0) {
2418 			btrfs_release_path(path);
2419 			return ret;
2420 		}
2421 		ret = btrfs_previous_item(root, path, ino, key_type);
2422 
2423 		/* if ret == 0 there are items for this type,
2424 		 * create a range to tell us the last key of this type.
2425 		 * otherwise, there are no items in this directory after
2426 		 * *min_offset, and we create a range to indicate that.
2427 		 */
2428 		if (ret == 0) {
2429 			struct btrfs_key tmp;
2430 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2431 					      path->slots[0]);
2432 			if (key_type == tmp.type)
2433 				first_offset = max(min_offset, tmp.offset) + 1;
2434 		}
2435 		goto done;
2436 	}
2437 
2438 	/* go backward to find any previous key */
2439 	ret = btrfs_previous_item(root, path, ino, key_type);
2440 	if (ret == 0) {
2441 		struct btrfs_key tmp;
2442 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2443 		if (key_type == tmp.type) {
2444 			first_offset = tmp.offset;
2445 			ret = overwrite_item(trans, log, dst_path,
2446 					     path->nodes[0], path->slots[0],
2447 					     &tmp);
2448 			if (ret) {
2449 				err = ret;
2450 				goto done;
2451 			}
2452 		}
2453 	}
2454 	btrfs_release_path(path);
2455 
2456 	/* find the first key from this transaction again */
2457 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2458 	if (ret != 0) {
2459 		WARN_ON(1);
2460 		goto done;
2461 	}
2462 
2463 	/*
2464 	 * we have a block from this transaction, log every item in it
2465 	 * from our directory
2466 	 */
2467 	while (1) {
2468 		struct btrfs_key tmp;
2469 		src = path->nodes[0];
2470 		nritems = btrfs_header_nritems(src);
2471 		for (i = path->slots[0]; i < nritems; i++) {
2472 			btrfs_item_key_to_cpu(src, &min_key, i);
2473 
2474 			if (min_key.objectid != ino || min_key.type != key_type)
2475 				goto done;
2476 			ret = overwrite_item(trans, log, dst_path, src, i,
2477 					     &min_key);
2478 			if (ret) {
2479 				err = ret;
2480 				goto done;
2481 			}
2482 		}
2483 		path->slots[0] = nritems;
2484 
2485 		/*
2486 		 * look ahead to the next item and see if it is also
2487 		 * from this directory and from this transaction
2488 		 */
2489 		ret = btrfs_next_leaf(root, path);
2490 		if (ret == 1) {
2491 			last_offset = (u64)-1;
2492 			goto done;
2493 		}
2494 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2495 		if (tmp.objectid != ino || tmp.type != key_type) {
2496 			last_offset = (u64)-1;
2497 			goto done;
2498 		}
2499 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2500 			ret = overwrite_item(trans, log, dst_path,
2501 					     path->nodes[0], path->slots[0],
2502 					     &tmp);
2503 			if (ret)
2504 				err = ret;
2505 			else
2506 				last_offset = tmp.offset;
2507 			goto done;
2508 		}
2509 	}
2510 done:
2511 	btrfs_release_path(path);
2512 	btrfs_release_path(dst_path);
2513 
2514 	if (err == 0) {
2515 		*last_offset_ret = last_offset;
2516 		/*
2517 		 * insert the log range keys to indicate where the log
2518 		 * is valid
2519 		 */
2520 		ret = insert_dir_log_key(trans, log, path, key_type,
2521 					 ino, first_offset, last_offset);
2522 		if (ret)
2523 			err = ret;
2524 	}
2525 	return err;
2526 }
2527 
2528 /*
2529  * logging directories is very similar to logging inodes, We find all the items
2530  * from the current transaction and write them to the log.
2531  *
2532  * The recovery code scans the directory in the subvolume, and if it finds a
2533  * key in the range logged that is not present in the log tree, then it means
2534  * that dir entry was unlinked during the transaction.
2535  *
2536  * In order for that scan to work, we must include one key smaller than
2537  * the smallest logged by this transaction and one key larger than the largest
2538  * key logged by this transaction.
