1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/blkdev.h> 9 #include <linux/list_sort.h> 10 #include <linux/iversion.h> 11 #include "misc.h" 12 #include "ctree.h" 13 #include "tree-log.h" 14 #include "disk-io.h" 15 #include "locking.h" 16 #include "backref.h" 17 #include "compression.h" 18 #include "qgroup.h" 19 #include "block-group.h" 20 #include "space-info.h" 21 #include "inode-item.h" 22 #include "fs.h" 23 #include "accessors.h" 24 #include "extent-tree.h" 25 #include "root-tree.h" 26 #include "dir-item.h" 27 #include "file-item.h" 28 #include "file.h" 29 #include "orphan.h" 30 #include "print-tree.h" 31 #include "tree-checker.h" 32 33 #define MAX_CONFLICT_INODES 10 34 35 /* magic values for the inode_only field in btrfs_log_inode: 36 * 37 * LOG_INODE_ALL means to log everything 38 * LOG_INODE_EXISTS means to log just enough to recreate the inode 39 * during log replay 40 */ 41 enum { 42 LOG_INODE_ALL, 43 LOG_INODE_EXISTS, 44 }; 45 46 /* 47 * directory trouble cases 48 * 49 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync 50 * log, we must force a full commit before doing an fsync of the directory 51 * where the unlink was done. 52 * ---> record transid of last unlink/rename per directory 53 * 54 * mkdir foo/some_dir 55 * normal commit 56 * rename foo/some_dir foo2/some_dir 57 * mkdir foo/some_dir 58 * fsync foo/some_dir/some_file 59 * 60 * The fsync above will unlink the original some_dir without recording 61 * it in its new location (foo2). After a crash, some_dir will be gone 62 * unless the fsync of some_file forces a full commit 63 * 64 * 2) we must log any new names for any file or dir that is in the fsync 65 * log. ---> check inode while renaming/linking. 66 * 67 * 2a) we must log any new names for any file or dir during rename 68 * when the directory they are being removed from was logged. 69 * ---> check inode and old parent dir during rename 70 * 71 * 2a is actually the more important variant. With the extra logging 72 * a crash might unlink the old name without recreating the new one 73 * 74 * 3) after a crash, we must go through any directories with a link count 75 * of zero and redo the rm -rf 76 * 77 * mkdir f1/foo 78 * normal commit 79 * rm -rf f1/foo 80 * fsync(f1) 81 * 82 * The directory f1 was fully removed from the FS, but fsync was never 83 * called on f1, only its parent dir. After a crash the rm -rf must 84 * be replayed. This must be able to recurse down the entire 85 * directory tree. The inode link count fixup code takes care of the 86 * ugly details. 87 */ 88 89 /* 90 * stages for the tree walking. The first 91 * stage (0) is to only pin down the blocks we find 92 * the second stage (1) is to make sure that all the inodes 93 * we find in the log are created in the subvolume. 94 * 95 * The last stage is to deal with directories and links and extents 96 * and all the other fun semantics 97 */ 98 enum { 99 LOG_WALK_PIN_ONLY, 100 LOG_WALK_REPLAY_INODES, 101 LOG_WALK_REPLAY_DIR_INDEX, 102 LOG_WALK_REPLAY_ALL, 103 }; 104 105 /* 106 * The walk control struct is used to pass state down the chain when processing 107 * the log tree. The stage field tells us which part of the log tree processing 108 * we are currently doing. 109 */ 110 struct walk_control { 111 /* 112 * Signal that we are freeing the metadata extents of a log tree. 113 * This is used at transaction commit time while freeing a log tree. 114 */ 115 bool free; 116 117 /* 118 * Signal that we are pinning the metadata extents of a log tree and the 119 * data extents its leaves point to (if using mixed block groups). 120 * This happens in the first stage of log replay to ensure that during 121 * replay, while we are modifying subvolume trees, we don't overwrite 122 * the metadata extents of log trees. 123 */ 124 bool pin; 125 126 /* What stage of the replay code we're currently in. */ 127 int stage; 128 129 /* 130 * Ignore any items from the inode currently being processed. Needs 131 * to be set every time we find a BTRFS_INODE_ITEM_KEY. 132 */ 133 bool ignore_cur_inode; 134 135 /* 136 * The root we are currently replaying to. This is NULL for the replay 137 * stage LOG_WALK_PIN_ONLY. 138 */ 139 struct btrfs_root *root; 140 141 /* The log tree we are currently processing (not NULL for any stage). */ 142 struct btrfs_root *log; 143 144 /* The transaction handle used for replaying all log trees. */ 145 struct btrfs_trans_handle *trans; 146 147 /* 148 * The function that gets used to process blocks we find in the tree. 149 * Note the extent_buffer might not be up to date when it is passed in, 150 * and it must be checked or read if you need the data inside it. 151 */ 152 int (*process_func)(struct extent_buffer *eb, 153 struct walk_control *wc, u64 gen, int level); 154 155 /* 156 * The following are used only when stage is >= LOG_WALK_REPLAY_INODES 157 * and by the replay_one_buffer() callback. 158 */ 159 160 /* The current log leaf being processed. */ 161 struct extent_buffer *log_leaf; 162 /* The key being processed of the current log leaf. */ 163 struct btrfs_key log_key; 164 /* The slot being processed of the current log leaf. */ 165 int log_slot; 166 167 /* A path used for searches and modifications to subvolume trees. */ 168 struct btrfs_path *subvol_path; 169 }; 170 171 static void do_abort_log_replay(struct walk_control *wc, const char *function, 172 unsigned int line, int error, const char *fmt, ...) 173 { 174 struct btrfs_fs_info *fs_info = wc->trans->fs_info; 175 struct va_format vaf; 176 va_list args; 177 178 /* 179 * Do nothing if we already aborted, to avoid dumping leaves again which 180 * can be verbose. Further more, only the first call is useful since it 181 * is where we have a problem. Note that we do not use the flag 182 * BTRFS_FS_STATE_TRANS_ABORTED because log replay calls functions that 183 * are outside of tree-log.c that can abort transactions (such as 184 * btrfs_add_link() for example), so if that happens we still want to 185 * dump all log replay specific information below. 186 */ 187 if (test_and_set_bit(BTRFS_FS_STATE_LOG_REPLAY_ABORTED, &fs_info->fs_state)) 188 return; 189 190 btrfs_abort_transaction(wc->trans, error); 191 192 if (wc->subvol_path->nodes[0]) { 193 btrfs_crit(fs_info, 194 "subvolume (root %llu) leaf currently being processed:", 195 btrfs_root_id(wc->root)); 196 btrfs_print_leaf(wc->subvol_path->nodes[0]); 197 } 198 199 if (wc->log_leaf) { 200 btrfs_crit(fs_info, 201 "log tree (for root %llu) leaf currently being processed (slot %d key %llu %u %llu):", 202 btrfs_root_id(wc->root), wc->log_slot, 203 wc->log_key.objectid, wc->log_key.type, wc->log_key.offset); 204 btrfs_print_leaf(wc->log_leaf); 205 } 206 207 va_start(args, fmt); 208 vaf.fmt = fmt; 209 vaf.va = &args; 210 211 btrfs_crit(fs_info, 212 "log replay failed in %s:%u for root %llu, stage %d, with error %d: %pV", 213 function, line, btrfs_root_id(wc->root), wc->stage, error, &vaf); 214 215 va_end(args); 216 } 217 218 /* 219 * Use this for aborting a transaction during log replay while we are down the 220 * call chain of replay_one_buffer(), so that we get a lot more useful 221 * information for debugging issues when compared to a plain call to 222 * btrfs_abort_transaction(). 223 */ 224 #define btrfs_abort_log_replay(wc, error, fmt, args...) \ 225 do_abort_log_replay((wc), __func__, __LINE__, (error), fmt, ##args) 226 227 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 228 struct btrfs_inode *inode, 229 int inode_only, 230 struct btrfs_log_ctx *ctx); 231 static int link_to_fixup_dir(struct walk_control *wc, u64 objectid); 232 static noinline int replay_dir_deletes(struct walk_control *wc, 233 u64 dirid, bool del_all); 234 static void wait_log_commit(struct btrfs_root *root, int transid); 235 236 /* 237 * tree logging is a special write ahead log used to make sure that 238 * fsyncs and O_SYNCs can happen without doing full tree commits. 239 * 240 * Full tree commits are expensive because they require commonly 241 * modified blocks to be recowed, creating many dirty pages in the 242 * extent tree an 4x-6x higher write load than ext3. 243 * 244 * Instead of doing a tree commit on every fsync, we use the 245 * key ranges and transaction ids to find items for a given file or directory 246 * that have changed in this transaction. Those items are copied into 247 * a special tree (one per subvolume root), that tree is written to disk 248 * and then the fsync is considered complete. 249 * 250 * After a crash, items are copied out of the log-tree back into the 251 * subvolume tree. Any file data extents found are recorded in the extent 252 * allocation tree, and the log-tree freed. 253 * 254 * The log tree is read three times, once to pin down all the extents it is 255 * using in ram and once, once to create all the inodes logged in the tree 256 * and once to do all the other items. 257 */ 258 259 static struct btrfs_inode *btrfs_iget_logging(u64 objectid, struct btrfs_root *root) 260 { 261 unsigned int nofs_flag; 262 struct btrfs_inode *inode; 263 264 /* Only meant to be called for subvolume roots and not for log roots. */ 265 ASSERT(btrfs_is_fstree(btrfs_root_id(root))); 266 267 /* 268 * We're holding a transaction handle whether we are logging or 269 * replaying a log tree, so we must make sure NOFS semantics apply 270 * because btrfs_alloc_inode() may be triggered and it uses GFP_KERNEL 271 * to allocate an inode, which can recurse back into the filesystem and 272 * attempt a transaction commit, resulting in a deadlock. 273 */ 274 nofs_flag = memalloc_nofs_save(); 275 inode = btrfs_iget(objectid, root); 276 memalloc_nofs_restore(nofs_flag); 277 278 return inode; 279 } 280 281 /* 282 * start a sub transaction and setup the log tree 283 * this increments the log tree writer count to make the people 284 * syncing the tree wait for us to finish 285 */ 286 static int start_log_trans(struct btrfs_trans_handle *trans, 287 struct btrfs_root *root, 288 struct btrfs_log_ctx *ctx) 289 { 290 struct btrfs_fs_info *fs_info = root->fs_info; 291 struct btrfs_root *tree_root = fs_info->tree_root; 292 const bool zoned = btrfs_is_zoned(fs_info); 293 int ret = 0; 294 bool created = false; 295 296 /* 297 * First check if the log root tree was already created. If not, create 298 * it before locking the root's log_mutex, just to keep lockdep happy. 299 */ 300 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) { 301 mutex_lock(&tree_root->log_mutex); 302 if (!fs_info->log_root_tree) { 303 ret = btrfs_init_log_root_tree(trans, fs_info); 304 if (!ret) { 305 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state); 306 created = true; 307 } 308 } 309 mutex_unlock(&tree_root->log_mutex); 310 if (ret) 311 return ret; 312 } 313 314 mutex_lock(&root->log_mutex); 315 316 again: 317 if (root->log_root) { 318 int index = (root->log_transid + 1) % 2; 319 320 if (btrfs_need_log_full_commit(trans)) { 321 ret = BTRFS_LOG_FORCE_COMMIT; 322 goto out; 323 } 324 325 if (zoned && atomic_read(&root->log_commit[index])) { 326 wait_log_commit(root, root->log_transid - 1); 327 goto again; 328 } 329 330 if (!root->log_start_pid) { 331 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 332 root->log_start_pid = current->pid; 333 } else if (root->log_start_pid != current->pid) { 334 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 335 } 336 } else { 337 /* 338 * This means fs_info->log_root_tree was already created 339 * for some other FS trees. Do the full commit not to mix 340 * nodes from multiple log transactions to do sequential 341 * writing. 342 */ 343 if (zoned && !created) { 344 ret = BTRFS_LOG_FORCE_COMMIT; 345 goto out; 346 } 347 348 ret = btrfs_add_log_tree(trans, root); 349 if (ret) 350 goto out; 351 352 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state); 353 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 354 root->log_start_pid = current->pid; 355 } 356 357 atomic_inc(&root->log_writers); 358 if (!ctx->logging_new_name) { 359 int index = root->log_transid % 2; 360 list_add_tail(&ctx->list, &root->log_ctxs[index]); 361 ctx->log_transid = root->log_transid; 362 } 363 364 out: 365 mutex_unlock(&root->log_mutex); 366 return ret; 367 } 368 369 /* 370 * returns 0 if there was a log transaction running and we were able 371 * to join, or returns -ENOENT if there were not transactions 372 * in progress 373 */ 374 static int join_running_log_trans(struct btrfs_root *root) 375 { 376 const bool zoned = btrfs_is_zoned(root->fs_info); 377 int ret = -ENOENT; 378 379 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state)) 380 return ret; 381 382 mutex_lock(&root->log_mutex); 383 again: 384 if (root->log_root) { 385 int index = (root->log_transid + 1) % 2; 386 387 ret = 0; 388 if (zoned && atomic_read(&root->log_commit[index])) { 389 wait_log_commit(root, root->log_transid - 1); 390 goto again; 391 } 392 atomic_inc(&root->log_writers); 393 } 394 mutex_unlock(&root->log_mutex); 395 return ret; 396 } 397 398 /* 399 * This either makes the current running log transaction wait 400 * until you call btrfs_end_log_trans() or it makes any future 401 * log transactions wait until you call btrfs_end_log_trans() 402 */ 403 void btrfs_pin_log_trans(struct btrfs_root *root) 404 { 405 atomic_inc(&root->log_writers); 406 } 407 408 /* 409 * indicate we're done making changes to the log tree 410 * and wake up anyone waiting to do a sync 411 */ 412 void btrfs_end_log_trans(struct btrfs_root *root) 413 { 414 if (atomic_dec_and_test(&root->log_writers)) { 415 /* atomic_dec_and_test implies a barrier */ 416 cond_wake_up_nomb(&root->log_writer_wait); 417 } 418 } 419 420 /* 421 * process_func used to pin down extents, write them or wait on them 422 */ 423 static int process_one_buffer(struct extent_buffer *eb, 424 struct walk_control *wc, u64 gen, int level) 425 { 426 struct btrfs_root *log = wc->log; 427 struct btrfs_trans_handle *trans = wc->trans; 428 struct btrfs_fs_info *fs_info = log->fs_info; 429 int ret = 0; 430 431 /* 432 * If this fs is mixed then we need to be able to process the leaves to 433 * pin down any logged extents, so we have to read the block. 434 */ 435 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 436 struct btrfs_tree_parent_check check = { 437 .level = level, 438 .transid = gen 439 }; 440 441 ret = btrfs_read_extent_buffer(eb, &check); 442 if (unlikely(ret)) { 443 if (trans) 444 btrfs_abort_transaction(trans, ret); 445 else 446 btrfs_handle_fs_error(fs_info, ret, NULL); 447 return ret; 448 } 449 } 450 451 if (wc->pin) { 452 ASSERT(trans != NULL); 453 ret = btrfs_pin_extent_for_log_replay(trans, eb); 454 if (unlikely(ret)) { 455 btrfs_abort_transaction(trans, ret); 456 return ret; 457 } 458 459 if (btrfs_buffer_uptodate(eb, gen, false) && level == 0) { 460 ret = btrfs_exclude_logged_extents(eb); 461 if (ret) 462 btrfs_abort_transaction(trans, ret); 463 } 464 } 465 return ret; 466 } 467 468 /* 469 * Item overwrite used by log replay. The given log tree leaf, slot and key 470 * from the walk_control structure all refer to the source data we are copying 471 * out. 472 * 473 * The given root is for the tree we are copying into, and path is a scratch 474 * path for use in this function (it should be released on entry and will be 475 * released on exit). 476 * 477 * If the key is already in the destination tree the existing item is 478 * overwritten. If the existing item isn't big enough, it is extended. 479 * If it is too large, it is truncated. 480 * 481 * If the key isn't in the destination yet, a new item is inserted. 482 */ 483 static int overwrite_item(struct walk_control *wc) 484 { 485 struct btrfs_trans_handle *trans = wc->trans; 486 struct btrfs_root *root = wc->root; 487 int ret; 488 u32 item_size; 489 u64 saved_i_size = 0; 490 int save_old_i_size = 0; 491 unsigned long src_ptr; 492 unsigned long dst_ptr; 493 struct extent_buffer *dst_eb; 494 int dst_slot; 495 const bool is_inode_item = (wc->log_key.type == BTRFS_INODE_ITEM_KEY); 496 497 /* 498 * This is only used during log replay, so the root is always from a 499 * fs/subvolume tree. In case we ever need to support a log root, then 500 * we'll have to clone the leaf in the path, release the path and use 501 * the leaf before writing into the log tree. See the comments at 502 * copy_items() for more details. 503 */ 504 ASSERT(btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID); 505 506 item_size = btrfs_item_size(wc->log_leaf, wc->log_slot); 507 src_ptr = btrfs_item_ptr_offset(wc->log_leaf, wc->log_slot); 508 509 /* Look for the key in the destination tree. */ 510 ret = btrfs_search_slot(NULL, root, &wc->log_key, wc->subvol_path, 0, 0); 511 if (ret < 0) { 512 btrfs_abort_log_replay(wc, ret, 513 "failed to search subvolume tree for key (%llu %u %llu) root %llu", 514 wc->log_key.objectid, wc->log_key.type, 515 wc->log_key.offset, btrfs_root_id(root)); 516 return ret; 517 } 518 519 dst_eb = wc->subvol_path->nodes[0]; 520 dst_slot = wc->subvol_path->slots[0]; 521 522 if (ret == 0) { 523 char *src_copy; 524 const u32 dst_size = btrfs_item_size(dst_eb, dst_slot); 525 526 if (dst_size != item_size) 527 goto insert; 528 529 if (item_size == 0) { 530 btrfs_release_path(wc->subvol_path); 531 return 0; 532 } 533 src_copy = kmalloc(item_size, GFP_NOFS); 534 if (!src_copy) { 535 btrfs_abort_log_replay(wc, -ENOMEM, 536 "failed to allocate memory for log leaf item"); 537 return -ENOMEM; 538 } 539 540 read_extent_buffer(wc->log_leaf, src_copy, src_ptr, item_size); 541 dst_ptr = btrfs_item_ptr_offset(dst_eb, dst_slot); 542 ret = memcmp_extent_buffer(dst_eb, src_copy, dst_ptr, item_size); 543 544 kfree(src_copy); 545 /* 546 * they have the same contents, just return, this saves 547 * us from cowing blocks in the destination tree and doing 548 * extra writes that may not have been done by a previous 549 * sync 550 */ 551 if (ret == 0) { 552 btrfs_release_path(wc->subvol_path); 553 return 0; 554 } 555 556 /* 557 * We need to load the old nbytes into the inode so when we 558 * replay the extents we've logged we get the right nbytes. 559 */ 560 if (is_inode_item) { 561 struct btrfs_inode_item *item; 562 u64 nbytes; 563 u32 mode; 564 565 item = btrfs_item_ptr(dst_eb, dst_slot, 566 struct btrfs_inode_item); 567 nbytes = btrfs_inode_nbytes(dst_eb, item); 568 item = btrfs_item_ptr(wc->log_leaf, wc->log_slot, 569 struct btrfs_inode_item); 570 btrfs_set_inode_nbytes(wc->log_leaf, item, nbytes); 571 572 /* 573 * If this is a directory we need to reset the i_size to 574 * 0 so that we can set it up properly when replaying 575 * the rest of the items in this log. 576 */ 577 mode = btrfs_inode_mode(wc->log_leaf, item); 578 if (S_ISDIR(mode)) 579 btrfs_set_inode_size(wc->log_leaf, item, 0); 580 } 581 } else if (is_inode_item) { 582 struct btrfs_inode_item *item; 583 u32 mode; 584 585 /* 586 * New inode, set nbytes to 0 so that the nbytes comes out 587 * properly when we replay the extents. 588 */ 589 item = btrfs_item_ptr(wc->log_leaf, wc->log_slot, struct btrfs_inode_item); 590 btrfs_set_inode_nbytes(wc->log_leaf, item, 0); 591 592 /* 593 * If this is a directory we need to reset the i_size to 0 so 594 * that we can set it up properly when replaying the rest of 595 * the items in this log. 596 */ 597 mode = btrfs_inode_mode(wc->log_leaf, item); 598 if (S_ISDIR(mode)) 599 btrfs_set_inode_size(wc->log_leaf, item, 0); 600 } 601 insert: 602 btrfs_release_path(wc->subvol_path); 603 /* try to insert the key into the destination tree */ 604 wc->subvol_path->skip_release_on_error = 1; 605 ret = btrfs_insert_empty_item(trans, root, wc->subvol_path, &wc->log_key, item_size); 606 wc->subvol_path->skip_release_on_error = 0; 607 608 dst_eb = wc->subvol_path->nodes[0]; 609 dst_slot = wc->subvol_path->slots[0]; 610 611 /* make sure any existing item is the correct size */ 612 if (ret == -EEXIST || ret == -EOVERFLOW) { 613 const u32 found_size = btrfs_item_size(dst_eb, dst_slot); 614 615 if (found_size > item_size) 616 btrfs_truncate_item(trans, wc->subvol_path, item_size, 1); 617 else if (found_size < item_size) 618 btrfs_extend_item(trans, wc->subvol_path, item_size - found_size); 619 } else if (ret) { 620 btrfs_abort_log_replay(wc, ret, 621 "failed to insert item for key (%llu %u %llu)", 622 wc->log_key.objectid, wc->log_key.type, 623 wc->log_key.offset); 624 return ret; 625 } 626 dst_ptr = btrfs_item_ptr_offset(dst_eb, dst_slot); 627 628 /* don't overwrite an existing inode if the generation number 629 * was logged as zero. This is done when the tree logging code 630 * is just logging an inode to make sure it exists after recovery. 631 * 632 * Also, don't overwrite i_size on directories during replay. 633 * log replay inserts and removes directory items based on the 634 * state of the tree found in the subvolume, and i_size is modified 635 * as it goes 636 */ 637 if (is_inode_item && ret == -EEXIST) { 638 struct btrfs_inode_item *src_item; 639 struct btrfs_inode_item *dst_item; 640 641 src_item = (struct btrfs_inode_item *)src_ptr; 642 dst_item = (struct btrfs_inode_item *)dst_ptr; 643 644 if (btrfs_inode_generation(wc->log_leaf, src_item) == 0) { 645 const u64 ino_size = btrfs_inode_size(wc->log_leaf, src_item); 646 647 /* 648 * For regular files an ino_size == 0 is used only when 649 * logging that an inode exists, as part of a directory 650 * fsync, and the inode wasn't fsynced before. In this 651 * case don't set the size of the inode in the fs/subvol 652 * tree, otherwise we would be throwing valid data away. 653 */ 654 if (S_ISREG(btrfs_inode_mode(wc->log_leaf, src_item)) && 655 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) && 656 ino_size != 0) 657 btrfs_set_inode_size(dst_eb, dst_item, ino_size); 658 goto no_copy; 659 } 660 661 if (S_ISDIR(btrfs_inode_mode(wc->log_leaf, src_item)) && 662 S_ISDIR(btrfs_inode_mode(dst_eb, dst_item))) { 663 save_old_i_size = 1; 664 saved_i_size = btrfs_inode_size(dst_eb, dst_item); 665 } 666 } 667 668 copy_extent_buffer(dst_eb, wc->log_leaf, dst_ptr, src_ptr, item_size); 669 670 if (save_old_i_size) { 671 struct btrfs_inode_item *dst_item; 672 673 dst_item = (struct btrfs_inode_item *)dst_ptr; 674 btrfs_set_inode_size(dst_eb, dst_item, saved_i_size); 675 } 676 677 /* make sure the generation is filled in */ 678 if (is_inode_item) { 679 struct btrfs_inode_item *dst_item; 680 681 dst_item = (struct btrfs_inode_item *)dst_ptr; 682 if (btrfs_inode_generation(dst_eb, dst_item) == 0) 683 btrfs_set_inode_generation(dst_eb, dst_item, trans->transid); 684 } 685 no_copy: 686 btrfs_release_path(wc->subvol_path); 687 return 0; 688 } 689 690 static int read_alloc_one_name(struct extent_buffer *eb, void *start, int len, 691 struct fscrypt_str *name) 692 { 693 char *buf; 694 695 buf = kmalloc(len, GFP_NOFS); 696 if (!buf) 697 return -ENOMEM; 698 699 read_extent_buffer(eb, buf, (unsigned long)start, len); 700 name->name = buf; 701 name->len = len; 702 return 0; 703 } 704 705 /* replays a single extent in 'eb' at 'slot' with 'key' into the 706 * subvolume 'root'. path is released on entry and should be released 707 * on exit. 708 * 709 * extents in the log tree have not been allocated out of the extent 710 * tree yet. So, this completes the allocation, taking a reference 711 * as required if the extent already exists or creating a new extent 712 * if it isn't in the extent allocation tree yet. 713 * 714 * The extent is inserted into the file, dropping any existing extents 715 * from the file that overlap the new one. 716 */ 717 static noinline int replay_one_extent(struct walk_control *wc) 718 { 719 struct btrfs_trans_handle *trans = wc->trans; 720 struct btrfs_root *root = wc->root; 721 struct btrfs_drop_extents_args drop_args = { 0 }; 722 struct btrfs_fs_info *fs_info = root->fs_info; 723 int found_type; 724 u64 extent_end; 725 const u64 start = wc->log_key.offset; 726 u64 nbytes = 0; 727 u64 csum_start; 728 u64 csum_end; 729 LIST_HEAD(ordered_sums); 730 u64 offset; 731 unsigned long dest_offset; 732 struct btrfs_key ins; 733 struct btrfs_file_extent_item *item; 734 struct btrfs_inode *inode = NULL; 735 int ret = 0; 736 737 item = btrfs_item_ptr(wc->log_leaf, wc->log_slot, struct btrfs_file_extent_item); 738 found_type = btrfs_file_extent_type(wc->log_leaf, item); 739 740 if (found_type == BTRFS_FILE_EXTENT_REG || 741 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 742 extent_end = start + btrfs_file_extent_num_bytes(wc->log_leaf, item); 743 /* Holes don't take up space. */ 744 if (btrfs_file_extent_disk_bytenr(wc->log_leaf, item) != 0) 745 nbytes = btrfs_file_extent_num_bytes(wc->log_leaf, item); 746 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 747 nbytes = btrfs_file_extent_ram_bytes(wc->log_leaf, item); 748 extent_end = ALIGN(start + nbytes, fs_info->sectorsize); 749 } else { 750 btrfs_abort_log_replay(wc, -EUCLEAN, 751 "unexpected extent type=%d root=%llu inode=%llu offset=%llu", 752 found_type, btrfs_root_id(root), 753 wc->log_key.objectid, wc->log_key.offset); 754 return -EUCLEAN; 755 } 756 757 inode = btrfs_iget_logging(wc->log_key.objectid, root); 758 if (IS_ERR(inode)) { 759 ret = PTR_ERR(inode); 760 btrfs_abort_log_replay(wc, ret, 761 "failed to get inode %llu for root %llu", 762 wc->log_key.objectid, btrfs_root_id(root)); 763 return ret; 764 } 765 766 /* 767 * first check to see if we already have this extent in the 768 * file. This must be done before the btrfs_drop_extents run 769 * so we don't try to drop this extent. 770 */ 771 ret = btrfs_lookup_file_extent(trans, root, wc->subvol_path, 772 btrfs_ino(inode), start, 0); 773 774 if (ret == 0 && 775 (found_type == BTRFS_FILE_EXTENT_REG || 776 found_type == BTRFS_FILE_EXTENT_PREALLOC)) { 777 struct extent_buffer *leaf = wc->subvol_path->nodes[0]; 778 struct btrfs_file_extent_item existing; 779 unsigned long ptr; 780 781 ptr = btrfs_item_ptr_offset(leaf, wc->subvol_path->slots[0]); 782 read_extent_buffer(leaf, &existing, ptr, sizeof(existing)); 783 784 /* 785 * we already have a pointer to this exact extent, 786 * we don't have to do anything 787 */ 788 if (memcmp_extent_buffer(wc->log_leaf, &existing, (unsigned long)item, 789 sizeof(existing)) == 0) { 790 btrfs_release_path(wc->subvol_path); 791 goto out; 792 } 793 } 794 btrfs_release_path(wc->subvol_path); 795 796 /* drop any overlapping extents */ 797 drop_args.start = start; 798 drop_args.end = extent_end; 799 drop_args.drop_cache = true; 800 drop_args.path = wc->subvol_path; 801 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 802 if (ret) { 803 btrfs_abort_log_replay(wc, ret, 804 "failed to drop extents for inode %llu range [%llu, %llu) root %llu", 805 wc->log_key.objectid, start, extent_end, 806 btrfs_root_id(root)); 807 goto out; 808 } 809 810 if (found_type == BTRFS_FILE_EXTENT_INLINE) { 811 /* inline extents are easy, we just overwrite them */ 812 ret = overwrite_item(wc); 813 if (ret) 814 goto out; 815 goto update_inode; 816 } 817 818 /* 819 * If not an inline extent, it can only be a regular or prealloc one. 820 * We have checked that above and returned -EUCLEAN if not. 821 */ 822 823 /* A hole and NO_HOLES feature enabled, nothing else to do. */ 824 if (btrfs_file_extent_disk_bytenr(wc->log_leaf, item) == 0 && 825 btrfs_fs_incompat(fs_info, NO_HOLES)) 826 goto update_inode; 827 828 ret = btrfs_insert_empty_item(trans, root, wc->subvol_path, 829 &wc->log_key, sizeof(*item)); 830 if (ret) { 831 btrfs_abort_log_replay(wc, ret, 832 "failed to insert item with key (%llu %u %llu) root %llu", 833 wc->log_key.objectid, wc->log_key.type, 834 wc->log_key.offset, btrfs_root_id(root)); 835 goto out; 836 } 837 dest_offset = btrfs_item_ptr_offset(wc->subvol_path->nodes[0], 838 wc->subvol_path->slots[0]); 839 copy_extent_buffer(wc->subvol_path->nodes[0], wc->log_leaf, dest_offset, 840 (unsigned long)item, sizeof(*item)); 841 842 /* 843 * We have an explicit hole and NO_HOLES is not enabled. We have added 844 * the hole file extent item to the subvolume tree, so we don't have 845 * anything else to do other than update the file extent item range and 846 * update the inode item. 847 */ 848 if (btrfs_file_extent_disk_bytenr(wc->log_leaf, item) == 0) { 849 btrfs_release_path(wc->subvol_path); 850 goto update_inode; 851 } 852 853 ins.objectid = btrfs_file_extent_disk_bytenr(wc->log_leaf, item); 854 ins.type = BTRFS_EXTENT_ITEM_KEY; 855 ins.offset = btrfs_file_extent_disk_num_bytes(wc->log_leaf, item); 856 offset = wc->log_key.offset - btrfs_file_extent_offset(wc->log_leaf, item); 857 858 /* 859 * Manually record dirty extent, as here we did a shallow file extent 860 * item copy and skip normal backref update, but modifying extent tree 861 * all by ourselves. So need to manually record dirty extent for qgroup, 862 * as the owner of the file extent changed from log tree (doesn't affect 863 * qgroup) to fs/file tree (affects qgroup). 864 */ 865 ret = btrfs_qgroup_trace_extent(trans, ins.objectid, ins.offset); 866 if (ret < 0) { 867 btrfs_abort_log_replay(wc, ret, 868 "failed to trace extent for bytenr %llu disk_num_bytes %llu inode %llu root %llu", 869 ins.objectid, ins.offset, 870 wc->log_key.objectid, btrfs_root_id(root)); 871 goto out; 872 } 873 874 /* 875 * Is this extent already allocated in the extent tree? 876 * If so, just add a reference. 877 */ 878 ret = btrfs_lookup_data_extent(fs_info, ins.objectid, ins.offset); 879 if (ret < 0) { 880 btrfs_abort_log_replay(wc, ret, 881 "failed to lookup data extent for bytenr %llu disk_num_bytes %llu inode %llu root %llu", 882 ins.objectid, ins.offset, 883 wc->log_key.objectid, btrfs_root_id(root)); 884 goto out; 885 } else if (ret == 0) { 886 struct btrfs_ref ref = { 887 .action = BTRFS_ADD_DELAYED_REF, 888 .bytenr = ins.objectid, 889 .num_bytes = ins.offset, 890 .owning_root = btrfs_root_id(root), 891 .ref_root = btrfs_root_id(root), 892 }; 893 894 btrfs_init_data_ref(&ref, wc->log_key.objectid, offset, 0, false); 895 ret = btrfs_inc_extent_ref(trans, &ref); 896 if (ret) { 897 btrfs_abort_log_replay(wc, ret, 898 "failed to increment data extent for bytenr %llu disk_num_bytes %llu inode %llu root %llu", 899 ins.objectid, ins.offset, 900 wc->log_key.objectid, 901 btrfs_root_id(root)); 902 goto out; 903 } 904 } else { 905 /* Insert the extent pointer in the extent tree. */ 906 ret = btrfs_alloc_logged_file_extent(trans, btrfs_root_id(root), 907 wc->log_key.objectid, offset, &ins); 908 if (ret) { 909 btrfs_abort_log_replay(wc, ret, 910 "failed to allocate logged data extent for bytenr %llu disk_num_bytes %llu offset %llu inode %llu root %llu", 911 ins.objectid, ins.offset, offset, 912 wc->log_key.objectid, btrfs_root_id(root)); 913 goto out; 914 } 915 } 916 917 btrfs_release_path(wc->subvol_path); 918 919 if (btrfs_file_extent_compression(wc->log_leaf, item)) { 920 csum_start = ins.objectid; 921 csum_end = csum_start + ins.offset; 922 } else { 923 csum_start = ins.objectid + btrfs_file_extent_offset(wc->log_leaf, item); 924 csum_end = csum_start + btrfs_file_extent_num_bytes(wc->log_leaf, item); 925 } 926 927 ret = btrfs_lookup_csums_list(root->log_root, csum_start, csum_end - 1, 928 &ordered_sums, false); 929 if (ret < 0) { 930 btrfs_abort_log_replay(wc, ret, 931 "failed to lookups csums for range [%llu, %llu) inode %llu root %llu", 932 csum_start, csum_end, wc->log_key.objectid, 933 btrfs_root_id(root)); 934 goto out; 935 } 936 ret = 0; 937 /* 938 * Now delete all existing cums in the csum root that cover our range. 939 * We do this because we can have an extent that is completely 940 * referenced by one file extent item and partially referenced by 941 * another file extent item (like after using the clone or extent_same 942 * ioctls). In this case if we end up doing the replay of the one that 943 * partially references the extent first, and we do not do the csum 944 * deletion below, we can get 2 csum items in the csum tree that overlap 945 * each other. For example, imagine our log has the two following file 946 * extent items: 947 * 948 * key (257 EXTENT_DATA 409600) 949 * extent data disk byte 12845056 nr 102400 950 * extent data offset 20480 nr 20480 ram 102400 951 * 952 * key (257 EXTENT_DATA 819200) 953 * extent data disk byte 12845056 nr 102400 954 * extent data offset 0 nr 102400 ram 102400 955 * 956 * Where the second one fully references the 100K extent that starts at 957 * disk byte 12845056, and the log tree has a single csum item that 958 * covers the entire range of the extent: 959 * 960 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 961 * 962 * After the first file extent item is replayed, the csum tree gets the 963 * following csum item: 964 * 965 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 966 * 967 * Which covers the 20K sub-range starting at offset 20K of our extent. 