xref: /linux/fs/btrfs/tree-log.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "misc.h"
12 #include "ctree.h"
13 #include "tree-log.h"
14 #include "disk-io.h"
15 #include "locking.h"
16 #include "backref.h"
17 #include "compression.h"
18 #include "qgroup.h"
19 #include "block-group.h"
20 #include "space-info.h"
21 #include "inode-item.h"
22 #include "fs.h"
23 #include "accessors.h"
24 #include "extent-tree.h"
25 #include "root-tree.h"
26 #include "dir-item.h"
27 #include "file-item.h"
28 #include "file.h"
29 #include "orphan.h"
30 #include "tree-checker.h"
31 
32 #define MAX_CONFLICT_INODES 10
33 
34 /* magic values for the inode_only field in btrfs_log_inode:
35  *
36  * LOG_INODE_ALL means to log everything
37  * LOG_INODE_EXISTS means to log just enough to recreate the inode
38  * during log replay
39  */
40 enum {
41 	LOG_INODE_ALL,
42 	LOG_INODE_EXISTS,
43 };
44 
45 /*
46  * directory trouble cases
47  *
48  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
49  * log, we must force a full commit before doing an fsync of the directory
50  * where the unlink was done.
51  * ---> record transid of last unlink/rename per directory
52  *
53  * mkdir foo/some_dir
54  * normal commit
55  * rename foo/some_dir foo2/some_dir
56  * mkdir foo/some_dir
57  * fsync foo/some_dir/some_file
58  *
59  * The fsync above will unlink the original some_dir without recording
60  * it in its new location (foo2).  After a crash, some_dir will be gone
61  * unless the fsync of some_file forces a full commit
62  *
63  * 2) we must log any new names for any file or dir that is in the fsync
64  * log. ---> check inode while renaming/linking.
65  *
66  * 2a) we must log any new names for any file or dir during rename
67  * when the directory they are being removed from was logged.
68  * ---> check inode and old parent dir during rename
69  *
70  *  2a is actually the more important variant.  With the extra logging
71  *  a crash might unlink the old name without recreating the new one
72  *
73  * 3) after a crash, we must go through any directories with a link count
74  * of zero and redo the rm -rf
75  *
76  * mkdir f1/foo
77  * normal commit
78  * rm -rf f1/foo
79  * fsync(f1)
80  *
81  * The directory f1 was fully removed from the FS, but fsync was never
82  * called on f1, only its parent dir.  After a crash the rm -rf must
83  * be replayed.  This must be able to recurse down the entire
84  * directory tree.  The inode link count fixup code takes care of the
85  * ugly details.
86  */
87 
88 /*
89  * stages for the tree walking.  The first
90  * stage (0) is to only pin down the blocks we find
91  * the second stage (1) is to make sure that all the inodes
92  * we find in the log are created in the subvolume.
93  *
94  * The last stage is to deal with directories and links and extents
95  * and all the other fun semantics
96  */
97 enum {
98 	LOG_WALK_PIN_ONLY,
99 	LOG_WALK_REPLAY_INODES,
100 	LOG_WALK_REPLAY_DIR_INDEX,
101 	LOG_WALK_REPLAY_ALL,
102 };
103 
104 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
105 			   struct btrfs_inode *inode,
106 			   int inode_only,
107 			   struct btrfs_log_ctx *ctx);
108 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
109 			     struct btrfs_root *root,
110 			     struct btrfs_path *path, u64 objectid);
111 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
112 				       struct btrfs_root *root,
113 				       struct btrfs_root *log,
114 				       struct btrfs_path *path,
115 				       u64 dirid, int del_all);
116 static void wait_log_commit(struct btrfs_root *root, int transid);
117 
118 /*
119  * tree logging is a special write ahead log used to make sure that
120  * fsyncs and O_SYNCs can happen without doing full tree commits.
121  *
122  * Full tree commits are expensive because they require commonly
123  * modified blocks to be recowed, creating many dirty pages in the
124  * extent tree an 4x-6x higher write load than ext3.
125  *
126  * Instead of doing a tree commit on every fsync, we use the
127  * key ranges and transaction ids to find items for a given file or directory
128  * that have changed in this transaction.  Those items are copied into
129  * a special tree (one per subvolume root), that tree is written to disk
130  * and then the fsync is considered complete.
131  *
132  * After a crash, items are copied out of the log-tree back into the
133  * subvolume tree.  Any file data extents found are recorded in the extent
134  * allocation tree, and the log-tree freed.
135  *
136  * The log tree is read three times, once to pin down all the extents it is
137  * using in ram and once, once to create all the inodes logged in the tree
138  * and once to do all the other items.
139  */
140 
141 /*
142  * start a sub transaction and setup the log tree
143  * this increments the log tree writer count to make the people
144  * syncing the tree wait for us to finish
145  */
146 static int start_log_trans(struct btrfs_trans_handle *trans,
147 			   struct btrfs_root *root,
148 			   struct btrfs_log_ctx *ctx)
149 {
150 	struct btrfs_fs_info *fs_info = root->fs_info;
151 	struct btrfs_root *tree_root = fs_info->tree_root;
152 	const bool zoned = btrfs_is_zoned(fs_info);
153 	int ret = 0;
154 	bool created = false;
155 
156 	/*
157 	 * First check if the log root tree was already created. If not, create
158 	 * it before locking the root's log_mutex, just to keep lockdep happy.
159 	 */
160 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
161 		mutex_lock(&tree_root->log_mutex);
162 		if (!fs_info->log_root_tree) {
163 			ret = btrfs_init_log_root_tree(trans, fs_info);
164 			if (!ret) {
165 				set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
166 				created = true;
167 			}
168 		}
169 		mutex_unlock(&tree_root->log_mutex);
170 		if (ret)
171 			return ret;
172 	}
173 
174 	mutex_lock(&root->log_mutex);
175 
176 again:
177 	if (root->log_root) {
178 		int index = (root->log_transid + 1) % 2;
179 
180 		if (btrfs_need_log_full_commit(trans)) {
181 			ret = BTRFS_LOG_FORCE_COMMIT;
182 			goto out;
183 		}
184 
185 		if (zoned && atomic_read(&root->log_commit[index])) {
186 			wait_log_commit(root, root->log_transid - 1);
187 			goto again;
188 		}
189 
190 		if (!root->log_start_pid) {
191 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
192 			root->log_start_pid = current->pid;
193 		} else if (root->log_start_pid != current->pid) {
194 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
195 		}
196 	} else {
197 		/*
198 		 * This means fs_info->log_root_tree was already created
199 		 * for some other FS trees. Do the full commit not to mix
200 		 * nodes from multiple log transactions to do sequential
201 		 * writing.
202 		 */
203 		if (zoned && !created) {
204 			ret = BTRFS_LOG_FORCE_COMMIT;
205 			goto out;
206 		}
207 
208 		ret = btrfs_add_log_tree(trans, root);
209 		if (ret)
210 			goto out;
211 
212 		set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
213 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
214 		root->log_start_pid = current->pid;
215 	}
216 
217 	atomic_inc(&root->log_writers);
218 	if (!ctx->logging_new_name) {
219 		int index = root->log_transid % 2;
220 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
221 		ctx->log_transid = root->log_transid;
222 	}
223 
224 out:
225 	mutex_unlock(&root->log_mutex);
226 	return ret;
227 }
228 
229 /*
230  * returns 0 if there was a log transaction running and we were able
231  * to join, or returns -ENOENT if there were not transactions
232  * in progress
233  */
234 static int join_running_log_trans(struct btrfs_root *root)
235 {
236 	const bool zoned = btrfs_is_zoned(root->fs_info);
237 	int ret = -ENOENT;
238 
239 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
240 		return ret;
241 
242 	mutex_lock(&root->log_mutex);
243 again:
244 	if (root->log_root) {
245 		int index = (root->log_transid + 1) % 2;
246 
247 		ret = 0;
248 		if (zoned && atomic_read(&root->log_commit[index])) {
249 			wait_log_commit(root, root->log_transid - 1);
250 			goto again;
251 		}
252 		atomic_inc(&root->log_writers);
253 	}
254 	mutex_unlock(&root->log_mutex);
255 	return ret;
256 }
257 
258 /*
259  * This either makes the current running log transaction wait
260  * until you call btrfs_end_log_trans() or it makes any future
261  * log transactions wait until you call btrfs_end_log_trans()
262  */
263 void btrfs_pin_log_trans(struct btrfs_root *root)
264 {
265 	atomic_inc(&root->log_writers);
266 }
267 
268 /*
269  * indicate we're done making changes to the log tree
270  * and wake up anyone waiting to do a sync
271  */
272 void btrfs_end_log_trans(struct btrfs_root *root)
273 {
274 	if (atomic_dec_and_test(&root->log_writers)) {
275 		/* atomic_dec_and_test implies a barrier */
276 		cond_wake_up_nomb(&root->log_writer_wait);
277 	}
278 }
279 
280 /*
281  * the walk control struct is used to pass state down the chain when
282  * processing the log tree.  The stage field tells us which part
283  * of the log tree processing we are currently doing.  The others
284  * are state fields used for that specific part
285  */
286 struct walk_control {
287 	/* should we free the extent on disk when done?  This is used
288 	 * at transaction commit time while freeing a log tree
289 	 */
290 	int free;
291 
292 	/* pin only walk, we record which extents on disk belong to the
293 	 * log trees
294 	 */
295 	int pin;
296 
297 	/* what stage of the replay code we're currently in */
298 	int stage;
299 
300 	/*
301 	 * Ignore any items from the inode currently being processed. Needs
302 	 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
303 	 * the LOG_WALK_REPLAY_INODES stage.
304 	 */
305 	bool ignore_cur_inode;
306 
307 	/* the root we are currently replaying */
308 	struct btrfs_root *replay_dest;
309 
310 	/* the trans handle for the current replay */
311 	struct btrfs_trans_handle *trans;
312 
313 	/* the function that gets used to process blocks we find in the
314 	 * tree.  Note the extent_buffer might not be up to date when it is
315 	 * passed in, and it must be checked or read if you need the data
316 	 * inside it
317 	 */
318 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
319 			    struct walk_control *wc, u64 gen, int level);
320 };
321 
322 /*
323  * process_func used to pin down extents, write them or wait on them
324  */
325 static int process_one_buffer(struct btrfs_root *log,
326 			      struct extent_buffer *eb,
327 			      struct walk_control *wc, u64 gen, int level)
328 {
329 	struct btrfs_fs_info *fs_info = log->fs_info;
330 	int ret = 0;
331 
332 	/*
333 	 * If this fs is mixed then we need to be able to process the leaves to
334 	 * pin down any logged extents, so we have to read the block.
335 	 */
336 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
337 		struct btrfs_tree_parent_check check = {
338 			.level = level,
339 			.transid = gen
340 		};
341 
342 		ret = btrfs_read_extent_buffer(eb, &check);
343 		if (ret)
344 			return ret;
345 	}
346 
347 	if (wc->pin) {
348 		ret = btrfs_pin_extent_for_log_replay(wc->trans, eb);
349 		if (ret)
350 			return ret;
351 
352 		if (btrfs_buffer_uptodate(eb, gen, 0) &&
353 		    btrfs_header_level(eb) == 0)
354 			ret = btrfs_exclude_logged_extents(eb);
355 	}
356 	return ret;
357 }
358 
359 /*
360  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
361  * to the src data we are copying out.
362  *
363  * root is the tree we are copying into, and path is a scratch
364  * path for use in this function (it should be released on entry and
365  * will be released on exit).
366  *
367  * If the key is already in the destination tree the existing item is
368  * overwritten.  If the existing item isn't big enough, it is extended.
369  * If it is too large, it is truncated.
370  *
371  * If the key isn't in the destination yet, a new item is inserted.
372  */
373 static int overwrite_item(struct btrfs_trans_handle *trans,
374 			  struct btrfs_root *root,
375 			  struct btrfs_path *path,
376 			  struct extent_buffer *eb, int slot,
377 			  struct btrfs_key *key)
378 {
379 	int ret;
380 	u32 item_size;
381 	u64 saved_i_size = 0;
382 	int save_old_i_size = 0;
383 	unsigned long src_ptr;
384 	unsigned long dst_ptr;
385 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
386 
387 	/*
388 	 * This is only used during log replay, so the root is always from a
389 	 * fs/subvolume tree. In case we ever need to support a log root, then
390 	 * we'll have to clone the leaf in the path, release the path and use
391 	 * the leaf before writing into the log tree. See the comments at
392 	 * copy_items() for more details.
393 	 */
394 	ASSERT(btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID);
395 
396 	item_size = btrfs_item_size(eb, slot);
397 	src_ptr = btrfs_item_ptr_offset(eb, slot);
398 
399 	/* Look for the key in the destination tree. */
400 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
401 	if (ret < 0)
402 		return ret;
403 
404 	if (ret == 0) {
405 		char *src_copy;
406 		char *dst_copy;
407 		u32 dst_size = btrfs_item_size(path->nodes[0],
408 						  path->slots[0]);
409 		if (dst_size != item_size)
410 			goto insert;
411 
412 		if (item_size == 0) {
413 			btrfs_release_path(path);
414 			return 0;
415 		}
416 		dst_copy = kmalloc(item_size, GFP_NOFS);
417 		src_copy = kmalloc(item_size, GFP_NOFS);
418 		if (!dst_copy || !src_copy) {
419 			btrfs_release_path(path);
420 			kfree(dst_copy);
421 			kfree(src_copy);
422 			return -ENOMEM;
423 		}
424 
425 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
426 
427 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
428 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
429 				   item_size);
430 		ret = memcmp(dst_copy, src_copy, item_size);
431 
432 		kfree(dst_copy);
433 		kfree(src_copy);
434 		/*
435 		 * they have the same contents, just return, this saves
436 		 * us from cowing blocks in the destination tree and doing
437 		 * extra writes that may not have been done by a previous
438 		 * sync
439 		 */
440 		if (ret == 0) {
441 			btrfs_release_path(path);
442 			return 0;
443 		}
444 
445 		/*
446 		 * We need to load the old nbytes into the inode so when we
447 		 * replay the extents we've logged we get the right nbytes.
448 		 */
449 		if (inode_item) {
450 			struct btrfs_inode_item *item;
451 			u64 nbytes;
452 			u32 mode;
453 
454 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
455 					      struct btrfs_inode_item);
456 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
457 			item = btrfs_item_ptr(eb, slot,
458 					      struct btrfs_inode_item);
459 			btrfs_set_inode_nbytes(eb, item, nbytes);
460 
461 			/*
462 			 * If this is a directory we need to reset the i_size to
463 			 * 0 so that we can set it up properly when replaying
464 			 * the rest of the items in this log.
465 			 */
466 			mode = btrfs_inode_mode(eb, item);
467 			if (S_ISDIR(mode))
468 				btrfs_set_inode_size(eb, item, 0);
469 		}
470 	} else if (inode_item) {
471 		struct btrfs_inode_item *item;
472 		u32 mode;
473 
474 		/*
475 		 * New inode, set nbytes to 0 so that the nbytes comes out
476 		 * properly when we replay the extents.
477 		 */
478 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
479 		btrfs_set_inode_nbytes(eb, item, 0);
480 
481 		/*
482 		 * If this is a directory we need to reset the i_size to 0 so
483 		 * that we can set it up properly when replaying the rest of
484 		 * the items in this log.
485 		 */
486 		mode = btrfs_inode_mode(eb, item);
487 		if (S_ISDIR(mode))
488 			btrfs_set_inode_size(eb, item, 0);
489 	}
490 insert:
491 	btrfs_release_path(path);
492 	/* try to insert the key into the destination tree */
493 	path->skip_release_on_error = 1;
494 	ret = btrfs_insert_empty_item(trans, root, path,
495 				      key, item_size);
496 	path->skip_release_on_error = 0;
497 
498 	/* make sure any existing item is the correct size */
499 	if (ret == -EEXIST || ret == -EOVERFLOW) {
500 		u32 found_size;
501 		found_size = btrfs_item_size(path->nodes[0],
502 						path->slots[0]);
503 		if (found_size > item_size)
504 			btrfs_truncate_item(trans, path, item_size, 1);
505 		else if (found_size < item_size)
506 			btrfs_extend_item(trans, path, item_size - found_size);
507 	} else if (ret) {
508 		return ret;
509 	}
510 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
511 					path->slots[0]);
512 
513 	/* don't overwrite an existing inode if the generation number
514 	 * was logged as zero.  This is done when the tree logging code
515 	 * is just logging an inode to make sure it exists after recovery.
516 	 *
517 	 * Also, don't overwrite i_size on directories during replay.
518 	 * log replay inserts and removes directory items based on the
519 	 * state of the tree found in the subvolume, and i_size is modified
520 	 * as it goes
521 	 */
522 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
523 		struct btrfs_inode_item *src_item;
524 		struct btrfs_inode_item *dst_item;
525 
526 		src_item = (struct btrfs_inode_item *)src_ptr;
527 		dst_item = (struct btrfs_inode_item *)dst_ptr;
528 
529 		if (btrfs_inode_generation(eb, src_item) == 0) {
530 			struct extent_buffer *dst_eb = path->nodes[0];
531 			const u64 ino_size = btrfs_inode_size(eb, src_item);
532 
533 			/*
534 			 * For regular files an ino_size == 0 is used only when
535 			 * logging that an inode exists, as part of a directory
536 			 * fsync, and the inode wasn't fsynced before. In this
537 			 * case don't set the size of the inode in the fs/subvol
538 			 * tree, otherwise we would be throwing valid data away.
539 			 */
540 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
541 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
542 			    ino_size != 0)
543 				btrfs_set_inode_size(dst_eb, dst_item, ino_size);
544 			goto no_copy;
545 		}
546 
547 		if (S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
548 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
549 			save_old_i_size = 1;
550 			saved_i_size = btrfs_inode_size(path->nodes[0],
551 							dst_item);
552 		}
553 	}
554 
555 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
556 			   src_ptr, item_size);
557 
558 	if (save_old_i_size) {
559 		struct btrfs_inode_item *dst_item;
560 		dst_item = (struct btrfs_inode_item *)dst_ptr;
561 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
562 	}
563 
564 	/* make sure the generation is filled in */
565 	if (key->type == BTRFS_INODE_ITEM_KEY) {
566 		struct btrfs_inode_item *dst_item;
567 		dst_item = (struct btrfs_inode_item *)dst_ptr;
568 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
569 			btrfs_set_inode_generation(path->nodes[0], dst_item,
570 						   trans->transid);
571 		}
572 	}
573 no_copy:
574 	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
575 	btrfs_release_path(path);
576 	return 0;
577 }
578 
579 static int read_alloc_one_name(struct extent_buffer *eb, void *start, int len,
580 			       struct fscrypt_str *name)
581 {
582 	char *buf;
583 
584 	buf = kmalloc(len, GFP_NOFS);
585 	if (!buf)
586 		return -ENOMEM;
587 
588 	read_extent_buffer(eb, buf, (unsigned long)start, len);
589 	name->name = buf;
590 	name->len = len;
591 	return 0;
592 }
593 
594 /*
595  * simple helper to read an inode off the disk from a given root
596  * This can only be called for subvolume roots and not for the log
597  */
598 static noinline struct inode *read_one_inode(struct btrfs_root *root,
599 					     u64 objectid)
600 {
601 	struct inode *inode;
602 
603 	inode = btrfs_iget(root->fs_info->sb, objectid, root);
604 	if (IS_ERR(inode))
605 		inode = NULL;
606 	return inode;
607 }
608 
609 /* replays a single extent in 'eb' at 'slot' with 'key' into the
610  * subvolume 'root'.  path is released on entry and should be released
611  * on exit.
612  *
613  * extents in the log tree have not been allocated out of the extent
614  * tree yet.  So, this completes the allocation, taking a reference
615  * as required if the extent already exists or creating a new extent
616  * if it isn't in the extent allocation tree yet.
617  *
618  * The extent is inserted into the file, dropping any existing extents
619  * from the file that overlap the new one.
620  */
621 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
622 				      struct btrfs_root *root,
623 				      struct btrfs_path *path,
624 				      struct extent_buffer *eb, int slot,
625 				      struct btrfs_key *key)
626 {
627 	struct btrfs_drop_extents_args drop_args = { 0 };
628 	struct btrfs_fs_info *fs_info = root->fs_info;
629 	int found_type;
630 	u64 extent_end;
631 	u64 start = key->offset;
632 	u64 nbytes = 0;
633 	struct btrfs_file_extent_item *item;
634 	struct inode *inode = NULL;
635 	unsigned long size;
636 	int ret = 0;
637 
638 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
639 	found_type = btrfs_file_extent_type(eb, item);
640 
641 	if (found_type == BTRFS_FILE_EXTENT_REG ||
642 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
643 		nbytes = btrfs_file_extent_num_bytes(eb, item);
644 		extent_end = start + nbytes;
645 
646 		/*
647 		 * We don't add to the inodes nbytes if we are prealloc or a
648 		 * hole.
649 		 */
650 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
651 			nbytes = 0;
652 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
653 		size = btrfs_file_extent_ram_bytes(eb, item);
654 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
655 		extent_end = ALIGN(start + size,
656 				   fs_info->sectorsize);
657 	} else {
658 		ret = 0;
659 		goto out;
660 	}
661 
662 	inode = read_one_inode(root, key->objectid);
663 	if (!inode) {
664 		ret = -EIO;
665 		goto out;
666 	}
667 
668 	/*
669 	 * first check to see if we already have this extent in the
670 	 * file.  This must be done before the btrfs_drop_extents run
671 	 * so we don't try to drop this extent.
672 	 */
673 	ret = btrfs_lookup_file_extent(trans, root, path,
674 			btrfs_ino(BTRFS_I(inode)), start, 0);
675 
676 	if (ret == 0 &&
677 	    (found_type == BTRFS_FILE_EXTENT_REG ||
678 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
679 		struct btrfs_file_extent_item cmp1;
680 		struct btrfs_file_extent_item cmp2;
681 		struct btrfs_file_extent_item *existing;
682 		struct extent_buffer *leaf;
683 
684 		leaf = path->nodes[0];
685 		existing = btrfs_item_ptr(leaf, path->slots[0],
686 					  struct btrfs_file_extent_item);
687 
688 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
689 				   sizeof(cmp1));
690 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
691 				   sizeof(cmp2));
692 
693 		/*
694 		 * we already have a pointer to this exact extent,
695 		 * we don't have to do anything
696 		 */
697 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
698 			btrfs_release_path(path);
699 			goto out;
700 		}
701 	}
702 	btrfs_release_path(path);
703 
704 	/* drop any overlapping extents */
705 	drop_args.start = start;
706 	drop_args.end = extent_end;
707 	drop_args.drop_cache = true;
708 	ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
709 	if (ret)
710 		goto out;
711 
712 	if (found_type == BTRFS_FILE_EXTENT_REG ||
713 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
714 		u64 offset;
715 		unsigned long dest_offset;
716 		struct btrfs_key ins;
717 
718 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
719 		    btrfs_fs_incompat(fs_info, NO_HOLES))
720 			goto update_inode;
721 
722 		ret = btrfs_insert_empty_item(trans, root, path, key,
723 					      sizeof(*item));
724 		if (ret)
725 			goto out;
726 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
727 						    path->slots[0]);
728 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
729 				(unsigned long)item,  sizeof(*item));
730 
731 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
732 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
733 		ins.type = BTRFS_EXTENT_ITEM_KEY;
734 		offset = key->offset - btrfs_file_extent_offset(eb, item);
735 
736 		/*
737 		 * Manually record dirty extent, as here we did a shallow
738 		 * file extent item copy and skip normal backref update,
739 		 * but modifying extent tree all by ourselves.
740 		 * So need to manually record dirty extent for qgroup,
741 		 * as the owner of the file extent changed from log tree
742 		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
743 		 */
744 		ret = btrfs_qgroup_trace_extent(trans,
745 				btrfs_file_extent_disk_bytenr(eb, item),
746 				btrfs_file_extent_disk_num_bytes(eb, item));
747 		if (ret < 0)
748 			goto out;
749 
750 		if (ins.objectid > 0) {
751 			u64 csum_start;
752 			u64 csum_end;
753 			LIST_HEAD(ordered_sums);
754 
755 			/*
756 			 * is this extent already allocated in the extent
757 			 * allocation tree?  If so, just add a reference
758 			 */
759 			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
760 						ins.offset);
761 			if (ret < 0) {
762 				goto out;
763 			} else if (ret == 0) {
764 				struct btrfs_ref ref = {
765 					.action = BTRFS_ADD_DELAYED_REF,
766 					.bytenr = ins.objectid,
767 					.num_bytes = ins.offset,
768 					.owning_root = btrfs_root_id(root),
769 					.ref_root = btrfs_root_id(root),
770 				};
771 				btrfs_init_data_ref(&ref, key->objectid, offset,
772 						    0, false);
773 				ret = btrfs_inc_extent_ref(trans, &ref);
774 				if (ret)
775 					goto out;
776 			} else {
777 				/*
778 				 * insert the extent pointer in the extent
779 				 * allocation tree
780 				 */
781 				ret = btrfs_alloc_logged_file_extent(trans,
782 						btrfs_root_id(root),
783 						key->objectid, offset, &ins);
784 				if (ret)
785 					goto out;
786 			}
787 			btrfs_release_path(path);
788 
789 			if (btrfs_file_extent_compression(eb, item)) {
790 				csum_start = ins.objectid;
791 				csum_end = csum_start + ins.offset;
792 			} else {
793 				csum_start = ins.objectid +
794 					btrfs_file_extent_offset(eb, item);
795 				csum_end = csum_start +
796 					btrfs_file_extent_num_bytes(eb, item);
797 			}
798 
799 			ret = btrfs_lookup_csums_list(root->log_root,
800 						csum_start, csum_end - 1,
801 						&ordered_sums, false);
802 			if (ret < 0)
803 				goto out;
804 			ret = 0;
805 			/*
806 			 * Now delete all existing cums in the csum root that
807 			 * cover our range. We do this because we can have an
808 			 * extent that is completely referenced by one file
809 			 * extent item and partially referenced by another
810 			 * file extent item (like after using the clone or
811 			 * extent_same ioctls). In this case if we end up doing
812 			 * the replay of the one that partially references the
813 			 * extent first, and we do not do the csum deletion
814 			 * below, we can get 2 csum items in the csum tree that
815 			 * overlap each other. For example, imagine our log has
816 			 * the two following file extent items:
817 			 *
818 			 * key (257 EXTENT_DATA 409600)
819 			 *     extent data disk byte 12845056 nr 102400
820 			 *     extent data offset 20480 nr 20480 ram 102400
821 			 *
822 			 * key (257 EXTENT_DATA 819200)
823 			 *     extent data disk byte 12845056 nr 102400
824 			 *     extent data offset 0 nr 102400 ram 102400
825 			 *
826 			 * Where the second one fully references the 100K extent
827 			 * that starts at disk byte 12845056, and the log tree
828 			 * has a single csum item that covers the entire range
829 			 * of the extent:
830 			 *
831 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
832 			 *
833 			 * After the first file extent item is replayed, the
834 			 * csum tree gets the following csum item:
835 			 *
836 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
837 			 *
838 			 * Which covers the 20K sub-range starting at offset 20K
839 			 * of our extent. Now when we replay the second file
840 			 * extent item, if we do not delete existing csum items
841 			 * that cover any of its blocks, we end up getting two
842 			 * csum items in our csum tree that overlap each other:
843 			 *
844 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
845 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
846 			 *
847 			 * Which is a problem, because after this anyone trying
848 			 * to lookup up for the checksum of any block of our
849 			 * extent starting at an offset of 40K or higher, will
850 			 * end up looking at the second csum item only, which
851 			 * does not contain the checksum for any block starting
852 			 * at offset 40K or higher of our extent.
853 			 */
854 			while (!list_empty(&ordered_sums)) {
855 				struct btrfs_ordered_sum *sums;
856 				struct btrfs_root *csum_root;
857 
858 				sums = list_entry(ordered_sums.next,
859 						struct btrfs_ordered_sum,
860 						list);
861 				csum_root = btrfs_csum_root(fs_info,
862 							    sums->logical);
863 				if (!ret)
864 					ret = btrfs_del_csums(trans, csum_root,
865 							      sums->logical,
866 							      sums->len);
867 				if (!ret)
868 					ret = btrfs_csum_file_blocks(trans,
869 								     csum_root,
870 								     sums);
871 				list_del(&sums->list);
872 				kfree(sums);
873 			}
874 			if (ret)
875 				goto out;
876 		} else {
877 			btrfs_release_path(path);
878 		}
879 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
880 		/* inline extents are easy, we just overwrite them */
881 		ret = overwrite_item(trans, root, path, eb, slot, key);
882 		if (ret)
883 			goto out;
884 	}
885 
886 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
887 						extent_end - start);
888 	if (ret)
889 		goto out;
890 
891 update_inode:
892 	btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
893 	ret = btrfs_update_inode(trans, BTRFS_I(inode));
894 out:
895 	iput(inode);
896 	return ret;
897 }
898 
899 static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans,
900 				       struct btrfs_inode *dir,
901 				       struct btrfs_inode *inode,
902 				       const struct fscrypt_str *name)
903 {
904 	int ret;
905 
906 	ret = btrfs_unlink_inode(trans, dir, inode, name);
907 	if (ret)
908 		return ret;
909 	/*
910 	 * Whenever we need to check if a name exists or not, we check the
911 	 * fs/subvolume tree. So after an unlink we must run delayed items, so
912 	 * that future checks for a name during log replay see that the name
913 	 * does not exists anymore.
914 	 */
915 	return btrfs_run_delayed_items(trans);
916 }
917 
918 /*
919  * when cleaning up conflicts between the directory names in the
920  * subvolume, directory names in the log and directory names in the
921  * inode back references, we may have to unlink inodes from directories.
922  *
923  * This is a helper function to do the unlink of a specific directory
924  * item
925  */
926 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
927 				      struct btrfs_path *path,
928 				      struct btrfs_inode *dir,
929 				      struct btrfs_dir_item *di)
930 {
931 	struct btrfs_root *root = dir->root;
932 	struct inode *inode;
933 	struct fscrypt_str name;
934 	struct extent_buffer *leaf;
935 	struct btrfs_key location;
936 	int ret;
937 
938 	leaf = path->nodes[0];
939 
940 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
941 	ret = read_alloc_one_name(leaf, di + 1, btrfs_dir_name_len(leaf, di), &name);
942 	if (ret)
943 		return -ENOMEM;
944 
945 	btrfs_release_path(path);
946 
947 	inode = read_one_inode(root, location.objectid);
948 	if (!inode) {
949 		ret = -EIO;
950 		goto out;
951 	}
952 
953 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
954 	if (ret)
955 		goto out;
956 
957 	ret = unlink_inode_for_log_replay(trans, dir, BTRFS_I(inode), &name);
958 out:
959 	kfree(name.name);
960 	iput(inode);
961 	return ret;
962 }
963 
964 /*
965  * See if a given name and sequence number found in an inode back reference are
966  * already in a directory and correctly point to this inode.
967  *
968  * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
969  * exists.
970  */
971 static noinline int inode_in_dir(struct btrfs_root *root,
972 				 struct btrfs_path *path,
973 				 u64 dirid, u64 objectid, u64 index,
974 				 struct fscrypt_str *name)
975 {
976 	struct btrfs_dir_item *di;
977 	struct btrfs_key location;
978 	int ret = 0;
979 
980 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
981 					 index, name, 0);
982 	if (IS_ERR(di)) {
983 		ret = PTR_ERR(di);
984 		goto out;
985 	} else if (di) {
986 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
987 		if (location.objectid != objectid)
988 			goto out;
989 	} else {
990 		goto out;
991 	}
992 
993 	btrfs_release_path(path);
994 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, 0);
995 	if (IS_ERR(di)) {
996 		ret = PTR_ERR(di);
997 		goto out;
998 	} else if (di) {
999 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1000 		if (location.objectid == objectid)
1001 			ret = 1;
1002 	}
1003 out:
1004 	btrfs_release_path(path);
1005 	return ret;
1006 }
1007 
1008 /*
1009  * helper function to check a log tree for a named back reference in
1010  * an inode.  This is used to decide if a back reference that is
1011  * found in the subvolume conflicts with what we find in the log.
1012  *
1013  * inode backreferences may have multiple refs in a single item,
1014  * during replay we process one reference at a time, and we don't
1015  * want to delete valid links to a file from the subvolume if that
1016  * link is also in the log.