2539  */
2540 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2541 			  struct btrfs_root *root, struct inode *inode,
2542 			  struct btrfs_path *path,
2543 			  struct btrfs_path *dst_path)
2544 {
2545 	u64 min_key;
2546 	u64 max_key;
2547 	int ret;
2548 	int key_type = BTRFS_DIR_ITEM_KEY;
2549 
2550 again:
2551 	min_key = 0;
2552 	max_key = 0;
2553 	while (1) {
2554 		ret = log_dir_items(trans, root, inode, path,
2555 				    dst_path, key_type, min_key,
2556 				    &max_key);
2557 		if (ret)
2558 			return ret;
2559 		if (max_key == (u64)-1)
2560 			break;
2561 		min_key = max_key + 1;
2562 	}
2563 
2564 	if (key_type == BTRFS_DIR_ITEM_KEY) {
2565 		key_type = BTRFS_DIR_INDEX_KEY;
2566 		goto again;
2567 	}
2568 	return 0;
2569 }
2570 
2571 /*
2572  * a helper function to drop items from the log before we relog an
2573  * inode.  max_key_type indicates the highest item type to remove.
2574  * This cannot be run for file data extents because it does not
2575  * free the extents they point to.
2576  */
2577 static int drop_objectid_items(struct btrfs_trans_handle *trans,
2578 				  struct btrfs_root *log,
2579 				  struct btrfs_path *path,
2580 				  u64 objectid, int max_key_type)
2581 {
2582 	int ret;
2583 	struct btrfs_key key;
2584 	struct btrfs_key found_key;
2585 
2586 	key.objectid = objectid;
2587 	key.type = max_key_type;
2588 	key.offset = (u64)-1;
2589 
2590 	while (1) {
2591 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2592 		BUG_ON(ret == 0);
2593 		if (ret < 0)
2594 			break;
2595 
2596 		if (path->slots[0] == 0)
2597 			break;
2598 
2599 		path->slots[0]--;
2600 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2601 				      path->slots[0]);
2602 
2603 		if (found_key.objectid != objectid)
2604 			break;
2605 
2606 		ret = btrfs_del_item(trans, log, path);
2607 		if (ret)
2608 			break;
2609 		btrfs_release_path(path);
2610 	}
2611 	btrfs_release_path(path);
2612 	return ret;
2613 }
2614 
2615 static noinline int copy_items(struct btrfs_trans_handle *trans,
2616 			       struct btrfs_root *log,
2617 			       struct btrfs_path *dst_path,
2618 			       struct extent_buffer *src,
2619 			       int start_slot, int nr, int inode_only)
2620 {
2621 	unsigned long src_offset;
2622 	unsigned long dst_offset;
2623 	struct btrfs_file_extent_item *extent;
2624 	struct btrfs_inode_item *inode_item;
2625 	int ret;
2626 	struct btrfs_key *ins_keys;
2627 	u32 *ins_sizes;
2628 	char *ins_data;
2629 	int i;
2630 	struct list_head ordered_sums;
2631 
2632 	INIT_LIST_HEAD(&ordered_sums);
2633 
2634 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2635 			   nr * sizeof(u32), GFP_NOFS);
2636 	if (!ins_data)
2637 		return -ENOMEM;
2638 
2639 	ins_sizes = (u32 *)ins_data;
2640 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2641 
2642 	for (i = 0; i < nr; i++) {
2643 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2644 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2645 	}
2646 	ret = btrfs_insert_empty_items(trans, log, dst_path,
2647 				       ins_keys, ins_sizes, nr);
2648 	if (ret) {
2649 		kfree(ins_data);
2650 		return ret;
2651 	}
2652 
2653 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
2654 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2655 						   dst_path->slots[0]);
2656 
2657 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2658 
2659 		copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2660 				   src_offset, ins_sizes[i]);
2661 
2662 		if (inode_only == LOG_INODE_EXISTS &&
2663 		    ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2664 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
2665 						    dst_path->slots[0],
2666 						    struct btrfs_inode_item);
2667 			btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
2668 
2669 			/* set the generation to zero so the recover code
2670 			 * can tell the difference between an logging
2671 			 * just to say 'this inode exists' and a logging
2672 			 * to say 'update this inode with these values'
2673 			 */
2674 			btrfs_set_inode_generation(dst_path->nodes[0],
2675 						   inode_item, 0);
