1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) Qu Wenruo 2017. All rights reserved. 4 */ 5 6 /* 7 * The module is used to catch unexpected/corrupted tree block data. 8 * Such behavior can be caused either by a fuzzed image or bugs. 9 * 10 * The objective is to do leaf/node validation checks when tree block is read 11 * from disk, and check *every* possible member, so other code won't 12 * need to checking them again. 13 * 14 * Due to the potential and unwanted damage, every checker needs to be 15 * carefully reviewed otherwise so it does not prevent mount of valid images. 16 */ 17 18 #include <linux/types.h> 19 #include <linux/stddef.h> 20 #include <linux/error-injection.h> 21 #include "messages.h" 22 #include "ctree.h" 23 #include "tree-checker.h" 24 #include "compression.h" 25 #include "volumes.h" 26 #include "misc.h" 27 #include "fs.h" 28 #include "accessors.h" 29 #include "file-item.h" 30 #include "inode-item.h" 31 #include "dir-item.h" 32 #include "extent-tree.h" 33 34 /* 35 * Error message should follow the following format: 36 * corrupt <type>: <identifier>, <reason>[, <bad_value>] 37 * 38 * @type: leaf or node 39 * @identifier: the necessary info to locate the leaf/node. 40 * It's recommended to decode key.objecitd/offset if it's 41 * meaningful. 42 * @reason: describe the error 43 * @bad_value: optional, it's recommended to output bad value and its 44 * expected value (range). 45 * 46 * Since comma is used to separate the components, only space is allowed 47 * inside each component. 48 */ 49 50 /* 51 * Append generic "corrupt leaf/node root=%llu block=%llu slot=%d: " to @fmt. 52 * Allows callers to customize the output. 53 */ 54 __printf(3, 4) 55 __cold 56 static void generic_err(const struct extent_buffer *eb, int slot, 57 const char *fmt, ...) 58 { 59 const struct btrfs_fs_info *fs_info = eb->fs_info; 60 struct va_format vaf; 61 va_list args; 62 63 va_start(args, fmt); 64 65 vaf.fmt = fmt; 66 vaf.va = &args; 67 68 dump_page(folio_page(eb->folios[0], 0), "eb page dump"); 69 btrfs_crit(fs_info, 70 "corrupt %s: root=%llu block=%llu slot=%d, %pV", 71 btrfs_header_level(eb) == 0 ? "leaf" : "node", 72 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, &vaf); 73 va_end(args); 74 } 75 76 /* 77 * Customized reporter for extent data item, since its key objectid and 78 * offset has its own meaning. 79 */ 80 __printf(3, 4) 81 __cold 82 static void file_extent_err(const struct extent_buffer *eb, int slot, 83 const char *fmt, ...) 84 { 85 const struct btrfs_fs_info *fs_info = eb->fs_info; 86 struct btrfs_key key; 87 struct va_format vaf; 88 va_list args; 89 90 btrfs_item_key_to_cpu(eb, &key, slot); 91 va_start(args, fmt); 92 93 vaf.fmt = fmt; 94 vaf.va = &args; 95 96 dump_page(folio_page(eb->folios[0], 0), "eb page dump"); 97 btrfs_crit(fs_info, 98 "corrupt %s: root=%llu block=%llu slot=%d ino=%llu file_offset=%llu, %pV", 99 btrfs_header_level(eb) == 0 ? "leaf" : "node", 100 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, 101 key.objectid, key.offset, &vaf); 102 va_end(args); 103 } 104 105 /* 106 * Return 0 if the btrfs_file_extent_##name is aligned to @alignment 107 * Else return 1 108 */ 109 #define CHECK_FE_ALIGNED(leaf, slot, fi, name, alignment) \ 110 ({ \ 111 if (unlikely(!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), \ 112 (alignment)))) \ 113 file_extent_err((leaf), (slot), \ 114 "invalid %s for file extent, have %llu, should be aligned to %u", \ 115 (#name), btrfs_file_extent_##name((leaf), (fi)), \ 116 (alignment)); \ 117 (!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), (alignment))); \ 118 }) 119 120 static u64 file_extent_end(struct extent_buffer *leaf, 121 struct btrfs_key *key, 122 struct btrfs_file_extent_item *extent) 123 { 124 u64 end; 125 u64 len; 126 127 if (btrfs_file_extent_type(leaf, extent) == BTRFS_FILE_EXTENT_INLINE) { 128 len = btrfs_file_extent_ram_bytes(leaf, extent); 129 end = ALIGN(key->offset + len, leaf->fs_info->sectorsize); 130 } else { 131 len = btrfs_file_extent_num_bytes(leaf, extent); 132 end = key->offset + len; 133 } 134 return end; 135 } 136 137 /* 138 * Customized report for dir_item, the only new important information is 139 * key->objectid, which represents inode number 140 */ 141 __printf(3, 4) 142 __cold 143 static void dir_item_err(const struct extent_buffer *eb, int slot, 144 const char *fmt, ...) 145 { 146 const struct btrfs_fs_info *fs_info = eb->fs_info; 147 struct btrfs_key key; 148 struct va_format vaf; 149 va_list args; 150 151 btrfs_item_key_to_cpu(eb, &key, slot); 152 va_start(args, fmt); 153 154 vaf.fmt = fmt; 155 vaf.va = &args; 156 157 dump_page(folio_page(eb->folios[0], 0), "eb page dump"); 158 btrfs_crit(fs_info, 159 "corrupt %s: root=%llu block=%llu slot=%d ino=%llu, %pV", 160 btrfs_header_level(eb) == 0 ? "leaf" : "node", 161 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, 162 key.objectid, &vaf); 163 va_end(args); 164 } 165 166 /* 167 * This functions checks prev_key->objectid, to ensure current key and prev_key 168 * share the same objectid as inode number. 169 * 170 * This is to detect missing INODE_ITEM in subvolume trees. 