968 * Now when we replay the second file extent item, if we do not delete 969 * existing csum items that cover any of its blocks, we end up getting 970 * two csum items in our csum tree that overlap each other: 971 * 972 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 973 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 974 * 975 * Which is a problem, because after this anyone trying to lookup for 976 * the checksum of any block of our extent starting at an offset of 40K 977 * or higher, will end up looking at the second csum item only, which 978 * does not contain the checksum for any block starting at offset 40K or 979 * higher of our extent. 980 */ 981 while (!list_empty(&ordered_sums)) { 982 struct btrfs_ordered_sum *sums; 983 struct btrfs_root *csum_root; 984 985 sums = list_first_entry(&ordered_sums, struct btrfs_ordered_sum, list); 986 csum_root = btrfs_csum_root(fs_info, sums->logical); 987 if (!ret) { 988 ret = btrfs_del_csums(trans, csum_root, sums->logical, 989 sums->len); 990 if (ret) 991 btrfs_abort_log_replay(wc, ret, 992 "failed to delete csums for range [%llu, %llu) inode %llu root %llu", 993 sums->logical, 994 sums->logical + sums->len, 995 wc->log_key.objectid, 996 btrfs_root_id(root)); 997 } 998 if (!ret) { 999 ret = btrfs_csum_file_blocks(trans, csum_root, sums); 1000 if (ret) 1001 btrfs_abort_log_replay(wc, ret, 1002 "failed to add csums for range [%llu, %llu) inode %llu root %llu", 1003 sums->logical, 1004 sums->logical + sums->len, 1005 wc->log_key.objectid, 1006 btrfs_root_id(root)); 1007 } 1008 list_del(&sums->list); 1009 kfree(sums); 1010 } 1011 if (ret) 1012 goto out; 1013 1014 update_inode: 1015 ret = btrfs_inode_set_file_extent_range(inode, start, extent_end - start); 1016 if (ret) { 1017 btrfs_abort_log_replay(wc, ret, 1018 "failed to set file extent range [%llu, %llu) inode %llu root %llu", 1019 start, extent_end, wc->log_key.objectid, 1020 btrfs_root_id(root)); 1021 goto out; 1022 } 1023 1024 btrfs_update_inode_bytes(inode, nbytes, drop_args.bytes_found); 1025 ret = btrfs_update_inode(trans, inode); 1026 if (ret) 1027 btrfs_abort_log_replay(wc, ret, 1028 "failed to update inode %llu root %llu", 1029 wc->log_key.objectid, btrfs_root_id(root)); 1030 out: 1031 iput(&inode->vfs_inode); 1032 return ret; 1033 } 1034 1035 static int unlink_inode_for_log_replay(struct walk_control *wc, 1036 struct btrfs_inode *dir, 1037 struct btrfs_inode *inode, 1038 const struct fscrypt_str *name) 1039 { 1040 struct btrfs_trans_handle *trans = wc->trans; 1041 int ret; 1042 1043 ret = btrfs_unlink_inode(trans, dir, inode, name); 1044 if (ret) { 1045 btrfs_abort_log_replay(wc, ret, 1046 "failed to unlink inode %llu parent dir %llu name %.*s root %llu", 1047 btrfs_ino(inode), btrfs_ino(dir), name->len, 1048 name->name, btrfs_root_id(inode->root)); 1049 return ret; 1050 } 1051 /* 1052 * Whenever we need to check if a name exists or not, we check the 1053 * fs/subvolume tree. So after an unlink we must run delayed items, so 1054 * that future checks for a name during log replay see that the name 1055 * does not exists anymore. 1056 */ 1057 ret = btrfs_run_delayed_items(trans); 1058 if (ret) 1059 btrfs_abort_log_replay(wc, ret, 1060 "failed to run delayed items current inode %llu parent dir %llu name %.*s root %llu", 1061 btrfs_ino(inode), btrfs_ino(dir), name->len, 1062 name->name, btrfs_root_id(inode->root)); 1063 1064 return ret; 1065 } 1066 1067 /* 1068 * when cleaning up conflicts between the directory names in the 1069 * subvolume, directory names in the log and directory names in the 1070 * inode back references, we may have to unlink inodes from directories. 1071 * 1072 * This is a helper function to do the unlink of a specific directory 1073 * item 1074 */ 1075 static noinline int drop_one_dir_item(struct walk_control *wc, 1076 struct btrfs_inode *dir, 1077 struct btrfs_dir_item *di) 1078 { 1079 struct btrfs_root *root = dir->root; 1080 struct btrfs_inode *inode; 1081 struct fscrypt_str name; 1082 struct extent_buffer *leaf = wc->subvol_path->nodes[0]; 1083 struct btrfs_key location; 1084 int ret; 1085 1086 btrfs_dir_item_key_to_cpu(leaf, di, &location); 1087 ret = read_alloc_one_name(leaf, di + 1, btrfs_dir_name_len(leaf, di), &name); 1088 if (ret) { 1089 btrfs_abort_log_replay(wc, ret, 1090 "failed to allocate name for dir %llu root %llu", 1091 btrfs_ino(dir), btrfs_root_id(root)); 1092 return ret; 1093 } 1094 1095 btrfs_release_path(wc->subvol_path); 1096 1097 inode = btrfs_iget_logging(location.objectid, root); 1098 if (IS_ERR(inode)) { 1099 ret = PTR_ERR(inode); 1100 btrfs_abort_log_replay(wc, ret, 1101 "failed to open inode %llu parent dir %llu name %.*s root %llu", 1102 location.objectid, btrfs_ino(dir), 1103 name.len, name.name, btrfs_root_id(root)); 1104 inode = NULL; 1105 goto out; 1106 } 1107 1108 ret = link_to_fixup_dir(wc, location.objectid); 1109 if (ret) 1110 goto out; 1111 1112 ret = unlink_inode_for_log_replay(wc, dir, inode, &name); 1113 out: 1114 kfree(name.name); 1115 if (inode) 1116 iput(&inode->vfs_inode); 1117 return ret; 1118 } 1119 1120 /* 1121 * See if a given name and sequence number found in an inode back reference are 1122 * already in a directory and correctly point to this inode. 1123 * 1124 * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it 1125 * exists. 1126 */ 1127 static noinline int inode_in_dir(struct btrfs_root *root, 1128 struct btrfs_path *path, 1129 u64 dirid, u64 objectid, u64 index, 1130 struct fscrypt_str *name) 1131 { 1132 struct btrfs_dir_item *di; 1133 struct btrfs_key location; 1134 int ret = 0; 1135 1136 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid, 1137 index, name, 0); 1138 if (IS_ERR(di)) { 1139 ret = PTR_ERR(di); 1140 goto out; 1141 } else if (di) { 1142 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 1143 if (location.objectid != objectid) 1144 goto out; 1145 } else { 1146 goto out; 1147 } 1148 1149 btrfs_release_path(path); 1150 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, 0); 1151 if (IS_ERR(di)) { 1152 ret = PTR_ERR(di); 1153 goto out; 1154 } else if (di) { 1155 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 1156 if (location.objectid == objectid) 1157 ret = 1; 1158 } 1159 out: 1160 btrfs_release_path(path); 1161 return ret; 1162 } 1163 1164 /* 1165 * helper function to check a log tree for a named back reference in 1166 * an inode. This is used to decide if a back reference that is 1167 * found in the subvolume conflicts with what we find in the log. 1168 * 1169 * inode backreferences may have multiple refs in a single item, 1170 * during replay we process one reference at a time, and we don't 1171 * want to delete valid links to a file from the subvolume if that 1172 * link is also in the log. 1173 */ 1174 static noinline int backref_in_log(struct btrfs_root *log, 1175 struct btrfs_key *key, 1176 u64 ref_objectid, 1177 const struct fscrypt_str *name) 1178 { 1179 BTRFS_PATH_AUTO_FREE(path); 1180 int ret; 1181 1182 path = btrfs_alloc_path(); 1183 if (!path) 1184 return -ENOMEM; 1185 1186 ret = btrfs_search_slot(NULL, log, key, path, 0, 0); 1187 if (ret < 0) 1188 return ret; 1189 if (ret == 1) 1190 return 0; 1191 1192 if (key->type == BTRFS_INODE_EXTREF_KEY) 1193 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0], 1194 path->slots[0], 1195 ref_objectid, name); 1196 else 1197 ret = !!btrfs_find_name_in_backref(path->nodes[0], 1198 path->slots[0], name); 1199 return ret; 1200 } 1201 1202 static int unlink_refs_not_in_log(struct walk_control *wc, 1203 struct btrfs_key *search_key, 1204 struct btrfs_inode *dir, 1205 struct btrfs_inode *inode) 1206 { 1207 struct extent_buffer *leaf = wc->subvol_path->nodes[0]; 1208 unsigned long ptr; 1209 unsigned long ptr_end; 1210 1211 /* 1212 * Check all the names in this back reference to see if they are in the 1213 * log. If so, we allow them to stay otherwise they must be unlinked as 1214 * a conflict. 1215 */ 1216 ptr = btrfs_item_ptr_offset(leaf, wc->subvol_path->slots[0]); 1217 ptr_end = ptr + btrfs_item_size(leaf, wc->subvol_path->slots[0]); 1218 while (ptr < ptr_end) { 1219 struct fscrypt_str victim_name; 1220 struct btrfs_inode_ref *victim_ref; 1221 int ret; 1222 1223 victim_ref = (struct btrfs_inode_ref *)ptr; 1224 ret = read_alloc_one_name(leaf, (victim_ref + 1), 1225 btrfs_inode_ref_name_len(leaf, victim_ref), 1226 &victim_name); 1227 if (ret) { 1228 btrfs_abort_log_replay(wc, ret, 1229 "failed to allocate name for inode %llu parent dir %llu root %llu", 1230 btrfs_ino(inode), btrfs_ino(dir), 1231 btrfs_root_id(inode->root)); 1232 return ret; 1233 } 1234 1235 ret = backref_in_log(wc->log, search_key, btrfs_ino(dir), &victim_name); 1236 if (ret) { 1237 if (ret < 0) { 1238 btrfs_abort_log_replay(wc, ret, 1239 "failed to check if backref is in log tree for inode %llu parent dir %llu name %.*s root %llu", 1240 btrfs_ino(inode), btrfs_ino(dir), 1241 victim_name.len, victim_name.name, 1242 btrfs_root_id(inode->root)); 1243 kfree(victim_name.name); 1244 return ret; 1245 } 1246 kfree(victim_name.name); 1247 ptr = (unsigned long)(victim_ref + 1) + victim_name.len; 1248 continue; 1249 } 1250 1251 inc_nlink(&inode->vfs_inode); 1252 btrfs_release_path(wc->subvol_path); 1253 1254 ret = unlink_inode_for_log_replay(wc, dir, inode, &victim_name); 1255 kfree(victim_name.name); 1256 if (ret) 1257 return ret; 1258 return -EAGAIN; 1259 } 1260 1261 return 0; 1262 } 1263 1264 static int unlink_extrefs_not_in_log(struct walk_control *wc, 1265 struct btrfs_key *search_key, 1266 struct btrfs_inode *dir, 1267 struct btrfs_inode *inode) 1268 { 1269 struct extent_buffer *leaf = wc->subvol_path->nodes[0]; 1270 const unsigned long base = btrfs_item_ptr_offset(leaf, wc->subvol_path->slots[0]); 1271 const u32 item_size = btrfs_item_size(leaf, wc->subvol_path->slots[0]); 1272 u32 cur_offset = 0; 1273 1274 while (cur_offset < item_size) { 1275 struct btrfs_root *log_root = wc->log; 1276 struct btrfs_inode_extref *extref; 1277 struct fscrypt_str victim_name; 1278 int ret; 1279 1280 extref = (struct btrfs_inode_extref *)(base + cur_offset); 1281 victim_name.len = btrfs_inode_extref_name_len(leaf, extref); 1282 1283 if (btrfs_inode_extref_parent(leaf, extref) != btrfs_ino(dir)) 1284 goto next; 1285 1286 ret = read_alloc_one_name(leaf, &extref->name, victim_name.len, 1287 &victim_name); 1288 if (ret) { 1289 btrfs_abort_log_replay(wc, ret, 1290 "failed to allocate name for inode %llu parent dir %llu root %llu", 1291 btrfs_ino(inode), btrfs_ino(dir), 1292 btrfs_root_id(inode->root)); 1293 return ret; 1294 } 1295 1296 search_key->objectid = btrfs_ino(inode); 1297 search_key->type = BTRFS_INODE_EXTREF_KEY; 1298 search_key->offset = btrfs_extref_hash(btrfs_ino(dir), 1299 victim_name.name, 1300 victim_name.len); 1301 ret = backref_in_log(log_root, search_key, btrfs_ino(dir), &victim_name); 1302 if (ret) { 1303 if (ret < 0) { 1304 btrfs_abort_log_replay(wc, ret, 1305 "failed to check if backref is in log tree for inode %llu parent dir %llu name %.*s root %llu", 1306 btrfs_ino(inode), btrfs_ino(dir), 1307 victim_name.len, victim_name.name, 1308 btrfs_root_id(inode->root)); 1309 kfree(victim_name.name); 1310 return ret; 1311 } 1312 kfree(victim_name.name); 1313 next: 1314 cur_offset += victim_name.len + sizeof(*extref); 1315 continue; 1316 } 1317 1318 inc_nlink(&inode->vfs_inode); 1319 btrfs_release_path(wc->subvol_path); 1320 1321 ret = unlink_inode_for_log_replay(wc, dir, inode, &victim_name); 1322 kfree(victim_name.name); 1323 if (ret) 1324 return ret; 1325 return -EAGAIN; 1326 } 1327 1328 return 0; 1329 } 1330 1331 static inline int __add_inode_ref(struct walk_control *wc, 1332 struct btrfs_inode *dir, 1333 struct btrfs_inode *inode, 1334 u64 ref_index, struct fscrypt_str *name) 1335 { 1336 int ret; 1337 struct btrfs_trans_handle *trans = wc->trans; 1338 struct btrfs_root *root = wc->root; 1339 struct btrfs_dir_item *di; 1340 struct btrfs_key search_key; 1341 struct btrfs_inode_extref *extref; 1342 1343 again: 1344 /* Search old style refs */ 1345 search_key.objectid = btrfs_ino(inode); 1346 search_key.type = BTRFS_INODE_REF_KEY; 1347 search_key.offset = btrfs_ino(dir); 1348 ret = btrfs_search_slot(NULL, root, &search_key, wc->subvol_path, 0, 0); 1349 if (ret < 0) { 1350 btrfs_abort_log_replay(wc, ret, 1351 "failed to search subvolume tree for key (%llu %u %llu) root %llu", 1352 search_key.objectid, search_key.type, 1353 search_key.offset, btrfs_root_id(root)); 1354 return ret; 1355 } else if (ret == 0) { 1356 /* 1357 * Are we trying to overwrite a back ref for the root directory? 1358 * If so, we're done. 1359 */ 1360 if (search_key.objectid == search_key.offset) 1361 return 1; 1362 1363 ret = unlink_refs_not_in_log(wc, &search_key, dir, inode); 1364 if (ret == -EAGAIN) 1365 goto again; 1366 else if (ret) 1367 return ret; 1368 } 1369 btrfs_release_path(wc->subvol_path); 1370 1371 /* Same search but for extended refs */ 1372 extref = btrfs_lookup_inode_extref(root, wc->subvol_path, name, 1373 btrfs_ino(inode), btrfs_ino(dir)); 1374 if (IS_ERR(extref)) { 1375 return PTR_ERR(extref); 1376 } else if (extref) { 1377 ret = unlink_extrefs_not_in_log(wc, &search_key, dir, inode); 1378 if (ret == -EAGAIN) 1379 goto again; 1380 else if (ret) 1381 return ret; 1382 } 1383 btrfs_release_path(wc->subvol_path); 1384 1385 /* look for a conflicting sequence number */ 1386 di = btrfs_lookup_dir_index_item(trans, root, wc->subvol_path, btrfs_ino(dir), 1387 ref_index, name, 0); 1388 if (IS_ERR(di)) { 1389 ret = PTR_ERR(di); 1390 btrfs_abort_log_replay(wc, ret, 1391 "failed to lookup dir index item for dir %llu ref_index %llu name %.*s root %llu", 1392 btrfs_ino(dir), ref_index, name->len, 1393 name->name, btrfs_root_id(root)); 1394 return ret; 1395 } else if (di) { 1396 ret = drop_one_dir_item(wc, dir, di); 1397 if (ret) 1398 return ret; 1399 } 1400 btrfs_release_path(wc->subvol_path); 1401 1402 /* look for a conflicting name */ 1403 di = btrfs_lookup_dir_item(trans, root, wc->subvol_path, btrfs_ino(dir), name, 0); 1404 if (IS_ERR(di)) { 1405 ret = PTR_ERR(di); 1406 btrfs_abort_log_replay(wc, ret, 1407 "failed to lookup dir item for dir %llu name %.*s root %llu", 1408 btrfs_ino(dir), name->len, name->name, 1409 btrfs_root_id(root)); 1410 return ret; 1411 } else if (di) { 1412 ret = drop_one_dir_item(wc, dir, di); 1413 if (ret) 1414 return ret; 1415 } 1416 btrfs_release_path(wc->subvol_path); 1417 1418 return 0; 1419 } 1420 1421 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1422 struct fscrypt_str *name, u64 *index, 1423 u64 *parent_objectid) 1424 { 1425 struct btrfs_inode_extref *extref; 1426 int ret; 1427 1428 extref = (struct btrfs_inode_extref *)ref_ptr; 1429 1430 ret = read_alloc_one_name(eb, &extref->name, 1431 btrfs_inode_extref_name_len(eb, extref), name); 1432 if (ret) 1433 return ret; 1434 1435 if (index) 1436 *index = btrfs_inode_extref_index(eb, extref); 1437 if (parent_objectid) 1438 *parent_objectid = btrfs_inode_extref_parent(eb, extref); 1439 1440 return 0; 1441 } 1442 1443 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1444 struct fscrypt_str *name, u64 *index) 1445 { 1446 struct btrfs_inode_ref *ref; 1447 int ret; 1448 1449 ref = (struct btrfs_inode_ref *)ref_ptr; 1450 1451 ret = read_alloc_one_name(eb, ref + 1, btrfs_inode_ref_name_len(eb, ref), 1452 name); 1453 if (ret) 1454 return ret; 1455 1456 if (index) 1457 *index = btrfs_inode_ref_index(eb, ref); 1458 1459 return 0; 1460 } 1461 1462 /* 1463 * Take an inode reference item from the log tree and iterate all names from the 1464 * inode reference item in the subvolume tree with the same key (if it exists). 1465 * For any name that is not in the inode reference item from the log tree, do a 1466 * proper unlink of that name (that is, remove its entry from the inode 1467 * reference item and both dir index keys). 1468 */ 1469 static int unlink_old_inode_refs(struct walk_control *wc, struct btrfs_inode *inode) 1470 { 1471 struct btrfs_root *root = wc->root; 1472 int ret; 1473 unsigned long ref_ptr; 1474 unsigned long ref_end; 1475 struct extent_buffer *eb; 1476 1477 again: 1478 btrfs_release_path(wc->subvol_path); 1479 ret = btrfs_search_slot(NULL, root, &wc->log_key, wc->subvol_path, 0, 0); 1480 if (ret > 0) { 1481 ret = 0; 1482 goto out; 1483 } 1484 if (ret < 0) { 1485 btrfs_abort_log_replay(wc, ret, 1486 "failed to search subvolume tree for key (%llu %u %llu) root %llu", 1487 wc->log_key.objectid, wc->log_key.type, 1488 wc->log_key.offset, btrfs_root_id(root)); 1489 goto out; 1490 } 1491 1492 eb = wc->subvol_path->nodes[0]; 1493 ref_ptr = btrfs_item_ptr_offset(eb, wc->subvol_path->slots[0]); 1494 ref_end = ref_ptr + btrfs_item_size(eb, wc->subvol_path->slots[0]); 1495 while (ref_ptr < ref_end) { 1496 struct fscrypt_str name; 1497 u64 parent_id; 1498 1499 if (wc->log_key.type == BTRFS_INODE_EXTREF_KEY) { 1500 ret = extref_get_fields(eb, ref_ptr, &name, 1501 NULL, &parent_id); 1502 if (ret) { 1503 btrfs_abort_log_replay(wc, ret, 1504 "failed to get extref details for inode %llu root %llu", 1505 btrfs_ino(inode), 1506 btrfs_root_id(root)); 1507 goto out; 1508 } 1509 } else { 1510 parent_id = wc->log_key.offset; 1511 ret = ref_get_fields(eb, ref_ptr, &name, NULL); 1512 if (ret) { 1513 btrfs_abort_log_replay(wc, ret, 1514 "failed to get ref details for inode %llu parent_id %llu root %llu", 1515 btrfs_ino(inode), parent_id, 1516 btrfs_root_id(root)); 1517 goto out; 1518 } 1519 } 1520 1521 if (wc->log_key.type == BTRFS_INODE_EXTREF_KEY) 1522 ret = !!btrfs_find_name_in_ext_backref(wc->log_leaf, wc->log_slot, 1523 parent_id, &name); 1524 else 1525 ret = !!btrfs_find_name_in_backref(wc->log_leaf, wc->log_slot, 1526 &name); 1527 1528 if (!ret) { 1529 struct btrfs_inode *dir; 1530 1531 btrfs_release_path(wc->subvol_path); 1532 dir = btrfs_iget_logging(parent_id, root); 1533 if (IS_ERR(dir)) { 1534 ret = PTR_ERR(dir); 1535 kfree(name.name); 1536 btrfs_abort_log_replay(wc, ret, 1537 "failed to lookup dir inode %llu root %llu", 1538 parent_id, btrfs_root_id(root)); 1539 goto out; 1540 } 1541 ret = unlink_inode_for_log_replay(wc, dir, inode, &name); 1542 kfree(name.name); 1543 iput(&dir->vfs_inode); 1544 if (ret) 1545 goto out; 1546 goto again; 1547 } 1548 1549 kfree(name.name); 1550 ref_ptr += name.len; 1551 if (wc->log_key.type == BTRFS_INODE_EXTREF_KEY) 1552 ref_ptr += sizeof(struct btrfs_inode_extref); 1553 else 1554 ref_ptr += sizeof(struct btrfs_inode_ref); 1555 } 1556 ret = 0; 1557 out: 1558 btrfs_release_path(wc->subvol_path); 1559 return ret; 1560 } 1561 1562 /* 1563 * Replay one inode back reference item found in the log tree. 1564 * Path is for temporary use by this function (it should be released on return). 1565 */ 1566 static noinline int add_inode_ref(struct walk_control *wc) 1567 { 1568 struct btrfs_trans_handle *trans = wc->trans; 1569 struct btrfs_root *root = wc->root; 1570 struct btrfs_inode *dir = NULL; 1571 struct btrfs_inode *inode = NULL; 1572 unsigned long ref_ptr; 1573 unsigned long ref_end; 1574 struct fscrypt_str name = { 0 }; 1575 int ret; 1576 const bool is_extref_item = (wc->log_key.type == BTRFS_INODE_EXTREF_KEY); 1577 u64 parent_objectid; 1578 u64 inode_objectid; 1579 u64 ref_index = 0; 1580 int ref_struct_size; 1581 1582 ref_ptr = btrfs_item_ptr_offset(wc->log_leaf, wc->log_slot); 1583 ref_end = ref_ptr + btrfs_item_size(wc->log_leaf, wc->log_slot); 1584 1585 if (is_extref_item) { 1586 struct btrfs_inode_extref *r; 1587 1588 ref_struct_size = sizeof(struct btrfs_inode_extref); 1589 r = (struct btrfs_inode_extref *)ref_ptr; 1590 parent_objectid = btrfs_inode_extref_parent(wc->log_leaf, r); 1591 } else { 1592 ref_struct_size = sizeof(struct btrfs_inode_ref); 1593 parent_objectid = wc->log_key.offset; 1594 } 1595 inode_objectid = wc->log_key.objectid; 1596 1597 /* 1598 * it is possible that we didn't log all the parent directories 1599 * for a given inode. If we don't find the dir, just don't 1600 * copy the back ref in. The link count fixup code will take 1601 * care of the rest 1602 */ 1603 dir = btrfs_iget_logging(parent_objectid, root); 1604 if (IS_ERR(dir)) { 1605 ret = PTR_ERR(dir); 1606 if (ret == -ENOENT) 1607 ret = 0; 1608 else 1609 btrfs_abort_log_replay(wc, ret, 1610 "failed to lookup dir inode %llu root %llu", 1611 parent_objectid, btrfs_root_id(root)); 1612 dir = NULL; 1613 goto out; 1614 } 1615 1616 inode = btrfs_iget_logging(inode_objectid, root); 1617 if (IS_ERR(inode)) { 1618 ret = PTR_ERR(inode); 1619 btrfs_abort_log_replay(wc, ret, 1620 "failed to lookup inode %llu root %llu", 1621 inode_objectid, btrfs_root_id(root)); 1622 inode = NULL; 1623 goto out; 1624 } 1625 1626 while (ref_ptr < ref_end) { 1627 if (is_extref_item) { 1628 ret = extref_get_fields(wc->log_leaf, ref_ptr, &name, 1629 &ref_index, &parent_objectid); 1630 if (ret) { 1631 btrfs_abort_log_replay(wc, ret, 1632 "failed to get extref details for inode %llu root %llu", 1633 btrfs_ino(inode), 1634 btrfs_root_id(root)); 1635 goto out; 1636 } 1637 /* 1638 * parent object can change from one array 1639 * item to another. 1640 */ 1641 if (!dir) { 1642 dir = btrfs_iget_logging(parent_objectid, root); 1643 if (IS_ERR(dir)) { 1644 ret = PTR_ERR(dir); 1645 dir = NULL; 1646 /* 1647 * A new parent dir may have not been 1648 * logged and not exist in the subvolume 1649 * tree, see the comment above before 1650 * the loop when getting the first 1651 * parent dir. 1652 */ 1653 if (ret == -ENOENT) { 1654 /* 1655 * The next extref may refer to 1656 * another parent dir that 1657 * exists, so continue. 1658 */ 1659 ret = 0; 1660 goto next; 1661 } else { 1662 btrfs_abort_log_replay(wc, ret, 1663 "failed to lookup dir inode %llu root %llu", 1664 parent_objectid, 1665 btrfs_root_id(root)); 1666 } 1667 goto out; 1668 } 1669 } 1670 } else { 1671 ret = ref_get_fields(wc->log_leaf, ref_ptr, &name, &ref_index); 1672 if (ret) { 1673 btrfs_abort_log_replay(wc, ret, 1674 "failed to get ref details for inode %llu parent_objectid %llu root %llu", 1675 btrfs_ino(inode), 1676 parent_objectid, 1677 btrfs_root_id(root)); 1678 goto out; 1679 } 1680 } 1681 1682 ret = inode_in_dir(root, wc->subvol_path, btrfs_ino(dir), 1683 btrfs_ino(inode), ref_index, &name); 1684 if (ret < 0) { 1685 btrfs_abort_log_replay(wc, ret, 1686 "failed to check if inode %llu is in dir %llu ref_index %llu name %.*s root %llu", 1687 btrfs_ino(inode), btrfs_ino(dir), 1688 ref_index, name.len, name.name, 1689 btrfs_root_id(root)); 1690 goto out; 1691 } else if (ret == 0) { 1692 /* 1693 * look for a conflicting back reference in the 1694 * metadata. if we find one we have to unlink that name 1695 * of the file before we add our new link. Later on, we 1696 * overwrite any existing back reference, and we don't 1697 * want to create dangling pointers in the directory. 1698 */ 1699 ret = __add_inode_ref(wc, dir, inode, ref_index, &name); 1700 if (ret) { 1701 if (ret == 1) 1702 ret = 0; 1703 goto out; 1704 } 1705 1706 /* insert our name */ 1707 ret = btrfs_add_link(trans, dir, inode, &name, 0, ref_index); 1708 if (ret) { 1709 btrfs_abort_log_replay(wc, ret, 1710 "failed to add link for inode %llu in dir %llu ref_index %llu name %.*s root %llu", 1711 btrfs_ino(inode), 1712 btrfs_ino(dir), ref_index, 1713 name.len, name.name, 1714 btrfs_root_id(root)); 1715 goto out; 1716 } 1717 1718 ret = btrfs_update_inode(trans, inode); 1719 if (ret) { 1720 btrfs_abort_log_replay(wc, ret, 1721 "failed to update inode %llu root %llu", 1722 btrfs_ino(inode), 1723 btrfs_root_id(root)); 1724 goto out; 1725 } 1726 } 1727 /* Else, ret == 1, we already have a perfect match, we're done. */ 1728 1729 next: 1730 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + name.len; 1731 kfree(name.name); 1732 name.name = NULL; 1733 if (is_extref_item && dir) { 1734 iput(&dir->vfs_inode); 1735 dir = NULL; 1736 } 1737 } 1738 1739 /* 1740 * Before we overwrite the inode reference item in the subvolume tree 1741 * with the item from the log tree, we must unlink all names from the 1742 * parent directory that are in the subvolume's tree inode reference 1743 * item, otherwise we end up with an inconsistent subvolume tree where 1744 * dir index entries exist for a name but there is no inode reference 1745 * item with the same name. 1746 */ 1747 ret = unlink_old_inode_refs(wc, inode); 1748 if (ret) 1749 goto out; 1750 1751 /* finally write the back reference in the inode */ 1752 ret = overwrite_item(wc); 1753 out: 1754 btrfs_release_path(wc->subvol_path); 1755 kfree(name.name); 1756 if (dir) 1757 iput(&dir->vfs_inode); 1758 if (inode) 1759 iput(&inode->vfs_inode); 1760 return ret; 1761 } 1762 1763 static int count_inode_extrefs(struct btrfs_inode *inode, struct btrfs_path *path) 1764 { 1765 int ret = 0; 1766 int name_len; 1767 unsigned int nlink = 0; 1768 u32 item_size; 1769 u32 cur_offset = 0; 1770 u64 inode_objectid = btrfs_ino(inode); 1771 u64 offset = 0; 1772 unsigned long ptr; 1773 struct btrfs_inode_extref *extref; 1774 struct extent_buffer *leaf; 1775 1776 while (1) { 1777 ret = btrfs_find_one_extref(inode->root, inode_objectid, offset, 1778 path, &extref, &offset); 1779 if (ret) 1780 break; 1781 1782 leaf = path->nodes[0]; 1783 item_size = btrfs_item_size(leaf, path->slots[0]); 1784 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1785 cur_offset = 0; 1786 1787 while (cur_offset < item_size) { 1788 extref = (struct btrfs_inode_extref *) (ptr + cur_offset); 1789 name_len = btrfs_inode_extref_name_len(leaf, extref); 1790 1791 nlink++; 1792 1793 cur_offset += name_len + sizeof(*extref); 1794 } 1795 1796 offset++; 1797 btrfs_release_path(path); 1798 } 1799 btrfs_release_path(path); 1800 1801 if (ret < 0 && ret != -ENOENT) 1802 return ret; 1803 return nlink; 1804 } 1805 1806 static int count_inode_refs(struct btrfs_inode *inode, struct btrfs_path *path) 1807 { 1808 int ret; 1809 struct btrfs_key key; 1810 unsigned int nlink = 0; 1811 unsigned long ptr; 1812 unsigned long ptr_end; 1813 int name_len; 1814 u64 ino = btrfs_ino(inode); 1815 1816 key.objectid = ino; 1817 key.type = BTRFS_INODE_REF_KEY; 1818 key.offset = (u64)-1; 1819 1820 while (1) { 1821 ret = btrfs_search_slot(NULL, inode->root, &key, path, 0, 0); 1822 if (ret < 0) 1823 break; 1824 if (ret > 0) { 1825 if (path->slots[0] == 0) 1826 break; 1827 path->slots[0]--; 1828 } 1829 process_slot: 1830 btrfs_item_key_to_cpu(path->nodes[0], &key, 1831 path->slots[0]); 1832 if (key.objectid != ino || 1833 key.type != BTRFS_INODE_REF_KEY) 1834 break; 1835 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 1836 ptr_end = ptr + btrfs_item_size(path->nodes[0], 1837 path->slots[0]); 1838 while (ptr < ptr_end) { 1839 struct btrfs_inode_ref *ref; 1840 1841 ref = (struct btrfs_inode_ref *)ptr; 1842 name_len = btrfs_inode_ref_name_len(path->nodes[0], 1843 ref); 1844 ptr = (unsigned long)(ref + 1) + name_len; 1845 nlink++; 1846 } 1847 1848 if (key.offset == 0) 1849 break; 1850 if (path->slots[0] > 0) { 1851 path->slots[0]--; 1852 goto process_slot; 1853 } 1854 key.offset--; 1855 btrfs_release_path(path); 1856 } 1857 btrfs_release_path(path); 1858 1859 return nlink; 1860 } 1861 1862 /* 1863 * There are a few corners where the link count of the file can't 1864 * be properly maintained during replay. So, instead of adding 1865 * lots of complexity to the log code, we just scan the backrefs 1866 * for any file that has been through replay. 1867 * 1868 * The scan will update the link count on the inode to reflect the 1869 * number of back refs found. If it goes down to zero, the iput 1870 * will free the inode. 1871 */ 1872 static noinline int fixup_inode_link_count(struct walk_control *wc, 1873 struct btrfs_inode *inode) 1874 { 1875 struct btrfs_trans_handle *trans = wc->trans; 1876 struct btrfs_root *root = inode->root; 1877 int ret; 1878 u64 nlink = 0; 1879 const u64 ino = btrfs_ino(inode); 1880 1881 ret = count_inode_refs(inode, wc->subvol_path); 1882 if (ret < 0) 1883 goto out; 1884 1885 nlink = ret; 1886 1887 ret = count_inode_extrefs(inode, wc->subvol_path); 1888 if (ret < 0) 1889 goto out; 1890 1891 nlink += ret; 1892 1893 ret = 0; 1894 1895 if (nlink != inode->vfs_inode.i_nlink) { 1896 set_nlink(&inode->vfs_inode, nlink); 1897 ret = btrfs_update_inode(trans, inode); 1898 if (ret) 1899 goto out; 1900 } 1901 if (S_ISDIR(inode->vfs_inode.i_mode)) 1902 inode->index_cnt = (u64)-1; 1903 1904 if (inode->vfs_inode.i_nlink == 0) { 1905 if (S_ISDIR(inode->vfs_inode.i_mode)) { 1906 ret = replay_dir_deletes(wc, ino, true); 1907 if (ret) 1908 goto out; 1909 } 1910 ret = btrfs_insert_orphan_item(trans, root, ino); 1911 if (ret == -EEXIST) 1912 ret = 0; 1913 } 1914 1915 out: 1916 btrfs_release_path(wc->subvol_path); 1917 return ret; 1918 } 1919 1920 static noinline int fixup_inode_link_counts(struct walk_control *wc) 1921 { 1922 int ret; 1923 struct btrfs_key key; 1924 1925 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1926 key.type = BTRFS_ORPHAN_ITEM_KEY; 1927 key.offset = (u64)-1; 1928 while (1) { 1929 struct btrfs_trans_handle *trans = wc->trans; 1930 struct btrfs_root *root = wc->root; 1931 struct btrfs_inode *inode; 1932 1933 ret = btrfs_search_slot(trans, root, &key, wc->subvol_path, -1, 1); 1934 if (ret < 0) 1935 break; 1936 1937 if (ret == 1) { 1938 ret = 0; 1939 if (wc->subvol_path->slots[0] == 0) 1940 break; 1941 wc->subvol_path->slots[0]--; 1942 } 1943 1944 btrfs_item_key_to_cpu(wc->subvol_path->nodes[0], &key, wc->subvol_path->slots[0]); 1945 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID || 1946 key.type != BTRFS_ORPHAN_ITEM_KEY) 1947 break; 1948 1949 ret = btrfs_del_item(trans, root, wc->subvol_path); 1950 if (ret) 1951 break; 1952 1953 btrfs_release_path(wc->subvol_path); 1954 inode = btrfs_iget_logging(key.offset, root); 1955 if (IS_ERR(inode)) { 1956 ret = PTR_ERR(inode); 1957 break; 1958 } 1959 1960 ret = fixup_inode_link_count(wc, inode); 1961 iput(&inode->vfs_inode); 1962 if (ret) 1963 break; 1964 1965 /* 1966 * fixup on a directory may create new entries, 1967 * make sure we always look for the highest possible 1968 * offset 1969 */ 1970 key.offset = (u64)-1; 1971 } 1972 btrfs_release_path(wc->subvol_path); 1973 return ret; 1974 } 1975 1976 1977 /* 1978 * record a given inode in the fixup dir so we can check its link 1979 * count when replay is done. The link count is incremented here 1980 * so the inode won't go away until we check it 1981 */ 1982 static noinline int link_to_fixup_dir(struct walk_control *wc, u64 objectid) 1983 { 1984 struct btrfs_trans_handle *trans = wc->trans; 1985 struct btrfs_root *root = wc->root; 1986 struct btrfs_key key; 1987 int ret = 0; 1988 struct btrfs_inode *inode; 1989 struct inode *vfs_inode; 1990 1991 inode = btrfs_iget_logging(objectid, root); 1992 if (IS_ERR(inode)) { 1993 ret = PTR_ERR(inode); 1994 btrfs_abort_log_replay(wc, ret, 1995 "failed to lookup inode %llu root %llu", 1996 objectid, btrfs_root_id(root)); 1997 return ret; 1998 } 1999 2000 vfs_inode = &inode->vfs_inode; 2001 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 2002 key.type = BTRFS_ORPHAN_ITEM_KEY; 2003 key.offset = objectid; 2004 2005 ret = btrfs_insert_empty_item(trans, root, wc->subvol_path, &key, 0); 2006 2007 btrfs_release_path(wc->subvol_path); 2008 if (ret == 0) { 2009 if (!vfs_inode->i_nlink) 2010 set_nlink(vfs_inode, 1); 2011 else 2012 inc_nlink(vfs_inode); 2013 ret = btrfs_update_inode(trans, inode); 2014 if (ret) 2015 btrfs_abort_log_replay(wc, ret, 2016 "failed to update inode %llu root %llu", 2017 objectid, btrfs_root_id(root)); 2018 } else if (ret == -EEXIST) { 2019 ret = 0; 2020 } else { 2021 btrfs_abort_log_replay(wc, ret, 2022 "failed to insert fixup item for inode %llu root %llu", 2023 objectid, btrfs_root_id(root)); 2024 } 2025 iput(vfs_inode); 2026 2027 return ret; 2028 } 2029 2030 /* 2031 * when replaying the log for a directory, we only insert names 2032 * for inodes that actually exist. This means an fsync on a directory 2033 * does not implicitly fsync all the new files in it 2034 */ 2035 static noinline int insert_one_name(struct btrfs_trans_handle *trans, 2036 struct btrfs_root *root, 2037 u64 dirid, u64 index, 2038 const struct fscrypt_str *name, 2039 struct btrfs_key *location) 2040 { 2041 struct btrfs_inode *inode; 2042 struct btrfs_inode *dir; 2043 int ret; 2044 2045 inode = btrfs_iget_logging(location->objectid, root); 2046 if (IS_ERR(inode)) 2047 return PTR_ERR(inode); 2048 2049 dir = btrfs_iget_logging(dirid, root); 2050 if (IS_ERR(dir)) { 2051 iput(&inode->vfs_inode); 2052 return PTR_ERR(dir); 2053 } 2054 2055 ret = btrfs_add_link(trans, dir, inode, name, 1, index); 2056 2057 /* FIXME, put inode into FIXUP list */ 2058 2059 iput(&inode->vfs_inode); 2060 iput(&dir->vfs_inode); 2061 return ret; 2062 } 2063 2064 static int delete_conflicting_dir_entry(struct walk_control *wc, 2065 struct btrfs_inode *dir, 2066 struct btrfs_dir_item *dst_di, 2067 const struct btrfs_key *log_key, 2068 u8 log_flags, 2069 bool exists) 2070 { 2071 struct btrfs_key found_key; 2072 2073 btrfs_dir_item_key_to_cpu(wc->subvol_path->nodes[0], dst_di, &found_key); 2074 /* The existing dentry points to the same inode, don't delete it. */ 2075 if (found_key.objectid == log_key->objectid && 2076 found_key.type == log_key->type && 2077 found_key.offset == log_key->offset && 2078 btrfs_dir_flags(wc->subvol_path->nodes[0], dst_di) == log_flags) 2079 return 1; 2080 2081 /* 2082 * Don't drop the conflicting directory entry if the inode for the new 2083 * entry doesn't exist. 