1 /* 2 * Copyright (C) 2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include "ctree.h" 21 #include "transaction.h" 22 #include "disk-io.h" 23 #include "locking.h" 24 #include "print-tree.h" 25 #include "compat.h" 26 #include "tree-log.h" 27 28 /* magic values for the inode_only field in btrfs_log_inode: 29 * 30 * LOG_INODE_ALL means to log everything 31 * LOG_INODE_EXISTS means to log just enough to recreate the inode 32 * during log replay 33 */ 34 #define LOG_INODE_ALL 0 35 #define LOG_INODE_EXISTS 1 36 37 /* 38 * stages for the tree walking. The first 39 * stage (0) is to only pin down the blocks we find 40 * the second stage (1) is to make sure that all the inodes 41 * we find in the log are created in the subvolume. 42 * 43 * The last stage is to deal with directories and links and extents 44 * and all the other fun semantics 45 */ 46 #define LOG_WALK_PIN_ONLY 0 47 #define LOG_WALK_REPLAY_INODES 1 48 #define LOG_WALK_REPLAY_ALL 2 49 50 static int __btrfs_log_inode(struct btrfs_trans_handle *trans, 51 struct btrfs_root *root, struct inode *inode, 52 int inode_only); 53 static int link_to_fixup_dir(struct btrfs_trans_handle *trans, 54 struct btrfs_root *root, 55 struct btrfs_path *path, u64 objectid); 56 57 /* 58 * tree logging is a special write ahead log used to make sure that 59 * fsyncs and O_SYNCs can happen without doing full tree commits. 60 * 61 * Full tree commits are expensive because they require commonly 62 * modified blocks to be recowed, creating many dirty pages in the 63 * extent tree an 4x-6x higher write load than ext3. 64 * 65 * Instead of doing a tree commit on every fsync, we use the 66 * key ranges and transaction ids to find items for a given file or directory 67 * that have changed in this transaction. Those items are copied into 68 * a special tree (one per subvolume root), that tree is written to disk 69 * and then the fsync is considered complete. 70 * 71 * After a crash, items are copied out of the log-tree back into the 72 * subvolume tree. Any file data extents found are recorded in the extent 73 * allocation tree, and the log-tree freed. 74 * 75 * The log tree is read three times, once to pin down all the extents it is 76 * using in ram and once, once to create all the inodes logged in the tree 77 * and once to do all the other items. 78 */ 79 80 /* 81 * start a sub transaction and setup the log tree 82 * this increments the log tree writer count to make the people 83 * syncing the tree wait for us to finish 84 */ 85 static int start_log_trans(struct btrfs_trans_handle *trans, 86 struct btrfs_root *root) 87 { 88 int ret; 89 90 mutex_lock(&root->log_mutex); 91 if (root->log_root) { 92 root->log_batch++; 93 atomic_inc(&root->log_writers); 94 mutex_unlock(&root->log_mutex); 95 return 0; 96 } 97 mutex_lock(&root->fs_info->tree_log_mutex); 98 if (!root->fs_info->log_root_tree) { 99 ret = btrfs_init_log_root_tree(trans, root->fs_info); 100 BUG_ON(ret); 101 } 102 if (!root->log_root) { 103 ret = btrfs_add_log_tree(trans, root); 104 BUG_ON(ret); 105 } 106 mutex_unlock(&root->fs_info->tree_log_mutex); 107 root->log_batch++; 108 atomic_inc(&root->log_writers); 109 mutex_unlock(&root->log_mutex); 110 return 0; 111 } 112 113 /* 114 * returns 0 if there was a log transaction running and we were able 115 * to join, or returns -ENOENT if there were not transactions 116 * in progress 117 */ 118 static int join_running_log_trans(struct btrfs_root *root) 119 { 120 int ret = -ENOENT; 121 122 smp_mb(); 123 if (!root->log_root) 124 return -ENOENT; 125 126 mutex_lock(&root->log_mutex); 127 if (root->log_root) { 128 ret = 0; 129 atomic_inc(&root->log_writers); 130 } 131 mutex_unlock(&root->log_mutex); 132 return ret; 133 } 134 135 /* 136 * indicate we're done making changes to the log tree 137 * and wake up anyone waiting to do a sync 138 */ 139 static int end_log_trans(struct btrfs_root *root) 140 { 141 if (atomic_dec_and_test(&root->log_writers)) { 142 smp_mb(); 143 if (waitqueue_active(&root->log_writer_wait)) 144 wake_up(&root->log_writer_wait); 145 } 146 return 0; 147 } 148 149 150 /* 151 * the walk control struct is used to pass state down the chain when 152 * processing the log tree. The stage field tells us which part 153 * of the log tree processing we are currently doing. The others 154 * are state fields used for that specific part 155 */ 156 struct walk_control { 157 /* should we free the extent on disk when done? This is used 158 * at transaction commit time while freeing a log tree 159 */ 160 int free; 161 162 /* should we write out the extent buffer? This is used 163 * while flushing the log tree to disk during a sync 164 */ 165 int write; 166 167 /* should we wait for the extent buffer io to finish? Also used 168 * while flushing the log tree to disk for a sync 169 */ 170 int wait; 171 172 /* pin only walk, we record which extents on disk belong to the 173 * log trees 174 */ 175 int pin; 176 177 /* what stage of the replay code we're currently in */ 178 int stage; 179 180 /* the root we are currently replaying */ 181 struct btrfs_root *replay_dest; 182 183 /* the trans handle for the current replay */ 184 struct btrfs_trans_handle *trans; 185 186 /* the function that gets used to process blocks we find in the 187 * tree. Note the extent_buffer might not be up to date when it is 188 * passed in, and it must be checked or read if you need the data 189 * inside it 190 */ 191 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb, 192 struct walk_control *wc, u64 gen); 193 }; 194 195 /* 196 * process_func used to pin down extents, write them or wait on them 197 */ 198 static int process_one_buffer(struct btrfs_root *log, 199 struct extent_buffer *eb, 200 struct walk_control *wc, u64 gen) 201 { 202 if (wc->pin) { 203 mutex_lock(&log->fs_info->pinned_mutex); 204 btrfs_update_pinned_extents(log->fs_info->extent_root, 205 eb->start, eb->len, 1); 206 mutex_unlock(&log->fs_info->pinned_mutex); 207 } 208 209 if (btrfs_buffer_uptodate(eb, gen)) { 210 if (wc->write) 211 btrfs_write_tree_block(eb); 212 if (wc->wait) 213 btrfs_wait_tree_block_writeback(eb); 214 } 215 return 0; 216 } 217 218 /* 219 * Item overwrite used by replay and tree logging. eb, slot and key all refer 220 * to the src data we are copying out. 221 * 222 * root is the tree we are copying into, and path is a scratch 223 * path for use in this function (it should be released on entry and 224 * will be released on exit). 225 * 226 * If the key is already in the destination tree the existing item is 227 * overwritten. If the existing item isn't big enough, it is extended. 228 * If it is too large, it is truncated. 229 * 230 * If the key isn't in the destination yet, a new item is inserted. 231 */ 232 static noinline int overwrite_item(struct btrfs_trans_handle *trans, 233 struct btrfs_root *root, 234 struct btrfs_path *path, 235 struct extent_buffer *eb, int slot, 236 struct btrfs_key *key) 237 { 238 int ret; 239 u32 item_size; 240 u64 saved_i_size = 0; 241 int save_old_i_size = 0; 242 unsigned long src_ptr; 243 unsigned long dst_ptr; 244 int overwrite_root = 0; 245 246 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) 247 overwrite_root = 1; 248 249 item_size = btrfs_item_size_nr(eb, slot); 250 src_ptr = btrfs_item_ptr_offset(eb, slot); 251 252 /* look for the key in the destination tree */ 253 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 254 if (ret == 0) { 255 char *src_copy; 256 char *dst_copy; 257 u32 dst_size = btrfs_item_size_nr(path->nodes[0], 258 path->slots[0]); 259 if (dst_size != item_size) 260 goto insert; 261 262 if (item_size == 0) { 263 btrfs_release_path(root, path); 264 return 0; 265 } 266 dst_copy = kmalloc(item_size, GFP_NOFS); 267 src_copy = kmalloc(item_size, GFP_NOFS); 268 269 read_extent_buffer(eb, src_copy, src_ptr, item_size); 270 271 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 272 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr, 273 item_size); 274 ret = memcmp(dst_copy, src_copy, item_size); 275 276 kfree(dst_copy); 277 kfree(src_copy); 278 /* 279 * they have the same contents, just return, this saves 280 * us from cowing blocks in the destination tree and doing 281 * extra writes that may not have been done by a previous 282 * sync 283 */ 284 if (ret == 0) { 285 btrfs_release_path(root, path); 286 return 0; 287 } 288 289 } 290 insert: 291 btrfs_release_path(root, path); 292 /* try to insert the key into the destination tree */ 293 ret = btrfs_insert_empty_item(trans, root, path, 294 key, item_size); 295 296 /* make sure any existing item is the correct size */ 297 if (ret == -EEXIST) { 298 u32 found_size; 299 found_size = btrfs_item_size_nr(path->nodes[0], 300 path->slots[0]); 301 if (found_size > item_size) { 302 btrfs_truncate_item(trans, root, path, item_size, 1); 303 } else if (found_size < item_size) { 304 ret = btrfs_extend_item(trans, root, path, 305 item_size - found_size); 306 BUG_ON(ret); 307 } 308 } else if (ret) { 309 BUG(); 310 } 311 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], 312 path->slots[0]); 313 314 /* don't overwrite an existing inode if the generation number 315 * was logged as zero. This is done when the tree logging code 316 * is just logging an inode to make sure it exists after recovery. 317 * 318 * Also, don't overwrite i_size on directories during replay. 