1017  */
1018 static noinline int backref_in_log(struct btrfs_root *log,
1019 				   struct btrfs_key *key,
1020 				   u64 ref_objectid,
1021 				   const struct fscrypt_str *name)
1022 {
1023 	struct btrfs_path *path;
1024 	int ret;
1025 
1026 	path = btrfs_alloc_path();
1027 	if (!path)
1028 		return -ENOMEM;
1029 
1030 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
1031 	if (ret < 0) {
1032 		goto out;
1033 	} else if (ret == 1) {
1034 		ret = 0;
1035 		goto out;
1036 	}
1037 
1038 	if (key->type == BTRFS_INODE_EXTREF_KEY)
1039 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1040 						       path->slots[0],
1041 						       ref_objectid, name);
1042 	else
1043 		ret = !!btrfs_find_name_in_backref(path->nodes[0],
1044 						   path->slots[0], name);
1045 out:
1046 	btrfs_free_path(path);
1047 	return ret;
1048 }
1049 
1050 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1051 				  struct btrfs_root *root,
1052 				  struct btrfs_path *path,
1053 				  struct btrfs_root *log_root,
1054 				  struct btrfs_inode *dir,
1055 				  struct btrfs_inode *inode,
1056 				  u64 inode_objectid, u64 parent_objectid,
1057 				  u64 ref_index, struct fscrypt_str *name)
1058 {
1059 	int ret;
1060 	struct extent_buffer *leaf;
1061 	struct btrfs_dir_item *di;
1062 	struct btrfs_key search_key;
1063 	struct btrfs_inode_extref *extref;
1064 
1065 again:
1066 	/* Search old style refs */
1067 	search_key.objectid = inode_objectid;
1068 	search_key.type = BTRFS_INODE_REF_KEY;
1069 	search_key.offset = parent_objectid;
1070 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1071 	if (ret == 0) {
1072 		struct btrfs_inode_ref *victim_ref;
1073 		unsigned long ptr;
1074 		unsigned long ptr_end;
1075 
1076 		leaf = path->nodes[0];
1077 
1078 		/* are we trying to overwrite a back ref for the root directory
1079 		 * if so, just jump out, we're done
1080 		 */
1081 		if (search_key.objectid == search_key.offset)
1082 			return 1;
1083 
1084 		/* check all the names in this back reference to see
1085 		 * if they are in the log.  if so, we allow them to stay
1086 		 * otherwise they must be unlinked as a conflict
1087 		 */
1088 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1089 		ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]);
1090 		while (ptr < ptr_end) {
1091 			struct fscrypt_str victim_name;
1092 
1093 			victim_ref = (struct btrfs_inode_ref *)ptr;
1094 			ret = read_alloc_one_name(leaf, (victim_ref + 1),
1095 				 btrfs_inode_ref_name_len(leaf, victim_ref),
1096 				 &victim_name);
1097 			if (ret)
1098 				return ret;
1099 
1100 			ret = backref_in_log(log_root, &search_key,
1101 					     parent_objectid, &victim_name);
1102 			if (ret < 0) {
1103 				kfree(victim_name.name);
1104 				return ret;
1105 			} else if (!ret) {
1106 				inc_nlink(&inode->vfs_inode);
1107 				btrfs_release_path(path);
1108 
1109 				ret = unlink_inode_for_log_replay(trans, dir, inode,
1110 						&victim_name);
1111 				kfree(victim_name.name);
1112 				if (ret)
1113 					return ret;
1114 				goto again;
1115 			}
1116 			kfree(victim_name.name);
1117 
1118 			ptr = (unsigned long)(victim_ref + 1) + victim_name.len;
1119 		}
1120 	}
1121 	btrfs_release_path(path);
1122 
1123 	/* Same search but for extended refs */
1124 	extref = btrfs_lookup_inode_extref(NULL, root, path, name,
1125 					   inode_objectid, parent_objectid, 0,
1126 					   0);
1127 	if (IS_ERR(extref)) {
1128 		return PTR_ERR(extref);
1129 	} else if (extref) {
1130 		u32 item_size;
1131 		u32 cur_offset = 0;
1132 		unsigned long base;
1133 		struct inode *victim_parent;
1134 
1135 		leaf = path->nodes[0];
1136 
1137 		item_size = btrfs_item_size(leaf, path->slots[0]);
1138 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1139 
1140 		while (cur_offset < item_size) {
1141 			struct fscrypt_str victim_name;
1142 
1143 			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1144 
1145 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1146 				goto next;
1147 
1148 			ret = read_alloc_one_name(leaf, &extref->name,
1149 				 btrfs_inode_extref_name_len(leaf, extref),
1150 				 &victim_name);
1151 			if (ret)
1152 				return ret;
1153 
1154 			search_key.objectid = inode_objectid;
1155 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1156 			search_key.offset = btrfs_extref_hash(parent_objectid,
1157 							      victim_name.name,
1158 							      victim_name.len);
1159 			ret = backref_in_log(log_root, &search_key,
1160 					     parent_objectid, &victim_name);
1161 			if (ret < 0) {
1162 				kfree(victim_name.name);
1163 				return ret;
1164 			} else if (!ret) {
1165 				ret = -ENOENT;
1166 				victim_parent = read_one_inode(root,
1167 						parent_objectid);
1168 				if (victim_parent) {
1169 					inc_nlink(&inode->vfs_inode);
1170 					btrfs_release_path(path);
1171 
1172 					ret = unlink_inode_for_log_replay(trans,
1173 							BTRFS_I(victim_parent),
1174 							inode, &victim_name);
1175 				}
1176 				iput(victim_parent);
1177 				kfree(victim_name.name);
1178 				if (ret)
1179 					return ret;
1180 				goto again;
1181 			}
1182 			kfree(victim_name.name);
1183 next:
1184 			cur_offset += victim_name.len + sizeof(*extref);
1185 		}
1186 	}
1187 	btrfs_release_path(path);
1188 
1189 	/* look for a conflicting sequence number */
1190 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1191 					 ref_index, name, 0);
1192 	if (IS_ERR(di)) {
1193 		return PTR_ERR(di);
1194 	} else if (di) {
1195 		ret = drop_one_dir_item(trans, path, dir, di);
1196 		if (ret)
1197 			return ret;
1198 	}
1199 	btrfs_release_path(path);
1200 
1201 	/* look for a conflicting name */
1202 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), name, 0);
1203 	if (IS_ERR(di)) {
1204 		return PTR_ERR(di);
1205 	} else if (di) {
1206 		ret = drop_one_dir_item(trans, path, dir, di);
1207 		if (ret)
1208 			return ret;
1209 	}
1210 	btrfs_release_path(path);
1211 
1212 	return 0;
1213 }
1214 
1215 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1216 			     struct fscrypt_str *name, u64 *index,
1217 			     u64 *parent_objectid)
1218 {
1219 	struct btrfs_inode_extref *extref;
1220 	int ret;
1221 
1222 	extref = (struct btrfs_inode_extref *)ref_ptr;
1223 
1224 	ret = read_alloc_one_name(eb, &extref->name,
1225 				  btrfs_inode_extref_name_len(eb, extref), name);
1226 	if (ret)
1227 		return ret;
1228 
1229 	if (index)
1230 		*index = btrfs_inode_extref_index(eb, extref);
1231 	if (parent_objectid)
1232 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1233 
1234 	return 0;
1235 }
1236 
1237 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1238 			  struct fscrypt_str *name, u64 *index)
1239 {
1240 	struct btrfs_inode_ref *ref;
1241 	int ret;
1242 
1243 	ref = (struct btrfs_inode_ref *)ref_ptr;
1244 
1245 	ret = read_alloc_one_name(eb, ref + 1, btrfs_inode_ref_name_len(eb, ref),
1246 				  name);
1247 	if (ret)
1248 		return ret;
1249 
1250 	if (index)
1251 		*index = btrfs_inode_ref_index(eb, ref);
1252 
1253 	return 0;
1254 }
1255 
1256 /*
1257  * Take an inode reference item from the log tree and iterate all names from the
1258  * inode reference item in the subvolume tree with the same key (if it exists).
1259  * For any name that is not in the inode reference item from the log tree, do a
1260  * proper unlink of that name (that is, remove its entry from the inode
1261  * reference item and both dir index keys).
1262  */
1263 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1264 				 struct btrfs_root *root,
1265 				 struct btrfs_path *path,
1266 				 struct btrfs_inode *inode,
1267 				 struct extent_buffer *log_eb,
1268 				 int log_slot,
1269 				 struct btrfs_key *key)
1270 {
1271 	int ret;
1272 	unsigned long ref_ptr;
1273 	unsigned long ref_end;
1274 	struct extent_buffer *eb;
1275 
1276 again:
1277 	btrfs_release_path(path);
1278 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1279 	if (ret > 0) {
1280 		ret = 0;
1281 		goto out;
1282 	}
1283 	if (ret < 0)
1284 		goto out;
1285 
1286 	eb = path->nodes[0];
1287 	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1288 	ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]);
1289 	while (ref_ptr < ref_end) {
1290 		struct fscrypt_str name;
1291 		u64 parent_id;
1292 
1293 		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1294 			ret = extref_get_fields(eb, ref_ptr, &name,
1295 						NULL, &parent_id);
1296 		} else {
1297 			parent_id = key->offset;
1298 			ret = ref_get_fields(eb, ref_ptr, &name, NULL);
1299 		}
1300 		if (ret)
1301 			goto out;
1302 
1303 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1304 			ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1305 							       parent_id, &name);
1306 		else
1307 			ret = !!btrfs_find_name_in_backref(log_eb, log_slot, &name);
1308 
1309 		if (!ret) {
1310 			struct inode *dir;
1311 
1312 			btrfs_release_path(path);
1313 			dir = read_one_inode(root, parent_id);
1314 			if (!dir) {
1315 				ret = -ENOENT;
1316 				kfree(name.name);
1317 				goto out;
1318 			}
1319 			ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir),
1320 						 inode, &name);
1321 			kfree(name.name);
1322 			iput(dir);
1323 			if (ret)
1324 				goto out;
1325 			goto again;
1326 		}
1327 
1328 		kfree(name.name);
1329 		ref_ptr += name.len;
1330 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1331 			ref_ptr += sizeof(struct btrfs_inode_extref);
1332 		else
1333 			ref_ptr += sizeof(struct btrfs_inode_ref);
1334 	}
1335 	ret = 0;
1336  out:
1337 	btrfs_release_path(path);
1338 	return ret;
1339 }
1340 
1341 /*
1342  * replay one inode back reference item found in the log tree.
1343  * eb, slot and key refer to the buffer and key found in the log tree.
1344  * root is the destination we are replaying into, and path is for temp
1345  * use by this function.  (it should be released on return).
1346  */
1347 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1348 				  struct btrfs_root *root,
1349 				  struct btrfs_root *log,
1350 				  struct btrfs_path *path,
1351 				  struct extent_buffer *eb, int slot,
1352 				  struct btrfs_key *key)
1353 {
1354 	struct inode *dir = NULL;
1355 	struct inode *inode = NULL;
1356 	unsigned long ref_ptr;
1357 	unsigned long ref_end;
1358 	struct fscrypt_str name;
1359 	int ret;
1360 	int log_ref_ver = 0;
1361 	u64 parent_objectid;
1362 	u64 inode_objectid;
1363 	u64 ref_index = 0;
1364 	int ref_struct_size;
1365 
1366 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1367 	ref_end = ref_ptr + btrfs_item_size(eb, slot);
1368 
1369 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1370 		struct btrfs_inode_extref *r;
1371 
1372 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1373 		log_ref_ver = 1;
1374 		r = (struct btrfs_inode_extref *)ref_ptr;
1375 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1376 	} else {
1377 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1378 		parent_objectid = key->offset;
1379 	}
1380 	inode_objectid = key->objectid;
1381 
1382 	/*
1383 	 * it is possible that we didn't log all the parent directories
1384 	 * for a given inode.  If we don't find the dir, just don't
1385 	 * copy the back ref in.  The link count fixup code will take
1386 	 * care of the rest
1387 	 */
1388 	dir = read_one_inode(root, parent_objectid);
1389 	if (!dir) {
1390 		ret = -ENOENT;
1391 		goto out;
1392 	}
1393 
1394 	inode = read_one_inode(root, inode_objectid);
1395 	if (!inode) {
1396 		ret = -EIO;
1397 		goto out;
1398 	}
1399 
1400 	while (ref_ptr < ref_end) {
1401 		if (log_ref_ver) {
1402 			ret = extref_get_fields(eb, ref_ptr, &name,
1403 						&ref_index, &parent_objectid);
1404 			/*
1405 			 * parent object can change from one array
1406 			 * item to another.
1407 			 */
1408 			if (!dir)
1409 				dir = read_one_inode(root, parent_objectid);
1410 			if (!dir) {
1411 				ret = -ENOENT;
1412 				goto out;
1413 			}
1414 		} else {
1415 			ret = ref_get_fields(eb, ref_ptr, &name, &ref_index);
1416 		}
1417 		if (ret)
1418 			goto out;
1419 
1420 		ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1421 				   btrfs_ino(BTRFS_I(inode)), ref_index, &name);
1422 		if (ret < 0) {
1423 			goto out;
1424 		} else if (ret == 0) {
1425 			/*
1426 			 * look for a conflicting back reference in the
1427 			 * metadata. if we find one we have to unlink that name
1428 			 * of the file before we add our new link.  Later on, we
1429 			 * overwrite any existing back reference, and we don't
1430 			 * want to create dangling pointers in the directory.
1431 			 */
1432 			ret = __add_inode_ref(trans, root, path, log,
1433 					      BTRFS_I(dir), BTRFS_I(inode),
1434 					      inode_objectid, parent_objectid,
1435 					      ref_index, &name);
1436 			if (ret) {
1437 				if (ret == 1)
1438 					ret = 0;
1439 				goto out;
1440 			}
1441 
1442 			/* insert our name */
1443 			ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1444 					     &name, 0, ref_index);
1445 			if (ret)
1446 				goto out;
1447 
1448 			ret = btrfs_update_inode(trans, BTRFS_I(inode));
1449 			if (ret)
1450 				goto out;
1451 		}
1452 		/* Else, ret == 1, we already have a perfect match, we're done. */
1453 
1454 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + name.len;
1455 		kfree(name.name);
1456 		name.name = NULL;
1457 		if (log_ref_ver) {
1458 			iput(dir);
1459 			dir = NULL;
1460 		}
1461 	}
1462 
1463 	/*
1464 	 * Before we overwrite the inode reference item in the subvolume tree
1465 	 * with the item from the log tree, we must unlink all names from the
1466 	 * parent directory that are in the subvolume's tree inode reference
1467 	 * item, otherwise we end up with an inconsistent subvolume tree where
1468 	 * dir index entries exist for a name but there is no inode reference
1469 	 * item with the same name.
1470 	 */
1471 	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1472 				    key);
1473 	if (ret)
1474 		goto out;
1475 
1476 	/* finally write the back reference in the inode */
1477 	ret = overwrite_item(trans, root, path, eb, slot, key);
1478 out:
1479 	btrfs_release_path(path);
1480 	kfree(name.name);
1481 	iput(dir);
1482 	iput(inode);
1483 	return ret;
1484 }
1485 
1486 static int count_inode_extrefs(struct btrfs_inode *inode, struct btrfs_path *path)
1487 {
1488 	int ret = 0;
1489 	int name_len;
1490 	unsigned int nlink = 0;
1491 	u32 item_size;
1492 	u32 cur_offset = 0;
1493 	u64 inode_objectid = btrfs_ino(inode);
1494 	u64 offset = 0;
1495 	unsigned long ptr;
1496 	struct btrfs_inode_extref *extref;
1497 	struct extent_buffer *leaf;
1498 
1499 	while (1) {
1500 		ret = btrfs_find_one_extref(inode->root, inode_objectid, offset,
1501 					    path, &extref, &offset);
1502 		if (ret)
1503 			break;
1504 
1505 		leaf = path->nodes[0];
1506 		item_size = btrfs_item_size(leaf, path->slots[0]);
1507 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1508 		cur_offset = 0;
1509 
1510 		while (cur_offset < item_size) {
1511 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1512 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1513 
1514 			nlink++;
1515 
1516 			cur_offset += name_len + sizeof(*extref);
1517 		}
1518 
1519 		offset++;
1520 		btrfs_release_path(path);
1521 	}
1522 	btrfs_release_path(path);
1523 
1524 	if (ret < 0 && ret != -ENOENT)
1525 		return ret;
1526 	return nlink;
1527 }
1528 
1529 static int count_inode_refs(struct btrfs_inode *inode, struct btrfs_path *path)
1530 {
1531 	int ret;
1532 	struct btrfs_key key;
1533 	unsigned int nlink = 0;
1534 	unsigned long ptr;
1535 	unsigned long ptr_end;
1536 	int name_len;
1537 	u64 ino = btrfs_ino(inode);
1538 
1539 	key.objectid = ino;
1540 	key.type = BTRFS_INODE_REF_KEY;
1541 	key.offset = (u64)-1;
1542 
1543 	while (1) {
1544 		ret = btrfs_search_slot(NULL, inode->root, &key, path, 0, 0);
1545 		if (ret < 0)
1546 			break;
1547 		if (ret > 0) {
1548 			if (path->slots[0] == 0)
1549 				break;
1550 			path->slots[0]--;
1551 		}
1552 process_slot:
1553 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1554 				      path->slots[0]);
1555 		if (key.objectid != ino ||
1556 		    key.type != BTRFS_INODE_REF_KEY)
1557 			break;
1558 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1559 		ptr_end = ptr + btrfs_item_size(path->nodes[0],
1560 						   path->slots[0]);
1561 		while (ptr < ptr_end) {
1562 			struct btrfs_inode_ref *ref;
1563 
1564 			ref = (struct btrfs_inode_ref *)ptr;
1565 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1566 							    ref);
1567 			ptr = (unsigned long)(ref + 1) + name_len;
1568 			nlink++;
1569 		}
1570 
1571 		if (key.offset == 0)
1572 			break;
1573 		if (path->slots[0] > 0) {
1574 			path->slots[0]--;
1575 			goto process_slot;
1576 		}
1577 		key.offset--;
1578 		btrfs_release_path(path);
1579 	}
1580 	btrfs_release_path(path);
1581 
1582 	return nlink;
1583 }
1584 
1585 /*
1586  * There are a few corners where the link count of the file can't
1587  * be properly maintained during replay.  So, instead of adding
1588  * lots of complexity to the log code, we just scan the backrefs
1589  * for any file that has been through replay.
1590  *
1591  * The scan will update the link count on the inode to reflect the
1592  * number of back refs found.  If it goes down to zero, the iput
1593  * will free the inode.
1594  */
1595 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1596 					   struct inode *inode)
1597 {
1598 	struct btrfs_root *root = BTRFS_I(inode)->root;
1599 	struct btrfs_path *path;
1600 	int ret;
1601 	u64 nlink = 0;
1602 	u64 ino = btrfs_ino(BTRFS_I(inode));
1603 
1604 	path = btrfs_alloc_path();
1605 	if (!path)
1606 		return -ENOMEM;
1607 
1608 	ret = count_inode_refs(BTRFS_I(inode), path);
1609 	if (ret < 0)
1610 		goto out;
1611 
1612 	nlink = ret;
1613 
1614 	ret = count_inode_extrefs(BTRFS_I(inode), path);
1615 	if (ret < 0)
1616 		goto out;
1617 
1618 	nlink += ret;
1619 
1620 	ret = 0;
1621 
1622 	if (nlink != inode->i_nlink) {
1623 		set_nlink(inode, nlink);
1624 		ret = btrfs_update_inode(trans, BTRFS_I(inode));
1625 		if (ret)
1626 			goto out;
1627 	}
1628 	BTRFS_I(inode)->index_cnt = (u64)-1;
1629 
1630 	if (inode->i_nlink == 0) {
1631 		if (S_ISDIR(inode->i_mode)) {
1632 			ret = replay_dir_deletes(trans, root, NULL, path,
1633 						 ino, 1);
1634 			if (ret)
1635 				goto out;
1636 		}
1637 		ret = btrfs_insert_orphan_item(trans, root, ino);
1638 		if (ret == -EEXIST)
1639 			ret = 0;
1640 	}
1641 
1642 out:
1643 	btrfs_free_path(path);
1644 	return ret;
1645 }
1646 
1647 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1648 					    struct btrfs_root *root,
1649 					    struct btrfs_path *path)
1650 {
1651 	int ret;
1652 	struct btrfs_key key;
1653 	struct inode *inode;
1654 
1655 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1656 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1657 	key.offset = (u64)-1;
1658 	while (1) {
1659 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1660 		if (ret < 0)
1661 			break;
1662 
1663 		if (ret == 1) {
1664 			ret = 0;
1665 			if (path->slots[0] == 0)
1666 				break;
1667 			path->slots[0]--;
1668 		}
1669 
1670 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1671 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1672 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1673 			break;
1674 
1675 		ret = btrfs_del_item(trans, root, path);
1676 		if (ret)
1677 			break;
1678 
1679 		btrfs_release_path(path);
1680 		inode = read_one_inode(root, key.offset);
1681 		if (!inode) {
1682 			ret = -EIO;
1683 			break;
1684 		}
1685 
1686 		ret = fixup_inode_link_count(trans, inode);
1687 		iput(inode);
1688 		if (ret)
1689 			break;
1690 
1691 		/*
1692 		 * fixup on a directory may create new entries,
1693 		 * make sure we always look for the highset possible
1694 		 * offset
1695 		 */
1696 		key.offset = (u64)-1;
1697 	}
1698 	btrfs_release_path(path);
1699 	return ret;
1700 }
1701 
1702 
1703 /*
1704  * record a given inode in the fixup dir so we can check its link
1705  * count when replay is done.  The link count is incremented here
1706  * so the inode won't go away until we check it
1707  */
1708 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1709 				      struct btrfs_root *root,
1710 				      struct btrfs_path *path,
1711 				      u64 objectid)
1712 {
1713 	struct btrfs_key key;
1714 	int ret = 0;
1715 	struct inode *inode;
1716 
1717 	inode = read_one_inode(root, objectid);
1718 	if (!inode)
1719 		return -EIO;
1720 
1721 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1722 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1723 	key.offset = objectid;
1724 
1725 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1726 
1727 	btrfs_release_path(path);
1728 	if (ret == 0) {
1729 		if (!inode->i_nlink)
1730 			set_nlink(inode, 1);
1731 		else
1732 			inc_nlink(inode);
1733 		ret = btrfs_update_inode(trans, BTRFS_I(inode));
1734 	} else if (ret == -EEXIST) {
1735 		ret = 0;
1736 	}
1737 	iput(inode);
1738 
1739 	return ret;
1740 }
1741 
1742 /*
1743  * when replaying the log for a directory, we only insert names
1744  * for inodes that actually exist.  This means an fsync on a directory
1745  * does not implicitly fsync all the new files in it
1746  */
1747 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1748 				    struct btrfs_root *root,
1749 				    u64 dirid, u64 index,
1750 				    const struct fscrypt_str *name,
1751 				    struct btrfs_key *location)
1752 {
1753 	struct inode *inode;
1754 	struct inode *dir;
1755 	int ret;
1756 
1757 	inode = read_one_inode(root, location->objectid);
1758 	if (!inode)
1759 		return -ENOENT;
1760 
1761 	dir = read_one_inode(root, dirid);
1762 	if (!dir) {
1763 		iput(inode);
1764 		return -EIO;
1765 	}
1766 
1767 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1768 			     1, index);
1769 
1770 	/* FIXME, put inode into FIXUP list */
1771 
1772 	iput(inode);
1773 	iput(dir);
1774 	return ret;
1775 }
1776 
1777 static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans,
1778 					struct btrfs_inode *dir,
1779 					struct btrfs_path *path,
1780 					struct btrfs_dir_item *dst_di,
1781 					const struct btrfs_key *log_key,
1782 					u8 log_flags,
1783 					bool exists)
1784 {
1785 	struct btrfs_key found_key;
1786 
1787 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1788 	/* The existing dentry points to the same inode, don't delete it. */
1789 	if (found_key.objectid == log_key->objectid &&
1790 	    found_key.type == log_key->type &&
1791 	    found_key.offset == log_key->offset &&
1792 	    btrfs_dir_flags(path->nodes[0], dst_di) == log_flags)
1793 		return 1;
1794 
1795 	/*
1796 	 * Don't drop the conflicting directory entry if the inode for the new
1797 	 * entry doesn't exist.
1798 	 */
1799 	if (!exists)
1800 		return 0;
1801 
1802 	return drop_one_dir_item(trans, path, dir, dst_di);
1803 }
1804 
1805 /*
1806  * take a single entry in a log directory item and replay it into
1807  * the subvolume.
1808  *
1809  * if a conflicting item exists in the subdirectory already,
1810  * the inode it points to is unlinked and put into the link count
1811  * fix up tree.
1812  *
1813  * If a name from the log points to a file or directory that does
1814  * not exist in the FS, it is skipped.  fsyncs on directories
1815  * do not force down inodes inside that directory, just changes to the
1816  * names or unlinks in a directory.
1817  *
1818  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1819  * non-existing inode) and 1 if the name was replayed.
1820  */
1821 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1822 				    struct btrfs_root *root,
1823 				    struct btrfs_path *path,
1824 				    struct extent_buffer *eb,
1825 				    struct btrfs_dir_item *di,
1826 				    struct btrfs_key *key)
1827 {
1828 	struct fscrypt_str name;
1829 	struct btrfs_dir_item *dir_dst_di;
1830 	struct btrfs_dir_item *index_dst_di;
1831 	bool dir_dst_matches = false;
1832 	bool index_dst_matches = false;
1833 	struct btrfs_key log_key;
1834 	struct btrfs_key search_key;
1835 	struct inode *dir;
1836 	u8 log_flags;
1837 	bool exists;
1838 	int ret;
1839 	bool update_size = true;
1840 	bool name_added = false;
1841 
1842 	dir = read_one_inode(root, key->objectid);
1843 	if (!dir)
1844 		return -EIO;
1845 
1846 	ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
1847 	if (ret)
1848 		goto out;
1849 
1850 	log_flags = btrfs_dir_flags(eb, di);
1851 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1852 	ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1853 	btrfs_release_path(path);
1854 	if (ret < 0)
1855 		goto out;
1856 	exists = (ret == 0);
1857 	ret = 0;
1858 
1859 	dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1860 					   &name, 1);
1861 	if (IS_ERR(dir_dst_di)) {
1862 		ret = PTR_ERR(dir_dst_di);
1863 		goto out;
1864 	} else if (dir_dst_di) {
1865 		ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1866 						   dir_dst_di, &log_key,
1867 						   log_flags, exists);
1868 		if (ret < 0)
1869 			goto out;
1870 		dir_dst_matches = (ret == 1);
1871 	}
1872 
1873 	btrfs_release_path(path);
1874 
1875 	index_dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1876 						   key->objectid, key->offset,
1877 						   &name, 1);
1878 	if (IS_ERR(index_dst_di)) {
1879 		ret = PTR_ERR(index_dst_di);
1880 		goto out;
1881 	} else if (index_dst_di) {
1882 		ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1883 						   index_dst_di, &log_key,
1884 						   log_flags, exists);
1885 		if (ret < 0)
1886 			goto out;
1887 		index_dst_matches = (ret == 1);
1888 	}
1889 
1890 	btrfs_release_path(path);
1891 
1892 	if (dir_dst_matches && index_dst_matches) {
1893 		ret = 0;
1894 		update_size = false;
1895 		goto out;
1896 	}
1897 
1898 	/*
1899 	 * Check if the inode reference exists in the log for the given name,
1900 	 * inode and parent inode
1901 	 */
1902 	search_key.objectid = log_key.objectid;
1903 	search_key.type = BTRFS_INODE_REF_KEY;
1904 	search_key.offset = key->objectid;
1905 	ret = backref_in_log(root->log_root, &search_key, 0, &name);
1906 	if (ret < 0) {
1907 	        goto out;
1908 	} else if (ret) {
1909 	        /* The dentry will be added later. */
1910 	        ret = 0;
1911 	        update_size = false;
1912 	        goto out;
1913 	}
1914 
1915 	search_key.objectid = log_key.objectid;
1916 	search_key.type = BTRFS_INODE_EXTREF_KEY;
1917 	search_key.offset = key->objectid;
1918 	ret = backref_in_log(root->log_root, &search_key, key->objectid, &name);
1919 	if (ret < 0) {
1920 		goto out;
1921 	} else if (ret) {
1922 		/* The dentry will be added later. */
1923 		ret = 0;
1924 		update_size = false;
1925 		goto out;
1926 	}
1927 	btrfs_release_path(path);
1928 	ret = insert_one_name(trans, root, key->objectid, key->offset,
1929 			      &name, &log_key);
1930 	if (ret && ret != -ENOENT && ret != -EEXIST)
1931 		goto out;
1932 	if (!ret)
1933 		name_added = true;
1934 	update_size = false;
1935 	ret = 0;
1936 
1937 out:
1938 	if (!ret && update_size) {
1939 		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name.len * 2);
1940 		ret = btrfs_update_inode(trans, BTRFS_I(dir));
1941 	}
1942 	kfree(name.name);
1943 	iput(dir);
1944 	if (!ret && name_added)
1945 		ret = 1;
1946 	return ret;
1947 }
1948 
1949 /* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */
1950 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1951 					struct btrfs_root *root,
1952 					struct btrfs_path *path,
1953 					struct extent_buffer *eb, int slot,
1954 					struct btrfs_key *key)
1955 {
1956 	int ret;
1957 	struct btrfs_dir_item *di;
1958 
1959 	/* We only log dir index keys, which only contain a single dir item. */
1960 	ASSERT(key->type == BTRFS_DIR_INDEX_KEY);
1961 
1962 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1963 	ret = replay_one_name(trans, root, path, eb, di, key);
1964 	if (ret < 0)
1965 		return ret;
1966 
1967 	/*
1968 	 * If this entry refers to a non-directory (directories can not have a
1969 	 * link count > 1) and it was added in the transaction that was not
1970 	 * committed, make sure we fixup the link count of the inode the entry
1971 	 * points to. Otherwise something like the following would result in a
1972 	 * directory pointing to an inode with a wrong link that does not account
1973 	 * for this dir entry:
1974 	 *
1975 	 * mkdir testdir
1976 	 * touch testdir/foo
1977 	 * touch testdir/bar
1978 	 * sync
1979 	 *
1980 	 * ln testdir/bar testdir/bar_link
1981 	 * ln testdir/foo testdir/foo_link
1982 	 * xfs_io -c "fsync" testdir/bar
1983 	 *
1984 	 * <power failure>
1985 	 *
1986 	 * mount fs, log replay happens
1987 	 *
1988 	 * File foo would remain with a link count of 1 when it has two entries
1989 	 * pointing to it in the directory testdir. This would make it impossible
1990 	 * to ever delete the parent directory has it would result in stale
1991 	 * dentries that can never be deleted.
1992 	 */
1993 	if (ret == 1 && btrfs_dir_ftype(eb, di) != BTRFS_FT_DIR) {
1994 		struct btrfs_path *fixup_path;
1995 		struct btrfs_key di_key;
1996 
1997 		fixup_path = btrfs_alloc_path();
1998 		if (!fixup_path)
1999 			return -ENOMEM;
2000 
2001 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2002 		ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid);
2003 		btrfs_free_path(fixup_path);
2004 	}
2005 
2006 	return ret;
2007 }
2008 
2009 /*
2010  * directory replay has two parts.  There are the standard directory
2011  * items in the log copied from the subvolume, and range items
2012  * created in the log while the subvolume was logged.
2013  *
2014  * The range items tell us which parts of the key space the log
2015  * is authoritative for.  During replay, if a key in the subvolume
2016  * directory is in a logged range item, but not actually in the log
2017  * that means it was deleted from the directory before the fsync
2018  * and should be removed.
2019  */
2020 static noinline int find_dir_range(struct btrfs_root *root,
2021 				   struct btrfs_path *path,
2022 				   u64 dirid,
2023 				   u64 *start_ret, u64 *end_ret)
2024 {
2025 	struct btrfs_key key;
2026 	u64 found_end;
2027 	struct btrfs_dir_log_item *item;
2028 	int ret;
2029 	int nritems;
2030 
2031 	if (*start_ret == (u64)-1)
2032 		return 1;
2033 
2034 	key.objectid = dirid;
2035 	key.type = BTRFS_DIR_LOG_INDEX_KEY;
2036 	key.offset = *start_ret;
2037 
2038 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2039 	if (ret < 0)
2040 		goto out;
2041 	if (ret > 0) {
2042 		if (path->slots[0] == 0)
2043 			goto out;
2044 		path->slots[0]--;
2045 	}
2046 	if (ret != 0)
2047 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2048 
2049 	if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2050 		ret = 1;
2051 		goto next;
2052 	}
2053 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2054 			      struct btrfs_dir_log_item);
2055 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2056 
2057 	if (*start_ret >= key.offset && *start_ret <= found_end) {
2058 		ret = 0;
2059 		*start_ret = key.offset;
2060 		*end_ret = found_end;
2061 		goto out;
2062 	}
2063 	ret = 1;
2064 next:
2065 	/* check the next slot in the tree to see if it is a valid item */
2066 	nritems = btrfs_header_nritems(path->nodes[0]);
2067 	path->slots[0]++;
2068 	if (path->slots[0] >= nritems) {
2069 		ret = btrfs_next_leaf(root, path);
2070 		if (ret)
2071 			goto out;
2072 	}
2073 
2074 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2075 
2076 	if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2077 		ret = 1;
2078 		goto out;
2079 	}
2080 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2081 			      struct btrfs_dir_log_item);
2082 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2083 	*start_ret = key.offset;
2084 	*end_ret = found_end;
2085 	ret = 0;
2086 out:
2087 	btrfs_release_path(path);
2088 	return ret;
2089 }
2090 
2091 /*
2092  * this looks for a given directory item in the log.  If the directory
2093  * item is not in the log, the item is removed and the inode it points
2094  * to is unlinked
2095  */
2096 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2097 				      struct btrfs_root *log,
2098 				      struct btrfs_path *path,
2099 				      struct btrfs_path *log_path,
2100 				      struct inode *dir,
2101 				      struct btrfs_key *dir_key)
2102 {
2103 	struct btrfs_root *root = BTRFS_I(dir)->root;
2104 	int ret;
2105 	struct extent_buffer *eb;
2106 	int slot;
2107 	struct btrfs_dir_item *di;
2108 	struct fscrypt_str name;
2109 	struct inode *inode = NULL;
2110 	struct btrfs_key location;
2111 
2112 	/*
2113 	 * Currently we only log dir index keys. Even if we replay a log created
2114 	 * by an older kernel that logged both dir index and dir item keys, all
2115 	 * we need to do is process the dir index keys, we (and our caller) can
2116 	 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY).