2084 */ 2085 if (!exists) 2086 return 0; 2087 2088 return drop_one_dir_item(wc, dir, dst_di); 2089 } 2090 2091 /* 2092 * take a single entry in a log directory item and replay it into 2093 * the subvolume. 2094 * 2095 * if a conflicting item exists in the subdirectory already, 2096 * the inode it points to is unlinked and put into the link count 2097 * fix up tree. 2098 * 2099 * If a name from the log points to a file or directory that does 2100 * not exist in the FS, it is skipped. fsyncs on directories 2101 * do not force down inodes inside that directory, just changes to the 2102 * names or unlinks in a directory. 2103 * 2104 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a 2105 * non-existing inode) and 1 if the name was replayed. 2106 */ 2107 static noinline int replay_one_name(struct walk_control *wc, struct btrfs_dir_item *di) 2108 { 2109 struct btrfs_trans_handle *trans = wc->trans; 2110 struct btrfs_root *root = wc->root; 2111 struct fscrypt_str name = { 0 }; 2112 struct btrfs_dir_item *dir_dst_di; 2113 struct btrfs_dir_item *index_dst_di; 2114 bool dir_dst_matches = false; 2115 bool index_dst_matches = false; 2116 struct btrfs_key log_key; 2117 struct btrfs_key search_key; 2118 struct btrfs_inode *dir; 2119 u8 log_flags; 2120 bool exists; 2121 int ret; 2122 bool update_size = true; 2123 bool name_added = false; 2124 2125 dir = btrfs_iget_logging(wc->log_key.objectid, root); 2126 if (IS_ERR(dir)) { 2127 ret = PTR_ERR(dir); 2128 btrfs_abort_log_replay(wc, ret, 2129 "failed to lookup dir inode %llu root %llu", 2130 wc->log_key.objectid, btrfs_root_id(root)); 2131 return ret; 2132 } 2133 2134 ret = read_alloc_one_name(wc->log_leaf, di + 1, 2135 btrfs_dir_name_len(wc->log_leaf, di), &name); 2136 if (ret) { 2137 btrfs_abort_log_replay(wc, ret, 2138 "failed to allocate name for dir %llu root %llu", 2139 btrfs_ino(dir), btrfs_root_id(root)); 2140 goto out; 2141 } 2142 2143 log_flags = btrfs_dir_flags(wc->log_leaf, di); 2144 btrfs_dir_item_key_to_cpu(wc->log_leaf, di, &log_key); 2145 ret = btrfs_lookup_inode(trans, root, wc->subvol_path, &log_key, 0); 2146 btrfs_release_path(wc->subvol_path); 2147 if (ret < 0) { 2148 btrfs_abort_log_replay(wc, ret, 2149 "failed to lookup inode %llu root %llu", 2150 log_key.objectid, btrfs_root_id(root)); 2151 goto out; 2152 } 2153 exists = (ret == 0); 2154 ret = 0; 2155 2156 dir_dst_di = btrfs_lookup_dir_item(trans, root, wc->subvol_path, 2157 wc->log_key.objectid, &name, 1); 2158 if (IS_ERR(dir_dst_di)) { 2159 ret = PTR_ERR(dir_dst_di); 2160 btrfs_abort_log_replay(wc, ret, 2161 "failed to lookup dir item for dir %llu name %.*s root %llu", 2162 wc->log_key.objectid, name.len, name.name, 2163 btrfs_root_id(root)); 2164 goto out; 2165 } else if (dir_dst_di) { 2166 ret = delete_conflicting_dir_entry(wc, dir, dir_dst_di, 2167 &log_key, log_flags, exists); 2168 if (ret < 0) { 2169 btrfs_abort_log_replay(wc, ret, 2170 "failed to delete conflicting entry for dir %llu name %.*s root %llu", 2171 btrfs_ino(dir), name.len, name.name, 2172 btrfs_root_id(root)); 2173 goto out; 2174 } 2175 dir_dst_matches = (ret == 1); 2176 } 2177 2178 btrfs_release_path(wc->subvol_path); 2179 2180 index_dst_di = btrfs_lookup_dir_index_item(trans, root, wc->subvol_path, 2181 wc->log_key.objectid, 2182 wc->log_key.offset, &name, 1); 2183 if (IS_ERR(index_dst_di)) { 2184 ret = PTR_ERR(index_dst_di); 2185 btrfs_abort_log_replay(wc, ret, 2186 "failed to lookup dir index item for dir %llu name %.*s root %llu", 2187 wc->log_key.objectid, name.len, name.name, 2188 btrfs_root_id(root)); 2189 goto out; 2190 } else if (index_dst_di) { 2191 ret = delete_conflicting_dir_entry(wc, dir, index_dst_di, 2192 &log_key, log_flags, exists); 2193 if (ret < 0) { 2194 btrfs_abort_log_replay(wc, ret, 2195 "failed to delete conflicting entry for dir %llu name %.*s root %llu", 2196 btrfs_ino(dir), name.len, name.name, 2197 btrfs_root_id(root)); 2198 goto out; 2199 } 2200 index_dst_matches = (ret == 1); 2201 } 2202 2203 btrfs_release_path(wc->subvol_path); 2204 2205 if (dir_dst_matches && index_dst_matches) { 2206 ret = 0; 2207 update_size = false; 2208 goto out; 2209 } 2210 2211 /* 2212 * Check if the inode reference exists in the log for the given name, 2213 * inode and parent inode 2214 */ 2215 search_key.objectid = log_key.objectid; 2216 search_key.type = BTRFS_INODE_REF_KEY; 2217 search_key.offset = wc->log_key.objectid; 2218 ret = backref_in_log(root->log_root, &search_key, 0, &name); 2219 if (ret < 0) { 2220 btrfs_abort_log_replay(wc, ret, 2221 "failed to check if ref item is logged for inode %llu dir %llu name %.*s root %llu", 2222 search_key.objectid, btrfs_ino(dir), 2223 name.len, name.name, btrfs_root_id(root)); 2224 goto out; 2225 } else if (ret) { 2226 /* The dentry will be added later. */ 2227 ret = 0; 2228 update_size = false; 2229 goto out; 2230 } 2231 2232 search_key.objectid = log_key.objectid; 2233 search_key.type = BTRFS_INODE_EXTREF_KEY; 2234 search_key.offset = btrfs_extref_hash(wc->log_key.objectid, name.name, name.len); 2235 ret = backref_in_log(root->log_root, &search_key, wc->log_key.objectid, &name); 2236 if (ret < 0) { 2237 btrfs_abort_log_replay(wc, ret, 2238 "failed to check if extref item is logged for inode %llu dir %llu name %.*s root %llu", 2239 search_key.objectid, btrfs_ino(dir), 2240 name.len, name.name, btrfs_root_id(root)); 2241 goto out; 2242 } else if (ret) { 2243 /* The dentry will be added later. */ 2244 ret = 0; 2245 update_size = false; 2246 goto out; 2247 } 2248 ret = insert_one_name(trans, root, wc->log_key.objectid, wc->log_key.offset, 2249 &name, &log_key); 2250 if (ret && ret != -ENOENT && ret != -EEXIST) { 2251 btrfs_abort_log_replay(wc, ret, 2252 "failed to insert name %.*s for inode %llu dir %llu root %llu", 2253 name.len, name.name, log_key.objectid, 2254 btrfs_ino(dir), btrfs_root_id(root)); 2255 goto out; 2256 } 2257 if (!ret) 2258 name_added = true; 2259 update_size = false; 2260 ret = 0; 2261 2262 out: 2263 if (!ret && update_size) { 2264 btrfs_i_size_write(dir, dir->vfs_inode.i_size + name.len * 2); 2265 ret = btrfs_update_inode(trans, dir); 2266 if (ret) 2267 btrfs_abort_log_replay(wc, ret, 2268 "failed to update dir inode %llu root %llu", 2269 btrfs_ino(dir), btrfs_root_id(root)); 2270 } 2271 kfree(name.name); 2272 iput(&dir->vfs_inode); 2273 if (!ret && name_added) 2274 ret = 1; 2275 return ret; 2276 } 2277 2278 /* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */ 2279 static noinline int replay_one_dir_item(struct walk_control *wc) 2280 { 2281 int ret; 2282 struct btrfs_dir_item *di; 2283 2284 /* We only log dir index keys, which only contain a single dir item. */ 2285 ASSERT(wc->log_key.type == BTRFS_DIR_INDEX_KEY); 2286 2287 di = btrfs_item_ptr(wc->log_leaf, wc->log_slot, struct btrfs_dir_item); 2288 ret = replay_one_name(wc, di); 2289 if (ret < 0) 2290 return ret; 2291 2292 /* 2293 * If this entry refers to a non-directory (directories can not have a 2294 * link count > 1) and it was added in the transaction that was not 2295 * committed, make sure we fixup the link count of the inode the entry 2296 * points to. Otherwise something like the following would result in a 2297 * directory pointing to an inode with a wrong link that does not account 2298 * for this dir entry: 2299 * 2300 * mkdir testdir 2301 * touch testdir/foo 2302 * touch testdir/bar 2303 * sync 2304 * 2305 * ln testdir/bar testdir/bar_link 2306 * ln testdir/foo testdir/foo_link 2307 * xfs_io -c "fsync" testdir/bar 2308 * 2309 * <power failure> 2310 * 2311 * mount fs, log replay happens 2312 * 2313 * File foo would remain with a link count of 1 when it has two entries 2314 * pointing to it in the directory testdir. This would make it impossible 2315 * to ever delete the parent directory has it would result in stale 2316 * dentries that can never be deleted. 2317 */ 2318 if (ret == 1 && btrfs_dir_ftype(wc->log_leaf, di) != BTRFS_FT_DIR) { 2319 struct btrfs_key di_key; 2320 2321 btrfs_dir_item_key_to_cpu(wc->log_leaf, di, &di_key); 2322 ret = link_to_fixup_dir(wc, di_key.objectid); 2323 } 2324 2325 return ret; 2326 } 2327 2328 /* 2329 * directory replay has two parts. There are the standard directory 2330 * items in the log copied from the subvolume, and range items 2331 * created in the log while the subvolume was logged. 2332 * 2333 * The range items tell us which parts of the key space the log 2334 * is authoritative for. During replay, if a key in the subvolume 2335 * directory is in a logged range item, but not actually in the log 2336 * that means it was deleted from the directory before the fsync 2337 * and should be removed. 2338 */ 2339 static noinline int find_dir_range(struct btrfs_root *root, 2340 struct btrfs_path *path, 2341 u64 dirid, 2342 u64 *start_ret, u64 *end_ret) 2343 { 2344 struct btrfs_key key; 2345 u64 found_end; 2346 struct btrfs_dir_log_item *item; 2347 int ret; 2348 int nritems; 2349 2350 if (*start_ret == (u64)-1) 2351 return 1; 2352 2353 key.objectid = dirid; 2354 key.type = BTRFS_DIR_LOG_INDEX_KEY; 2355 key.offset = *start_ret; 2356 2357 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2358 if (ret < 0) 2359 goto out; 2360 if (ret > 0) { 2361 if (path->slots[0] == 0) 2362 goto out; 2363 path->slots[0]--; 2364 } 2365 if (ret != 0) 2366 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2367 2368 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) { 2369 ret = 1; 2370 goto next; 2371 } 2372 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2373 struct btrfs_dir_log_item); 2374 found_end = btrfs_dir_log_end(path->nodes[0], item); 2375 2376 if (*start_ret >= key.offset && *start_ret <= found_end) { 2377 ret = 0; 2378 *start_ret = key.offset; 2379 *end_ret = found_end; 2380 goto out; 2381 } 2382 ret = 1; 2383 next: 2384 /* check the next slot in the tree to see if it is a valid item */ 2385 nritems = btrfs_header_nritems(path->nodes[0]); 2386 path->slots[0]++; 2387 if (path->slots[0] >= nritems) { 2388 ret = btrfs_next_leaf(root, path); 2389 if (ret) 2390 goto out; 2391 } 2392 2393 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2394 2395 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) { 2396 ret = 1; 2397 goto out; 2398 } 2399 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2400 struct btrfs_dir_log_item); 2401 found_end = btrfs_dir_log_end(path->nodes[0], item); 2402 *start_ret = key.offset; 2403 *end_ret = found_end; 2404 ret = 0; 2405 out: 2406 btrfs_release_path(path); 2407 return ret; 2408 } 2409 2410 /* 2411 * this looks for a given directory item in the log. If the directory 2412 * item is not in the log, the item is removed and the inode it points 2413 * to is unlinked 2414 */ 2415 static noinline int check_item_in_log(struct walk_control *wc, 2416 struct btrfs_path *log_path, 2417 struct btrfs_inode *dir, 2418 struct btrfs_key *dir_key, 2419 bool force_remove) 2420 { 2421 struct btrfs_trans_handle *trans = wc->trans; 2422 struct btrfs_root *root = dir->root; 2423 int ret; 2424 struct extent_buffer *eb; 2425 int slot; 2426 struct btrfs_dir_item *di; 2427 struct fscrypt_str name = { 0 }; 2428 struct btrfs_inode *inode = NULL; 2429 struct btrfs_key location; 2430 2431 /* 2432 * Currently we only log dir index keys. Even if we replay a log created 2433 * by an older kernel that logged both dir index and dir item keys, all 2434 * we need to do is process the dir index keys, we (and our caller) can 2435 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY). 2436 */ 2437 ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY); 2438 2439 eb = wc->subvol_path->nodes[0]; 2440 slot = wc->subvol_path->slots[0]; 2441 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 2442 ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name); 2443 if (ret) { 2444 btrfs_abort_log_replay(wc, ret, 2445 "failed to allocate name for dir %llu index %llu root %llu", 2446 btrfs_ino(dir), dir_key->offset, 2447 btrfs_root_id(root)); 2448 goto out; 2449 } 2450 2451 if (!force_remove) { 2452 struct btrfs_dir_item *log_di; 2453 2454 log_di = btrfs_lookup_dir_index_item(trans, wc->log, log_path, 2455 dir_key->objectid, 2456 dir_key->offset, &name, 0); 2457 if (IS_ERR(log_di)) { 2458 ret = PTR_ERR(log_di); 2459 btrfs_abort_log_replay(wc, ret, 2460 "failed to lookup dir index item for dir %llu index %llu name %.*s root %llu", 2461 btrfs_ino(dir), dir_key->offset, 2462 name.len, name.name, 2463 btrfs_root_id(root)); 2464 goto out; 2465 } else if (log_di) { 2466 /* The dentry exists in the log, we have nothing to do. */ 2467 ret = 0; 2468 goto out; 2469 } 2470 } 2471 2472 btrfs_dir_item_key_to_cpu(eb, di, &location); 2473 btrfs_release_path(wc->subvol_path); 2474 btrfs_release_path(log_path); 2475 inode = btrfs_iget_logging(location.objectid, root); 2476 if (IS_ERR(inode)) { 2477 ret = PTR_ERR(inode); 2478 inode = NULL; 2479 btrfs_abort_log_replay(wc, ret, 2480 "failed to lookup inode %llu root %llu", 2481 location.objectid, btrfs_root_id(root)); 2482 goto out; 2483 } 2484 2485 ret = link_to_fixup_dir(wc, location.objectid); 2486 if (ret) 2487 goto out; 2488 2489 inc_nlink(&inode->vfs_inode); 2490 ret = unlink_inode_for_log_replay(wc, dir, inode, &name); 2491 /* 2492 * Unlike dir item keys, dir index keys can only have one name (entry) in 2493 * them, as there are no key collisions since each key has a unique offset 2494 * (an index number), so we're done. 2495 */ 2496 out: 2497 btrfs_release_path(wc->subvol_path); 2498 btrfs_release_path(log_path); 2499 kfree(name.name); 2500 if (inode) 2501 iput(&inode->vfs_inode); 2502 return ret; 2503 } 2504 2505 static int replay_xattr_deletes(struct walk_control *wc) 2506 { 2507 struct btrfs_trans_handle *trans = wc->trans; 2508 struct btrfs_root *root = wc->root; 2509 struct btrfs_root *log = wc->log; 2510 struct btrfs_key search_key; 2511 BTRFS_PATH_AUTO_FREE(log_path); 2512 const u64 ino = wc->log_key.objectid; 2513 int nritems; 2514 int ret; 2515 2516 log_path = btrfs_alloc_path(); 2517 if (!log_path) { 2518 btrfs_abort_log_replay(wc, -ENOMEM, "failed to allocate path"); 2519 return -ENOMEM; 2520 } 2521 2522 search_key.objectid = ino; 2523 search_key.type = BTRFS_XATTR_ITEM_KEY; 2524 search_key.offset = 0; 2525 again: 2526 ret = btrfs_search_slot(NULL, root, &search_key, wc->subvol_path, 0, 0); 2527 if (ret < 0) { 2528 btrfs_abort_log_replay(wc, ret, 2529 "failed to search xattrs for inode %llu root %llu", 2530 ino, btrfs_root_id(root)); 2531 goto out; 2532 } 2533 process_leaf: 2534 nritems = btrfs_header_nritems(wc->subvol_path->nodes[0]); 2535 for (int i = wc->subvol_path->slots[0]; i < nritems; i++) { 2536 struct btrfs_key key; 2537 struct btrfs_dir_item *di; 2538 struct btrfs_dir_item *log_di; 2539 u32 total_size; 2540 u32 cur; 2541 2542 btrfs_item_key_to_cpu(wc->subvol_path->nodes[0], &key, i); 2543 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) { 2544 ret = 0; 2545 goto out; 2546 } 2547 2548 di = btrfs_item_ptr(wc->subvol_path->nodes[0], i, struct btrfs_dir_item); 2549 total_size = btrfs_item_size(wc->subvol_path->nodes[0], i); 2550 cur = 0; 2551 while (cur < total_size) { 2552 u16 name_len = btrfs_dir_name_len(wc->subvol_path->nodes[0], di); 2553 u16 data_len = btrfs_dir_data_len(wc->subvol_path->nodes[0], di); 2554 u32 this_len = sizeof(*di) + name_len + data_len; 2555 char *name; 2556 2557 name = kmalloc(name_len, GFP_NOFS); 2558 if (!name) { 2559 ret = -ENOMEM; 2560 btrfs_abort_log_replay(wc, ret, 2561 "failed to allocate memory for name of length %u", 2562 name_len); 2563 goto out; 2564 } 2565 read_extent_buffer(wc->subvol_path->nodes[0], name, 2566 (unsigned long)(di + 1), name_len); 2567 2568 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino, 2569 name, name_len, 0); 2570 btrfs_release_path(log_path); 2571 if (!log_di) { 2572 /* Doesn't exist in log tree, so delete it. */ 2573 btrfs_release_path(wc->subvol_path); 2574 di = btrfs_lookup_xattr(trans, root, wc->subvol_path, ino, 2575 name, name_len, -1); 2576 if (IS_ERR(di)) { 2577 ret = PTR_ERR(di); 2578 btrfs_abort_log_replay(wc, ret, 2579 "failed to lookup xattr with name %.*s for inode %llu root %llu", 2580 name_len, name, ino, 2581 btrfs_root_id(root)); 2582 kfree(name); 2583 goto out; 2584 } 2585 ASSERT(di); 2586 ret = btrfs_delete_one_dir_name(trans, root, 2587 wc->subvol_path, di); 2588 if (ret) { 2589 btrfs_abort_log_replay(wc, ret, 2590 "failed to delete xattr with name %.*s for inode %llu root %llu", 2591 name_len, name, ino, 2592 btrfs_root_id(root)); 2593 kfree(name); 2594 goto out; 2595 } 2596 btrfs_release_path(wc->subvol_path); 2597 kfree(name); 2598 search_key = key; 2599 goto again; 2600 } 2601 if (IS_ERR(log_di)) { 2602 ret = PTR_ERR(log_di); 2603 btrfs_abort_log_replay(wc, ret, 2604 "failed to lookup xattr in log tree with name %.*s for inode %llu root %llu", 2605 name_len, name, ino, 2606 btrfs_root_id(root)); 2607 kfree(name); 2608 goto out; 2609 } 2610 kfree(name); 2611 cur += this_len; 2612 di = (struct btrfs_dir_item *)((char *)di + this_len); 2613 } 2614 } 2615 ret = btrfs_next_leaf(root, wc->subvol_path); 2616 if (ret > 0) 2617 ret = 0; 2618 else if (ret == 0) 2619 goto process_leaf; 2620 else 2621 btrfs_abort_log_replay(wc, ret, 2622 "failed to get next leaf in subvolume root %llu", 2623 btrfs_root_id(root)); 2624 out: 2625 btrfs_release_path(wc->subvol_path); 2626 return ret; 2627 } 2628 2629 2630 /* 2631 * deletion replay happens before we copy any new directory items 2632 * out of the log or out of backreferences from inodes. It 2633 * scans the log to find ranges of keys that log is authoritative for, 2634 * and then scans the directory to find items in those ranges that are 2635 * not present in the log. 2636 * 2637 * Anything we don't find in the log is unlinked and removed from the 2638 * directory. 2639 */ 2640 static noinline int replay_dir_deletes(struct walk_control *wc, 2641 u64 dirid, bool del_all) 2642 { 2643 struct btrfs_root *root = wc->root; 2644 struct btrfs_root *log = (del_all ? NULL : wc->log); 2645 u64 range_start; 2646 u64 range_end; 2647 int ret = 0; 2648 struct btrfs_key dir_key; 2649 struct btrfs_key found_key; 2650 struct btrfs_path *log_path; 2651 struct btrfs_inode *dir; 2652 2653 dir_key.objectid = dirid; 2654 dir_key.type = BTRFS_DIR_INDEX_KEY; 2655 log_path = btrfs_alloc_path(); 2656 if (!log_path) { 2657 btrfs_abort_log_replay(wc, -ENOMEM, "failed to allocate path"); 2658 return -ENOMEM; 2659 } 2660 2661 dir = btrfs_iget_logging(dirid, root); 2662 /* 2663 * It isn't an error if the inode isn't there, that can happen because 2664 * we replay the deletes before we copy in the inode item from the log. 2665 */ 2666 if (IS_ERR(dir)) { 2667 btrfs_free_path(log_path); 2668 ret = PTR_ERR(dir); 2669 if (ret == -ENOENT) 2670 ret = 0; 2671 else 2672 btrfs_abort_log_replay(wc, ret, 2673 "failed to lookup dir inode %llu root %llu", 2674 dirid, btrfs_root_id(root)); 2675 return ret; 2676 } 2677 2678 range_start = 0; 2679 range_end = 0; 2680 while (1) { 2681 if (del_all) 2682 range_end = (u64)-1; 2683 else { 2684 ret = find_dir_range(log, wc->subvol_path, dirid, 2685 &range_start, &range_end); 2686 if (ret < 0) { 2687 btrfs_abort_log_replay(wc, ret, 2688 "failed to find range for dir %llu in log tree root %llu", 2689 dirid, btrfs_root_id(root)); 2690 goto out; 2691 } else if (ret > 0) { 2692 break; 2693 } 2694 } 2695 2696 dir_key.offset = range_start; 2697 while (1) { 2698 int nritems; 2699 ret = btrfs_search_slot(NULL, root, &dir_key, 2700 wc->subvol_path, 0, 0); 2701 if (ret < 0) { 2702 btrfs_abort_log_replay(wc, ret, 2703 "failed to search root %llu for key (%llu %u %llu)", 2704 btrfs_root_id(root), 2705 dir_key.objectid, dir_key.type, 2706 dir_key.offset); 2707 goto out; 2708 } 2709 2710 nritems = btrfs_header_nritems(wc->subvol_path->nodes[0]); 2711 if (wc->subvol_path->slots[0] >= nritems) { 2712 ret = btrfs_next_leaf(root, wc->subvol_path); 2713 if (ret == 1) { 2714 break; 2715 } else if (ret < 0) { 2716 btrfs_abort_log_replay(wc, ret, 2717 "failed to get next leaf in subvolume root %llu", 2718 btrfs_root_id(root)); 2719 goto out; 2720 } 2721 } 2722 btrfs_item_key_to_cpu(wc->subvol_path->nodes[0], &found_key, 2723 wc->subvol_path->slots[0]); 2724 if (found_key.objectid != dirid || 2725 found_key.type != dir_key.type) { 2726 ret = 0; 2727 goto out; 2728 } 2729 2730 if (found_key.offset > range_end) 2731 break; 2732 2733 ret = check_item_in_log(wc, log_path, dir, &found_key, del_all); 2734 if (ret) 2735 goto out; 2736 if (found_key.offset == (u64)-1) 2737 break; 2738 dir_key.offset = found_key.offset + 1; 2739 } 2740 btrfs_release_path(wc->subvol_path); 2741 if (range_end == (u64)-1) 2742 break; 2743 range_start = range_end + 1; 2744 } 2745 ret = 0; 2746 out: 2747 btrfs_release_path(wc->subvol_path); 2748 btrfs_free_path(log_path); 2749 iput(&dir->vfs_inode); 2750 return ret; 2751 } 2752 2753 /* 2754 * the process_func used to replay items from the log tree. This 2755 * gets called in two different stages. The first stage just looks 2756 * for inodes and makes sure they are all copied into the subvolume. 2757 * 2758 * The second stage copies all the other item types from the log into 2759 * the subvolume. The two stage approach is slower, but gets rid of 2760 * lots of complexity around inodes referencing other inodes that exist 2761 * only in the log (references come from either directory items or inode 2762 * back refs). 2763 */ 2764 static int replay_one_buffer(struct extent_buffer *eb, 2765 struct walk_control *wc, u64 gen, int level) 2766 { 2767 int nritems; 2768 struct btrfs_tree_parent_check check = { 2769 .transid = gen, 2770 .level = level 2771 }; 2772 struct btrfs_root *root = wc->root; 2773 struct btrfs_trans_handle *trans = wc->trans; 2774 int ret; 2775 2776 if (level != 0) 2777 return 0; 2778 2779 /* 2780 * Set to NULL since it was not yet read and in case we abort log replay 2781 * on error, we have no valid log tree leaf to dump. 2782 */ 2783 wc->log_leaf = NULL; 2784 ret = btrfs_read_extent_buffer(eb, &check); 2785 if (ret) { 2786 btrfs_abort_log_replay(wc, ret, 2787 "failed to read log tree leaf %llu for root %llu", 2788 eb->start, btrfs_root_id(root)); 2789 return ret; 2790 } 2791 2792 ASSERT(wc->subvol_path == NULL); 2793 wc->subvol_path = btrfs_alloc_path(); 2794 if (!wc->subvol_path) { 2795 btrfs_abort_log_replay(wc, -ENOMEM, "failed to allocate path"); 2796 return -ENOMEM; 2797 } 2798 2799 wc->log_leaf = eb; 2800 2801 nritems = btrfs_header_nritems(eb); 2802 for (wc->log_slot = 0; wc->log_slot < nritems; wc->log_slot++) { 2803 struct btrfs_inode_item *inode_item; 2804 2805 btrfs_item_key_to_cpu(eb, &wc->log_key, wc->log_slot); 2806 2807 if (wc->log_key.type == BTRFS_INODE_ITEM_KEY) { 2808 inode_item = btrfs_item_ptr(eb, wc->log_slot, 2809 struct btrfs_inode_item); 2810 /* 2811 * An inode with no links is either: 2812 * 2813 * 1) A tmpfile (O_TMPFILE) that got fsync'ed and never 2814 * got linked before the fsync, skip it, as replaying 2815 * it is pointless since it would be deleted later. 2816 * We skip logging tmpfiles, but it's always possible 2817 * we are replaying a log created with a kernel that 2818 * used to log tmpfiles; 2819 * 2820 * 2) A non-tmpfile which got its last link deleted 2821 * while holding an open fd on it and later got 2822 * fsynced through that fd. We always log the 2823 * parent inodes when inode->last_unlink_trans is 2824 * set to the current transaction, so ignore all the 2825 * inode items for this inode. We will delete the 2826 * inode when processing the parent directory with 2827 * replay_dir_deletes(). 2828 */ 2829 if (btrfs_inode_nlink(eb, inode_item) == 0) { 2830 wc->ignore_cur_inode = true; 2831 continue; 2832 } else { 2833 wc->ignore_cur_inode = false; 2834 } 2835 } 2836 2837 /* Inode keys are done during the first stage. */ 2838 if (wc->log_key.type == BTRFS_INODE_ITEM_KEY && 2839 wc->stage == LOG_WALK_REPLAY_INODES) { 2840 u32 mode; 2841 2842 ret = replay_xattr_deletes(wc); 2843 if (ret) 2844 break; 2845 mode = btrfs_inode_mode(eb, inode_item); 2846 if (S_ISDIR(mode)) { 2847 ret = replay_dir_deletes(wc, wc->log_key.objectid, false); 2848 if (ret) 2849 break; 2850 } 2851 ret = overwrite_item(wc); 2852 if (ret) 2853 break; 2854 2855 /* 2856 * Before replaying extents, truncate the inode to its 2857 * size. We need to do it now and not after log replay 2858 * because before an fsync we can have prealloc extents 2859 * added beyond the inode's i_size. If we did it after, 2860 * through orphan cleanup for example, we would drop 2861 * those prealloc extents just after replaying them. 2862 */ 2863 if (S_ISREG(mode)) { 2864 struct btrfs_drop_extents_args drop_args = { 0 }; 2865 struct btrfs_inode *inode; 2866 u64 from; 2867 2868 inode = btrfs_iget_logging(wc->log_key.objectid, root); 2869 if (IS_ERR(inode)) { 2870 ret = PTR_ERR(inode); 2871 btrfs_abort_log_replay(wc, ret, 2872 "failed to lookup inode %llu root %llu", 2873 wc->log_key.objectid, 2874 btrfs_root_id(root)); 2875 break; 2876 } 2877 from = ALIGN(i_size_read(&inode->vfs_inode), 2878 root->fs_info->sectorsize); 2879 drop_args.start = from; 2880 drop_args.end = (u64)-1; 2881 drop_args.drop_cache = true; 2882 drop_args.path = wc->subvol_path; 2883 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2884 if (ret) { 2885 btrfs_abort_log_replay(wc, ret, 2886 "failed to drop extents for inode %llu root %llu offset %llu", 2887 btrfs_ino(inode), 2888 btrfs_root_id(root), 2889 from); 2890 } else { 2891 inode_sub_bytes(&inode->vfs_inode, 2892 drop_args.bytes_found); 2893 /* Update the inode's nbytes. */ 2894 ret = btrfs_update_inode(trans, inode); 2895 if (ret) 2896 btrfs_abort_log_replay(wc, ret, 2897 "failed to update inode %llu root %llu", 2898 btrfs_ino(inode), 2899 btrfs_root_id(root)); 2900 } 2901 iput(&inode->vfs_inode); 2902 if (ret) 2903 break; 2904 } 2905 2906 ret = link_to_fixup_dir(wc, wc->log_key.objectid); 2907 if (ret) 2908 break; 2909 } 2910 2911 if (wc->ignore_cur_inode) 2912 continue; 2913 2914 if (wc->log_key.type == BTRFS_DIR_INDEX_KEY && 2915 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) { 2916 ret = replay_one_dir_item(wc); 2917 if (ret) 2918 break; 2919 } 2920 2921 if (wc->stage < LOG_WALK_REPLAY_ALL) 2922 continue; 2923 2924 /* these keys are simply copied */ 2925 if (wc->log_key.type == BTRFS_XATTR_ITEM_KEY) { 2926 ret = overwrite_item(wc); 2927 if (ret) 2928 break; 2929 } else if (wc->log_key.type == BTRFS_INODE_REF_KEY || 2930 wc->log_key.type == BTRFS_INODE_EXTREF_KEY) { 2931 ret = add_inode_ref(wc); 2932 if (ret) 2933 break; 2934 } else if (wc->log_key.type == BTRFS_EXTENT_DATA_KEY) { 2935 ret = replay_one_extent(wc); 2936 if (ret) 2937 break; 2938 } 2939 /* 2940 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the 2941 * BTRFS_DIR_INDEX_KEY items which we use to derive the 2942 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an 2943 * older kernel with such keys, ignore them. 2944 */ 2945 } 2946 btrfs_free_path(wc->subvol_path); 2947 wc->subvol_path = NULL; 2948 return ret; 2949 } 2950 2951 static int clean_log_buffer(struct btrfs_trans_handle *trans, 2952 struct extent_buffer *eb) 2953 { 2954 struct btrfs_fs_info *fs_info = eb->fs_info; 2955 struct btrfs_block_group *bg; 2956 2957 btrfs_tree_lock(eb); 2958 btrfs_clear_buffer_dirty(trans, eb); 2959 wait_on_extent_buffer_writeback(eb); 2960 btrfs_tree_unlock(eb); 2961 2962 if (trans) { 2963 int ret; 2964 2965 ret = btrfs_pin_reserved_extent(trans, eb); 2966 if (ret) 2967 btrfs_abort_transaction(trans, ret); 2968 return ret; 2969 } 2970 2971 bg = btrfs_lookup_block_group(fs_info, eb->start); 2972 if (!bg) { 2973 btrfs_err(fs_info, "unable to find block group for %llu", eb->start); 2974 btrfs_handle_fs_error(fs_info, -ENOENT, NULL); 2975 return -ENOENT; 2976 } 2977 2978 spin_lock(&bg->space_info->lock); 2979 spin_lock(&bg->lock); 2980 bg->reserved -= fs_info->nodesize; 2981 bg->space_info->bytes_reserved -= fs_info->nodesize; 2982 spin_unlock(&bg->lock); 2983 spin_unlock(&bg->space_info->lock); 2984 2985 btrfs_put_block_group(bg); 2986 2987 return 0; 2988 } 2989 2990 static noinline int walk_down_log_tree(struct btrfs_path *path, int *level, 2991 struct walk_control *wc) 2992 { 2993 struct btrfs_trans_handle *trans = wc->trans; 2994 struct btrfs_fs_info *fs_info = wc->log->fs_info; 2995 u64 bytenr; 2996 u64 ptr_gen; 2997 struct extent_buffer *next; 2998 struct extent_buffer *cur; 2999 int ret = 0; 3000 3001 while (*level > 0) { 3002 struct btrfs_tree_parent_check check = { 0 }; 3003 3004 cur = path->nodes[*level]; 3005 3006 WARN_ON(btrfs_header_level(cur) != *level); 3007 3008 if (path->slots[*level] >= 3009 btrfs_header_nritems(cur)) 3010 break; 3011 3012 bytenr = btrfs_node_blockptr(cur, path->slots[*level]); 3013 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); 3014 check.transid = ptr_gen; 3015 check.level = *level - 1; 3016 check.has_first_key = true; 3017 btrfs_node_key_to_cpu(cur, &check.first_key, path->slots[*level]); 3018 3019 next = btrfs_find_create_tree_block(fs_info, bytenr, 3020 btrfs_header_owner(cur), 3021 *level - 1); 3022 if (IS_ERR(next)) { 3023 ret = PTR_ERR(next); 3024 if (trans) 3025 btrfs_abort_transaction(trans, ret); 3026 else 3027 btrfs_handle_fs_error(fs_info, ret, NULL); 3028 return ret; 3029 } 3030 3031 if (*level == 1) { 3032 ret = wc->process_func(next, wc, ptr_gen, *level - 1); 3033 if (ret) { 3034 free_extent_buffer(next); 3035 return ret; 3036 } 3037 3038 path->slots[*level]++; 3039 if (wc->free) { 3040 ret = btrfs_read_extent_buffer(next, &check); 3041 if (ret) { 3042 free_extent_buffer(next); 3043 if (trans) 3044 btrfs_abort_transaction(trans, ret); 3045 else 3046 btrfs_handle_fs_error(fs_info, ret, NULL); 3047 return ret; 3048 } 3049 3050 ret = clean_log_buffer(trans, next); 3051 if (ret) { 3052 free_extent_buffer(next); 3053 return ret; 3054 } 3055 } 3056 free_extent_buffer(next); 3057 continue; 3058 } 3059 ret = btrfs_read_extent_buffer(next, &check); 3060 if (ret) { 3061 free_extent_buffer(next); 3062 if (trans) 3063 btrfs_abort_transaction(trans, ret); 3064 else 3065 btrfs_handle_fs_error(fs_info, ret, NULL); 3066 return ret; 3067 } 3068 3069 if (path->nodes[*level-1]) 3070 free_extent_buffer(path->nodes[*level-1]); 3071 path->nodes[*level-1] = next; 3072 *level = btrfs_header_level(next); 3073 path->slots[*level] = 0; 3074 cond_resched(); 3075 } 3076 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]); 3077 3078 cond_resched(); 3079 return 0; 3080 } 3081 3082 static noinline int walk_up_log_tree(struct btrfs_path *path, int *level, 3083 struct walk_control *wc) 3084 { 3085 int i; 3086 int slot; 3087 int ret; 3088 3089 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { 3090 slot = path->slots[i]; 3091 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) { 3092 path->slots[i]++; 3093 *level = i; 3094 WARN_ON(*level == 0); 3095 return 0; 3096 } else { 3097 ret = wc->process_func(path->nodes[*level], wc, 3098 btrfs_header_generation(path->nodes[*level]), 3099 *level); 3100 if (ret) 3101 return ret; 3102 3103 if (wc->free) { 3104 ret = clean_log_buffer(wc->trans, path->nodes[*level]); 3105 if (ret) 3106 return ret; 3107 } 3108 free_extent_buffer(path->nodes[*level]); 3109 path->nodes[*level] = NULL; 3110 *level = i + 1; 3111 } 3112 } 3113 return 1; 3114 } 3115 3116 /* 3117 * drop the reference count on the tree rooted at 'snap'. This traverses 3118 * the tree freeing any blocks that have a ref count of zero after being 3119 * decremented. 