319 * log replay inserts and removes directory items based on the 320 * state of the tree found in the subvolume, and i_size is modified 321 * as it goes 322 */ 323 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) { 324 struct btrfs_inode_item *src_item; 325 struct btrfs_inode_item *dst_item; 326 327 src_item = (struct btrfs_inode_item *)src_ptr; 328 dst_item = (struct btrfs_inode_item *)dst_ptr; 329 330 if (btrfs_inode_generation(eb, src_item) == 0) 331 goto no_copy; 332 333 if (overwrite_root && 334 S_ISDIR(btrfs_inode_mode(eb, src_item)) && 335 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) { 336 save_old_i_size = 1; 337 saved_i_size = btrfs_inode_size(path->nodes[0], 338 dst_item); 339 } 340 } 341 342 copy_extent_buffer(path->nodes[0], eb, dst_ptr, 343 src_ptr, item_size); 344 345 if (save_old_i_size) { 346 struct btrfs_inode_item *dst_item; 347 dst_item = (struct btrfs_inode_item *)dst_ptr; 348 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size); 349 } 350 351 /* make sure the generation is filled in */ 352 if (key->type == BTRFS_INODE_ITEM_KEY) { 353 struct btrfs_inode_item *dst_item; 354 dst_item = (struct btrfs_inode_item *)dst_ptr; 355 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) { 356 btrfs_set_inode_generation(path->nodes[0], dst_item, 357 trans->transid); 358 } 359 } 360 no_copy: 361 btrfs_mark_buffer_dirty(path->nodes[0]); 362 btrfs_release_path(root, path); 363 return 0; 364 } 365 366 /* 367 * simple helper to read an inode off the disk from a given root 368 * This can only be called for subvolume roots and not for the log 369 */ 370 static noinline struct inode *read_one_inode(struct btrfs_root *root, 371 u64 objectid) 372 { 373 struct inode *inode; 374 inode = btrfs_iget_locked(root->fs_info->sb, objectid, root); 375 if (inode->i_state & I_NEW) { 376 BTRFS_I(inode)->root = root; 377 BTRFS_I(inode)->location.objectid = objectid; 378 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; 379 BTRFS_I(inode)->location.offset = 0; 380 btrfs_read_locked_inode(inode); 381 unlock_new_inode(inode); 382 383 } 384 if (is_bad_inode(inode)) { 385 iput(inode); 386 inode = NULL; 387 } 388 return inode; 389 } 390 391 /* replays a single extent in 'eb' at 'slot' with 'key' into the 392 * subvolume 'root'. path is released on entry and should be released 393 * on exit. 394 * 395 * extents in the log tree have not been allocated out of the extent 396 * tree yet. So, this completes the allocation, taking a reference 397 * as required if the extent already exists or creating a new extent 398 * if it isn't in the extent allocation tree yet. 399 * 400 * The extent is inserted into the file, dropping any existing extents 401 * from the file that overlap the new one. 402 */ 403 static noinline int replay_one_extent(struct btrfs_trans_handle *trans, 404 struct btrfs_root *root, 405 struct btrfs_path *path, 406 struct extent_buffer *eb, int slot, 407 struct btrfs_key *key) 408 { 409 int found_type; 410 u64 mask = root->sectorsize - 1; 411 u64 extent_end; 412 u64 alloc_hint; 413 u64 start = key->offset; 414 u64 saved_nbytes; 415 struct btrfs_file_extent_item *item; 416 struct inode *inode = NULL; 417 unsigned long size; 418 int ret = 0; 419 420 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 421 found_type = btrfs_file_extent_type(eb, item); 422 423 if (found_type == BTRFS_FILE_EXTENT_REG || 424 found_type == BTRFS_FILE_EXTENT_PREALLOC) 425 extent_end = start + btrfs_file_extent_num_bytes(eb, item); 426 else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 427 size = btrfs_file_extent_inline_len(eb, item); 428 extent_end = (start + size + mask) & ~mask; 429 } else { 430 ret = 0; 431 goto out; 432 } 433 434 inode = read_one_inode(root, key->objectid); 435 if (!inode) { 436 ret = -EIO; 437 goto out; 438 } 439 440 /* 441 * first check to see if we already have this extent in the 442 * file. This must be done before the btrfs_drop_extents run 443 * so we don't try to drop this extent. 444 */ 445 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino, 446 start, 0); 447 448 if (ret == 0 && 449 (found_type == BTRFS_FILE_EXTENT_REG || 450 found_type == BTRFS_FILE_EXTENT_PREALLOC)) { 451 struct btrfs_file_extent_item cmp1; 452 struct btrfs_file_extent_item cmp2; 453 struct btrfs_file_extent_item *existing; 454 struct extent_buffer *leaf; 455 456 leaf = path->nodes[0]; 457 existing = btrfs_item_ptr(leaf, path->slots[0], 458 struct btrfs_file_extent_item); 459 460 read_extent_buffer(eb, &cmp1, (unsigned long)item, 461 sizeof(cmp1)); 462 read_extent_buffer(leaf, &cmp2, (unsigned long)existing, 463 sizeof(cmp2)); 464 465 /* 466 * we already have a pointer to this exact extent, 467 * we don't have to do anything 468 */ 469 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) { 470 btrfs_release_path(root, path); 471 goto out; 472 } 473 } 474 btrfs_release_path(root, path); 475 476 saved_nbytes = inode_get_bytes(inode); 477 /* drop any overlapping extents */ 478 ret = btrfs_drop_extents(trans, root, inode, 479 start, extent_end, start, &alloc_hint); 480 BUG_ON(ret); 481 482 if (found_type == BTRFS_FILE_EXTENT_REG || 483 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 484 unsigned long dest_offset; 485 struct btrfs_key ins; 486 487 ret = btrfs_insert_empty_item(trans, root, path, key, 488 sizeof(*item)); 489 BUG_ON(ret); 490 dest_offset = btrfs_item_ptr_offset(path->nodes[0], 491 path->slots[0]); 492 copy_extent_buffer(path->nodes[0], eb, dest_offset, 493 (unsigned long)item, sizeof(*item)); 494 495 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item); 496 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item); 497 ins.type = BTRFS_EXTENT_ITEM_KEY; 498 499 if (ins.objectid > 0) { 500 u64 csum_start; 501 u64 csum_end; 502 LIST_HEAD(ordered_sums); 503 /* 504 * is this extent already allocated in the extent 505 * allocation tree? If so, just add a reference 506 */ 507 ret = btrfs_lookup_extent(root, ins.objectid, 508 ins.offset); 509 if (ret == 0) { 510 ret = btrfs_inc_extent_ref(trans, root, 511 ins.objectid, ins.offset, 512 path->nodes[0]->start, 513 root->root_key.objectid, 514 trans->transid, key->objectid); 515 } else { 516 /* 517 * insert the extent pointer in the extent 518 * allocation tree 519 */ 520 ret = btrfs_alloc_logged_extent(trans, root, 521 path->nodes[0]->start, 522 root->root_key.objectid, 523 trans->transid, key->objectid, 524 &ins); 525 BUG_ON(ret); 526 } 527 btrfs_release_path(root, path); 528 529 if (btrfs_file_extent_compression(eb, item)) { 530 csum_start = ins.objectid; 531 csum_end = csum_start + ins.offset; 532 } else { 533 csum_start = ins.objectid + 534 btrfs_file_extent_offset(eb, item); 535 csum_end = csum_start + 536 btrfs_file_extent_num_bytes(eb, item); 537 } 538 539 ret = btrfs_lookup_csums_range(root->log_root, 540 csum_start, csum_end - 1, 541 &ordered_sums); 542 BUG_ON(ret); 543 while (!list_empty(&ordered_sums)) { 544 struct btrfs_ordered_sum *sums; 545 sums = list_entry(ordered_sums.next, 546 struct btrfs_ordered_sum, 547 list); 548 ret = btrfs_csum_file_blocks(trans, 549 root->fs_info->csum_root, 550 sums); 551 BUG_ON(ret); 552 list_del(&sums->list); 553 kfree(sums); 554 } 555 } else { 556 btrfs_release_path(root, path); 557 } 558 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 559 /* inline extents are easy, we just overwrite them */ 560 ret = overwrite_item(trans, root, path, eb, slot, key); 561 BUG_ON(ret); 562 } 563 564 inode_set_bytes(inode, saved_nbytes); 565 btrfs_update_inode(trans, root, inode); 566 out: 567 if (inode) 568 iput(inode); 569 return ret; 570 } 571 572 /* 573 * when cleaning up conflicts between the directory names in the 574 * subvolume, directory names in the log and directory names in the 575 * inode back references, we may have to unlink inodes from directories. 576 * 577 * This is a helper function to do the unlink of a specific directory 578 * item 579 */ 580 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans, 581 struct btrfs_root *root, 582 struct btrfs_path *path, 583 struct inode *dir, 584 struct btrfs_dir_item *di) 585 { 586 struct inode *inode; 587 char *name; 588 int name_len; 589 struct extent_buffer *leaf; 590 struct btrfs_key location; 591 int ret; 592 593 leaf = path->nodes[0]; 594 595 btrfs_dir_item_key_to_cpu(leaf, di, &location); 596 name_len = btrfs_dir_name_len(leaf, di); 597 name = kmalloc(name_len, GFP_NOFS); 598 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len); 599 btrfs_release_path(root, path); 600 601 inode = read_one_inode(root, location.objectid); 602 BUG_ON(!inode); 603 604 ret = link_to_fixup_dir(trans, root, path, location.objectid); 605 BUG_ON(ret); 606 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 607 BUG_ON(ret); 608 kfree(name); 609 610 iput(inode); 611 return ret; 612 } 613 614 /* 615 * helper function to see if a given name and sequence number found 616 * in an inode back reference are already in a directory and correctly 617 * point to this inode 618 */ 619 static noinline int inode_in_dir(struct btrfs_root *root, 620 struct btrfs_path *path, 621 u64 dirid, u64 objectid, u64 index, 622 const char *name, int name_len) 623 { 624 struct btrfs_dir_item *di; 625 struct btrfs_key location; 626 int match = 0; 627 628 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid, 629 index, name, name_len, 0); 630 if (di && !IS_ERR(di)) { 631 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 632 if (location.objectid != objectid) 633 goto out; 634 } else 635 goto out; 636 btrfs_release_path(root, path); 637 638 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0); 639 if (di && !IS_ERR(di)) { 640 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 641 if (location.objectid != objectid) 642 goto out; 643 } else 644 goto out; 645 match = 1; 646 out: 647 btrfs_release_path(root, path); 648 return match; 649 } 650 651 /* 652 * helper function to check a log tree for a named back reference in 653 * an inode. This is used to decide if a back reference that is 654 * found in the subvolume conflicts with what we find in the log. 655 * 656 * inode backreferences may have multiple refs in a single item, 657 * during replay we process one reference at a time, and we don't 658 * want to delete valid links to a file from the subvolume if that 659 * link is also in the log. 660 */ 661 static noinline int backref_in_log(struct btrfs_root *log, 662 struct btrfs_key *key, 663 char *name, int namelen) 664 { 665 struct btrfs_path *path; 666 struct btrfs_inode_ref *ref; 667 unsigned long ptr; 668 unsigned long ptr_end; 669 unsigned long name_ptr; 670 int found_name_len; 671 int item_size; 672 int ret; 673 int match = 0; 674 675 path = btrfs_alloc_path(); 676 ret = btrfs_search_slot(NULL, log, key, path, 0, 0); 677 if (ret != 0) 678 goto out; 679 680 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 681 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 682 ptr_end = ptr + item_size; 683 while (ptr < ptr_end) { 684 ref = (struct btrfs_inode_ref *)ptr; 685 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref); 686 if (found_name_len == namelen) { 687 name_ptr = (unsigned long)(ref + 1); 688 ret = memcmp_extent_buffer(path->nodes[0], name, 689 name_ptr, namelen); 690 if (ret == 0) { 691 match = 1; 692 goto out; 693 } 694 } 695 ptr = (unsigned long)(ref + 1) + found_name_len; 696 } 697 out: 698 btrfs_free_path(path); 699 return match; 700 } 701 702 703 /* 704 * replay one inode back reference item found in the log tree. 705 * eb, slot and key refer to the buffer and key found in the log tree. 706 * root is the destination we are replaying into, and path is for temp 707 * use by this function. (it should be released on return). 