2676 		}
2677 		/* take a reference on file data extents so that truncates
2678 		 * or deletes of this inode don't have to relog the inode
2679 		 * again
2680 		 */
2681 		if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
2682 			int found_type;
2683 			extent = btrfs_item_ptr(src, start_slot + i,
2684 						struct btrfs_file_extent_item);
2685 
2686 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
2687 				continue;
2688 
2689 			found_type = btrfs_file_extent_type(src, extent);
2690 			if (found_type == BTRFS_FILE_EXTENT_REG ||
2691 			    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
2692 				u64 ds, dl, cs, cl;
2693 				ds = btrfs_file_extent_disk_bytenr(src,
2694 								extent);
2695 				/* ds == 0 is a hole */
2696 				if (ds == 0)
2697 					continue;
2698 
2699 				dl = btrfs_file_extent_disk_num_bytes(src,
2700 								extent);
2701 				cs = btrfs_file_extent_offset(src, extent);
2702 				cl = btrfs_file_extent_num_bytes(src,
2703 								extent);
2704 				if (btrfs_file_extent_compression(src,
2705 								  extent)) {
2706 					cs = 0;
2707 					cl = dl;
2708 				}
2709 
2710 				ret = btrfs_lookup_csums_range(
2711 						log->fs_info->csum_root,
2712 						ds + cs, ds + cs + cl - 1,
2713 						&ordered_sums, 0);
2714 				BUG_ON(ret);
2715 			}
2716 		}
2717 	}
2718 
2719 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2720 	btrfs_release_path(dst_path);
2721 	kfree(ins_data);
2722 
2723 	/*
2724 	 * we have to do this after the loop above to avoid changing the
2725 	 * log tree while trying to change the log tree.
2726 	 */
2727 	ret = 0;
2728 	while (!list_empty(&ordered_sums)) {
2729 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
2730 						   struct btrfs_ordered_sum,
2731 						   list);
2732 		if (!ret)
2733 			ret = btrfs_csum_file_blocks(trans, log, sums);
2734 		list_del(&sums->list);
2735 		kfree(sums);
2736 	}
2737 	return ret;
2738 }
2739 
2740 /* log a single inode in the tree log.
2741  * At least one parent directory for this inode must exist in the tree
2742  * or be logged already.
2743  *
2744  * Any items from this inode changed by the current transaction are copied
2745  * to the log tree.  An extra reference is taken on any extents in this
2746  * file, allowing us to avoid a whole pile of corner cases around logging
2747  * blocks that have been removed from the tree.
2748  *
2749  * See LOG_INODE_ALL and related defines for a description of what inode_only
2750  * does.
2751  *
2752  * This handles both files and directories.
2753  */
2754 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
2755 			     struct btrfs_root *root, struct inode *inode,
2756 			     int inode_only)
2757 {
2758 	struct btrfs_path *path;
2759 	struct btrfs_path *dst_path;
2760 	struct btrfs_key min_key;
2761 	struct btrfs_key max_key;
2762 	struct btrfs_root *log = root->log_root;
2763 	struct extent_buffer *src = NULL;
2764 	int err = 0;
2765 	int ret;
2766 	int nritems;
2767 	int ins_start_slot = 0;
2768 	int ins_nr;
2769 	u64 ino = btrfs_ino(inode);
2770 
2771 	log = root->log_root;
2772 
2773 	path = btrfs_alloc_path();
2774 	if (!path)
2775 		return -ENOMEM;
2776 	dst_path = btrfs_alloc_path();
2777 	if (!dst_path) {
2778 		btrfs_free_path(path);
2779 		return -ENOMEM;
2780 	}
2781 
2782 	min_key.objectid = ino;
2783 	min_key.type = BTRFS_INODE_ITEM_KEY;
2784 	min_key.offset = 0;
2785 
2786 	max_key.objectid = ino;
2787 
2788 	/* today the code can only do partial logging of directories */
2789 	if (!S_ISDIR(inode->i_mode))
2790 	    inode_only = LOG_INODE_ALL;
2791 
2792 	if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
2793 		max_key.type = BTRFS_XATTR_ITEM_KEY;
2794 	else
2795 		max_key.type = (u8)-1;
2796 	max_key.offset = (u64)-1;
2797 
2798 	ret = btrfs_commit_inode_delayed_items(trans, inode);
2799 	if (ret) {
2800 		btrfs_free_path(path);
2801 		btrfs_free_path(dst_path);
2802 		return ret;
2803 	}
2804 
2805 	mutex_lock(&BTRFS_I(inode)->log_mutex);
2806 
2807 	/*
2808 	 * a brute force approach to making sure we get the most uptodate
2809 	 * copies of everything.