2117 	 */
2118 	ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY);
2119 
2120 	eb = path->nodes[0];
2121 	slot = path->slots[0];
2122 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2123 	ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
2124 	if (ret)
2125 		goto out;
2126 
2127 	if (log) {
2128 		struct btrfs_dir_item *log_di;
2129 
2130 		log_di = btrfs_lookup_dir_index_item(trans, log, log_path,
2131 						     dir_key->objectid,
2132 						     dir_key->offset, &name, 0);
2133 		if (IS_ERR(log_di)) {
2134 			ret = PTR_ERR(log_di);
2135 			goto out;
2136 		} else if (log_di) {
2137 			/* The dentry exists in the log, we have nothing to do. */
2138 			ret = 0;
2139 			goto out;
2140 		}
2141 	}
2142 
2143 	btrfs_dir_item_key_to_cpu(eb, di, &location);
2144 	btrfs_release_path(path);
2145 	btrfs_release_path(log_path);
2146 	inode = read_one_inode(root, location.objectid);
2147 	if (!inode) {
2148 		ret = -EIO;
2149 		goto out;
2150 	}
2151 
2152 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
2153 	if (ret)
2154 		goto out;
2155 
2156 	inc_nlink(inode);
2157 	ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), BTRFS_I(inode),
2158 					  &name);
2159 	/*
2160 	 * Unlike dir item keys, dir index keys can only have one name (entry) in
2161 	 * them, as there are no key collisions since each key has a unique offset
2162 	 * (an index number), so we're done.
2163 	 */
2164 out:
2165 	btrfs_release_path(path);
2166 	btrfs_release_path(log_path);
2167 	kfree(name.name);
2168 	iput(inode);
2169 	return ret;
2170 }
2171 
2172 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2173 			      struct btrfs_root *root,
2174 			      struct btrfs_root *log,
2175 			      struct btrfs_path *path,
2176 			      const u64 ino)
2177 {
2178 	struct btrfs_key search_key;
2179 	struct btrfs_path *log_path;
2180 	int i;
2181 	int nritems;
2182 	int ret;
2183 
2184 	log_path = btrfs_alloc_path();
2185 	if (!log_path)
2186 		return -ENOMEM;
2187 
2188 	search_key.objectid = ino;
2189 	search_key.type = BTRFS_XATTR_ITEM_KEY;
2190 	search_key.offset = 0;
2191 again:
2192 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2193 	if (ret < 0)
2194 		goto out;
2195 process_leaf:
2196 	nritems = btrfs_header_nritems(path->nodes[0]);
2197 	for (i = path->slots[0]; i < nritems; i++) {
2198 		struct btrfs_key key;
2199 		struct btrfs_dir_item *di;
2200 		struct btrfs_dir_item *log_di;
2201 		u32 total_size;
2202 		u32 cur;
2203 
2204 		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2205 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2206 			ret = 0;
2207 			goto out;
2208 		}
2209 
2210 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2211 		total_size = btrfs_item_size(path->nodes[0], i);
2212 		cur = 0;
2213 		while (cur < total_size) {
2214 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2215 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2216 			u32 this_len = sizeof(*di) + name_len + data_len;
2217 			char *name;
2218 
2219 			name = kmalloc(name_len, GFP_NOFS);
2220 			if (!name) {
2221 				ret = -ENOMEM;
2222 				goto out;
2223 			}
2224 			read_extent_buffer(path->nodes[0], name,
2225 					   (unsigned long)(di + 1), name_len);
2226 
2227 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2228 						    name, name_len, 0);
2229 			btrfs_release_path(log_path);
2230 			if (!log_di) {
2231 				/* Doesn't exist in log tree, so delete it. */
2232 				btrfs_release_path(path);
2233 				di = btrfs_lookup_xattr(trans, root, path, ino,
2234 							name, name_len, -1);
2235 				kfree(name);
2236 				if (IS_ERR(di)) {
2237 					ret = PTR_ERR(di);
2238 					goto out;
2239 				}
2240 				ASSERT(di);
2241 				ret = btrfs_delete_one_dir_name(trans, root,
2242 								path, di);
2243 				if (ret)
2244 					goto out;
2245 				btrfs_release_path(path);
2246 				search_key = key;
2247 				goto again;
2248 			}
2249 			kfree(name);
2250 			if (IS_ERR(log_di)) {
2251 				ret = PTR_ERR(log_di);
2252 				goto out;
2253 			}
2254 			cur += this_len;
2255 			di = (struct btrfs_dir_item *)((char *)di + this_len);
2256 		}
2257 	}
2258 	ret = btrfs_next_leaf(root, path);
2259 	if (ret > 0)
2260 		ret = 0;
2261 	else if (ret == 0)
2262 		goto process_leaf;
2263 out:
2264 	btrfs_free_path(log_path);
2265 	btrfs_release_path(path);
2266 	return ret;
2267 }
2268 
2269 
2270 /*
2271  * deletion replay happens before we copy any new directory items
2272  * out of the log or out of backreferences from inodes.  It
2273  * scans the log to find ranges of keys that log is authoritative for,
2274  * and then scans the directory to find items in those ranges that are
2275  * not present in the log.
2276  *
2277  * Anything we don't find in the log is unlinked and removed from the
2278  * directory.
2279  */
2280 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2281 				       struct btrfs_root *root,
2282 				       struct btrfs_root *log,
2283 				       struct btrfs_path *path,
2284 				       u64 dirid, int del_all)
2285 {
2286 	u64 range_start;
2287 	u64 range_end;
2288 	int ret = 0;
2289 	struct btrfs_key dir_key;
2290 	struct btrfs_key found_key;
2291 	struct btrfs_path *log_path;
2292 	struct inode *dir;
2293 
2294 	dir_key.objectid = dirid;
2295 	dir_key.type = BTRFS_DIR_INDEX_KEY;
2296 	log_path = btrfs_alloc_path();
2297 	if (!log_path)
2298 		return -ENOMEM;
2299 
2300 	dir = read_one_inode(root, dirid);
2301 	/* it isn't an error if the inode isn't there, that can happen
2302 	 * because we replay the deletes before we copy in the inode item
2303 	 * from the log
2304 	 */
2305 	if (!dir) {
2306 		btrfs_free_path(log_path);
2307 		return 0;
2308 	}
2309 
2310 	range_start = 0;
2311 	range_end = 0;
2312 	while (1) {
2313 		if (del_all)
2314 			range_end = (u64)-1;
2315 		else {
2316 			ret = find_dir_range(log, path, dirid,
2317 					     &range_start, &range_end);
2318 			if (ret < 0)
2319 				goto out;
2320 			else if (ret > 0)
2321 				break;
2322 		}
2323 
2324 		dir_key.offset = range_start;
2325 		while (1) {
2326 			int nritems;
2327 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2328 						0, 0);
2329 			if (ret < 0)
2330 				goto out;
2331 
2332 			nritems = btrfs_header_nritems(path->nodes[0]);
2333 			if (path->slots[0] >= nritems) {
2334 				ret = btrfs_next_leaf(root, path);
2335 				if (ret == 1)
2336 					break;
2337 				else if (ret < 0)
2338 					goto out;
2339 			}
2340 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2341 					      path->slots[0]);
2342 			if (found_key.objectid != dirid ||
2343 			    found_key.type != dir_key.type) {
2344 				ret = 0;
2345 				goto out;
2346 			}
2347 
2348 			if (found_key.offset > range_end)
2349 				break;
2350 
2351 			ret = check_item_in_log(trans, log, path,
2352 						log_path, dir,
2353 						&found_key);
2354 			if (ret)
2355 				goto out;
2356 			if (found_key.offset == (u64)-1)
2357 				break;
2358 			dir_key.offset = found_key.offset + 1;
2359 		}
2360 		btrfs_release_path(path);
2361 		if (range_end == (u64)-1)
2362 			break;
2363 		range_start = range_end + 1;
2364 	}
2365 	ret = 0;
2366 out:
2367 	btrfs_release_path(path);
2368 	btrfs_free_path(log_path);
2369 	iput(dir);
2370 	return ret;
2371 }
2372 
2373 /*
2374  * the process_func used to replay items from the log tree.  This
2375  * gets called in two different stages.  The first stage just looks
2376  * for inodes and makes sure they are all copied into the subvolume.
2377  *
2378  * The second stage copies all the other item types from the log into
2379  * the subvolume.  The two stage approach is slower, but gets rid of
2380  * lots of complexity around inodes referencing other inodes that exist
2381  * only in the log (references come from either directory items or inode
2382  * back refs).
2383  */
2384 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2385 			     struct walk_control *wc, u64 gen, int level)
2386 {
2387 	int nritems;
2388 	struct btrfs_tree_parent_check check = {
2389 		.transid = gen,
2390 		.level = level
2391 	};
2392 	struct btrfs_path *path;
2393 	struct btrfs_root *root = wc->replay_dest;
2394 	struct btrfs_key key;
2395 	int i;
2396 	int ret;
2397 
2398 	ret = btrfs_read_extent_buffer(eb, &check);
2399 	if (ret)
2400 		return ret;
2401 
2402 	level = btrfs_header_level(eb);
2403 
2404 	if (level != 0)
2405 		return 0;
2406 
2407 	path = btrfs_alloc_path();
2408 	if (!path)
2409 		return -ENOMEM;
2410 
2411 	nritems = btrfs_header_nritems(eb);
2412 	for (i = 0; i < nritems; i++) {
2413 		btrfs_item_key_to_cpu(eb, &key, i);
2414 
2415 		/* inode keys are done during the first stage */
2416 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2417 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2418 			struct btrfs_inode_item *inode_item;
2419 			u32 mode;
2420 
2421 			inode_item = btrfs_item_ptr(eb, i,
2422 					    struct btrfs_inode_item);
2423 			/*
2424 			 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2425 			 * and never got linked before the fsync, skip it, as
2426 			 * replaying it is pointless since it would be deleted
2427 			 * later. We skip logging tmpfiles, but it's always
2428 			 * possible we are replaying a log created with a kernel
2429 			 * that used to log tmpfiles.
2430 			 */
2431 			if (btrfs_inode_nlink(eb, inode_item) == 0) {
2432 				wc->ignore_cur_inode = true;
2433 				continue;
2434 			} else {
2435 				wc->ignore_cur_inode = false;
2436 			}
2437 			ret = replay_xattr_deletes(wc->trans, root, log,
2438 						   path, key.objectid);
2439 			if (ret)
2440 				break;
2441 			mode = btrfs_inode_mode(eb, inode_item);
2442 			if (S_ISDIR(mode)) {
2443 				ret = replay_dir_deletes(wc->trans,
2444 					 root, log, path, key.objectid, 0);
2445 				if (ret)
2446 					break;
2447 			}
2448 			ret = overwrite_item(wc->trans, root, path,
2449 					     eb, i, &key);
2450 			if (ret)
2451 				break;
2452 
2453 			/*
2454 			 * Before replaying extents, truncate the inode to its
2455 			 * size. We need to do it now and not after log replay
2456 			 * because before an fsync we can have prealloc extents
2457 			 * added beyond the inode's i_size. If we did it after,
2458 			 * through orphan cleanup for example, we would drop
2459 			 * those prealloc extents just after replaying them.
2460 			 */
2461 			if (S_ISREG(mode)) {
2462 				struct btrfs_drop_extents_args drop_args = { 0 };
2463 				struct inode *inode;
2464 				u64 from;
2465 
2466 				inode = read_one_inode(root, key.objectid);
2467 				if (!inode) {
2468 					ret = -EIO;
2469 					break;
2470 				}
2471 				from = ALIGN(i_size_read(inode),
2472 					     root->fs_info->sectorsize);
2473 				drop_args.start = from;
2474 				drop_args.end = (u64)-1;
2475 				drop_args.drop_cache = true;
2476 				ret = btrfs_drop_extents(wc->trans, root,
2477 							 BTRFS_I(inode),
2478 							 &drop_args);
2479 				if (!ret) {
2480 					inode_sub_bytes(inode,
2481 							drop_args.bytes_found);
2482 					/* Update the inode's nbytes. */
2483 					ret = btrfs_update_inode(wc->trans,
2484 								 BTRFS_I(inode));
2485 				}
2486 				iput(inode);
2487 				if (ret)
2488 					break;
2489 			}
2490 
2491 			ret = link_to_fixup_dir(wc->trans, root,
2492 						path, key.objectid);
2493 			if (ret)
2494 				break;
2495 		}
2496 
2497 		if (wc->ignore_cur_inode)
2498 			continue;
2499 
2500 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2501 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2502 			ret = replay_one_dir_item(wc->trans, root, path,
2503 						  eb, i, &key);
2504 			if (ret)
2505 				break;
2506 		}
2507 
2508 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2509 			continue;
2510 
2511 		/* these keys are simply copied */
2512 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2513 			ret = overwrite_item(wc->trans, root, path,
2514 					     eb, i, &key);
2515 			if (ret)
2516 				break;
2517 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2518 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2519 			ret = add_inode_ref(wc->trans, root, log, path,
2520 					    eb, i, &key);
2521 			if (ret && ret != -ENOENT)
2522 				break;
2523 			ret = 0;
2524 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2525 			ret = replay_one_extent(wc->trans, root, path,
2526 						eb, i, &key);
2527 			if (ret)
2528 				break;
2529 		}
2530 		/*
2531 		 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the
2532 		 * BTRFS_DIR_INDEX_KEY items which we use to derive the
2533 		 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an
2534 		 * older kernel with such keys, ignore them.
2535 		 */
2536 	}
2537 	btrfs_free_path(path);
2538 	return ret;
2539 }
2540 
2541 /*
2542  * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2543  */
2544 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2545 {
2546 	struct btrfs_block_group *cache;
2547 
2548 	cache = btrfs_lookup_block_group(fs_info, start);
2549 	if (!cache) {
2550 		btrfs_err(fs_info, "unable to find block group for %llu", start);
2551 		return;
2552 	}
2553 
2554 	spin_lock(&cache->space_info->lock);
2555 	spin_lock(&cache->lock);
2556 	cache->reserved -= fs_info->nodesize;
2557 	cache->space_info->bytes_reserved -= fs_info->nodesize;
2558 	spin_unlock(&cache->lock);
2559 	spin_unlock(&cache->space_info->lock);
2560 
2561 	btrfs_put_block_group(cache);
2562 }
2563 
2564 static int clean_log_buffer(struct btrfs_trans_handle *trans,
2565 			    struct extent_buffer *eb)
2566 {
2567 	int ret;
2568 
2569 	btrfs_tree_lock(eb);
2570 	btrfs_clear_buffer_dirty(trans, eb);
2571 	wait_on_extent_buffer_writeback(eb);
2572 	btrfs_tree_unlock(eb);
2573 
2574 	if (trans) {
2575 		ret = btrfs_pin_reserved_extent(trans, eb);
2576 		if (ret)
2577 			return ret;
2578 	} else {
2579 		unaccount_log_buffer(eb->fs_info, eb->start);
2580 	}
2581 
2582 	return 0;
2583 }
2584 
2585 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2586 				   struct btrfs_root *root,
2587 				   struct btrfs_path *path, int *level,
2588 				   struct walk_control *wc)
2589 {
2590 	struct btrfs_fs_info *fs_info = root->fs_info;
2591 	u64 bytenr;
2592 	u64 ptr_gen;
2593 	struct extent_buffer *next;
2594 	struct extent_buffer *cur;
2595 	int ret = 0;
2596 
2597 	while (*level > 0) {
2598 		struct btrfs_tree_parent_check check = { 0 };
2599 
2600 		cur = path->nodes[*level];
2601 
2602 		WARN_ON(btrfs_header_level(cur) != *level);
2603 
2604 		if (path->slots[*level] >=
2605 		    btrfs_header_nritems(cur))
2606 			break;
2607 
2608 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2609 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2610 		check.transid = ptr_gen;
2611 		check.level = *level - 1;
2612 		check.has_first_key = true;
2613 		btrfs_node_key_to_cpu(cur, &check.first_key, path->slots[*level]);
2614 
2615 		next = btrfs_find_create_tree_block(fs_info, bytenr,
2616 						    btrfs_header_owner(cur),
2617 						    *level - 1);
2618 		if (IS_ERR(next))
2619 			return PTR_ERR(next);
2620 
2621 		if (*level == 1) {
2622 			ret = wc->process_func(root, next, wc, ptr_gen,
2623 					       *level - 1);
2624 			if (ret) {
2625 				free_extent_buffer(next);
2626 				return ret;
2627 			}
2628 
2629 			path->slots[*level]++;
2630 			if (wc->free) {
2631 				ret = btrfs_read_extent_buffer(next, &check);
2632 				if (ret) {
2633 					free_extent_buffer(next);
2634 					return ret;
2635 				}
2636 
2637 				ret = clean_log_buffer(trans, next);
2638 				if (ret) {
2639 					free_extent_buffer(next);
2640 					return ret;
2641 				}
2642 			}
2643 			free_extent_buffer(next);
2644 			continue;
2645 		}
2646 		ret = btrfs_read_extent_buffer(next, &check);
2647 		if (ret) {
2648 			free_extent_buffer(next);
2649 			return ret;
2650 		}
2651 
2652 		if (path->nodes[*level-1])
2653 			free_extent_buffer(path->nodes[*level-1]);
2654 		path->nodes[*level-1] = next;
2655 		*level = btrfs_header_level(next);
2656 		path->slots[*level] = 0;
2657 		cond_resched();
2658 	}
2659 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2660 
2661 	cond_resched();
2662 	return 0;
2663 }
2664 
2665 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2666 				 struct btrfs_root *root,
2667 				 struct btrfs_path *path, int *level,
2668 				 struct walk_control *wc)
2669 {
2670 	int i;
2671 	int slot;
2672 	int ret;
2673 
2674 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2675 		slot = path->slots[i];
2676 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2677 			path->slots[i]++;
2678 			*level = i;
2679 			WARN_ON(*level == 0);
2680 			return 0;
2681 		} else {
2682 			ret = wc->process_func(root, path->nodes[*level], wc,
2683 				 btrfs_header_generation(path->nodes[*level]),
2684 				 *level);
2685 			if (ret)
2686 				return ret;
2687 
2688 			if (wc->free) {
2689 				ret = clean_log_buffer(trans, path->nodes[*level]);
2690 				if (ret)
2691 					return ret;
2692 			}
2693 			free_extent_buffer(path->nodes[*level]);
2694 			path->nodes[*level] = NULL;
2695 			*level = i + 1;
2696 		}
2697 	}
2698 	return 1;
2699 }
2700 
2701 /*
2702  * drop the reference count on the tree rooted at 'snap'.  This traverses
2703  * the tree freeing any blocks that have a ref count of zero after being
2704  * decremented.
2705  */
2706 static int walk_log_tree(struct btrfs_trans_handle *trans,
2707 			 struct btrfs_root *log, struct walk_control *wc)
2708 {
2709 	int ret = 0;
2710 	int wret;
2711 	int level;
2712 	struct btrfs_path *path;
2713 	int orig_level;
2714 
2715 	path = btrfs_alloc_path();
2716 	if (!path)
2717 		return -ENOMEM;
2718 
2719 	level = btrfs_header_level(log->node);
2720 	orig_level = level;
2721 	path->nodes[level] = log->node;
2722 	atomic_inc(&log->node->refs);
2723 	path->slots[level] = 0;
2724 
2725 	while (1) {
2726 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2727 		if (wret > 0)
2728 			break;
2729 		if (wret < 0) {
2730 			ret = wret;
2731 			goto out;
2732 		}
2733 
2734 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2735 		if (wret > 0)
2736 			break;
2737 		if (wret < 0) {
2738 			ret = wret;
2739 			goto out;
2740 		}
2741 	}
2742 
2743 	/* was the root node processed? if not, catch it here */
2744 	if (path->nodes[orig_level]) {
2745 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2746 			 btrfs_header_generation(path->nodes[orig_level]),
2747 			 orig_level);
2748 		if (ret)
2749 			goto out;
2750 		if (wc->free)
2751 			ret = clean_log_buffer(trans, path->nodes[orig_level]);
2752 	}
2753 
2754 out:
2755 	btrfs_free_path(path);
2756 	return ret;
2757 }
2758 
2759 /*
2760  * helper function to update the item for a given subvolumes log root
2761  * in the tree of log roots
2762  */
2763 static int update_log_root(struct btrfs_trans_handle *trans,
2764 			   struct btrfs_root *log,
2765 			   struct btrfs_root_item *root_item)
2766 {
2767 	struct btrfs_fs_info *fs_info = log->fs_info;
2768 	int ret;
2769 
2770 	if (log->log_transid == 1) {
2771 		/* insert root item on the first sync */
2772 		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2773 				&log->root_key, root_item);
2774 	} else {
2775 		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2776 				&log->root_key, root_item);
2777 	}
2778 	return ret;
2779 }
2780 
2781 static void wait_log_commit(struct btrfs_root *root, int transid)
2782 {
2783 	DEFINE_WAIT(wait);
2784 	int index = transid % 2;
2785 
2786 	/*
2787 	 * we only allow two pending log transactions at a time,
2788 	 * so we know that if ours is more than 2 older than the
2789 	 * current transaction, we're done
2790 	 */
2791 	for (;;) {
2792 		prepare_to_wait(&root->log_commit_wait[index],
2793 				&wait, TASK_UNINTERRUPTIBLE);
2794 
2795 		if (!(root->log_transid_committed < transid &&
2796 		      atomic_read(&root->log_commit[index])))
2797 			break;
2798 
2799 		mutex_unlock(&root->log_mutex);
2800 		schedule();
2801 		mutex_lock(&root->log_mutex);
2802 	}
2803 	finish_wait(&root->log_commit_wait[index], &wait);
2804 }
2805 
2806 static void wait_for_writer(struct btrfs_root *root)
2807 {
2808 	DEFINE_WAIT(wait);
2809 
2810 	for (;;) {
2811 		prepare_to_wait(&root->log_writer_wait, &wait,
2812 				TASK_UNINTERRUPTIBLE);
2813 		if (!atomic_read(&root->log_writers))
2814 			break;
2815 
2816 		mutex_unlock(&root->log_mutex);
2817 		schedule();
2818 		mutex_lock(&root->log_mutex);
2819 	}
2820 	finish_wait(&root->log_writer_wait, &wait);
2821 }
2822 
2823 void btrfs_init_log_ctx(struct btrfs_log_ctx *ctx, struct inode *inode)
2824 {
2825 	ctx->log_ret = 0;
2826 	ctx->log_transid = 0;
2827 	ctx->log_new_dentries = false;
2828 	ctx->logging_new_name = false;
2829 	ctx->logging_new_delayed_dentries = false;
2830 	ctx->logged_before = false;
2831 	ctx->inode = inode;
2832 	INIT_LIST_HEAD(&ctx->list);
2833 	INIT_LIST_HEAD(&ctx->ordered_extents);
2834 	INIT_LIST_HEAD(&ctx->conflict_inodes);
2835 	ctx->num_conflict_inodes = 0;
2836 	ctx->logging_conflict_inodes = false;
2837 	ctx->scratch_eb = NULL;
2838 }
2839 
2840 void btrfs_init_log_ctx_scratch_eb(struct btrfs_log_ctx *ctx)
2841 {
2842 	struct btrfs_inode *inode = BTRFS_I(ctx->inode);
2843 
2844 	if (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
2845 	    !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
2846 		return;
2847 
2848 	/*
2849 	 * Don't care about allocation failure. This is just for optimization,
2850 	 * if we fail to allocate here, we will try again later if needed.
2851 	 */
2852 	ctx->scratch_eb = alloc_dummy_extent_buffer(inode->root->fs_info, 0);
2853 }
2854 
2855 void btrfs_release_log_ctx_extents(struct btrfs_log_ctx *ctx)
2856 {
2857 	struct btrfs_ordered_extent *ordered;
2858 	struct btrfs_ordered_extent *tmp;
2859 
2860 	ASSERT(inode_is_locked(ctx->inode));
2861 
2862 	list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
2863 		list_del_init(&ordered->log_list);
2864 		btrfs_put_ordered_extent(ordered);
2865 	}
2866 }
2867 
2868 
2869 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2870 					struct btrfs_log_ctx *ctx)
2871 {
2872 	mutex_lock(&root->log_mutex);
2873 	list_del_init(&ctx->list);
2874 	mutex_unlock(&root->log_mutex);
2875 }
2876 
2877 /*
2878  * Invoked in log mutex context, or be sure there is no other task which
2879  * can access the list.
2880  */
2881 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2882 					     int index, int error)
2883 {
2884 	struct btrfs_log_ctx *ctx;
2885 	struct btrfs_log_ctx *safe;
2886 
2887 	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2888 		list_del_init(&ctx->list);
2889 		ctx->log_ret = error;
2890 	}
2891 }
2892 
2893 /*
2894  * Sends a given tree log down to the disk and updates the super blocks to
2895  * record it.  When this call is done, you know that any inodes previously
2896  * logged are safely on disk only if it returns 0.
2897  *
2898  * Any other return value means you need to call btrfs_commit_transaction.
2899  * Some of the edge cases for fsyncing directories that have had unlinks
2900  * or renames done in the past mean that sometimes the only safe
2901  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2902  * that has happened.
2903  */
2904 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2905 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2906 {
2907 	int index1;
2908 	int index2;
2909 	int mark;
2910 	int ret;
2911 	struct btrfs_fs_info *fs_info = root->fs_info;
2912 	struct btrfs_root *log = root->log_root;
2913 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2914 	struct btrfs_root_item new_root_item;
2915 	int log_transid = 0;
2916 	struct btrfs_log_ctx root_log_ctx;
2917 	struct blk_plug plug;
2918 	u64 log_root_start;
2919 	u64 log_root_level;
2920 
2921 	mutex_lock(&root->log_mutex);
2922 	log_transid = ctx->log_transid;
2923 	if (root->log_transid_committed >= log_transid) {
2924 		mutex_unlock(&root->log_mutex);
2925 		return ctx->log_ret;
2926 	}
2927 
2928 	index1 = log_transid % 2;
2929 	if (atomic_read(&root->log_commit[index1])) {
2930 		wait_log_commit(root, log_transid);
2931 		mutex_unlock(&root->log_mutex);
2932 		return ctx->log_ret;
2933 	}
2934 	ASSERT(log_transid == root->log_transid);
2935 	atomic_set(&root->log_commit[index1], 1);
2936 
2937 	/* wait for previous tree log sync to complete */
2938 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2939 		wait_log_commit(root, log_transid - 1);
2940 
2941 	while (1) {
2942 		int batch = atomic_read(&root->log_batch);
2943 		/* when we're on an ssd, just kick the log commit out */
2944 		if (!btrfs_test_opt(fs_info, SSD) &&
2945 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2946 			mutex_unlock(&root->log_mutex);
2947 			schedule_timeout_uninterruptible(1);
2948 			mutex_lock(&root->log_mutex);
2949 		}
2950 		wait_for_writer(root);
2951 		if (batch == atomic_read(&root->log_batch))
2952 			break;
2953 	}
2954 
2955 	/* bail out if we need to do a full commit */
2956 	if (btrfs_need_log_full_commit(trans)) {
2957 		ret = BTRFS_LOG_FORCE_COMMIT;
2958 		mutex_unlock(&root->log_mutex);
2959 		goto out;
2960 	}
2961 
2962 	if (log_transid % 2 == 0)
2963 		mark = EXTENT_DIRTY;
2964 	else
2965 		mark = EXTENT_NEW;
2966 
2967 	/* we start IO on  all the marked extents here, but we don't actually
2968 	 * wait for them until later.
2969 	 */
2970 	blk_start_plug(&plug);
2971 	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
2972 	/*
2973 	 * -EAGAIN happens when someone, e.g., a concurrent transaction
2974 	 *  commit, writes a dirty extent in this tree-log commit. This
2975 	 *  concurrent write will create a hole writing out the extents,
2976 	 *  and we cannot proceed on a zoned filesystem, requiring
2977 	 *  sequential writing. While we can bail out to a full commit
2978 	 *  here, but we can continue hoping the concurrent writing fills
2979 	 *  the hole.
2980 	 */
2981 	if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
2982 		ret = 0;
2983 	if (ret) {
2984 		blk_finish_plug(&plug);
2985 		btrfs_set_log_full_commit(trans);
2986 		mutex_unlock(&root->log_mutex);
2987 		goto out;
2988 	}
2989 
2990 	/*
2991 	 * We _must_ update under the root->log_mutex in order to make sure we
2992 	 * have a consistent view of the log root we are trying to commit at
2993 	 * this moment.
2994 	 *
2995 	 * We _must_ copy this into a local copy, because we are not holding the
2996 	 * log_root_tree->log_mutex yet.  This is important because when we
2997 	 * commit the log_root_tree we must have a consistent view of the
2998 	 * log_root_tree when we update the super block to point at the
2999 	 * log_root_tree bytenr.  If we update the log_root_tree here we'll race
3000 	 * with the commit and possibly point at the new block which we may not
3001 	 * have written out.
3002 	 */
3003 	btrfs_set_root_node(&log->root_item, log->node);
3004 	memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3005 
3006 	btrfs_set_root_log_transid(root, root->log_transid + 1);
3007 	log->log_transid = root->log_transid;
3008 	root->log_start_pid = 0;
3009 	/*
3010 	 * IO has been started, blocks of the log tree have WRITTEN flag set
3011 	 * in their headers. new modifications of the log will be written to
3012 	 * new positions. so it's safe to allow log writers to go in.
3013 	 */
3014 	mutex_unlock(&root->log_mutex);
3015 
3016 	if (btrfs_is_zoned(fs_info)) {
3017 		mutex_lock(&fs_info->tree_root->log_mutex);
3018 		if (!log_root_tree->node) {
3019 			ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3020 			if (ret) {
3021 				mutex_unlock(&fs_info->tree_root->log_mutex);
3022 				blk_finish_plug(&plug);
3023 				goto out;
3024 			}
3025 		}
3026 		mutex_unlock(&fs_info->tree_root->log_mutex);
3027 	}
3028 
3029 	btrfs_init_log_ctx(&root_log_ctx, NULL);
3030 
3031 	mutex_lock(&log_root_tree->log_mutex);
3032 
3033 	index2 = log_root_tree->log_transid % 2;
3034 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3035 	root_log_ctx.log_transid = log_root_tree->log_transid;
3036 
3037 	/*
3038 	 * Now we are safe to update the log_root_tree because we're under the
3039 	 * log_mutex, and we're a current writer so we're holding the commit
3040 	 * open until we drop the log_mutex.