3120 */ 3121 static int walk_log_tree(struct walk_control *wc) 3122 { 3123 struct btrfs_root *log = wc->log; 3124 int ret = 0; 3125 int wret; 3126 int level; 3127 BTRFS_PATH_AUTO_FREE(path); 3128 int orig_level; 3129 3130 path = btrfs_alloc_path(); 3131 if (!path) 3132 return -ENOMEM; 3133 3134 level = btrfs_header_level(log->node); 3135 orig_level = level; 3136 path->nodes[level] = log->node; 3137 refcount_inc(&log->node->refs); 3138 path->slots[level] = 0; 3139 3140 while (1) { 3141 wret = walk_down_log_tree(path, &level, wc); 3142 if (wret > 0) 3143 break; 3144 if (wret < 0) 3145 return wret; 3146 3147 wret = walk_up_log_tree(path, &level, wc); 3148 if (wret > 0) 3149 break; 3150 if (wret < 0) 3151 return wret; 3152 } 3153 3154 /* was the root node processed? if not, catch it here */ 3155 if (path->nodes[orig_level]) { 3156 ret = wc->process_func(path->nodes[orig_level], wc, 3157 btrfs_header_generation(path->nodes[orig_level]), 3158 orig_level); 3159 if (ret) 3160 return ret; 3161 if (wc->free) 3162 ret = clean_log_buffer(wc->trans, path->nodes[orig_level]); 3163 } 3164 3165 return ret; 3166 } 3167 3168 /* 3169 * helper function to update the item for a given subvolumes log root 3170 * in the tree of log roots 3171 */ 3172 static int update_log_root(struct btrfs_trans_handle *trans, 3173 struct btrfs_root *log, 3174 struct btrfs_root_item *root_item) 3175 { 3176 struct btrfs_fs_info *fs_info = log->fs_info; 3177 int ret; 3178 3179 if (log->log_transid == 1) { 3180 /* insert root item on the first sync */ 3181 ret = btrfs_insert_root(trans, fs_info->log_root_tree, 3182 &log->root_key, root_item); 3183 } else { 3184 ret = btrfs_update_root(trans, fs_info->log_root_tree, 3185 &log->root_key, root_item); 3186 } 3187 return ret; 3188 } 3189 3190 static void wait_log_commit(struct btrfs_root *root, int transid) 3191 { 3192 DEFINE_WAIT(wait); 3193 int index = transid % 2; 3194 3195 /* 3196 * we only allow two pending log transactions at a time, 3197 * so we know that if ours is more than 2 older than the 3198 * current transaction, we're done 3199 */ 3200 for (;;) { 3201 prepare_to_wait(&root->log_commit_wait[index], 3202 &wait, TASK_UNINTERRUPTIBLE); 3203 3204 if (!(root->log_transid_committed < transid && 3205 atomic_read(&root->log_commit[index]))) 3206 break; 3207 3208 mutex_unlock(&root->log_mutex); 3209 schedule(); 3210 mutex_lock(&root->log_mutex); 3211 } 3212 finish_wait(&root->log_commit_wait[index], &wait); 3213 } 3214 3215 static void wait_for_writer(struct btrfs_root *root) 3216 { 3217 DEFINE_WAIT(wait); 3218 3219 for (;;) { 3220 prepare_to_wait(&root->log_writer_wait, &wait, 3221 TASK_UNINTERRUPTIBLE); 3222 if (!atomic_read(&root->log_writers)) 3223 break; 3224 3225 mutex_unlock(&root->log_mutex); 3226 schedule(); 3227 mutex_lock(&root->log_mutex); 3228 } 3229 finish_wait(&root->log_writer_wait, &wait); 3230 } 3231 3232 void btrfs_init_log_ctx(struct btrfs_log_ctx *ctx, struct btrfs_inode *inode) 3233 { 3234 ctx->log_ret = 0; 3235 ctx->log_transid = 0; 3236 ctx->log_new_dentries = false; 3237 ctx->logging_new_name = false; 3238 ctx->logging_new_delayed_dentries = false; 3239 ctx->logged_before = false; 3240 ctx->inode = inode; 3241 INIT_LIST_HEAD(&ctx->list); 3242 INIT_LIST_HEAD(&ctx->ordered_extents); 3243 INIT_LIST_HEAD(&ctx->conflict_inodes); 3244 ctx->num_conflict_inodes = 0; 3245 ctx->logging_conflict_inodes = false; 3246 ctx->scratch_eb = NULL; 3247 } 3248 3249 void btrfs_init_log_ctx_scratch_eb(struct btrfs_log_ctx *ctx) 3250 { 3251 struct btrfs_inode *inode = ctx->inode; 3252 3253 if (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) && 3254 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags)) 3255 return; 3256 3257 /* 3258 * Don't care about allocation failure. This is just for optimization, 3259 * if we fail to allocate here, we will try again later if needed. 3260 */ 3261 ctx->scratch_eb = alloc_dummy_extent_buffer(inode->root->fs_info, 0); 3262 } 3263 3264 void btrfs_release_log_ctx_extents(struct btrfs_log_ctx *ctx) 3265 { 3266 struct btrfs_ordered_extent *ordered; 3267 struct btrfs_ordered_extent *tmp; 3268 3269 btrfs_assert_inode_locked(ctx->inode); 3270 3271 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) { 3272 list_del_init(&ordered->log_list); 3273 btrfs_put_ordered_extent(ordered); 3274 } 3275 } 3276 3277 3278 static inline void btrfs_remove_log_ctx(struct btrfs_root *root, 3279 struct btrfs_log_ctx *ctx) 3280 { 3281 mutex_lock(&root->log_mutex); 3282 list_del_init(&ctx->list); 3283 mutex_unlock(&root->log_mutex); 3284 } 3285 3286 /* 3287 * Invoked in log mutex context, or be sure there is no other task which 3288 * can access the list. 3289 */ 3290 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root, 3291 int index, int error) 3292 { 3293 struct btrfs_log_ctx *ctx; 3294 struct btrfs_log_ctx *safe; 3295 3296 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) { 3297 list_del_init(&ctx->list); 3298 ctx->log_ret = error; 3299 } 3300 } 3301 3302 /* 3303 * Sends a given tree log down to the disk and updates the super blocks to 3304 * record it. When this call is done, you know that any inodes previously 3305 * logged are safely on disk only if it returns 0. 3306 * 3307 * Any other return value means you need to call btrfs_commit_transaction. 3308 * Some of the edge cases for fsyncing directories that have had unlinks 3309 * or renames done in the past mean that sometimes the only safe 3310 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN, 3311 * that has happened. 3312 */ 3313 int btrfs_sync_log(struct btrfs_trans_handle *trans, 3314 struct btrfs_root *root, struct btrfs_log_ctx *ctx) 3315 { 3316 int index1; 3317 int index2; 3318 int mark; 3319 int ret; 3320 struct btrfs_fs_info *fs_info = root->fs_info; 3321 struct btrfs_root *log = root->log_root; 3322 struct btrfs_root *log_root_tree = fs_info->log_root_tree; 3323 struct btrfs_root_item new_root_item; 3324 int log_transid = 0; 3325 struct btrfs_log_ctx root_log_ctx; 3326 struct blk_plug plug; 3327 u64 log_root_start; 3328 u64 log_root_level; 3329 3330 mutex_lock(&root->log_mutex); 3331 log_transid = ctx->log_transid; 3332 if (root->log_transid_committed >= log_transid) { 3333 mutex_unlock(&root->log_mutex); 3334 return ctx->log_ret; 3335 } 3336 3337 index1 = log_transid % 2; 3338 if (atomic_read(&root->log_commit[index1])) { 3339 wait_log_commit(root, log_transid); 3340 mutex_unlock(&root->log_mutex); 3341 return ctx->log_ret; 3342 } 3343 ASSERT(log_transid == root->log_transid); 3344 atomic_set(&root->log_commit[index1], 1); 3345 3346 /* wait for previous tree log sync to complete */ 3347 if (atomic_read(&root->log_commit[(index1 + 1) % 2])) 3348 wait_log_commit(root, log_transid - 1); 3349 3350 while (1) { 3351 int batch = atomic_read(&root->log_batch); 3352 /* when we're on an ssd, just kick the log commit out */ 3353 if (!btrfs_test_opt(fs_info, SSD) && 3354 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) { 3355 mutex_unlock(&root->log_mutex); 3356 schedule_timeout_uninterruptible(1); 3357 mutex_lock(&root->log_mutex); 3358 } 3359 wait_for_writer(root); 3360 if (batch == atomic_read(&root->log_batch)) 3361 break; 3362 } 3363 3364 /* bail out if we need to do a full commit */ 3365 if (btrfs_need_log_full_commit(trans)) { 3366 ret = BTRFS_LOG_FORCE_COMMIT; 3367 mutex_unlock(&root->log_mutex); 3368 goto out; 3369 } 3370 3371 if (log_transid % 2 == 0) 3372 mark = EXTENT_DIRTY_LOG1; 3373 else 3374 mark = EXTENT_DIRTY_LOG2; 3375 3376 /* we start IO on all the marked extents here, but we don't actually 3377 * wait for them until later. 3378 */ 3379 blk_start_plug(&plug); 3380 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark); 3381 /* 3382 * -EAGAIN happens when someone, e.g., a concurrent transaction 3383 * commit, writes a dirty extent in this tree-log commit. This 3384 * concurrent write will create a hole writing out the extents, 3385 * and we cannot proceed on a zoned filesystem, requiring 3386 * sequential writing. While we can bail out to a full commit 3387 * here, but we can continue hoping the concurrent writing fills 3388 * the hole. 3389 */ 3390 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) 3391 ret = 0; 3392 if (ret) { 3393 blk_finish_plug(&plug); 3394 btrfs_set_log_full_commit(trans); 3395 mutex_unlock(&root->log_mutex); 3396 goto out; 3397 } 3398 3399 /* 3400 * We _must_ update under the root->log_mutex in order to make sure we 3401 * have a consistent view of the log root we are trying to commit at 3402 * this moment. 3403 * 3404 * We _must_ copy this into a local copy, because we are not holding the 3405 * log_root_tree->log_mutex yet. This is important because when we 3406 * commit the log_root_tree we must have a consistent view of the 3407 * log_root_tree when we update the super block to point at the 3408 * log_root_tree bytenr. If we update the log_root_tree here we'll race 3409 * with the commit and possibly point at the new block which we may not 3410 * have written out. 3411 */ 3412 btrfs_set_root_node(&log->root_item, log->node); 3413 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item)); 3414 3415 btrfs_set_root_log_transid(root, root->log_transid + 1); 3416 log->log_transid = root->log_transid; 3417 root->log_start_pid = 0; 3418 /* 3419 * IO has been started, blocks of the log tree have WRITTEN flag set 3420 * in their headers. new modifications of the log will be written to 3421 * new positions. so it's safe to allow log writers to go in. 3422 */ 3423 mutex_unlock(&root->log_mutex); 3424 3425 if (btrfs_is_zoned(fs_info)) { 3426 mutex_lock(&fs_info->tree_root->log_mutex); 3427 if (!log_root_tree->node) { 3428 ret = btrfs_alloc_log_tree_node(trans, log_root_tree); 3429 if (ret) { 3430 mutex_unlock(&fs_info->tree_root->log_mutex); 3431 blk_finish_plug(&plug); 3432 goto out; 3433 } 3434 } 3435 mutex_unlock(&fs_info->tree_root->log_mutex); 3436 } 3437 3438 btrfs_init_log_ctx(&root_log_ctx, NULL); 3439 3440 mutex_lock(&log_root_tree->log_mutex); 3441 3442 index2 = log_root_tree->log_transid % 2; 3443 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]); 3444 root_log_ctx.log_transid = log_root_tree->log_transid; 3445 3446 /* 3447 * Now we are safe to update the log_root_tree because we're under the 3448 * log_mutex, and we're a current writer so we're holding the commit 3449 * open until we drop the log_mutex. 3450 */ 3451 ret = update_log_root(trans, log, &new_root_item); 3452 if (ret) { 3453 list_del_init(&root_log_ctx.list); 3454 blk_finish_plug(&plug); 3455 btrfs_set_log_full_commit(trans); 3456 if (ret != -ENOSPC) 3457 btrfs_err(fs_info, 3458 "failed to update log for root %llu ret %d", 3459 btrfs_root_id(root), ret); 3460 btrfs_wait_tree_log_extents(log, mark); 3461 mutex_unlock(&log_root_tree->log_mutex); 3462 goto out; 3463 } 3464 3465 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) { 3466 blk_finish_plug(&plug); 3467 list_del_init(&root_log_ctx.list); 3468 mutex_unlock(&log_root_tree->log_mutex); 3469 ret = root_log_ctx.log_ret; 3470 goto out; 3471 } 3472 3473 if (atomic_read(&log_root_tree->log_commit[index2])) { 3474 blk_finish_plug(&plug); 3475 ret = btrfs_wait_tree_log_extents(log, mark); 3476 wait_log_commit(log_root_tree, 3477 root_log_ctx.log_transid); 3478 mutex_unlock(&log_root_tree->log_mutex); 3479 if (!ret) 3480 ret = root_log_ctx.log_ret; 3481 goto out; 3482 } 3483 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid); 3484 atomic_set(&log_root_tree->log_commit[index2], 1); 3485 3486 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) { 3487 wait_log_commit(log_root_tree, 3488 root_log_ctx.log_transid - 1); 3489 } 3490 3491 /* 3492 * now that we've moved on to the tree of log tree roots, 3493 * check the full commit flag again 3494 */ 3495 if (btrfs_need_log_full_commit(trans)) { 3496 blk_finish_plug(&plug); 3497 btrfs_wait_tree_log_extents(log, mark); 3498 mutex_unlock(&log_root_tree->log_mutex); 3499 ret = BTRFS_LOG_FORCE_COMMIT; 3500 goto out_wake_log_root; 3501 } 3502 3503 ret = btrfs_write_marked_extents(fs_info, 3504 &log_root_tree->dirty_log_pages, 3505 EXTENT_DIRTY_LOG1 | EXTENT_DIRTY_LOG2); 3506 blk_finish_plug(&plug); 3507 /* 3508 * As described above, -EAGAIN indicates a hole in the extents. We 3509 * cannot wait for these write outs since the waiting cause a 3510 * deadlock. Bail out to the full commit instead. 3511 */ 3512 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) { 3513 btrfs_set_log_full_commit(trans); 3514 btrfs_wait_tree_log_extents(log, mark); 3515 mutex_unlock(&log_root_tree->log_mutex); 3516 goto out_wake_log_root; 3517 } else if (ret) { 3518 btrfs_set_log_full_commit(trans); 3519 mutex_unlock(&log_root_tree->log_mutex); 3520 goto out_wake_log_root; 3521 } 3522 ret = btrfs_wait_tree_log_extents(log, mark); 3523 if (!ret) 3524 ret = btrfs_wait_tree_log_extents(log_root_tree, 3525 EXTENT_DIRTY_LOG1 | EXTENT_DIRTY_LOG2); 3526 if (ret) { 3527 btrfs_set_log_full_commit(trans); 3528 mutex_unlock(&log_root_tree->log_mutex); 3529 goto out_wake_log_root; 3530 } 3531 3532 log_root_start = log_root_tree->node->start; 3533 log_root_level = btrfs_header_level(log_root_tree->node); 3534 log_root_tree->log_transid++; 3535 mutex_unlock(&log_root_tree->log_mutex); 3536 3537 /* 3538 * Here we are guaranteed that nobody is going to write the superblock 3539 * for the current transaction before us and that neither we do write 3540 * our superblock before the previous transaction finishes its commit 3541 * and writes its superblock, because: 3542 * 3543 * 1) We are holding a handle on the current transaction, so no body 3544 * can commit it until we release the handle; 3545 * 3546 * 2) Before writing our superblock we acquire the tree_log_mutex, so 3547 * if the previous transaction is still committing, and hasn't yet 3548 * written its superblock, we wait for it to do it, because a 3549 * transaction commit acquires the tree_log_mutex when the commit 3550 * begins and releases it only after writing its superblock. 3551 */ 3552 mutex_lock(&fs_info->tree_log_mutex); 3553 3554 /* 3555 * The previous transaction writeout phase could have failed, and thus 3556 * marked the fs in an error state. We must not commit here, as we 3557 * could have updated our generation in the super_for_commit and 3558 * writing the super here would result in transid mismatches. If there 3559 * is an error here just bail. 3560 */ 3561 if (BTRFS_FS_ERROR(fs_info)) { 3562 ret = -EIO; 3563 btrfs_set_log_full_commit(trans); 3564 btrfs_abort_transaction(trans, ret); 3565 mutex_unlock(&fs_info->tree_log_mutex); 3566 goto out_wake_log_root; 3567 } 3568 3569 btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start); 3570 btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level); 3571 ret = write_all_supers(fs_info, 1); 3572 mutex_unlock(&fs_info->tree_log_mutex); 3573 if (unlikely(ret)) { 3574 btrfs_set_log_full_commit(trans); 3575 btrfs_abort_transaction(trans, ret); 3576 goto out_wake_log_root; 3577 } 3578 3579 /* 3580 * We know there can only be one task here, since we have not yet set 3581 * root->log_commit[index1] to 0 and any task attempting to sync the 3582 * log must wait for the previous log transaction to commit if it's 3583 * still in progress or wait for the current log transaction commit if 3584 * someone else already started it. We use <= and not < because the 3585 * first log transaction has an ID of 0. 3586 */ 3587 ASSERT(btrfs_get_root_last_log_commit(root) <= log_transid); 3588 btrfs_set_root_last_log_commit(root, log_transid); 3589 3590 out_wake_log_root: 3591 mutex_lock(&log_root_tree->log_mutex); 3592 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret); 3593 3594 log_root_tree->log_transid_committed++; 3595 atomic_set(&log_root_tree->log_commit[index2], 0); 3596 mutex_unlock(&log_root_tree->log_mutex); 3597 3598 /* 3599 * The barrier before waitqueue_active (in cond_wake_up) is needed so 3600 * all the updates above are seen by the woken threads. It might not be 3601 * necessary, but proving that seems to be hard. 3602 */ 3603 cond_wake_up(&log_root_tree->log_commit_wait[index2]); 3604 out: 3605 mutex_lock(&root->log_mutex); 3606 btrfs_remove_all_log_ctxs(root, index1, ret); 3607 root->log_transid_committed++; 3608 atomic_set(&root->log_commit[index1], 0); 3609 mutex_unlock(&root->log_mutex); 3610 3611 /* 3612 * The barrier before waitqueue_active (in cond_wake_up) is needed so 3613 * all the updates above are seen by the woken threads. It might not be 3614 * necessary, but proving that seems to be hard. 3615 */ 3616 cond_wake_up(&root->log_commit_wait[index1]); 3617 return ret; 3618 } 3619 3620 static void free_log_tree(struct btrfs_trans_handle *trans, 3621 struct btrfs_root *log) 3622 { 3623 int ret; 3624 struct walk_control wc = { 3625 .free = true, 3626 .process_func = process_one_buffer, 3627 .log = log, 3628 .trans = trans, 3629 }; 3630 3631 if (log->node) { 3632 ret = walk_log_tree(&wc); 3633 if (ret) { 3634 /* 3635 * We weren't able to traverse the entire log tree, the 3636 * typical scenario is getting an -EIO when reading an 3637 * extent buffer of the tree, due to a previous writeback 3638 * failure of it. 3639 */ 3640 set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR, 3641 &log->fs_info->fs_state); 3642 3643 /* 3644 * Some extent buffers of the log tree may still be dirty 3645 * and not yet written back to storage, because we may 3646 * have updates to a log tree without syncing a log tree, 3647 * such as during rename and link operations. So flush 3648 * them out and wait for their writeback to complete, so 3649 * that we properly cleanup their state and pages. 3650 */ 3651 btrfs_write_marked_extents(log->fs_info, 3652 &log->dirty_log_pages, 3653 EXTENT_DIRTY_LOG1 | EXTENT_DIRTY_LOG2); 3654 btrfs_wait_tree_log_extents(log, 3655 EXTENT_DIRTY_LOG1 | EXTENT_DIRTY_LOG2); 3656 3657 if (trans) 3658 btrfs_abort_transaction(trans, ret); 3659 else 3660 btrfs_handle_fs_error(log->fs_info, ret, NULL); 3661 } 3662 } 3663 3664 btrfs_extent_io_tree_release(&log->dirty_log_pages); 3665 btrfs_extent_io_tree_release(&log->log_csum_range); 3666 3667 btrfs_put_root(log); 3668 } 3669 3670 /* 3671 * free all the extents used by the tree log. This should be called 3672 * at commit time of the full transaction 3673 */ 3674 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root) 3675 { 3676 if (root->log_root) { 3677 free_log_tree(trans, root->log_root); 3678 root->log_root = NULL; 3679 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state); 3680 } 3681 return 0; 3682 } 3683 3684 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans, 3685 struct btrfs_fs_info *fs_info) 3686 { 3687 if (fs_info->log_root_tree) { 3688 free_log_tree(trans, fs_info->log_root_tree); 3689 fs_info->log_root_tree = NULL; 3690 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state); 3691 } 3692 return 0; 3693 } 3694 3695 static bool mark_inode_as_not_logged(const struct btrfs_trans_handle *trans, 3696 struct btrfs_inode *inode) 3697 { 3698 bool ret = false; 3699 3700 /* 3701 * Do this only if ->logged_trans is still 0 to prevent races with 3702 * concurrent logging as we may see the inode not logged when 3703 * inode_logged() is called but it gets logged after inode_logged() did 3704 * not find it in the log tree and we end up setting ->logged_trans to a 3705 * value less than trans->transid after the concurrent logging task has 3706 * set it to trans->transid. As a consequence, subsequent rename, unlink 3707 * and link operations may end up not logging new names and removing old 3708 * names from the log. 3709 */ 3710 spin_lock(&inode->lock); 3711 if (inode->logged_trans == 0) 3712 inode->logged_trans = trans->transid - 1; 3713 else if (inode->logged_trans == trans->transid) 3714 ret = true; 3715 spin_unlock(&inode->lock); 3716 3717 return ret; 3718 } 3719 3720 /* 3721 * Check if an inode was logged in the current transaction. This correctly deals 3722 * with the case where the inode was logged but has a logged_trans of 0, which 3723 * happens if the inode is evicted and loaded again, as logged_trans is an in 3724 * memory only field (not persisted). 3725 * 3726 * Returns 1 if the inode was logged before in the transaction, 0 if it was not, 3727 * and < 0 on error. 3728 */ 3729 static int inode_logged(const struct btrfs_trans_handle *trans, 3730 struct btrfs_inode *inode, 3731 struct btrfs_path *path_in) 3732 { 3733 struct btrfs_path *path = path_in; 3734 struct btrfs_key key; 3735 int ret; 3736 3737 /* 3738 * Quick lockless call, since once ->logged_trans is set to the current 3739 * transaction, we never set it to a lower value anywhere else. 3740 */ 3741 if (data_race(inode->logged_trans) == trans->transid) 3742 return 1; 3743 3744 /* 3745 * If logged_trans is not 0 and not trans->transid, then we know the 3746 * inode was not logged in this transaction, so we can return false 3747 * right away. We take the lock to avoid a race caused by load/store 3748 * tearing with a concurrent btrfs_log_inode() call or a concurrent task 3749 * in this function further below - an update to trans->transid can be 3750 * teared into two 32 bits updates for example, in which case we could 3751 * see a positive value that is not trans->transid and assume the inode 3752 * was not logged when it was. 3753 */ 3754 spin_lock(&inode->lock); 3755 if (inode->logged_trans == trans->transid) { 3756 spin_unlock(&inode->lock); 3757 return 1; 3758 } else if (inode->logged_trans > 0) { 3759 spin_unlock(&inode->lock); 3760 return 0; 3761 } 3762 spin_unlock(&inode->lock); 3763 3764 /* 3765 * If no log tree was created for this root in this transaction, then 3766 * the inode can not have been logged in this transaction. In that case 3767 * set logged_trans to anything greater than 0 and less than the current 3768 * transaction's ID, to avoid the search below in a future call in case 3769 * a log tree gets created after this. 3770 */ 3771 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) 3772 return mark_inode_as_not_logged(trans, inode); 3773 3774 /* 3775 * We have a log tree and the inode's logged_trans is 0. We can't tell 3776 * for sure if the inode was logged before in this transaction by looking 3777 * only at logged_trans. We could be pessimistic and assume it was, but 3778 * that can lead to unnecessarily logging an inode during rename and link 3779 * operations, and then further updating the log in followup rename and 3780 * link operations, specially if it's a directory, which adds latency 3781 * visible to applications doing a series of rename or link operations. 3782 * 3783 * A logged_trans of 0 here can mean several things: 3784 * 3785 * 1) The inode was never logged since the filesystem was mounted, and may 3786 * or may have not been evicted and loaded again; 3787 * 3788 * 2) The inode was logged in a previous transaction, then evicted and 3789 * then loaded again; 3790 * 3791 * 3) The inode was logged in the current transaction, then evicted and 3792 * then loaded again. 3793 * 3794 * For cases 1) and 2) we don't want to return true, but we need to detect 3795 * case 3) and return true. So we do a search in the log root for the inode 3796 * item. 3797 */ 3798 key.objectid = btrfs_ino(inode); 3799 key.type = BTRFS_INODE_ITEM_KEY; 3800 key.offset = 0; 3801 3802 if (!path) { 3803 path = btrfs_alloc_path(); 3804 if (!path) 3805 return -ENOMEM; 3806 } 3807 3808 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0); 3809 3810 if (path_in) 3811 btrfs_release_path(path); 3812 else 3813 btrfs_free_path(path); 3814 3815 /* 3816 * Logging an inode always results in logging its inode item. So if we 3817 * did not find the item we know the inode was not logged for sure. 3818 */ 3819 if (ret < 0) { 3820 return ret; 3821 } else if (ret > 0) { 3822 /* 3823 * Set logged_trans to a value greater than 0 and less then the 3824 * current transaction to avoid doing the search in future calls. 3825 */ 3826 return mark_inode_as_not_logged(trans, inode); 3827 } 3828 3829 /* 3830 * The inode was previously logged and then evicted, set logged_trans to 3831 * the current transaction's ID, to avoid future tree searches as long as 3832 * the inode is not evicted again. 3833 */ 3834 spin_lock(&inode->lock); 3835 inode->logged_trans = trans->transid; 3836 spin_unlock(&inode->lock); 3837 3838 return 1; 3839 } 3840 3841 /* 3842 * Delete a directory entry from the log if it exists. 3843 * 3844 * Returns < 0 on error 3845 * 1 if the entry does not exists 3846 * 0 if the entry existed and was successfully deleted 3847 */ 3848 static int del_logged_dentry(struct btrfs_trans_handle *trans, 3849 struct btrfs_root *log, 3850 struct btrfs_path *path, 3851 u64 dir_ino, 3852 const struct fscrypt_str *name, 3853 u64 index) 3854 { 3855 struct btrfs_dir_item *di; 3856 3857 /* 3858 * We only log dir index items of a directory, so we don't need to look 3859 * for dir item keys. 3860 */ 3861 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino, 3862 index, name, -1); 3863 if (IS_ERR(di)) 3864 return PTR_ERR(di); 3865 else if (!di) 3866 return 1; 3867 3868 /* 3869 * We do not need to update the size field of the directory's 3870 * inode item because on log replay we update the field to reflect 3871 * all existing entries in the directory (see overwrite_item()). 3872 */ 3873 return btrfs_del_item(trans, log, path); 3874 } 3875 3876 /* 3877 * If both a file and directory are logged, and unlinks or renames are 3878 * mixed in, we have a few interesting corners: 3879 * 3880 * create file X in dir Y 3881 * link file X to X.link in dir Y 3882 * fsync file X 3883 * unlink file X but leave X.link 3884 * fsync dir Y 3885 * 3886 * After a crash we would expect only X.link to exist. But file X 3887 * didn't get fsync'd again so the log has back refs for X and X.link. 3888 * 3889 * We solve this by removing directory entries and inode backrefs from the 3890 * log when a file that was logged in the current transaction is 3891 * unlinked. Any later fsync will include the updated log entries, and 3892 * we'll be able to reconstruct the proper directory items from backrefs. 3893 * 3894 * This optimizations allows us to avoid relogging the entire inode 3895 * or the entire directory. 3896 */ 3897 void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans, 3898 struct btrfs_root *root, 3899 const struct fscrypt_str *name, 3900 struct btrfs_inode *dir, u64 index) 3901 { 3902 BTRFS_PATH_AUTO_FREE(path); 3903 int ret; 3904 3905 ret = inode_logged(trans, dir, NULL); 3906 if (ret == 0) 3907 return; 3908 if (ret < 0) { 3909 btrfs_set_log_full_commit(trans); 3910 return; 3911 } 3912 3913 path = btrfs_alloc_path(); 3914 if (!path) { 3915 btrfs_set_log_full_commit(trans); 3916 return; 3917 } 3918 3919 ret = join_running_log_trans(root); 3920 ASSERT(ret == 0, "join_running_log_trans() ret=%d", ret); 3921 if (WARN_ON(ret)) 3922 return; 3923 3924 mutex_lock(&dir->log_mutex); 3925 3926 ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir), 3927 name, index); 3928 mutex_unlock(&dir->log_mutex); 3929 if (ret < 0) 3930 btrfs_set_log_full_commit(trans); 3931 btrfs_end_log_trans(root); 3932 } 3933 3934 /* see comments for btrfs_del_dir_entries_in_log */ 3935 void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans, 3936 struct btrfs_root *root, 3937 const struct fscrypt_str *name, 3938 struct btrfs_inode *inode, u64 dirid) 3939 { 3940 struct btrfs_root *log; 3941 int ret; 3942 3943 ret = inode_logged(trans, inode, NULL); 3944 if (ret == 0) 3945 return; 3946 else if (ret < 0) { 3947 btrfs_set_log_full_commit(trans); 3948 return; 3949 } 3950 3951 ret = join_running_log_trans(root); 3952 ASSERT(ret == 0, "join_running_log_trans() ret=%d", ret); 3953 if (WARN_ON(ret)) 3954 return; 3955 log = root->log_root; 3956 mutex_lock(&inode->log_mutex); 3957 3958 ret = btrfs_del_inode_ref(trans, log, name, btrfs_ino(inode), dirid, NULL); 3959 mutex_unlock(&inode->log_mutex); 3960 if (ret < 0 && ret != -ENOENT) 3961 btrfs_set_log_full_commit(trans); 3962 btrfs_end_log_trans(root); 3963 } 3964 3965 /* 3966 * creates a range item in the log for 'dirid'. first_offset and 3967 * last_offset tell us which parts of the key space the log should 3968 * be considered authoritative for. 3969 */ 3970 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans, 3971 struct btrfs_root *log, 3972 struct btrfs_path *path, 3973 u64 dirid, 3974 u64 first_offset, u64 last_offset) 3975 { 3976 int ret; 3977 struct btrfs_key key; 3978 struct btrfs_dir_log_item *item; 3979 3980 key.objectid = dirid; 3981 key.type = BTRFS_DIR_LOG_INDEX_KEY; 3982 key.offset = first_offset; 3983 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item)); 3984 /* 3985 * -EEXIST is fine and can happen sporadically when we are logging a 3986 * directory and have concurrent insertions in the subvolume's tree for 3987 * items from other inodes and that result in pushing off some dir items 3988 * from one leaf to another in order to accommodate for the new items. 3989 * This results in logging the same dir index range key. 3990 */ 3991 if (ret && ret != -EEXIST) 3992 return ret; 3993 3994 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3995 struct btrfs_dir_log_item); 3996 if (ret == -EEXIST) { 3997 const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item); 3998 3999 /* 4000 * btrfs_del_dir_entries_in_log() might have been called during 4001 * an unlink between the initial insertion of this key and the 4002 * current update, or we might be logging a single entry deletion 4003 * during a rename, so set the new last_offset to the max value. 4004 */ 4005 last_offset = max(last_offset, curr_end); 4006 } 4007 btrfs_set_dir_log_end(path->nodes[0], item, last_offset); 4008 btrfs_release_path(path); 4009 return 0; 4010 } 4011 4012 static int flush_dir_items_batch(struct btrfs_trans_handle *trans, 4013 struct btrfs_inode *inode, 4014 struct extent_buffer *src, 4015 struct btrfs_path *dst_path, 4016 int start_slot, 4017 int count) 4018 { 4019 struct btrfs_root *log = inode->root->log_root; 4020 char *ins_data = NULL; 4021 struct btrfs_item_batch batch; 4022 struct extent_buffer *dst; 4023 unsigned long src_offset; 4024 unsigned long dst_offset; 4025 u64 last_index; 4026 struct btrfs_key key; 4027 u32 item_size; 4028 int ret; 4029 int i; 4030 4031 ASSERT(count > 0); 4032 batch.nr = count; 4033 4034 if (count == 1) { 4035 btrfs_item_key_to_cpu(src, &key, start_slot); 4036 item_size = btrfs_item_size(src, start_slot); 4037 batch.keys = &key; 4038 batch.data_sizes = &item_size; 4039 batch.total_data_size = item_size; 4040 } else { 4041 struct btrfs_key *ins_keys; 4042 u32 *ins_sizes; 4043 4044 ins_data = kmalloc_array(count, sizeof(u32) + sizeof(struct btrfs_key), GFP_NOFS); 4045 if (!ins_data) 4046 return -ENOMEM; 4047 4048 ins_sizes = (u32 *)ins_data; 4049 ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32)); 4050 batch.keys = ins_keys; 4051 batch.data_sizes = ins_sizes; 4052 batch.total_data_size = 0; 4053 4054 for (i = 0; i < count; i++) { 4055 const int slot = start_slot + i; 4056 4057 btrfs_item_key_to_cpu(src, &ins_keys[i], slot); 4058 ins_sizes[i] = btrfs_item_size(src, slot); 4059 batch.total_data_size += ins_sizes[i]; 4060 } 4061 } 4062 4063 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch); 4064 if (ret) 4065 goto out; 4066 4067 dst = dst_path->nodes[0]; 4068 /* 4069 * Copy all the items in bulk, in a single copy operation. Item data is 4070 * organized such that it's placed at the end of a leaf and from right 4071 * to left. For example, the data for the second item ends at an offset 4072 * that matches the offset where the data for the first item starts, the 4073 * data for the third item ends at an offset that matches the offset 4074 * where the data of the second items starts, and so on. 4075 * Therefore our source and destination start offsets for copy match the 4076 * offsets of the last items (highest slots). 