2810 	 */
2811 	if (S_ISDIR(inode->i_mode)) {
2812 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2813 
2814 		if (inode_only == LOG_INODE_EXISTS)
2815 			max_key_type = BTRFS_XATTR_ITEM_KEY;
2816 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
2817 	} else {
2818 		ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
2819 	}
2820 	if (ret) {
2821 		err = ret;
2822 		goto out_unlock;
2823 	}
2824 	path->keep_locks = 1;
2825 
2826 	while (1) {
2827 		ins_nr = 0;
2828 		ret = btrfs_search_forward(root, &min_key, &max_key,
2829 					   path, 0, trans->transid);
2830 		if (ret != 0)
2831 			break;
2832 again:
2833 		/* note, ins_nr might be > 0 here, cleanup outside the loop */
2834 		if (min_key.objectid != ino)
2835 			break;
2836 		if (min_key.type > max_key.type)
2837 			break;
2838 
2839 		src = path->nodes[0];
2840 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2841 			ins_nr++;
2842 			goto next_slot;
2843 		} else if (!ins_nr) {
2844 			ins_start_slot = path->slots[0];
2845 			ins_nr = 1;
2846 			goto next_slot;
2847 		}
2848 
2849 		ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2850 				 ins_nr, inode_only);
2851 		if (ret) {
2852 			err = ret;
2853 			goto out_unlock;
2854 		}
2855 		ins_nr = 1;
2856 		ins_start_slot = path->slots[0];
2857 next_slot:
2858 
2859 		nritems = btrfs_header_nritems(path->nodes[0]);
2860 		path->slots[0]++;
2861 		if (path->slots[0] < nritems) {
2862 			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2863 					      path->slots[0]);
2864 			goto again;
2865 		}
2866 		if (ins_nr) {
2867 			ret = copy_items(trans, log, dst_path, src,
2868 					 ins_start_slot,
2869 					 ins_nr, inode_only);
2870 			if (ret) {
2871 				err = ret;
2872 				goto out_unlock;
2873 			}
2874 			ins_nr = 0;
2875 		}
2876 		btrfs_release_path(path);
2877 
2878 		if (min_key.offset < (u64)-1)
2879 			min_key.offset++;
2880 		else if (min_key.type < (u8)-1)
2881 			min_key.type++;
2882 		else if (min_key.objectid < (u64)-1)
2883 			min_key.objectid++;
2884 		else
2885 			break;
2886 	}
2887 	if (ins_nr) {
2888 		ret = copy_items(trans, log, dst_path, src,
2889 				 ins_start_slot,
2890 				 ins_nr, inode_only);
2891 		if (ret) {
2892 			err = ret;
2893 			goto out_unlock;
2894 		}
2895 		ins_nr = 0;
2896 	}
2897 	WARN_ON(ins_nr);
2898 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
2899 		btrfs_release_path(path);
2900 		btrfs_release_path(dst_path);
2901 		ret = log_directory_changes(trans, root, inode, path, dst_path);
2902 		if (ret) {
2903 			err = ret;
2904 			goto out_unlock;
2905 		}
2906 	}
2907 	BTRFS_I(inode)->logged_trans = trans->transid;
2908 out_unlock:
2909 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
2910 
2911 	btrfs_free_path(path);
2912 	btrfs_free_path(dst_path);
2913 	return err;
2914 }
2915 
2916 /*
2917  * follow the dentry parent pointers up the chain and see if any
2918  * of the directories in it require a full commit before they can
2919  * be logged.  Returns zero if nothing special needs to be done or 1 if
2920  * a full commit is required.
2921  */
2922 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
2923 					       struct inode *inode,
2924 					       struct dentry *parent,
2925 					       struct super_block *sb,
2926 					       u64 last_committed)
2927 {
2928 	int ret = 0;
2929 	struct btrfs_root *root;
2930 	struct dentry *old_parent = NULL;
2931 
2932 	/*
2933 	 * for regular files, if its inode is already on disk, we don't
2934 	 * have to worry about the parents at all.  This is because
2935 	 * we can use the last_unlink_trans field to record renames
2936 	 * and other fun in this file.