3041 	 */
3042 	ret = update_log_root(trans, log, &new_root_item);
3043 	if (ret) {
3044 		list_del_init(&root_log_ctx.list);
3045 		blk_finish_plug(&plug);
3046 		btrfs_set_log_full_commit(trans);
3047 		if (ret != -ENOSPC)
3048 			btrfs_err(fs_info,
3049 				  "failed to update log for root %llu ret %d",
3050 				  btrfs_root_id(root), ret);
3051 		btrfs_wait_tree_log_extents(log, mark);
3052 		mutex_unlock(&log_root_tree->log_mutex);
3053 		goto out;
3054 	}
3055 
3056 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3057 		blk_finish_plug(&plug);
3058 		list_del_init(&root_log_ctx.list);
3059 		mutex_unlock(&log_root_tree->log_mutex);
3060 		ret = root_log_ctx.log_ret;
3061 		goto out;
3062 	}
3063 
3064 	if (atomic_read(&log_root_tree->log_commit[index2])) {
3065 		blk_finish_plug(&plug);
3066 		ret = btrfs_wait_tree_log_extents(log, mark);
3067 		wait_log_commit(log_root_tree,
3068 				root_log_ctx.log_transid);
3069 		mutex_unlock(&log_root_tree->log_mutex);
3070 		if (!ret)
3071 			ret = root_log_ctx.log_ret;
3072 		goto out;
3073 	}
3074 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3075 	atomic_set(&log_root_tree->log_commit[index2], 1);
3076 
3077 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3078 		wait_log_commit(log_root_tree,
3079 				root_log_ctx.log_transid - 1);
3080 	}
3081 
3082 	/*
3083 	 * now that we've moved on to the tree of log tree roots,
3084 	 * check the full commit flag again
3085 	 */
3086 	if (btrfs_need_log_full_commit(trans)) {
3087 		blk_finish_plug(&plug);
3088 		btrfs_wait_tree_log_extents(log, mark);
3089 		mutex_unlock(&log_root_tree->log_mutex);
3090 		ret = BTRFS_LOG_FORCE_COMMIT;
3091 		goto out_wake_log_root;
3092 	}
3093 
3094 	ret = btrfs_write_marked_extents(fs_info,
3095 					 &log_root_tree->dirty_log_pages,
3096 					 EXTENT_DIRTY | EXTENT_NEW);
3097 	blk_finish_plug(&plug);
3098 	/*
3099 	 * As described above, -EAGAIN indicates a hole in the extents. We
3100 	 * cannot wait for these write outs since the waiting cause a
3101 	 * deadlock. Bail out to the full commit instead.
3102 	 */
3103 	if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3104 		btrfs_set_log_full_commit(trans);
3105 		btrfs_wait_tree_log_extents(log, mark);
3106 		mutex_unlock(&log_root_tree->log_mutex);
3107 		goto out_wake_log_root;
3108 	} else if (ret) {
3109 		btrfs_set_log_full_commit(trans);
3110 		mutex_unlock(&log_root_tree->log_mutex);
3111 		goto out_wake_log_root;
3112 	}
3113 	ret = btrfs_wait_tree_log_extents(log, mark);
3114 	if (!ret)
3115 		ret = btrfs_wait_tree_log_extents(log_root_tree,
3116 						  EXTENT_NEW | EXTENT_DIRTY);
3117 	if (ret) {
3118 		btrfs_set_log_full_commit(trans);
3119 		mutex_unlock(&log_root_tree->log_mutex);
3120 		goto out_wake_log_root;
3121 	}
3122 
3123 	log_root_start = log_root_tree->node->start;
3124 	log_root_level = btrfs_header_level(log_root_tree->node);
3125 	log_root_tree->log_transid++;
3126 	mutex_unlock(&log_root_tree->log_mutex);
3127 
3128 	/*
3129 	 * Here we are guaranteed that nobody is going to write the superblock
3130 	 * for the current transaction before us and that neither we do write
3131 	 * our superblock before the previous transaction finishes its commit
3132 	 * and writes its superblock, because:
3133 	 *
3134 	 * 1) We are holding a handle on the current transaction, so no body
3135 	 *    can commit it until we release the handle;
3136 	 *
3137 	 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3138 	 *    if the previous transaction is still committing, and hasn't yet
3139 	 *    written its superblock, we wait for it to do it, because a
3140 	 *    transaction commit acquires the tree_log_mutex when the commit
3141 	 *    begins and releases it only after writing its superblock.
3142 	 */
3143 	mutex_lock(&fs_info->tree_log_mutex);
3144 
3145 	/*
3146 	 * The previous transaction writeout phase could have failed, and thus
3147 	 * marked the fs in an error state.  We must not commit here, as we
3148 	 * could have updated our generation in the super_for_commit and
3149 	 * writing the super here would result in transid mismatches.  If there
3150 	 * is an error here just bail.
3151 	 */
3152 	if (BTRFS_FS_ERROR(fs_info)) {
3153 		ret = -EIO;
3154 		btrfs_set_log_full_commit(trans);
3155 		btrfs_abort_transaction(trans, ret);
3156 		mutex_unlock(&fs_info->tree_log_mutex);
3157 		goto out_wake_log_root;
3158 	}
3159 
3160 	btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3161 	btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3162 	ret = write_all_supers(fs_info, 1);
3163 	mutex_unlock(&fs_info->tree_log_mutex);
3164 	if (ret) {
3165 		btrfs_set_log_full_commit(trans);
3166 		btrfs_abort_transaction(trans, ret);
3167 		goto out_wake_log_root;
3168 	}
3169 
3170 	/*
3171 	 * We know there can only be one task here, since we have not yet set
3172 	 * root->log_commit[index1] to 0 and any task attempting to sync the
3173 	 * log must wait for the previous log transaction to commit if it's
3174 	 * still in progress or wait for the current log transaction commit if
3175 	 * someone else already started it. We use <= and not < because the
3176 	 * first log transaction has an ID of 0.
3177 	 */
3178 	ASSERT(btrfs_get_root_last_log_commit(root) <= log_transid);
3179 	btrfs_set_root_last_log_commit(root, log_transid);
3180 
3181 out_wake_log_root:
3182 	mutex_lock(&log_root_tree->log_mutex);
3183 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3184 
3185 	log_root_tree->log_transid_committed++;
3186 	atomic_set(&log_root_tree->log_commit[index2], 0);
3187 	mutex_unlock(&log_root_tree->log_mutex);
3188 
3189 	/*
3190 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3191 	 * all the updates above are seen by the woken threads. It might not be
3192 	 * necessary, but proving that seems to be hard.
3193 	 */
3194 	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3195 out:
3196 	mutex_lock(&root->log_mutex);
3197 	btrfs_remove_all_log_ctxs(root, index1, ret);
3198 	root->log_transid_committed++;
3199 	atomic_set(&root->log_commit[index1], 0);
3200 	mutex_unlock(&root->log_mutex);
3201 
3202 	/*
3203 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3204 	 * all the updates above are seen by the woken threads. It might not be
3205 	 * necessary, but proving that seems to be hard.
3206 	 */
3207 	cond_wake_up(&root->log_commit_wait[index1]);
3208 	return ret;
3209 }
3210 
3211 static void free_log_tree(struct btrfs_trans_handle *trans,
3212 			  struct btrfs_root *log)
3213 {
3214 	int ret;
3215 	struct walk_control wc = {
3216 		.free = 1,
3217 		.process_func = process_one_buffer
3218 	};
3219 
3220 	if (log->node) {
3221 		ret = walk_log_tree(trans, log, &wc);
3222 		if (ret) {
3223 			/*
3224 			 * We weren't able to traverse the entire log tree, the
3225 			 * typical scenario is getting an -EIO when reading an
3226 			 * extent buffer of the tree, due to a previous writeback
3227 			 * failure of it.
3228 			 */
3229 			set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
3230 				&log->fs_info->fs_state);
3231 
3232 			/*
3233 			 * Some extent buffers of the log tree may still be dirty
3234 			 * and not yet written back to storage, because we may
3235 			 * have updates to a log tree without syncing a log tree,
3236 			 * such as during rename and link operations. So flush
3237 			 * them out and wait for their writeback to complete, so
3238 			 * that we properly cleanup their state and pages.
3239 			 */
3240 			btrfs_write_marked_extents(log->fs_info,
3241 						   &log->dirty_log_pages,
3242 						   EXTENT_DIRTY | EXTENT_NEW);
3243 			btrfs_wait_tree_log_extents(log,
3244 						    EXTENT_DIRTY | EXTENT_NEW);
3245 
3246 			if (trans)
3247 				btrfs_abort_transaction(trans, ret);
3248 			else
3249 				btrfs_handle_fs_error(log->fs_info, ret, NULL);
3250 		}
3251 	}
3252 
3253 	extent_io_tree_release(&log->dirty_log_pages);
3254 	extent_io_tree_release(&log->log_csum_range);
3255 
3256 	btrfs_put_root(log);
3257 }
3258 
3259 /*
3260  * free all the extents used by the tree log.  This should be called
3261  * at commit time of the full transaction
3262  */
3263 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3264 {
3265 	if (root->log_root) {
3266 		free_log_tree(trans, root->log_root);
3267 		root->log_root = NULL;
3268 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3269 	}
3270 	return 0;
3271 }
3272 
3273 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3274 			     struct btrfs_fs_info *fs_info)
3275 {
3276 	if (fs_info->log_root_tree) {
3277 		free_log_tree(trans, fs_info->log_root_tree);
3278 		fs_info->log_root_tree = NULL;
3279 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3280 	}
3281 	return 0;
3282 }
3283 
3284 /*
3285  * Check if an inode was logged in the current transaction. This correctly deals
3286  * with the case where the inode was logged but has a logged_trans of 0, which
3287  * happens if the inode is evicted and loaded again, as logged_trans is an in
3288  * memory only field (not persisted).
3289  *
3290  * Returns 1 if the inode was logged before in the transaction, 0 if it was not,
3291  * and < 0 on error.
3292  */
3293 static int inode_logged(const struct btrfs_trans_handle *trans,
3294 			struct btrfs_inode *inode,
3295 			struct btrfs_path *path_in)
3296 {
3297 	struct btrfs_path *path = path_in;
3298 	struct btrfs_key key;
3299 	int ret;
3300 
3301 	if (inode->logged_trans == trans->transid)
3302 		return 1;
3303 
3304 	/*
3305 	 * If logged_trans is not 0, then we know the inode logged was not logged
3306 	 * in this transaction, so we can return false right away.
3307 	 */
3308 	if (inode->logged_trans > 0)
3309 		return 0;
3310 
3311 	/*
3312 	 * If no log tree was created for this root in this transaction, then
3313 	 * the inode can not have been logged in this transaction. In that case
3314 	 * set logged_trans to anything greater than 0 and less than the current
3315 	 * transaction's ID, to avoid the search below in a future call in case
3316 	 * a log tree gets created after this.
3317 	 */
3318 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) {
3319 		inode->logged_trans = trans->transid - 1;
3320 		return 0;
3321 	}
3322 
3323 	/*
3324 	 * We have a log tree and the inode's logged_trans is 0. We can't tell
3325 	 * for sure if the inode was logged before in this transaction by looking
3326 	 * only at logged_trans. We could be pessimistic and assume it was, but
3327 	 * that can lead to unnecessarily logging an inode during rename and link
3328 	 * operations, and then further updating the log in followup rename and
3329 	 * link operations, specially if it's a directory, which adds latency
3330 	 * visible to applications doing a series of rename or link operations.
3331 	 *
3332 	 * A logged_trans of 0 here can mean several things:
3333 	 *
3334 	 * 1) The inode was never logged since the filesystem was mounted, and may
3335 	 *    or may have not been evicted and loaded again;
3336 	 *
3337 	 * 2) The inode was logged in a previous transaction, then evicted and
3338 	 *    then loaded again;
3339 	 *
3340 	 * 3) The inode was logged in the current transaction, then evicted and
3341 	 *    then loaded again.
3342 	 *
3343 	 * For cases 1) and 2) we don't want to return true, but we need to detect
3344 	 * case 3) and return true. So we do a search in the log root for the inode
3345 	 * item.
3346 	 */
3347 	key.objectid = btrfs_ino(inode);
3348 	key.type = BTRFS_INODE_ITEM_KEY;
3349 	key.offset = 0;
3350 
3351 	if (!path) {
3352 		path = btrfs_alloc_path();
3353 		if (!path)
3354 			return -ENOMEM;
3355 	}
3356 
3357 	ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3358 
3359 	if (path_in)
3360 		btrfs_release_path(path);
3361 	else
3362 		btrfs_free_path(path);
3363 
3364 	/*
3365 	 * Logging an inode always results in logging its inode item. So if we
3366 	 * did not find the item we know the inode was not logged for sure.
3367 	 */
3368 	if (ret < 0) {
3369 		return ret;
3370 	} else if (ret > 0) {
3371 		/*
3372 		 * Set logged_trans to a value greater than 0 and less then the
3373 		 * current transaction to avoid doing the search in future calls.
3374 		 */
3375 		inode->logged_trans = trans->transid - 1;
3376 		return 0;
3377 	}
3378 
3379 	/*
3380 	 * The inode was previously logged and then evicted, set logged_trans to
3381 	 * the current transacion's ID, to avoid future tree searches as long as
3382 	 * the inode is not evicted again.
3383 	 */
3384 	inode->logged_trans = trans->transid;
3385 
3386 	/*
3387 	 * If it's a directory, then we must set last_dir_index_offset to the
3388 	 * maximum possible value, so that the next attempt to log the inode does
3389 	 * not skip checking if dir index keys found in modified subvolume tree
3390 	 * leaves have been logged before, otherwise it would result in attempts
3391 	 * to insert duplicate dir index keys in the log tree. This must be done
3392 	 * because last_dir_index_offset is an in-memory only field, not persisted
3393 	 * in the inode item or any other on-disk structure, so its value is lost
3394 	 * once the inode is evicted.
3395 	 */
3396 	if (S_ISDIR(inode->vfs_inode.i_mode))
3397 		inode->last_dir_index_offset = (u64)-1;
3398 
3399 	return 1;
3400 }
3401 
3402 /*
3403  * Delete a directory entry from the log if it exists.
3404  *
3405  * Returns < 0 on error
3406  *           1 if the entry does not exists
3407  *           0 if the entry existed and was successfully deleted
3408  */
3409 static int del_logged_dentry(struct btrfs_trans_handle *trans,
3410 			     struct btrfs_root *log,
3411 			     struct btrfs_path *path,
3412 			     u64 dir_ino,
3413 			     const struct fscrypt_str *name,
3414 			     u64 index)
3415 {
3416 	struct btrfs_dir_item *di;
3417 
3418 	/*
3419 	 * We only log dir index items of a directory, so we don't need to look
3420 	 * for dir item keys.
3421 	 */
3422 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3423 					 index, name, -1);
3424 	if (IS_ERR(di))
3425 		return PTR_ERR(di);
3426 	else if (!di)
3427 		return 1;
3428 
3429 	/*
3430 	 * We do not need to update the size field of the directory's
3431 	 * inode item because on log replay we update the field to reflect
3432 	 * all existing entries in the directory (see overwrite_item()).
3433 	 */
3434 	return btrfs_delete_one_dir_name(trans, log, path, di);
3435 }
3436 
3437 /*
3438  * If both a file and directory are logged, and unlinks or renames are
3439  * mixed in, we have a few interesting corners:
3440  *
3441  * create file X in dir Y
3442  * link file X to X.link in dir Y
3443  * fsync file X
3444  * unlink file X but leave X.link
3445  * fsync dir Y
3446  *
3447  * After a crash we would expect only X.link to exist.  But file X
3448  * didn't get fsync'd again so the log has back refs for X and X.link.
3449  *
3450  * We solve this by removing directory entries and inode backrefs from the
3451  * log when a file that was logged in the current transaction is
3452  * unlinked.  Any later fsync will include the updated log entries, and
3453  * we'll be able to reconstruct the proper directory items from backrefs.
3454  *
3455  * This optimizations allows us to avoid relogging the entire inode
3456  * or the entire directory.
3457  */
3458 void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3459 				  struct btrfs_root *root,
3460 				  const struct fscrypt_str *name,
3461 				  struct btrfs_inode *dir, u64 index)
3462 {
3463 	struct btrfs_path *path;
3464 	int ret;
3465 
3466 	ret = inode_logged(trans, dir, NULL);
3467 	if (ret == 0)
3468 		return;
3469 	else if (ret < 0) {
3470 		btrfs_set_log_full_commit(trans);
3471 		return;
3472 	}
3473 
3474 	ret = join_running_log_trans(root);
3475 	if (ret)
3476 		return;
3477 
3478 	mutex_lock(&dir->log_mutex);
3479 
3480 	path = btrfs_alloc_path();
3481 	if (!path) {
3482 		ret = -ENOMEM;
3483 		goto out_unlock;
3484 	}
3485 
3486 	ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir),
3487 				name, index);
3488 	btrfs_free_path(path);
3489 out_unlock:
3490 	mutex_unlock(&dir->log_mutex);
3491 	if (ret < 0)
3492 		btrfs_set_log_full_commit(trans);
3493 	btrfs_end_log_trans(root);
3494 }
3495 
3496 /* see comments for btrfs_del_dir_entries_in_log */
3497 void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3498 				struct btrfs_root *root,
3499 				const struct fscrypt_str *name,
3500 				struct btrfs_inode *inode, u64 dirid)
3501 {
3502 	struct btrfs_root *log;
3503 	u64 index;
3504 	int ret;
3505 
3506 	ret = inode_logged(trans, inode, NULL);
3507 	if (ret == 0)
3508 		return;
3509 	else if (ret < 0) {
3510 		btrfs_set_log_full_commit(trans);
3511 		return;
3512 	}
3513 
3514 	ret = join_running_log_trans(root);
3515 	if (ret)
3516 		return;
3517 	log = root->log_root;
3518 	mutex_lock(&inode->log_mutex);
3519 
3520 	ret = btrfs_del_inode_ref(trans, log, name, btrfs_ino(inode),
3521 				  dirid, &index);
3522 	mutex_unlock(&inode->log_mutex);
3523 	if (ret < 0 && ret != -ENOENT)
3524 		btrfs_set_log_full_commit(trans);
3525 	btrfs_end_log_trans(root);
3526 }
3527 
3528 /*
3529  * creates a range item in the log for 'dirid'.  first_offset and
3530  * last_offset tell us which parts of the key space the log should
3531  * be considered authoritative for.
3532  */
3533 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3534 				       struct btrfs_root *log,
3535 				       struct btrfs_path *path,
3536 				       u64 dirid,
3537 				       u64 first_offset, u64 last_offset)
3538 {
3539 	int ret;
3540 	struct btrfs_key key;
3541 	struct btrfs_dir_log_item *item;
3542 
3543 	key.objectid = dirid;
3544 	key.offset = first_offset;
3545 	key.type = BTRFS_DIR_LOG_INDEX_KEY;
3546 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3547 	/*
3548 	 * -EEXIST is fine and can happen sporadically when we are logging a
3549 	 * directory and have concurrent insertions in the subvolume's tree for
3550 	 * items from other inodes and that result in pushing off some dir items
3551 	 * from one leaf to another in order to accommodate for the new items.
3552 	 * This results in logging the same dir index range key.
3553 	 */
3554 	if (ret && ret != -EEXIST)
3555 		return ret;
3556 
3557 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3558 			      struct btrfs_dir_log_item);
3559 	if (ret == -EEXIST) {
3560 		const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item);
3561 
3562 		/*
3563 		 * btrfs_del_dir_entries_in_log() might have been called during
3564 		 * an unlink between the initial insertion of this key and the
3565 		 * current update, or we might be logging a single entry deletion
3566 		 * during a rename, so set the new last_offset to the max value.
3567 		 */
3568 		last_offset = max(last_offset, curr_end);
3569 	}
3570 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3571 	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
3572 	btrfs_release_path(path);
3573 	return 0;
3574 }
3575 
3576 static int flush_dir_items_batch(struct btrfs_trans_handle *trans,
3577 				 struct btrfs_inode *inode,
3578 				 struct extent_buffer *src,
3579 				 struct btrfs_path *dst_path,
3580 				 int start_slot,
3581 				 int count)
3582 {
3583 	struct btrfs_root *log = inode->root->log_root;
3584 	char *ins_data = NULL;
3585 	struct btrfs_item_batch batch;
3586 	struct extent_buffer *dst;
3587 	unsigned long src_offset;
3588 	unsigned long dst_offset;
3589 	u64 last_index;
3590 	struct btrfs_key key;
3591 	u32 item_size;
3592 	int ret;
3593 	int i;
3594 
3595 	ASSERT(count > 0);
3596 	batch.nr = count;
3597 
3598 	if (count == 1) {
3599 		btrfs_item_key_to_cpu(src, &key, start_slot);
3600 		item_size = btrfs_item_size(src, start_slot);
3601 		batch.keys = &key;
3602 		batch.data_sizes = &item_size;
3603 		batch.total_data_size = item_size;
3604 	} else {
3605 		struct btrfs_key *ins_keys;
3606 		u32 *ins_sizes;
3607 
3608 		ins_data = kmalloc(count * sizeof(u32) +
3609 				   count * sizeof(struct btrfs_key), GFP_NOFS);
3610 		if (!ins_data)
3611 			return -ENOMEM;
3612 
3613 		ins_sizes = (u32 *)ins_data;
3614 		ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32));
3615 		batch.keys = ins_keys;
3616 		batch.data_sizes = ins_sizes;
3617 		batch.total_data_size = 0;
3618 
3619 		for (i = 0; i < count; i++) {
3620 			const int slot = start_slot + i;
3621 
3622 			btrfs_item_key_to_cpu(src, &ins_keys[i], slot);
3623 			ins_sizes[i] = btrfs_item_size(src, slot);
3624 			batch.total_data_size += ins_sizes[i];
3625 		}
3626 	}
3627 
3628 	ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
3629 	if (ret)
3630 		goto out;
3631 
3632 	dst = dst_path->nodes[0];
3633 	/*
3634 	 * Copy all the items in bulk, in a single copy operation. Item data is
3635 	 * organized such that it's placed at the end of a leaf and from right
3636 	 * to left. For example, the data for the second item ends at an offset
3637 	 * that matches the offset where the data for the first item starts, the
3638 	 * data for the third item ends at an offset that matches the offset
3639 	 * where the data of the second items starts, and so on.
3640 	 * Therefore our source and destination start offsets for copy match the
3641 	 * offsets of the last items (highest slots).
3642 	 */
3643 	dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1);
3644 	src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1);
3645 	copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size);
3646 	btrfs_release_path(dst_path);
3647 
3648 	last_index = batch.keys[count - 1].offset;
3649 	ASSERT(last_index > inode->last_dir_index_offset);
3650 
3651 	/*
3652 	 * If for some unexpected reason the last item's index is not greater
3653 	 * than the last index we logged, warn and force a transaction commit.
3654 	 */
3655 	if (WARN_ON(last_index <= inode->last_dir_index_offset))
3656 		ret = BTRFS_LOG_FORCE_COMMIT;
3657 	else
3658 		inode->last_dir_index_offset = last_index;
3659 
3660 	if (btrfs_get_first_dir_index_to_log(inode) == 0)
3661 		btrfs_set_first_dir_index_to_log(inode, batch.keys[0].offset);
3662 out:
3663 	kfree(ins_data);
3664 
3665 	return ret;
3666 }
3667 
3668 static int clone_leaf(struct btrfs_path *path, struct btrfs_log_ctx *ctx)
3669 {
3670 	const int slot = path->slots[0];
3671 
3672 	if (ctx->scratch_eb) {
3673 		copy_extent_buffer_full(ctx->scratch_eb, path->nodes[0]);
3674 	} else {
3675 		ctx->scratch_eb = btrfs_clone_extent_buffer(path->nodes[0]);
3676 		if (!ctx->scratch_eb)
3677 			return -ENOMEM;
3678 	}
3679 
3680 	btrfs_release_path(path);
3681 	path->nodes[0] = ctx->scratch_eb;
3682 	path->slots[0] = slot;
3683 	/*
3684 	 * Add extra ref to scratch eb so that it is not freed when callers
3685 	 * release the path, so we can reuse it later if needed.
3686 	 */
3687 	atomic_inc(&ctx->scratch_eb->refs);
3688 
3689 	return 0;
3690 }
3691 
3692 static int process_dir_items_leaf(struct btrfs_trans_handle *trans,
3693 				  struct btrfs_inode *inode,
3694 				  struct btrfs_path *path,
3695 				  struct btrfs_path *dst_path,
3696 				  struct btrfs_log_ctx *ctx,
3697 				  u64 *last_old_dentry_offset)
3698 {
3699 	struct btrfs_root *log = inode->root->log_root;
3700 	struct extent_buffer *src;
3701 	const int nritems = btrfs_header_nritems(path->nodes[0]);
3702 	const u64 ino = btrfs_ino(inode);
3703 	bool last_found = false;
3704 	int batch_start = 0;
3705 	int batch_size = 0;
3706 	int ret;
3707 
3708 	/*
3709 	 * We need to clone the leaf, release the read lock on it, and use the
3710 	 * clone before modifying the log tree. See the comment at copy_items()
3711 	 * about why we need to do this.
3712 	 */
3713 	ret = clone_leaf(path, ctx);
3714 	if (ret < 0)
3715 		return ret;
3716 
3717 	src = path->nodes[0];
3718 
3719 	for (int i = path->slots[0]; i < nritems; i++) {
3720 		struct btrfs_dir_item *di;
3721 		struct btrfs_key key;
3722 		int ret;
3723 
3724 		btrfs_item_key_to_cpu(src, &key, i);
3725 
3726 		if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) {
3727 			last_found = true;
3728 			break;
3729 		}
3730 
3731 		di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3732 
3733 		/*
3734 		 * Skip ranges of items that consist only of dir item keys created
3735 		 * in past transactions. However if we find a gap, we must log a
3736 		 * dir index range item for that gap, so that index keys in that
3737 		 * gap are deleted during log replay.
3738 		 */
3739 		if (btrfs_dir_transid(src, di) < trans->transid) {
3740 			if (key.offset > *last_old_dentry_offset + 1) {
3741 				ret = insert_dir_log_key(trans, log, dst_path,
3742 						 ino, *last_old_dentry_offset + 1,
3743 						 key.offset - 1);
3744 				if (ret < 0)
3745 					return ret;
3746 			}
3747 
3748 			*last_old_dentry_offset = key.offset;
3749 			continue;
3750 		}
3751 
3752 		/* If we logged this dir index item before, we can skip it. */
3753 		if (key.offset <= inode->last_dir_index_offset)
3754 			continue;
3755 
3756 		/*
3757 		 * We must make sure that when we log a directory entry, the
3758 		 * corresponding inode, after log replay, has a matching link
3759 		 * count. For example:
3760 		 *
3761 		 * touch foo
3762 		 * mkdir mydir
3763 		 * sync
3764 		 * ln foo mydir/bar
3765 		 * xfs_io -c "fsync" mydir
3766 		 * <crash>
3767 		 * <mount fs and log replay>
3768 		 *
3769 		 * Would result in a fsync log that when replayed, our file inode
3770 		 * would have a link count of 1, but we get two directory entries
3771 		 * pointing to the same inode. After removing one of the names,
3772 		 * it would not be possible to remove the other name, which
3773 		 * resulted always in stale file handle errors, and would not be
3774 		 * possible to rmdir the parent directory, since its i_size could
3775 		 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
3776 		 * resulting in -ENOTEMPTY errors.
3777 		 */
3778 		if (!ctx->log_new_dentries) {
3779 			struct btrfs_key di_key;
3780 
3781 			btrfs_dir_item_key_to_cpu(src, di, &di_key);
3782 			if (di_key.type != BTRFS_ROOT_ITEM_KEY)
3783 				ctx->log_new_dentries = true;
3784 		}
3785 
3786 		if (batch_size == 0)
3787 			batch_start = i;
3788 		batch_size++;
3789 	}
3790 
3791 	if (batch_size > 0) {
3792 		int ret;
3793 
3794 		ret = flush_dir_items_batch(trans, inode, src, dst_path,
3795 					    batch_start, batch_size);
3796 		if (ret < 0)
3797 			return ret;
3798 	}
3799 
3800 	return last_found ? 1 : 0;
3801 }
3802 
3803 /*
3804  * log all the items included in the current transaction for a given
3805  * directory.  This also creates the range items in the log tree required
3806  * to replay anything deleted before the fsync
3807  */
3808 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3809 			  struct btrfs_inode *inode,
3810 			  struct btrfs_path *path,
3811 			  struct btrfs_path *dst_path,
3812 			  struct btrfs_log_ctx *ctx,
3813 			  u64 min_offset, u64 *last_offset_ret)
3814 {
3815 	struct btrfs_key min_key;
3816 	struct btrfs_root *root = inode->root;
3817 	struct btrfs_root *log = root->log_root;
3818 	int ret;
3819 	u64 last_old_dentry_offset = min_offset - 1;
3820 	u64 last_offset = (u64)-1;
3821 	u64 ino = btrfs_ino(inode);
3822 
3823 	min_key.objectid = ino;
3824 	min_key.type = BTRFS_DIR_INDEX_KEY;
3825 	min_key.offset = min_offset;
3826 
3827 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3828 
3829 	/*
3830 	 * we didn't find anything from this transaction, see if there
3831 	 * is anything at all
3832 	 */
3833 	if (ret != 0 || min_key.objectid != ino ||
3834 	    min_key.type != BTRFS_DIR_INDEX_KEY) {
3835 		min_key.objectid = ino;
3836 		min_key.type = BTRFS_DIR_INDEX_KEY;
3837 		min_key.offset = (u64)-1;
3838 		btrfs_release_path(path);
3839 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3840 		if (ret < 0) {
3841 			btrfs_release_path(path);
3842 			return ret;
3843 		}
3844 		ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3845 
3846 		/* if ret == 0 there are items for this type,
3847 		 * create a range to tell us the last key of this type.
3848 		 * otherwise, there are no items in this directory after
3849 		 * *min_offset, and we create a range to indicate that.
3850 		 */
3851 		if (ret == 0) {
3852 			struct btrfs_key tmp;
3853 
3854 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3855 					      path->slots[0]);
3856 			if (tmp.type == BTRFS_DIR_INDEX_KEY)
3857 				last_old_dentry_offset = tmp.offset;
3858 		} else if (ret > 0) {
3859 			ret = 0;
3860 		}
3861 
3862 		goto done;
3863 	}
3864 
3865 	/* go backward to find any previous key */
3866 	ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3867 	if (ret == 0) {
3868 		struct btrfs_key tmp;
3869 
3870 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3871 		/*
3872 		 * The dir index key before the first one we found that needs to
3873 		 * be logged might be in a previous leaf, and there might be a
3874 		 * gap between these keys, meaning that we had deletions that
3875 		 * happened. So the key range item we log (key type
3876 		 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the
3877 		 * previous key's offset plus 1, so that those deletes are replayed.
3878 		 */
3879 		if (tmp.type == BTRFS_DIR_INDEX_KEY)
3880 			last_old_dentry_offset = tmp.offset;
3881 	} else if (ret < 0) {
3882 		goto done;
3883 	}
3884 
3885 	btrfs_release_path(path);
3886 
3887 	/*
3888 	 * Find the first key from this transaction again or the one we were at
3889 	 * in the loop below in case we had to reschedule. We may be logging the
3890 	 * directory without holding its VFS lock, which happen when logging new
3891 	 * dentries (through log_new_dir_dentries()) or in some cases when we
3892 	 * need to log the parent directory of an inode. This means a dir index
3893 	 * key might be deleted from the inode's root, and therefore we may not
3894 	 * find it anymore. If we can't find it, just move to the next key. We
3895 	 * can not bail out and ignore, because if we do that we will simply
3896 	 * not log dir index keys that come after the one that was just deleted
3897 	 * and we can end up logging a dir index range that ends at (u64)-1
3898 	 * (@last_offset is initialized to that), resulting in removing dir
3899 	 * entries we should not remove at log replay time.
3900 	 */
3901 search:
3902 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3903 	if (ret > 0) {
3904 		ret = btrfs_next_item(root, path);
3905 		if (ret > 0) {
3906 			/* There are no more keys in the inode's root. */
3907 			ret = 0;
3908 			goto done;
3909 		}
3910 	}
3911 	if (ret < 0)
3912 		goto done;
3913 
3914 	/*
3915 	 * we have a block from this transaction, log every item in it
3916 	 * from our directory
3917 	 */
3918 	while (1) {
3919 		ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx,
3920 					     &last_old_dentry_offset);
3921 		if (ret != 0) {
3922 			if (ret > 0)
3923 				ret = 0;
3924 			goto done;
3925 		}
3926 		path->slots[0] = btrfs_header_nritems(path->nodes[0]);
3927 
3928 		/*
3929 		 * look ahead to the next item and see if it is also
3930 		 * from this directory and from this transaction
3931 		 */
3932 		ret = btrfs_next_leaf(root, path);
3933 		if (ret) {
3934 			if (ret == 1) {
3935 				last_offset = (u64)-1;
3936 				ret = 0;
3937 			}
3938 			goto done;
3939 		}
3940 		btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]);
3941 		if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) {
3942 			last_offset = (u64)-1;
3943 			goto done;
3944 		}
3945 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3946 			/*
3947 			 * The next leaf was not changed in the current transaction
3948 			 * and has at least one dir index key.
3949 			 * We check for the next key because there might have been
3950 			 * one or more deletions between the last key we logged and
3951 			 * that next key. So the key range item we log (key type
3952 			 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's
3953 			 * offset minus 1, so that those deletes are replayed.
3954 			 */
3955 			last_offset = min_key.offset - 1;
3956 			goto done;
3957 		}
3958 		if (need_resched()) {
3959 			btrfs_release_path(path);
3960 			cond_resched();
3961 			goto search;
3962 		}
3963 	}
3964 done:
3965 	btrfs_release_path(path);
3966 	btrfs_release_path(dst_path);
3967 
3968 	if (ret == 0) {
3969 		*last_offset_ret = last_offset;
3970 		/*
3971 		 * In case the leaf was changed in the current transaction but
3972 		 * all its dir items are from a past transaction, the last item
3973 		 * in the leaf is a dir item and there's no gap between that last
3974 		 * dir item and the first one on the next leaf (which did not
3975 		 * change in the current transaction), then we don't need to log
3976 		 * a range, last_old_dentry_offset is == to last_offset.