171 * 172 * Return true if everything is OK or we don't need to check. 173 * Return false if anything is wrong. 174 */ 175 static bool check_prev_ino(struct extent_buffer *leaf, 176 struct btrfs_key *key, int slot, 177 struct btrfs_key *prev_key) 178 { 179 /* No prev key, skip check */ 180 if (slot == 0) 181 return true; 182 183 /* Only these key->types needs to be checked */ 184 ASSERT(key->type == BTRFS_XATTR_ITEM_KEY || 185 key->type == BTRFS_INODE_REF_KEY || 186 key->type == BTRFS_DIR_INDEX_KEY || 187 key->type == BTRFS_DIR_ITEM_KEY || 188 key->type == BTRFS_EXTENT_DATA_KEY); 189 190 /* 191 * Only subvolume trees along with their reloc trees need this check. 192 * Things like log tree doesn't follow this ino requirement. 193 */ 194 if (!is_fstree(btrfs_header_owner(leaf))) 195 return true; 196 197 if (key->objectid == prev_key->objectid) 198 return true; 199 200 /* Error found */ 201 dir_item_err(leaf, slot, 202 "invalid previous key objectid, have %llu expect %llu", 203 prev_key->objectid, key->objectid); 204 return false; 205 } 206 static int check_extent_data_item(struct extent_buffer *leaf, 207 struct btrfs_key *key, int slot, 208 struct btrfs_key *prev_key) 209 { 210 struct btrfs_fs_info *fs_info = leaf->fs_info; 211 struct btrfs_file_extent_item *fi; 212 u32 sectorsize = fs_info->sectorsize; 213 u32 item_size = btrfs_item_size(leaf, slot); 214 u64 extent_end; 215 216 if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) { 217 file_extent_err(leaf, slot, 218 "unaligned file_offset for file extent, have %llu should be aligned to %u", 219 key->offset, sectorsize); 220 return -EUCLEAN; 221 } 222 223 /* 224 * Previous key must have the same key->objectid (ino). 225 * It can be XATTR_ITEM, INODE_ITEM or just another EXTENT_DATA. 226 * But if objectids mismatch, it means we have a missing 227 * INODE_ITEM. 228 */ 229 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key))) 230 return -EUCLEAN; 231 232 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 233 234 /* 235 * Make sure the item contains at least inline header, so the file 236 * extent type is not some garbage. 237 */ 238 if (unlikely(item_size < BTRFS_FILE_EXTENT_INLINE_DATA_START)) { 239 file_extent_err(leaf, slot, 240 "invalid item size, have %u expect [%zu, %u)", 241 item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START, 242 SZ_4K); 243 return -EUCLEAN; 244 } 245 if (unlikely(btrfs_file_extent_type(leaf, fi) >= 246 BTRFS_NR_FILE_EXTENT_TYPES)) { 247 file_extent_err(leaf, slot, 248 "invalid type for file extent, have %u expect range [0, %u]", 249 btrfs_file_extent_type(leaf, fi), 250 BTRFS_NR_FILE_EXTENT_TYPES - 1); 251 return -EUCLEAN; 252 } 253 254 /* 255 * Support for new compression/encryption must introduce incompat flag, 256 * and must be caught in open_ctree(). 257 */ 258 if (unlikely(btrfs_file_extent_compression(leaf, fi) >= 259 BTRFS_NR_COMPRESS_TYPES)) { 260 file_extent_err(leaf, slot, 261 "invalid compression for file extent, have %u expect range [0, %u]", 262 btrfs_file_extent_compression(leaf, fi), 263 BTRFS_NR_COMPRESS_TYPES - 1); 264 return -EUCLEAN; 265 } 266 if (unlikely(btrfs_file_extent_encryption(leaf, fi))) { 267 file_extent_err(leaf, slot, 268 "invalid encryption for file extent, have %u expect 0", 269 btrfs_file_extent_encryption(leaf, fi)); 270 return -EUCLEAN; 271 } 272 if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) { 273 /* Inline extent must have 0 as key offset */ 274 if (unlikely(key->offset)) { 275 file_extent_err(leaf, slot, 276 "invalid file_offset for inline file extent, have %llu expect 0", 277 key->offset); 278 return -EUCLEAN; 279 } 280 281 /* Compressed inline extent has no on-disk size, skip it */ 282 if (btrfs_file_extent_compression(leaf, fi) != 283 BTRFS_COMPRESS_NONE) 284 return 0; 285 286 /* Uncompressed inline extent size must match item size */ 287 if (unlikely(item_size != BTRFS_FILE_EXTENT_INLINE_DATA_START + 288 btrfs_file_extent_ram_bytes(leaf, fi))) { 289 file_extent_err(leaf, slot, 290 "invalid ram_bytes for uncompressed inline extent, have %u expect %llu", 291 item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START + 292 btrfs_file_extent_ram_bytes(leaf, fi)); 293 return -EUCLEAN; 294 } 295 return 0; 296 } 297 298 /* Regular or preallocated extent has fixed item size */ 299 if (unlikely(item_size != sizeof(*fi))) { 300 file_extent_err(leaf, slot, 301 "invalid item size for reg/prealloc file extent, have %u expect %zu", 302 item_size, sizeof(*fi)); 303 return -EUCLEAN; 304 } 305 if (unlikely(CHECK_FE_ALIGNED(leaf, slot, fi, ram_bytes, sectorsize) || 306 CHECK_FE_ALIGNED(leaf, slot, fi, disk_bytenr, sectorsize) || 307 CHECK_FE_ALIGNED(leaf, slot, fi, disk_num_bytes, sectorsize) || 308 CHECK_FE_ALIGNED(leaf, slot, fi, offset, sectorsize) || 309 CHECK_FE_ALIGNED(leaf, slot, fi, num_bytes, sectorsize))) 310 return -EUCLEAN; 311 312 /* Catch extent end overflow */ 313 if (unlikely(check_add_overflow(btrfs_file_extent_num_bytes(leaf, fi), 314 key->offset, &extent_end))) { 315 file_extent_err(leaf, slot, 316 "extent end overflow, have file offset %llu extent num bytes %llu", 317 key->offset, 318 btrfs_file_extent_num_bytes(leaf, fi)); 319 return -EUCLEAN; 320 } 321 322 /* 323 * Check that no two consecutive file extent items, in the same leaf, 324 * present ranges that overlap each other. 