4077 */ 4078 dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1); 4079 src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1); 4080 copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size); 4081 btrfs_release_path(dst_path); 4082 4083 last_index = batch.keys[count - 1].offset; 4084 ASSERT(last_index > inode->last_dir_index_offset); 4085 4086 /* 4087 * If for some unexpected reason the last item's index is not greater 4088 * than the last index we logged, warn and force a transaction commit. 4089 */ 4090 if (WARN_ON(last_index <= inode->last_dir_index_offset)) 4091 ret = BTRFS_LOG_FORCE_COMMIT; 4092 else 4093 inode->last_dir_index_offset = last_index; 4094 4095 if (btrfs_get_first_dir_index_to_log(inode) == 0) 4096 btrfs_set_first_dir_index_to_log(inode, batch.keys[0].offset); 4097 out: 4098 kfree(ins_data); 4099 4100 return ret; 4101 } 4102 4103 static int clone_leaf(struct btrfs_path *path, struct btrfs_log_ctx *ctx) 4104 { 4105 const int slot = path->slots[0]; 4106 4107 if (ctx->scratch_eb) { 4108 copy_extent_buffer_full(ctx->scratch_eb, path->nodes[0]); 4109 } else { 4110 ctx->scratch_eb = btrfs_clone_extent_buffer(path->nodes[0]); 4111 if (!ctx->scratch_eb) 4112 return -ENOMEM; 4113 } 4114 4115 btrfs_release_path(path); 4116 path->nodes[0] = ctx->scratch_eb; 4117 path->slots[0] = slot; 4118 /* 4119 * Add extra ref to scratch eb so that it is not freed when callers 4120 * release the path, so we can reuse it later if needed. 4121 */ 4122 refcount_inc(&ctx->scratch_eb->refs); 4123 4124 return 0; 4125 } 4126 4127 static int process_dir_items_leaf(struct btrfs_trans_handle *trans, 4128 struct btrfs_inode *inode, 4129 struct btrfs_path *path, 4130 struct btrfs_path *dst_path, 4131 struct btrfs_log_ctx *ctx, 4132 u64 *last_old_dentry_offset) 4133 { 4134 struct btrfs_root *log = inode->root->log_root; 4135 struct extent_buffer *src; 4136 const int nritems = btrfs_header_nritems(path->nodes[0]); 4137 const u64 ino = btrfs_ino(inode); 4138 bool last_found = false; 4139 int batch_start = 0; 4140 int batch_size = 0; 4141 int ret; 4142 4143 /* 4144 * We need to clone the leaf, release the read lock on it, and use the 4145 * clone before modifying the log tree. See the comment at copy_items() 4146 * about why we need to do this. 4147 */ 4148 ret = clone_leaf(path, ctx); 4149 if (ret < 0) 4150 return ret; 4151 4152 src = path->nodes[0]; 4153 4154 for (int i = path->slots[0]; i < nritems; i++) { 4155 struct btrfs_dir_item *di; 4156 struct btrfs_key key; 4157 int ret; 4158 4159 btrfs_item_key_to_cpu(src, &key, i); 4160 4161 if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) { 4162 last_found = true; 4163 break; 4164 } 4165 4166 di = btrfs_item_ptr(src, i, struct btrfs_dir_item); 4167 4168 /* 4169 * Skip ranges of items that consist only of dir item keys created 4170 * in past transactions. However if we find a gap, we must log a 4171 * dir index range item for that gap, so that index keys in that 4172 * gap are deleted during log replay. 4173 */ 4174 if (btrfs_dir_transid(src, di) < trans->transid) { 4175 if (key.offset > *last_old_dentry_offset + 1) { 4176 ret = insert_dir_log_key(trans, log, dst_path, 4177 ino, *last_old_dentry_offset + 1, 4178 key.offset - 1); 4179 if (ret < 0) 4180 return ret; 4181 } 4182 4183 *last_old_dentry_offset = key.offset; 4184 continue; 4185 } 4186 4187 /* If we logged this dir index item before, we can skip it. */ 4188 if (key.offset <= inode->last_dir_index_offset) 4189 continue; 4190 4191 /* 4192 * We must make sure that when we log a directory entry, the 4193 * corresponding inode, after log replay, has a matching link 4194 * count. For example: 4195 * 4196 * touch foo 4197 * mkdir mydir 4198 * sync 4199 * ln foo mydir/bar 4200 * xfs_io -c "fsync" mydir 4201 * <crash> 4202 * <mount fs and log replay> 4203 * 4204 * Would result in a fsync log that when replayed, our file inode 4205 * would have a link count of 1, but we get two directory entries 4206 * pointing to the same inode. After removing one of the names, 4207 * it would not be possible to remove the other name, which 4208 * resulted always in stale file handle errors, and would not be 4209 * possible to rmdir the parent directory, since its i_size could 4210 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE, 4211 * resulting in -ENOTEMPTY errors. 4212 */ 4213 if (!ctx->log_new_dentries) { 4214 struct btrfs_key di_key; 4215 4216 btrfs_dir_item_key_to_cpu(src, di, &di_key); 4217 if (di_key.type != BTRFS_ROOT_ITEM_KEY) 4218 ctx->log_new_dentries = true; 4219 } 4220 4221 if (batch_size == 0) 4222 batch_start = i; 4223 batch_size++; 4224 } 4225 4226 if (batch_size > 0) { 4227 int ret; 4228 4229 ret = flush_dir_items_batch(trans, inode, src, dst_path, 4230 batch_start, batch_size); 4231 if (ret < 0) 4232 return ret; 4233 } 4234 4235 return last_found ? 1 : 0; 4236 } 4237 4238 /* 4239 * log all the items included in the current transaction for a given 4240 * directory. This also creates the range items in the log tree required 4241 * to replay anything deleted before the fsync 4242 */ 4243 static noinline int log_dir_items(struct btrfs_trans_handle *trans, 4244 struct btrfs_inode *inode, 4245 struct btrfs_path *path, 4246 struct btrfs_path *dst_path, 4247 struct btrfs_log_ctx *ctx, 4248 u64 min_offset, u64 *last_offset_ret) 4249 { 4250 struct btrfs_key min_key; 4251 struct btrfs_root *root = inode->root; 4252 struct btrfs_root *log = root->log_root; 4253 int ret; 4254 u64 last_old_dentry_offset = min_offset - 1; 4255 u64 last_offset = (u64)-1; 4256 u64 ino = btrfs_ino(inode); 4257 4258 min_key.objectid = ino; 4259 min_key.type = BTRFS_DIR_INDEX_KEY; 4260 min_key.offset = min_offset; 4261 4262 ret = btrfs_search_forward(root, &min_key, path, trans->transid); 4263 4264 /* 4265 * we didn't find anything from this transaction, see if there 4266 * is anything at all 4267 */ 4268 if (ret != 0 || min_key.objectid != ino || 4269 min_key.type != BTRFS_DIR_INDEX_KEY) { 4270 min_key.objectid = ino; 4271 min_key.type = BTRFS_DIR_INDEX_KEY; 4272 min_key.offset = (u64)-1; 4273 btrfs_release_path(path); 4274 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 4275 if (ret < 0) { 4276 btrfs_release_path(path); 4277 return ret; 4278 } 4279 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY); 4280 4281 /* if ret == 0 there are items for this type, 4282 * create a range to tell us the last key of this type. 4283 * otherwise, there are no items in this directory after 4284 * *min_offset, and we create a range to indicate that. 4285 */ 4286 if (ret == 0) { 4287 struct btrfs_key tmp; 4288 4289 btrfs_item_key_to_cpu(path->nodes[0], &tmp, 4290 path->slots[0]); 4291 if (tmp.type == BTRFS_DIR_INDEX_KEY) 4292 last_old_dentry_offset = tmp.offset; 4293 } else if (ret > 0) { 4294 ret = 0; 4295 } 4296 4297 goto done; 4298 } 4299 4300 /* go backward to find any previous key */ 4301 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY); 4302 if (ret == 0) { 4303 struct btrfs_key tmp; 4304 4305 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 4306 /* 4307 * The dir index key before the first one we found that needs to 4308 * be logged might be in a previous leaf, and there might be a 4309 * gap between these keys, meaning that we had deletions that 4310 * happened. So the key range item we log (key type 4311 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the 4312 * previous key's offset plus 1, so that those deletes are replayed. 4313 */ 4314 if (tmp.type == BTRFS_DIR_INDEX_KEY) 4315 last_old_dentry_offset = tmp.offset; 4316 } else if (ret < 0) { 4317 goto done; 4318 } 4319 4320 btrfs_release_path(path); 4321 4322 /* 4323 * Find the first key from this transaction again or the one we were at 4324 * in the loop below in case we had to reschedule. We may be logging the 4325 * directory without holding its VFS lock, which happen when logging new 4326 * dentries (through log_new_dir_dentries()) or in some cases when we 4327 * need to log the parent directory of an inode. This means a dir index 4328 * key might be deleted from the inode's root, and therefore we may not 4329 * find it anymore. If we can't find it, just move to the next key. We 4330 * can not bail out and ignore, because if we do that we will simply 4331 * not log dir index keys that come after the one that was just deleted 4332 * and we can end up logging a dir index range that ends at (u64)-1 4333 * (@last_offset is initialized to that), resulting in removing dir 4334 * entries we should not remove at log replay time. 4335 */ 4336 search: 4337 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 4338 if (ret > 0) { 4339 ret = btrfs_next_item(root, path); 4340 if (ret > 0) { 4341 /* There are no more keys in the inode's root. */ 4342 ret = 0; 4343 goto done; 4344 } 4345 } 4346 if (ret < 0) 4347 goto done; 4348 4349 /* 4350 * we have a block from this transaction, log every item in it 4351 * from our directory 4352 */ 4353 while (1) { 4354 ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx, 4355 &last_old_dentry_offset); 4356 if (ret != 0) { 4357 if (ret > 0) 4358 ret = 0; 4359 goto done; 4360 } 4361 path->slots[0] = btrfs_header_nritems(path->nodes[0]); 4362 4363 /* 4364 * look ahead to the next item and see if it is also 4365 * from this directory and from this transaction 4366 */ 4367 ret = btrfs_next_leaf(root, path); 4368 if (ret) { 4369 if (ret == 1) { 4370 last_offset = (u64)-1; 4371 ret = 0; 4372 } 4373 goto done; 4374 } 4375 btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]); 4376 if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) { 4377 last_offset = (u64)-1; 4378 goto done; 4379 } 4380 if (btrfs_header_generation(path->nodes[0]) != trans->transid) { 4381 /* 4382 * The next leaf was not changed in the current transaction 4383 * and has at least one dir index key. 4384 * We check for the next key because there might have been 4385 * one or more deletions between the last key we logged and 4386 * that next key. So the key range item we log (key type 4387 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's 4388 * offset minus 1, so that those deletes are replayed. 4389 */ 4390 last_offset = min_key.offset - 1; 4391 goto done; 4392 } 4393 if (need_resched()) { 4394 btrfs_release_path(path); 4395 cond_resched(); 4396 goto search; 4397 } 4398 } 4399 done: 4400 btrfs_release_path(path); 4401 btrfs_release_path(dst_path); 4402 4403 if (ret == 0) { 4404 *last_offset_ret = last_offset; 4405 /* 4406 * In case the leaf was changed in the current transaction but 4407 * all its dir items are from a past transaction, the last item 4408 * in the leaf is a dir item and there's no gap between that last 4409 * dir item and the first one on the next leaf (which did not 4410 * change in the current transaction), then we don't need to log 4411 * a range, last_old_dentry_offset is == to last_offset. 4412 */ 4413 ASSERT(last_old_dentry_offset <= last_offset); 4414 if (last_old_dentry_offset < last_offset) 4415 ret = insert_dir_log_key(trans, log, path, ino, 4416 last_old_dentry_offset + 1, 4417 last_offset); 4418 } 4419 4420 return ret; 4421 } 4422 4423 /* 4424 * If the inode was logged before and it was evicted, then its 4425 * last_dir_index_offset is 0, so we don't know the value of the last index 4426 * key offset. If that's the case, search for it and update the inode. This 4427 * is to avoid lookups in the log tree every time we try to insert a dir index 4428 * key from a leaf changed in the current transaction, and to allow us to always 4429 * do batch insertions of dir index keys. 4430 */ 4431 static int update_last_dir_index_offset(struct btrfs_inode *inode, 4432 struct btrfs_path *path, 4433 const struct btrfs_log_ctx *ctx) 4434 { 4435 const u64 ino = btrfs_ino(inode); 4436 struct btrfs_key key; 4437 int ret; 4438 4439 lockdep_assert_held(&inode->log_mutex); 4440 4441 if (inode->last_dir_index_offset != 0) 4442 return 0; 4443 4444 if (!ctx->logged_before) { 4445 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1; 4446 return 0; 4447 } 4448 4449 key.objectid = ino; 4450 key.type = BTRFS_DIR_INDEX_KEY; 4451 key.offset = (u64)-1; 4452 4453 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0); 4454 /* 4455 * An error happened or we actually have an index key with an offset 4456 * value of (u64)-1. Bail out, we're done. 4457 */ 4458 if (ret <= 0) 4459 goto out; 4460 4461 ret = 0; 4462 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1; 4463 4464 /* 4465 * No dir index items, bail out and leave last_dir_index_offset with 4466 * the value right before the first valid index value. 4467 */ 4468 if (path->slots[0] == 0) 4469 goto out; 4470 4471 /* 4472 * btrfs_search_slot() left us at one slot beyond the slot with the last 4473 * index key, or beyond the last key of the directory that is not an 4474 * index key. If we have an index key before, set last_dir_index_offset 4475 * to its offset value, otherwise leave it with a value right before the 4476 * first valid index value, as it means we have an empty directory. 4477 */ 4478 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 4479 if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY) 4480 inode->last_dir_index_offset = key.offset; 4481 4482 out: 4483 btrfs_release_path(path); 4484 4485 return ret; 4486 } 4487 4488 /* 4489 * logging directories is very similar to logging inodes, We find all the items 4490 * from the current transaction and write them to the log. 4491 * 4492 * The recovery code scans the directory in the subvolume, and if it finds a 4493 * key in the range logged that is not present in the log tree, then it means 4494 * that dir entry was unlinked during the transaction. 4495 * 4496 * In order for that scan to work, we must include one key smaller than 4497 * the smallest logged by this transaction and one key larger than the largest 4498 * key logged by this transaction. 4499 */ 4500 static noinline int log_directory_changes(struct btrfs_trans_handle *trans, 4501 struct btrfs_inode *inode, 4502 struct btrfs_path *path, 4503 struct btrfs_path *dst_path, 4504 struct btrfs_log_ctx *ctx) 4505 { 4506 u64 min_key; 4507 u64 max_key; 4508 int ret; 4509 4510 ret = update_last_dir_index_offset(inode, path, ctx); 4511 if (ret) 4512 return ret; 4513 4514 min_key = BTRFS_DIR_START_INDEX; 4515 max_key = 0; 4516 4517 while (1) { 4518 ret = log_dir_items(trans, inode, path, dst_path, 4519 ctx, min_key, &max_key); 4520 if (ret) 4521 return ret; 4522 if (max_key == (u64)-1) 4523 break; 4524 min_key = max_key + 1; 4525 } 4526 4527 return 0; 4528 } 4529 4530 /* 4531 * a helper function to drop items from the log before we relog an 4532 * inode. max_key_type indicates the highest item type to remove. 4533 * This cannot be run for file data extents because it does not 4534 * free the extents they point to. 4535 */ 4536 static int drop_inode_items(struct btrfs_trans_handle *trans, 4537 struct btrfs_root *log, 4538 struct btrfs_path *path, 4539 struct btrfs_inode *inode, 4540 int max_key_type) 4541 { 4542 int ret; 4543 struct btrfs_key key; 4544 struct btrfs_key found_key; 4545 int start_slot; 4546 4547 key.objectid = btrfs_ino(inode); 4548 key.type = max_key_type; 4549 key.offset = (u64)-1; 4550 4551 while (1) { 4552 ret = btrfs_search_slot(trans, log, &key, path, -1, 1); 4553 if (ret < 0) { 4554 break; 4555 } else if (ret > 0) { 4556 if (path->slots[0] == 0) 4557 break; 4558 path->slots[0]--; 4559 } 4560 4561 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 4562 path->slots[0]); 4563 4564 if (found_key.objectid != key.objectid) 4565 break; 4566 4567 found_key.offset = 0; 4568 found_key.type = 0; 4569 ret = btrfs_bin_search(path->nodes[0], 0, &found_key, &start_slot); 4570 if (ret < 0) 4571 break; 4572 4573 ret = btrfs_del_items(trans, log, path, start_slot, 4574 path->slots[0] - start_slot + 1); 4575 /* 4576 * If start slot isn't 0 then we don't need to re-search, we've 4577 * found the last guy with the objectid in this tree. 4578 */ 4579 if (ret || start_slot != 0) 4580 break; 4581 btrfs_release_path(path); 4582 } 4583 btrfs_release_path(path); 4584 if (ret > 0) 4585 ret = 0; 4586 return ret; 4587 } 4588 4589 static int truncate_inode_items(struct btrfs_trans_handle *trans, 4590 struct btrfs_root *log_root, 4591 struct btrfs_inode *inode, 4592 u64 new_size, u32 min_type) 4593 { 4594 struct btrfs_truncate_control control = { 4595 .new_size = new_size, 4596 .ino = btrfs_ino(inode), 4597 .min_type = min_type, 4598 .skip_ref_updates = true, 4599 }; 4600 4601 return btrfs_truncate_inode_items(trans, log_root, &control); 4602 } 4603 4604 static void fill_inode_item(struct btrfs_trans_handle *trans, 4605 struct extent_buffer *leaf, 4606 struct btrfs_inode_item *item, 4607 struct inode *inode, bool log_inode_only, 4608 u64 logged_isize) 4609 { 4610 u64 flags; 4611 4612 if (log_inode_only) { 4613 /* set the generation to zero so the recover code 4614 * can tell the difference between an logging 4615 * just to say 'this inode exists' and a logging 4616 * to say 'update this inode with these values' 4617 */ 4618 btrfs_set_inode_generation(leaf, item, 0); 4619 btrfs_set_inode_size(leaf, item, logged_isize); 4620 } else { 4621 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation); 4622 btrfs_set_inode_size(leaf, item, inode->i_size); 4623 } 4624 4625 btrfs_set_inode_uid(leaf, item, i_uid_read(inode)); 4626 btrfs_set_inode_gid(leaf, item, i_gid_read(inode)); 4627 btrfs_set_inode_mode(leaf, item, inode->i_mode); 4628 btrfs_set_inode_nlink(leaf, item, inode->i_nlink); 4629 4630 btrfs_set_timespec_sec(leaf, &item->atime, inode_get_atime_sec(inode)); 4631 btrfs_set_timespec_nsec(leaf, &item->atime, inode_get_atime_nsec(inode)); 4632 4633 btrfs_set_timespec_sec(leaf, &item->mtime, inode_get_mtime_sec(inode)); 4634 btrfs_set_timespec_nsec(leaf, &item->mtime, inode_get_mtime_nsec(inode)); 4635 4636 btrfs_set_timespec_sec(leaf, &item->ctime, inode_get_ctime_sec(inode)); 4637 btrfs_set_timespec_nsec(leaf, &item->ctime, inode_get_ctime_nsec(inode)); 4638 4639 btrfs_set_timespec_sec(leaf, &item->otime, BTRFS_I(inode)->i_otime_sec); 4640 btrfs_set_timespec_nsec(leaf, &item->otime, BTRFS_I(inode)->i_otime_nsec); 4641 4642 /* 4643 * We do not need to set the nbytes field, in fact during a fast fsync 4644 * its value may not even be correct, since a fast fsync does not wait 4645 * for ordered extent completion, which is where we update nbytes, it 4646 * only waits for writeback to complete. During log replay as we find 4647 * file extent items and replay them, we adjust the nbytes field of the 4648 * inode item in subvolume tree as needed (see overwrite_item()). 4649 */ 4650 4651 btrfs_set_inode_sequence(leaf, item, inode_peek_iversion(inode)); 4652 btrfs_set_inode_transid(leaf, item, trans->transid); 4653 btrfs_set_inode_rdev(leaf, item, inode->i_rdev); 4654 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 4655 BTRFS_I(inode)->ro_flags); 4656 btrfs_set_inode_flags(leaf, item, flags); 4657 btrfs_set_inode_block_group(leaf, item, 0); 4658 } 4659 4660 static int log_inode_item(struct btrfs_trans_handle *trans, 4661 struct btrfs_root *log, struct btrfs_path *path, 4662 struct btrfs_inode *inode, bool inode_item_dropped) 4663 { 4664 struct btrfs_inode_item *inode_item; 4665 struct btrfs_key key; 4666 int ret; 4667 4668 btrfs_get_inode_key(inode, &key); 4669 /* 4670 * If we are doing a fast fsync and the inode was logged before in the 4671 * current transaction, then we know the inode was previously logged and 4672 * it exists in the log tree. For performance reasons, in this case use 4673 * btrfs_search_slot() directly with ins_len set to 0 so that we never 4674 * attempt a write lock on the leaf's parent, which adds unnecessary lock 4675 * contention in case there are concurrent fsyncs for other inodes of the 4676 * same subvolume. Using btrfs_insert_empty_item() when the inode item 4677 * already exists can also result in unnecessarily splitting a leaf. 4678 */ 4679 if (!inode_item_dropped && inode->logged_trans == trans->transid) { 4680 ret = btrfs_search_slot(trans, log, &key, path, 0, 1); 4681 ASSERT(ret <= 0); 4682 if (ret > 0) 4683 ret = -ENOENT; 4684 } else { 4685 /* 4686 * This means it is the first fsync in the current transaction, 4687 * so the inode item is not in the log and we need to insert it. 4688 * We can never get -EEXIST because we are only called for a fast 4689 * fsync and in case an inode eviction happens after the inode was 4690 * logged before in the current transaction, when we load again 4691 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime 4692 * flags and set ->logged_trans to 0. 4693 */ 4694 ret = btrfs_insert_empty_item(trans, log, path, &key, 4695 sizeof(*inode_item)); 4696 ASSERT(ret != -EEXIST); 4697 } 4698 if (ret) 4699 return ret; 4700 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4701 struct btrfs_inode_item); 4702 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode, 4703 false, 0); 4704 btrfs_release_path(path); 4705 return 0; 4706 } 4707 4708 static int log_csums(struct btrfs_trans_handle *trans, 4709 struct btrfs_inode *inode, 4710 struct btrfs_root *log_root, 4711 struct btrfs_ordered_sum *sums) 4712 { 4713 const u64 lock_end = sums->logical + sums->len - 1; 4714 struct extent_state *cached_state = NULL; 4715 int ret; 4716 4717 /* 4718 * If this inode was not used for reflink operations in the current 4719 * transaction with new extents, then do the fast path, no need to 4720 * worry about logging checksum items with overlapping ranges. 4721 */ 4722 if (inode->last_reflink_trans < trans->transid) 4723 return btrfs_csum_file_blocks(trans, log_root, sums); 4724 4725 /* 4726 * Serialize logging for checksums. This is to avoid racing with the 4727 * same checksum being logged by another task that is logging another 4728 * file which happens to refer to the same extent as well. Such races 4729 * can leave checksum items in the log with overlapping ranges. 4730 */ 4731 ret = btrfs_lock_extent(&log_root->log_csum_range, sums->logical, lock_end, 4732 &cached_state); 4733 if (ret) 4734 return ret; 4735 /* 4736 * Due to extent cloning, we might have logged a csum item that covers a 4737 * subrange of a cloned extent, and later we can end up logging a csum 4738 * item for a larger subrange of the same extent or the entire range. 4739 * This would leave csum items in the log tree that cover the same range 4740 * and break the searches for checksums in the log tree, resulting in 4741 * some checksums missing in the fs/subvolume tree. So just delete (or 4742 * trim and adjust) any existing csum items in the log for this range. 4743 */ 4744 ret = btrfs_del_csums(trans, log_root, sums->logical, sums->len); 4745 if (!ret) 4746 ret = btrfs_csum_file_blocks(trans, log_root, sums); 4747 4748 btrfs_unlock_extent(&log_root->log_csum_range, sums->logical, lock_end, 4749 &cached_state); 4750 4751 return ret; 4752 } 4753 4754 static noinline int copy_items(struct btrfs_trans_handle *trans, 4755 struct btrfs_inode *inode, 4756 struct btrfs_path *dst_path, 4757 struct btrfs_path *src_path, 4758 int start_slot, int nr, int inode_only, 4759 u64 logged_isize, struct btrfs_log_ctx *ctx) 4760 { 4761 struct btrfs_root *log = inode->root->log_root; 4762 struct btrfs_file_extent_item *extent; 4763 struct extent_buffer *src; 4764 int ret; 4765 struct btrfs_key *ins_keys; 4766 u32 *ins_sizes; 4767 struct btrfs_item_batch batch; 4768 char *ins_data; 4769 int dst_index; 4770 const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM); 4771 const u64 i_size = i_size_read(&inode->vfs_inode); 4772 4773 /* 4774 * To keep lockdep happy and avoid deadlocks, clone the source leaf and 4775 * use the clone. This is because otherwise we would be changing the log 4776 * tree, to insert items from the subvolume tree or insert csum items, 4777 * while holding a read lock on a leaf from the subvolume tree, which 4778 * creates a nasty lock dependency when COWing log tree nodes/leaves: 4779 * 4780 * 1) Modifying the log tree triggers an extent buffer allocation while 4781 * holding a write lock on a parent extent buffer from the log tree. 4782 * Allocating the pages for an extent buffer, or the extent buffer 4783 * struct, can trigger inode eviction and finally the inode eviction 4784 * will trigger a release/remove of a delayed node, which requires 4785 * taking the delayed node's mutex; 4786 * 4787 * 2) Allocating a metadata extent for a log tree can trigger the async 4788 * reclaim thread and make us wait for it to release enough space and 4789 * unblock our reservation ticket. The reclaim thread can start 4790 * flushing delayed items, and that in turn results in the need to 4791 * lock delayed node mutexes and in the need to write lock extent 4792 * buffers of a subvolume tree - all this while holding a write lock 4793 * on the parent extent buffer in the log tree. 4794 * 4795 * So one task in scenario 1) running in parallel with another task in 4796 * scenario 2) could lead to a deadlock, one wanting to lock a delayed 4797 * node mutex while having a read lock on a leaf from the subvolume, 4798 * while the other is holding the delayed node's mutex and wants to 4799 * write lock the same subvolume leaf for flushing delayed items. 4800 */ 4801 ret = clone_leaf(src_path, ctx); 4802 if (ret < 0) 4803 return ret; 4804 4805 src = src_path->nodes[0]; 4806 4807 ins_data = kmalloc_array(nr, sizeof(struct btrfs_key) + sizeof(u32), GFP_NOFS); 4808 if (!ins_data) 4809 return -ENOMEM; 4810 4811 ins_sizes = (u32 *)ins_data; 4812 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32)); 4813 batch.keys = ins_keys; 4814 batch.data_sizes = ins_sizes; 4815 batch.total_data_size = 0; 4816 batch.nr = 0; 4817 4818 dst_index = 0; 4819 for (int i = 0; i < nr; i++) { 4820 const int src_slot = start_slot + i; 4821 struct btrfs_root *csum_root; 4822 struct btrfs_ordered_sum *sums; 4823 struct btrfs_ordered_sum *sums_next; 4824 LIST_HEAD(ordered_sums); 4825 u64 disk_bytenr; 4826 u64 disk_num_bytes; 4827 u64 extent_offset; 4828 u64 extent_num_bytes; 4829 bool is_old_extent; 4830 4831 btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot); 4832 4833 if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY) 4834 goto add_to_batch; 4835 4836 extent = btrfs_item_ptr(src, src_slot, 4837 struct btrfs_file_extent_item); 4838 4839 is_old_extent = (btrfs_file_extent_generation(src, extent) < 4840 trans->transid); 4841 4842 /* 4843 * Don't copy extents from past generations. That would make us 4844 * log a lot more metadata for common cases like doing only a 4845 * few random writes into a file and then fsync it for the first 4846 * time or after the full sync flag is set on the inode. We can 4847 * get leaves full of extent items, most of which are from past 4848 * generations, so we can skip them - as long as the inode has 4849 * not been the target of a reflink operation in this transaction, 4850 * as in that case it might have had file extent items with old 4851 * generations copied into it. We also must always log prealloc 4852 * extents that start at or beyond eof, otherwise we would lose 4853 * them on log replay. 4854 */ 4855 if (is_old_extent && 4856 ins_keys[dst_index].offset < i_size && 4857 inode->last_reflink_trans < trans->transid) 4858 continue; 4859 4860 if (skip_csum) 4861 goto add_to_batch; 4862 4863 /* Only regular extents have checksums. */ 4864 if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG) 4865 goto add_to_batch; 4866 4867 /* 4868 * If it's an extent created in a past transaction, then its 4869 * checksums are already accessible from the committed csum tree, 4870 * no need to log them. 4871 */ 4872 if (is_old_extent) 4873 goto add_to_batch; 4874 4875 disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent); 4876 /* If it's an explicit hole, there are no checksums. */ 4877 if (disk_bytenr == 0) 4878 goto add_to_batch; 4879 4880 disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent); 4881 4882 if (btrfs_file_extent_compression(src, extent)) { 4883 extent_offset = 0; 4884 extent_num_bytes = disk_num_bytes; 4885 } else { 4886 extent_offset = btrfs_file_extent_offset(src, extent); 4887 extent_num_bytes = btrfs_file_extent_num_bytes(src, extent); 4888 } 4889 4890 csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr); 4891 disk_bytenr += extent_offset; 4892 ret = btrfs_lookup_csums_list(csum_root, disk_bytenr, 4893 disk_bytenr + extent_num_bytes - 1, 4894 &ordered_sums, false); 4895 if (ret < 0) 4896 goto out; 4897 ret = 0; 4898 4899 list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) { 4900 if (!ret) 4901 ret = log_csums(trans, inode, log, sums); 4902 list_del(&sums->list); 4903 kfree(sums); 4904 } 4905 if (ret) 4906 goto out; 4907 4908 add_to_batch: 4909 ins_sizes[dst_index] = btrfs_item_size(src, src_slot); 4910 batch.total_data_size += ins_sizes[dst_index]; 4911 batch.nr++; 4912 dst_index++; 4913 } 4914 4915 /* 4916 * We have a leaf full of old extent items that don't need to be logged, 4917 * so we don't need to do anything. 4918 */ 4919 if (batch.nr == 0) 4920 goto out; 4921 4922 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch); 4923 if (ret) 4924 goto out; 4925 4926 dst_index = 0; 4927 for (int i = 0; i < nr; i++) { 4928 const int src_slot = start_slot + i; 4929 const int dst_slot = dst_path->slots[0] + dst_index; 4930 struct btrfs_key key; 4931 unsigned long src_offset; 4932 unsigned long dst_offset; 4933 4934 /* 4935 * We're done, all the remaining items in the source leaf 4936 * correspond to old file extent items. 4937 */ 4938 if (dst_index >= batch.nr) 4939 break; 4940 4941 btrfs_item_key_to_cpu(src, &key, src_slot); 4942 4943 if (key.type != BTRFS_EXTENT_DATA_KEY) 4944 goto copy_item; 4945 4946 extent = btrfs_item_ptr(src, src_slot, 4947 struct btrfs_file_extent_item); 4948 4949 /* See the comment in the previous loop, same logic. */ 4950 if (btrfs_file_extent_generation(src, extent) < trans->transid && 4951 key.offset < i_size && 4952 inode->last_reflink_trans < trans->transid) 4953 continue; 4954 4955 copy_item: 4956 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot); 4957 src_offset = btrfs_item_ptr_offset(src, src_slot); 4958 4959 if (key.type == BTRFS_INODE_ITEM_KEY) { 4960 struct btrfs_inode_item *inode_item; 4961 4962 inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot, 4963 struct btrfs_inode_item); 4964 fill_inode_item(trans, dst_path->nodes[0], inode_item, 4965 &inode->vfs_inode, 4966 inode_only == LOG_INODE_EXISTS, 4967 logged_isize); 4968 } else { 4969 copy_extent_buffer(dst_path->nodes[0], src, dst_offset, 4970 src_offset, ins_sizes[dst_index]); 4971 } 4972 4973 dst_index++; 4974 } 4975 4976 btrfs_release_path(dst_path); 4977 out: 4978 kfree(ins_data); 4979 4980 return ret; 4981 } 4982 4983 static int extent_cmp(void *priv, const struct list_head *a, 4984 const struct list_head *b) 4985 { 4986 const struct extent_map *em1, *em2; 4987 4988 em1 = list_entry(a, struct extent_map, list); 4989 em2 = list_entry(b, struct extent_map, list); 4990 4991 if (em1->start < em2->start) 4992 return -1; 4993 else if (em1->start > em2->start) 4994 return 1; 4995 return 0; 4996 } 4997 4998 static int log_extent_csums(struct btrfs_trans_handle *trans, 4999 struct btrfs_inode *inode, 5000 struct btrfs_root *log_root, 5001 const struct extent_map *em, 5002 struct btrfs_log_ctx *ctx) 5003 { 5004 struct btrfs_ordered_extent *ordered; 5005 struct btrfs_root *csum_root; 5006 u64 block_start; 5007 u64 csum_offset; 5008 u64 csum_len; 5009 u64 mod_start = em->start; 5010 u64 mod_len = em->len; 5011 LIST_HEAD(ordered_sums); 5012 int ret = 0; 5013 5014 if (inode->flags & BTRFS_INODE_NODATASUM || 5015 (em->flags & EXTENT_FLAG_PREALLOC) || 5016 em->disk_bytenr == EXTENT_MAP_HOLE) 5017 return 0; 5018 5019 list_for_each_entry(ordered, &ctx->ordered_extents, log_list) { 5020 const u64 ordered_end = ordered->file_offset + ordered->num_bytes; 5021 const u64 mod_end = mod_start + mod_len; 5022 struct btrfs_ordered_sum *sums; 5023 5024 if (mod_len == 0) 5025 break; 5026 5027 if (ordered_end <= mod_start) 5028 continue; 5029 if (mod_end <= ordered->file_offset) 5030 break; 5031 5032 /* 5033 * We are going to copy all the csums on this ordered extent, so 5034 * go ahead and adjust mod_start and mod_len in case this ordered 5035 * extent has already been logged. 