3977 		 */
3978 		ASSERT(last_old_dentry_offset <= last_offset);
3979 		if (last_old_dentry_offset < last_offset)
3980 			ret = insert_dir_log_key(trans, log, path, ino,
3981 						 last_old_dentry_offset + 1,
3982 						 last_offset);
3983 	}
3984 
3985 	return ret;
3986 }
3987 
3988 /*
3989  * If the inode was logged before and it was evicted, then its
3990  * last_dir_index_offset is (u64)-1, so we don't the value of the last index
3991  * key offset. If that's the case, search for it and update the inode. This
3992  * is to avoid lookups in the log tree every time we try to insert a dir index
3993  * key from a leaf changed in the current transaction, and to allow us to always
3994  * do batch insertions of dir index keys.
3995  */
3996 static int update_last_dir_index_offset(struct btrfs_inode *inode,
3997 					struct btrfs_path *path,
3998 					const struct btrfs_log_ctx *ctx)
3999 {
4000 	const u64 ino = btrfs_ino(inode);
4001 	struct btrfs_key key;
4002 	int ret;
4003 
4004 	lockdep_assert_held(&inode->log_mutex);
4005 
4006 	if (inode->last_dir_index_offset != (u64)-1)
4007 		return 0;
4008 
4009 	if (!ctx->logged_before) {
4010 		inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
4011 		return 0;
4012 	}
4013 
4014 	key.objectid = ino;
4015 	key.type = BTRFS_DIR_INDEX_KEY;
4016 	key.offset = (u64)-1;
4017 
4018 	ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
4019 	/*
4020 	 * An error happened or we actually have an index key with an offset
4021 	 * value of (u64)-1. Bail out, we're done.
4022 	 */
4023 	if (ret <= 0)
4024 		goto out;
4025 
4026 	ret = 0;
4027 	inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
4028 
4029 	/*
4030 	 * No dir index items, bail out and leave last_dir_index_offset with
4031 	 * the value right before the first valid index value.
4032 	 */
4033 	if (path->slots[0] == 0)
4034 		goto out;
4035 
4036 	/*
4037 	 * btrfs_search_slot() left us at one slot beyond the slot with the last
4038 	 * index key, or beyond the last key of the directory that is not an
4039 	 * index key. If we have an index key before, set last_dir_index_offset
4040 	 * to its offset value, otherwise leave it with a value right before the
4041 	 * first valid index value, as it means we have an empty directory.
4042 	 */
4043 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4044 	if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY)
4045 		inode->last_dir_index_offset = key.offset;
4046 
4047 out:
4048 	btrfs_release_path(path);
4049 
4050 	return ret;
4051 }
4052 
4053 /*
4054  * logging directories is very similar to logging inodes, We find all the items
4055  * from the current transaction and write them to the log.
4056  *
4057  * The recovery code scans the directory in the subvolume, and if it finds a
4058  * key in the range logged that is not present in the log tree, then it means
4059  * that dir entry was unlinked during the transaction.
4060  *
4061  * In order for that scan to work, we must include one key smaller than
4062  * the smallest logged by this transaction and one key larger than the largest
4063  * key logged by this transaction.
4064  */
4065 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
4066 			  struct btrfs_inode *inode,
4067 			  struct btrfs_path *path,
4068 			  struct btrfs_path *dst_path,
4069 			  struct btrfs_log_ctx *ctx)
4070 {
4071 	u64 min_key;
4072 	u64 max_key;
4073 	int ret;
4074 
4075 	ret = update_last_dir_index_offset(inode, path, ctx);
4076 	if (ret)
4077 		return ret;
4078 
4079 	min_key = BTRFS_DIR_START_INDEX;
4080 	max_key = 0;
4081 
4082 	while (1) {
4083 		ret = log_dir_items(trans, inode, path, dst_path,
4084 				ctx, min_key, &max_key);
4085 		if (ret)
4086 			return ret;
4087 		if (max_key == (u64)-1)
4088 			break;
4089 		min_key = max_key + 1;
4090 	}
4091 
4092 	return 0;
4093 }
4094 
4095 /*
4096  * a helper function to drop items from the log before we relog an
4097  * inode.  max_key_type indicates the highest item type to remove.
4098  * This cannot be run for file data extents because it does not
4099  * free the extents they point to.
4100  */
4101 static int drop_inode_items(struct btrfs_trans_handle *trans,
4102 				  struct btrfs_root *log,
4103 				  struct btrfs_path *path,
4104 				  struct btrfs_inode *inode,
4105 				  int max_key_type)
4106 {
4107 	int ret;
4108 	struct btrfs_key key;
4109 	struct btrfs_key found_key;
4110 	int start_slot;
4111 
4112 	key.objectid = btrfs_ino(inode);
4113 	key.type = max_key_type;
4114 	key.offset = (u64)-1;
4115 
4116 	while (1) {
4117 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
4118 		if (ret < 0) {
4119 			break;
4120 		} else if (ret > 0) {
4121 			if (path->slots[0] == 0)
4122 				break;
4123 			path->slots[0]--;
4124 		}
4125 
4126 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4127 				      path->slots[0]);
4128 
4129 		if (found_key.objectid != key.objectid)
4130 			break;
4131 
4132 		found_key.offset = 0;
4133 		found_key.type = 0;
4134 		ret = btrfs_bin_search(path->nodes[0], 0, &found_key, &start_slot);
4135 		if (ret < 0)
4136 			break;
4137 
4138 		ret = btrfs_del_items(trans, log, path, start_slot,
4139 				      path->slots[0] - start_slot + 1);
4140 		/*
4141 		 * If start slot isn't 0 then we don't need to re-search, we've
4142 		 * found the last guy with the objectid in this tree.
4143 		 */
4144 		if (ret || start_slot != 0)
4145 			break;
4146 		btrfs_release_path(path);
4147 	}
4148 	btrfs_release_path(path);
4149 	if (ret > 0)
4150 		ret = 0;
4151 	return ret;
4152 }
4153 
4154 static int truncate_inode_items(struct btrfs_trans_handle *trans,
4155 				struct btrfs_root *log_root,
4156 				struct btrfs_inode *inode,
4157 				u64 new_size, u32 min_type)
4158 {
4159 	struct btrfs_truncate_control control = {
4160 		.new_size = new_size,
4161 		.ino = btrfs_ino(inode),
4162 		.min_type = min_type,
4163 		.skip_ref_updates = true,
4164 	};
4165 
4166 	return btrfs_truncate_inode_items(trans, log_root, &control);
4167 }
4168 
4169 static void fill_inode_item(struct btrfs_trans_handle *trans,
4170 			    struct extent_buffer *leaf,
4171 			    struct btrfs_inode_item *item,
4172 			    struct inode *inode, int log_inode_only,
4173 			    u64 logged_isize)
4174 {
4175 	struct btrfs_map_token token;
4176 	u64 flags;
4177 
4178 	btrfs_init_map_token(&token, leaf);
4179 
4180 	if (log_inode_only) {
4181 		/* set the generation to zero so the recover code
4182 		 * can tell the difference between an logging
4183 		 * just to say 'this inode exists' and a logging
4184 		 * to say 'update this inode with these values'
4185 		 */
4186 		btrfs_set_token_inode_generation(&token, item, 0);
4187 		btrfs_set_token_inode_size(&token, item, logged_isize);
4188 	} else {
4189 		btrfs_set_token_inode_generation(&token, item,
4190 						 BTRFS_I(inode)->generation);
4191 		btrfs_set_token_inode_size(&token, item, inode->i_size);
4192 	}
4193 
4194 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4195 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4196 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4197 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4198 
4199 	btrfs_set_token_timespec_sec(&token, &item->atime,
4200 				     inode_get_atime_sec(inode));
4201 	btrfs_set_token_timespec_nsec(&token, &item->atime,
4202 				      inode_get_atime_nsec(inode));
4203 
4204 	btrfs_set_token_timespec_sec(&token, &item->mtime,
4205 				     inode_get_mtime_sec(inode));
4206 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
4207 				      inode_get_mtime_nsec(inode));
4208 
4209 	btrfs_set_token_timespec_sec(&token, &item->ctime,
4210 				     inode_get_ctime_sec(inode));
4211 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
4212 				      inode_get_ctime_nsec(inode));
4213 
4214 	/*
4215 	 * We do not need to set the nbytes field, in fact during a fast fsync
4216 	 * its value may not even be correct, since a fast fsync does not wait
4217 	 * for ordered extent completion, which is where we update nbytes, it
4218 	 * only waits for writeback to complete. During log replay as we find
4219 	 * file extent items and replay them, we adjust the nbytes field of the
4220 	 * inode item in subvolume tree as needed (see overwrite_item()).
4221 	 */
4222 
4223 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4224 	btrfs_set_token_inode_transid(&token, item, trans->transid);
4225 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4226 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4227 					  BTRFS_I(inode)->ro_flags);
4228 	btrfs_set_token_inode_flags(&token, item, flags);
4229 	btrfs_set_token_inode_block_group(&token, item, 0);
4230 }
4231 
4232 static int log_inode_item(struct btrfs_trans_handle *trans,
4233 			  struct btrfs_root *log, struct btrfs_path *path,
4234 			  struct btrfs_inode *inode, bool inode_item_dropped)
4235 {
4236 	struct btrfs_inode_item *inode_item;
4237 	int ret;
4238 
4239 	/*
4240 	 * If we are doing a fast fsync and the inode was logged before in the
4241 	 * current transaction, then we know the inode was previously logged and
4242 	 * it exists in the log tree. For performance reasons, in this case use
4243 	 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4244 	 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4245 	 * contention in case there are concurrent fsyncs for other inodes of the
4246 	 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4247 	 * already exists can also result in unnecessarily splitting a leaf.
4248 	 */
4249 	if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4250 		ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1);
4251 		ASSERT(ret <= 0);
4252 		if (ret > 0)
4253 			ret = -ENOENT;
4254 	} else {
4255 		/*
4256 		 * This means it is the first fsync in the current transaction,
4257 		 * so the inode item is not in the log and we need to insert it.
4258 		 * We can never get -EEXIST because we are only called for a fast
4259 		 * fsync and in case an inode eviction happens after the inode was
4260 		 * logged before in the current transaction, when we load again
4261 		 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4262 		 * flags and set ->logged_trans to 0.
4263 		 */
4264 		ret = btrfs_insert_empty_item(trans, log, path, &inode->location,
4265 					      sizeof(*inode_item));
4266 		ASSERT(ret != -EEXIST);
4267 	}
4268 	if (ret)
4269 		return ret;
4270 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4271 				    struct btrfs_inode_item);
4272 	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4273 			0, 0);
4274 	btrfs_release_path(path);
4275 	return 0;
4276 }
4277 
4278 static int log_csums(struct btrfs_trans_handle *trans,
4279 		     struct btrfs_inode *inode,
4280 		     struct btrfs_root *log_root,
4281 		     struct btrfs_ordered_sum *sums)
4282 {
4283 	const u64 lock_end = sums->logical + sums->len - 1;
4284 	struct extent_state *cached_state = NULL;
4285 	int ret;
4286 
4287 	/*
4288 	 * If this inode was not used for reflink operations in the current
4289 	 * transaction with new extents, then do the fast path, no need to
4290 	 * worry about logging checksum items with overlapping ranges.
4291 	 */
4292 	if (inode->last_reflink_trans < trans->transid)
4293 		return btrfs_csum_file_blocks(trans, log_root, sums);
4294 
4295 	/*
4296 	 * Serialize logging for checksums. This is to avoid racing with the
4297 	 * same checksum being logged by another task that is logging another
4298 	 * file which happens to refer to the same extent as well. Such races
4299 	 * can leave checksum items in the log with overlapping ranges.
4300 	 */
4301 	ret = lock_extent(&log_root->log_csum_range, sums->logical, lock_end,
4302 			  &cached_state);
4303 	if (ret)
4304 		return ret;
4305 	/*
4306 	 * Due to extent cloning, we might have logged a csum item that covers a
4307 	 * subrange of a cloned extent, and later we can end up logging a csum
4308 	 * item for a larger subrange of the same extent or the entire range.
4309 	 * This would leave csum items in the log tree that cover the same range
4310 	 * and break the searches for checksums in the log tree, resulting in
4311 	 * some checksums missing in the fs/subvolume tree. So just delete (or
4312 	 * trim and adjust) any existing csum items in the log for this range.
4313 	 */
4314 	ret = btrfs_del_csums(trans, log_root, sums->logical, sums->len);
4315 	if (!ret)
4316 		ret = btrfs_csum_file_blocks(trans, log_root, sums);
4317 
4318 	unlock_extent(&log_root->log_csum_range, sums->logical, lock_end,
4319 		      &cached_state);
4320 
4321 	return ret;
4322 }
4323 
4324 static noinline int copy_items(struct btrfs_trans_handle *trans,
4325 			       struct btrfs_inode *inode,
4326 			       struct btrfs_path *dst_path,
4327 			       struct btrfs_path *src_path,
4328 			       int start_slot, int nr, int inode_only,
4329 			       u64 logged_isize, struct btrfs_log_ctx *ctx)
4330 {
4331 	struct btrfs_root *log = inode->root->log_root;
4332 	struct btrfs_file_extent_item *extent;
4333 	struct extent_buffer *src;
4334 	int ret;
4335 	struct btrfs_key *ins_keys;
4336 	u32 *ins_sizes;
4337 	struct btrfs_item_batch batch;
4338 	char *ins_data;
4339 	int dst_index;
4340 	const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM);
4341 	const u64 i_size = i_size_read(&inode->vfs_inode);
4342 
4343 	/*
4344 	 * To keep lockdep happy and avoid deadlocks, clone the source leaf and
4345 	 * use the clone. This is because otherwise we would be changing the log
4346 	 * tree, to insert items from the subvolume tree or insert csum items,
4347 	 * while holding a read lock on a leaf from the subvolume tree, which
4348 	 * creates a nasty lock dependency when COWing log tree nodes/leaves:
4349 	 *
4350 	 * 1) Modifying the log tree triggers an extent buffer allocation while
4351 	 *    holding a write lock on a parent extent buffer from the log tree.
4352 	 *    Allocating the pages for an extent buffer, or the extent buffer
4353 	 *    struct, can trigger inode eviction and finally the inode eviction
4354 	 *    will trigger a release/remove of a delayed node, which requires
4355 	 *    taking the delayed node's mutex;
4356 	 *
4357 	 * 2) Allocating a metadata extent for a log tree can trigger the async
4358 	 *    reclaim thread and make us wait for it to release enough space and
4359 	 *    unblock our reservation ticket. The reclaim thread can start
4360 	 *    flushing delayed items, and that in turn results in the need to
4361 	 *    lock delayed node mutexes and in the need to write lock extent
4362 	 *    buffers of a subvolume tree - all this while holding a write lock
4363 	 *    on the parent extent buffer in the log tree.
4364 	 *
4365 	 * So one task in scenario 1) running in parallel with another task in
4366 	 * scenario 2) could lead to a deadlock, one wanting to lock a delayed
4367 	 * node mutex while having a read lock on a leaf from the subvolume,
4368 	 * while the other is holding the delayed node's mutex and wants to
4369 	 * write lock the same subvolume leaf for flushing delayed items.
4370 	 */
4371 	ret = clone_leaf(src_path, ctx);
4372 	if (ret < 0)
4373 		return ret;
4374 
4375 	src = src_path->nodes[0];
4376 
4377 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4378 			   nr * sizeof(u32), GFP_NOFS);
4379 	if (!ins_data)
4380 		return -ENOMEM;
4381 
4382 	ins_sizes = (u32 *)ins_data;
4383 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4384 	batch.keys = ins_keys;
4385 	batch.data_sizes = ins_sizes;
4386 	batch.total_data_size = 0;
4387 	batch.nr = 0;
4388 
4389 	dst_index = 0;
4390 	for (int i = 0; i < nr; i++) {
4391 		const int src_slot = start_slot + i;
4392 		struct btrfs_root *csum_root;
4393 		struct btrfs_ordered_sum *sums;
4394 		struct btrfs_ordered_sum *sums_next;
4395 		LIST_HEAD(ordered_sums);
4396 		u64 disk_bytenr;
4397 		u64 disk_num_bytes;
4398 		u64 extent_offset;
4399 		u64 extent_num_bytes;
4400 		bool is_old_extent;
4401 
4402 		btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot);
4403 
4404 		if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY)
4405 			goto add_to_batch;
4406 
4407 		extent = btrfs_item_ptr(src, src_slot,
4408 					struct btrfs_file_extent_item);
4409 
4410 		is_old_extent = (btrfs_file_extent_generation(src, extent) <
4411 				 trans->transid);
4412 
4413 		/*
4414 		 * Don't copy extents from past generations. That would make us
4415 		 * log a lot more metadata for common cases like doing only a
4416 		 * few random writes into a file and then fsync it for the first
4417 		 * time or after the full sync flag is set on the inode. We can
4418 		 * get leaves full of extent items, most of which are from past
4419 		 * generations, so we can skip them - as long as the inode has
4420 		 * not been the target of a reflink operation in this transaction,
4421 		 * as in that case it might have had file extent items with old
4422 		 * generations copied into it. We also must always log prealloc
4423 		 * extents that start at or beyond eof, otherwise we would lose
4424 		 * them on log replay.
4425 		 */
4426 		if (is_old_extent &&
4427 		    ins_keys[dst_index].offset < i_size &&
4428 		    inode->last_reflink_trans < trans->transid)
4429 			continue;
4430 
4431 		if (skip_csum)
4432 			goto add_to_batch;
4433 
4434 		/* Only regular extents have checksums. */
4435 		if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG)
4436 			goto add_to_batch;
4437 
4438 		/*
4439 		 * If it's an extent created in a past transaction, then its
4440 		 * checksums are already accessible from the committed csum tree,
4441 		 * no need to log them.
4442 		 */
4443 		if (is_old_extent)
4444 			goto add_to_batch;
4445 
4446 		disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent);
4447 		/* If it's an explicit hole, there are no checksums. */
4448 		if (disk_bytenr == 0)
4449 			goto add_to_batch;
4450 
4451 		disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent);
4452 
4453 		if (btrfs_file_extent_compression(src, extent)) {
4454 			extent_offset = 0;
4455 			extent_num_bytes = disk_num_bytes;
4456 		} else {
4457 			extent_offset = btrfs_file_extent_offset(src, extent);
4458 			extent_num_bytes = btrfs_file_extent_num_bytes(src, extent);
4459 		}
4460 
4461 		csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr);
4462 		disk_bytenr += extent_offset;
4463 		ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4464 					      disk_bytenr + extent_num_bytes - 1,
4465 					      &ordered_sums, false);
4466 		if (ret < 0)
4467 			goto out;
4468 		ret = 0;
4469 
4470 		list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) {
4471 			if (!ret)
4472 				ret = log_csums(trans, inode, log, sums);
4473 			list_del(&sums->list);
4474 			kfree(sums);
4475 		}
4476 		if (ret)
4477 			goto out;
4478 
4479 add_to_batch:
4480 		ins_sizes[dst_index] = btrfs_item_size(src, src_slot);
4481 		batch.total_data_size += ins_sizes[dst_index];
4482 		batch.nr++;
4483 		dst_index++;
4484 	}
4485 
4486 	/*
4487 	 * We have a leaf full of old extent items that don't need to be logged,
4488 	 * so we don't need to do anything.
4489 	 */
4490 	if (batch.nr == 0)
4491 		goto out;
4492 
4493 	ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
4494 	if (ret)
4495 		goto out;
4496 
4497 	dst_index = 0;
4498 	for (int i = 0; i < nr; i++) {
4499 		const int src_slot = start_slot + i;
4500 		const int dst_slot = dst_path->slots[0] + dst_index;
4501 		struct btrfs_key key;
4502 		unsigned long src_offset;
4503 		unsigned long dst_offset;
4504 
4505 		/*
4506 		 * We're done, all the remaining items in the source leaf
4507 		 * correspond to old file extent items.
4508 		 */
4509 		if (dst_index >= batch.nr)
4510 			break;
4511 
4512 		btrfs_item_key_to_cpu(src, &key, src_slot);
4513 
4514 		if (key.type != BTRFS_EXTENT_DATA_KEY)
4515 			goto copy_item;
4516 
4517 		extent = btrfs_item_ptr(src, src_slot,
4518 					struct btrfs_file_extent_item);
4519 
4520 		/* See the comment in the previous loop, same logic. */
4521 		if (btrfs_file_extent_generation(src, extent) < trans->transid &&
4522 		    key.offset < i_size &&
4523 		    inode->last_reflink_trans < trans->transid)
4524 			continue;
4525 
4526 copy_item:
4527 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot);
4528 		src_offset = btrfs_item_ptr_offset(src, src_slot);
4529 
4530 		if (key.type == BTRFS_INODE_ITEM_KEY) {
4531 			struct btrfs_inode_item *inode_item;
4532 
4533 			inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot,
4534 						    struct btrfs_inode_item);
4535 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
4536 					&inode->vfs_inode,
4537 					inode_only == LOG_INODE_EXISTS,
4538 					logged_isize);
4539 		} else {
4540 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4541 					   src_offset, ins_sizes[dst_index]);
4542 		}
4543 
4544 		dst_index++;
4545 	}
4546 
4547 	btrfs_mark_buffer_dirty(trans, dst_path->nodes[0]);
4548 	btrfs_release_path(dst_path);
4549 out:
4550 	kfree(ins_data);
4551 
4552 	return ret;
4553 }
4554 
4555 static int extent_cmp(void *priv, const struct list_head *a,
4556 		      const struct list_head *b)
4557 {
4558 	const struct extent_map *em1, *em2;
4559 
4560 	em1 = list_entry(a, struct extent_map, list);
4561 	em2 = list_entry(b, struct extent_map, list);
4562 
4563 	if (em1->start < em2->start)
4564 		return -1;
4565 	else if (em1->start > em2->start)
4566 		return 1;
4567 	return 0;
4568 }
4569 
4570 static int log_extent_csums(struct btrfs_trans_handle *trans,
4571 			    struct btrfs_inode *inode,
4572 			    struct btrfs_root *log_root,
4573 			    const struct extent_map *em,
4574 			    struct btrfs_log_ctx *ctx)
4575 {
4576 	struct btrfs_ordered_extent *ordered;
4577 	struct btrfs_root *csum_root;
4578 	u64 csum_offset;
4579 	u64 csum_len;
4580 	u64 mod_start = em->start;
4581 	u64 mod_len = em->len;
4582 	LIST_HEAD(ordered_sums);
4583 	int ret = 0;
4584 
4585 	if (inode->flags & BTRFS_INODE_NODATASUM ||
4586 	    (em->flags & EXTENT_FLAG_PREALLOC) ||
4587 	    em->block_start == EXTENT_MAP_HOLE)
4588 		return 0;
4589 
4590 	list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4591 		const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4592 		const u64 mod_end = mod_start + mod_len;
4593 		struct btrfs_ordered_sum *sums;
4594 
4595 		if (mod_len == 0)
4596 			break;
4597 
4598 		if (ordered_end <= mod_start)
4599 			continue;
4600 		if (mod_end <= ordered->file_offset)
4601 			break;
4602 
4603 		/*
4604 		 * We are going to copy all the csums on this ordered extent, so
4605 		 * go ahead and adjust mod_start and mod_len in case this ordered
4606 		 * extent has already been logged.
4607 		 */
4608 		if (ordered->file_offset > mod_start) {
4609 			if (ordered_end >= mod_end)
4610 				mod_len = ordered->file_offset - mod_start;
4611 			/*
4612 			 * If we have this case
4613 			 *
4614 			 * |--------- logged extent ---------|
4615 			 *       |----- ordered extent ----|
4616 			 *
4617 			 * Just don't mess with mod_start and mod_len, we'll
4618 			 * just end up logging more csums than we need and it
4619 			 * will be ok.
4620 			 */
4621 		} else {
4622 			if (ordered_end < mod_end) {
4623 				mod_len = mod_end - ordered_end;
4624 				mod_start = ordered_end;
4625 			} else {
4626 				mod_len = 0;
4627 			}
4628 		}
4629 
4630 		/*
4631 		 * To keep us from looping for the above case of an ordered
4632 		 * extent that falls inside of the logged extent.
4633 		 */
4634 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4635 			continue;
4636 
4637 		list_for_each_entry(sums, &ordered->list, list) {
4638 			ret = log_csums(trans, inode, log_root, sums);
4639 			if (ret)
4640 				return ret;
4641 		}
4642 	}
4643 
4644 	/* We're done, found all csums in the ordered extents. */
4645 	if (mod_len == 0)
4646 		return 0;
4647 
4648 	/* If we're compressed we have to save the entire range of csums. */
4649 	if (extent_map_is_compressed(em)) {
4650 		csum_offset = 0;
4651 		csum_len = max(em->block_len, em->orig_block_len);
4652 	} else {
4653 		csum_offset = mod_start - em->start;
4654 		csum_len = mod_len;
4655 	}
4656 
4657 	/* block start is already adjusted for the file extent offset. */
4658 	csum_root = btrfs_csum_root(trans->fs_info, em->block_start);
4659 	ret = btrfs_lookup_csums_list(csum_root, em->block_start + csum_offset,
4660 				      em->block_start + csum_offset +
4661 				      csum_len - 1, &ordered_sums, false);
4662 	if (ret < 0)
4663 		return ret;
4664 	ret = 0;
4665 
4666 	while (!list_empty(&ordered_sums)) {
4667 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4668 						   struct btrfs_ordered_sum,
4669 						   list);
4670 		if (!ret)
4671 			ret = log_csums(trans, inode, log_root, sums);
4672 		list_del(&sums->list);
4673 		kfree(sums);
4674 	}
4675 
4676 	return ret;
4677 }
4678 
4679 static int log_one_extent(struct btrfs_trans_handle *trans,
4680 			  struct btrfs_inode *inode,
4681 			  const struct extent_map *em,
4682 			  struct btrfs_path *path,
4683 			  struct btrfs_log_ctx *ctx)
4684 {
4685 	struct btrfs_drop_extents_args drop_args = { 0 };
4686 	struct btrfs_root *log = inode->root->log_root;
4687 	struct btrfs_file_extent_item fi = { 0 };
4688 	struct extent_buffer *leaf;
4689 	struct btrfs_key key;
4690 	enum btrfs_compression_type compress_type;
4691 	u64 extent_offset = em->start - em->orig_start;
4692 	u64 block_len;
4693 	int ret;
4694 
4695 	btrfs_set_stack_file_extent_generation(&fi, trans->transid);
4696 	if (em->flags & EXTENT_FLAG_PREALLOC)
4697 		btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC);
4698 	else
4699 		btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG);
4700 
4701 	block_len = max(em->block_len, em->orig_block_len);
4702 	compress_type = extent_map_compression(em);
4703 	if (compress_type != BTRFS_COMPRESS_NONE) {
4704 		btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start);
4705 		btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4706 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4707 		btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start -
4708 							extent_offset);
4709 		btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4710 	}
4711 
4712 	btrfs_set_stack_file_extent_offset(&fi, extent_offset);
4713 	btrfs_set_stack_file_extent_num_bytes(&fi, em->len);
4714 	btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes);
4715 	btrfs_set_stack_file_extent_compression(&fi, compress_type);
4716 
4717 	ret = log_extent_csums(trans, inode, log, em, ctx);
4718 	if (ret)
4719 		return ret;
4720 
4721 	/*
4722 	 * If this is the first time we are logging the inode in the current
4723 	 * transaction, we can avoid btrfs_drop_extents(), which is expensive
4724 	 * because it does a deletion search, which always acquires write locks
4725 	 * for extent buffers at levels 2, 1 and 0. This not only wastes time
4726 	 * but also adds significant contention in a log tree, since log trees
4727 	 * are small, with a root at level 2 or 3 at most, due to their short
4728 	 * life span.
4729 	 */
4730 	if (ctx->logged_before) {
4731 		drop_args.path = path;
4732 		drop_args.start = em->start;
4733 		drop_args.end = em->start + em->len;
4734 		drop_args.replace_extent = true;
4735 		drop_args.extent_item_size = sizeof(fi);
4736 		ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4737 		if (ret)
4738 			return ret;
4739 	}
4740 
4741 	if (!drop_args.extent_inserted) {
4742 		key.objectid = btrfs_ino(inode);
4743 		key.type = BTRFS_EXTENT_DATA_KEY;
4744 		key.offset = em->start;
4745 
4746 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4747 					      sizeof(fi));
4748 		if (ret)
4749 			return ret;
4750 	}
4751 	leaf = path->nodes[0];
4752 	write_extent_buffer(leaf, &fi,
4753 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4754 			    sizeof(fi));
4755 	btrfs_mark_buffer_dirty(trans, leaf);
4756 
4757 	btrfs_release_path(path);
4758 
4759 	return ret;
4760 }
4761 
4762 /*
4763  * Log all prealloc extents beyond the inode's i_size to make sure we do not
4764  * lose them after doing a full/fast fsync and replaying the log. We scan the
4765  * subvolume's root instead of iterating the inode's extent map tree because
4766  * otherwise we can log incorrect extent items based on extent map conversion.
4767  * That can happen due to the fact that extent maps are merged when they
4768  * are not in the extent map tree's list of modified extents.
4769  */
4770 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4771 				      struct btrfs_inode *inode,
4772 				      struct btrfs_path *path,
4773 				      struct btrfs_log_ctx *ctx)
4774 {
4775 	struct btrfs_root *root = inode->root;
4776 	struct btrfs_key key;
4777 	const u64 i_size = i_size_read(&inode->vfs_inode);
4778 	const u64 ino = btrfs_ino(inode);
4779 	struct btrfs_path *dst_path = NULL;
4780 	bool dropped_extents = false;
4781 	u64 truncate_offset = i_size;
4782 	struct extent_buffer *leaf;
4783 	int slot;
4784 	int ins_nr = 0;
4785 	int start_slot = 0;
4786 	int ret;
4787 
4788 	if (!(inode->flags & BTRFS_INODE_PREALLOC))
4789 		return 0;
4790 
4791 	key.objectid = ino;
4792 	key.type = BTRFS_EXTENT_DATA_KEY;
4793 	key.offset = i_size;
4794 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4795 	if (ret < 0)
4796 		goto out;
4797 
4798 	/*
4799 	 * We must check if there is a prealloc extent that starts before the
4800 	 * i_size and crosses the i_size boundary. This is to ensure later we
4801 	 * truncate down to the end of that extent and not to the i_size, as
4802 	 * otherwise we end up losing part of the prealloc extent after a log
4803 	 * replay and with an implicit hole if there is another prealloc extent
4804 	 * that starts at an offset beyond i_size.
4805 	 */
4806 	ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4807 	if (ret < 0)
4808 		goto out;
4809 
4810 	if (ret == 0) {
4811 		struct btrfs_file_extent_item *ei;
4812 
4813 		leaf = path->nodes[0];
4814 		slot = path->slots[0];
4815 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4816 
4817 		if (btrfs_file_extent_type(leaf, ei) ==
4818 		    BTRFS_FILE_EXTENT_PREALLOC) {
4819 			u64 extent_end;
4820 
4821 			btrfs_item_key_to_cpu(leaf, &key, slot);
4822 			extent_end = key.offset +
4823 				btrfs_file_extent_num_bytes(leaf, ei);
4824 
4825 			if (extent_end > i_size)
4826 				truncate_offset = extent_end;
4827 		}
4828 	} else {
4829 		ret = 0;
4830 	}
4831 
4832 	while (true) {
4833 		leaf = path->nodes[0];
4834 		slot = path->slots[0];
4835 
4836 		if (slot >= btrfs_header_nritems(leaf)) {
4837 			if (ins_nr > 0) {
4838 				ret = copy_items(trans, inode, dst_path, path,
4839 						 start_slot, ins_nr, 1, 0, ctx);
4840 				if (ret < 0)
4841 					goto out;
4842 				ins_nr = 0;
4843 			}
4844 			ret = btrfs_next_leaf(root, path);
4845 			if (ret < 0)
4846 				goto out;
4847 			if (ret > 0) {
4848 				ret = 0;
4849 				break;
4850 			}
4851 			continue;
4852 		}
4853 
4854 		btrfs_item_key_to_cpu(leaf, &key, slot);
4855 		if (key.objectid > ino)
4856 			break;
4857 		if (WARN_ON_ONCE(key.objectid < ino) ||
4858 		    key.type < BTRFS_EXTENT_DATA_KEY ||
4859 		    key.offset < i_size) {
4860 			path->slots[0]++;
4861 			continue;
4862 		}
4863 		if (!dropped_extents) {
4864 			/*
4865 			 * Avoid logging extent items logged in past fsync calls
4866 			 * and leading to duplicate keys in the log tree.