325 */ 326 if (slot > 0 && 327 prev_key->objectid == key->objectid && 328 prev_key->type == BTRFS_EXTENT_DATA_KEY) { 329 struct btrfs_file_extent_item *prev_fi; 330 u64 prev_end; 331 332 prev_fi = btrfs_item_ptr(leaf, slot - 1, 333 struct btrfs_file_extent_item); 334 prev_end = file_extent_end(leaf, prev_key, prev_fi); 335 if (unlikely(prev_end > key->offset)) { 336 file_extent_err(leaf, slot - 1, 337 "file extent end range (%llu) goes beyond start offset (%llu) of the next file extent", 338 prev_end, key->offset); 339 return -EUCLEAN; 340 } 341 } 342 343 /* 344 * For non-compressed data extents, ram_bytes should match its 345 * disk_num_bytes. 346 * However we do not really utilize ram_bytes in this case, so this check 347 * is only optional for DEBUG builds for developers to catch the 348 * unexpected behaviors. 349 */ 350 if (IS_ENABLED(CONFIG_BTRFS_DEBUG) && 351 btrfs_file_extent_compression(leaf, fi) == BTRFS_COMPRESS_NONE && 352 btrfs_file_extent_disk_bytenr(leaf, fi)) { 353 if (WARN_ON(btrfs_file_extent_ram_bytes(leaf, fi) != 354 btrfs_file_extent_disk_num_bytes(leaf, fi))) 355 file_extent_err(leaf, slot, 356 "mismatch ram_bytes (%llu) and disk_num_bytes (%llu) for non-compressed extent", 357 btrfs_file_extent_ram_bytes(leaf, fi), 358 btrfs_file_extent_disk_num_bytes(leaf, fi)); 359 } 360 361 return 0; 362 } 363 364 static int check_csum_item(struct extent_buffer *leaf, struct btrfs_key *key, 365 int slot, struct btrfs_key *prev_key) 366 { 367 struct btrfs_fs_info *fs_info = leaf->fs_info; 368 u32 sectorsize = fs_info->sectorsize; 369 const u32 csumsize = fs_info->csum_size; 370 371 if (unlikely(key->objectid != BTRFS_EXTENT_CSUM_OBJECTID)) { 372 generic_err(leaf, slot, 373 "invalid key objectid for csum item, have %llu expect %llu", 374 key->objectid, BTRFS_EXTENT_CSUM_OBJECTID); 375 return -EUCLEAN; 376 } 377 if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) { 378 generic_err(leaf, slot, 379 "unaligned key offset for csum item, have %llu should be aligned to %u", 380 key->offset, sectorsize); 381 return -EUCLEAN; 382 } 383 if (unlikely(!IS_ALIGNED(btrfs_item_size(leaf, slot), csumsize))) { 384 generic_err(leaf, slot, 385 "unaligned item size for csum item, have %u should be aligned to %u", 386 btrfs_item_size(leaf, slot), csumsize); 387 return -EUCLEAN; 388 } 389 if (slot > 0 && prev_key->type == BTRFS_EXTENT_CSUM_KEY) { 390 u64 prev_csum_end; 391 u32 prev_item_size; 392 393 prev_item_size = btrfs_item_size(leaf, slot - 1); 394 prev_csum_end = (prev_item_size / csumsize) * sectorsize; 395 prev_csum_end += prev_key->offset; 396 if (unlikely(prev_csum_end > key->offset)) { 397 generic_err(leaf, slot - 1, 398 "csum end range (%llu) goes beyond the start range (%llu) of the next csum item", 399 prev_csum_end, key->offset); 400 return -EUCLEAN; 401 } 402 } 403 return 0; 404 } 405 406 /* Inode item error output has the same format as dir_item_err() */ 407 #define inode_item_err(eb, slot, fmt, ...) \ 408 dir_item_err(eb, slot, fmt, __VA_ARGS__) 409 410 static int check_inode_key(struct extent_buffer *leaf, struct btrfs_key *key, 411 int slot) 412 { 413 struct btrfs_key item_key; 414 bool is_inode_item; 415 416 btrfs_item_key_to_cpu(leaf, &item_key, slot); 417 is_inode_item = (item_key.type == BTRFS_INODE_ITEM_KEY); 418 419 /* For XATTR_ITEM, location key should be all 0 */ 420 if (item_key.type == BTRFS_XATTR_ITEM_KEY) { 421 if (unlikely(key->objectid != 0 || key->type != 0 || 422 key->offset != 0)) 423 return -EUCLEAN; 424 return 0; 425 } 426 427 if (unlikely((key->objectid < BTRFS_FIRST_FREE_OBJECTID || 428 key->objectid > BTRFS_LAST_FREE_OBJECTID) && 429 key->objectid != BTRFS_ROOT_TREE_DIR_OBJECTID && 430 key->objectid != BTRFS_FREE_INO_OBJECTID)) { 431 if (is_inode_item) { 432 generic_err(leaf, slot, 433 "invalid key objectid: has %llu expect %llu or [%llu, %llu] or %llu", 434 key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID, 435 BTRFS_FIRST_FREE_OBJECTID, 436 BTRFS_LAST_FREE_OBJECTID, 437 BTRFS_FREE_INO_OBJECTID); 438 } else { 439 dir_item_err(leaf, slot, 440 "invalid location key objectid: has %llu expect %llu or [%llu, %llu] or %llu", 441 key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID, 442 BTRFS_FIRST_FREE_OBJECTID, 443 BTRFS_LAST_FREE_OBJECTID, 444 BTRFS_FREE_INO_OBJECTID); 445 } 446 return -EUCLEAN; 447 } 448 if (unlikely(key->offset != 0)) { 449 if (is_inode_item) 450 inode_item_err(leaf, slot, 451 "invalid key offset: has %llu expect 0", 452 key->offset); 453 else 454 dir_item_err(leaf, slot, 455 "invalid location key offset:has %llu expect 0", 456 key->offset); 457 return -EUCLEAN; 458 } 459 return 0; 460 } 461 462 static int check_root_key(struct extent_buffer *leaf, struct btrfs_key *key, 463 int slot) 464 { 465 struct btrfs_key item_key; 466 bool is_root_item; 467 468 btrfs_item_key_to_cpu(leaf, &item_key, slot); 469 is_root_item = (item_key.type == BTRFS_ROOT_ITEM_KEY); 470 471 /* 472 * Bad rootid for reloc trees. 