5036 */ 5037 if (ordered->file_offset > mod_start) { 5038 if (ordered_end >= mod_end) 5039 mod_len = ordered->file_offset - mod_start; 5040 /* 5041 * If we have this case 5042 * 5043 * |--------- logged extent ---------| 5044 * |----- ordered extent ----| 5045 * 5046 * Just don't mess with mod_start and mod_len, we'll 5047 * just end up logging more csums than we need and it 5048 * will be ok. 5049 */ 5050 } else { 5051 if (ordered_end < mod_end) { 5052 mod_len = mod_end - ordered_end; 5053 mod_start = ordered_end; 5054 } else { 5055 mod_len = 0; 5056 } 5057 } 5058 5059 /* 5060 * To keep us from looping for the above case of an ordered 5061 * extent that falls inside of the logged extent. 5062 */ 5063 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags)) 5064 continue; 5065 5066 list_for_each_entry(sums, &ordered->list, list) { 5067 ret = log_csums(trans, inode, log_root, sums); 5068 if (ret) 5069 return ret; 5070 } 5071 } 5072 5073 /* We're done, found all csums in the ordered extents. */ 5074 if (mod_len == 0) 5075 return 0; 5076 5077 /* If we're compressed we have to save the entire range of csums. */ 5078 if (btrfs_extent_map_is_compressed(em)) { 5079 csum_offset = 0; 5080 csum_len = em->disk_num_bytes; 5081 } else { 5082 csum_offset = mod_start - em->start; 5083 csum_len = mod_len; 5084 } 5085 5086 /* block start is already adjusted for the file extent offset. */ 5087 block_start = btrfs_extent_map_block_start(em); 5088 csum_root = btrfs_csum_root(trans->fs_info, block_start); 5089 ret = btrfs_lookup_csums_list(csum_root, block_start + csum_offset, 5090 block_start + csum_offset + csum_len - 1, 5091 &ordered_sums, false); 5092 if (ret < 0) 5093 return ret; 5094 ret = 0; 5095 5096 while (!list_empty(&ordered_sums)) { 5097 struct btrfs_ordered_sum *sums = list_first_entry(&ordered_sums, 5098 struct btrfs_ordered_sum, 5099 list); 5100 if (!ret) 5101 ret = log_csums(trans, inode, log_root, sums); 5102 list_del(&sums->list); 5103 kfree(sums); 5104 } 5105 5106 return ret; 5107 } 5108 5109 static int log_one_extent(struct btrfs_trans_handle *trans, 5110 struct btrfs_inode *inode, 5111 const struct extent_map *em, 5112 struct btrfs_path *path, 5113 struct btrfs_log_ctx *ctx) 5114 { 5115 struct btrfs_drop_extents_args drop_args = { 0 }; 5116 struct btrfs_root *log = inode->root->log_root; 5117 struct btrfs_file_extent_item fi = { 0 }; 5118 struct extent_buffer *leaf; 5119 struct btrfs_key key; 5120 enum btrfs_compression_type compress_type; 5121 u64 extent_offset = em->offset; 5122 u64 block_start = btrfs_extent_map_block_start(em); 5123 u64 block_len; 5124 int ret; 5125 5126 btrfs_set_stack_file_extent_generation(&fi, trans->transid); 5127 if (em->flags & EXTENT_FLAG_PREALLOC) 5128 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC); 5129 else 5130 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG); 5131 5132 block_len = em->disk_num_bytes; 5133 compress_type = btrfs_extent_map_compression(em); 5134 if (compress_type != BTRFS_COMPRESS_NONE) { 5135 btrfs_set_stack_file_extent_disk_bytenr(&fi, block_start); 5136 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len); 5137 } else if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) { 5138 btrfs_set_stack_file_extent_disk_bytenr(&fi, block_start - extent_offset); 5139 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len); 5140 } 5141 5142 btrfs_set_stack_file_extent_offset(&fi, extent_offset); 5143 btrfs_set_stack_file_extent_num_bytes(&fi, em->len); 5144 btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes); 5145 btrfs_set_stack_file_extent_compression(&fi, compress_type); 5146 5147 ret = log_extent_csums(trans, inode, log, em, ctx); 5148 if (ret) 5149 return ret; 5150 5151 /* 5152 * If this is the first time we are logging the inode in the current 5153 * transaction, we can avoid btrfs_drop_extents(), which is expensive 5154 * because it does a deletion search, which always acquires write locks 5155 * for extent buffers at levels 2, 1 and 0. This not only wastes time 5156 * but also adds significant contention in a log tree, since log trees 5157 * are small, with a root at level 2 or 3 at most, due to their short 5158 * life span. 5159 */ 5160 if (ctx->logged_before) { 5161 drop_args.path = path; 5162 drop_args.start = em->start; 5163 drop_args.end = em->start + em->len; 5164 drop_args.replace_extent = true; 5165 drop_args.extent_item_size = sizeof(fi); 5166 ret = btrfs_drop_extents(trans, log, inode, &drop_args); 5167 if (ret) 5168 return ret; 5169 } 5170 5171 if (!drop_args.extent_inserted) { 5172 key.objectid = btrfs_ino(inode); 5173 key.type = BTRFS_EXTENT_DATA_KEY; 5174 key.offset = em->start; 5175 5176 ret = btrfs_insert_empty_item(trans, log, path, &key, 5177 sizeof(fi)); 5178 if (ret) 5179 return ret; 5180 } 5181 leaf = path->nodes[0]; 5182 write_extent_buffer(leaf, &fi, 5183 btrfs_item_ptr_offset(leaf, path->slots[0]), 5184 sizeof(fi)); 5185 5186 btrfs_release_path(path); 5187 5188 return ret; 5189 } 5190 5191 /* 5192 * Log all prealloc extents beyond the inode's i_size to make sure we do not 5193 * lose them after doing a full/fast fsync and replaying the log. We scan the 5194 * subvolume's root instead of iterating the inode's extent map tree because 5195 * otherwise we can log incorrect extent items based on extent map conversion. 5196 * That can happen due to the fact that extent maps are merged when they 5197 * are not in the extent map tree's list of modified extents. 5198 */ 5199 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans, 5200 struct btrfs_inode *inode, 5201 struct btrfs_path *path, 5202 struct btrfs_log_ctx *ctx) 5203 { 5204 struct btrfs_root *root = inode->root; 5205 struct btrfs_key key; 5206 const u64 i_size = i_size_read(&inode->vfs_inode); 5207 const u64 ino = btrfs_ino(inode); 5208 BTRFS_PATH_AUTO_FREE(dst_path); 5209 bool dropped_extents = false; 5210 u64 truncate_offset = i_size; 5211 struct extent_buffer *leaf; 5212 int slot; 5213 int ins_nr = 0; 5214 int start_slot = 0; 5215 int ret; 5216 5217 if (!(inode->flags & BTRFS_INODE_PREALLOC)) 5218 return 0; 5219 5220 key.objectid = ino; 5221 key.type = BTRFS_EXTENT_DATA_KEY; 5222 key.offset = i_size; 5223 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5224 if (ret < 0) 5225 goto out; 5226 5227 /* 5228 * We must check if there is a prealloc extent that starts before the 5229 * i_size and crosses the i_size boundary. This is to ensure later we 5230 * truncate down to the end of that extent and not to the i_size, as 5231 * otherwise we end up losing part of the prealloc extent after a log 5232 * replay and with an implicit hole if there is another prealloc extent 5233 * that starts at an offset beyond i_size. 5234 */ 5235 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY); 5236 if (ret < 0) 5237 goto out; 5238 5239 if (ret == 0) { 5240 struct btrfs_file_extent_item *ei; 5241 5242 leaf = path->nodes[0]; 5243 slot = path->slots[0]; 5244 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5245 5246 if (btrfs_file_extent_type(leaf, ei) == 5247 BTRFS_FILE_EXTENT_PREALLOC) { 5248 u64 extent_end; 5249 5250 btrfs_item_key_to_cpu(leaf, &key, slot); 5251 extent_end = key.offset + 5252 btrfs_file_extent_num_bytes(leaf, ei); 5253 5254 if (extent_end > i_size) 5255 truncate_offset = extent_end; 5256 } 5257 } else { 5258 ret = 0; 5259 } 5260 5261 while (true) { 5262 leaf = path->nodes[0]; 5263 slot = path->slots[0]; 5264 5265 if (slot >= btrfs_header_nritems(leaf)) { 5266 if (ins_nr > 0) { 5267 ret = copy_items(trans, inode, dst_path, path, 5268 start_slot, ins_nr, 1, 0, ctx); 5269 if (ret < 0) 5270 goto out; 5271 ins_nr = 0; 5272 } 5273 ret = btrfs_next_leaf(root, path); 5274 if (ret < 0) 5275 goto out; 5276 if (ret > 0) { 5277 ret = 0; 5278 break; 5279 } 5280 continue; 5281 } 5282 5283 btrfs_item_key_to_cpu(leaf, &key, slot); 5284 if (key.objectid > ino) 5285 break; 5286 if (WARN_ON_ONCE(key.objectid < ino) || 5287 key.type < BTRFS_EXTENT_DATA_KEY || 5288 key.offset < i_size) { 5289 path->slots[0]++; 5290 continue; 5291 } 5292 /* 5293 * Avoid overlapping items in the log tree. The first time we 5294 * get here, get rid of everything from a past fsync. After 5295 * that, if the current extent starts before the end of the last 5296 * extent we copied, truncate the last one. This can happen if 5297 * an ordered extent completion modifies the subvolume tree 5298 * while btrfs_next_leaf() has the tree unlocked. 5299 */ 5300 if (!dropped_extents || key.offset < truncate_offset) { 5301 ret = truncate_inode_items(trans, root->log_root, inode, 5302 min(key.offset, truncate_offset), 5303 BTRFS_EXTENT_DATA_KEY); 5304 if (ret) 5305 goto out; 5306 dropped_extents = true; 5307 } 5308 truncate_offset = btrfs_file_extent_end(path); 5309 if (ins_nr == 0) 5310 start_slot = slot; 5311 ins_nr++; 5312 path->slots[0]++; 5313 if (!dst_path) { 5314 dst_path = btrfs_alloc_path(); 5315 if (!dst_path) { 5316 ret = -ENOMEM; 5317 goto out; 5318 } 5319 } 5320 } 5321 if (ins_nr > 0) 5322 ret = copy_items(trans, inode, dst_path, path, 5323 start_slot, ins_nr, 1, 0, ctx); 5324 out: 5325 btrfs_release_path(path); 5326 return ret; 5327 } 5328 5329 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans, 5330 struct btrfs_inode *inode, 5331 struct btrfs_path *path, 5332 struct btrfs_log_ctx *ctx) 5333 { 5334 struct btrfs_ordered_extent *ordered; 5335 struct btrfs_ordered_extent *tmp; 5336 struct extent_map *em, *n; 5337 LIST_HEAD(extents); 5338 struct extent_map_tree *tree = &inode->extent_tree; 5339 int ret = 0; 5340 int num = 0; 5341 5342 write_lock(&tree->lock); 5343 5344 list_for_each_entry_safe(em, n, &tree->modified_extents, list) { 5345 list_del_init(&em->list); 5346 /* 5347 * Just an arbitrary number, this can be really CPU intensive 5348 * once we start getting a lot of extents, and really once we 5349 * have a bunch of extents we just want to commit since it will 5350 * be faster. 5351 */ 5352 if (++num > 32768) { 5353 list_del_init(&tree->modified_extents); 5354 ret = -EFBIG; 5355 goto process; 5356 } 5357 5358 if (em->generation < trans->transid) 5359 continue; 5360 5361 /* We log prealloc extents beyond eof later. */ 5362 if ((em->flags & EXTENT_FLAG_PREALLOC) && 5363 em->start >= i_size_read(&inode->vfs_inode)) 5364 continue; 5365 5366 /* Need a ref to keep it from getting evicted from cache */ 5367 refcount_inc(&em->refs); 5368 em->flags |= EXTENT_FLAG_LOGGING; 5369 list_add_tail(&em->list, &extents); 5370 num++; 5371 } 5372 5373 list_sort(NULL, &extents, extent_cmp); 5374 process: 5375 while (!list_empty(&extents)) { 5376 em = list_first_entry(&extents, struct extent_map, list); 5377 5378 list_del_init(&em->list); 5379 5380 /* 5381 * If we had an error we just need to delete everybody from our 5382 * private list. 5383 */ 5384 if (ret) { 5385 btrfs_clear_em_logging(inode, em); 5386 btrfs_free_extent_map(em); 5387 continue; 5388 } 5389 5390 write_unlock(&tree->lock); 5391 5392 ret = log_one_extent(trans, inode, em, path, ctx); 5393 write_lock(&tree->lock); 5394 btrfs_clear_em_logging(inode, em); 5395 btrfs_free_extent_map(em); 5396 } 5397 WARN_ON(!list_empty(&extents)); 5398 write_unlock(&tree->lock); 5399 5400 if (!ret) 5401 ret = btrfs_log_prealloc_extents(trans, inode, path, ctx); 5402 if (ret) 5403 return ret; 5404 5405 /* 5406 * We have logged all extents successfully, now make sure the commit of 5407 * the current transaction waits for the ordered extents to complete 5408 * before it commits and wipes out the log trees, otherwise we would 5409 * lose data if an ordered extents completes after the transaction 5410 * commits and a power failure happens after the transaction commit. 5411 */ 5412 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) { 5413 list_del_init(&ordered->log_list); 5414 set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags); 5415 5416 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) { 5417 spin_lock_irq(&inode->ordered_tree_lock); 5418 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) { 5419 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags); 5420 atomic_inc(&trans->transaction->pending_ordered); 5421 } 5422 spin_unlock_irq(&inode->ordered_tree_lock); 5423 } 5424 btrfs_put_ordered_extent(ordered); 5425 } 5426 5427 return 0; 5428 } 5429 5430 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode, 5431 struct btrfs_path *path, u64 *size_ret) 5432 { 5433 struct btrfs_key key; 5434 int ret; 5435 5436 key.objectid = btrfs_ino(inode); 5437 key.type = BTRFS_INODE_ITEM_KEY; 5438 key.offset = 0; 5439 5440 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0); 5441 if (ret < 0) { 5442 return ret; 5443 } else if (ret > 0) { 5444 *size_ret = 0; 5445 } else { 5446 struct btrfs_inode_item *item; 5447 5448 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 5449 struct btrfs_inode_item); 5450 *size_ret = btrfs_inode_size(path->nodes[0], item); 5451 /* 5452 * If the in-memory inode's i_size is smaller then the inode 5453 * size stored in the btree, return the inode's i_size, so 5454 * that we get a correct inode size after replaying the log 5455 * when before a power failure we had a shrinking truncate 5456 * followed by addition of a new name (rename / new hard link). 5457 * Otherwise return the inode size from the btree, to avoid 5458 * data loss when replaying a log due to previously doing a 5459 * write that expands the inode's size and logging a new name 5460 * immediately after. 5461 */ 5462 if (*size_ret > inode->vfs_inode.i_size) 5463 *size_ret = inode->vfs_inode.i_size; 5464 } 5465 5466 btrfs_release_path(path); 5467 return 0; 5468 } 5469 5470 /* 5471 * At the moment we always log all xattrs. This is to figure out at log replay 5472 * time which xattrs must have their deletion replayed. If a xattr is missing 5473 * in the log tree and exists in the fs/subvol tree, we delete it. This is 5474 * because if a xattr is deleted, the inode is fsynced and a power failure 5475 * happens, causing the log to be replayed the next time the fs is mounted, 5476 * we want the xattr to not exist anymore (same behaviour as other filesystems 5477 * with a journal, ext3/4, xfs, f2fs, etc). 5478 */ 5479 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans, 5480 struct btrfs_inode *inode, 5481 struct btrfs_path *path, 5482 struct btrfs_path *dst_path, 5483 struct btrfs_log_ctx *ctx) 5484 { 5485 struct btrfs_root *root = inode->root; 5486 int ret; 5487 struct btrfs_key key; 5488 const u64 ino = btrfs_ino(inode); 5489 int ins_nr = 0; 5490 int start_slot = 0; 5491 bool found_xattrs = false; 5492 5493 if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags)) 5494 return 0; 5495 5496 key.objectid = ino; 5497 key.type = BTRFS_XATTR_ITEM_KEY; 5498 key.offset = 0; 5499 5500 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5501 if (ret < 0) 5502 return ret; 5503 5504 while (true) { 5505 int slot = path->slots[0]; 5506 struct extent_buffer *leaf = path->nodes[0]; 5507 int nritems = btrfs_header_nritems(leaf); 5508 5509 if (slot >= nritems) { 5510 if (ins_nr > 0) { 5511 ret = copy_items(trans, inode, dst_path, path, 5512 start_slot, ins_nr, 1, 0, ctx); 5513 if (ret < 0) 5514 return ret; 5515 ins_nr = 0; 5516 } 5517 ret = btrfs_next_leaf(root, path); 5518 if (ret < 0) 5519 return ret; 5520 else if (ret > 0) 5521 break; 5522 continue; 5523 } 5524 5525 btrfs_item_key_to_cpu(leaf, &key, slot); 5526 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) 5527 break; 5528 5529 if (ins_nr == 0) 5530 start_slot = slot; 5531 ins_nr++; 5532 path->slots[0]++; 5533 found_xattrs = true; 5534 cond_resched(); 5535 } 5536 if (ins_nr > 0) { 5537 ret = copy_items(trans, inode, dst_path, path, 5538 start_slot, ins_nr, 1, 0, ctx); 5539 if (ret < 0) 5540 return ret; 5541 } 5542 5543 if (!found_xattrs) 5544 set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags); 5545 5546 return 0; 5547 } 5548 5549 /* 5550 * When using the NO_HOLES feature if we punched a hole that causes the 5551 * deletion of entire leafs or all the extent items of the first leaf (the one 5552 * that contains the inode item and references) we may end up not processing 5553 * any extents, because there are no leafs with a generation matching the 5554 * current transaction that have extent items for our inode. So we need to find 5555 * if any holes exist and then log them. We also need to log holes after any 5556 * truncate operation that changes the inode's size. 5557 */ 5558 static int btrfs_log_holes(struct btrfs_trans_handle *trans, 5559 struct btrfs_inode *inode, 5560 struct btrfs_path *path) 5561 { 5562 struct btrfs_root *root = inode->root; 5563 struct btrfs_fs_info *fs_info = root->fs_info; 5564 struct btrfs_key key; 5565 const u64 ino = btrfs_ino(inode); 5566 const u64 i_size = i_size_read(&inode->vfs_inode); 5567 u64 prev_extent_end = 0; 5568 int ret; 5569 5570 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0) 5571 return 0; 5572 5573 key.objectid = ino; 5574 key.type = BTRFS_EXTENT_DATA_KEY; 5575 key.offset = 0; 5576 5577 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5578 if (ret < 0) 5579 return ret; 5580 5581 while (true) { 5582 struct extent_buffer *leaf = path->nodes[0]; 5583 5584 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 5585 ret = btrfs_next_leaf(root, path); 5586 if (ret < 0) 5587 return ret; 5588 if (ret > 0) { 5589 ret = 0; 5590 break; 5591 } 5592 leaf = path->nodes[0]; 5593 } 5594 5595 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 5596 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 5597 break; 5598 5599 /* We have a hole, log it. */ 5600 if (prev_extent_end < key.offset) { 5601 const u64 hole_len = key.offset - prev_extent_end; 5602 5603 /* 5604 * Release the path to avoid deadlocks with other code 5605 * paths that search the root while holding locks on 5606 * leafs from the log root. 5607 */ 5608 btrfs_release_path(path); 5609 ret = btrfs_insert_hole_extent(trans, root->log_root, 5610 ino, prev_extent_end, 5611 hole_len); 5612 if (ret < 0) 5613 return ret; 5614 5615 /* 5616 * Search for the same key again in the root. Since it's 5617 * an extent item and we are holding the inode lock, the 5618 * key must still exist. If it doesn't just emit warning 5619 * and return an error to fall back to a transaction 5620 * commit. 5621 */ 5622 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5623 if (ret < 0) 5624 return ret; 5625 if (WARN_ON(ret > 0)) 5626 return -ENOENT; 5627 leaf = path->nodes[0]; 5628 } 5629 5630 prev_extent_end = btrfs_file_extent_end(path); 5631 path->slots[0]++; 5632 cond_resched(); 5633 } 5634 5635 if (prev_extent_end < i_size) { 5636 u64 hole_len; 5637 5638 btrfs_release_path(path); 5639 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize); 5640 ret = btrfs_insert_hole_extent(trans, root->log_root, ino, 5641 prev_extent_end, hole_len); 5642 if (ret < 0) 5643 return ret; 5644 } 5645 5646 return 0; 5647 } 5648 5649 /* 5650 * When we are logging a new inode X, check if it doesn't have a reference that 5651 * matches the reference from some other inode Y created in a past transaction 5652 * and that was renamed in the current transaction. If we don't do this, then at 5653 * log replay time we can lose inode Y (and all its files if it's a directory): 5654 * 5655 * mkdir /mnt/x 5656 * echo "hello world" > /mnt/x/foobar 5657 * sync 5658 * mv /mnt/x /mnt/y 5659 * mkdir /mnt/x # or touch /mnt/x 5660 * xfs_io -c fsync /mnt/x 5661 * <power fail> 5662 * mount fs, trigger log replay 5663 * 5664 * After the log replay procedure, we would lose the first directory and all its 5665 * files (file foobar). 5666 * For the case where inode Y is not a directory we simply end up losing it: 5667 * 5668 * echo "123" > /mnt/foo 5669 * sync 5670 * mv /mnt/foo /mnt/bar 5671 * echo "abc" > /mnt/foo 5672 * xfs_io -c fsync /mnt/foo 5673 * <power fail> 5674 * 5675 * We also need this for cases where a snapshot entry is replaced by some other 5676 * entry (file or directory) otherwise we end up with an unreplayable log due to 5677 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as 5678 * if it were a regular entry: 5679 * 5680 * mkdir /mnt/x 5681 * btrfs subvolume snapshot /mnt /mnt/x/snap 5682 * btrfs subvolume delete /mnt/x/snap 5683 * rmdir /mnt/x 5684 * mkdir /mnt/x 5685 * fsync /mnt/x or fsync some new file inside it 5686 * <power fail> 5687 * 5688 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in 5689 * the same transaction. 5690 */ 5691 static int btrfs_check_ref_name_override(struct extent_buffer *eb, 5692 const int slot, 5693 const struct btrfs_key *key, 5694 struct btrfs_inode *inode, 5695 u64 *other_ino, u64 *other_parent) 5696 { 5697 int ret; 5698 BTRFS_PATH_AUTO_FREE(search_path); 5699 char *name = NULL; 5700 u32 name_len = 0; 5701 u32 item_size = btrfs_item_size(eb, slot); 5702 u32 cur_offset = 0; 5703 unsigned long ptr = btrfs_item_ptr_offset(eb, slot); 5704 5705 search_path = btrfs_alloc_path(); 5706 if (!search_path) 5707 return -ENOMEM; 5708 search_path->search_commit_root = 1; 5709 search_path->skip_locking = 1; 5710 5711 while (cur_offset < item_size) { 5712 u64 parent; 5713 u32 this_name_len; 5714 u32 this_len; 5715 unsigned long name_ptr; 5716 struct btrfs_dir_item *di; 5717 struct fscrypt_str name_str; 5718 5719 if (key->type == BTRFS_INODE_REF_KEY) { 5720 struct btrfs_inode_ref *iref; 5721 5722 iref = (struct btrfs_inode_ref *)(ptr + cur_offset); 5723 parent = key->offset; 5724 this_name_len = btrfs_inode_ref_name_len(eb, iref); 5725 name_ptr = (unsigned long)(iref + 1); 5726 this_len = sizeof(*iref) + this_name_len; 5727 } else { 5728 struct btrfs_inode_extref *extref; 5729 5730 extref = (struct btrfs_inode_extref *)(ptr + 5731 cur_offset); 5732 parent = btrfs_inode_extref_parent(eb, extref); 5733 this_name_len = btrfs_inode_extref_name_len(eb, extref); 5734 name_ptr = (unsigned long)&extref->name; 5735 this_len = sizeof(*extref) + this_name_len; 5736 } 5737 5738 if (this_name_len > name_len) { 5739 char *new_name; 5740 5741 new_name = krealloc(name, this_name_len, GFP_NOFS); 5742 if (!new_name) { 5743 ret = -ENOMEM; 5744 goto out; 5745 } 5746 name_len = this_name_len; 5747 name = new_name; 5748 } 5749 5750 read_extent_buffer(eb, name, name_ptr, this_name_len); 5751 5752 name_str.name = name; 5753 name_str.len = this_name_len; 5754 di = btrfs_lookup_dir_item(NULL, inode->root, search_path, 5755 parent, &name_str, 0); 5756 if (di && !IS_ERR(di)) { 5757 struct btrfs_key di_key; 5758 5759 btrfs_dir_item_key_to_cpu(search_path->nodes[0], 5760 di, &di_key); 5761 if (di_key.type == BTRFS_INODE_ITEM_KEY) { 5762 if (di_key.objectid != key->objectid) { 5763 ret = 1; 5764 *other_ino = di_key.objectid; 5765 *other_parent = parent; 5766 } else { 5767 ret = 0; 5768 } 5769 } else { 5770 ret = -EAGAIN; 5771 } 5772 goto out; 5773 } else if (IS_ERR(di)) { 5774 ret = PTR_ERR(di); 5775 goto out; 5776 } 5777 btrfs_release_path(search_path); 5778 5779 cur_offset += this_len; 5780 } 5781 ret = 0; 5782 out: 5783 kfree(name); 5784 return ret; 5785 } 5786 5787 /* 5788 * Check if we need to log an inode. This is used in contexts where while 5789 * logging an inode we need to log another inode (either that it exists or in 5790 * full mode). This is used instead of btrfs_inode_in_log() because the later 5791 * requires the inode to be in the log and have the log transaction committed, 5792 * while here we do not care if the log transaction was already committed - our 5793 * caller will commit the log later - and we want to avoid logging an inode 5794 * multiple times when multiple tasks have joined the same log transaction. 5795 */ 5796 static bool need_log_inode(const struct btrfs_trans_handle *trans, 5797 struct btrfs_inode *inode) 5798 { 5799 /* 5800 * If a directory was not modified, no dentries added or removed, we can 5801 * and should avoid logging it. 5802 */ 5803 if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid) 5804 return false; 5805 5806 /* 5807 * If this inode does not have new/updated/deleted xattrs since the last 5808 * time it was logged and is flagged as logged in the current transaction, 5809 * we can skip logging it. As for new/deleted names, those are updated in 5810 * the log by link/unlink/rename operations. 5811 * In case the inode was logged and then evicted and reloaded, its 5812 * logged_trans will be 0, in which case we have to fully log it since 5813 * logged_trans is a transient field, not persisted. 5814 */ 5815 if (inode_logged(trans, inode, NULL) == 1 && 5816 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags)) 5817 return false; 5818 5819 return true; 5820 } 5821 5822 struct btrfs_dir_list { 5823 u64 ino; 5824 struct list_head list; 5825 }; 5826 5827 /* 5828 * Log the inodes of the new dentries of a directory. 5829 * See process_dir_items_leaf() for details about why it is needed. 5830 * This is a recursive operation - if an existing dentry corresponds to a 5831 * directory, that directory's new entries are logged too (same behaviour as 5832 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes 5833 * the dentries point to we do not acquire their VFS lock, otherwise lockdep 5834 * complains about the following circular lock dependency / possible deadlock: 5835 * 5836 * CPU0 CPU1 5837 * ---- ---- 5838 * lock(&type->i_mutex_dir_key#3/2); 5839 * lock(sb_internal#2); 5840 * lock(&type->i_mutex_dir_key#3/2); 5841 * lock(&sb->s_type->i_mutex_key#14); 5842 * 5843 * Where sb_internal is the lock (a counter that works as a lock) acquired by 5844 * sb_start_intwrite() in btrfs_start_transaction(). 5845 * Not acquiring the VFS lock of the inodes is still safe because: 5846 * 5847 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible 5848 * that while logging the inode new references (names) are added or removed 5849 * from the inode, leaving the logged inode item with a link count that does 5850 * not match the number of logged inode reference items. This is fine because 5851 * at log replay time we compute the real number of links and correct the 5852 * link count in the inode item (see replay_one_buffer() and 5853 * link_to_fixup_dir()); 5854 * 5855 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that 5856 * while logging the inode's items new index items (key type 5857 * BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item 5858 * has a size that doesn't match the sum of the lengths of all the logged 5859 * names - this is ok, not a problem, because at log replay time we set the 5860 * directory's i_size to the correct value (see replay_one_name() and 5861 * overwrite_item()). 5862 */ 5863 static int log_new_dir_dentries(struct btrfs_trans_handle *trans, 5864 struct btrfs_inode *start_inode, 5865 struct btrfs_log_ctx *ctx) 5866 { 5867 struct btrfs_root *root = start_inode->root; 5868 struct btrfs_path *path; 5869 LIST_HEAD(dir_list); 5870 struct btrfs_dir_list *dir_elem; 5871 u64 ino = btrfs_ino(start_inode); 5872 struct btrfs_inode *curr_inode = start_inode; 5873 int ret = 0; 5874 5875 /* 5876 * If we are logging a new name, as part of a link or rename operation, 5877 * don't bother logging new dentries, as we just want to log the names 5878 * of an inode and that any new parents exist. 5879 */ 5880 if (ctx->logging_new_name) 5881 return 0; 5882 5883 path = btrfs_alloc_path(); 5884 if (!path) 5885 return -ENOMEM; 5886 5887 /* Pairs with btrfs_add_delayed_iput below. */ 5888 ihold(&curr_inode->vfs_inode); 5889 5890 while (true) { 5891 struct btrfs_key key; 5892 struct btrfs_key found_key; 5893 u64 next_index; 5894 bool continue_curr_inode = true; 5895 int iter_ret; 5896 5897 key.objectid = ino; 5898 key.type = BTRFS_DIR_INDEX_KEY; 5899 key.offset = btrfs_get_first_dir_index_to_log(curr_inode); 5900 next_index = key.offset; 5901 again: 5902 btrfs_for_each_slot(root->log_root, &key, &found_key, path, iter_ret) { 5903 struct extent_buffer *leaf = path->nodes[0]; 5904 struct btrfs_dir_item *di; 5905 struct btrfs_key di_key; 5906 struct btrfs_inode *di_inode; 5907 int log_mode = LOG_INODE_EXISTS; 5908 int type; 5909 5910 if (found_key.objectid != ino || 5911 found_key.type != BTRFS_DIR_INDEX_KEY) { 5912 continue_curr_inode = false; 5913 break; 5914 } 5915 5916 next_index = found_key.offset + 1; 5917 5918 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item); 5919 type = btrfs_dir_ftype(leaf, di); 5920 if (btrfs_dir_transid(leaf, di) < trans->transid) 5921 continue; 5922 btrfs_dir_item_key_to_cpu(leaf, di, &di_key); 5923 if (di_key.type == BTRFS_ROOT_ITEM_KEY) 5924 continue; 5925 5926 btrfs_release_path(path); 5927 di_inode = btrfs_iget_logging(di_key.objectid, root); 5928 if (IS_ERR(di_inode)) { 5929 ret = PTR_ERR(di_inode); 5930 goto out; 5931 } 5932 5933 if (!need_log_inode(trans, di_inode)) { 5934 btrfs_add_delayed_iput(di_inode); 5935 break; 5936 } 5937 5938 ctx->log_new_dentries = false; 5939 if (type == BTRFS_FT_DIR) 5940 log_mode = LOG_INODE_ALL; 5941 ret = btrfs_log_inode(trans, di_inode, log_mode, ctx); 5942 btrfs_add_delayed_iput(di_inode); 5943 if (ret) 5944 goto out; 5945 if (ctx->log_new_dentries) { 5946 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS); 5947 if (!dir_elem) { 5948 ret = -ENOMEM; 5949 goto out; 5950 } 5951 dir_elem->ino = di_key.objectid; 5952 list_add_tail(&dir_elem->list, &dir_list); 5953 } 5954 break; 5955 } 5956 5957 btrfs_release_path(path); 5958 5959 if (iter_ret < 0) { 5960 ret = iter_ret; 5961 goto out; 5962 } else if (iter_ret > 0) { 5963 continue_curr_inode = false; 5964 } else { 5965 key = found_key; 5966 } 5967 5968 if (continue_curr_inode && key.offset < (u64)-1) { 5969 key.offset++; 5970 goto again; 5971 } 5972 5973 btrfs_set_first_dir_index_to_log(curr_inode, next_index); 5974 5975 if (list_empty(&dir_list)) 5976 break; 5977 5978 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list); 5979 ino = dir_elem->ino; 5980 list_del(&dir_elem->list); 5981 kfree(dir_elem); 5982 5983 btrfs_add_delayed_iput(curr_inode); 5984 5985 curr_inode = btrfs_iget_logging(ino, root); 5986 if (IS_ERR(curr_inode)) { 5987 ret = PTR_ERR(curr_inode); 5988 curr_inode = NULL; 5989 break; 5990 } 5991 } 5992 out: 5993 btrfs_free_path(path); 5994 if (curr_inode) 5995 btrfs_add_delayed_iput(curr_inode); 5996 5997 if (ret) { 5998 struct btrfs_dir_list *next; 5999 6000 list_for_each_entry_safe(dir_elem, next, &dir_list, list) 6001 kfree(dir_elem); 6002 } 6003 6004 return ret; 6005 } 6006 6007 struct btrfs_ino_list { 6008 u64 ino; 6009 u64 parent; 6010 struct list_head list; 6011 }; 6012 6013 static void free_conflicting_inodes(struct btrfs_log_ctx *ctx) 6014 { 6015 struct btrfs_ino_list *curr; 6016 struct btrfs_ino_list *next; 6017 6018 list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) { 6019 list_del(&curr->list); 6020 kfree(curr); 6021 } 6022 } 6023 6024 static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino, 6025 struct btrfs_path *path) 6026 { 6027 struct btrfs_key key; 6028 int ret; 6029 6030 key.objectid = ino; 6031 key.type = BTRFS_INODE_ITEM_KEY; 6032 key.offset = 0; 6033 6034 path->search_commit_root = 1; 6035 path->skip_locking = 1; 6036 6037 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6038 if (WARN_ON_ONCE(ret > 0)) { 6039 /* 6040 * We have previously found the inode through the commit root 6041 * so this should not happen. If it does, just error out and 6042 * fallback to a transaction commit. 