4867 			 */
4868 			ret = truncate_inode_items(trans, root->log_root, inode,
4869 						   truncate_offset,
4870 						   BTRFS_EXTENT_DATA_KEY);
4871 			if (ret)
4872 				goto out;
4873 			dropped_extents = true;
4874 		}
4875 		if (ins_nr == 0)
4876 			start_slot = slot;
4877 		ins_nr++;
4878 		path->slots[0]++;
4879 		if (!dst_path) {
4880 			dst_path = btrfs_alloc_path();
4881 			if (!dst_path) {
4882 				ret = -ENOMEM;
4883 				goto out;
4884 			}
4885 		}
4886 	}
4887 	if (ins_nr > 0)
4888 		ret = copy_items(trans, inode, dst_path, path,
4889 				 start_slot, ins_nr, 1, 0, ctx);
4890 out:
4891 	btrfs_release_path(path);
4892 	btrfs_free_path(dst_path);
4893 	return ret;
4894 }
4895 
4896 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4897 				     struct btrfs_inode *inode,
4898 				     struct btrfs_path *path,
4899 				     struct btrfs_log_ctx *ctx)
4900 {
4901 	struct btrfs_ordered_extent *ordered;
4902 	struct btrfs_ordered_extent *tmp;
4903 	struct extent_map *em, *n;
4904 	LIST_HEAD(extents);
4905 	struct extent_map_tree *tree = &inode->extent_tree;
4906 	int ret = 0;
4907 	int num = 0;
4908 
4909 	write_lock(&tree->lock);
4910 
4911 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4912 		list_del_init(&em->list);
4913 		/*
4914 		 * Just an arbitrary number, this can be really CPU intensive
4915 		 * once we start getting a lot of extents, and really once we
4916 		 * have a bunch of extents we just want to commit since it will
4917 		 * be faster.
4918 		 */
4919 		if (++num > 32768) {
4920 			list_del_init(&tree->modified_extents);
4921 			ret = -EFBIG;
4922 			goto process;
4923 		}
4924 
4925 		if (em->generation < trans->transid)
4926 			continue;
4927 
4928 		/* We log prealloc extents beyond eof later. */
4929 		if ((em->flags & EXTENT_FLAG_PREALLOC) &&
4930 		    em->start >= i_size_read(&inode->vfs_inode))
4931 			continue;
4932 
4933 		/* Need a ref to keep it from getting evicted from cache */
4934 		refcount_inc(&em->refs);
4935 		em->flags |= EXTENT_FLAG_LOGGING;
4936 		list_add_tail(&em->list, &extents);
4937 		num++;
4938 	}
4939 
4940 	list_sort(NULL, &extents, extent_cmp);
4941 process:
4942 	while (!list_empty(&extents)) {
4943 		em = list_entry(extents.next, struct extent_map, list);
4944 
4945 		list_del_init(&em->list);
4946 
4947 		/*
4948 		 * If we had an error we just need to delete everybody from our
4949 		 * private list.
4950 		 */
4951 		if (ret) {
4952 			clear_em_logging(inode, em);
4953 			free_extent_map(em);
4954 			continue;
4955 		}
4956 
4957 		write_unlock(&tree->lock);
4958 
4959 		ret = log_one_extent(trans, inode, em, path, ctx);
4960 		write_lock(&tree->lock);
4961 		clear_em_logging(inode, em);
4962 		free_extent_map(em);
4963 	}
4964 	WARN_ON(!list_empty(&extents));
4965 	write_unlock(&tree->lock);
4966 
4967 	if (!ret)
4968 		ret = btrfs_log_prealloc_extents(trans, inode, path, ctx);
4969 	if (ret)
4970 		return ret;
4971 
4972 	/*
4973 	 * We have logged all extents successfully, now make sure the commit of
4974 	 * the current transaction waits for the ordered extents to complete
4975 	 * before it commits and wipes out the log trees, otherwise we would
4976 	 * lose data if an ordered extents completes after the transaction
4977 	 * commits and a power failure happens after the transaction commit.
4978 	 */
4979 	list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4980 		list_del_init(&ordered->log_list);
4981 		set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4982 
4983 		if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4984 			spin_lock_irq(&inode->ordered_tree_lock);
4985 			if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4986 				set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4987 				atomic_inc(&trans->transaction->pending_ordered);
4988 			}
4989 			spin_unlock_irq(&inode->ordered_tree_lock);
4990 		}
4991 		btrfs_put_ordered_extent(ordered);
4992 	}
4993 
4994 	return 0;
4995 }
4996 
4997 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4998 			     struct btrfs_path *path, u64 *size_ret)
4999 {
5000 	struct btrfs_key key;
5001 	int ret;
5002 
5003 	key.objectid = btrfs_ino(inode);
5004 	key.type = BTRFS_INODE_ITEM_KEY;
5005 	key.offset = 0;
5006 
5007 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
5008 	if (ret < 0) {
5009 		return ret;
5010 	} else if (ret > 0) {
5011 		*size_ret = 0;
5012 	} else {
5013 		struct btrfs_inode_item *item;
5014 
5015 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5016 				      struct btrfs_inode_item);
5017 		*size_ret = btrfs_inode_size(path->nodes[0], item);
5018 		/*
5019 		 * If the in-memory inode's i_size is smaller then the inode
5020 		 * size stored in the btree, return the inode's i_size, so
5021 		 * that we get a correct inode size after replaying the log
5022 		 * when before a power failure we had a shrinking truncate
5023 		 * followed by addition of a new name (rename / new hard link).
5024 		 * Otherwise return the inode size from the btree, to avoid
5025 		 * data loss when replaying a log due to previously doing a
5026 		 * write that expands the inode's size and logging a new name
5027 		 * immediately after.
5028 		 */
5029 		if (*size_ret > inode->vfs_inode.i_size)
5030 			*size_ret = inode->vfs_inode.i_size;
5031 	}
5032 
5033 	btrfs_release_path(path);
5034 	return 0;
5035 }
5036 
5037 /*
5038  * At the moment we always log all xattrs. This is to figure out at log replay
5039  * time which xattrs must have their deletion replayed. If a xattr is missing
5040  * in the log tree and exists in the fs/subvol tree, we delete it. This is
5041  * because if a xattr is deleted, the inode is fsynced and a power failure
5042  * happens, causing the log to be replayed the next time the fs is mounted,
5043  * we want the xattr to not exist anymore (same behaviour as other filesystems
5044  * with a journal, ext3/4, xfs, f2fs, etc).
5045  */
5046 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
5047 				struct btrfs_inode *inode,
5048 				struct btrfs_path *path,
5049 				struct btrfs_path *dst_path,
5050 				struct btrfs_log_ctx *ctx)
5051 {
5052 	struct btrfs_root *root = inode->root;
5053 	int ret;
5054 	struct btrfs_key key;
5055 	const u64 ino = btrfs_ino(inode);
5056 	int ins_nr = 0;
5057 	int start_slot = 0;
5058 	bool found_xattrs = false;
5059 
5060 	if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
5061 		return 0;
5062 
5063 	key.objectid = ino;
5064 	key.type = BTRFS_XATTR_ITEM_KEY;
5065 	key.offset = 0;
5066 
5067 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5068 	if (ret < 0)
5069 		return ret;
5070 
5071 	while (true) {
5072 		int slot = path->slots[0];
5073 		struct extent_buffer *leaf = path->nodes[0];
5074 		int nritems = btrfs_header_nritems(leaf);
5075 
5076 		if (slot >= nritems) {
5077 			if (ins_nr > 0) {
5078 				ret = copy_items(trans, inode, dst_path, path,
5079 						 start_slot, ins_nr, 1, 0, ctx);
5080 				if (ret < 0)
5081 					return ret;
5082 				ins_nr = 0;
5083 			}
5084 			ret = btrfs_next_leaf(root, path);
5085 			if (ret < 0)
5086 				return ret;
5087 			else if (ret > 0)
5088 				break;
5089 			continue;
5090 		}
5091 
5092 		btrfs_item_key_to_cpu(leaf, &key, slot);
5093 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
5094 			break;
5095 
5096 		if (ins_nr == 0)
5097 			start_slot = slot;
5098 		ins_nr++;
5099 		path->slots[0]++;
5100 		found_xattrs = true;
5101 		cond_resched();
5102 	}
5103 	if (ins_nr > 0) {
5104 		ret = copy_items(trans, inode, dst_path, path,
5105 				 start_slot, ins_nr, 1, 0, ctx);
5106 		if (ret < 0)
5107 			return ret;
5108 	}
5109 
5110 	if (!found_xattrs)
5111 		set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
5112 
5113 	return 0;
5114 }
5115 
5116 /*
5117  * When using the NO_HOLES feature if we punched a hole that causes the
5118  * deletion of entire leafs or all the extent items of the first leaf (the one
5119  * that contains the inode item and references) we may end up not processing
5120  * any extents, because there are no leafs with a generation matching the
5121  * current transaction that have extent items for our inode. So we need to find
5122  * if any holes exist and then log them. We also need to log holes after any
5123  * truncate operation that changes the inode's size.
5124  */
5125 static int btrfs_log_holes(struct btrfs_trans_handle *trans,
5126 			   struct btrfs_inode *inode,
5127 			   struct btrfs_path *path)
5128 {
5129 	struct btrfs_root *root = inode->root;
5130 	struct btrfs_fs_info *fs_info = root->fs_info;
5131 	struct btrfs_key key;
5132 	const u64 ino = btrfs_ino(inode);
5133 	const u64 i_size = i_size_read(&inode->vfs_inode);
5134 	u64 prev_extent_end = 0;
5135 	int ret;
5136 
5137 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
5138 		return 0;
5139 
5140 	key.objectid = ino;
5141 	key.type = BTRFS_EXTENT_DATA_KEY;
5142 	key.offset = 0;
5143 
5144 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5145 	if (ret < 0)
5146 		return ret;
5147 
5148 	while (true) {
5149 		struct extent_buffer *leaf = path->nodes[0];
5150 
5151 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
5152 			ret = btrfs_next_leaf(root, path);
5153 			if (ret < 0)
5154 				return ret;
5155 			if (ret > 0) {
5156 				ret = 0;
5157 				break;
5158 			}
5159 			leaf = path->nodes[0];
5160 		}
5161 
5162 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5163 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
5164 			break;
5165 
5166 		/* We have a hole, log it. */
5167 		if (prev_extent_end < key.offset) {
5168 			const u64 hole_len = key.offset - prev_extent_end;
5169 
5170 			/*
5171 			 * Release the path to avoid deadlocks with other code
5172 			 * paths that search the root while holding locks on
5173 			 * leafs from the log root.
5174 			 */
5175 			btrfs_release_path(path);
5176 			ret = btrfs_insert_hole_extent(trans, root->log_root,
5177 						       ino, prev_extent_end,
5178 						       hole_len);
5179 			if (ret < 0)
5180 				return ret;
5181 
5182 			/*
5183 			 * Search for the same key again in the root. Since it's
5184 			 * an extent item and we are holding the inode lock, the
5185 			 * key must still exist. If it doesn't just emit warning
5186 			 * and return an error to fall back to a transaction
5187 			 * commit.
5188 			 */
5189 			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5190 			if (ret < 0)
5191 				return ret;
5192 			if (WARN_ON(ret > 0))
5193 				return -ENOENT;
5194 			leaf = path->nodes[0];
5195 		}
5196 
5197 		prev_extent_end = btrfs_file_extent_end(path);
5198 		path->slots[0]++;
5199 		cond_resched();
5200 	}
5201 
5202 	if (prev_extent_end < i_size) {
5203 		u64 hole_len;
5204 
5205 		btrfs_release_path(path);
5206 		hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
5207 		ret = btrfs_insert_hole_extent(trans, root->log_root, ino,
5208 					       prev_extent_end, hole_len);
5209 		if (ret < 0)
5210 			return ret;
5211 	}
5212 
5213 	return 0;
5214 }
5215 
5216 /*
5217  * When we are logging a new inode X, check if it doesn't have a reference that
5218  * matches the reference from some other inode Y created in a past transaction
5219  * and that was renamed in the current transaction. If we don't do this, then at
5220  * log replay time we can lose inode Y (and all its files if it's a directory):
5221  *
5222  * mkdir /mnt/x
5223  * echo "hello world" > /mnt/x/foobar
5224  * sync
5225  * mv /mnt/x /mnt/y
5226  * mkdir /mnt/x                 # or touch /mnt/x
5227  * xfs_io -c fsync /mnt/x
5228  * <power fail>
5229  * mount fs, trigger log replay
5230  *
5231  * After the log replay procedure, we would lose the first directory and all its
5232  * files (file foobar).
5233  * For the case where inode Y is not a directory we simply end up losing it:
5234  *
5235  * echo "123" > /mnt/foo
5236  * sync
5237  * mv /mnt/foo /mnt/bar
5238  * echo "abc" > /mnt/foo
5239  * xfs_io -c fsync /mnt/foo
5240  * <power fail>
5241  *
5242  * We also need this for cases where a snapshot entry is replaced by some other
5243  * entry (file or directory) otherwise we end up with an unreplayable log due to
5244  * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5245  * if it were a regular entry:
5246  *
5247  * mkdir /mnt/x
5248  * btrfs subvolume snapshot /mnt /mnt/x/snap
5249  * btrfs subvolume delete /mnt/x/snap
5250  * rmdir /mnt/x
5251  * mkdir /mnt/x
5252  * fsync /mnt/x or fsync some new file inside it
5253  * <power fail>
5254  *
5255  * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5256  * the same transaction.
5257  */
5258 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
5259 					 const int slot,
5260 					 const struct btrfs_key *key,
5261 					 struct btrfs_inode *inode,
5262 					 u64 *other_ino, u64 *other_parent)
5263 {
5264 	int ret;
5265 	struct btrfs_path *search_path;
5266 	char *name = NULL;
5267 	u32 name_len = 0;
5268 	u32 item_size = btrfs_item_size(eb, slot);
5269 	u32 cur_offset = 0;
5270 	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
5271 
5272 	search_path = btrfs_alloc_path();
5273 	if (!search_path)
5274 		return -ENOMEM;
5275 	search_path->search_commit_root = 1;
5276 	search_path->skip_locking = 1;
5277 
5278 	while (cur_offset < item_size) {
5279 		u64 parent;
5280 		u32 this_name_len;
5281 		u32 this_len;
5282 		unsigned long name_ptr;
5283 		struct btrfs_dir_item *di;
5284 		struct fscrypt_str name_str;
5285 
5286 		if (key->type == BTRFS_INODE_REF_KEY) {
5287 			struct btrfs_inode_ref *iref;
5288 
5289 			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
5290 			parent = key->offset;
5291 			this_name_len = btrfs_inode_ref_name_len(eb, iref);
5292 			name_ptr = (unsigned long)(iref + 1);
5293 			this_len = sizeof(*iref) + this_name_len;
5294 		} else {
5295 			struct btrfs_inode_extref *extref;
5296 
5297 			extref = (struct btrfs_inode_extref *)(ptr +
5298 							       cur_offset);
5299 			parent = btrfs_inode_extref_parent(eb, extref);
5300 			this_name_len = btrfs_inode_extref_name_len(eb, extref);
5301 			name_ptr = (unsigned long)&extref->name;
5302 			this_len = sizeof(*extref) + this_name_len;
5303 		}
5304 
5305 		if (this_name_len > name_len) {
5306 			char *new_name;
5307 
5308 			new_name = krealloc(name, this_name_len, GFP_NOFS);
5309 			if (!new_name) {
5310 				ret = -ENOMEM;
5311 				goto out;
5312 			}
5313 			name_len = this_name_len;
5314 			name = new_name;
5315 		}
5316 
5317 		read_extent_buffer(eb, name, name_ptr, this_name_len);
5318 
5319 		name_str.name = name;
5320 		name_str.len = this_name_len;
5321 		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
5322 				parent, &name_str, 0);
5323 		if (di && !IS_ERR(di)) {
5324 			struct btrfs_key di_key;
5325 
5326 			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
5327 						  di, &di_key);
5328 			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
5329 				if (di_key.objectid != key->objectid) {
5330 					ret = 1;
5331 					*other_ino = di_key.objectid;
5332 					*other_parent = parent;
5333 				} else {
5334 					ret = 0;
5335 				}
5336 			} else {
5337 				ret = -EAGAIN;
5338 			}
5339 			goto out;
5340 		} else if (IS_ERR(di)) {
5341 			ret = PTR_ERR(di);
5342 			goto out;
5343 		}
5344 		btrfs_release_path(search_path);
5345 
5346 		cur_offset += this_len;
5347 	}
5348 	ret = 0;
5349 out:
5350 	btrfs_free_path(search_path);
5351 	kfree(name);
5352 	return ret;
5353 }
5354 
5355 /*
5356  * Check if we need to log an inode. This is used in contexts where while
5357  * logging an inode we need to log another inode (either that it exists or in
5358  * full mode). This is used instead of btrfs_inode_in_log() because the later
5359  * requires the inode to be in the log and have the log transaction committed,
5360  * while here we do not care if the log transaction was already committed - our
5361  * caller will commit the log later - and we want to avoid logging an inode
5362  * multiple times when multiple tasks have joined the same log transaction.
5363  */
5364 static bool need_log_inode(const struct btrfs_trans_handle *trans,
5365 			   struct btrfs_inode *inode)
5366 {
5367 	/*
5368 	 * If a directory was not modified, no dentries added or removed, we can
5369 	 * and should avoid logging it.
5370 	 */
5371 	if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
5372 		return false;
5373 
5374 	/*
5375 	 * If this inode does not have new/updated/deleted xattrs since the last
5376 	 * time it was logged and is flagged as logged in the current transaction,
5377 	 * we can skip logging it. As for new/deleted names, those are updated in
5378 	 * the log by link/unlink/rename operations.
5379 	 * In case the inode was logged and then evicted and reloaded, its
5380 	 * logged_trans will be 0, in which case we have to fully log it since
5381 	 * logged_trans is a transient field, not persisted.
5382 	 */
5383 	if (inode_logged(trans, inode, NULL) == 1 &&
5384 	    !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5385 		return false;
5386 
5387 	return true;
5388 }
5389 
5390 struct btrfs_dir_list {
5391 	u64 ino;
5392 	struct list_head list;
5393 };
5394 
5395 /*
5396  * Log the inodes of the new dentries of a directory.
5397  * See process_dir_items_leaf() for details about why it is needed.
5398  * This is a recursive operation - if an existing dentry corresponds to a
5399  * directory, that directory's new entries are logged too (same behaviour as
5400  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5401  * the dentries point to we do not acquire their VFS lock, otherwise lockdep
5402  * complains about the following circular lock dependency / possible deadlock:
5403  *
5404  *        CPU0                                        CPU1
5405  *        ----                                        ----
5406  * lock(&type->i_mutex_dir_key#3/2);
5407  *                                            lock(sb_internal#2);
5408  *                                            lock(&type->i_mutex_dir_key#3/2);
5409  * lock(&sb->s_type->i_mutex_key#14);
5410  *
5411  * Where sb_internal is the lock (a counter that works as a lock) acquired by
5412  * sb_start_intwrite() in btrfs_start_transaction().
5413  * Not acquiring the VFS lock of the inodes is still safe because:
5414  *
5415  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5416  *    that while logging the inode new references (names) are added or removed
5417  *    from the inode, leaving the logged inode item with a link count that does
5418  *    not match the number of logged inode reference items. This is fine because
5419  *    at log replay time we compute the real number of links and correct the
5420  *    link count in the inode item (see replay_one_buffer() and
5421  *    link_to_fixup_dir());
5422  *
5423  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5424  *    while logging the inode's items new index items (key type
5425  *    BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item
5426  *    has a size that doesn't match the sum of the lengths of all the logged
5427  *    names - this is ok, not a problem, because at log replay time we set the
5428  *    directory's i_size to the correct value (see replay_one_name() and
5429  *    overwrite_item()).
5430  */
5431 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5432 				struct btrfs_inode *start_inode,
5433 				struct btrfs_log_ctx *ctx)
5434 {
5435 	struct btrfs_root *root = start_inode->root;
5436 	struct btrfs_fs_info *fs_info = root->fs_info;
5437 	struct btrfs_path *path;
5438 	LIST_HEAD(dir_list);
5439 	struct btrfs_dir_list *dir_elem;
5440 	u64 ino = btrfs_ino(start_inode);
5441 	struct btrfs_inode *curr_inode = start_inode;
5442 	int ret = 0;
5443 
5444 	/*
5445 	 * If we are logging a new name, as part of a link or rename operation,
5446 	 * don't bother logging new dentries, as we just want to log the names
5447 	 * of an inode and that any new parents exist.
5448 	 */
5449 	if (ctx->logging_new_name)
5450 		return 0;
5451 
5452 	path = btrfs_alloc_path();
5453 	if (!path)
5454 		return -ENOMEM;
5455 
5456 	/* Pairs with btrfs_add_delayed_iput below. */
5457 	ihold(&curr_inode->vfs_inode);
5458 
5459 	while (true) {
5460 		struct inode *vfs_inode;
5461 		struct btrfs_key key;
5462 		struct btrfs_key found_key;
5463 		u64 next_index;
5464 		bool continue_curr_inode = true;
5465 		int iter_ret;
5466 
5467 		key.objectid = ino;
5468 		key.type = BTRFS_DIR_INDEX_KEY;
5469 		key.offset = btrfs_get_first_dir_index_to_log(curr_inode);
5470 		next_index = key.offset;
5471 again:
5472 		btrfs_for_each_slot(root->log_root, &key, &found_key, path, iter_ret) {
5473 			struct extent_buffer *leaf = path->nodes[0];
5474 			struct btrfs_dir_item *di;
5475 			struct btrfs_key di_key;
5476 			struct inode *di_inode;
5477 			int log_mode = LOG_INODE_EXISTS;
5478 			int type;
5479 
5480 			if (found_key.objectid != ino ||
5481 			    found_key.type != BTRFS_DIR_INDEX_KEY) {
5482 				continue_curr_inode = false;
5483 				break;
5484 			}
5485 
5486 			next_index = found_key.offset + 1;
5487 
5488 			di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5489 			type = btrfs_dir_ftype(leaf, di);
5490 			if (btrfs_dir_transid(leaf, di) < trans->transid)
5491 				continue;
5492 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5493 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5494 				continue;
5495 
5496 			btrfs_release_path(path);
5497 			di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5498 			if (IS_ERR(di_inode)) {
5499 				ret = PTR_ERR(di_inode);
5500 				goto out;
5501 			}
5502 
5503 			if (!need_log_inode(trans, BTRFS_I(di_inode))) {
5504 				btrfs_add_delayed_iput(BTRFS_I(di_inode));
5505 				break;
5506 			}
5507 
5508 			ctx->log_new_dentries = false;
5509 			if (type == BTRFS_FT_DIR)
5510 				log_mode = LOG_INODE_ALL;
5511 			ret = btrfs_log_inode(trans, BTRFS_I(di_inode),
5512 					      log_mode, ctx);
5513 			btrfs_add_delayed_iput(BTRFS_I(di_inode));
5514 			if (ret)
5515 				goto out;
5516 			if (ctx->log_new_dentries) {
5517 				dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5518 				if (!dir_elem) {
5519 					ret = -ENOMEM;
5520 					goto out;
5521 				}
5522 				dir_elem->ino = di_key.objectid;
5523 				list_add_tail(&dir_elem->list, &dir_list);
5524 			}
5525 			break;
5526 		}
5527 
5528 		btrfs_release_path(path);
5529 
5530 		if (iter_ret < 0) {
5531 			ret = iter_ret;
5532 			goto out;
5533 		} else if (iter_ret > 0) {
5534 			continue_curr_inode = false;
5535 		} else {
5536 			key = found_key;
5537 		}
5538 
5539 		if (continue_curr_inode && key.offset < (u64)-1) {
5540 			key.offset++;
5541 			goto again;
5542 		}
5543 
5544 		btrfs_set_first_dir_index_to_log(curr_inode, next_index);
5545 
5546 		if (list_empty(&dir_list))
5547 			break;
5548 
5549 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list);
5550 		ino = dir_elem->ino;
5551 		list_del(&dir_elem->list);
5552 		kfree(dir_elem);
5553 
5554 		btrfs_add_delayed_iput(curr_inode);
5555 		curr_inode = NULL;
5556 
5557 		vfs_inode = btrfs_iget(fs_info->sb, ino, root);
5558 		if (IS_ERR(vfs_inode)) {
5559 			ret = PTR_ERR(vfs_inode);
5560 			break;
5561 		}
5562 		curr_inode = BTRFS_I(vfs_inode);
5563 	}
5564 out:
5565 	btrfs_free_path(path);
5566 	if (curr_inode)
5567 		btrfs_add_delayed_iput(curr_inode);
5568 
5569 	if (ret) {
5570 		struct btrfs_dir_list *next;
5571 
5572 		list_for_each_entry_safe(dir_elem, next, &dir_list, list)
5573 			kfree(dir_elem);
5574 	}
5575 
5576 	return ret;
5577 }
5578 
5579 struct btrfs_ino_list {
5580 	u64 ino;
5581 	u64 parent;
5582 	struct list_head list;
5583 };
5584 
5585 static void free_conflicting_inodes(struct btrfs_log_ctx *ctx)
5586 {
5587 	struct btrfs_ino_list *curr;
5588 	struct btrfs_ino_list *next;
5589 
5590 	list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) {
5591 		list_del(&curr->list);
5592 		kfree(curr);
5593 	}
5594 }
5595 
5596 static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino,
5597 				    struct btrfs_path *path)
5598 {
5599 	struct btrfs_key key;
5600 	int ret;
5601 
5602 	key.objectid = ino;
5603 	key.type = BTRFS_INODE_ITEM_KEY;
5604 	key.offset = 0;
5605 
5606 	path->search_commit_root = 1;
5607 	path->skip_locking = 1;
5608 
5609 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5610 	if (WARN_ON_ONCE(ret > 0)) {
5611 		/*
5612 		 * We have previously found the inode through the commit root
5613 		 * so this should not happen. If it does, just error out and
5614 		 * fallback to a transaction commit.
5615 		 */
5616 		ret = -ENOENT;
5617 	} else if (ret == 0) {
5618 		struct btrfs_inode_item *item;
5619 
5620 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5621 				      struct btrfs_inode_item);
5622 		if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item)))
5623 			ret = 1;
5624 	}
5625 
5626 	btrfs_release_path(path);
5627 	path->search_commit_root = 0;
5628 	path->skip_locking = 0;
5629 
5630 	return ret;
5631 }
5632 
5633 static int add_conflicting_inode(struct btrfs_trans_handle *trans,
5634 				 struct btrfs_root *root,
5635 				 struct btrfs_path *path,
5636 				 u64 ino, u64 parent,
5637 				 struct btrfs_log_ctx *ctx)
5638 {
5639 	struct btrfs_ino_list *ino_elem;
5640 	struct inode *inode;
5641 
5642 	/*
5643 	 * It's rare to have a lot of conflicting inodes, in practice it is not
5644 	 * common to have more than 1 or 2. We don't want to collect too many,
5645 	 * as we could end up logging too many inodes (even if only in
5646 	 * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction
5647 	 * commits.
5648 	 */
5649 	if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES)
5650 		return BTRFS_LOG_FORCE_COMMIT;
5651 
5652 	inode = btrfs_iget(root->fs_info->sb, ino, root);
5653 	/*
5654 	 * If the other inode that had a conflicting dir entry was deleted in
5655 	 * the current transaction then we either:
5656 	 *
5657 	 * 1) Log the parent directory (later after adding it to the list) if
5658 	 *    the inode is a directory. This is because it may be a deleted
5659 	 *    subvolume/snapshot or it may be a regular directory that had
5660 	 *    deleted subvolumes/snapshots (or subdirectories that had them),
5661 	 *    and at the moment we can't deal with dropping subvolumes/snapshots
5662 	 *    during log replay. So we just log the parent, which will result in
5663 	 *    a fallback to a transaction commit if we are dealing with those
5664 	 *    cases (last_unlink_trans will match the current transaction);
5665 	 *
5666 	 * 2) Do nothing if it's not a directory. During log replay we simply
5667 	 *    unlink the conflicting dentry from the parent directory and then
5668 	 *    add the dentry for our inode. Like this we can avoid logging the
5669 	 *    parent directory (and maybe fallback to a transaction commit in
5670 	 *    case it has a last_unlink_trans == trans->transid, due to moving
5671 	 *    some inode from it to some other directory).
5672 	 */
5673 	if (IS_ERR(inode)) {
5674 		int ret = PTR_ERR(inode);
5675 
5676 		if (ret != -ENOENT)
5677 			return ret;
5678 
5679 		ret = conflicting_inode_is_dir(root, ino, path);
5680 		/* Not a directory or we got an error. */
5681 		if (ret <= 0)
5682 			return ret;
5683 
5684 		/* Conflicting inode is a directory, so we'll log its parent. */
5685 		ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5686 		if (!ino_elem)
5687 			return -ENOMEM;
5688 		ino_elem->ino = ino;
5689 		ino_elem->parent = parent;
5690 		list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5691 		ctx->num_conflict_inodes++;
5692 
5693 		return 0;
5694 	}
5695 
5696 	/*
5697 	 * If the inode was already logged skip it - otherwise we can hit an
5698 	 * infinite loop. Example:
5699 	 *
5700 	 * From the commit root (previous transaction) we have the following
5701 	 * inodes:
5702 	 *
5703 	 * inode 257 a directory
5704 	 * inode 258 with references "zz" and "zz_link" on inode 257
5705 	 * inode 259 with reference "a" on inode 257
5706 	 *
5707 	 * And in the current (uncommitted) transaction we have:
5708 	 *
5709 	 * inode 257 a directory, unchanged
5710 	 * inode 258 with references "a" and "a2" on inode 257
5711 	 * inode 259 with reference "zz_link" on inode 257
5712 	 * inode 261 with reference "zz" on inode 257
5713 	 *
5714 	 * When logging inode 261 the following infinite loop could
5715 	 * happen if we don't skip already logged inodes:
5716 	 *
5717 	 * - we detect inode 258 as a conflicting inode, with inode 261
5718 	 *   on reference "zz", and log it;
5719 	 *
5720 	 * - we detect inode 259 as a conflicting inode, with inode 258
5721 	 *   on reference "a", and log it;
5722 	 *
5723 	 * - we detect inode 258 as a conflicting inode, with inode 259
5724 	 *   on reference "zz_link", and log it - again! After this we
5725 	 *   repeat the above steps forever.
5726 	 *
5727 	 * Here we can use need_log_inode() because we only need to log the
5728 	 * inode in LOG_INODE_EXISTS mode and rename operations update the log,
5729 	 * so that the log ends up with the new name and without the old name.
5730 	 */
5731 	if (!need_log_inode(trans, BTRFS_I(inode))) {
5732 		btrfs_add_delayed_iput(BTRFS_I(inode));
5733 		return 0;
5734 	}
5735 
5736 	btrfs_add_delayed_iput(BTRFS_I(inode));
5737 
5738 	ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5739 	if (!ino_elem)
5740 		return -ENOMEM;
5741 	ino_elem->ino = ino;
5742 	ino_elem->parent = parent;
5743 	list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5744 	ctx->num_conflict_inodes++;
5745 
5746 	return 0;
5747 }
5748 
5749 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5750 				  struct btrfs_root *root,
5751 				  struct btrfs_log_ctx *ctx)
5752 {
5753 	struct btrfs_fs_info *fs_info = root->fs_info;
5754 	int ret = 0;
5755 
5756 	/*
5757 	 * Conflicting inodes are logged by the first call to btrfs_log_inode(),
5758 	 * otherwise we could have unbounded recursion of btrfs_log_inode()
5759 	 * calls. This check guarantees we can have only 1 level of recursion.
5760 	 */
5761 	if (ctx->logging_conflict_inodes)
5762 		return 0;
5763 
5764 	ctx->logging_conflict_inodes = true;
5765 
5766 	/*
5767 	 * New conflicting inodes may be found and added to the list while we
5768 	 * are logging a conflicting inode, so keep iterating while the list is
5769 	 * not empty.
5770 	 */
5771 	while (!list_empty(&ctx->conflict_inodes)) {
5772 		struct btrfs_ino_list *curr;
5773 		struct inode *inode;
5774 		u64 ino;
5775 		u64 parent;
5776 
5777 		curr = list_first_entry(&ctx->conflict_inodes,
5778 					struct btrfs_ino_list, list);
5779 		ino = curr->ino;
5780 		parent = curr->parent;
5781 		list_del(&curr->list);
5782 		kfree(curr);
5783 
5784 		inode = btrfs_iget(fs_info->sb, ino, root);
5785 		/*
5786 		 * If the other inode that had a conflicting dir entry was
5787 		 * deleted in the current transaction, we need to log its parent
5788 		 * directory. See the comment at add_conflicting_inode().