473 * 474 * Reloc trees are only for subvolume trees, other trees only need 475 * to be COWed to be relocated. 476 */ 477 if (unlikely(is_root_item && key->objectid == BTRFS_TREE_RELOC_OBJECTID && 478 !is_fstree(key->offset))) { 479 generic_err(leaf, slot, 480 "invalid reloc tree for root %lld, root id is not a subvolume tree", 481 key->offset); 482 return -EUCLEAN; 483 } 484 485 /* No such tree id */ 486 if (unlikely(key->objectid == 0)) { 487 if (is_root_item) 488 generic_err(leaf, slot, "invalid root id 0"); 489 else 490 dir_item_err(leaf, slot, 491 "invalid location key root id 0"); 492 return -EUCLEAN; 493 } 494 495 /* DIR_ITEM/INDEX/INODE_REF is not allowed to point to non-fs trees */ 496 if (unlikely(!is_fstree(key->objectid) && !is_root_item)) { 497 dir_item_err(leaf, slot, 498 "invalid location key objectid, have %llu expect [%llu, %llu]", 499 key->objectid, BTRFS_FIRST_FREE_OBJECTID, 500 BTRFS_LAST_FREE_OBJECTID); 501 return -EUCLEAN; 502 } 503 504 /* 505 * ROOT_ITEM with non-zero offset means this is a snapshot, created at 506 * @offset transid. 507 * Furthermore, for location key in DIR_ITEM, its offset is always -1. 508 * 509 * So here we only check offset for reloc tree whose key->offset must 510 * be a valid tree. 511 */ 512 if (unlikely(key->objectid == BTRFS_TREE_RELOC_OBJECTID && 513 key->offset == 0)) { 514 generic_err(leaf, slot, "invalid root id 0 for reloc tree"); 515 return -EUCLEAN; 516 } 517 return 0; 518 } 519 520 static int check_dir_item(struct extent_buffer *leaf, 521 struct btrfs_key *key, struct btrfs_key *prev_key, 522 int slot) 523 { 524 struct btrfs_fs_info *fs_info = leaf->fs_info; 525 struct btrfs_dir_item *di; 526 u32 item_size = btrfs_item_size(leaf, slot); 527 u32 cur = 0; 528 529 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key))) 530 return -EUCLEAN; 531 532 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 533 while (cur < item_size) { 534 struct btrfs_key location_key; 535 u32 name_len; 536 u32 data_len; 537 u32 max_name_len; 538 u32 total_size; 539 u32 name_hash; 540 u8 dir_type; 541 int ret; 542 543 /* header itself should not cross item boundary */ 544 if (unlikely(cur + sizeof(*di) > item_size)) { 545 dir_item_err(leaf, slot, 546 "dir item header crosses item boundary, have %zu boundary %u", 547 cur + sizeof(*di), item_size); 548 return -EUCLEAN; 549 } 550 551 /* Location key check */ 552 btrfs_dir_item_key_to_cpu(leaf, di, &location_key); 553 if (location_key.type == BTRFS_ROOT_ITEM_KEY) { 554 ret = check_root_key(leaf, &location_key, slot); 555 if (unlikely(ret < 0)) 556 return ret; 557 } else if (location_key.type == BTRFS_INODE_ITEM_KEY || 558 location_key.type == 0) { 559 ret = check_inode_key(leaf, &location_key, slot); 560 if (unlikely(ret < 0)) 561 return ret; 562 } else { 563 dir_item_err(leaf, slot, 564 "invalid location key type, have %u, expect %u or %u", 565 location_key.type, BTRFS_ROOT_ITEM_KEY, 566 BTRFS_INODE_ITEM_KEY); 567 return -EUCLEAN; 568 } 569 570 /* dir type check */ 571 dir_type = btrfs_dir_ftype(leaf, di); 572 if (unlikely(dir_type >= BTRFS_FT_MAX)) { 573 dir_item_err(leaf, slot, 574 "invalid dir item type, have %u expect [0, %u)", 575 dir_type, BTRFS_FT_MAX); 576 return -EUCLEAN; 577 } 578 579 if (unlikely(key->type == BTRFS_XATTR_ITEM_KEY && 580 dir_type != BTRFS_FT_XATTR)) { 581 dir_item_err(leaf, slot, 582 "invalid dir item type for XATTR key, have %u expect %u", 583 dir_type, BTRFS_FT_XATTR); 584 return -EUCLEAN; 585 } 586 if (unlikely(dir_type == BTRFS_FT_XATTR && 587 key->type != BTRFS_XATTR_ITEM_KEY)) { 588 dir_item_err(leaf, slot, 589 "xattr dir type found for non-XATTR key"); 590 return -EUCLEAN; 591 } 592 if (dir_type == BTRFS_FT_XATTR) 593 max_name_len = XATTR_NAME_MAX; 594 else 595 max_name_len = BTRFS_NAME_LEN; 596 597 /* Name/data length check */ 598 name_len = btrfs_dir_name_len(leaf, di); 599 data_len = btrfs_dir_data_len(leaf, di); 600 if (unlikely(name_len > max_name_len)) { 601 dir_item_err(leaf, slot, 602 "dir item name len too long, have %u max %u", 603 name_len, max_name_len); 604 return -EUCLEAN; 605 } 606 if (unlikely(name_len + data_len > BTRFS_MAX_XATTR_SIZE(fs_info))) { 607 dir_item_err(leaf, slot, 608 "dir item name and data len too long, have %u max %u", 609 name_len + data_len, 610 BTRFS_MAX_XATTR_SIZE(fs_info)); 611 return -EUCLEAN; 612 } 613 614 if (unlikely(data_len && dir_type != BTRFS_FT_XATTR)) { 615 dir_item_err(leaf, slot, 616 "dir item with invalid data len, have %u expect 0", 617 data_len); 618 return -EUCLEAN; 619 } 620 621 total_size = sizeof(*di) + name_len + data_len; 622 623 /* header and name/data should not cross item boundary */ 624 if (unlikely(cur + total_size > item_size)) { 625 dir_item_err(leaf, slot, 626 "dir item data crosses item boundary, have %u boundary %u", 627 cur + total_size, item_size); 628 return -EUCLEAN; 629 } 630 631 /* 632 * Special check for XATTR/DIR_ITEM, as key->offset is name 633 * hash, should match its name 634 */ 635 if (key->type == BTRFS_DIR_ITEM_KEY || 636 key->type == BTRFS_XATTR_ITEM_KEY) { 637 char namebuf[max(BTRFS_NAME_LEN, XATTR_NAME_MAX)]; 638 639 read_extent_buffer(leaf, namebuf, 640 (unsigned long)(di + 1), name_len); 641 name_hash = btrfs_name_hash(namebuf, name_len); 642 if (unlikely(key->offset != name_hash)) { 643 dir_item_err(leaf, slot, 644 "name hash mismatch with key, have 0x%016x expect 0x%016llx", 645 name_hash, key->offset); 646 return -EUCLEAN; 647 } 648 } 649 cur += total_size; 650 di = (struct btrfs_dir_item *)((void *)di + total_size); 651 } 652 return 0; 653 } 654 655 __printf(3, 4) 656 __cold 657 static void block_group_err(const struct extent_buffer *eb, int slot, 658 const char *fmt, ...) 