708 */ 709 static noinline int add_inode_ref(struct btrfs_trans_handle *trans, 710 struct btrfs_root *root, 711 struct btrfs_root *log, 712 struct btrfs_path *path, 713 struct extent_buffer *eb, int slot, 714 struct btrfs_key *key) 715 { 716 struct inode *dir; 717 int ret; 718 struct btrfs_key location; 719 struct btrfs_inode_ref *ref; 720 struct btrfs_dir_item *di; 721 struct inode *inode; 722 char *name; 723 int namelen; 724 unsigned long ref_ptr; 725 unsigned long ref_end; 726 727 location.objectid = key->objectid; 728 location.type = BTRFS_INODE_ITEM_KEY; 729 location.offset = 0; 730 731 /* 732 * it is possible that we didn't log all the parent directories 733 * for a given inode. If we don't find the dir, just don't 734 * copy the back ref in. The link count fixup code will take 735 * care of the rest 736 */ 737 dir = read_one_inode(root, key->offset); 738 if (!dir) 739 return -ENOENT; 740 741 inode = read_one_inode(root, key->objectid); 742 BUG_ON(!dir); 743 744 ref_ptr = btrfs_item_ptr_offset(eb, slot); 745 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot); 746 747 again: 748 ref = (struct btrfs_inode_ref *)ref_ptr; 749 750 namelen = btrfs_inode_ref_name_len(eb, ref); 751 name = kmalloc(namelen, GFP_NOFS); 752 BUG_ON(!name); 753 754 read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen); 755 756 /* if we already have a perfect match, we're done */ 757 if (inode_in_dir(root, path, dir->i_ino, inode->i_ino, 758 btrfs_inode_ref_index(eb, ref), 759 name, namelen)) { 760 goto out; 761 } 762 763 /* 764 * look for a conflicting back reference in the metadata. 765 * if we find one we have to unlink that name of the file 766 * before we add our new link. Later on, we overwrite any 767 * existing back reference, and we don't want to create 768 * dangling pointers in the directory. 769 */ 770 conflict_again: 771 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 772 if (ret == 0) { 773 char *victim_name; 774 int victim_name_len; 775 struct btrfs_inode_ref *victim_ref; 776 unsigned long ptr; 777 unsigned long ptr_end; 778 struct extent_buffer *leaf = path->nodes[0]; 779 780 /* are we trying to overwrite a back ref for the root directory 781 * if so, just jump out, we're done 782 */ 783 if (key->objectid == key->offset) 784 goto out_nowrite; 785 786 /* check all the names in this back reference to see 787 * if they are in the log. if so, we allow them to stay 788 * otherwise they must be unlinked as a conflict 789 */ 790 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 791 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]); 792 while (ptr < ptr_end) { 793 victim_ref = (struct btrfs_inode_ref *)ptr; 794 victim_name_len = btrfs_inode_ref_name_len(leaf, 795 victim_ref); 796 victim_name = kmalloc(victim_name_len, GFP_NOFS); 797 BUG_ON(!victim_name); 798 799 read_extent_buffer(leaf, victim_name, 800 (unsigned long)(victim_ref + 1), 801 victim_name_len); 802 803 if (!backref_in_log(log, key, victim_name, 804 victim_name_len)) { 805 btrfs_inc_nlink(inode); 806 btrfs_release_path(root, path); 807 ret = btrfs_unlink_inode(trans, root, dir, 808 inode, victim_name, 809 victim_name_len); 810 kfree(victim_name); 811 btrfs_release_path(root, path); 812 goto conflict_again; 813 } 814 kfree(victim_name); 815 ptr = (unsigned long)(victim_ref + 1) + victim_name_len; 816 } 817 BUG_ON(ret); 818 } 819 btrfs_release_path(root, path); 820 821 /* look for a conflicting sequence number */ 822 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, 823 btrfs_inode_ref_index(eb, ref), 824 name, namelen, 0); 825 if (di && !IS_ERR(di)) { 826 ret = drop_one_dir_item(trans, root, path, dir, di); 827 BUG_ON(ret); 828 } 829 btrfs_release_path(root, path); 830 831 832 /* look for a conflicting name */ 833 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino, 834 name, namelen, 0); 835 if (di && !IS_ERR(di)) { 836 ret = drop_one_dir_item(trans, root, path, dir, di); 837 BUG_ON(ret); 838 } 839 btrfs_release_path(root, path); 840 841 /* insert our name */ 842 ret = btrfs_add_link(trans, dir, inode, name, namelen, 0, 843 btrfs_inode_ref_index(eb, ref)); 844 BUG_ON(ret); 845 846 btrfs_update_inode(trans, root, inode); 847 848 out: 849 ref_ptr = (unsigned long)(ref + 1) + namelen; 850 kfree(name); 851 if (ref_ptr < ref_end) 852 goto again; 853 854 /* finally write the back reference in the inode */ 855 ret = overwrite_item(trans, root, path, eb, slot, key); 856 BUG_ON(ret); 857 858 out_nowrite: 859 btrfs_release_path(root, path); 860 iput(dir); 861 iput(inode); 862 return 0; 863 } 864 865 /* 866 * There are a few corners where the link count of the file can't 867 * be properly maintained during replay. So, instead of adding 868 * lots of complexity to the log code, we just scan the backrefs 869 * for any file that has been through replay. 870 * 871 * The scan will update the link count on the inode to reflect the 872 * number of back refs found. If it goes down to zero, the iput 873 * will free the inode. 874 */ 875 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans, 876 struct btrfs_root *root, 877 struct inode *inode) 878 { 879 struct btrfs_path *path; 880 int ret; 881 struct btrfs_key key; 882 u64 nlink = 0; 883 unsigned long ptr; 884 unsigned long ptr_end; 885 int name_len; 886 887 key.objectid = inode->i_ino; 888 key.type = BTRFS_INODE_REF_KEY; 889 key.offset = (u64)-1; 890 891 path = btrfs_alloc_path(); 892 893 while (1) { 894 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 895 if (ret < 0) 896 break; 897 if (ret > 0) { 898 if (path->slots[0] == 0) 899 break; 900 path->slots[0]--; 901 } 902 btrfs_item_key_to_cpu(path->nodes[0], &key, 903 path->slots[0]); 904 if (key.objectid != inode->i_ino || 905 key.type != BTRFS_INODE_REF_KEY) 906 break; 907 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 908 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0], 909 path->slots[0]); 910 while (ptr < ptr_end) { 911 struct btrfs_inode_ref *ref; 912 913 ref = (struct btrfs_inode_ref *)ptr; 914 name_len = btrfs_inode_ref_name_len(path->nodes[0], 915 ref); 916 ptr = (unsigned long)(ref + 1) + name_len; 917 nlink++; 918 } 919 920 if (key.offset == 0) 921 break; 922 key.offset--; 923 btrfs_release_path(root, path); 924 } 925 btrfs_free_path(path); 926 if (nlink != inode->i_nlink) { 927 inode->i_nlink = nlink; 928 btrfs_update_inode(trans, root, inode); 929 } 930 BTRFS_I(inode)->index_cnt = (u64)-1; 931 932 return 0; 933 } 934 935 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans, 936 struct btrfs_root *root, 937 struct btrfs_path *path) 938 { 939 int ret; 940 struct btrfs_key key; 941 struct inode *inode; 942 943 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 944 key.type = BTRFS_ORPHAN_ITEM_KEY; 945 key.offset = (u64)-1; 946 while (1) { 947 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 948 if (ret < 0) 949 break; 950 951 if (ret == 1) { 952 if (path->slots[0] == 0) 953 break; 954 path->slots[0]--; 955 } 956 957 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 958 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID || 959 key.type != BTRFS_ORPHAN_ITEM_KEY) 960 break; 961 962 ret = btrfs_del_item(trans, root, path); 963 BUG_ON(ret); 964 965 btrfs_release_path(root, path); 966 inode = read_one_inode(root, key.offset); 967 BUG_ON(!inode); 968 969 ret = fixup_inode_link_count(trans, root, inode); 970 BUG_ON(ret); 971 972 iput(inode); 973 974 if (key.offset == 0) 975 break; 976 key.offset--; 977 } 978 btrfs_release_path(root, path); 979 return 0; 980 } 981 982 983 /* 984 * record a given inode in the fixup dir so we can check its link 985 * count when replay is done. The link count is incremented here 986 * so the inode won't go away until we check it 987 */ 988 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans, 989 struct btrfs_root *root, 990 struct btrfs_path *path, 991 u64 objectid) 992 { 993 struct btrfs_key key; 994 int ret = 0; 995 struct inode *inode; 996 997 inode = read_one_inode(root, objectid); 998 BUG_ON(!inode); 999 1000 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1001 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); 1002 key.offset = objectid; 1003 1004 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1005 1006 btrfs_release_path(root, path); 1007 if (ret == 0) { 1008 btrfs_inc_nlink(inode); 1009 btrfs_update_inode(trans, root, inode); 1010 } else if (ret == -EEXIST) { 1011 ret = 0; 1012 } else { 1013 BUG(); 1014 } 1015 iput(inode); 1016 1017 return ret; 1018 } 1019 1020 /* 1021 * when replaying the log for a directory, we only insert names 1022 * for inodes that actually exist. This means an fsync on a directory 1023 * does not implicitly fsync all the new files in it 1024 */ 1025 static noinline int insert_one_name(struct btrfs_trans_handle *trans, 1026 struct btrfs_root *root, 1027 struct btrfs_path *path, 1028 u64 dirid, u64 index, 1029 char *name, int name_len, u8 type, 1030 struct btrfs_key *location) 1031 { 1032 struct inode *inode; 1033 struct inode *dir; 1034 int ret; 1035 1036 inode = read_one_inode(root, location->objectid); 1037 if (!inode) 1038 return -ENOENT; 1039 1040 dir = read_one_inode(root, dirid); 1041 if (!dir) { 1042 iput(inode); 1043 return -EIO; 1044 } 1045 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index); 1046 1047 /* FIXME, put inode into FIXUP list */ 1048 1049 iput(inode); 1050 iput(dir); 1051 return ret; 1052 } 1053 1054 /* 1055 * take a single entry in a log directory item and replay it into 1056 * the subvolume. 1057 * 1058 * if a conflicting item exists in the subdirectory already, 1059 * the inode it points to is unlinked and put into the link count 1060 * fix up tree. 1061 * 1062 * If a name from the log points to a file or directory that does 1063 * not exist in the FS, it is skipped. fsyncs on directories 1064 * do not force down inodes inside that directory, just changes to the 1065 * names or unlinks in a directory. 