2937 	 */
2938 	if (S_ISREG(inode->i_mode) &&
2939 	    BTRFS_I(inode)->generation <= last_committed &&
2940 	    BTRFS_I(inode)->last_unlink_trans <= last_committed)
2941 			goto out;
2942 
2943 	if (!S_ISDIR(inode->i_mode)) {
2944 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2945 			goto out;
2946 		inode = parent->d_inode;
2947 	}
2948 
2949 	while (1) {
2950 		BTRFS_I(inode)->logged_trans = trans->transid;
2951 		smp_mb();
2952 
2953 		if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
2954 			root = BTRFS_I(inode)->root;
2955 
2956 			/*
2957 			 * make sure any commits to the log are forced
2958 			 * to be full commits
2959 			 */
2960 			root->fs_info->last_trans_log_full_commit =
2961 				trans->transid;
2962 			ret = 1;
2963 			break;
2964 		}
2965 
2966 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2967 			break;
2968 
2969 		if (IS_ROOT(parent))
2970 			break;
2971 
2972 		parent = dget_parent(parent);
2973 		dput(old_parent);
2974 		old_parent = parent;
2975 		inode = parent->d_inode;
2976 
2977 	}
2978 	dput(old_parent);
2979 out:
2980 	return ret;
2981 }
2982 
2983 static int inode_in_log(struct btrfs_trans_handle *trans,
2984 		 struct inode *inode)
2985 {
2986 	struct btrfs_root *root = BTRFS_I(inode)->root;
2987 	int ret = 0;
2988 
2989 	mutex_lock(&root->log_mutex);
2990 	if (BTRFS_I(inode)->logged_trans == trans->transid &&
2991 	    BTRFS_I(inode)->last_sub_trans <= root->last_log_commit)
2992 		ret = 1;
2993 	mutex_unlock(&root->log_mutex);
2994 	return ret;
2995 }
2996 
2997 
2998 /*
2999  * helper function around btrfs_log_inode to make sure newly created
3000  * parent directories also end up in the log.  A minimal inode and backref
3001  * only logging is done of any parent directories that are older than
3002  * the last committed transaction
3003  */
3004 int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
3005 		    struct btrfs_root *root, struct inode *inode,
3006 		    struct dentry *parent, int exists_only)
3007 {
3008 	int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
3009 	struct super_block *sb;
3010 	struct dentry *old_parent = NULL;
3011 	int ret = 0;
3012 	u64 last_committed = root->fs_info->last_trans_committed;
3013 
3014 	sb = inode->i_sb;
3015 
3016 	if (btrfs_test_opt(root, NOTREELOG)) {
3017 		ret = 1;
3018 		goto end_no_trans;
3019 	}
3020 
3021 	if (root->fs_info->last_trans_log_full_commit >
3022 	    root->fs_info->last_trans_committed) {
3023 		ret = 1;
3024 		goto end_no_trans;
3025 	}
3026 
3027 	if (root != BTRFS_I(inode)->root ||
3028 	    btrfs_root_refs(&root->root_item) == 0) {
3029 		ret = 1;
3030 		goto end_no_trans;
3031 	}
3032 
3033 	ret = check_parent_dirs_for_sync(trans, inode, parent,
3034 					 sb, last_committed);
3035 	if (ret)
3036 		goto end_no_trans;
3037 
3038 	if (inode_in_log(trans, inode)) {
3039 		ret = BTRFS_NO_LOG_SYNC;
3040 		goto end_no_trans;
3041 	}
3042 
3043 	ret = start_log_trans(trans, root);
3044 	if (ret)
3045 		goto end_trans;
3046 
3047 	ret = btrfs_log_inode(trans, root, inode, inode_only);
3048 	if (ret)
3049 		goto end_trans;
3050 
3051 	/*
3052 	 * for regular files, if its inode is already on disk, we don't
3053 	 * have to worry about the parents at all.  This is because
3054 	 * we can use the last_unlink_trans field to record renames
3055 	 * and other fun in this file.