5789 		 */
5790 		if (IS_ERR(inode)) {
5791 			ret = PTR_ERR(inode);
5792 			if (ret != -ENOENT)
5793 				break;
5794 
5795 			inode = btrfs_iget(fs_info->sb, parent, root);
5796 			if (IS_ERR(inode)) {
5797 				ret = PTR_ERR(inode);
5798 				break;
5799 			}
5800 
5801 			/*
5802 			 * Always log the directory, we cannot make this
5803 			 * conditional on need_log_inode() because the directory
5804 			 * might have been logged in LOG_INODE_EXISTS mode or
5805 			 * the dir index of the conflicting inode is not in a
5806 			 * dir index key range logged for the directory. So we
5807 			 * must make sure the deletion is recorded.
5808 			 */
5809 			ret = btrfs_log_inode(trans, BTRFS_I(inode),
5810 					      LOG_INODE_ALL, ctx);
5811 			btrfs_add_delayed_iput(BTRFS_I(inode));
5812 			if (ret)
5813 				break;
5814 			continue;
5815 		}
5816 
5817 		/*
5818 		 * Here we can use need_log_inode() because we only need to log
5819 		 * the inode in LOG_INODE_EXISTS mode and rename operations
5820 		 * update the log, so that the log ends up with the new name and
5821 		 * without the old name.
5822 		 *
5823 		 * We did this check at add_conflicting_inode(), but here we do
5824 		 * it again because if some other task logged the inode after
5825 		 * that, we can avoid doing it again.
5826 		 */
5827 		if (!need_log_inode(trans, BTRFS_I(inode))) {
5828 			btrfs_add_delayed_iput(BTRFS_I(inode));
5829 			continue;
5830 		}
5831 
5832 		/*
5833 		 * We are safe logging the other inode without acquiring its
5834 		 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5835 		 * are safe against concurrent renames of the other inode as
5836 		 * well because during a rename we pin the log and update the
5837 		 * log with the new name before we unpin it.
5838 		 */
5839 		ret = btrfs_log_inode(trans, BTRFS_I(inode), LOG_INODE_EXISTS, ctx);
5840 		btrfs_add_delayed_iput(BTRFS_I(inode));
5841 		if (ret)
5842 			break;
5843 	}
5844 
5845 	ctx->logging_conflict_inodes = false;
5846 	if (ret)
5847 		free_conflicting_inodes(ctx);
5848 
5849 	return ret;
5850 }
5851 
5852 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5853 				   struct btrfs_inode *inode,
5854 				   struct btrfs_key *min_key,
5855 				   const struct btrfs_key *max_key,
5856 				   struct btrfs_path *path,
5857 				   struct btrfs_path *dst_path,
5858 				   const u64 logged_isize,
5859 				   const int inode_only,
5860 				   struct btrfs_log_ctx *ctx,
5861 				   bool *need_log_inode_item)
5862 {
5863 	const u64 i_size = i_size_read(&inode->vfs_inode);
5864 	struct btrfs_root *root = inode->root;
5865 	int ins_start_slot = 0;
5866 	int ins_nr = 0;
5867 	int ret;
5868 
5869 	while (1) {
5870 		ret = btrfs_search_forward(root, min_key, path, trans->transid);
5871 		if (ret < 0)
5872 			return ret;
5873 		if (ret > 0) {
5874 			ret = 0;
5875 			break;
5876 		}
5877 again:
5878 		/* Note, ins_nr might be > 0 here, cleanup outside the loop */
5879 		if (min_key->objectid != max_key->objectid)
5880 			break;
5881 		if (min_key->type > max_key->type)
5882 			break;
5883 
5884 		if (min_key->type == BTRFS_INODE_ITEM_KEY) {
5885 			*need_log_inode_item = false;
5886 		} else if (min_key->type == BTRFS_EXTENT_DATA_KEY &&
5887 			   min_key->offset >= i_size) {
5888 			/*
5889 			 * Extents at and beyond eof are logged with
5890 			 * btrfs_log_prealloc_extents().
5891 			 * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
5892 			 * and no keys greater than that, so bail out.
5893 			 */
5894 			break;
5895 		} else if ((min_key->type == BTRFS_INODE_REF_KEY ||
5896 			    min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5897 			   (inode->generation == trans->transid ||
5898 			    ctx->logging_conflict_inodes)) {
5899 			u64 other_ino = 0;
5900 			u64 other_parent = 0;
5901 
5902 			ret = btrfs_check_ref_name_override(path->nodes[0],
5903 					path->slots[0], min_key, inode,
5904 					&other_ino, &other_parent);
5905 			if (ret < 0) {
5906 				return ret;
5907 			} else if (ret > 0 &&
5908 				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5909 				if (ins_nr > 0) {
5910 					ins_nr++;
5911 				} else {
5912 					ins_nr = 1;
5913 					ins_start_slot = path->slots[0];
5914 				}
5915 				ret = copy_items(trans, inode, dst_path, path,
5916 						 ins_start_slot, ins_nr,
5917 						 inode_only, logged_isize, ctx);
5918 				if (ret < 0)
5919 					return ret;
5920 				ins_nr = 0;
5921 
5922 				btrfs_release_path(path);
5923 				ret = add_conflicting_inode(trans, root, path,
5924 							    other_ino,
5925 							    other_parent, ctx);
5926 				if (ret)
5927 					return ret;
5928 				goto next_key;
5929 			}
5930 		} else if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5931 			/* Skip xattrs, logged later with btrfs_log_all_xattrs() */
5932 			if (ins_nr == 0)
5933 				goto next_slot;
5934 			ret = copy_items(trans, inode, dst_path, path,
5935 					 ins_start_slot,
5936 					 ins_nr, inode_only, logged_isize, ctx);
5937 			if (ret < 0)
5938 				return ret;
5939 			ins_nr = 0;
5940 			goto next_slot;
5941 		}
5942 
5943 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5944 			ins_nr++;
5945 			goto next_slot;
5946 		} else if (!ins_nr) {
5947 			ins_start_slot = path->slots[0];
5948 			ins_nr = 1;
5949 			goto next_slot;
5950 		}
5951 
5952 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5953 				 ins_nr, inode_only, logged_isize, ctx);
5954 		if (ret < 0)
5955 			return ret;
5956 		ins_nr = 1;
5957 		ins_start_slot = path->slots[0];
5958 next_slot:
5959 		path->slots[0]++;
5960 		if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5961 			btrfs_item_key_to_cpu(path->nodes[0], min_key,
5962 					      path->slots[0]);
5963 			goto again;
5964 		}
5965 		if (ins_nr) {
5966 			ret = copy_items(trans, inode, dst_path, path,
5967 					 ins_start_slot, ins_nr, inode_only,
5968 					 logged_isize, ctx);
5969 			if (ret < 0)
5970 				return ret;
5971 			ins_nr = 0;
5972 		}
5973 		btrfs_release_path(path);
5974 next_key:
5975 		if (min_key->offset < (u64)-1) {
5976 			min_key->offset++;
5977 		} else if (min_key->type < max_key->type) {
5978 			min_key->type++;
5979 			min_key->offset = 0;
5980 		} else {
5981 			break;
5982 		}
5983 
5984 		/*
5985 		 * We may process many leaves full of items for our inode, so
5986 		 * avoid monopolizing a cpu for too long by rescheduling while
5987 		 * not holding locks on any tree.
5988 		 */
5989 		cond_resched();
5990 	}
5991 	if (ins_nr) {
5992 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5993 				 ins_nr, inode_only, logged_isize, ctx);
5994 		if (ret)
5995 			return ret;
5996 	}
5997 
5998 	if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) {
5999 		/*
6000 		 * Release the path because otherwise we might attempt to double
6001 		 * lock the same leaf with btrfs_log_prealloc_extents() below.
6002 		 */
6003 		btrfs_release_path(path);
6004 		ret = btrfs_log_prealloc_extents(trans, inode, dst_path, ctx);
6005 	}
6006 
6007 	return ret;
6008 }
6009 
6010 static int insert_delayed_items_batch(struct btrfs_trans_handle *trans,
6011 				      struct btrfs_root *log,
6012 				      struct btrfs_path *path,
6013 				      const struct btrfs_item_batch *batch,
6014 				      const struct btrfs_delayed_item *first_item)
6015 {
6016 	const struct btrfs_delayed_item *curr = first_item;
6017 	int ret;
6018 
6019 	ret = btrfs_insert_empty_items(trans, log, path, batch);
6020 	if (ret)
6021 		return ret;
6022 
6023 	for (int i = 0; i < batch->nr; i++) {
6024 		char *data_ptr;
6025 
6026 		data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
6027 		write_extent_buffer(path->nodes[0], &curr->data,
6028 				    (unsigned long)data_ptr, curr->data_len);
6029 		curr = list_next_entry(curr, log_list);
6030 		path->slots[0]++;
6031 	}
6032 
6033 	btrfs_release_path(path);
6034 
6035 	return 0;
6036 }
6037 
6038 static int log_delayed_insertion_items(struct btrfs_trans_handle *trans,
6039 				       struct btrfs_inode *inode,
6040 				       struct btrfs_path *path,
6041 				       const struct list_head *delayed_ins_list,
6042 				       struct btrfs_log_ctx *ctx)
6043 {
6044 	/* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */
6045 	const int max_batch_size = 195;
6046 	const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info);
6047 	const u64 ino = btrfs_ino(inode);
6048 	struct btrfs_root *log = inode->root->log_root;
6049 	struct btrfs_item_batch batch = {
6050 		.nr = 0,
6051 		.total_data_size = 0,
6052 	};
6053 	const struct btrfs_delayed_item *first = NULL;
6054 	const struct btrfs_delayed_item *curr;
6055 	char *ins_data;
6056 	struct btrfs_key *ins_keys;
6057 	u32 *ins_sizes;
6058 	u64 curr_batch_size = 0;
6059 	int batch_idx = 0;
6060 	int ret;
6061 
6062 	/* We are adding dir index items to the log tree. */
6063 	lockdep_assert_held(&inode->log_mutex);
6064 
6065 	/*
6066 	 * We collect delayed items before copying index keys from the subvolume
6067 	 * to the log tree. However just after we collected them, they may have
6068 	 * been flushed (all of them or just some of them), and therefore we
6069 	 * could have copied them from the subvolume tree to the log tree.
6070 	 * So find the first delayed item that was not yet logged (they are
6071 	 * sorted by index number).
6072 	 */
6073 	list_for_each_entry(curr, delayed_ins_list, log_list) {
6074 		if (curr->index > inode->last_dir_index_offset) {
6075 			first = curr;
6076 			break;
6077 		}
6078 	}
6079 
6080 	/* Empty list or all delayed items were already logged. */
6081 	if (!first)
6082 		return 0;
6083 
6084 	ins_data = kmalloc(max_batch_size * sizeof(u32) +
6085 			   max_batch_size * sizeof(struct btrfs_key), GFP_NOFS);
6086 	if (!ins_data)
6087 		return -ENOMEM;
6088 	ins_sizes = (u32 *)ins_data;
6089 	batch.data_sizes = ins_sizes;
6090 	ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32));
6091 	batch.keys = ins_keys;
6092 
6093 	curr = first;
6094 	while (!list_entry_is_head(curr, delayed_ins_list, log_list)) {
6095 		const u32 curr_size = curr->data_len + sizeof(struct btrfs_item);
6096 
6097 		if (curr_batch_size + curr_size > leaf_data_size ||
6098 		    batch.nr == max_batch_size) {
6099 			ret = insert_delayed_items_batch(trans, log, path,
6100 							 &batch, first);
6101 			if (ret)
6102 				goto out;
6103 			batch_idx = 0;
6104 			batch.nr = 0;
6105 			batch.total_data_size = 0;
6106 			curr_batch_size = 0;
6107 			first = curr;
6108 		}
6109 
6110 		ins_sizes[batch_idx] = curr->data_len;
6111 		ins_keys[batch_idx].objectid = ino;
6112 		ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY;
6113 		ins_keys[batch_idx].offset = curr->index;
6114 		curr_batch_size += curr_size;
6115 		batch.total_data_size += curr->data_len;
6116 		batch.nr++;
6117 		batch_idx++;
6118 		curr = list_next_entry(curr, log_list);
6119 	}
6120 
6121 	ASSERT(batch.nr >= 1);
6122 	ret = insert_delayed_items_batch(trans, log, path, &batch, first);
6123 
6124 	curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item,
6125 			       log_list);
6126 	inode->last_dir_index_offset = curr->index;
6127 out:
6128 	kfree(ins_data);
6129 
6130 	return ret;
6131 }
6132 
6133 static int log_delayed_deletions_full(struct btrfs_trans_handle *trans,
6134 				      struct btrfs_inode *inode,
6135 				      struct btrfs_path *path,
6136 				      const struct list_head *delayed_del_list,
6137 				      struct btrfs_log_ctx *ctx)
6138 {
6139 	const u64 ino = btrfs_ino(inode);
6140 	const struct btrfs_delayed_item *curr;
6141 
6142 	curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6143 				log_list);
6144 
6145 	while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6146 		u64 first_dir_index = curr->index;
6147 		u64 last_dir_index;
6148 		const struct btrfs_delayed_item *next;
6149 		int ret;
6150 
6151 		/*
6152 		 * Find a range of consecutive dir index items to delete. Like
6153 		 * this we log a single dir range item spanning several contiguous
6154 		 * dir items instead of logging one range item per dir index item.
6155 		 */
6156 		next = list_next_entry(curr, log_list);
6157 		while (!list_entry_is_head(next, delayed_del_list, log_list)) {
6158 			if (next->index != curr->index + 1)
6159 				break;
6160 			curr = next;
6161 			next = list_next_entry(next, log_list);
6162 		}
6163 
6164 		last_dir_index = curr->index;
6165 		ASSERT(last_dir_index >= first_dir_index);
6166 
6167 		ret = insert_dir_log_key(trans, inode->root->log_root, path,
6168 					 ino, first_dir_index, last_dir_index);
6169 		if (ret)
6170 			return ret;
6171 		curr = list_next_entry(curr, log_list);
6172 	}
6173 
6174 	return 0;
6175 }
6176 
6177 static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans,
6178 					struct btrfs_inode *inode,
6179 					struct btrfs_path *path,
6180 					struct btrfs_log_ctx *ctx,
6181 					const struct list_head *delayed_del_list,
6182 					const struct btrfs_delayed_item *first,
6183 					const struct btrfs_delayed_item **last_ret)
6184 {
6185 	const struct btrfs_delayed_item *next;
6186 	struct extent_buffer *leaf = path->nodes[0];
6187 	const int last_slot = btrfs_header_nritems(leaf) - 1;
6188 	int slot = path->slots[0] + 1;
6189 	const u64 ino = btrfs_ino(inode);
6190 
6191 	next = list_next_entry(first, log_list);
6192 
6193 	while (slot < last_slot &&
6194 	       !list_entry_is_head(next, delayed_del_list, log_list)) {
6195 		struct btrfs_key key;
6196 
6197 		btrfs_item_key_to_cpu(leaf, &key, slot);
6198 		if (key.objectid != ino ||
6199 		    key.type != BTRFS_DIR_INDEX_KEY ||
6200 		    key.offset != next->index)
6201 			break;
6202 
6203 		slot++;
6204 		*last_ret = next;
6205 		next = list_next_entry(next, log_list);
6206 	}
6207 
6208 	return btrfs_del_items(trans, inode->root->log_root, path,
6209 			       path->slots[0], slot - path->slots[0]);
6210 }
6211 
6212 static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans,
6213 					     struct btrfs_inode *inode,
6214 					     struct btrfs_path *path,
6215 					     const struct list_head *delayed_del_list,
6216 					     struct btrfs_log_ctx *ctx)
6217 {
6218 	struct btrfs_root *log = inode->root->log_root;
6219 	const struct btrfs_delayed_item *curr;
6220 	u64 last_range_start = 0;
6221 	u64 last_range_end = 0;
6222 	struct btrfs_key key;
6223 
6224 	key.objectid = btrfs_ino(inode);
6225 	key.type = BTRFS_DIR_INDEX_KEY;
6226 	curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6227 				log_list);
6228 
6229 	while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6230 		const struct btrfs_delayed_item *last = curr;
6231 		u64 first_dir_index = curr->index;
6232 		u64 last_dir_index;
6233 		bool deleted_items = false;
6234 		int ret;
6235 
6236 		key.offset = curr->index;
6237 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
6238 		if (ret < 0) {
6239 			return ret;
6240 		} else if (ret == 0) {
6241 			ret = batch_delete_dir_index_items(trans, inode, path, ctx,
6242 							   delayed_del_list, curr,
6243 							   &last);
6244 			if (ret)
6245 				return ret;
6246 			deleted_items = true;
6247 		}
6248 
6249 		btrfs_release_path(path);
6250 
6251 		/*
6252 		 * If we deleted items from the leaf, it means we have a range
6253 		 * item logging their range, so no need to add one or update an
6254 		 * existing one. Otherwise we have to log a dir range item.
6255 		 */
6256 		if (deleted_items)
6257 			goto next_batch;
6258 
6259 		last_dir_index = last->index;
6260 		ASSERT(last_dir_index >= first_dir_index);
6261 		/*
6262 		 * If this range starts right after where the previous one ends,
6263 		 * then we want to reuse the previous range item and change its
6264 		 * end offset to the end of this range. This is just to minimize
6265 		 * leaf space usage, by avoiding adding a new range item.
6266 		 */
6267 		if (last_range_end != 0 && first_dir_index == last_range_end + 1)
6268 			first_dir_index = last_range_start;
6269 
6270 		ret = insert_dir_log_key(trans, log, path, key.objectid,
6271 					 first_dir_index, last_dir_index);
6272 		if (ret)
6273 			return ret;
6274 
6275 		last_range_start = first_dir_index;
6276 		last_range_end = last_dir_index;
6277 next_batch:
6278 		curr = list_next_entry(last, log_list);
6279 	}
6280 
6281 	return 0;
6282 }
6283 
6284 static int log_delayed_deletion_items(struct btrfs_trans_handle *trans,
6285 				      struct btrfs_inode *inode,
6286 				      struct btrfs_path *path,
6287 				      const struct list_head *delayed_del_list,
6288 				      struct btrfs_log_ctx *ctx)
6289 {
6290 	/*
6291 	 * We are deleting dir index items from the log tree or adding range
6292 	 * items to it.
6293 	 */
6294 	lockdep_assert_held(&inode->log_mutex);
6295 
6296 	if (list_empty(delayed_del_list))
6297 		return 0;
6298 
6299 	if (ctx->logged_before)
6300 		return log_delayed_deletions_incremental(trans, inode, path,
6301 							 delayed_del_list, ctx);
6302 
6303 	return log_delayed_deletions_full(trans, inode, path, delayed_del_list,
6304 					  ctx);
6305 }
6306 
6307 /*
6308  * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed
6309  * items instead of the subvolume tree.
6310  */
6311 static int log_new_delayed_dentries(struct btrfs_trans_handle *trans,
6312 				    struct btrfs_inode *inode,
6313 				    const struct list_head *delayed_ins_list,
6314 				    struct btrfs_log_ctx *ctx)
6315 {
6316 	const bool orig_log_new_dentries = ctx->log_new_dentries;
6317 	struct btrfs_fs_info *fs_info = trans->fs_info;
6318 	struct btrfs_delayed_item *item;
6319 	int ret = 0;
6320 
6321 	/*
6322 	 * No need for the log mutex, plus to avoid potential deadlocks or
6323 	 * lockdep annotations due to nesting of delayed inode mutexes and log
6324 	 * mutexes.
6325 	 */
6326 	lockdep_assert_not_held(&inode->log_mutex);
6327 
6328 	ASSERT(!ctx->logging_new_delayed_dentries);
6329 	ctx->logging_new_delayed_dentries = true;
6330 
6331 	list_for_each_entry(item, delayed_ins_list, log_list) {
6332 		struct btrfs_dir_item *dir_item;
6333 		struct inode *di_inode;
6334 		struct btrfs_key key;
6335 		int log_mode = LOG_INODE_EXISTS;
6336 
6337 		dir_item = (struct btrfs_dir_item *)item->data;
6338 		btrfs_disk_key_to_cpu(&key, &dir_item->location);
6339 
6340 		if (key.type == BTRFS_ROOT_ITEM_KEY)
6341 			continue;
6342 
6343 		di_inode = btrfs_iget(fs_info->sb, key.objectid, inode->root);
6344 		if (IS_ERR(di_inode)) {
6345 			ret = PTR_ERR(di_inode);
6346 			break;
6347 		}
6348 
6349 		if (!need_log_inode(trans, BTRFS_I(di_inode))) {
6350 			btrfs_add_delayed_iput(BTRFS_I(di_inode));
6351 			continue;
6352 		}
6353 
6354 		if (btrfs_stack_dir_ftype(dir_item) == BTRFS_FT_DIR)
6355 			log_mode = LOG_INODE_ALL;
6356 
6357 		ctx->log_new_dentries = false;
6358 		ret = btrfs_log_inode(trans, BTRFS_I(di_inode), log_mode, ctx);
6359 
6360 		if (!ret && ctx->log_new_dentries)
6361 			ret = log_new_dir_dentries(trans, BTRFS_I(di_inode), ctx);
6362 
6363 		btrfs_add_delayed_iput(BTRFS_I(di_inode));
6364 
6365 		if (ret)
6366 			break;
6367 	}
6368 
6369 	ctx->log_new_dentries = orig_log_new_dentries;
6370 	ctx->logging_new_delayed_dentries = false;
6371 
6372 	return ret;
6373 }
6374 
6375 /* log a single inode in the tree log.
6376  * At least one parent directory for this inode must exist in the tree
6377  * or be logged already.
6378  *
6379  * Any items from this inode changed by the current transaction are copied
6380  * to the log tree.  An extra reference is taken on any extents in this
6381  * file, allowing us to avoid a whole pile of corner cases around logging
6382  * blocks that have been removed from the tree.
6383  *
6384  * See LOG_INODE_ALL and related defines for a description of what inode_only
6385  * does.
6386  *
6387  * This handles both files and directories.
6388  */
6389 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
6390 			   struct btrfs_inode *inode,
6391 			   int inode_only,
6392 			   struct btrfs_log_ctx *ctx)
6393 {
6394 	struct btrfs_path *path;
6395 	struct btrfs_path *dst_path;
6396 	struct btrfs_key min_key;
6397 	struct btrfs_key max_key;
6398 	struct btrfs_root *log = inode->root->log_root;
6399 	int ret;
6400 	bool fast_search = false;
6401 	u64 ino = btrfs_ino(inode);
6402 	struct extent_map_tree *em_tree = &inode->extent_tree;
6403 	u64 logged_isize = 0;
6404 	bool need_log_inode_item = true;
6405 	bool xattrs_logged = false;
6406 	bool inode_item_dropped = true;
6407 	bool full_dir_logging = false;
6408 	LIST_HEAD(delayed_ins_list);
6409 	LIST_HEAD(delayed_del_list);
6410 
6411 	path = btrfs_alloc_path();
6412 	if (!path)
6413 		return -ENOMEM;
6414 	dst_path = btrfs_alloc_path();
6415 	if (!dst_path) {
6416 		btrfs_free_path(path);
6417 		return -ENOMEM;
6418 	}
6419 
6420 	min_key.objectid = ino;
6421 	min_key.type = BTRFS_INODE_ITEM_KEY;
6422 	min_key.offset = 0;
6423 
6424 	max_key.objectid = ino;
6425 
6426 
6427 	/* today the code can only do partial logging of directories */
6428 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
6429 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6430 		       &inode->runtime_flags) &&
6431 	     inode_only >= LOG_INODE_EXISTS))
6432 		max_key.type = BTRFS_XATTR_ITEM_KEY;
6433 	else
6434 		max_key.type = (u8)-1;
6435 	max_key.offset = (u64)-1;
6436 
6437 	if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL)
6438 		full_dir_logging = true;
6439 
6440 	/*
6441 	 * If we are logging a directory while we are logging dentries of the
6442 	 * delayed items of some other inode, then we need to flush the delayed
6443 	 * items of this directory and not log the delayed items directly. This
6444 	 * is to prevent more than one level of recursion into btrfs_log_inode()
6445 	 * by having something like this:
6446 	 *
6447 	 *     $ mkdir -p a/b/c/d/e/f/g/h/...
6448 	 *     $ xfs_io -c "fsync" a
6449 	 *
6450 	 * Where all directories in the path did not exist before and are
6451 	 * created in the current transaction.
6452 	 * So in such a case we directly log the delayed items of the main
6453 	 * directory ("a") without flushing them first, while for each of its
6454 	 * subdirectories we flush their delayed items before logging them.
6455 	 * This prevents a potential unbounded recursion like this:
6456 	 *
6457 	 * btrfs_log_inode()
6458 	 *   log_new_delayed_dentries()
6459 	 *      btrfs_log_inode()
6460 	 *        log_new_delayed_dentries()
6461 	 *          btrfs_log_inode()
6462 	 *            log_new_delayed_dentries()
6463 	 *              (...)
6464 	 *
6465 	 * We have thresholds for the maximum number of delayed items to have in
6466 	 * memory, and once they are hit, the items are flushed asynchronously.
6467 	 * However the limit is quite high, so lets prevent deep levels of
6468 	 * recursion to happen by limiting the maximum depth to be 1.
6469 	 */
6470 	if (full_dir_logging && ctx->logging_new_delayed_dentries) {
6471 		ret = btrfs_commit_inode_delayed_items(trans, inode);
6472 		if (ret)
6473 			goto out;
6474 	}
6475 
6476 	mutex_lock(&inode->log_mutex);
6477 
6478 	/*
6479 	 * For symlinks, we must always log their content, which is stored in an
6480 	 * inline extent, otherwise we could end up with an empty symlink after
6481 	 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if
6482 	 * one attempts to create an empty symlink).
6483 	 * We don't need to worry about flushing delalloc, because when we create
6484 	 * the inline extent when the symlink is created (we never have delalloc
6485 	 * for symlinks).
6486 	 */
6487 	if (S_ISLNK(inode->vfs_inode.i_mode))
6488 		inode_only = LOG_INODE_ALL;
6489 
6490 	/*
6491 	 * Before logging the inode item, cache the value returned by
6492 	 * inode_logged(), because after that we have the need to figure out if
6493 	 * the inode was previously logged in this transaction.
6494 	 */
6495 	ret = inode_logged(trans, inode, path);
6496 	if (ret < 0)
6497 		goto out_unlock;
6498 	ctx->logged_before = (ret == 1);
6499 	ret = 0;
6500 
6501 	/*
6502 	 * This is for cases where logging a directory could result in losing a
6503 	 * a file after replaying the log. For example, if we move a file from a
6504 	 * directory A to a directory B, then fsync directory A, we have no way
6505 	 * to known the file was moved from A to B, so logging just A would
6506 	 * result in losing the file after a log replay.
6507 	 */
6508 	if (full_dir_logging && inode->last_unlink_trans >= trans->transid) {
6509 		ret = BTRFS_LOG_FORCE_COMMIT;
6510 		goto out_unlock;
6511 	}
6512 
6513 	/*
6514 	 * a brute force approach to making sure we get the most uptodate
6515 	 * copies of everything.
6516 	 */
6517 	if (S_ISDIR(inode->vfs_inode.i_mode)) {
6518 		clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
6519 		if (ctx->logged_before)
6520 			ret = drop_inode_items(trans, log, path, inode,
6521 					       BTRFS_XATTR_ITEM_KEY);
6522 	} else {
6523 		if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) {
6524 			/*
6525 			 * Make sure the new inode item we write to the log has
6526 			 * the same isize as the current one (if it exists).
6527 			 * This is necessary to prevent data loss after log
6528 			 * replay, and also to prevent doing a wrong expanding
6529 			 * truncate - for e.g. create file, write 4K into offset
6530 			 * 0, fsync, write 4K into offset 4096, add hard link,
6531 			 * fsync some other file (to sync log), power fail - if
6532 			 * we use the inode's current i_size, after log replay
6533 			 * we get a 8Kb file, with the last 4Kb extent as a hole
6534 			 * (zeroes), as if an expanding truncate happened,
6535 			 * instead of getting a file of 4Kb only.
6536 			 */
6537 			ret = logged_inode_size(log, inode, path, &logged_isize);
6538 			if (ret)
6539 				goto out_unlock;
6540 		}
6541 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6542 			     &inode->runtime_flags)) {
6543 			if (inode_only == LOG_INODE_EXISTS) {
6544 				max_key.type = BTRFS_XATTR_ITEM_KEY;
6545 				if (ctx->logged_before)
6546 					ret = drop_inode_items(trans, log, path,
6547 							       inode, max_key.type);
6548 			} else {
6549 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6550 					  &inode->runtime_flags);
6551 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6552 					  &inode->runtime_flags);
6553 				if (ctx->logged_before)
6554 					ret = truncate_inode_items(trans, log,
6555 								   inode, 0, 0);
6556 			}
6557 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6558 					      &inode->runtime_flags) ||
6559 			   inode_only == LOG_INODE_EXISTS) {
6560 			if (inode_only == LOG_INODE_ALL)
6561 				fast_search = true;
6562 			max_key.type = BTRFS_XATTR_ITEM_KEY;
6563 			if (ctx->logged_before)
6564 				ret = drop_inode_items(trans, log, path, inode,
6565 						       max_key.type);
6566 		} else {
6567 			if (inode_only == LOG_INODE_ALL)
6568 				fast_search = true;
6569 			inode_item_dropped = false;
6570 			goto log_extents;
6571 		}
6572 
6573 	}
6574 	if (ret)
6575 		goto out_unlock;
6576 
6577 	/*
6578 	 * If we are logging a directory in full mode, collect the delayed items
6579 	 * before iterating the subvolume tree, so that we don't miss any new
6580 	 * dir index items in case they get flushed while or right after we are
6581 	 * iterating the subvolume tree.
6582 	 */
6583 	if (full_dir_logging && !ctx->logging_new_delayed_dentries)
6584 		btrfs_log_get_delayed_items(inode, &delayed_ins_list,
6585 					    &delayed_del_list);
6586 
6587 	ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
6588 				      path, dst_path, logged_isize,
6589 				      inode_only, ctx,
6590 				      &need_log_inode_item);
6591 	if (ret)
6592 		goto out_unlock;
6593 
6594 	btrfs_release_path(path);
6595 	btrfs_release_path(dst_path);
6596 	ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx);
6597 	if (ret)
6598 		goto out_unlock;
6599 	xattrs_logged = true;
6600 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
6601 		btrfs_release_path(path);
6602 		btrfs_release_path(dst_path);
6603 		ret = btrfs_log_holes(trans, inode, path);
6604 		if (ret)
6605 			goto out_unlock;
6606 	}
6607 log_extents:
6608 	btrfs_release_path(path);
6609 	btrfs_release_path(dst_path);
6610 	if (need_log_inode_item) {
6611 		ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
6612 		if (ret)
6613 			goto out_unlock;
6614 		/*
6615 		 * If we are doing a fast fsync and the inode was logged before
6616 		 * in this transaction, we don't need to log the xattrs because
6617 		 * they were logged before. If xattrs were added, changed or
6618 		 * deleted since the last time we logged the inode, then we have
6619 		 * already logged them because the inode had the runtime flag
6620 		 * BTRFS_INODE_COPY_EVERYTHING set.
6621 		 */
6622 		if (!xattrs_logged && inode->logged_trans < trans->transid) {
6623 			ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx);
6624 			if (ret)
6625 				goto out_unlock;
6626 			btrfs_release_path(path);
6627 		}
6628 	}
6629 	if (fast_search) {
6630 		ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx);
6631 		if (ret)
6632 			goto out_unlock;
6633 	} else if (inode_only == LOG_INODE_ALL) {
6634 		struct extent_map *em, *n;
6635 
6636 		write_lock(&em_tree->lock);
6637 		list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
6638 			list_del_init(&em->list);
6639 		write_unlock(&em_tree->lock);
6640 	}
6641 
6642 	if (full_dir_logging) {
6643 		ret = log_directory_changes(trans, inode, path, dst_path, ctx);
6644 		if (ret)
6645 			goto out_unlock;
6646 		ret = log_delayed_insertion_items(trans, inode, path,
6647 						  &delayed_ins_list, ctx);
6648 		if (ret)
6649 			goto out_unlock;
6650 		ret = log_delayed_deletion_items(trans, inode, path,
6651 						 &delayed_del_list, ctx);
6652 		if (ret)
6653 			goto out_unlock;
6654 	}
6655 
6656 	spin_lock(&inode->lock);
6657 	inode->logged_trans = trans->transid;
6658 	/*
6659 	 * Don't update last_log_commit if we logged that an inode exists.
6660 	 * We do this for three reasons:
6661 	 *
6662 	 * 1) We might have had buffered writes to this inode that were
6663 	 *    flushed and had their ordered extents completed in this
6664 	 *    transaction, but we did not previously log the inode with
6665 	 *    LOG_INODE_ALL. Later the inode was evicted and after that
6666 	 *    it was loaded again and this LOG_INODE_EXISTS log operation
6667 	 *    happened. We must make sure that if an explicit fsync against
6668 	 *    the inode is performed later, it logs the new extents, an
6669 	 *    updated inode item, etc, and syncs the log. The same logic
6670 	 *    applies to direct IO writes instead of buffered writes.