659 { 660 const struct btrfs_fs_info *fs_info = eb->fs_info; 661 struct btrfs_key key; 662 struct va_format vaf; 663 va_list args; 664 665 btrfs_item_key_to_cpu(eb, &key, slot); 666 va_start(args, fmt); 667 668 vaf.fmt = fmt; 669 vaf.va = &args; 670 671 dump_page(folio_page(eb->folios[0], 0), "eb page dump"); 672 btrfs_crit(fs_info, 673 "corrupt %s: root=%llu block=%llu slot=%d bg_start=%llu bg_len=%llu, %pV", 674 btrfs_header_level(eb) == 0 ? "leaf" : "node", 675 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, 676 key.objectid, key.offset, &vaf); 677 va_end(args); 678 } 679 680 static int check_block_group_item(struct extent_buffer *leaf, 681 struct btrfs_key *key, int slot) 682 { 683 struct btrfs_fs_info *fs_info = leaf->fs_info; 684 struct btrfs_block_group_item bgi; 685 u32 item_size = btrfs_item_size(leaf, slot); 686 u64 chunk_objectid; 687 u64 flags; 688 u64 type; 689 690 /* 691 * Here we don't really care about alignment since extent allocator can 692 * handle it. We care more about the size. 693 */ 694 if (unlikely(key->offset == 0)) { 695 block_group_err(leaf, slot, 696 "invalid block group size 0"); 697 return -EUCLEAN; 698 } 699 700 if (unlikely(item_size != sizeof(bgi))) { 701 block_group_err(leaf, slot, 702 "invalid item size, have %u expect %zu", 703 item_size, sizeof(bgi)); 704 return -EUCLEAN; 705 } 706 707 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot), 708 sizeof(bgi)); 709 chunk_objectid = btrfs_stack_block_group_chunk_objectid(&bgi); 710 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 711 /* 712 * We don't init the nr_global_roots until we load the global 713 * roots, so this could be 0 at mount time. If it's 0 we'll 714 * just assume we're fine, and later we'll check against our 715 * actual value. 716 */ 717 if (unlikely(fs_info->nr_global_roots && 718 chunk_objectid >= fs_info->nr_global_roots)) { 719 block_group_err(leaf, slot, 720 "invalid block group global root id, have %llu, needs to be <= %llu", 721 chunk_objectid, 722 fs_info->nr_global_roots); 723 return -EUCLEAN; 724 } 725 } else if (unlikely(chunk_objectid != BTRFS_FIRST_CHUNK_TREE_OBJECTID)) { 726 block_group_err(leaf, slot, 727 "invalid block group chunk objectid, have %llu expect %llu", 728 btrfs_stack_block_group_chunk_objectid(&bgi), 729 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 730 return -EUCLEAN; 731 } 732 733 if (unlikely(btrfs_stack_block_group_used(&bgi) > key->offset)) { 734 block_group_err(leaf, slot, 735 "invalid block group used, have %llu expect [0, %llu)", 736 btrfs_stack_block_group_used(&bgi), key->offset); 737 return -EUCLEAN; 738 } 739 740 flags = btrfs_stack_block_group_flags(&bgi); 741 if (unlikely(hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) > 1)) { 742 block_group_err(leaf, slot, 743 "invalid profile flags, have 0x%llx (%lu bits set) expect no more than 1 bit set", 744 flags & BTRFS_BLOCK_GROUP_PROFILE_MASK, 745 hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)); 746 return -EUCLEAN; 747 } 748 749 type = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 750 if (unlikely(type != BTRFS_BLOCK_GROUP_DATA && 751 type != BTRFS_BLOCK_GROUP_METADATA && 752 type != BTRFS_BLOCK_GROUP_SYSTEM && 753 type != (BTRFS_BLOCK_GROUP_METADATA | 754 BTRFS_BLOCK_GROUP_DATA))) { 755 block_group_err(leaf, slot, 756 "invalid type, have 0x%llx (%lu bits set) expect either 0x%llx, 0x%llx, 0x%llx or 0x%llx", 757 type, hweight64(type), 758 BTRFS_BLOCK_GROUP_DATA, BTRFS_BLOCK_GROUP_METADATA, 759 BTRFS_BLOCK_GROUP_SYSTEM, 760 BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA); 761 return -EUCLEAN; 762 } 763 return 0; 764 } 765 766 __printf(4, 5) 767 __cold 768 static void chunk_err(const struct extent_buffer *leaf, 769 const struct btrfs_chunk *chunk, u64 logical, 770 const char *fmt, ...) 771 { 772 const struct btrfs_fs_info *fs_info = leaf->fs_info; 773 bool is_sb; 774 struct va_format vaf; 775 va_list args; 776 int i; 777 int slot = -1; 778 779 /* Only superblock eb is able to have such small offset */ 780 is_sb = (leaf->start == BTRFS_SUPER_INFO_OFFSET); 781 782 if (!is_sb) { 783 /* 784 * Get the slot number by iterating through all slots, this 785 * would provide better readability. 786 */ 787 for (i = 0; i < btrfs_header_nritems(leaf); i++) { 788 if (btrfs_item_ptr_offset(leaf, i) == 789 (unsigned long)chunk) { 790 slot = i; 791 break; 792 } 793 } 794 } 795 va_start(args, fmt); 796 vaf.fmt = fmt; 797 vaf.va = &args; 798 799 if (is_sb) 800 btrfs_crit(fs_info, 801 "corrupt superblock syschunk array: chunk_start=%llu, %pV", 802 logical, &vaf); 803 else 804 btrfs_crit(fs_info, 805 "corrupt leaf: root=%llu block=%llu slot=%d chunk_start=%llu, %pV", 806 BTRFS_CHUNK_TREE_OBJECTID, leaf->start, slot, 807 logical, &vaf); 808 va_end(args); 809 } 810 811 /* 812 * The common chunk check which could also work on super block sys chunk array. 