1066 */ 1067 static noinline int replay_one_name(struct btrfs_trans_handle *trans, 1068 struct btrfs_root *root, 1069 struct btrfs_path *path, 1070 struct extent_buffer *eb, 1071 struct btrfs_dir_item *di, 1072 struct btrfs_key *key) 1073 { 1074 char *name; 1075 int name_len; 1076 struct btrfs_dir_item *dst_di; 1077 struct btrfs_key found_key; 1078 struct btrfs_key log_key; 1079 struct inode *dir; 1080 u8 log_type; 1081 int exists; 1082 int ret; 1083 1084 dir = read_one_inode(root, key->objectid); 1085 BUG_ON(!dir); 1086 1087 name_len = btrfs_dir_name_len(eb, di); 1088 name = kmalloc(name_len, GFP_NOFS); 1089 log_type = btrfs_dir_type(eb, di); 1090 read_extent_buffer(eb, name, (unsigned long)(di + 1), 1091 name_len); 1092 1093 btrfs_dir_item_key_to_cpu(eb, di, &log_key); 1094 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0); 1095 if (exists == 0) 1096 exists = 1; 1097 else 1098 exists = 0; 1099 btrfs_release_path(root, path); 1100 1101 if (key->type == BTRFS_DIR_ITEM_KEY) { 1102 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid, 1103 name, name_len, 1); 1104 } else if (key->type == BTRFS_DIR_INDEX_KEY) { 1105 dst_di = btrfs_lookup_dir_index_item(trans, root, path, 1106 key->objectid, 1107 key->offset, name, 1108 name_len, 1); 1109 } else { 1110 BUG(); 1111 } 1112 if (!dst_di || IS_ERR(dst_di)) { 1113 /* we need a sequence number to insert, so we only 1114 * do inserts for the BTRFS_DIR_INDEX_KEY types 1115 */ 1116 if (key->type != BTRFS_DIR_INDEX_KEY) 1117 goto out; 1118 goto insert; 1119 } 1120 1121 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key); 1122 /* the existing item matches the logged item */ 1123 if (found_key.objectid == log_key.objectid && 1124 found_key.type == log_key.type && 1125 found_key.offset == log_key.offset && 1126 btrfs_dir_type(path->nodes[0], dst_di) == log_type) { 1127 goto out; 1128 } 1129 1130 /* 1131 * don't drop the conflicting directory entry if the inode 1132 * for the new entry doesn't exist 1133 */ 1134 if (!exists) 1135 goto out; 1136 1137 ret = drop_one_dir_item(trans, root, path, dir, dst_di); 1138 BUG_ON(ret); 1139 1140 if (key->type == BTRFS_DIR_INDEX_KEY) 1141 goto insert; 1142 out: 1143 btrfs_release_path(root, path); 1144 kfree(name); 1145 iput(dir); 1146 return 0; 1147 1148 insert: 1149 btrfs_release_path(root, path); 1150 ret = insert_one_name(trans, root, path, key->objectid, key->offset, 1151 name, name_len, log_type, &log_key); 1152 1153 if (ret && ret != -ENOENT) 1154 BUG(); 1155 goto out; 1156 } 1157 1158 /* 1159 * find all the names in a directory item and reconcile them into 1160 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than 1161 * one name in a directory item, but the same code gets used for 1162 * both directory index types 1163 */ 1164 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans, 1165 struct btrfs_root *root, 1166 struct btrfs_path *path, 1167 struct extent_buffer *eb, int slot, 1168 struct btrfs_key *key) 1169 { 1170 int ret; 1171 u32 item_size = btrfs_item_size_nr(eb, slot); 1172 struct btrfs_dir_item *di; 1173 int name_len; 1174 unsigned long ptr; 1175 unsigned long ptr_end; 1176 1177 ptr = btrfs_item_ptr_offset(eb, slot); 1178 ptr_end = ptr + item_size; 1179 while (ptr < ptr_end) { 1180 di = (struct btrfs_dir_item *)ptr; 1181 name_len = btrfs_dir_name_len(eb, di); 1182 ret = replay_one_name(trans, root, path, eb, di, key); 1183 BUG_ON(ret); 1184 ptr = (unsigned long)(di + 1); 1185 ptr += name_len; 1186 } 1187 return 0; 1188 } 1189 1190 /* 1191 * directory replay has two parts. There are the standard directory 1192 * items in the log copied from the subvolume, and range items 1193 * created in the log while the subvolume was logged. 1194 * 1195 * The range items tell us which parts of the key space the log 1196 * is authoritative for. During replay, if a key in the subvolume 1197 * directory is in a logged range item, but not actually in the log 1198 * that means it was deleted from the directory before the fsync 1199 * and should be removed. 1200 */ 1201 static noinline int find_dir_range(struct btrfs_root *root, 1202 struct btrfs_path *path, 1203 u64 dirid, int key_type, 1204 u64 *start_ret, u64 *end_ret) 1205 { 1206 struct btrfs_key key; 1207 u64 found_end; 1208 struct btrfs_dir_log_item *item; 1209 int ret; 1210 int nritems; 1211 1212 if (*start_ret == (u64)-1) 1213 return 1; 1214 1215 key.objectid = dirid; 1216 key.type = key_type; 1217 key.offset = *start_ret; 1218 1219 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1220 if (ret < 0) 1221 goto out; 1222 if (ret > 0) { 1223 if (path->slots[0] == 0) 1224 goto out; 1225 path->slots[0]--; 1226 } 1227 if (ret != 0) 1228 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1229 1230 if (key.type != key_type || key.objectid != dirid) { 1231 ret = 1; 1232 goto next; 1233 } 1234 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 1235 struct btrfs_dir_log_item); 1236 found_end = btrfs_dir_log_end(path->nodes[0], item); 1237 1238 if (*start_ret >= key.offset && *start_ret <= found_end) { 1239 ret = 0; 1240 *start_ret = key.offset; 1241 *end_ret = found_end; 1242 goto out; 1243 } 1244 ret = 1; 1245 next: 1246 /* check the next slot in the tree to see if it is a valid item */ 1247 nritems = btrfs_header_nritems(path->nodes[0]); 1248 if (path->slots[0] >= nritems) { 1249 ret = btrfs_next_leaf(root, path); 1250 if (ret) 1251 goto out; 1252 } else { 1253 path->slots[0]++; 1254 } 1255 1256 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1257 1258 if (key.type != key_type || key.objectid != dirid) { 1259 ret = 1; 1260 goto out; 1261 } 1262 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 1263 struct btrfs_dir_log_item); 1264 found_end = btrfs_dir_log_end(path->nodes[0], item); 1265 *start_ret = key.offset; 1266 *end_ret = found_end; 1267 ret = 0; 1268 out: 1269 btrfs_release_path(root, path); 1270 return ret; 1271 } 1272 1273 /* 1274 * this looks for a given directory item in the log. If the directory 1275 * item is not in the log, the item is removed and the inode it points 1276 * to is unlinked 1277 */ 1278 static noinline int check_item_in_log(struct btrfs_trans_handle *trans, 1279 struct btrfs_root *root, 1280 struct btrfs_root *log, 1281 struct btrfs_path *path, 1282 struct btrfs_path *log_path, 1283 struct inode *dir, 1284 struct btrfs_key *dir_key) 1285 { 1286 int ret; 1287 struct extent_buffer *eb; 1288 int slot; 1289 u32 item_size; 1290 struct btrfs_dir_item *di; 1291 struct btrfs_dir_item *log_di; 1292 int name_len; 1293 unsigned long ptr; 1294 unsigned long ptr_end; 1295 char *name; 1296 struct inode *inode; 1297 struct btrfs_key location; 1298 1299 again: 1300 eb = path->nodes[0]; 1301 slot = path->slots[0]; 1302 item_size = btrfs_item_size_nr(eb, slot); 1303 ptr = btrfs_item_ptr_offset(eb, slot); 1304 ptr_end = ptr + item_size; 1305 while (ptr < ptr_end) { 1306 di = (struct btrfs_dir_item *)ptr; 1307 name_len = btrfs_dir_name_len(eb, di); 1308 name = kmalloc(name_len, GFP_NOFS); 1309 if (!name) { 1310 ret = -ENOMEM; 1311 goto out; 1312 } 1313 read_extent_buffer(eb, name, (unsigned long)(di + 1), 1314 name_len); 1315 log_di = NULL; 1316 if (dir_key->type == BTRFS_DIR_ITEM_KEY) { 1317 log_di = btrfs_lookup_dir_item(trans, log, log_path, 1318 dir_key->objectid, 1319 name, name_len, 0); 1320 } else if (dir_key->type == BTRFS_DIR_INDEX_KEY) { 1321 log_di = btrfs_lookup_dir_index_item(trans, log, 1322 log_path, 1323 dir_key->objectid, 1324 dir_key->offset, 1325 name, name_len, 0); 1326 } 1327 if (!log_di || IS_ERR(log_di)) { 1328 btrfs_dir_item_key_to_cpu(eb, di, &location); 1329 btrfs_release_path(root, path); 1330 btrfs_release_path(log, log_path); 1331 inode = read_one_inode(root, location.objectid); 1332 BUG_ON(!inode); 1333 1334 ret = link_to_fixup_dir(trans, root, 1335 path, location.objectid); 1336 BUG_ON(ret); 1337 btrfs_inc_nlink(inode); 1338 ret = btrfs_unlink_inode(trans, root, dir, inode, 1339 name, name_len); 1340 BUG_ON(ret); 1341 kfree(name); 1342 iput(inode); 1343 1344 /* there might still be more names under this key 1345 * check and repeat if required 1346 */ 1347 ret = btrfs_search_slot(NULL, root, dir_key, path, 1348 0, 0); 1349 if (ret == 0) 1350 goto again; 1351 ret = 0; 1352 goto out; 1353 } 1354 btrfs_release_path(log, log_path); 1355 kfree(name); 1356 1357 ptr = (unsigned long)(di + 1); 1358 ptr += name_len; 1359 } 1360 ret = 0; 1361 out: 1362 btrfs_release_path(root, path); 1363 btrfs_release_path(log, log_path); 1364 return ret; 1365 } 1366 1367 /* 1368 * deletion replay happens before we copy any new directory items 1369 * out of the log or out of backreferences from inodes. It 1370 * scans the log to find ranges of keys that log is authoritative for, 1371 * and then scans the directory to find items in those ranges that are 1372 * not present in the log. 1373 * 1374 * Anything we don't find in the log is unlinked and removed from the 1375 * directory. 1376 */ 1377 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 1378 struct btrfs_root *root, 1379 struct btrfs_root *log, 1380 struct btrfs_path *path, 1381 u64 dirid) 1382 { 1383 u64 range_start; 1384 u64 range_end; 1385 int key_type = BTRFS_DIR_LOG_ITEM_KEY; 1386 int ret = 0; 1387 struct btrfs_key dir_key; 1388 struct btrfs_key found_key; 1389 struct btrfs_path *log_path; 1390 struct inode *dir; 1391 1392 dir_key.objectid = dirid; 1393 dir_key.type = BTRFS_DIR_ITEM_KEY; 1394 log_path = btrfs_alloc_path(); 1395 if (!log_path) 1396 return -ENOMEM; 1397 1398 dir = read_one_inode(root, dirid); 1399 /* it isn't an error if the inode isn't there, that can happen 1400 * because we replay the deletes before we copy in the inode item 1401 * from the log 1402 */ 1403 if (!dir) { 1404 btrfs_free_path(log_path); 1405 return 0; 1406 } 1407 again: 1408 range_start = 0; 1409 range_end = 0; 1410 while (1) { 1411 ret = find_dir_range(log, path, dirid, key_type, 1412 &range_start, &range_end); 1413 if (ret != 0) 1414 break; 1415 1416 dir_key.offset = range_start; 1417 while (1) { 1418 int nritems; 1419 ret = btrfs_search_slot(NULL, root, &dir_key, path, 1420 0, 0); 1421 if (ret < 0) 1422 goto out; 1423 1424 nritems = btrfs_header_nritems(path->nodes[0]); 1425 if (path->slots[0] >= nritems) { 1426 ret = btrfs_next_leaf(root, path); 1427 if (ret) 1428 break; 1429 } 1430 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1431 path->slots[0]); 1432 if (found_key.objectid != dirid || 1433 found_key.type != dir_key.type) 1434 goto next_type; 1435 1436 if (found_key.offset > range_end) 1437 break; 1438 1439 ret = check_item_in_log(trans, root, log, path, 1440 log_path, dir, &found_key); 1441 BUG_ON(ret); 1442 if (found_key.offset == (u64)-1) 1443 break; 1444 dir_key.offset = found_key.offset + 1; 1445 } 1446 btrfs_release_path(root, path); 1447 if (range_end == (u64)-1) 1448 break; 1449 range_start = range_end + 1; 1450 } 1451 1452 next_type: 1453 ret = 0; 1454 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) { 1455 key_type = BTRFS_DIR_LOG_INDEX_KEY; 1456 dir_key.type = BTRFS_DIR_INDEX_KEY; 1457 btrfs_release_path(root, path); 1458 goto again; 1459 } 1460 out: 1461 btrfs_release_path(root, path); 1462 btrfs_free_path(log_path); 1463 iput(dir); 1464 return ret; 1465 } 1466 1467 /* 1468 * the process_func used to replay items from the log tree. This 1469 * gets called in two different stages. The first stage just looks 1470 * for inodes and makes sure they are all copied into the subvolume. 