3056 	 */
3057 	if (S_ISREG(inode->i_mode) &&
3058 	    BTRFS_I(inode)->generation <= last_committed &&
3059 	    BTRFS_I(inode)->last_unlink_trans <= last_committed) {
3060 		ret = 0;
3061 		goto end_trans;
3062 	}
3063 
3064 	inode_only = LOG_INODE_EXISTS;
3065 	while (1) {
3066 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3067 			break;
3068 
3069 		inode = parent->d_inode;
3070 		if (root != BTRFS_I(inode)->root)
3071 			break;
3072 
3073 		if (BTRFS_I(inode)->generation >
3074 		    root->fs_info->last_trans_committed) {
3075 			ret = btrfs_log_inode(trans, root, inode, inode_only);
3076 			if (ret)
3077 				goto end_trans;
3078 		}
3079 		if (IS_ROOT(parent))
3080 			break;
3081 
3082 		parent = dget_parent(parent);
3083 		dput(old_parent);
3084 		old_parent = parent;
3085 	}
3086 	ret = 0;
3087 end_trans:
3088 	dput(old_parent);
3089 	if (ret < 0) {
3090 		BUG_ON(ret != -ENOSPC);
3091 		root->fs_info->last_trans_log_full_commit = trans->transid;
3092 		ret = 1;
3093 	}
3094 	btrfs_end_log_trans(root);
3095 end_no_trans:
3096 	return ret;
3097 }
3098 
3099 /*
3100  * it is not safe to log dentry if the chunk root has added new
3101  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
3102  * If this returns 1, you must commit the transaction to safely get your
3103  * data on disk.
3104  */
3105 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
3106 			  struct btrfs_root *root, struct dentry *dentry)
3107 {
3108 	struct dentry *parent = dget_parent(dentry);
3109 	int ret;
3110 
3111 	ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
3112 	dput(parent);
3113 
3114 	return ret;
3115 }
3116 
3117 /*
3118  * should be called during mount to recover any replay any log trees
3119  * from the FS
3120  */
3121 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
3122 {
3123 	int ret;
3124 	struct btrfs_path *path;
3125 	struct btrfs_trans_handle *trans;
3126 	struct btrfs_key key;
3127 	struct btrfs_key found_key;
3128 	struct btrfs_key tmp_key;
3129 	struct btrfs_root *log;
3130 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
3131 	struct walk_control wc = {
3132 		.process_func = process_one_buffer,
3133 		.stage = 0,
3134 	};
3135 
3136 	path = btrfs_alloc_path();
3137 	if (!path)
3138 		return -ENOMEM;
3139 
3140 	fs_info->log_root_recovering = 1;
3141 
3142 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
3143 	BUG_ON(IS_ERR(trans));
3144 
3145 	wc.trans = trans;
3146 	wc.pin = 1;
3147 
3148 	ret = walk_log_tree(trans, log_root_tree, &wc);
3149 	BUG_ON(ret);
3150 
3151 again:
3152 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
3153 	key.offset = (u64)-1;
3154 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
3155 
3156 	while (1) {
3157 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
3158 		if (ret < 0)
3159 			break;
3160 		if (ret > 0) {
3161 			if (path->slots[0] == 0)
3162 				break;
3163 			path->slots[0]--;
3164 		}
3165 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3166 				      path->slots[0]);
3167 		btrfs_release_path(path);
3168 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
3169 			break;
3170 
3171 		log = btrfs_read_fs_root_no_radix(log_root_tree,
3172 						  &found_key);
3173 		BUG_ON(IS_ERR(log));
3174 
3175 		tmp_key.objectid = found_key.offset;
3176 		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
3177 		tmp_key.offset = (u64)-1;
3178 
3179 		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
3180 		BUG_ON(!wc.replay_dest);
3181 
3182 		wc.replay_dest->log_root = log;
3183 		btrfs_record_root_in_trans(trans, wc.replay_dest);
3184 		ret = walk_log_tree(trans, log, &wc);
3185 		BUG_ON(ret);
3186 
3187 		if (wc.stage == LOG_WALK_REPLAY_ALL) {
3188 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
3189 						      path);
3190 			BUG_ON(ret);
3191 		}
3192 
3193 		key.offset = found_key.offset - 1;
3194 		wc.replay_dest->log_root = NULL;
3195 		free_extent_buffer(log->node);
3196 		free_extent_buffer(log->commit_root);
3197 		kfree(log);
3198 
3199 		if (found_key.offset == 0)
3200 			break;
3201 	}
3202 	btrfs_release_path(path);
3203 
3204 	/* step one is to pin it all, step two is to replay just inodes */
3205 	if (wc.pin) {
3206 		wc.pin = 0;
3207 		wc.process_func = replay_one_buffer;
3208 		wc.stage = LOG_WALK_REPLAY_INODES;
3209 		goto again;
3210 	}
3211 	/* step three is to replay everything */
3212 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
3213 		wc.stage++;
3214 		goto again;
3215 	}
3216 
3217 	btrfs_free_path(path);
3218 
3219 	free_extent_buffer(log_root_tree->node);
3220 	log_root_tree->log_root = NULL;
3221 	fs_info->log_root_recovering = 0;
3222 
3223 	/* step 4: commit the transaction, which also unpins the blocks */
3224 	btrfs_commit_transaction(trans, fs_info->tree_root);
3225 
3226 	kfree(log_root_tree);
3227 	return 0;
3228 }
3229 
3230 /*
3231  * there are some corner cases where we want to force a full
3232  * commit instead of allowing a directory to be logged.