6671 	 *
6672 	 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
6673 	 *    is logged with an i_size of 0 or whatever value was logged
6674 	 *    before. If later the i_size of the inode is increased by a
6675 	 *    truncate operation, the log is synced through an fsync of
6676 	 *    some other inode and then finally an explicit fsync against
6677 	 *    this inode is made, we must make sure this fsync logs the
6678 	 *    inode with the new i_size, the hole between old i_size and
6679 	 *    the new i_size, and syncs the log.
6680 	 *
6681 	 * 3) If we are logging that an ancestor inode exists as part of
6682 	 *    logging a new name from a link or rename operation, don't update
6683 	 *    its last_log_commit - otherwise if an explicit fsync is made
6684 	 *    against an ancestor, the fsync considers the inode in the log
6685 	 *    and doesn't sync the log, resulting in the ancestor missing after
6686 	 *    a power failure unless the log was synced as part of an fsync
6687 	 *    against any other unrelated inode.
6688 	 */
6689 	if (inode_only != LOG_INODE_EXISTS)
6690 		inode->last_log_commit = inode->last_sub_trans;
6691 	spin_unlock(&inode->lock);
6692 
6693 	/*
6694 	 * Reset the last_reflink_trans so that the next fsync does not need to
6695 	 * go through the slower path when logging extents and their checksums.
6696 	 */
6697 	if (inode_only == LOG_INODE_ALL)
6698 		inode->last_reflink_trans = 0;
6699 
6700 out_unlock:
6701 	mutex_unlock(&inode->log_mutex);
6702 out:
6703 	btrfs_free_path(path);
6704 	btrfs_free_path(dst_path);
6705 
6706 	if (ret)
6707 		free_conflicting_inodes(ctx);
6708 	else
6709 		ret = log_conflicting_inodes(trans, inode->root, ctx);
6710 
6711 	if (full_dir_logging && !ctx->logging_new_delayed_dentries) {
6712 		if (!ret)
6713 			ret = log_new_delayed_dentries(trans, inode,
6714 						       &delayed_ins_list, ctx);
6715 
6716 		btrfs_log_put_delayed_items(inode, &delayed_ins_list,
6717 					    &delayed_del_list);
6718 	}
6719 
6720 	return ret;
6721 }
6722 
6723 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
6724 				 struct btrfs_inode *inode,
6725 				 struct btrfs_log_ctx *ctx)
6726 {
6727 	struct btrfs_fs_info *fs_info = trans->fs_info;
6728 	int ret;
6729 	struct btrfs_path *path;
6730 	struct btrfs_key key;
6731 	struct btrfs_root *root = inode->root;
6732 	const u64 ino = btrfs_ino(inode);
6733 
6734 	path = btrfs_alloc_path();
6735 	if (!path)
6736 		return -ENOMEM;
6737 	path->skip_locking = 1;
6738 	path->search_commit_root = 1;
6739 
6740 	key.objectid = ino;
6741 	key.type = BTRFS_INODE_REF_KEY;
6742 	key.offset = 0;
6743 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6744 	if (ret < 0)
6745 		goto out;
6746 
6747 	while (true) {
6748 		struct extent_buffer *leaf = path->nodes[0];
6749 		int slot = path->slots[0];
6750 		u32 cur_offset = 0;
6751 		u32 item_size;
6752 		unsigned long ptr;
6753 
6754 		if (slot >= btrfs_header_nritems(leaf)) {
6755 			ret = btrfs_next_leaf(root, path);
6756 			if (ret < 0)
6757 				goto out;
6758 			else if (ret > 0)
6759 				break;
6760 			continue;
6761 		}
6762 
6763 		btrfs_item_key_to_cpu(leaf, &key, slot);
6764 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
6765 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
6766 			break;
6767 
6768 		item_size = btrfs_item_size(leaf, slot);
6769 		ptr = btrfs_item_ptr_offset(leaf, slot);
6770 		while (cur_offset < item_size) {
6771 			struct btrfs_key inode_key;
6772 			struct inode *dir_inode;
6773 
6774 			inode_key.type = BTRFS_INODE_ITEM_KEY;
6775 			inode_key.offset = 0;
6776 
6777 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
6778 				struct btrfs_inode_extref *extref;
6779 
6780 				extref = (struct btrfs_inode_extref *)
6781 					(ptr + cur_offset);
6782 				inode_key.objectid = btrfs_inode_extref_parent(
6783 					leaf, extref);
6784 				cur_offset += sizeof(*extref);
6785 				cur_offset += btrfs_inode_extref_name_len(leaf,
6786 					extref);
6787 			} else {
6788 				inode_key.objectid = key.offset;
6789 				cur_offset = item_size;
6790 			}
6791 
6792 			dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
6793 					       root);
6794 			/*
6795 			 * If the parent inode was deleted, return an error to
6796 			 * fallback to a transaction commit. This is to prevent
6797 			 * getting an inode that was moved from one parent A to
6798 			 * a parent B, got its former parent A deleted and then
6799 			 * it got fsync'ed, from existing at both parents after
6800 			 * a log replay (and the old parent still existing).
6801 			 * Example:
6802 			 *
6803 			 * mkdir /mnt/A
6804 			 * mkdir /mnt/B
6805 			 * touch /mnt/B/bar
6806 			 * sync
6807 			 * mv /mnt/B/bar /mnt/A/bar
6808 			 * mv -T /mnt/A /mnt/B
6809 			 * fsync /mnt/B/bar
6810 			 * <power fail>
6811 			 *
6812 			 * If we ignore the old parent B which got deleted,
6813 			 * after a log replay we would have file bar linked
6814 			 * at both parents and the old parent B would still
6815 			 * exist.
6816 			 */
6817 			if (IS_ERR(dir_inode)) {
6818 				ret = PTR_ERR(dir_inode);
6819 				goto out;
6820 			}
6821 
6822 			if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
6823 				btrfs_add_delayed_iput(BTRFS_I(dir_inode));
6824 				continue;
6825 			}
6826 
6827 			ctx->log_new_dentries = false;
6828 			ret = btrfs_log_inode(trans, BTRFS_I(dir_inode),
6829 					      LOG_INODE_ALL, ctx);
6830 			if (!ret && ctx->log_new_dentries)
6831 				ret = log_new_dir_dentries(trans,
6832 						   BTRFS_I(dir_inode), ctx);
6833 			btrfs_add_delayed_iput(BTRFS_I(dir_inode));
6834 			if (ret)
6835 				goto out;
6836 		}
6837 		path->slots[0]++;
6838 	}
6839 	ret = 0;
6840 out:
6841 	btrfs_free_path(path);
6842 	return ret;
6843 }
6844 
6845 static int log_new_ancestors(struct btrfs_trans_handle *trans,
6846 			     struct btrfs_root *root,
6847 			     struct btrfs_path *path,
6848 			     struct btrfs_log_ctx *ctx)
6849 {
6850 	struct btrfs_key found_key;
6851 
6852 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
6853 
6854 	while (true) {
6855 		struct btrfs_fs_info *fs_info = root->fs_info;
6856 		struct extent_buffer *leaf;
6857 		int slot;
6858 		struct btrfs_key search_key;
6859 		struct inode *inode;
6860 		u64 ino;
6861 		int ret = 0;
6862 
6863 		btrfs_release_path(path);
6864 
6865 		ino = found_key.offset;
6866 
6867 		search_key.objectid = found_key.offset;
6868 		search_key.type = BTRFS_INODE_ITEM_KEY;
6869 		search_key.offset = 0;
6870 		inode = btrfs_iget(fs_info->sb, ino, root);
6871 		if (IS_ERR(inode))
6872 			return PTR_ERR(inode);
6873 
6874 		if (BTRFS_I(inode)->generation >= trans->transid &&
6875 		    need_log_inode(trans, BTRFS_I(inode)))
6876 			ret = btrfs_log_inode(trans, BTRFS_I(inode),
6877 					      LOG_INODE_EXISTS, ctx);
6878 		btrfs_add_delayed_iput(BTRFS_I(inode));
6879 		if (ret)
6880 			return ret;
6881 
6882 		if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
6883 			break;
6884 
6885 		search_key.type = BTRFS_INODE_REF_KEY;
6886 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6887 		if (ret < 0)
6888 			return ret;
6889 
6890 		leaf = path->nodes[0];
6891 		slot = path->slots[0];
6892 		if (slot >= btrfs_header_nritems(leaf)) {
6893 			ret = btrfs_next_leaf(root, path);
6894 			if (ret < 0)
6895 				return ret;
6896 			else if (ret > 0)
6897 				return -ENOENT;
6898 			leaf = path->nodes[0];
6899 			slot = path->slots[0];
6900 		}
6901 
6902 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6903 		if (found_key.objectid != search_key.objectid ||
6904 		    found_key.type != BTRFS_INODE_REF_KEY)
6905 			return -ENOENT;
6906 	}
6907 	return 0;
6908 }
6909 
6910 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6911 				  struct btrfs_inode *inode,
6912 				  struct dentry *parent,
6913 				  struct btrfs_log_ctx *ctx)
6914 {
6915 	struct btrfs_root *root = inode->root;
6916 	struct dentry *old_parent = NULL;
6917 	struct super_block *sb = inode->vfs_inode.i_sb;
6918 	int ret = 0;
6919 
6920 	while (true) {
6921 		if (!parent || d_really_is_negative(parent) ||
6922 		    sb != parent->d_sb)
6923 			break;
6924 
6925 		inode = BTRFS_I(d_inode(parent));
6926 		if (root != inode->root)
6927 			break;
6928 
6929 		if (inode->generation >= trans->transid &&
6930 		    need_log_inode(trans, inode)) {
6931 			ret = btrfs_log_inode(trans, inode,
6932 					      LOG_INODE_EXISTS, ctx);
6933 			if (ret)
6934 				break;
6935 		}
6936 		if (IS_ROOT(parent))
6937 			break;
6938 
6939 		parent = dget_parent(parent);
6940 		dput(old_parent);
6941 		old_parent = parent;
6942 	}
6943 	dput(old_parent);
6944 
6945 	return ret;
6946 }
6947 
6948 static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6949 				 struct btrfs_inode *inode,
6950 				 struct dentry *parent,
6951 				 struct btrfs_log_ctx *ctx)
6952 {
6953 	struct btrfs_root *root = inode->root;
6954 	const u64 ino = btrfs_ino(inode);
6955 	struct btrfs_path *path;
6956 	struct btrfs_key search_key;
6957 	int ret;
6958 
6959 	/*
6960 	 * For a single hard link case, go through a fast path that does not
6961 	 * need to iterate the fs/subvolume tree.
6962 	 */
6963 	if (inode->vfs_inode.i_nlink < 2)
6964 		return log_new_ancestors_fast(trans, inode, parent, ctx);
6965 
6966 	path = btrfs_alloc_path();
6967 	if (!path)
6968 		return -ENOMEM;
6969 
6970 	search_key.objectid = ino;
6971 	search_key.type = BTRFS_INODE_REF_KEY;
6972 	search_key.offset = 0;
6973 again:
6974 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6975 	if (ret < 0)
6976 		goto out;
6977 	if (ret == 0)
6978 		path->slots[0]++;
6979 
6980 	while (true) {
6981 		struct extent_buffer *leaf = path->nodes[0];
6982 		int slot = path->slots[0];
6983 		struct btrfs_key found_key;
6984 
6985 		if (slot >= btrfs_header_nritems(leaf)) {
6986 			ret = btrfs_next_leaf(root, path);
6987 			if (ret < 0)
6988 				goto out;
6989 			else if (ret > 0)
6990 				break;
6991 			continue;
6992 		}
6993 
6994 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6995 		if (found_key.objectid != ino ||
6996 		    found_key.type > BTRFS_INODE_EXTREF_KEY)
6997 			break;
6998 
6999 		/*
7000 		 * Don't deal with extended references because they are rare
7001 		 * cases and too complex to deal with (we would need to keep
7002 		 * track of which subitem we are processing for each item in
7003 		 * this loop, etc). So just return some error to fallback to
7004 		 * a transaction commit.
7005 		 */
7006 		if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
7007 			ret = -EMLINK;
7008 			goto out;
7009 		}
7010 
7011 		/*
7012 		 * Logging ancestors needs to do more searches on the fs/subvol
7013 		 * tree, so it releases the path as needed to avoid deadlocks.
7014 		 * Keep track of the last inode ref key and resume from that key
7015 		 * after logging all new ancestors for the current hard link.
7016 		 */
7017 		memcpy(&search_key, &found_key, sizeof(search_key));
7018 
7019 		ret = log_new_ancestors(trans, root, path, ctx);
7020 		if (ret)
7021 			goto out;
7022 		btrfs_release_path(path);
7023 		goto again;
7024 	}
7025 	ret = 0;
7026 out:
7027 	btrfs_free_path(path);
7028 	return ret;
7029 }
7030 
7031 /*
7032  * helper function around btrfs_log_inode to make sure newly created
7033  * parent directories also end up in the log.  A minimal inode and backref
7034  * only logging is done of any parent directories that are older than
7035  * the last committed transaction
7036  */
7037 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
7038 				  struct btrfs_inode *inode,
7039 				  struct dentry *parent,
7040 				  int inode_only,
7041 				  struct btrfs_log_ctx *ctx)
7042 {
7043 	struct btrfs_root *root = inode->root;
7044 	struct btrfs_fs_info *fs_info = root->fs_info;
7045 	int ret = 0;
7046 	bool log_dentries = false;
7047 
7048 	if (btrfs_test_opt(fs_info, NOTREELOG)) {
7049 		ret = BTRFS_LOG_FORCE_COMMIT;
7050 		goto end_no_trans;
7051 	}
7052 
7053 	if (btrfs_root_refs(&root->root_item) == 0) {
7054 		ret = BTRFS_LOG_FORCE_COMMIT;
7055 		goto end_no_trans;
7056 	}
7057 
7058 	/*
7059 	 * Skip already logged inodes or inodes corresponding to tmpfiles
7060 	 * (since logging them is pointless, a link count of 0 means they
7061 	 * will never be accessible).
7062 	 */
7063 	if ((btrfs_inode_in_log(inode, trans->transid) &&
7064 	     list_empty(&ctx->ordered_extents)) ||
7065 	    inode->vfs_inode.i_nlink == 0) {
7066 		ret = BTRFS_NO_LOG_SYNC;
7067 		goto end_no_trans;
7068 	}
7069 
7070 	ret = start_log_trans(trans, root, ctx);
7071 	if (ret)
7072 		goto end_no_trans;
7073 
7074 	ret = btrfs_log_inode(trans, inode, inode_only, ctx);
7075 	if (ret)
7076 		goto end_trans;
7077 
7078 	/*
7079 	 * for regular files, if its inode is already on disk, we don't
7080 	 * have to worry about the parents at all.  This is because
7081 	 * we can use the last_unlink_trans field to record renames
7082 	 * and other fun in this file.
7083 	 */
7084 	if (S_ISREG(inode->vfs_inode.i_mode) &&
7085 	    inode->generation < trans->transid &&
7086 	    inode->last_unlink_trans < trans->transid) {
7087 		ret = 0;
7088 		goto end_trans;
7089 	}
7090 
7091 	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries)
7092 		log_dentries = true;
7093 
7094 	/*
7095 	 * On unlink we must make sure all our current and old parent directory
7096 	 * inodes are fully logged. This is to prevent leaving dangling
7097 	 * directory index entries in directories that were our parents but are
7098 	 * not anymore. Not doing this results in old parent directory being
7099 	 * impossible to delete after log replay (rmdir will always fail with
7100 	 * error -ENOTEMPTY).
7101 	 *
7102 	 * Example 1:
7103 	 *
7104 	 * mkdir testdir
7105 	 * touch testdir/foo
7106 	 * ln testdir/foo testdir/bar
7107 	 * sync
7108 	 * unlink testdir/bar
7109 	 * xfs_io -c fsync testdir/foo
7110 	 * <power failure>
7111 	 * mount fs, triggers log replay
7112 	 *
7113 	 * If we don't log the parent directory (testdir), after log replay the
7114 	 * directory still has an entry pointing to the file inode using the bar
7115 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
7116 	 * the file inode has a link count of 1.
7117 	 *
7118 	 * Example 2:
7119 	 *
7120 	 * mkdir testdir
7121 	 * touch foo
7122 	 * ln foo testdir/foo2
7123 	 * ln foo testdir/foo3
7124 	 * sync
7125 	 * unlink testdir/foo3
7126 	 * xfs_io -c fsync foo
7127 	 * <power failure>
7128 	 * mount fs, triggers log replay
7129 	 *
7130 	 * Similar as the first example, after log replay the parent directory
7131 	 * testdir still has an entry pointing to the inode file with name foo3
7132 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
7133 	 * and has a link count of 2.
7134 	 */
7135 	if (inode->last_unlink_trans >= trans->transid) {
7136 		ret = btrfs_log_all_parents(trans, inode, ctx);
7137 		if (ret)
7138 			goto end_trans;
7139 	}
7140 
7141 	ret = log_all_new_ancestors(trans, inode, parent, ctx);
7142 	if (ret)
7143 		goto end_trans;
7144 
7145 	if (log_dentries)
7146 		ret = log_new_dir_dentries(trans, inode, ctx);
7147 	else
7148 		ret = 0;
7149 end_trans:
7150 	if (ret < 0) {
7151 		btrfs_set_log_full_commit(trans);
7152 		ret = BTRFS_LOG_FORCE_COMMIT;
7153 	}
7154 
7155 	if (ret)
7156 		btrfs_remove_log_ctx(root, ctx);
7157 	btrfs_end_log_trans(root);
7158 end_no_trans:
7159 	return ret;
7160 }
7161 
7162 /*
7163  * it is not safe to log dentry if the chunk root has added new
7164  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
7165  * If this returns 1, you must commit the transaction to safely get your
7166  * data on disk.
7167  */
7168 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
7169 			  struct dentry *dentry,
7170 			  struct btrfs_log_ctx *ctx)
7171 {
7172 	struct dentry *parent = dget_parent(dentry);
7173 	int ret;
7174 
7175 	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
7176 				     LOG_INODE_ALL, ctx);
7177 	dput(parent);
7178 
7179 	return ret;
7180 }
7181 
7182 /*
7183  * should be called during mount to recover any replay any log trees
7184  * from the FS
7185  */
7186 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
7187 {
7188 	int ret;
7189 	struct btrfs_path *path;
7190 	struct btrfs_trans_handle *trans;
7191 	struct btrfs_key key;
7192 	struct btrfs_key found_key;
7193 	struct btrfs_root *log;
7194 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
7195 	struct walk_control wc = {
7196 		.process_func = process_one_buffer,
7197 		.stage = LOG_WALK_PIN_ONLY,
7198 	};
7199 
7200 	path = btrfs_alloc_path();
7201 	if (!path)
7202 		return -ENOMEM;
7203 
7204 	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7205 
7206 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
7207 	if (IS_ERR(trans)) {
7208 		ret = PTR_ERR(trans);
7209 		goto error;
7210 	}
7211 
7212 	wc.trans = trans;
7213 	wc.pin = 1;
7214 
7215 	ret = walk_log_tree(trans, log_root_tree, &wc);
7216 	if (ret) {
7217 		btrfs_abort_transaction(trans, ret);
7218 		goto error;
7219 	}
7220 
7221 again:
7222 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
7223 	key.offset = (u64)-1;
7224 	key.type = BTRFS_ROOT_ITEM_KEY;
7225 
7226 	while (1) {
7227 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
7228 
7229 		if (ret < 0) {
7230 			btrfs_abort_transaction(trans, ret);
7231 			goto error;
7232 		}
7233 		if (ret > 0) {
7234 			if (path->slots[0] == 0)
7235 				break;
7236 			path->slots[0]--;
7237 		}
7238 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
7239 				      path->slots[0]);
7240 		btrfs_release_path(path);
7241 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7242 			break;
7243 
7244 		log = btrfs_read_tree_root(log_root_tree, &found_key);
7245 		if (IS_ERR(log)) {
7246 			ret = PTR_ERR(log);
7247 			btrfs_abort_transaction(trans, ret);
7248 			goto error;
7249 		}
7250 
7251 		wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
7252 						   true);
7253 		if (IS_ERR(wc.replay_dest)) {
7254 			ret = PTR_ERR(wc.replay_dest);
7255 
7256 			/*
7257 			 * We didn't find the subvol, likely because it was
7258 			 * deleted.  This is ok, simply skip this log and go to
7259 			 * the next one.
7260 			 *
7261 			 * We need to exclude the root because we can't have
7262 			 * other log replays overwriting this log as we'll read
7263 			 * it back in a few more times.  This will keep our
7264 			 * block from being modified, and we'll just bail for
7265 			 * each subsequent pass.
7266 			 */
7267 			if (ret == -ENOENT)
7268 				ret = btrfs_pin_extent_for_log_replay(trans, log->node);
7269 			btrfs_put_root(log);
7270 
7271 			if (!ret)
7272 				goto next;
7273 			btrfs_abort_transaction(trans, ret);
7274 			goto error;
7275 		}
7276 
7277 		wc.replay_dest->log_root = log;
7278 		ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
7279 		if (ret)
7280 			/* The loop needs to continue due to the root refs */
7281 			btrfs_abort_transaction(trans, ret);
7282 		else
7283 			ret = walk_log_tree(trans, log, &wc);
7284 
7285 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7286 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
7287 						      path);
7288 			if (ret)
7289 				btrfs_abort_transaction(trans, ret);
7290 		}
7291 
7292 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7293 			struct btrfs_root *root = wc.replay_dest;
7294 
7295 			btrfs_release_path(path);
7296 
7297 			/*
7298 			 * We have just replayed everything, and the highest
7299 			 * objectid of fs roots probably has changed in case
7300 			 * some inode_item's got replayed.
7301 			 *
7302 			 * root->objectid_mutex is not acquired as log replay
7303 			 * could only happen during mount.
7304 			 */
7305 			ret = btrfs_init_root_free_objectid(root);
7306 			if (ret)
7307 				btrfs_abort_transaction(trans, ret);
7308 		}
7309 
7310 		wc.replay_dest->log_root = NULL;
7311 		btrfs_put_root(wc.replay_dest);
7312 		btrfs_put_root(log);
7313 
7314 		if (ret)
7315 			goto error;
7316 next:
7317 		if (found_key.offset == 0)
7318 			break;
7319 		key.offset = found_key.offset - 1;
7320 	}
7321 	btrfs_release_path(path);
7322 
7323 	/* step one is to pin it all, step two is to replay just inodes */
7324 	if (wc.pin) {
7325 		wc.pin = 0;
7326 		wc.process_func = replay_one_buffer;
7327 		wc.stage = LOG_WALK_REPLAY_INODES;
7328 		goto again;
7329 	}
7330 	/* step three is to replay everything */
7331 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
7332 		wc.stage++;
7333 		goto again;
7334 	}
7335 
7336 	btrfs_free_path(path);
7337 
7338 	/* step 4: commit the transaction, which also unpins the blocks */
7339 	ret = btrfs_commit_transaction(trans);
7340 	if (ret)
7341 		return ret;
7342 
7343 	log_root_tree->log_root = NULL;
7344 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7345 	btrfs_put_root(log_root_tree);
7346 
7347 	return 0;
7348 error:
7349 	if (wc.trans)
7350 		btrfs_end_transaction(wc.trans);
7351 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7352 	btrfs_free_path(path);
7353 	return ret;
7354 }
7355 
7356 /*
7357  * there are some corner cases where we want to force a full
7358  * commit instead of allowing a directory to be logged.
7359  *
7360  * They revolve around files there were unlinked from the directory, and
7361  * this function updates the parent directory so that a full commit is
7362  * properly done if it is fsync'd later after the unlinks are done.
7363  *
7364  * Must be called before the unlink operations (updates to the subvolume tree,
7365  * inodes, etc) are done.
7366  */
7367 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
7368 			     struct btrfs_inode *dir, struct btrfs_inode *inode,
7369 			     bool for_rename)
7370 {
7371 	/*
7372 	 * when we're logging a file, if it hasn't been renamed
7373 	 * or unlinked, and its inode is fully committed on disk,
7374 	 * we don't have to worry about walking up the directory chain
7375 	 * to log its parents.
7376 	 *
7377 	 * So, we use the last_unlink_trans field to put this transid
7378 	 * into the file.  When the file is logged we check it and
7379 	 * don't log the parents if the file is fully on disk.
7380 	 */
7381 	mutex_lock(&inode->log_mutex);
7382 	inode->last_unlink_trans = trans->transid;
7383 	mutex_unlock(&inode->log_mutex);
7384 
7385 	if (!for_rename)
7386 		return;
7387 
7388 	/*
7389 	 * If this directory was already logged, any new names will be logged
7390 	 * with btrfs_log_new_name() and old names will be deleted from the log
7391 	 * tree with btrfs_del_dir_entries_in_log() or with
7392 	 * btrfs_del_inode_ref_in_log().
7393 	 */
7394 	if (inode_logged(trans, dir, NULL) == 1)
7395 		return;
7396 
7397 	/*
7398 	 * If the inode we're about to unlink was logged before, the log will be
7399 	 * properly updated with the new name with btrfs_log_new_name() and the
7400 	 * old name removed with btrfs_del_dir_entries_in_log() or with
7401 	 * btrfs_del_inode_ref_in_log().
7402 	 */
7403 	if (inode_logged(trans, inode, NULL) == 1)
7404 		return;
7405 
7406 	/*
7407 	 * when renaming files across directories, if the directory
7408 	 * there we're unlinking from gets fsync'd later on, there's
7409 	 * no way to find the destination directory later and fsync it
7410 	 * properly.  So, we have to be conservative and force commits
7411 	 * so the new name gets discovered.
7412 	 */
7413 	mutex_lock(&dir->log_mutex);
7414 	dir->last_unlink_trans = trans->transid;
7415 	mutex_unlock(&dir->log_mutex);
7416 }
7417 
7418 /*
7419  * Make sure that if someone attempts to fsync the parent directory of a deleted
7420  * snapshot, it ends up triggering a transaction commit. This is to guarantee
7421  * that after replaying the log tree of the parent directory's root we will not
7422  * see the snapshot anymore and at log replay time we will not see any log tree
7423  * corresponding to the deleted snapshot's root, which could lead to replaying
7424  * it after replaying the log tree of the parent directory (which would replay
7425  * the snapshot delete operation).
7426  *
7427  * Must be called before the actual snapshot destroy operation (updates to the
7428  * parent root and tree of tree roots trees, etc) are done.
7429  */
7430 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
7431 				   struct btrfs_inode *dir)
7432 {
7433 	mutex_lock(&dir->log_mutex);
7434 	dir->last_unlink_trans = trans->transid;
7435 	mutex_unlock(&dir->log_mutex);
7436 }
7437 
7438 /*
7439  * Update the log after adding a new name for an inode.
7440  *
7441  * @trans:              Transaction handle.
7442  * @old_dentry:         The dentry associated with the old name and the old
7443  *                      parent directory.
7444  * @old_dir:            The inode of the previous parent directory for the case
7445  *                      of a rename. For a link operation, it must be NULL.
7446  * @old_dir_index:      The index number associated with the old name, meaningful
7447  *                      only for rename operations (when @old_dir is not NULL).
7448  *                      Ignored for link operations.
7449  * @parent:             The dentry associated with the directory under which the
7450  *                      new name is located.
7451  *
7452  * Call this after adding a new name for an inode, as a result of a link or
7453  * rename operation, and it will properly update the log to reflect the new name.
7454  */
7455 void btrfs_log_new_name(struct btrfs_trans_handle *trans,
7456 			struct dentry *old_dentry, struct btrfs_inode *old_dir,
7457 			u64 old_dir_index, struct dentry *parent)
7458 {
7459 	struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry));
7460 	struct btrfs_root *root = inode->root;
7461 	struct btrfs_log_ctx ctx;
7462 	bool log_pinned = false;
7463 	int ret;
7464 
7465 	/*
7466 	 * this will force the logging code to walk the dentry chain
7467 	 * up for the file
7468 	 */
7469 	if (!S_ISDIR(inode->vfs_inode.i_mode))
7470 		inode->last_unlink_trans = trans->transid;
7471 
7472 	/*
7473 	 * if this inode hasn't been logged and directory we're renaming it
7474 	 * from hasn't been logged, we don't need to log it
7475 	 */
7476 	ret = inode_logged(trans, inode, NULL);
7477 	if (ret < 0) {
7478 		goto out;
7479 	} else if (ret == 0) {
7480 		if (!old_dir)
7481 			return;
7482 		/*
7483 		 * If the inode was not logged and we are doing a rename (old_dir is not
7484 		 * NULL), check if old_dir was logged - if it was not we can return and
7485 		 * do nothing.
7486 		 */
7487 		ret = inode_logged(trans, old_dir, NULL);
7488 		if (ret < 0)
7489 			goto out;
7490 		else if (ret == 0)
7491 			return;
7492 	}
7493 	ret = 0;
7494 
7495 	/*
7496 	 * If we are doing a rename (old_dir is not NULL) from a directory that
7497 	 * was previously logged, make sure that on log replay we get the old
7498 	 * dir entry deleted. This is needed because we will also log the new
7499 	 * name of the renamed inode, so we need to make sure that after log
7500 	 * replay we don't end up with both the new and old dir entries existing.
7501 	 */
7502 	if (old_dir && old_dir->logged_trans == trans->transid) {
7503 		struct btrfs_root *log = old_dir->root->log_root;
7504 		struct btrfs_path *path;
7505 		struct fscrypt_name fname;
7506 
7507 		ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX);
7508 
7509 		ret = fscrypt_setup_filename(&old_dir->vfs_inode,
7510 					     &old_dentry->d_name, 0, &fname);
7511 		if (ret)
7512 			goto out;
7513 		/*
7514 		 * We have two inodes to update in the log, the old directory and
7515 		 * the inode that got renamed, so we must pin the log to prevent
7516 		 * anyone from syncing the log until we have updated both inodes
7517 		 * in the log.
7518 		 */
7519 		ret = join_running_log_trans(root);
7520 		/*
7521 		 * At least one of the inodes was logged before, so this should
7522 		 * not fail, but if it does, it's not serious, just bail out and
7523 		 * mark the log for a full commit.
7524 		 */
7525 		if (WARN_ON_ONCE(ret < 0)) {
7526 			fscrypt_free_filename(&fname);
7527 			goto out;
7528 		}
7529 
7530 		log_pinned = true;
7531 
7532 		path = btrfs_alloc_path();
7533 		if (!path) {
7534 			ret = -ENOMEM;
7535 			fscrypt_free_filename(&fname);
7536 			goto out;
7537 		}
7538 
7539 		/*
7540 		 * Other concurrent task might be logging the old directory,
7541 		 * as it can be triggered when logging other inode that had or
7542 		 * still has a dentry in the old directory. We lock the old
7543 		 * directory's log_mutex to ensure the deletion of the old
7544 		 * name is persisted, because during directory logging we
7545 		 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of
7546 		 * the old name's dir index item is in the delayed items, so
7547 		 * it could be missed by an in progress directory logging.
7548 		 */
7549 		mutex_lock(&old_dir->log_mutex);
7550 		ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir),
7551 					&fname.disk_name, old_dir_index);
7552 		if (ret > 0) {
7553 			/*
7554 			 * The dentry does not exist in the log, so record its
7555 			 * deletion.
7556 			 */
7557 			btrfs_release_path(path);
7558 			ret = insert_dir_log_key(trans, log, path,
7559 						 btrfs_ino(old_dir),
7560 						 old_dir_index, old_dir_index);
7561 		}
7562 		mutex_unlock(&old_dir->log_mutex);
7563 
7564 		btrfs_free_path(path);
7565 		fscrypt_free_filename(&fname);
7566 		if (ret < 0)
7567 			goto out;
7568 	}
7569 
7570 	btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
7571 	ctx.logging_new_name = true;
7572 	btrfs_init_log_ctx_scratch_eb(&ctx);
7573 	/*
7574 	 * We don't care about the return value. If we fail to log the new name
7575 	 * then we know the next attempt to sync the log will fallback to a full
7576 	 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
7577 	 * we don't need to worry about getting a log committed that has an
7578 	 * inconsistent state after a rename operation.
7579 	 */
7580 	btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
7581 	free_extent_buffer(ctx.scratch_eb);
7582 	ASSERT(list_empty(&ctx.conflict_inodes));
7583 out:
7584 	/*
7585 	 * If an error happened mark the log for a full commit because it's not
7586 	 * consistent and up to date or we couldn't find out if one of the
7587 	 * inodes was logged before in this transaction. Do it before unpinning
7588 	 * the log, to avoid any races with someone else trying to commit it.
7589 	 */
7590 	if (ret < 0)
7591 		btrfs_set_log_full_commit(trans);
7592 	if (log_pinned)
7593 		btrfs_end_log_trans(root);
7594 }
7595 
7596