813 * 814 * Return -EUCLEAN if anything is corrupted. 815 * Return 0 if everything is OK. 816 */ 817 int btrfs_check_chunk_valid(struct extent_buffer *leaf, 818 struct btrfs_chunk *chunk, u64 logical) 819 { 820 struct btrfs_fs_info *fs_info = leaf->fs_info; 821 u64 length; 822 u64 chunk_end; 823 u64 stripe_len; 824 u16 num_stripes; 825 u16 sub_stripes; 826 u64 type; 827 u64 features; 828 bool mixed = false; 829 int raid_index; 830 int nparity; 831 int ncopies; 832 833 length = btrfs_chunk_length(leaf, chunk); 834 stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 835 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 836 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 837 type = btrfs_chunk_type(leaf, chunk); 838 raid_index = btrfs_bg_flags_to_raid_index(type); 839 ncopies = btrfs_raid_array[raid_index].ncopies; 840 nparity = btrfs_raid_array[raid_index].nparity; 841 842 if (unlikely(!num_stripes)) { 843 chunk_err(leaf, chunk, logical, 844 "invalid chunk num_stripes, have %u", num_stripes); 845 return -EUCLEAN; 846 } 847 if (unlikely(num_stripes < ncopies)) { 848 chunk_err(leaf, chunk, logical, 849 "invalid chunk num_stripes < ncopies, have %u < %d", 850 num_stripes, ncopies); 851 return -EUCLEAN; 852 } 853 if (unlikely(nparity && num_stripes == nparity)) { 854 chunk_err(leaf, chunk, logical, 855 "invalid chunk num_stripes == nparity, have %u == %d", 856 num_stripes, nparity); 857 return -EUCLEAN; 858 } 859 if (unlikely(!IS_ALIGNED(logical, fs_info->sectorsize))) { 860 chunk_err(leaf, chunk, logical, 861 "invalid chunk logical, have %llu should aligned to %u", 862 logical, fs_info->sectorsize); 863 return -EUCLEAN; 864 } 865 if (unlikely(btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize)) { 866 chunk_err(leaf, chunk, logical, 867 "invalid chunk sectorsize, have %u expect %u", 868 btrfs_chunk_sector_size(leaf, chunk), 869 fs_info->sectorsize); 870 return -EUCLEAN; 871 } 872 if (unlikely(!length || !IS_ALIGNED(length, fs_info->sectorsize))) { 873 chunk_err(leaf, chunk, logical, 874 "invalid chunk length, have %llu", length); 875 return -EUCLEAN; 876 } 877 if (unlikely(check_add_overflow(logical, length, &chunk_end))) { 878 chunk_err(leaf, chunk, logical, 879 "invalid chunk logical start and length, have logical start %llu length %llu", 880 logical, length); 881 return -EUCLEAN; 882 } 883 if (unlikely(!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN)) { 884 chunk_err(leaf, chunk, logical, 885 "invalid chunk stripe length: %llu", 886 stripe_len); 887 return -EUCLEAN; 888 } 889 /* 890 * We artificially limit the chunk size, so that the number of stripes 891 * inside a chunk can be fit into a U32. The current limit (256G) is 892 * way too large for real world usage anyway, and it's also much larger 893 * than our existing limit (10G). 894 * 895 * Thus it should be a good way to catch obvious bitflips. 896 */ 897 if (unlikely(length >= btrfs_stripe_nr_to_offset(U32_MAX))) { 898 chunk_err(leaf, chunk, logical, 899 "chunk length too large: have %llu limit %llu", 900 length, btrfs_stripe_nr_to_offset(U32_MAX)); 901 return -EUCLEAN; 902 } 903 if (unlikely(type & ~(BTRFS_BLOCK_GROUP_TYPE_MASK | 904 BTRFS_BLOCK_GROUP_PROFILE_MASK))) { 905 chunk_err(leaf, chunk, logical, 906 "unrecognized chunk type: 0x%llx", 907 ~(BTRFS_BLOCK_GROUP_TYPE_MASK | 908 BTRFS_BLOCK_GROUP_PROFILE_MASK) & 909 btrfs_chunk_type(leaf, chunk)); 910 return -EUCLEAN; 911 } 912 913 if (unlikely(!has_single_bit_set(type & BTRFS_BLOCK_GROUP_PROFILE_MASK) && 914 (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) != 0)) { 915 chunk_err(leaf, chunk, logical, 916 "invalid chunk profile flag: 0x%llx, expect 0 or 1 bit set", 917 type & BTRFS_BLOCK_GROUP_PROFILE_MASK); 918 return -EUCLEAN; 919 } 920 if (unlikely((type & BTRFS_BLOCK_GROUP_TYPE_MASK) == 0)) { 921 chunk_err(leaf, chunk, logical, 922 "missing chunk type flag, have 0x%llx one bit must be set in 0x%llx", 923 type, BTRFS_BLOCK_GROUP_TYPE_MASK); 924 return -EUCLEAN; 925 } 926 927 if (unlikely((type & BTRFS_BLOCK_GROUP_SYSTEM) && 928 (type & (BTRFS_BLOCK_GROUP_METADATA | 929 BTRFS_BLOCK_GROUP_DATA)))) { 930 chunk_err(leaf, chunk, logical, 931 "system chunk with data or metadata type: 0x%llx", 932 type); 933 return -EUCLEAN; 934 } 935 936 features = btrfs_super_incompat_flags(fs_info->super_copy); 937 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 938 mixed = true; 939 940 if (!mixed) { 941 if (unlikely((type & BTRFS_BLOCK_GROUP_METADATA) && 942 (type & BTRFS_BLOCK_GROUP_DATA))) { 943 chunk_err(leaf, chunk, logical, 944 "mixed chunk type in non-mixed mode: 0x%llx", type); 945 return -EUCLEAN; 946 } 947 } 948 949 if (unlikely((type & BTRFS_BLOCK_GROUP_RAID10 && 950 sub_stripes != btrfs_raid_array[BTRFS_RAID_RAID10].sub_stripes) || 951 (type & BTRFS_BLOCK_GROUP_RAID1 && 952 