1471 * 1472 * The second stage copies all the other item types from the log into 1473 * the subvolume. The two stage approach is slower, but gets rid of 1474 * lots of complexity around inodes referencing other inodes that exist 1475 * only in the log (references come from either directory items or inode 1476 * back refs). 1477 */ 1478 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb, 1479 struct walk_control *wc, u64 gen) 1480 { 1481 int nritems; 1482 struct btrfs_path *path; 1483 struct btrfs_root *root = wc->replay_dest; 1484 struct btrfs_key key; 1485 u32 item_size; 1486 int level; 1487 int i; 1488 int ret; 1489 1490 btrfs_read_buffer(eb, gen); 1491 1492 level = btrfs_header_level(eb); 1493 1494 if (level != 0) 1495 return 0; 1496 1497 path = btrfs_alloc_path(); 1498 BUG_ON(!path); 1499 1500 nritems = btrfs_header_nritems(eb); 1501 for (i = 0; i < nritems; i++) { 1502 btrfs_item_key_to_cpu(eb, &key, i); 1503 item_size = btrfs_item_size_nr(eb, i); 1504 1505 /* inode keys are done during the first stage */ 1506 if (key.type == BTRFS_INODE_ITEM_KEY && 1507 wc->stage == LOG_WALK_REPLAY_INODES) { 1508 struct inode *inode; 1509 struct btrfs_inode_item *inode_item; 1510 u32 mode; 1511 1512 inode_item = btrfs_item_ptr(eb, i, 1513 struct btrfs_inode_item); 1514 mode = btrfs_inode_mode(eb, inode_item); 1515 if (S_ISDIR(mode)) { 1516 ret = replay_dir_deletes(wc->trans, 1517 root, log, path, key.objectid); 1518 BUG_ON(ret); 1519 } 1520 ret = overwrite_item(wc->trans, root, path, 1521 eb, i, &key); 1522 BUG_ON(ret); 1523 1524 /* for regular files, truncate away 1525 * extents past the new EOF 1526 */ 1527 if (S_ISREG(mode)) { 1528 inode = read_one_inode(root, 1529 key.objectid); 1530 BUG_ON(!inode); 1531 1532 ret = btrfs_truncate_inode_items(wc->trans, 1533 root, inode, inode->i_size, 1534 BTRFS_EXTENT_DATA_KEY); 1535 BUG_ON(ret); 1536 iput(inode); 1537 } 1538 ret = link_to_fixup_dir(wc->trans, root, 1539 path, key.objectid); 1540 BUG_ON(ret); 1541 } 1542 if (wc->stage < LOG_WALK_REPLAY_ALL) 1543 continue; 1544 1545 /* these keys are simply copied */ 1546 if (key.type == BTRFS_XATTR_ITEM_KEY) { 1547 ret = overwrite_item(wc->trans, root, path, 1548 eb, i, &key); 1549 BUG_ON(ret); 1550 } else if (key.type == BTRFS_INODE_REF_KEY) { 1551 ret = add_inode_ref(wc->trans, root, log, path, 1552 eb, i, &key); 1553 BUG_ON(ret && ret != -ENOENT); 1554 } else if (key.type == BTRFS_EXTENT_DATA_KEY) { 1555 ret = replay_one_extent(wc->trans, root, path, 1556 eb, i, &key); 1557 BUG_ON(ret); 1558 } else if (key.type == BTRFS_DIR_ITEM_KEY || 1559 key.type == BTRFS_DIR_INDEX_KEY) { 1560 ret = replay_one_dir_item(wc->trans, root, path, 1561 eb, i, &key); 1562 BUG_ON(ret); 1563 } 1564 } 1565 btrfs_free_path(path); 1566 return 0; 1567 } 1568 1569 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans, 1570 struct btrfs_root *root, 1571 struct btrfs_path *path, int *level, 1572 struct walk_control *wc) 1573 { 1574 u64 root_owner; 1575 u64 root_gen; 1576 u64 bytenr; 1577 u64 ptr_gen; 1578 struct extent_buffer *next; 1579 struct extent_buffer *cur; 1580 struct extent_buffer *parent; 1581 u32 blocksize; 1582 int ret = 0; 1583 1584 WARN_ON(*level < 0); 1585 WARN_ON(*level >= BTRFS_MAX_LEVEL); 1586 1587 while (*level > 0) { 1588 WARN_ON(*level < 0); 1589 WARN_ON(*level >= BTRFS_MAX_LEVEL); 1590 cur = path->nodes[*level]; 1591 1592 if (btrfs_header_level(cur) != *level) 1593 WARN_ON(1); 1594 1595 if (path->slots[*level] >= 1596 btrfs_header_nritems(cur)) 1597 break; 1598 1599 bytenr = btrfs_node_blockptr(cur, path->slots[*level]); 1600 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); 1601 blocksize = btrfs_level_size(root, *level - 1); 1602 1603 parent = path->nodes[*level]; 1604 root_owner = btrfs_header_owner(parent); 1605 root_gen = btrfs_header_generation(parent); 1606 1607 next = btrfs_find_create_tree_block(root, bytenr, blocksize); 1608 1609 wc->process_func(root, next, wc, ptr_gen); 1610 1611 if (*level == 1) { 1612 path->slots[*level]++; 1613 if (wc->free) { 1614 btrfs_read_buffer(next, ptr_gen); 1615 1616 btrfs_tree_lock(next); 1617 clean_tree_block(trans, root, next); 1618 btrfs_set_lock_blocking(next); 1619 btrfs_wait_tree_block_writeback(next); 1620 btrfs_tree_unlock(next); 1621 1622 ret = btrfs_drop_leaf_ref(trans, root, next); 1623 BUG_ON(ret); 1624 1625 WARN_ON(root_owner != 1626 BTRFS_TREE_LOG_OBJECTID); 1627 ret = btrfs_free_reserved_extent(root, 1628 bytenr, blocksize); 1629 BUG_ON(ret); 1630 } 1631 free_extent_buffer(next); 1632 continue; 1633 } 1634 btrfs_read_buffer(next, ptr_gen); 1635 1636 WARN_ON(*level <= 0); 1637 if (path->nodes[*level-1]) 1638 free_extent_buffer(path->nodes[*level-1]); 1639 path->nodes[*level-1] = next; 1640 *level = btrfs_header_level(next); 1641 path->slots[*level] = 0; 1642 cond_resched(); 1643 } 1644 WARN_ON(*level < 0); 1645 WARN_ON(*level >= BTRFS_MAX_LEVEL); 1646 1647 if (path->nodes[*level] == root->node) 1648 parent = path->nodes[*level]; 1649 else 1650 parent = path->nodes[*level + 1]; 1651 1652 bytenr = path->nodes[*level]->start; 1653 1654 blocksize = btrfs_level_size(root, *level); 1655 root_owner = btrfs_header_owner(parent); 1656 root_gen = btrfs_header_generation(parent); 1657 1658 wc->process_func(root, path->nodes[*level], wc, 1659 btrfs_header_generation(path->nodes[*level])); 1660 1661 if (wc->free) { 1662 next = path->nodes[*level]; 1663 btrfs_tree_lock(next); 1664 clean_tree_block(trans, root, next); 1665 btrfs_set_lock_blocking(next); 1666 btrfs_wait_tree_block_writeback(next); 1667 btrfs_tree_unlock(next); 1668 1669 if (*level == 0) { 1670 ret = btrfs_drop_leaf_ref(trans, root, next); 1671 BUG_ON(ret); 1672 } 1673 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID); 1674 ret = btrfs_free_reserved_extent(root, bytenr, blocksize); 1675 BUG_ON(ret); 1676 } 1677 free_extent_buffer(path->nodes[*level]); 1678 path->nodes[*level] = NULL; 1679 *level += 1; 1680 1681 cond_resched(); 1682 return 0; 1683 } 1684 1685 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans, 1686 struct btrfs_root *root, 1687 struct btrfs_path *path, int *level, 1688 struct walk_control *wc) 1689 { 1690 u64 root_owner; 1691 u64 root_gen; 1692 int i; 1693 int slot; 1694 int ret; 1695 1696 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { 1697 slot = path->slots[i]; 1698 if (slot < btrfs_header_nritems(path->nodes[i]) - 1) { 1699 struct extent_buffer *node; 1700 node = path->nodes[i]; 1701 path->slots[i]++; 1702 *level = i; 1703 WARN_ON(*level == 0); 1704 return 0; 1705 } else { 1706 struct extent_buffer *parent; 1707 if (path->nodes[*level] == root->node) 1708 parent = path->nodes[*level]; 1709 else 1710 parent = path->nodes[*level + 1]; 1711 1712 root_owner = btrfs_header_owner(parent); 1713 root_gen = btrfs_header_generation(parent); 1714 wc->process_func(root, path->nodes[*level], wc, 1715 btrfs_header_generation(path->nodes[*level])); 1716 if (wc->free) { 1717 struct extent_buffer *next; 1718 1719 next = path->nodes[*level]; 1720 1721 btrfs_tree_lock(next); 1722 clean_tree_block(trans, root, next); 1723 btrfs_set_lock_blocking(next); 1724 btrfs_wait_tree_block_writeback(next); 1725 btrfs_tree_unlock(next); 1726 1727 if (*level == 0) { 1728 ret = btrfs_drop_leaf_ref(trans, root, 1729 next); 1730 BUG_ON(ret); 1731 } 1732 1733 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID); 1734 ret = btrfs_free_reserved_extent(root, 1735 path->nodes[*level]->start, 1736 path->nodes[*level]->len); 1737 BUG_ON(ret); 1738 } 1739 free_extent_buffer(path->nodes[*level]); 1740 path->nodes[*level] = NULL; 1741 *level = i + 1; 1742 } 1743 } 1744 return 1; 1745 } 1746 1747 /* 1748 * drop the reference count on the tree rooted at 'snap'. This traverses 1749 * the tree freeing any blocks that have a ref count of zero after being 1750 * decremented. 1751 */ 1752 static int walk_log_tree(struct btrfs_trans_handle *trans, 1753 struct btrfs_root *log, struct walk_control *wc) 1754 { 1755 int ret = 0; 1756 int wret; 1757 int level; 1758 struct btrfs_path *path; 1759 int i; 1760 int orig_level; 1761 1762 path = btrfs_alloc_path(); 1763 BUG_ON(!path); 1764 1765 level = btrfs_header_level(log->node); 1766 orig_level = level; 1767 path->nodes[level] = log->node; 1768 extent_buffer_get(log->node); 1769 path->slots[level] = 0; 1770 1771 while (1) { 1772 wret = walk_down_log_tree(trans, log, path, &level, wc); 1773 if (wret > 0) 1774 break; 1775 if (wret < 0) 1776 ret = wret; 1777 1778 wret = walk_up_log_tree(trans, log, path, &level, wc); 1779 if (wret > 0) 1780 break; 1781 if (wret < 0) 1782 ret = wret; 1783 } 1784 1785 /* was the root node processed? if not, catch it here */ 1786 if (path->nodes[orig_level]) { 1787 wc->process_func(log, path->nodes[orig_level], wc, 1788 btrfs_header_generation(path->nodes[orig_level])); 1789 if (wc->free) { 1790 struct extent_buffer *next; 1791 1792 next = path->nodes[orig_level]; 1793 1794 btrfs_tree_lock(next); 1795 clean_tree_block(trans, log, next); 1796 btrfs_set_lock_blocking(next); 1797 btrfs_wait_tree_block_writeback(next); 1798 btrfs_tree_unlock(next); 1799 1800 if (orig_level == 0) { 1801 ret = btrfs_drop_leaf_ref(trans, log, 1802 next); 1803 BUG_ON(ret); 1804 } 1805 WARN_ON(log->root_key.objectid != 1806 BTRFS_TREE_LOG_OBJECTID); 1807 ret = btrfs_free_reserved_extent(log, next->start, 1808 next->len); 1809 BUG_ON(ret); 1810 } 1811 } 1812 1813 for (i = 0; i <= orig_level; i++) { 1814 if (path->nodes[i]) { 1815 free_extent_buffer(path->nodes[i]); 1816 path->nodes[i] = NULL; 1817 } 1818 } 1819 btrfs_free_path(path); 1820 return ret; 1821 } 1822 1823 /* 1824 * helper function to update the item for a given subvolumes log root 1825 * in the tree of log roots 1826 */ 1827 static int update_log_root(struct btrfs_trans_handle *trans, 1828 struct btrfs_root *log) 1829 { 1830 int ret; 1831 1832 if (log->log_transid == 1) { 1833 /* insert root item on the first sync */ 1834 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree, 