6043 */ 6044 ret = -ENOENT; 6045 } else if (ret == 0) { 6046 struct btrfs_inode_item *item; 6047 6048 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6049 struct btrfs_inode_item); 6050 if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item))) 6051 ret = 1; 6052 } 6053 6054 btrfs_release_path(path); 6055 path->search_commit_root = 0; 6056 path->skip_locking = 0; 6057 6058 return ret; 6059 } 6060 6061 static int add_conflicting_inode(struct btrfs_trans_handle *trans, 6062 struct btrfs_root *root, 6063 struct btrfs_path *path, 6064 u64 ino, u64 parent, 6065 struct btrfs_log_ctx *ctx) 6066 { 6067 struct btrfs_ino_list *ino_elem; 6068 struct btrfs_inode *inode; 6069 6070 /* 6071 * It's rare to have a lot of conflicting inodes, in practice it is not 6072 * common to have more than 1 or 2. We don't want to collect too many, 6073 * as we could end up logging too many inodes (even if only in 6074 * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction 6075 * commits. 6076 */ 6077 if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES) 6078 return BTRFS_LOG_FORCE_COMMIT; 6079 6080 inode = btrfs_iget_logging(ino, root); 6081 /* 6082 * If the other inode that had a conflicting dir entry was deleted in 6083 * the current transaction then we either: 6084 * 6085 * 1) Log the parent directory (later after adding it to the list) if 6086 * the inode is a directory. This is because it may be a deleted 6087 * subvolume/snapshot or it may be a regular directory that had 6088 * deleted subvolumes/snapshots (or subdirectories that had them), 6089 * and at the moment we can't deal with dropping subvolumes/snapshots 6090 * during log replay. So we just log the parent, which will result in 6091 * a fallback to a transaction commit if we are dealing with those 6092 * cases (last_unlink_trans will match the current transaction); 6093 * 6094 * 2) Do nothing if it's not a directory. During log replay we simply 6095 * unlink the conflicting dentry from the parent directory and then 6096 * add the dentry for our inode. Like this we can avoid logging the 6097 * parent directory (and maybe fallback to a transaction commit in 6098 * case it has a last_unlink_trans == trans->transid, due to moving 6099 * some inode from it to some other directory). 6100 */ 6101 if (IS_ERR(inode)) { 6102 int ret = PTR_ERR(inode); 6103 6104 if (ret != -ENOENT) 6105 return ret; 6106 6107 ret = conflicting_inode_is_dir(root, ino, path); 6108 /* Not a directory or we got an error. */ 6109 if (ret <= 0) 6110 return ret; 6111 6112 /* Conflicting inode is a directory, so we'll log its parent. */ 6113 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS); 6114 if (!ino_elem) 6115 return -ENOMEM; 6116 ino_elem->ino = ino; 6117 ino_elem->parent = parent; 6118 list_add_tail(&ino_elem->list, &ctx->conflict_inodes); 6119 ctx->num_conflict_inodes++; 6120 6121 return 0; 6122 } 6123 6124 /* 6125 * If the inode was already logged skip it - otherwise we can hit an 6126 * infinite loop. Example: 6127 * 6128 * From the commit root (previous transaction) we have the following 6129 * inodes: 6130 * 6131 * inode 257 a directory 6132 * inode 258 with references "zz" and "zz_link" on inode 257 6133 * inode 259 with reference "a" on inode 257 6134 * 6135 * And in the current (uncommitted) transaction we have: 6136 * 6137 * inode 257 a directory, unchanged 6138 * inode 258 with references "a" and "a2" on inode 257 6139 * inode 259 with reference "zz_link" on inode 257 6140 * inode 261 with reference "zz" on inode 257 6141 * 6142 * When logging inode 261 the following infinite loop could 6143 * happen if we don't skip already logged inodes: 6144 * 6145 * - we detect inode 258 as a conflicting inode, with inode 261 6146 * on reference "zz", and log it; 6147 * 6148 * - we detect inode 259 as a conflicting inode, with inode 258 6149 * on reference "a", and log it; 6150 * 6151 * - we detect inode 258 as a conflicting inode, with inode 259 6152 * on reference "zz_link", and log it - again! After this we 6153 * repeat the above steps forever. 6154 * 6155 * Here we can use need_log_inode() because we only need to log the 6156 * inode in LOG_INODE_EXISTS mode and rename operations update the log, 6157 * so that the log ends up with the new name and without the old name. 6158 */ 6159 if (!need_log_inode(trans, inode)) { 6160 btrfs_add_delayed_iput(inode); 6161 return 0; 6162 } 6163 6164 btrfs_add_delayed_iput(inode); 6165 6166 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS); 6167 if (!ino_elem) 6168 return -ENOMEM; 6169 ino_elem->ino = ino; 6170 ino_elem->parent = parent; 6171 list_add_tail(&ino_elem->list, &ctx->conflict_inodes); 6172 ctx->num_conflict_inodes++; 6173 6174 return 0; 6175 } 6176 6177 static int log_conflicting_inodes(struct btrfs_trans_handle *trans, 6178 struct btrfs_root *root, 6179 struct btrfs_log_ctx *ctx) 6180 { 6181 int ret = 0; 6182 6183 /* 6184 * Conflicting inodes are logged by the first call to btrfs_log_inode(), 6185 * otherwise we could have unbounded recursion of btrfs_log_inode() 6186 * calls. This check guarantees we can have only 1 level of recursion. 6187 */ 6188 if (ctx->logging_conflict_inodes) 6189 return 0; 6190 6191 ctx->logging_conflict_inodes = true; 6192 6193 /* 6194 * New conflicting inodes may be found and added to the list while we 6195 * are logging a conflicting inode, so keep iterating while the list is 6196 * not empty. 6197 */ 6198 while (!list_empty(&ctx->conflict_inodes)) { 6199 struct btrfs_ino_list *curr; 6200 struct btrfs_inode *inode; 6201 u64 ino; 6202 u64 parent; 6203 6204 curr = list_first_entry(&ctx->conflict_inodes, 6205 struct btrfs_ino_list, list); 6206 ino = curr->ino; 6207 parent = curr->parent; 6208 list_del(&curr->list); 6209 kfree(curr); 6210 6211 inode = btrfs_iget_logging(ino, root); 6212 /* 6213 * If the other inode that had a conflicting dir entry was 6214 * deleted in the current transaction, we need to log its parent 6215 * directory. See the comment at add_conflicting_inode(). 6216 */ 6217 if (IS_ERR(inode)) { 6218 ret = PTR_ERR(inode); 6219 if (ret != -ENOENT) 6220 break; 6221 6222 inode = btrfs_iget_logging(parent, root); 6223 if (IS_ERR(inode)) { 6224 ret = PTR_ERR(inode); 6225 break; 6226 } 6227 6228 /* 6229 * Always log the directory, we cannot make this 6230 * conditional on need_log_inode() because the directory 6231 * might have been logged in LOG_INODE_EXISTS mode or 6232 * the dir index of the conflicting inode is not in a 6233 * dir index key range logged for the directory. So we 6234 * must make sure the deletion is recorded. 6235 */ 6236 ret = btrfs_log_inode(trans, inode, LOG_INODE_ALL, ctx); 6237 btrfs_add_delayed_iput(inode); 6238 if (ret) 6239 break; 6240 continue; 6241 } 6242 6243 /* 6244 * Here we can use need_log_inode() because we only need to log 6245 * the inode in LOG_INODE_EXISTS mode and rename operations 6246 * update the log, so that the log ends up with the new name and 6247 * without the old name. 6248 * 6249 * We did this check at add_conflicting_inode(), but here we do 6250 * it again because if some other task logged the inode after 6251 * that, we can avoid doing it again. 6252 */ 6253 if (!need_log_inode(trans, inode)) { 6254 btrfs_add_delayed_iput(inode); 6255 continue; 6256 } 6257 6258 /* 6259 * We are safe logging the other inode without acquiring its 6260 * lock as long as we log with the LOG_INODE_EXISTS mode. We 6261 * are safe against concurrent renames of the other inode as 6262 * well because during a rename we pin the log and update the 6263 * log with the new name before we unpin it. 6264 */ 6265 ret = btrfs_log_inode(trans, inode, LOG_INODE_EXISTS, ctx); 6266 btrfs_add_delayed_iput(inode); 6267 if (ret) 6268 break; 6269 } 6270 6271 ctx->logging_conflict_inodes = false; 6272 if (ret) 6273 free_conflicting_inodes(ctx); 6274 6275 return ret; 6276 } 6277 6278 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans, 6279 struct btrfs_inode *inode, 6280 struct btrfs_key *min_key, 6281 const struct btrfs_key *max_key, 6282 struct btrfs_path *path, 6283 struct btrfs_path *dst_path, 6284 const u64 logged_isize, 6285 const int inode_only, 6286 struct btrfs_log_ctx *ctx, 6287 bool *need_log_inode_item) 6288 { 6289 const u64 i_size = i_size_read(&inode->vfs_inode); 6290 struct btrfs_root *root = inode->root; 6291 int ins_start_slot = 0; 6292 int ins_nr = 0; 6293 int ret; 6294 6295 while (1) { 6296 ret = btrfs_search_forward(root, min_key, path, trans->transid); 6297 if (ret < 0) 6298 return ret; 6299 if (ret > 0) { 6300 ret = 0; 6301 break; 6302 } 6303 again: 6304 /* Note, ins_nr might be > 0 here, cleanup outside the loop */ 6305 if (min_key->objectid != max_key->objectid) 6306 break; 6307 if (min_key->type > max_key->type) 6308 break; 6309 6310 if (min_key->type == BTRFS_INODE_ITEM_KEY) { 6311 *need_log_inode_item = false; 6312 } else if (min_key->type == BTRFS_EXTENT_DATA_KEY && 6313 min_key->offset >= i_size) { 6314 /* 6315 * Extents at and beyond eof are logged with 6316 * btrfs_log_prealloc_extents(). 6317 * Only regular files have BTRFS_EXTENT_DATA_KEY keys, 6318 * and no keys greater than that, so bail out. 6319 */ 6320 break; 6321 } else if ((min_key->type == BTRFS_INODE_REF_KEY || 6322 min_key->type == BTRFS_INODE_EXTREF_KEY) && 6323 (inode->generation == trans->transid || 6324 ctx->logging_conflict_inodes)) { 6325 u64 other_ino = 0; 6326 u64 other_parent = 0; 6327 6328 ret = btrfs_check_ref_name_override(path->nodes[0], 6329 path->slots[0], min_key, inode, 6330 &other_ino, &other_parent); 6331 if (ret < 0) { 6332 return ret; 6333 } else if (ret > 0 && 6334 other_ino != btrfs_ino(ctx->inode)) { 6335 if (ins_nr > 0) { 6336 ins_nr++; 6337 } else { 6338 ins_nr = 1; 6339 ins_start_slot = path->slots[0]; 6340 } 6341 ret = copy_items(trans, inode, dst_path, path, 6342 ins_start_slot, ins_nr, 6343 inode_only, logged_isize, ctx); 6344 if (ret < 0) 6345 return ret; 6346 ins_nr = 0; 6347 6348 btrfs_release_path(path); 6349 ret = add_conflicting_inode(trans, root, path, 6350 other_ino, 6351 other_parent, ctx); 6352 if (ret) 6353 return ret; 6354 goto next_key; 6355 } 6356 } else if (min_key->type == BTRFS_XATTR_ITEM_KEY) { 6357 /* Skip xattrs, logged later with btrfs_log_all_xattrs() */ 6358 if (ins_nr == 0) 6359 goto next_slot; 6360 ret = copy_items(trans, inode, dst_path, path, 6361 ins_start_slot, 6362 ins_nr, inode_only, logged_isize, ctx); 6363 if (ret < 0) 6364 return ret; 6365 ins_nr = 0; 6366 goto next_slot; 6367 } 6368 6369 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) { 6370 ins_nr++; 6371 goto next_slot; 6372 } else if (!ins_nr) { 6373 ins_start_slot = path->slots[0]; 6374 ins_nr = 1; 6375 goto next_slot; 6376 } 6377 6378 ret = copy_items(trans, inode, dst_path, path, ins_start_slot, 6379 ins_nr, inode_only, logged_isize, ctx); 6380 if (ret < 0) 6381 return ret; 6382 ins_nr = 1; 6383 ins_start_slot = path->slots[0]; 6384 next_slot: 6385 path->slots[0]++; 6386 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) { 6387 btrfs_item_key_to_cpu(path->nodes[0], min_key, 6388 path->slots[0]); 6389 goto again; 6390 } 6391 if (ins_nr) { 6392 ret = copy_items(trans, inode, dst_path, path, 6393 ins_start_slot, ins_nr, inode_only, 6394 logged_isize, ctx); 6395 if (ret < 0) 6396 return ret; 6397 ins_nr = 0; 6398 } 6399 btrfs_release_path(path); 6400 next_key: 6401 if (min_key->offset < (u64)-1) { 6402 min_key->offset++; 6403 } else if (min_key->type < max_key->type) { 6404 min_key->type++; 6405 min_key->offset = 0; 6406 } else { 6407 break; 6408 } 6409 6410 /* 6411 * We may process many leaves full of items for our inode, so 6412 * avoid monopolizing a cpu for too long by rescheduling while 6413 * not holding locks on any tree. 6414 */ 6415 cond_resched(); 6416 } 6417 if (ins_nr) { 6418 ret = copy_items(trans, inode, dst_path, path, ins_start_slot, 6419 ins_nr, inode_only, logged_isize, ctx); 6420 if (ret) 6421 return ret; 6422 } 6423 6424 if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) { 6425 /* 6426 * Release the path because otherwise we might attempt to double 6427 * lock the same leaf with btrfs_log_prealloc_extents() below. 6428 */ 6429 btrfs_release_path(path); 6430 ret = btrfs_log_prealloc_extents(trans, inode, dst_path, ctx); 6431 } 6432 6433 return ret; 6434 } 6435 6436 static int insert_delayed_items_batch(struct btrfs_trans_handle *trans, 6437 struct btrfs_root *log, 6438 struct btrfs_path *path, 6439 const struct btrfs_item_batch *batch, 6440 const struct btrfs_delayed_item *first_item) 6441 { 6442 const struct btrfs_delayed_item *curr = first_item; 6443 int ret; 6444 6445 ret = btrfs_insert_empty_items(trans, log, path, batch); 6446 if (ret) 6447 return ret; 6448 6449 for (int i = 0; i < batch->nr; i++) { 6450 char *data_ptr; 6451 6452 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char); 6453 write_extent_buffer(path->nodes[0], &curr->data, 6454 (unsigned long)data_ptr, curr->data_len); 6455 curr = list_next_entry(curr, log_list); 6456 path->slots[0]++; 6457 } 6458 6459 btrfs_release_path(path); 6460 6461 return 0; 6462 } 6463 6464 static int log_delayed_insertion_items(struct btrfs_trans_handle *trans, 6465 struct btrfs_inode *inode, 6466 struct btrfs_path *path, 6467 const struct list_head *delayed_ins_list, 6468 struct btrfs_log_ctx *ctx) 6469 { 6470 /* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */ 6471 const int max_batch_size = 195; 6472 const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info); 6473 const u64 ino = btrfs_ino(inode); 6474 struct btrfs_root *log = inode->root->log_root; 6475 struct btrfs_item_batch batch = { 6476 .nr = 0, 6477 .total_data_size = 0, 6478 }; 6479 const struct btrfs_delayed_item *first = NULL; 6480 const struct btrfs_delayed_item *curr; 6481 char *ins_data; 6482 struct btrfs_key *ins_keys; 6483 u32 *ins_sizes; 6484 u64 curr_batch_size = 0; 6485 int batch_idx = 0; 6486 int ret; 6487 6488 /* We are adding dir index items to the log tree. */ 6489 lockdep_assert_held(&inode->log_mutex); 6490 6491 /* 6492 * We collect delayed items before copying index keys from the subvolume 6493 * to the log tree. However just after we collected them, they may have 6494 * been flushed (all of them or just some of them), and therefore we 6495 * could have copied them from the subvolume tree to the log tree. 6496 * So find the first delayed item that was not yet logged (they are 6497 * sorted by index number). 6498 */ 6499 list_for_each_entry(curr, delayed_ins_list, log_list) { 6500 if (curr->index > inode->last_dir_index_offset) { 6501 first = curr; 6502 break; 6503 } 6504 } 6505 6506 /* Empty list or all delayed items were already logged. */ 6507 if (!first) 6508 return 0; 6509 6510 ins_data = kmalloc_array(max_batch_size, sizeof(u32) + sizeof(struct btrfs_key), GFP_NOFS); 6511 if (!ins_data) 6512 return -ENOMEM; 6513 ins_sizes = (u32 *)ins_data; 6514 batch.data_sizes = ins_sizes; 6515 ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32)); 6516 batch.keys = ins_keys; 6517 6518 curr = first; 6519 while (!list_entry_is_head(curr, delayed_ins_list, log_list)) { 6520 const u32 curr_size = curr->data_len + sizeof(struct btrfs_item); 6521 6522 if (curr_batch_size + curr_size > leaf_data_size || 6523 batch.nr == max_batch_size) { 6524 ret = insert_delayed_items_batch(trans, log, path, 6525 &batch, first); 6526 if (ret) 6527 goto out; 6528 batch_idx = 0; 6529 batch.nr = 0; 6530 batch.total_data_size = 0; 6531 curr_batch_size = 0; 6532 first = curr; 6533 } 6534 6535 ins_sizes[batch_idx] = curr->data_len; 6536 ins_keys[batch_idx].objectid = ino; 6537 ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY; 6538 ins_keys[batch_idx].offset = curr->index; 6539 curr_batch_size += curr_size; 6540 batch.total_data_size += curr->data_len; 6541 batch.nr++; 6542 batch_idx++; 6543 curr = list_next_entry(curr, log_list); 6544 } 6545 6546 ASSERT(batch.nr >= 1); 6547 ret = insert_delayed_items_batch(trans, log, path, &batch, first); 6548 6549 curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item, 6550 log_list); 6551 inode->last_dir_index_offset = curr->index; 6552 out: 6553 kfree(ins_data); 6554 6555 return ret; 6556 } 6557 6558 static int log_delayed_deletions_full(struct btrfs_trans_handle *trans, 6559 struct btrfs_inode *inode, 6560 struct btrfs_path *path, 6561 const struct list_head *delayed_del_list, 6562 struct btrfs_log_ctx *ctx) 6563 { 6564 const u64 ino = btrfs_ino(inode); 6565 const struct btrfs_delayed_item *curr; 6566 6567 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item, 6568 log_list); 6569 6570 while (!list_entry_is_head(curr, delayed_del_list, log_list)) { 6571 u64 first_dir_index = curr->index; 6572 u64 last_dir_index; 6573 const struct btrfs_delayed_item *next; 6574 int ret; 6575 6576 /* 6577 * Find a range of consecutive dir index items to delete. Like 6578 * this we log a single dir range item spanning several contiguous 6579 * dir items instead of logging one range item per dir index item. 6580 */ 6581 next = list_next_entry(curr, log_list); 6582 while (!list_entry_is_head(next, delayed_del_list, log_list)) { 6583 if (next->index != curr->index + 1) 6584 break; 6585 curr = next; 6586 next = list_next_entry(next, log_list); 6587 } 6588 6589 last_dir_index = curr->index; 6590 ASSERT(last_dir_index >= first_dir_index); 6591 6592 ret = insert_dir_log_key(trans, inode->root->log_root, path, 6593 ino, first_dir_index, last_dir_index); 6594 if (ret) 6595 return ret; 6596 curr = list_next_entry(curr, log_list); 6597 } 6598 6599 return 0; 6600 } 6601 6602 static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans, 6603 struct btrfs_inode *inode, 6604 struct btrfs_path *path, 6605 const struct list_head *delayed_del_list, 6606 const struct btrfs_delayed_item *first, 6607 const struct btrfs_delayed_item **last_ret) 6608 { 6609 const struct btrfs_delayed_item *next; 6610 struct extent_buffer *leaf = path->nodes[0]; 6611 const int last_slot = btrfs_header_nritems(leaf) - 1; 6612 int slot = path->slots[0] + 1; 6613 const u64 ino = btrfs_ino(inode); 6614 6615 next = list_next_entry(first, log_list); 6616 6617 while (slot < last_slot && 6618 !list_entry_is_head(next, delayed_del_list, log_list)) { 6619 struct btrfs_key key; 6620 6621 btrfs_item_key_to_cpu(leaf, &key, slot); 6622 if (key.objectid != ino || 6623 key.type != BTRFS_DIR_INDEX_KEY || 6624 key.offset != next->index) 6625 break; 6626 6627 slot++; 6628 *last_ret = next; 6629 next = list_next_entry(next, log_list); 6630 } 6631 6632 return btrfs_del_items(trans, inode->root->log_root, path, 6633 path->slots[0], slot - path->slots[0]); 6634 } 6635 6636 static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans, 6637 struct btrfs_inode *inode, 6638 struct btrfs_path *path, 6639 const struct list_head *delayed_del_list, 6640 struct btrfs_log_ctx *ctx) 6641 { 6642 struct btrfs_root *log = inode->root->log_root; 6643 const struct btrfs_delayed_item *curr; 6644 u64 last_range_start = 0; 6645 u64 last_range_end = 0; 6646 struct btrfs_key key; 6647 6648 key.objectid = btrfs_ino(inode); 6649 key.type = BTRFS_DIR_INDEX_KEY; 6650 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item, 6651 log_list); 6652 6653 while (!list_entry_is_head(curr, delayed_del_list, log_list)) { 6654 const struct btrfs_delayed_item *last = curr; 6655 u64 first_dir_index = curr->index; 6656 u64 last_dir_index; 6657 bool deleted_items = false; 6658 int ret; 6659 6660 key.offset = curr->index; 6661 ret = btrfs_search_slot(trans, log, &key, path, -1, 1); 6662 if (ret < 0) { 6663 return ret; 6664 } else if (ret == 0) { 6665 ret = batch_delete_dir_index_items(trans, inode, path, 6666 delayed_del_list, curr, 6667 &last); 6668 if (ret) 6669 return ret; 6670 deleted_items = true; 6671 } 6672 6673 btrfs_release_path(path); 6674 6675 /* 6676 * If we deleted items from the leaf, it means we have a range 6677 * item logging their range, so no need to add one or update an 6678 * existing one. Otherwise we have to log a dir range item. 6679 */ 6680 if (deleted_items) 6681 goto next_batch; 6682 6683 last_dir_index = last->index; 6684 ASSERT(last_dir_index >= first_dir_index); 6685 /* 6686 * If this range starts right after where the previous one ends, 6687 * then we want to reuse the previous range item and change its 6688 * end offset to the end of this range. This is just to minimize 6689 * leaf space usage, by avoiding adding a new range item. 6690 */ 6691 if (last_range_end != 0 && first_dir_index == last_range_end + 1) 6692 first_dir_index = last_range_start; 6693 6694 ret = insert_dir_log_key(trans, log, path, key.objectid, 6695 first_dir_index, last_dir_index); 6696 if (ret) 6697 return ret; 6698 6699 last_range_start = first_dir_index; 6700 last_range_end = last_dir_index; 6701 next_batch: 6702 curr = list_next_entry(last, log_list); 6703 } 6704 6705 return 0; 6706 } 6707 6708 static int log_delayed_deletion_items(struct btrfs_trans_handle *trans, 6709 struct btrfs_inode *inode, 6710 struct btrfs_path *path, 6711 const struct list_head *delayed_del_list, 6712 struct btrfs_log_ctx *ctx) 6713 { 6714 /* 6715 * We are deleting dir index items from the log tree or adding range 6716 * items to it. 6717 */ 6718 lockdep_assert_held(&inode->log_mutex); 6719 6720 if (list_empty(delayed_del_list)) 6721 return 0; 6722 6723 if (ctx->logged_before) 6724 return log_delayed_deletions_incremental(trans, inode, path, 6725 delayed_del_list, ctx); 6726 6727 return log_delayed_deletions_full(trans, inode, path, delayed_del_list, 6728 ctx); 6729 } 6730 6731 /* 6732 * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed 6733 * items instead of the subvolume tree. 6734 */ 6735 static int log_new_delayed_dentries(struct btrfs_trans_handle *trans, 6736 struct btrfs_inode *inode, 6737 const struct list_head *delayed_ins_list, 6738 struct btrfs_log_ctx *ctx) 6739 { 6740 const bool orig_log_new_dentries = ctx->log_new_dentries; 6741 struct btrfs_delayed_item *item; 6742 int ret = 0; 6743 6744 /* 6745 * No need for the log mutex, plus to avoid potential deadlocks or 6746 * lockdep annotations due to nesting of delayed inode mutexes and log 6747 * mutexes. 6748 */ 6749 lockdep_assert_not_held(&inode->log_mutex); 6750 6751 ASSERT(!ctx->logging_new_delayed_dentries); 6752 ctx->logging_new_delayed_dentries = true; 6753 6754 list_for_each_entry(item, delayed_ins_list, log_list) { 6755 struct btrfs_dir_item *dir_item; 6756 struct btrfs_inode *di_inode; 6757 struct btrfs_key key; 6758 int log_mode = LOG_INODE_EXISTS; 6759 6760 dir_item = (struct btrfs_dir_item *)item->data; 6761 btrfs_disk_key_to_cpu(&key, &dir_item->location); 6762 6763 if (key.type == BTRFS_ROOT_ITEM_KEY) 6764 continue; 6765 6766 di_inode = btrfs_iget_logging(key.objectid, inode->root); 6767 if (IS_ERR(di_inode)) { 6768 ret = PTR_ERR(di_inode); 6769 break; 6770 } 6771 6772 if (!need_log_inode(trans, di_inode)) { 6773 btrfs_add_delayed_iput(di_inode); 6774 continue; 6775 } 6776 6777 if (btrfs_stack_dir_ftype(dir_item) == BTRFS_FT_DIR) 6778 log_mode = LOG_INODE_ALL; 6779 6780 ctx->log_new_dentries = false; 6781 ret = btrfs_log_inode(trans, di_inode, log_mode, ctx); 6782 6783 if (!ret && ctx->log_new_dentries) 6784 ret = log_new_dir_dentries(trans, di_inode, ctx); 6785 6786 btrfs_add_delayed_iput(di_inode); 6787 6788 if (ret) 6789 break; 6790 } 6791 6792 ctx->log_new_dentries = orig_log_new_dentries; 6793 ctx->logging_new_delayed_dentries = false; 6794 6795 return ret; 6796 } 6797 6798 /* log a single inode in the tree log. 6799 * At least one parent directory for this inode must exist in the tree 6800 * or be logged already. 6801 * 6802 * Any items from this inode changed by the current transaction are copied 6803 * to the log tree. An extra reference is taken on any extents in this 6804 * file, allowing us to avoid a whole pile of corner cases around logging 6805 * blocks that have been removed from the tree. 6806 * 6807 * See LOG_INODE_ALL and related defines for a description of what inode_only 6808 * does. 6809 * 6810 * This handles both files and directories. 6811 */ 6812 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 6813 struct btrfs_inode *inode, 6814 int inode_only, 6815 struct btrfs_log_ctx *ctx) 6816 { 6817 struct btrfs_path *path; 6818 struct btrfs_path *dst_path; 6819 struct btrfs_key min_key; 6820 struct btrfs_key max_key; 6821 struct btrfs_root *log = inode->root->log_root; 6822 int ret; 6823 bool fast_search = false; 6824 u64 ino = btrfs_ino(inode); 6825 struct extent_map_tree *em_tree = &inode->extent_tree; 6826 u64 logged_isize = 0; 6827 bool need_log_inode_item = true; 6828 bool xattrs_logged = false; 6829 bool inode_item_dropped = true; 6830 bool full_dir_logging = false; 6831 LIST_HEAD(delayed_ins_list); 6832 LIST_HEAD(delayed_del_list); 6833 6834 path = btrfs_alloc_path(); 6835 if (!path) 6836 return -ENOMEM; 6837 dst_path = btrfs_alloc_path(); 6838 if (!dst_path) { 6839 btrfs_free_path(path); 6840 return -ENOMEM; 6841 } 6842 6843 min_key.objectid = ino; 6844 min_key.type = BTRFS_INODE_ITEM_KEY; 6845 min_key.offset = 0; 6846 6847 max_key.objectid = ino; 6848 6849 6850 /* today the code can only do partial logging of directories */ 6851 if (S_ISDIR(inode->vfs_inode.i_mode) || 6852 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 6853 &inode->runtime_flags) && 6854 inode_only >= LOG_INODE_EXISTS)) 6855 max_key.type = BTRFS_XATTR_ITEM_KEY; 6856 else 6857 max_key.type = (u8)-1; 6858 max_key.offset = (u64)-1; 6859 6860 if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL) 6861 full_dir_logging = true; 6862 6863 /* 6864 * If we are logging a directory while we are logging dentries of the 6865 * delayed items of some other inode, then we need to flush the delayed 6866 * items of this directory and not log the delayed items directly. This 6867 * is to prevent more than one level of recursion into btrfs_log_inode() 6868 * by having something like this: 6869 * 6870 * $ mkdir -p a/b/c/d/e/f/g/h/... 6871 * $ xfs_io -c "fsync" a 6872 * 6873 * Where all directories in the path did not exist before and are 6874 * created in the current transaction. 6875 * So in such a case we directly log the delayed items of the main 6876 * directory ("a") without flushing them first, while for each of its 6877 * subdirectories we flush their delayed items before logging them. 6878 * This prevents a potential unbounded recursion like this: 6879 * 6880 * btrfs_log_inode() 6881 * log_new_delayed_dentries() 6882 * btrfs_log_inode() 6883 * log_new_delayed_dentries() 6884 * btrfs_log_inode() 6885 * log_new_delayed_dentries() 6886 * (...) 6887 * 6888 * We have thresholds for the maximum number of delayed items to have in 6889 * memory, and once they are hit, the items are flushed asynchronously. 6890 * However the limit is quite high, so lets prevent deep levels of 6891 * recursion to happen by limiting the maximum depth to be 1. 6892 */ 6893 if (full_dir_logging && ctx->logging_new_delayed_dentries) { 6894 ret = btrfs_commit_inode_delayed_items(trans, inode); 6895 if (ret) 6896 goto out; 6897 } 6898 6899 mutex_lock(&inode->log_mutex); 6900 6901 /* 6902 * For symlinks, we must always log their content, which is stored in an 6903 * inline extent, otherwise we could end up with an empty symlink after 6904 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if 6905 * one attempts to create an empty symlink). 6906 * We don't need to worry about flushing delalloc, because when we create 6907 * the inline extent when the symlink is created (we never have delalloc 6908 * for symlinks). 6909 */ 6910 if (S_ISLNK(inode->vfs_inode.i_mode)) 6911 inode_only = LOG_INODE_ALL; 6912 6913 /* 6914 * Before logging the inode item, cache the value returned by 6915 * inode_logged(), because after that we have the need to figure out if 6916 * the inode was previously logged in this transaction. 6917 */ 6918 ret = inode_logged(trans, inode, path); 6919 if (ret < 0) 6920 goto out_unlock; 6921 ctx->logged_before = (ret == 1); 6922 ret = 0; 6923 6924 /* 6925 * This is for cases where logging a directory could result in losing a 6926 * a file after replaying the log. For example, if we move a file from a 6927 * directory A to a directory B, then fsync directory A, we have no way 6928 * to known the file was moved from A to B, so logging just A would 6929 * result in losing the file after a log replay. 6930 */ 6931 if (full_dir_logging && inode->last_unlink_trans >= trans->transid) { 6932 ret = BTRFS_LOG_FORCE_COMMIT; 6933 goto out_unlock; 6934 } 6935 6936 /* 6937 * a brute force approach to making sure we get the most uptodate 6938 * copies of everything. 6939 */ 6940 if (S_ISDIR(inode->vfs_inode.i_mode)) { 6941 clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags); 6942 if (ctx->logged_before) 6943 ret = drop_inode_items(trans, log, path, inode, 6944 BTRFS_XATTR_ITEM_KEY); 6945 } else { 6946 if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) { 6947 /* 6948 * Make sure the new inode item we write to the log has 6949 * the same isize as the current one (if it exists). 6950 * This is necessary to prevent data loss after log 6951 * replay, and also to prevent doing a wrong expanding 6952 * truncate - for e.g. create file, write 4K into offset 6953 * 0, fsync, write 4K into offset 4096, add hard link, 6954 * fsync some other file (to sync log), power fail - if 6955 * we use the inode's current i_size, after log replay 6956 * we get a 8Kb file, with the last 4Kb extent as a hole 6957 * (zeroes), as if an expanding truncate happened, 6958 * instead of getting a file of 4Kb only. 6959 */ 6960 ret = logged_inode_size(log, inode, path, &logged_isize); 6961 if (ret) 6962 goto out_unlock; 6963 } 6964 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 6965 &inode->runtime_flags)) { 6966 if (inode_only == LOG_INODE_EXISTS) { 6967 max_key.type = BTRFS_XATTR_ITEM_KEY; 6968 if (ctx->logged_before) 6969 ret = drop_inode_items(trans, log, path, 6970 inode, max_key.type); 6971 } else { 6972 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 6973 &inode->runtime_flags); 6974 clear_bit(BTRFS_INODE_COPY_EVERYTHING, 6975 &inode->runtime_flags); 6976 if (ctx->logged_before) 6977 ret = truncate_inode_items(trans, log, 6978 inode, 0, 0); 6979 } 6980 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING, 6981 &inode->runtime_flags) || 6982 inode_only == LOG_INODE_EXISTS) { 6983 if (inode_only == LOG_INODE_ALL) 6984 fast_search = true; 6985 max_key.type = BTRFS_XATTR_ITEM_KEY; 6986 if (ctx->logged_before) 6987 ret = drop_inode_items(trans, log, path, inode, 6988 max_key.type); 6989 } else { 6990 if (inode_only == LOG_INODE_ALL) 6991 fast_search = true; 6992 inode_item_dropped = false; 6993 goto log_extents; 6994 } 6995 6996 } 6997 if (ret) 6998 goto out_unlock; 6999 7000 /* 7001 * If we are logging a directory in full mode, collect the delayed items 7002 * before iterating the subvolume tree, so that we don't miss any new 7003 * dir index items in case they get flushed while or right after we are 7004 * iterating the subvolume tree. 7005 */ 7006 if (full_dir_logging && !ctx->logging_new_delayed_dentries) 7007 btrfs_log_get_delayed_items(inode, &delayed_ins_list, 7008 &delayed_del_list); 7009 7010 /* 7011 * If we are fsyncing a file with 0 hard links, then commit the delayed 7012 * inode because the last inode ref (or extref) item may still be in the 7013 * subvolume tree and if we log it the file will still exist after a log 7014 * replay. So commit the delayed inode to delete that last ref and we 7015 * skip logging it. 7016 */ 7017 if (inode->vfs_inode.i_nlink == 0) { 7018 ret = btrfs_commit_inode_delayed_inode(inode); 7019 if (ret) 7020 goto out_unlock; 7021 } 7022 7023 ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key, 7024 path, dst_path, logged_isize, 7025 inode_only, ctx, 7026 &need_log_inode_item); 7027 if (ret) 7028 goto out_unlock; 7029 7030 btrfs_release_path(path); 7031 btrfs_release_path(dst_path); 7032 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx); 7033 if (ret) 7034 goto out_unlock; 7035 xattrs_logged = true; 7036 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) { 7037 btrfs_release_path(path); 7038 btrfs_release_path(dst_path); 7039 ret = btrfs_log_holes(trans, inode, path); 7040 if (ret) 7041 goto out_unlock; 7042 } 7043 log_extents: 7044 btrfs_release_path(path); 7045 btrfs_release_path(dst_path); 7046 if (need_log_inode_item) { 7047 ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped); 7048 if (ret) 7049 goto out_unlock; 7050 /* 7051 * If we are doing a fast fsync and the inode was logged before 7052 * in this transaction, we don't need to log the xattrs because 7053 * they were logged before. If xattrs were added, changed or 7054 * deleted since the last time we logged the inode, then we have 7055 * already logged them because the inode had the runtime flag 7056 * BTRFS_INODE_COPY_EVERYTHING set. 7057 */ 7058 if (!xattrs_logged && inode->logged_trans < trans->transid) { 7059 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx); 7060 if (ret) 7061 goto out_unlock; 7062 btrfs_release_path(path); 7063 } 7064 } 7065 if (fast_search) { 7066 ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx); 7067 if (ret) 7068 goto out_unlock; 7069 } else if (inode_only == LOG_INODE_ALL) { 7070 struct extent_map *em, *n; 7071 7072 write_lock(&em_tree->lock); 7073 list_for_each_entry_safe(em, n, &em_tree->modified_extents, list) 7074 list_del_init(&em->list); 7075 write_unlock(&em_tree->lock); 7076 } 7077 7078 if (full_dir_logging) { 7079 ret = log_directory_changes(trans, inode, path, dst_path, ctx); 7080 if (ret) 7081 goto out_unlock; 7082 ret = log_delayed_insertion_items(trans, inode, path, 7083 &delayed_ins_list, ctx); 7084 if (ret) 7085 goto out_unlock; 7086 ret = log_delayed_deletion_items(trans, inode, path, 7087 &delayed_del_list, ctx); 7088 if (ret) 7089 goto out_unlock; 7090 } 7091 7092 spin_lock(&inode->lock); 7093 inode->logged_trans = trans->transid; 7094 /* 7095 * Don't update last_log_commit if we logged that an inode exists. 