3233  *
3234  * They revolve around files there were unlinked from the directory, and
3235  * this function updates the parent directory so that a full commit is
3236  * properly done if it is fsync'd later after the unlinks are done.
3237  */
3238 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
3239 			     struct inode *dir, struct inode *inode,
3240 			     int for_rename)
3241 {
3242 	/*
3243 	 * when we're logging a file, if it hasn't been renamed
3244 	 * or unlinked, and its inode is fully committed on disk,
3245 	 * we don't have to worry about walking up the directory chain
3246 	 * to log its parents.
3247 	 *
3248 	 * So, we use the last_unlink_trans field to put this transid
3249 	 * into the file.  When the file is logged we check it and
3250 	 * don't log the parents if the file is fully on disk.
3251 	 */
3252 	if (S_ISREG(inode->i_mode))
3253 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
3254 
3255 	/*
3256 	 * if this directory was already logged any new
3257 	 * names for this file/dir will get recorded
3258 	 */
3259 	smp_mb();
3260 	if (BTRFS_I(dir)->logged_trans == trans->transid)
3261 		return;
3262 
3263 	/*
3264 	 * if the inode we're about to unlink was logged,
3265 	 * the log will be properly updated for any new names
3266 	 */
3267 	if (BTRFS_I(inode)->logged_trans == trans->transid)
3268 		return;
3269 
3270 	/*
3271 	 * when renaming files across directories, if the directory
3272 	 * there we're unlinking from gets fsync'd later on, there's
3273 	 * no way to find the destination directory later and fsync it
3274 	 * properly.  So, we have to be conservative and force commits
3275 	 * so the new name gets discovered.
3276 	 */
3277 	if (for_rename)
3278 		goto record;
3279 
3280 	/* we can safely do the unlink without any special recording */
3281 	return;
3282 
3283 record:
3284 	BTRFS_I(dir)->last_unlink_trans = trans->transid;
3285 }
3286 
3287 /*
3288  * Call this after adding a new name for a file and it will properly
3289  * update the log to reflect the new name.
3290  *
3291  * It will return zero if all goes well, and it will return 1 if a
3292  * full transaction commit is required.
3293  */
3294 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
3295 			struct inode *inode, struct inode *old_dir,
3296 			struct dentry *parent)
3297 {
3298 	struct btrfs_root * root = BTRFS_I(inode)->root;
3299 
3300 	/*
3301 	 * this will force the logging code to walk the dentry chain
3302 	 * up for the file
3303 	 */
3304 	if (S_ISREG(inode->i_mode))
3305 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
3306 
3307 	/*
3308 	 * if this inode hasn't been logged and directory we're renaming it
3309 	 * from hasn't been logged, we don't need to log it
3310 	 */
3311 	if (BTRFS_I(inode)->logged_trans <=
3312 	    root->fs_info->last_trans_committed &&
3313 	    (!old_dir || BTRFS_I(old_dir)->logged_trans <=
3314 		    root->fs_info->last_trans_committed))
3315 		return 0;
3316 
3317 	return btrfs_log_inode_parent(trans, root, inode, parent, 1);
3318 }
3319 
3320