1835 &log->root_key, &log->root_item); 1836 } else { 1837 ret = btrfs_update_root(trans, log->fs_info->log_root_tree, 1838 &log->root_key, &log->root_item); 1839 } 1840 return ret; 1841 } 1842 1843 static int wait_log_commit(struct btrfs_root *root, unsigned long transid) 1844 { 1845 DEFINE_WAIT(wait); 1846 int index = transid % 2; 1847 1848 /* 1849 * we only allow two pending log transactions at a time, 1850 * so we know that if ours is more than 2 older than the 1851 * current transaction, we're done 1852 */ 1853 do { 1854 prepare_to_wait(&root->log_commit_wait[index], 1855 &wait, TASK_UNINTERRUPTIBLE); 1856 mutex_unlock(&root->log_mutex); 1857 if (root->log_transid < transid + 2 && 1858 atomic_read(&root->log_commit[index])) 1859 schedule(); 1860 finish_wait(&root->log_commit_wait[index], &wait); 1861 mutex_lock(&root->log_mutex); 1862 } while (root->log_transid < transid + 2 && 1863 atomic_read(&root->log_commit[index])); 1864 return 0; 1865 } 1866 1867 static int wait_for_writer(struct btrfs_root *root) 1868 { 1869 DEFINE_WAIT(wait); 1870 while (atomic_read(&root->log_writers)) { 1871 prepare_to_wait(&root->log_writer_wait, 1872 &wait, TASK_UNINTERRUPTIBLE); 1873 mutex_unlock(&root->log_mutex); 1874 if (atomic_read(&root->log_writers)) 1875 schedule(); 1876 mutex_lock(&root->log_mutex); 1877 finish_wait(&root->log_writer_wait, &wait); 1878 } 1879 return 0; 1880 } 1881 1882 /* 1883 * btrfs_sync_log does sends a given tree log down to the disk and 1884 * updates the super blocks to record it. When this call is done, 1885 * you know that any inodes previously logged are safely on disk 1886 */ 1887 int btrfs_sync_log(struct btrfs_trans_handle *trans, 1888 struct btrfs_root *root) 1889 { 1890 int index1; 1891 int index2; 1892 int ret; 1893 struct btrfs_root *log = root->log_root; 1894 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree; 1895 1896 mutex_lock(&root->log_mutex); 1897 index1 = root->log_transid % 2; 1898 if (atomic_read(&root->log_commit[index1])) { 1899 wait_log_commit(root, root->log_transid); 1900 mutex_unlock(&root->log_mutex); 1901 return 0; 1902 } 1903 atomic_set(&root->log_commit[index1], 1); 1904 1905 /* wait for previous tree log sync to complete */ 1906 if (atomic_read(&root->log_commit[(index1 + 1) % 2])) 1907 wait_log_commit(root, root->log_transid - 1); 1908 1909 while (1) { 1910 unsigned long batch = root->log_batch; 1911 mutex_unlock(&root->log_mutex); 1912 schedule_timeout_uninterruptible(1); 1913 mutex_lock(&root->log_mutex); 1914 wait_for_writer(root); 1915 if (batch == root->log_batch) 1916 break; 1917 } 1918 1919 ret = btrfs_write_and_wait_marked_extents(log, &log->dirty_log_pages); 1920 BUG_ON(ret); 1921 1922 btrfs_set_root_bytenr(&log->root_item, log->node->start); 1923 btrfs_set_root_generation(&log->root_item, trans->transid); 1924 btrfs_set_root_level(&log->root_item, btrfs_header_level(log->node)); 1925 1926 root->log_batch = 0; 1927 root->log_transid++; 1928 log->log_transid = root->log_transid; 1929 smp_mb(); 1930 /* 1931 * log tree has been flushed to disk, new modifications of 1932 * the log will be written to new positions. so it's safe to 1933 * allow log writers to go in. 1934 */ 1935 mutex_unlock(&root->log_mutex); 1936 1937 mutex_lock(&log_root_tree->log_mutex); 1938 log_root_tree->log_batch++; 1939 atomic_inc(&log_root_tree->log_writers); 1940 mutex_unlock(&log_root_tree->log_mutex); 1941 1942 ret = update_log_root(trans, log); 1943 BUG_ON(ret); 1944 1945 mutex_lock(&log_root_tree->log_mutex); 1946 if (atomic_dec_and_test(&log_root_tree->log_writers)) { 1947 smp_mb(); 1948 if (waitqueue_active(&log_root_tree->log_writer_wait)) 1949 wake_up(&log_root_tree->log_writer_wait); 1950 } 1951 1952 index2 = log_root_tree->log_transid % 2; 1953 if (atomic_read(&log_root_tree->log_commit[index2])) { 1954 wait_log_commit(log_root_tree, log_root_tree->log_transid); 1955 mutex_unlock(&log_root_tree->log_mutex); 1956 goto out; 1957 } 1958 atomic_set(&log_root_tree->log_commit[index2], 1); 1959 1960 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) 1961 wait_log_commit(log_root_tree, log_root_tree->log_transid - 1); 1962 1963 wait_for_writer(log_root_tree); 1964 1965 ret = btrfs_write_and_wait_marked_extents(log_root_tree, 1966 &log_root_tree->dirty_log_pages); 1967 BUG_ON(ret); 1968 1969 btrfs_set_super_log_root(&root->fs_info->super_for_commit, 1970 log_root_tree->node->start); 1971 btrfs_set_super_log_root_level(&root->fs_info->super_for_commit, 1972 btrfs_header_level(log_root_tree->node)); 1973 1974 log_root_tree->log_batch = 0; 1975 log_root_tree->log_transid++; 1976 smp_mb(); 1977 1978 mutex_unlock(&log_root_tree->log_mutex); 1979 1980 /* 1981 * nobody else is going to jump in and write the the ctree 1982 * super here because the log_commit atomic below is protecting 1983 * us. We must be called with a transaction handle pinning 1984 * the running transaction open, so a full commit can't hop 1985 * in and cause problems either. 1986 */ 1987 write_ctree_super(trans, root->fs_info->tree_root, 2); 1988 1989 atomic_set(&log_root_tree->log_commit[index2], 0); 1990 smp_mb(); 1991 if (waitqueue_active(&log_root_tree->log_commit_wait[index2])) 1992 wake_up(&log_root_tree->log_commit_wait[index2]); 1993 out: 1994 atomic_set(&root->log_commit[index1], 0); 1995 smp_mb(); 1996 if (waitqueue_active(&root->log_commit_wait[index1])) 1997 wake_up(&root->log_commit_wait[index1]); 1998 return 0; 1999 } 2000 2001 /* * free all the extents used by the tree log. This should be called 2002 * at commit time of the full transaction 2003 */ 2004 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root) 2005 { 2006 int ret; 2007 struct btrfs_root *log; 2008 struct key; 2009 u64 start; 2010 u64 end; 2011 struct walk_control wc = { 2012 .free = 1, 2013 .process_func = process_one_buffer 2014 }; 2015 2016 if (!root->log_root || root->fs_info->log_root_recovering) 2017 return 0; 2018 2019 log = root->log_root; 2020 ret = walk_log_tree(trans, log, &wc); 2021 BUG_ON(ret); 2022 2023 while (1) { 2024 ret = find_first_extent_bit(&log->dirty_log_pages, 2025 0, &start, &end, EXTENT_DIRTY); 2026 if (ret) 2027 break; 2028 2029 clear_extent_dirty(&log->dirty_log_pages, 2030 start, end, GFP_NOFS); 2031 } 2032 2033 if (log->log_transid > 0) { 2034 ret = btrfs_del_root(trans, root->fs_info->log_root_tree, 2035 &log->root_key); 2036 BUG_ON(ret); 2037 } 2038 root->log_root = NULL; 2039 free_extent_buffer(log->node); 2040 kfree(log); 2041 return 0; 2042 } 2043 2044 /* 2045 * If both a file and directory are logged, and unlinks or renames are 2046 * mixed in, we have a few interesting corners: 2047 * 2048 * create file X in dir Y 2049 * link file X to X.link in dir Y 2050 * fsync file X 2051 * unlink file X but leave X.link 2052 * fsync dir Y 2053 * 2054 * After a crash we would expect only X.link to exist. But file X 2055 * didn't get fsync'd again so the log has back refs for X and X.link. 2056 * 2057 * We solve this by removing directory entries and inode backrefs from the 2058 * log when a file that was logged in the current transaction is 2059 * unlinked. Any later fsync will include the updated log entries, and 2060 * we'll be able to reconstruct the proper directory items from backrefs. 2061 * 2062 * This optimizations allows us to avoid relogging the entire inode 2063 * or the entire directory. 2064 */ 2065 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans, 2066 struct btrfs_root *root, 2067 const char *name, int name_len, 2068 struct inode *dir, u64 index) 2069 { 2070 struct btrfs_root *log; 2071 struct btrfs_dir_item *di; 2072 struct btrfs_path *path; 2073 int ret; 2074 int bytes_del = 0; 2075 2076 if (BTRFS_I(dir)->logged_trans < trans->transid) 2077 return 0; 2078 2079 ret = join_running_log_trans(root); 2080 if (ret) 2081 return 0; 2082 2083 mutex_lock(&BTRFS_I(dir)->log_mutex); 2084 2085 log = root->log_root; 2086 path = btrfs_alloc_path(); 2087 di = btrfs_lookup_dir_item(trans, log, path, dir->i_ino, 2088 name, name_len, -1); 2089 if (di && !IS_ERR(di)) { 2090 ret = btrfs_delete_one_dir_name(trans, log, path, di); 2091 bytes_del += name_len; 2092 BUG_ON(ret); 2093 } 2094 btrfs_release_path(log, path); 2095 di = btrfs_lookup_dir_index_item(trans, log, path, dir->i_ino, 2096 index, name, name_len, -1); 2097 if (di && !IS_ERR(di)) { 2098 ret = btrfs_delete_one_dir_name(trans, log, path, di); 2099 bytes_del += name_len; 2100 BUG_ON(ret); 2101 } 2102 2103 /* update the directory size in the log to reflect the names 2104 * we have removed 2105 */ 2106 if (bytes_del) { 2107 struct btrfs_key key; 2108 2109 key.objectid = dir->i_ino; 2110 key.offset = 0; 2111 key.type = BTRFS_INODE_ITEM_KEY; 2112 btrfs_release_path(log, path); 2113 2114 ret = btrfs_search_slot(trans, log, &key, path, 0, 1); 2115 if (ret == 0) { 2116 struct btrfs_inode_item *item; 2117 u64 i_size; 2118 2119 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2120 struct btrfs_inode_item); 2121 i_size = btrfs_inode_size(path->nodes[0], item); 2122 if (i_size > bytes_del) 2123 i_size -= bytes_del; 2124 else 2125 i_size = 0; 2126 btrfs_set_inode_size(path->nodes[0], item, i_size); 2127 btrfs_mark_buffer_dirty(path->nodes[0]); 2128 } else 2129 ret = 0; 2130 btrfs_release_path(log, path); 2131 } 2132 2133 btrfs_free_path(path); 2134 mutex_unlock(&BTRFS_I(dir)->log_mutex); 2135 end_log_trans(root); 2136 2137 return 0; 2138 } 2139 2140 /* see comments for btrfs_del_dir_entries_in_log */ 2141 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans, 2142 struct btrfs_root *root, 2143 const char *name, int name_len, 2144 struct inode *inode, u64 dirid) 2145 { 2146 struct btrfs_root *log; 2147 u64 index; 2148 int ret; 2149 2150 if (BTRFS_I(inode)->logged_trans < trans->transid) 2151 return 0; 2152 2153 ret = join_running_log_trans(root); 2154 if (ret) 2155 return 0; 2156 log = root->log_root; 2157 mutex_lock(&BTRFS_I(inode)->log_mutex); 2158 2159 ret = btrfs_del_inode_ref(trans, log, name, name_len, inode->i_ino, 2160 dirid, &index); 2161 mutex_unlock(&BTRFS_I(inode)->log_mutex); 2162 end_log_trans(root); 2163 2164 return ret; 2165 } 2166 2167 /* 2168 * creates a range item in the log for 'dirid'. first_offset and 2169 * last_offset tell us which parts of the key space the log should 2170 * be considered authoritative for. 2171 */ 2172 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans, 2173 struct btrfs_root *log, 2174 struct btrfs_path *path, 2175 int