7096 * We do this for three reasons: 7097 * 7098 * 1) We might have had buffered writes to this inode that were 7099 * flushed and had their ordered extents completed in this 7100 * transaction, but we did not previously log the inode with 7101 * LOG_INODE_ALL. Later the inode was evicted and after that 7102 * it was loaded again and this LOG_INODE_EXISTS log operation 7103 * happened. We must make sure that if an explicit fsync against 7104 * the inode is performed later, it logs the new extents, an 7105 * updated inode item, etc, and syncs the log. The same logic 7106 * applies to direct IO writes instead of buffered writes. 7107 * 7108 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item 7109 * is logged with an i_size of 0 or whatever value was logged 7110 * before. If later the i_size of the inode is increased by a 7111 * truncate operation, the log is synced through an fsync of 7112 * some other inode and then finally an explicit fsync against 7113 * this inode is made, we must make sure this fsync logs the 7114 * inode with the new i_size, the hole between old i_size and 7115 * the new i_size, and syncs the log. 7116 * 7117 * 3) If we are logging that an ancestor inode exists as part of 7118 * logging a new name from a link or rename operation, don't update 7119 * its last_log_commit - otherwise if an explicit fsync is made 7120 * against an ancestor, the fsync considers the inode in the log 7121 * and doesn't sync the log, resulting in the ancestor missing after 7122 * a power failure unless the log was synced as part of an fsync 7123 * against any other unrelated inode. 7124 */ 7125 if (inode_only != LOG_INODE_EXISTS) 7126 inode->last_log_commit = inode->last_sub_trans; 7127 spin_unlock(&inode->lock); 7128 7129 /* 7130 * Reset the last_reflink_trans so that the next fsync does not need to 7131 * go through the slower path when logging extents and their checksums. 7132 */ 7133 if (inode_only == LOG_INODE_ALL) 7134 inode->last_reflink_trans = 0; 7135 7136 out_unlock: 7137 mutex_unlock(&inode->log_mutex); 7138 out: 7139 btrfs_free_path(path); 7140 btrfs_free_path(dst_path); 7141 7142 if (ret) 7143 free_conflicting_inodes(ctx); 7144 else 7145 ret = log_conflicting_inodes(trans, inode->root, ctx); 7146 7147 if (full_dir_logging && !ctx->logging_new_delayed_dentries) { 7148 if (!ret) 7149 ret = log_new_delayed_dentries(trans, inode, 7150 &delayed_ins_list, ctx); 7151 7152 btrfs_log_put_delayed_items(inode, &delayed_ins_list, 7153 &delayed_del_list); 7154 } 7155 7156 return ret; 7157 } 7158 7159 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans, 7160 struct btrfs_inode *inode, 7161 struct btrfs_log_ctx *ctx) 7162 { 7163 int ret; 7164 BTRFS_PATH_AUTO_FREE(path); 7165 struct btrfs_key key; 7166 struct btrfs_root *root = inode->root; 7167 const u64 ino = btrfs_ino(inode); 7168 7169 path = btrfs_alloc_path(); 7170 if (!path) 7171 return -ENOMEM; 7172 path->skip_locking = 1; 7173 path->search_commit_root = 1; 7174 7175 key.objectid = ino; 7176 key.type = BTRFS_INODE_REF_KEY; 7177 key.offset = 0; 7178 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7179 if (ret < 0) 7180 return ret; 7181 7182 while (true) { 7183 struct extent_buffer *leaf = path->nodes[0]; 7184 int slot = path->slots[0]; 7185 u32 cur_offset = 0; 7186 u32 item_size; 7187 unsigned long ptr; 7188 7189 if (slot >= btrfs_header_nritems(leaf)) { 7190 ret = btrfs_next_leaf(root, path); 7191 if (ret < 0) 7192 return ret; 7193 if (ret > 0) 7194 break; 7195 continue; 7196 } 7197 7198 btrfs_item_key_to_cpu(leaf, &key, slot); 7199 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */ 7200 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY) 7201 break; 7202 7203 item_size = btrfs_item_size(leaf, slot); 7204 ptr = btrfs_item_ptr_offset(leaf, slot); 7205 while (cur_offset < item_size) { 7206 struct btrfs_key inode_key; 7207 struct btrfs_inode *dir_inode; 7208 7209 inode_key.type = BTRFS_INODE_ITEM_KEY; 7210 inode_key.offset = 0; 7211 7212 if (key.type == BTRFS_INODE_EXTREF_KEY) { 7213 struct btrfs_inode_extref *extref; 7214 7215 extref = (struct btrfs_inode_extref *) 7216 (ptr + cur_offset); 7217 inode_key.objectid = btrfs_inode_extref_parent( 7218 leaf, extref); 7219 cur_offset += sizeof(*extref); 7220 cur_offset += btrfs_inode_extref_name_len(leaf, 7221 extref); 7222 } else { 7223 inode_key.objectid = key.offset; 7224 cur_offset = item_size; 7225 } 7226 7227 dir_inode = btrfs_iget_logging(inode_key.objectid, root); 7228 /* 7229 * If the parent inode was deleted, return an error to 7230 * fallback to a transaction commit. This is to prevent 7231 * getting an inode that was moved from one parent A to 7232 * a parent B, got its former parent A deleted and then 7233 * it got fsync'ed, from existing at both parents after 7234 * a log replay (and the old parent still existing). 7235 * Example: 7236 * 7237 * mkdir /mnt/A 7238 * mkdir /mnt/B 7239 * touch /mnt/B/bar 7240 * sync 7241 * mv /mnt/B/bar /mnt/A/bar 7242 * mv -T /mnt/A /mnt/B 7243 * fsync /mnt/B/bar 7244 * <power fail> 7245 * 7246 * If we ignore the old parent B which got deleted, 7247 * after a log replay we would have file bar linked 7248 * at both parents and the old parent B would still 7249 * exist. 7250 */ 7251 if (IS_ERR(dir_inode)) 7252 return PTR_ERR(dir_inode); 7253 7254 if (!need_log_inode(trans, dir_inode)) { 7255 btrfs_add_delayed_iput(dir_inode); 7256 continue; 7257 } 7258 7259 ctx->log_new_dentries = false; 7260 ret = btrfs_log_inode(trans, dir_inode, LOG_INODE_ALL, ctx); 7261 if (!ret && ctx->log_new_dentries) 7262 ret = log_new_dir_dentries(trans, dir_inode, ctx); 7263 btrfs_add_delayed_iput(dir_inode); 7264 if (ret) 7265 return ret; 7266 } 7267 path->slots[0]++; 7268 } 7269 return 0; 7270 } 7271 7272 static int log_new_ancestors(struct btrfs_trans_handle *trans, 7273 struct btrfs_root *root, 7274 struct btrfs_path *path, 7275 struct btrfs_log_ctx *ctx) 7276 { 7277 struct btrfs_key found_key; 7278 7279 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 7280 7281 while (true) { 7282 struct extent_buffer *leaf; 7283 int slot; 7284 struct btrfs_key search_key; 7285 struct btrfs_inode *inode; 7286 u64 ino; 7287 int ret = 0; 7288 7289 btrfs_release_path(path); 7290 7291 ino = found_key.offset; 7292 7293 search_key.objectid = found_key.offset; 7294 search_key.type = BTRFS_INODE_ITEM_KEY; 7295 search_key.offset = 0; 7296 inode = btrfs_iget_logging(ino, root); 7297 if (IS_ERR(inode)) 7298 return PTR_ERR(inode); 7299 7300 if (inode->generation >= trans->transid && 7301 need_log_inode(trans, inode)) 7302 ret = btrfs_log_inode(trans, inode, LOG_INODE_EXISTS, ctx); 7303 btrfs_add_delayed_iput(inode); 7304 if (ret) 7305 return ret; 7306 7307 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID) 7308 break; 7309 7310 search_key.type = BTRFS_INODE_REF_KEY; 7311 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 7312 if (ret < 0) 7313 return ret; 7314 7315 leaf = path->nodes[0]; 7316 slot = path->slots[0]; 7317 if (slot >= btrfs_header_nritems(leaf)) { 7318 ret = btrfs_next_leaf(root, path); 7319 if (ret < 0) 7320 return ret; 7321 else if (ret > 0) 7322 return -ENOENT; 7323 leaf = path->nodes[0]; 7324 slot = path->slots[0]; 7325 } 7326 7327 btrfs_item_key_to_cpu(leaf, &found_key, slot); 7328 if (found_key.objectid != search_key.objectid || 7329 found_key.type != BTRFS_INODE_REF_KEY) 7330 return -ENOENT; 7331 } 7332 return 0; 7333 } 7334 7335 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans, 7336 struct btrfs_inode *inode, 7337 struct dentry *parent, 7338 struct btrfs_log_ctx *ctx) 7339 { 7340 struct btrfs_root *root = inode->root; 7341 struct dentry *old_parent = NULL; 7342 struct super_block *sb = inode->vfs_inode.i_sb; 7343 int ret = 0; 7344 7345 while (true) { 7346 if (!parent || d_really_is_negative(parent) || 7347 sb != parent->d_sb) 7348 break; 7349 7350 inode = BTRFS_I(d_inode(parent)); 7351 if (root != inode->root) 7352 break; 7353 7354 if (inode->generation >= trans->transid && 7355 need_log_inode(trans, inode)) { 7356 ret = btrfs_log_inode(trans, inode, 7357 LOG_INODE_EXISTS, ctx); 7358 if (ret) 7359 break; 7360 } 7361 if (IS_ROOT(parent)) 7362 break; 7363 7364 parent = dget_parent(parent); 7365 dput(old_parent); 7366 old_parent = parent; 7367 } 7368 dput(old_parent); 7369 7370 return ret; 7371 } 7372 7373 static int log_all_new_ancestors(struct btrfs_trans_handle *trans, 7374 struct btrfs_inode *inode, 7375 struct dentry *parent, 7376 struct btrfs_log_ctx *ctx) 7377 { 7378 struct btrfs_root *root = inode->root; 7379 const u64 ino = btrfs_ino(inode); 7380 BTRFS_PATH_AUTO_FREE(path); 7381 struct btrfs_key search_key; 7382 int ret; 7383 7384 /* 7385 * For a single hard link case, go through a fast path that does not 7386 * need to iterate the fs/subvolume tree. 7387 */ 7388 if (inode->vfs_inode.i_nlink < 2) 7389 return log_new_ancestors_fast(trans, inode, parent, ctx); 7390 7391 path = btrfs_alloc_path(); 7392 if (!path) 7393 return -ENOMEM; 7394 7395 search_key.objectid = ino; 7396 search_key.type = BTRFS_INODE_REF_KEY; 7397 search_key.offset = 0; 7398 again: 7399 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 7400 if (ret < 0) 7401 return ret; 7402 if (ret == 0) 7403 path->slots[0]++; 7404 7405 while (true) { 7406 struct extent_buffer *leaf = path->nodes[0]; 7407 int slot = path->slots[0]; 7408 struct btrfs_key found_key; 7409 7410 if (slot >= btrfs_header_nritems(leaf)) { 7411 ret = btrfs_next_leaf(root, path); 7412 if (ret < 0) 7413 return ret; 7414 if (ret > 0) 7415 break; 7416 continue; 7417 } 7418 7419 btrfs_item_key_to_cpu(leaf, &found_key, slot); 7420 if (found_key.objectid != ino || 7421 found_key.type > BTRFS_INODE_EXTREF_KEY) 7422 break; 7423 7424 /* 7425 * Don't deal with extended references because they are rare 7426 * cases and too complex to deal with (we would need to keep 7427 * track of which subitem we are processing for each item in 7428 * this loop, etc). So just return some error to fallback to 7429 * a transaction commit. 7430 */ 7431 if (found_key.type == BTRFS_INODE_EXTREF_KEY) 7432 return -EMLINK; 7433 7434 /* 7435 * Logging ancestors needs to do more searches on the fs/subvol 7436 * tree, so it releases the path as needed to avoid deadlocks. 7437 * Keep track of the last inode ref key and resume from that key 7438 * after logging all new ancestors for the current hard link. 7439 */ 7440 memcpy(&search_key, &found_key, sizeof(search_key)); 7441 7442 ret = log_new_ancestors(trans, root, path, ctx); 7443 if (ret) 7444 return ret; 7445 btrfs_release_path(path); 7446 goto again; 7447 } 7448 return 0; 7449 } 7450 7451 /* 7452 * helper function around btrfs_log_inode to make sure newly created 7453 * parent directories also end up in the log. A minimal inode and backref 7454 * only logging is done of any parent directories that are older than 7455 * the last committed transaction 7456 */ 7457 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans, 7458 struct btrfs_inode *inode, 7459 struct dentry *parent, 7460 int inode_only, 7461 struct btrfs_log_ctx *ctx) 7462 { 7463 struct btrfs_root *root = inode->root; 7464 struct btrfs_fs_info *fs_info = root->fs_info; 7465 int ret = 0; 7466 bool log_dentries; 7467 7468 if (btrfs_test_opt(fs_info, NOTREELOG)) 7469 return BTRFS_LOG_FORCE_COMMIT; 7470 7471 if (btrfs_root_refs(&root->root_item) == 0) 7472 return BTRFS_LOG_FORCE_COMMIT; 7473 7474 /* 7475 * If we're logging an inode from a subvolume created in the current 7476 * transaction we must force a commit since the root is not persisted. 7477 */ 7478 if (btrfs_root_generation(&root->root_item) == trans->transid) 7479 return BTRFS_LOG_FORCE_COMMIT; 7480 7481 /* Skip already logged inodes and without new extents. */ 7482 if (btrfs_inode_in_log(inode, trans->transid) && 7483 list_empty(&ctx->ordered_extents)) 7484 return BTRFS_NO_LOG_SYNC; 7485 7486 ret = start_log_trans(trans, root, ctx); 7487 if (ret) 7488 return ret; 7489 7490 ret = btrfs_log_inode(trans, inode, inode_only, ctx); 7491 if (ret) 7492 goto end_trans; 7493 7494 /* 7495 * for regular files, if its inode is already on disk, we don't 7496 * have to worry about the parents at all. This is because 7497 * we can use the last_unlink_trans field to record renames 7498 * and other fun in this file. 7499 */ 7500 if (S_ISREG(inode->vfs_inode.i_mode) && 7501 inode->generation < trans->transid && 7502 inode->last_unlink_trans < trans->transid) { 7503 ret = 0; 7504 goto end_trans; 7505 } 7506 7507 /* 7508 * Track if we need to log dentries because ctx->log_new_dentries can 7509 * be modified in the call chains below. 7510 */ 7511 log_dentries = ctx->log_new_dentries; 7512 7513 /* 7514 * On unlink we must make sure all our current and old parent directory 7515 * inodes are fully logged. This is to prevent leaving dangling 7516 * directory index entries in directories that were our parents but are 7517 * not anymore. Not doing this results in old parent directory being 7518 * impossible to delete after log replay (rmdir will always fail with 7519 * error -ENOTEMPTY). 7520 * 7521 * Example 1: 7522 * 7523 * mkdir testdir 7524 * touch testdir/foo 7525 * ln testdir/foo testdir/bar 7526 * sync 7527 * unlink testdir/bar 7528 * xfs_io -c fsync testdir/foo 7529 * <power failure> 7530 * mount fs, triggers log replay 7531 * 7532 * If we don't log the parent directory (testdir), after log replay the 7533 * directory still has an entry pointing to the file inode using the bar 7534 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and 7535 * the file inode has a link count of 1. 7536 * 7537 * Example 2: 7538 * 7539 * mkdir testdir 7540 * touch foo 7541 * ln foo testdir/foo2 7542 * ln foo testdir/foo3 7543 * sync 7544 * unlink testdir/foo3 7545 * xfs_io -c fsync foo 7546 * <power failure> 7547 * mount fs, triggers log replay 7548 * 7549 * Similar as the first example, after log replay the parent directory 7550 * testdir still has an entry pointing to the inode file with name foo3 7551 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item 7552 * and has a link count of 2. 7553 */ 7554 if (inode->last_unlink_trans >= trans->transid) { 7555 ret = btrfs_log_all_parents(trans, inode, ctx); 7556 if (ret) 7557 goto end_trans; 7558 } 7559 7560 ret = log_all_new_ancestors(trans, inode, parent, ctx); 7561 if (ret) 7562 goto end_trans; 7563 7564 if (log_dentries) 7565 ret = log_new_dir_dentries(trans, inode, ctx); 7566 end_trans: 7567 if (ret < 0) { 7568 btrfs_set_log_full_commit(trans); 7569 ret = BTRFS_LOG_FORCE_COMMIT; 7570 } 7571 7572 if (ret) 7573 btrfs_remove_log_ctx(root, ctx); 7574 btrfs_end_log_trans(root); 7575 7576 return ret; 7577 } 7578 7579 /* 7580 * it is not safe to log dentry if the chunk root has added new 7581 * chunks. This returns 0 if the dentry was logged, and 1 otherwise. 7582 * If this returns 1, you must commit the transaction to safely get your 7583 * data on disk. 7584 */ 7585 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans, 7586 struct dentry *dentry, 7587 struct btrfs_log_ctx *ctx) 7588 { 7589 struct dentry *parent = dget_parent(dentry); 7590 int ret; 7591 7592 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent, 7593 LOG_INODE_ALL, ctx); 7594 dput(parent); 7595 7596 return ret; 7597 } 7598 7599 /* 7600 * should be called during mount to recover any replay any log trees 7601 * from the FS 7602 */ 7603 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree) 7604 { 7605 int ret; 7606 struct btrfs_path *path; 7607 struct btrfs_trans_handle *trans; 7608 struct btrfs_key key; 7609 struct btrfs_fs_info *fs_info = log_root_tree->fs_info; 7610 struct walk_control wc = { 7611 .process_func = process_one_buffer, 7612 .stage = LOG_WALK_PIN_ONLY, 7613 }; 7614 7615 path = btrfs_alloc_path(); 7616 if (!path) 7617 return -ENOMEM; 7618 7619 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 7620 7621 trans = btrfs_start_transaction(fs_info->tree_root, 0); 7622 if (IS_ERR(trans)) { 7623 ret = PTR_ERR(trans); 7624 goto error; 7625 } 7626 7627 wc.trans = trans; 7628 wc.pin = true; 7629 wc.log = log_root_tree; 7630 7631 ret = walk_log_tree(&wc); 7632 wc.log = NULL; 7633 if (unlikely(ret)) { 7634 btrfs_abort_transaction(trans, ret); 7635 goto error; 7636 } 7637 7638 again: 7639 key.objectid = BTRFS_TREE_LOG_OBJECTID; 7640 key.type = BTRFS_ROOT_ITEM_KEY; 7641 key.offset = (u64)-1; 7642 7643 while (1) { 7644 struct btrfs_key found_key; 7645 7646 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0); 7647 7648 if (unlikely(ret < 0)) { 7649 btrfs_abort_transaction(trans, ret); 7650 goto error; 7651 } 7652 if (ret > 0) { 7653 if (path->slots[0] == 0) 7654 break; 7655 path->slots[0]--; 7656 } 7657 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 7658 path->slots[0]); 7659 btrfs_release_path(path); 7660 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID) 7661 break; 7662 7663 wc.log = btrfs_read_tree_root(log_root_tree, &found_key); 7664 if (IS_ERR(wc.log)) { 7665 ret = PTR_ERR(wc.log); 7666 wc.log = NULL; 7667 btrfs_abort_transaction(trans, ret); 7668 goto error; 7669 } 7670 7671 wc.root = btrfs_get_fs_root(fs_info, found_key.offset, true); 7672 if (IS_ERR(wc.root)) { 7673 ret = PTR_ERR(wc.root); 7674 wc.root = NULL; 7675 if (unlikely(ret != -ENOENT)) { 7676 btrfs_abort_transaction(trans, ret); 7677 goto error; 7678 } 7679 7680 /* 7681 * We didn't find the subvol, likely because it was 7682 * deleted. This is ok, simply skip this log and go to 7683 * the next one. 7684 * 7685 * We need to exclude the root because we can't have 7686 * other log replays overwriting this log as we'll read 7687 * it back in a few more times. This will keep our 7688 * block from being modified, and we'll just bail for 7689 * each subsequent pass. 7690 */ 7691 ret = btrfs_pin_extent_for_log_replay(trans, wc.log->node); 7692 if (unlikely(ret)) { 7693 btrfs_abort_transaction(trans, ret); 7694 goto error; 7695 } 7696 goto next; 7697 } 7698 7699 wc.root->log_root = wc.log; 7700 ret = btrfs_record_root_in_trans(trans, wc.root); 7701 if (unlikely(ret)) { 7702 btrfs_abort_transaction(trans, ret); 7703 goto next; 7704 } 7705 7706 ret = walk_log_tree(&wc); 7707 if (unlikely(ret)) { 7708 btrfs_abort_transaction(trans, ret); 7709 goto next; 7710 } 7711 7712 if (wc.stage == LOG_WALK_REPLAY_ALL) { 7713 struct btrfs_root *root = wc.root; 7714 7715 wc.subvol_path = path; 7716 ret = fixup_inode_link_counts(&wc); 7717 wc.subvol_path = NULL; 7718 if (unlikely(ret)) { 7719 btrfs_abort_transaction(trans, ret); 7720 goto next; 7721 } 7722 /* 7723 * We have just replayed everything, and the highest 7724 * objectid of fs roots probably has changed in case 7725 * some inode_item's got replayed. 7726 * 7727 * root->objectid_mutex is not acquired as log replay 7728 * could only happen during mount. 7729 */ 7730 ret = btrfs_init_root_free_objectid(root); 7731 if (unlikely(ret)) { 7732 btrfs_abort_transaction(trans, ret); 7733 goto next; 7734 } 7735 } 7736 next: 7737 if (wc.root) { 7738 wc.root->log_root = NULL; 7739 btrfs_put_root(wc.root); 7740 } 7741 btrfs_put_root(wc.log); 7742 wc.log = NULL; 7743 7744 if (ret) 7745 goto error; 7746 if (found_key.offset == 0) 7747 break; 7748 key.offset = found_key.offset - 1; 7749 } 7750 btrfs_release_path(path); 7751 7752 /* step one is to pin it all, step two is to replay just inodes */ 7753 if (wc.pin) { 7754 wc.pin = false; 7755 wc.process_func = replay_one_buffer; 7756 wc.stage = LOG_WALK_REPLAY_INODES; 7757 goto again; 7758 } 7759 /* step three is to replay everything */ 7760 if (wc.stage < LOG_WALK_REPLAY_ALL) { 7761 wc.stage++; 7762 goto again; 7763 } 7764 7765 btrfs_free_path(path); 7766 7767 /* step 4: commit the transaction, which also unpins the blocks */ 7768 ret = btrfs_commit_transaction(trans); 7769 if (ret) 7770 return ret; 7771 7772 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 7773 7774 return 0; 7775 error: 7776 if (wc.trans) 7777 btrfs_end_transaction(wc.trans); 7778 btrfs_put_root(wc.log); 7779 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 7780 btrfs_free_path(path); 7781 return ret; 7782 } 7783 7784 /* 7785 * there are some corner cases where we want to force a full 7786 * commit instead of allowing a directory to be logged. 7787 * 7788 * They revolve around files there were unlinked from the directory, and 7789 * this function updates the parent directory so that a full commit is 7790 * properly done if it is fsync'd later after the unlinks are done. 7791 * 7792 * Must be called before the unlink operations (updates to the subvolume tree, 7793 * inodes, etc) are done. 7794 */ 7795 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans, 7796 struct btrfs_inode *dir, struct btrfs_inode *inode, 7797 bool for_rename) 7798 { 7799 /* 7800 * when we're logging a file, if it hasn't been renamed 7801 * or unlinked, and its inode is fully committed on disk, 7802 * we don't have to worry about walking up the directory chain 7803 * to log its parents. 7804 * 7805 * So, we use the last_unlink_trans field to put this transid 7806 * into the file. When the file is logged we check it and 7807 * don't log the parents if the file is fully on disk. 7808 */ 7809 mutex_lock(&inode->log_mutex); 7810 inode->last_unlink_trans = trans->transid; 7811 mutex_unlock(&inode->log_mutex); 7812 7813 if (!for_rename) 7814 return; 7815 7816 /* 7817 * If this directory was already logged, any new names will be logged 7818 * with btrfs_log_new_name() and old names will be deleted from the log 7819 * tree with btrfs_del_dir_entries_in_log() or with 7820 * btrfs_del_inode_ref_in_log(). 7821 */ 7822 if (inode_logged(trans, dir, NULL) == 1) 7823 return; 7824 7825 /* 7826 * If the inode we're about to unlink was logged before, the log will be 7827 * properly updated with the new name with btrfs_log_new_name() and the 7828 * old name removed with btrfs_del_dir_entries_in_log() or with 7829 * btrfs_del_inode_ref_in_log(). 7830 */ 7831 if (inode_logged(trans, inode, NULL) == 1) 7832 return; 7833 7834 /* 7835 * when renaming files across directories, if the directory 7836 * there we're unlinking from gets fsync'd later on, there's 7837 * no way to find the destination directory later and fsync it 7838 * properly. So, we have to be conservative and force commits 7839 * so the new name gets discovered. 7840 */ 7841 mutex_lock(&dir->log_mutex); 7842 dir->last_unlink_trans = trans->transid; 7843 mutex_unlock(&dir->log_mutex); 7844 } 7845 7846 /* 7847 * Make sure that if someone attempts to fsync the parent directory of a deleted 7848 * snapshot, it ends up triggering a transaction commit. This is to guarantee 7849 * that after replaying the log tree of the parent directory's root we will not 7850 * see the snapshot anymore and at log replay time we will not see any log tree 7851 * corresponding to the deleted snapshot's root, which could lead to replaying 7852 * it after replaying the log tree of the parent directory (which would replay 7853 * the snapshot delete operation). 7854 * 7855 * Must be called before the actual snapshot destroy operation (updates to the 7856 * parent root and tree of tree roots trees, etc) are done. 7857 */ 7858 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans, 7859 struct btrfs_inode *dir) 7860 { 7861 mutex_lock(&dir->log_mutex); 7862 dir->last_unlink_trans = trans->transid; 7863 mutex_unlock(&dir->log_mutex); 7864 } 7865 7866 /* 7867 * Call this when creating a subvolume in a directory. 7868 * Because we don't commit a transaction when creating a subvolume, we can't 7869 * allow the directory pointing to the subvolume to be logged with an entry that 7870 * points to an unpersisted root if we are still in the transaction used to 7871 * create the subvolume, so make any attempt to log the directory to result in a 7872 * full log sync. 7873 * Also we don't need to worry with renames, since btrfs_rename() marks the log 7874 * for full commit when renaming a subvolume. 7875 * 7876 * Must be called before creating the subvolume entry in its parent directory. 7877 */ 7878 void btrfs_record_new_subvolume(const struct btrfs_trans_handle *trans, 7879 struct btrfs_inode *dir) 7880 { 7881 mutex_lock(&dir->log_mutex); 7882 dir->last_unlink_trans = trans->transid; 7883 mutex_unlock(&dir->log_mutex); 7884 } 7885 7886 /* 7887 * Update the log after adding a new name for an inode. 7888 * 7889 * @trans: Transaction handle. 7890 * @old_dentry: The dentry associated with the old name and the old 7891 * parent directory. 7892 * @old_dir: The inode of the previous parent directory for the case 7893 * of a rename. For a link operation, it must be NULL. 7894 * @old_dir_index: The index number associated with the old name, meaningful 7895 * only for rename operations (when @old_dir is not NULL). 7896 * Ignored for link operations. 7897 * @parent: The dentry associated with the directory under which the 7898 * new name is located. 7899 * 7900 * Call this after adding a new name for an inode, as a result of a link or 7901 * rename operation, and it will properly update the log to reflect the new name. 7902 */ 7903 void btrfs_log_new_name(struct btrfs_trans_handle *trans, 7904 struct dentry *old_dentry, struct btrfs_inode *old_dir, 7905 u64 old_dir_index, struct dentry *parent) 7906 { 7907 struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry)); 7908 struct btrfs_root *root = inode->root; 7909 struct btrfs_log_ctx ctx; 7910 bool log_pinned = false; 7911 int ret; 7912 7913 btrfs_init_log_ctx(&ctx, inode); 7914 ctx.logging_new_name = true; 7915 7916 /* 7917 * this will force the logging code to walk the dentry chain 7918 * up for the file 7919 */ 7920 if (!S_ISDIR(inode->vfs_inode.i_mode)) 7921 inode->last_unlink_trans = trans->transid; 7922 7923 /* 7924 * if this inode hasn't been logged and directory we're renaming it 7925 * from hasn't been logged, we don't need to log it 7926 */ 7927 ret = inode_logged(trans, inode, NULL); 7928 if (ret < 0) { 7929 goto out; 7930 } else if (ret == 0) { 7931 if (!old_dir) 7932 return; 7933 /* 7934 * If the inode was not logged and we are doing a rename (old_dir is not 7935 * NULL), check if old_dir was logged - if it was not we can return and 7936 * do nothing. 7937 */ 7938 ret = inode_logged(trans, old_dir, NULL); 7939 if (ret < 0) 7940 goto out; 7941 else if (ret == 0) 7942 return; 7943 } 7944 ret = 0; 7945 7946 /* 7947 * Now that we know we need to update the log, allocate the scratch eb 7948 * for the context before joining a log transaction below, as this can 7949 * take time and therefore we could delay log commits from other tasks. 7950 */ 7951 btrfs_init_log_ctx_scratch_eb(&ctx); 7952 7953 /* 7954 * If we are doing a rename (old_dir is not NULL) from a directory that 7955 * was previously logged, make sure that on log replay we get the old 7956 * dir entry deleted. This is needed because we will also log the new 7957 * name of the renamed inode, so we need to make sure that after log 7958 * replay we don't end up with both the new and old dir entries existing. 7959 */ 7960 if (old_dir && old_dir->logged_trans == trans->transid) { 7961 struct btrfs_root *log = old_dir->root->log_root; 7962 struct btrfs_path *path; 7963 struct fscrypt_name fname; 7964 7965 ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX); 7966 7967 ret = fscrypt_setup_filename(&old_dir->vfs_inode, 7968 &old_dentry->d_name, 0, &fname); 7969 if (ret) 7970 goto out; 7971 7972 path = btrfs_alloc_path(); 7973 if (!path) { 7974 ret = -ENOMEM; 7975 fscrypt_free_filename(&fname); 7976 goto out; 7977 } 7978 7979 /* 7980 * We have two inodes to update in the log, the old directory and 7981 * the inode that got renamed, so we must pin the log to prevent 7982 * anyone from syncing the log until we have updated both inodes 7983 * in the log. 7984 */ 7985 ret = join_running_log_trans(root); 7986 /* 7987 * At least one of the inodes was logged before, so this should 7988 * not fail, but if it does, it's not serious, just bail out and 7989 * mark the log for a full commit. 7990 */ 7991 if (WARN_ON_ONCE(ret < 0)) { 7992 btrfs_free_path(path); 7993 fscrypt_free_filename(&fname); 7994 goto out; 7995 } 7996 7997 log_pinned = true; 7998 7999 /* 8000 * Other concurrent task might be logging the old directory, 8001 * as it can be triggered when logging other inode that had or 8002 * still has a dentry in the old directory. We lock the old 8003 * directory's log_mutex to ensure the deletion of the old 8004 * name is persisted, because during directory logging we 8005 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of 8006 * the old name's dir index item is in the delayed items, so 8007 * it could be missed by an in progress directory logging. 8008 */ 8009 mutex_lock(&old_dir->log_mutex); 8010 ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir), 8011 &fname.disk_name, old_dir_index); 8012 if (ret > 0) { 8013 /* 8014 * The dentry does not exist in the log, so record its 8015 * deletion. 8016 */ 8017 btrfs_release_path(path); 8018 ret = insert_dir_log_key(trans, log, path, 8019 btrfs_ino(old_dir), 8020 old_dir_index, old_dir_index); 8021 } 8022 mutex_unlock(&old_dir->log_mutex); 8023 8024 btrfs_free_path(path); 8025 fscrypt_free_filename(&fname); 8026 if (ret < 0) 8027 goto out; 8028 } 8029 8030 /* 8031 * We don't care about the return value. If we fail to log the new name 8032 * then we know the next attempt to sync the log will fallback to a full 8033 * transaction commit (due to a call to btrfs_set_log_full_commit()), so 8034 * we don't need to worry about getting a log committed that has an 8035 * inconsistent state after a rename operation. 8036 */ 8037 btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx); 8038 ASSERT(list_empty(&ctx.conflict_inodes)); 8039 out: 8040 /* 8041 * If an error happened mark the log for a full commit because it's not 8042 * consistent and up to date or we couldn't find out if one of the 8043 * inodes was logged before in this transaction. Do it before unpinning 8044 * the log, to avoid any races with someone else trying to commit it. 8045 */ 8046 if (ret < 0) 8047 btrfs_set_log_full_commit(trans); 8048 if (log_pinned) 8049 btrfs_end_log_trans(root); 8050 free_extent_buffer(ctx.scratch_eb); 8051 } 8052 8053