num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1].devs_min) || 953 (type & BTRFS_BLOCK_GROUP_RAID1C3 && 954 num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C3].devs_min) || 955 (type & BTRFS_BLOCK_GROUP_RAID1C4 && 956 num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C4].devs_min) || 957 (type & BTRFS_BLOCK_GROUP_RAID5 && 958 num_stripes < btrfs_raid_array[BTRFS_RAID_RAID5].devs_min) || 959 (type & BTRFS_BLOCK_GROUP_RAID6 && 960 num_stripes < btrfs_raid_array[BTRFS_RAID_RAID6].devs_min) || 961 (type & BTRFS_BLOCK_GROUP_DUP && 962 num_stripes != btrfs_raid_array[BTRFS_RAID_DUP].dev_stripes) || 963 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 && 964 num_stripes != btrfs_raid_array[BTRFS_RAID_SINGLE].dev_stripes))) { 965 chunk_err(leaf, chunk, logical, 966 "invalid num_stripes:sub_stripes %u:%u for profile %llu", 967 num_stripes, sub_stripes, 968 type & BTRFS_BLOCK_GROUP_PROFILE_MASK); 969 return -EUCLEAN; 970 } 971 972 return 0; 973 } 974 975 /* 976 * Enhanced version of chunk item checker. 977 * 978 * The common btrfs_check_chunk_valid() doesn't check item size since it needs 979 * to work on super block sys_chunk_array which doesn't have full item ptr. 980 */ 981 static int check_leaf_chunk_item(struct extent_buffer *leaf, 982 struct btrfs_chunk *chunk, 983 struct btrfs_key *key, int slot) 984 { 985 int num_stripes; 986 987 if (unlikely(btrfs_item_size(leaf, slot) < sizeof(struct btrfs_chunk))) { 988 chunk_err(leaf, chunk, key->offset, 989 "invalid chunk item size: have %u expect [%zu, %u)", 990 btrfs_item_size(leaf, slot), 991 sizeof(struct btrfs_chunk), 992 BTRFS_LEAF_DATA_SIZE(leaf->fs_info)); 993 return -EUCLEAN; 994 } 995 996 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 997 /* Let btrfs_check_chunk_valid() handle this error type */ 998 if (num_stripes == 0) 999 goto out; 1000 1001 if (unlikely(btrfs_chunk_item_size(num_stripes) != 1002 btrfs_item_size(leaf, slot))) { 1003 chunk_err(leaf, chunk, key->offset, 1004 "invalid chunk item size: have %u expect %lu", 1005 btrfs_item_size(leaf, slot), 1006 btrfs_chunk_item_size(num_stripes)); 1007 return -EUCLEAN; 1008 } 1009 out: 1010 return btrfs_check_chunk_valid(leaf, chunk, key->offset); 1011 } 1012 1013 __printf(3, 4) 1014 __cold 1015 static void dev_item_err(const struct extent_buffer *eb, int slot, 1016 const char *fmt, ...) 1017 { 1018 struct btrfs_key key; 1019 struct va_format vaf; 1020 va_list args; 1021 1022 btrfs_item_key_to_cpu(eb, &key, slot); 1023 va_start(args, fmt); 1024 1025 vaf.fmt = fmt; 1026 vaf.va = &args; 1027 1028 dump_page(folio_page(eb->folios[0], 0), "eb page dump"); 1029 btrfs_crit(eb->fs_info, 1030 "corrupt %s: root=%llu block=%llu slot=%d devid=%llu %pV", 1031 btrfs_header_level(eb) == 0 ? "leaf" : "node", 1032 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, 1033 key.objectid, &vaf); 1034 va_end(args); 1035 } 1036 1037 static int check_dev_item(struct extent_buffer *leaf, 1038 struct btrfs_key *key, int slot) 1039 { 1040 struct btrfs_dev_item *ditem; 1041 const u32 item_size = btrfs_item_size(leaf, slot); 1042 1043 if (unlikely(key->objectid != BTRFS_DEV_ITEMS_OBJECTID)) { 1044 dev_item_err(leaf, slot, 1045 "invalid objectid: has=%llu expect=%llu", 1046 key->objectid, BTRFS_DEV_ITEMS_OBJECTID); 1047 return -EUCLEAN; 1048 } 1049 1050 if (unlikely(item_size != sizeof(*ditem))) { 1051 dev_item_err(leaf, slot, "invalid item size: has %u expect %zu", 1052 item_size, sizeof(*ditem)); 1053 return -EUCLEAN; 1054 } 1055 1056 ditem = btrfs_item_ptr(leaf, slot, struct btrfs_dev_item); 1057 if (unlikely(btrfs_device_id(leaf, ditem) != key->offset)) { 1058 dev_item_err(leaf, slot, 1059 "devid mismatch: key has=%llu item has=%llu", 1060 key->offset, btrfs_device_id(leaf, ditem)); 1061 return -EUCLEAN; 1062 } 1063 1064 /* 1065 * For device total_bytes, we don't have reliable way to check it, as 1066 * it can be 0 for device removal. Device size check can only be done 1067 * by dev extents check. 1068 */ 1069 if (unlikely(btrfs_device_bytes_used(leaf, ditem) > 1070 btrfs_device_total_bytes(leaf, ditem))) { 1071 dev_item_err(leaf, slot, 1072 "invalid bytes used: have %llu expect [0, %llu]", 1073 btrfs_device_bytes_used(leaf, ditem), 1074 btrfs_device_total_bytes(leaf, ditem)); 1075 return -EUCLEAN; 1076 } 1077 /* 1078 * Remaining members like io_align/type/gen/dev_group aren't really 1079 * utilized. Skip them to make later usage of them easier. 