key_type, u64 dirid, 2176 u64 first_offset, u64 last_offset) 2177 { 2178 int ret; 2179 struct btrfs_key key; 2180 struct btrfs_dir_log_item *item; 2181 2182 key.objectid = dirid; 2183 key.offset = first_offset; 2184 if (key_type == BTRFS_DIR_ITEM_KEY) 2185 key.type = BTRFS_DIR_LOG_ITEM_KEY; 2186 else 2187 key.type = BTRFS_DIR_LOG_INDEX_KEY; 2188 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item)); 2189 BUG_ON(ret); 2190 2191 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2192 struct btrfs_dir_log_item); 2193 btrfs_set_dir_log_end(path->nodes[0], item, last_offset); 2194 btrfs_mark_buffer_dirty(path->nodes[0]); 2195 btrfs_release_path(log, path); 2196 return 0; 2197 } 2198 2199 /* 2200 * log all the items included in the current transaction for a given 2201 * directory. This also creates the range items in the log tree required 2202 * to replay anything deleted before the fsync 2203 */ 2204 static noinline int log_dir_items(struct btrfs_trans_handle *trans, 2205 struct btrfs_root *root, struct inode *inode, 2206 struct btrfs_path *path, 2207 struct btrfs_path *dst_path, int key_type, 2208 u64 min_offset, u64 *last_offset_ret) 2209 { 2210 struct btrfs_key min_key; 2211 struct btrfs_key max_key; 2212 struct btrfs_root *log = root->log_root; 2213 struct extent_buffer *src; 2214 int ret; 2215 int i; 2216 int nritems; 2217 u64 first_offset = min_offset; 2218 u64 last_offset = (u64)-1; 2219 2220 log = root->log_root; 2221 max_key.objectid = inode->i_ino; 2222 max_key.offset = (u64)-1; 2223 max_key.type = key_type; 2224 2225 min_key.objectid = inode->i_ino; 2226 min_key.type = key_type; 2227 min_key.offset = min_offset; 2228 2229 path->keep_locks = 1; 2230 2231 ret = btrfs_search_forward(root, &min_key, &max_key, 2232 path, 0, trans->transid); 2233 2234 /* 2235 * we didn't find anything from this transaction, see if there 2236 * is anything at all 2237 */ 2238 if (ret != 0 || min_key.objectid != inode->i_ino || 2239 min_key.type != key_type) { 2240 min_key.objectid = inode->i_ino; 2241 min_key.type = key_type; 2242 min_key.offset = (u64)-1; 2243 btrfs_release_path(root, path); 2244 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 2245 if (ret < 0) { 2246 btrfs_release_path(root, path); 2247 return ret; 2248 } 2249 ret = btrfs_previous_item(root, path, inode->i_ino, key_type); 2250 2251 /* if ret == 0 there are items for this type, 2252 * create a range to tell us the last key of this type. 2253 * otherwise, there are no items in this directory after 2254 * *min_offset, and we create a range to indicate that. 2255 */ 2256 if (ret == 0) { 2257 struct btrfs_key tmp; 2258 btrfs_item_key_to_cpu(path->nodes[0], &tmp, 2259 path->slots[0]); 2260 if (key_type == tmp.type) 2261 first_offset = max(min_offset, tmp.offset) + 1; 2262 } 2263 goto done; 2264 } 2265 2266 /* go backward to find any previous key */ 2267 ret = btrfs_previous_item(root, path, inode->i_ino, key_type); 2268 if (ret == 0) { 2269 struct btrfs_key tmp; 2270 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 2271 if (key_type == tmp.type) { 2272 first_offset = tmp.offset; 2273 ret = overwrite_item(trans, log, dst_path, 2274 path->nodes[0], path->slots[0], 2275 &tmp); 2276 } 2277 } 2278 btrfs_release_path(root, path); 2279 2280 /* find the first key from this transaction again */ 2281 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 2282 if (ret != 0) { 2283 WARN_ON(1); 2284 goto done; 2285 } 2286 2287 /* 2288 * we have a block from this transaction, log every item in it 2289 * from our directory 2290 */ 2291 while (1) { 2292 struct btrfs_key tmp; 2293 src = path->nodes[0]; 2294 nritems = btrfs_header_nritems(src); 2295 for (i = path->slots[0]; i < nritems; i++) { 2296 btrfs_item_key_to_cpu(src, &min_key, i); 2297 2298 if (min_key.objectid != inode->i_ino || 2299 min_key.type != key_type) 2300 goto done; 2301 ret = overwrite_item(trans, log, dst_path, src, i, 2302 &min_key); 2303 BUG_ON(ret); 2304 } 2305 path->slots[0] = nritems; 2306 2307 /* 2308 * look ahead to the next item and see if it is also 2309 * from this directory and from this transaction 2310 */ 2311 ret = btrfs_next_leaf(root, path); 2312 if (ret == 1) { 2313 last_offset = (u64)-1; 2314 goto done; 2315 } 2316 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 2317 if (tmp.objectid != inode->i_ino || tmp.type != key_type) { 2318 last_offset = (u64)-1; 2319 goto done; 2320 } 2321 if (btrfs_header_generation(path->nodes[0]) != trans->transid) { 2322 ret = overwrite_item(trans, log, dst_path, 2323 path->nodes[0], path->slots[0], 2324 &tmp); 2325 2326 BUG_ON(ret); 2327 last_offset = tmp.offset; 2328 goto done; 2329 } 2330 } 2331 done: 2332 *last_offset_ret = last_offset; 2333 btrfs_release_path(root, path); 2334 btrfs_release_path(log, dst_path); 2335 2336 /* insert the log range keys to indicate where the log is valid */ 2337 ret = insert_dir_log_key(trans, log, path, key_type, inode->i_ino, 2338 first_offset, last_offset); 2339 BUG_ON(ret); 2340 return 0; 2341 } 2342 2343 /* 2344 * logging directories is very similar to logging inodes, We find all the items 2345 * from the current transaction and write them to the log. 2346 * 2347 * The recovery code scans the directory in the subvolume, and if it finds a 2348 * key in the range logged that is not present in the log tree, then it means 2349 * that dir entry was unlinked during the transaction. 2350 * 2351 * In order for that scan to work, we must include one key smaller than 2352 * the smallest logged by this transaction and one key larger than the largest 2353 * key logged by this transaction. 2354 */ 2355 static noinline int log_directory_changes(struct btrfs_trans_handle *trans, 2356 struct btrfs_root *root, struct inode *inode, 2357 struct btrfs_path *path, 2358 struct btrfs_path *dst_path) 2359 { 2360 u64 min_key; 2361 u64 max_key; 2362 int ret; 2363 int key_type = BTRFS_DIR_ITEM_KEY; 2364 2365 again: 2366 min_key = 0; 2367 max_key = 0; 2368 while (1) { 2369 ret = log_dir_items(trans, root, inode, path, 2370 dst_path, key_type, min_key, 2371 &max_key); 2372 BUG_ON(ret); 2373 if (max_key == (u64)-1) 2374 break; 2375 min_key = max_key + 1; 2376 } 2377 2378 if (key_type == BTRFS_DIR_ITEM_KEY) { 2379 key_type = BTRFS_DIR_INDEX_KEY; 2380 goto again; 2381 } 2382 return 0; 2383 } 2384 2385 /* 2386 * a helper function to drop items from the log before we relog an 2387 * inode. max_key_type indicates the highest item type to remove. 2388 * This cannot be run for file data extents because it does not 2389 * free the extents they point to. 2390 */ 2391 static int drop_objectid_items(struct btrfs_trans_handle *trans, 2392 struct btrfs_root *log, 2393 struct btrfs_path *path, 2394 u64 objectid, int max_key_type) 2395 { 2396 int ret; 2397 struct btrfs_key key; 2398 struct btrfs_key found_key; 2399 2400 key.objectid = objectid; 2401 key.type = max_key_type; 2402 key.offset = (u64)-1; 2403 2404 while (1) { 2405 ret = btrfs_search_slot(trans, log, &key, path, -1, 1); 2406 2407 if (ret != 1) 2408 break; 2409 2410 if (path->slots[0] == 0) 2411 break; 2412 2413 path->slots[0]--; 2414 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2415 path->slots[0]); 2416 2417 if (found_key.objectid != objectid) 2418 break; 2419 2420 ret = btrfs_del_item(trans, log, path); 2421 BUG_ON(ret); 2422 btrfs_release_path(log, path); 2423 } 2424 btrfs_release_path(log, path); 2425 return 0; 2426 } 2427 2428 static noinline int copy_items(struct btrfs_trans_handle *trans, 2429 struct btrfs_root *log, 2430 struct btrfs_path *dst_path, 2431 struct extent_buffer *src, 2432 int start_slot, int nr, int inode_only) 2433 { 2434 unsigned long src_offset; 2435 unsigned long dst_offset; 2436 struct btrfs_file_extent_item *extent; 2437 struct btrfs_inode_item *inode_item; 2438 int ret; 2439 struct btrfs_key *ins_keys; 2440 u32 *ins_sizes; 2441 char *ins_data; 2442 int i; 2443 struct list_head ordered_sums; 2444 2445 INIT_LIST_HEAD(&ordered_sums); 2446 2447 ins_data = kmalloc(nr * sizeof(struct btrfs_key) + 2448 nr * sizeof(u32), GFP_NOFS); 2449 ins_sizes = (u32 *)ins_data; 2450 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32)); 2451 2452 for (i = 0; i < nr; i++) { 2453 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot); 2454 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot); 2455 } 2456 ret = btrfs_insert_empty_items(trans, log, dst_path, 2457 ins_keys, ins_sizes, nr); 2458 BUG_ON(ret); 2459 2460 for (i = 0; i < nr; i++) { 2461 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], 2462 dst_path->slots[0]); 2463 2464 src_offset = btrfs_item_ptr_offset(src, start_slot + i); 2465 2466 copy_extent_buffer(dst_path->nodes[0], src, dst_offset, 2467 src_offset, ins_sizes[i]); 2468 2469 if (inode_only == LOG_INODE_EXISTS && 2470 ins_keys[i].type == BTRFS_INODE_ITEM_KEY) { 2471 inode_item = btrfs_item_ptr(dst_path->nodes[0], 2472 dst_path->slots[0], 2473 struct btrfs_inode_item); 2474 btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0); 2475 2476 /* set the generation to zero so the recover code 2477 * can tell the difference between an logging 2478 * just to say 'this inode exists' and a logging 2479 * to say 'update this inode with these values' 2480 */ 2481 btrfs_set_inode_generation(dst_path->nodes[0], 2482 inode_item, 0); 2483 } 2484 /* take a reference on file data extents so that truncates 2485 * or deletes of this inode don't have to relog the inode 2486 * again 2487 */ 2488 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) { 2489 int found_type; 2490 extent = btrfs_item_ptr(src, start_slot + i, 2491 struct btrfs_file_extent_item); 2492 2493 found_type = btrfs_file_extent_type(src, extent); 2494 if (found_type == BTRFS_FILE_EXTENT_REG || 2495 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 2496 u64 ds = btrfs_file_extent_disk_bytenr(src, 2497 extent); 2498 u64 dl = btrfs_file_extent_disk_num_bytes(src, 2499 extent); 2500 u64 cs = btrfs_file_extent_offset(src, extent); 2501 u64 cl = btrfs_file_extent_num_bytes(src, 2502 extent);; 2503 if (btrfs_file_extent_compression(src, 2504 extent)) { 2505 cs = 0; 2506 cl = dl; 2507 } 2508 /* ds == 0 is a hole */ 2509 if (ds != 0) { 2510 ret = btrfs_inc_extent_ref(trans, log, 2511 ds, dl, 2512 dst_path->nodes[0]->start, 2513 BTRFS_TREE_LOG_OBJECTID, 2514 trans->transid, 2515 ins_keys[i].objectid); 2516 BUG_ON(ret); 2517 ret = btrfs_lookup_csums_range( 2518 log->fs_info->csum_root, 2519 ds + cs, ds + cs + cl - 1, 2520 &ordered_sums); 2521 BUG_ON(ret); 2522 } 2523 } 2524 } 2525 dst_path->slots[0]++; 2526 } 2527 2528 btrfs_mark_buffer_dirty(dst_path->nodes[0]); 2529 btrfs_release_path(log, dst_path); 2530 kfree(ins_data); 2531 2532 /* 2533 * we have to do this after the loop above to avoid changing the 2534 * log tree while trying to change the log tree. 2535 */ 2536 while (!list_empty(&ordered_sums)) { 2537 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, 2538 struct btrfs_ordered_sum, 2539 list); 2540 ret = btrfs_csum_file_blocks(trans, log, sums); 2541 BUG_ON(ret); 2542 list_del(&sums->list); 2543 kfree(sums); 2544 } 2545 return 0; 2546 } 2547 2548 /* log a single inode in the tree log. 2549 * At least one parent directory for this inode must exist in the tree 2550 * or be logged already. 2551 * 2552 * Any items from this inode changed by the current transaction are copied 2553 * to the log tree. An extra reference is taken on any extents in this 2554 * file, allowing us to avoid a whole pile of corner cases around logging 2555 * blocks that have been removed from the tree. 2556 * 2557 * See LOG_INODE_ALL and related defines for a description of what inode_only 2558 * does. 2559 * 2560 * This handles both files and directories. 2561 */ 2562 static int __btrfs_log_inode(struct btrfs_trans_handle *trans, 2563 struct btrfs_root *root, struct inode *inode, 2564 int inode_only) 2565 { 2566 struct btrfs_path *path; 2567 struct btrfs_path *dst_path; 2568 struct btrfs_key min_key; 2569 struct btrfs_key max_key; 2570 struct btrfs_root *log = root->log_root; 2571 struct extent_buffer *src = NULL; 2572 u32 size; 2573 int ret; 2574 int nritems; 2575 int ins_start_slot = 0; 2576 int ins_nr; 2577 2578 log = root->log_root; 2579 2580 path = btrfs_alloc_path(); 2581 dst_path = btrfs_alloc_path(); 2582 2583 min_key.objectid = inode->i_ino; 2584 min_key.type = BTRFS_INODE_ITEM_KEY; 2585 min_key.offset = 0; 2586 2587 max_key.objectid = inode->i_ino; 2588 if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode)) 2589 max_key.type = BTRFS_XATTR_ITEM_KEY; 2590 else 2591 max_key.type = (u8)-1; 2592 max_key.offset = (u64)-1; 2593 2594 /* 2595 * if this inode has already been logged and we're in inode_only 2596 * mode, we don't want to delete the things that have already 2597 * been written to the log. 2598 * 2599 * But, if the inode has been through an inode_only log, 2600 * the logged_trans field is not set. This allows us to catch 2601 * any new names for this inode in the backrefs by logging it 2602 * again 2603 */ 2604 if (inode_only == LOG_INODE_EXISTS && 2605 BTRFS_I(inode)->logged_trans == trans->transid) { 2606 btrfs_free_path(path); 2607 btrfs_free_path(dst_path); 2608 goto out; 2609 } 2610 mutex_lock(&BTRFS_I(inode)->log_mutex); 2611 2612 /* 2613 * a brute force approach to making sure we get the most uptodate 2614 * copies of everything. 2615 */ 2616 if (S_ISDIR(inode->i_mode)) { 2617 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY; 2618 2619 if (inode_only == LOG_INODE_EXISTS) 2620 max_key_type = BTRFS_XATTR_ITEM_KEY; 2621 ret = drop_objectid_items(trans, log, path, 2622 inode->i_ino, max_key_type); 2623 } else { 2624 ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0); 2625 } 2626 BUG_ON(ret); 2627 path->keep_locks = 1; 2628 2629 while (1) { 2630 ins_nr = 0; 2631 ret = btrfs_search_forward(root, &min_key, &max_key, 2632 path, 0, trans->transid); 2633 if (ret != 0) 2634 break; 2635 again: 2636 /* note, ins_nr might be > 0 here, cleanup outside the loop */ 2637 if (min_key.objectid != inode->i_ino) 2638 break; 2639 if (min_key.type > max_key.type) 2640 break; 2641 2642 src = path->nodes[0]; 2643 size = btrfs_item_size_nr(src, path->slots[0]); 2644 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) { 2645 ins_nr++; 2646 goto next_slot; 2647 } else if (!ins_nr) { 2648 ins_start_slot = path->slots[0]; 2649 ins_nr = 1; 2650 goto next_slot; 2651 } 2652 2653 ret = copy_items(trans, log, dst_path, src, ins_start_slot, 2654 ins_nr, inode_only); 2655 BUG_ON(ret); 2656 ins_nr = 1; 2657 ins_start_slot = path->slots[0]; 2658 next_slot: 2659 2660 nritems = btrfs_header_nritems(path->nodes[0]); 2661 path->slots[0]++; 2662 if (path->slots[0] < nritems) { 2663 btrfs_item_key_to_cpu(path->nodes[0], &min_key, 2664 path->slots[0]); 2665 goto again; 2666 } 2667 if (ins_nr) { 2668 ret = copy_items(trans, log, dst_path, src, 2669 ins_start_slot, 2670 ins_nr, inode_only); 2671 BUG_ON(ret); 2672 ins_nr = 0; 2673 } 2674 btrfs_release_path(root, path); 2675 2676 if (min_key.offset < (u64)-1) 2677 min_key.offset++; 2678 else if (min_key.type < (u8)-1) 2679 min_key.type++; 2680 else if (min_key.objectid < (u64)-1) 2681 min_key.objectid++; 2682 else 2683 break; 2684 } 2685 if (ins_nr) { 2686 ret = copy_items(trans, log, dst_path, src, 2687 ins_start_slot, 2688 ins_nr, inode_only); 2689 BUG_ON(ret); 2690 ins_nr = 0; 2691 } 2692 WARN_ON(ins_nr); 2693 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) { 2694 btrfs_release_path(root, path); 2695 btrfs_release_path(log, dst_path); 2696 BTRFS_I(inode)->log_dirty_trans = 0; 2697 ret = log_directory_changes(trans, root, inode, path, dst_path); 2698 BUG_ON(ret); 2699 } 2700 BTRFS_I(inode)->logged_trans = trans->transid; 2701 mutex_unlock(&BTRFS_I(inode)->log_mutex); 2702 2703 btrfs_free_path(path); 2704 btrfs_free_path(dst_path); 2705 out: 2706 return 0; 2707 } 2708 2709 int btrfs_log_inode(struct btrfs_trans_handle *trans, 2710 struct btrfs_root *root, struct inode *inode, 2711 int inode_only) 2712 { 2713 int ret; 2714 2715 start_log_trans(trans, root); 2716 ret = __btrfs_log_inode(trans, root, inode, inode_only); 2717 end_log_trans(root); 2718 return ret; 2719 } 2720 2721 /* 2722 * helper function around btrfs_log_inode to make sure newly created 2723 * parent directories also end up in the log. A minimal inode and backref 2724 * only logging is done of any parent directories that are older than 2725 * the last committed transaction 2726 */ 2727 int btrfs_log_dentry(struct btrfs_trans_handle *trans, 2728 struct btrfs_root *root, struct dentry *dentry) 2729 { 2730 int inode_only = LOG_INODE_ALL; 2731 struct super_block *sb; 2732 int ret; 2733 2734 start_log_trans(trans, root); 2735 sb = dentry->d_inode->i_sb; 2736 while (1) { 2737 ret = __btrfs_log_inode(trans, root, dentry->d_inode, 2738 inode_only); 2739 BUG_ON(ret); 2740 inode_only = LOG_INODE_EXISTS; 2741 2742 dentry = dentry->d_parent; 2743 if (!dentry || !dentry->d_inode || sb != dentry->d_inode->i_sb) 2744 break; 2745 2746 if (BTRFS_I(dentry->d_inode)->generation <= 2747 root->fs_info->last_trans_committed) 2748 break; 2749 } 2750 end_log_trans(root); 2751 return 0; 2752 } 2753 2754 /* 2755 * it is not safe to log dentry if the chunk root has added new 2756 * chunks. This returns 0 if the dentry was logged, and 1 otherwise. 2757 * If this returns 1, you must commit the transaction to safely get your 2758 * data on disk. 2759 */ 2760 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans, 2761 struct btrfs_root *root, struct dentry *dentry) 2762 { 2763 u64 gen; 2764 gen = root->fs_info->last_trans_new_blockgroup; 2765 if (gen > root->fs_info->last_trans_committed) 2766 return 1; 2767 else 2768 return btrfs_log_dentry(trans, root, dentry); 2769 } 2770 2771 /* 2772 * should be called during mount to recover any replay any log trees 2773 * from the FS 2774 */ 2775 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree) 2776 { 2777 int ret; 2778 struct btrfs_path *path; 2779 struct btrfs_trans_handle *trans; 2780 struct btrfs_key key; 2781 struct btrfs_key found_key; 2782 struct btrfs_key tmp_key; 2783 struct btrfs_root *log; 2784 struct btrfs_fs_info *fs_info = log_root_tree->fs_info; 2785 u64 highest_inode; 2786 struct walk_control wc = { 2787 .process_func = process_one_buffer, 2788 .stage = 0, 2789 }; 2790 2791 fs_info->log_root_recovering = 1; 2792 path = btrfs_alloc_path(); 2793 BUG_ON(!path); 2794 2795 trans = btrfs_start_transaction(fs_info->tree_root, 1); 2796 2797 wc.trans = trans; 2798 wc.pin = 1; 2799 2800 walk_log_tree(trans, log_root_tree, &wc); 2801 2802 again: 2803 key.objectid = BTRFS_TREE_LOG_OBJECTID; 2804 key.offset = (u64)-1; 2805 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); 2806 2807 while (1) { 2808 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0); 2809 if (ret < 0) 2810 break; 2811 if (ret > 0) { 2812 if (path->slots[0] == 0) 2813 break; 2814 path->slots[0]--; 2815 } 2816 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2817 path->slots[0]); 2818 btrfs_release_path(log_root_tree, path); 2819 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID) 2820 break; 2821 2822 log = btrfs_read_fs_root_no_radix(log_root_tree, 2823 &found_key); 2824 BUG_ON(!log); 2825 2826 2827 tmp_key.objectid = found_key.offset; 2828 tmp_key.type = BTRFS_ROOT_ITEM_KEY; 2829 tmp_key.offset = (u64)-1; 2830 2831 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key); 2832 BUG_ON(!wc.replay_dest); 2833 2834 wc.replay_dest->log_root = log; 2835 mutex_lock(&fs_info->trans_mutex); 2836 btrfs_record_root_in_trans(wc.replay_dest); 2837 mutex_unlock(&fs_info->trans_mutex); 2838 ret = walk_log_tree(trans, log, &wc); 2839 BUG_ON(ret); 2840 2841 if (wc.stage == LOG_WALK_REPLAY_ALL) { 2842 ret = fixup_inode_link_counts(trans, wc.replay_dest, 2843 path); 2844 BUG_ON(ret); 2845 } 2846 ret = btrfs_find_highest_inode(wc.replay_dest, &highest_inode); 2847 if (ret == 0) { 2848 wc.replay_dest->highest_inode = highest_inode; 2849 wc.replay_dest->last_inode_alloc = highest_inode; 2850 } 2851 2852 key.offset = found_key.offset - 1; 2853 wc.replay_dest->log_root = NULL; 2854 free_extent_buffer(log->node); 2855 kfree(log); 2856 2857 if (found_key.offset == 0) 2858 break; 2859 } 2860 btrfs_release_path(log_root_tree, path); 2861 2862 /* step one is to pin it all, step two is to replay just inodes */ 2863 if (wc.pin) { 2864 wc.pin = 0; 2865 wc.process_func = replay_one_buffer; 2866 wc.stage = LOG_WALK_REPLAY_INODES; 2867 goto again; 2868 } 2869 /* step three is to replay everything */ 2870 if (wc.stage < LOG_WALK_REPLAY_ALL) { 2871 wc.stage++; 2872 goto again; 2873 } 2874 2875 btrfs_free_path(path); 2876 2877 free_extent_buffer(log_root_tree->node); 2878 log_root_tree->log_root = NULL; 2879 fs_info->log_root_recovering = 0; 2880 2881 /* step 4: commit the transaction, which also unpins the blocks */ 2882 btrfs_commit_transaction(trans, fs_info->tree_root); 2883 2884 kfree(log_root_tree); 2885 return 0; 2886 } 2887