1080 */ 1081 return 0; 1082 } 1083 1084 static int check_inode_item(struct extent_buffer *leaf, 1085 struct btrfs_key *key, int slot) 1086 { 1087 struct btrfs_fs_info *fs_info = leaf->fs_info; 1088 struct btrfs_inode_item *iitem; 1089 u64 super_gen = btrfs_super_generation(fs_info->super_copy); 1090 u32 valid_mask = (S_IFMT | S_ISUID | S_ISGID | S_ISVTX | 0777); 1091 const u32 item_size = btrfs_item_size(leaf, slot); 1092 u32 mode; 1093 int ret; 1094 u32 flags; 1095 u32 ro_flags; 1096 1097 ret = check_inode_key(leaf, key, slot); 1098 if (unlikely(ret < 0)) 1099 return ret; 1100 1101 if (unlikely(item_size != sizeof(*iitem))) { 1102 generic_err(leaf, slot, "invalid item size: has %u expect %zu", 1103 item_size, sizeof(*iitem)); 1104 return -EUCLEAN; 1105 } 1106 1107 iitem = btrfs_item_ptr(leaf, slot, struct btrfs_inode_item); 1108 1109 /* Here we use super block generation + 1 to handle log tree */ 1110 if (unlikely(btrfs_inode_generation(leaf, iitem) > super_gen + 1)) { 1111 inode_item_err(leaf, slot, 1112 "invalid inode generation: has %llu expect (0, %llu]", 1113 btrfs_inode_generation(leaf, iitem), 1114 super_gen + 1); 1115 return -EUCLEAN; 1116 } 1117 /* Note for ROOT_TREE_DIR_ITEM, mkfs could set its transid 0 */ 1118 if (unlikely(btrfs_inode_transid(leaf, iitem) > super_gen + 1)) { 1119 inode_item_err(leaf, slot, 1120 "invalid inode transid: has %llu expect [0, %llu]", 1121 btrfs_inode_transid(leaf, iitem), super_gen + 1); 1122 return -EUCLEAN; 1123 } 1124 1125 /* 1126 * For size and nbytes it's better not to be too strict, as for dir 1127 * item its size/nbytes can easily get wrong, but doesn't affect 1128 * anything in the fs. So here we skip the check. 1129 */ 1130 mode = btrfs_inode_mode(leaf, iitem); 1131 if (unlikely(mode & ~valid_mask)) { 1132 inode_item_err(leaf, slot, 1133 "unknown mode bit detected: 0x%x", 1134 mode & ~valid_mask); 1135 return -EUCLEAN; 1136 } 1137 1138 /* 1139 * S_IFMT is not bit mapped so we can't completely rely on 1140 * is_power_of_2/has_single_bit_set, but it can save us from checking 1141 * FIFO/CHR/DIR/REG. Only needs to check BLK, LNK and SOCKS 1142 */ 1143 if (!has_single_bit_set(mode & S_IFMT)) { 1144 if (unlikely(!S_ISLNK(mode) && !S_ISBLK(mode) && !S_ISSOCK(mode))) { 1145 inode_item_err(leaf, slot, 1146 "invalid mode: has 0%o expect valid S_IF* bit(s)", 1147 mode & S_IFMT); 1148 return -EUCLEAN; 1149 } 1150 } 1151 if (unlikely(S_ISDIR(mode) && btrfs_inode_nlink(leaf, iitem) > 1)) { 1152 inode_item_err(leaf, slot, 1153 "invalid nlink: has %u expect no more than 1 for dir", 1154 btrfs_inode_nlink(leaf, iitem)); 1155 return -EUCLEAN; 1156 } 1157 btrfs_inode_split_flags(btrfs_inode_flags(leaf, iitem), &flags, &ro_flags); 1158 if (unlikely(flags & ~BTRFS_INODE_FLAG_MASK)) { 1159 inode_item_err(leaf, slot, 1160 "unknown incompat flags detected: 0x%x", flags); 1161 return -EUCLEAN; 1162 } 1163 if (unlikely(!sb_rdonly(fs_info->sb) && 1164 (ro_flags & ~BTRFS_INODE_RO_FLAG_MASK))) { 1165 inode_item_err(leaf, slot, 1166 "unknown ro-compat flags detected on writeable mount: 0x%x", 1167 ro_flags); 1168 return -EUCLEAN; 1169 } 1170 return 0; 1171 } 1172 1173 static int check_root_item(struct extent_buffer *leaf, struct btrfs_key *key, 1174 int slot) 1175 { 1176 struct btrfs_fs_info *fs_info = leaf->fs_info; 1177 struct btrfs_root_item ri = { 0 }; 1178 const u64 valid_root_flags = BTRFS_ROOT_SUBVOL_RDONLY | 1179 BTRFS_ROOT_SUBVOL_DEAD; 1180 int ret; 1181 1182 ret = check_root_key(leaf, key, slot); 1183 if (unlikely(ret < 0)) 1184 return ret; 1185 1186 if (unlikely(btrfs_item_size(leaf, slot) != sizeof(ri) && 1187 btrfs_item_size(leaf, slot) != 1188 btrfs_legacy_root_item_size())) { 1189 generic_err(leaf, slot, 1190 "invalid root item size, have %u expect %zu or %u", 1191 btrfs_item_size(leaf, slot), sizeof(ri), 1192 btrfs_legacy_root_item_size()); 1193 return -EUCLEAN; 1194 } 1195 1196 /* 1197 * For legacy root item, the members starting at generation_v2 will be 1198 * all filled with 0. 1199 * And since we allow geneartion_v2 as 0, it will still pass the check. 1200 */ 1201 read_extent_buffer(leaf, &ri, btrfs_item_ptr_offset(leaf, slot), 1202 btrfs_item_size(leaf, slot)); 1203 1204 /* Generation related */ 1205 if (unlikely(btrfs_root_generation(&ri) > 1206 btrfs_super_generation(fs_info->super_copy) + 1)) { 1207 generic_err(leaf, slot, 1208 "invalid root generation, have %llu expect (0, %llu]", 1209 btrfs_root_generation(&ri), 1210 btrfs_super_generation(fs_info->super_copy) + 1); 1211 return -EUCLEAN; 1212 } 1213 if (unlikely(btrfs_root_generation_v2(&ri) > 1214 btrfs_super_generation(fs_info->super_copy) + 1)) { 1215 generic_err(leaf, slot, 1216 "invalid root v2 generation, have %llu expect (0, %llu]", 1217 btrfs_root_generation_v2(&ri), 1218 btrfs_super_generation(fs_info->super_copy) + 1); 1219 return -EUCLEAN; 1220 } 1221 if (unlikely(btrfs_root_last_snapshot(&ri) > 1222 btrfs_super_generation(fs_info->super_copy) + 1)) { 1223 generic_err(leaf, slot, 1224 "invalid root last_snapshot, have %llu expect (0, %llu]", 1225 btrfs_root_last_snapshot(&ri), 1226 btrfs_super_generation(fs_info->super_copy) + 1); 1227 return -EUCLEAN; 1228 } 1229 1230 /* Alignment and level check */ 1231 if (unlikely(!IS_ALIGNED(btrfs_root_bytenr(&ri), fs_info->sectorsize))) { 1232 generic_err(leaf, slot, 1233 "invalid root bytenr, have %llu expect to be aligned to %u", 1234 btrfs_root_bytenr(&ri), fs_info->sectorsize); 1235 return -EUCLEAN; 1236 } 1237 if (unlikely(btrfs_root_level(&ri) >= BTRFS_MAX_LEVEL)) { 1238 generic_err(leaf, slot, 1239 "invalid root level, have %u expect [0, %u]", 1240 btrfs_root_level(&ri), BTRFS_MAX_LEVEL - 1); 1241 return -EUCLEAN; 1242 } 1243 if (unlikely(btrfs_root_drop_level(&ri) >= BTRFS_MAX_LEVEL)) { 1244 generic_err(leaf, slot, 1245 "invalid root level, have %u expect [0, %u]", 1246 btrfs_root_drop_level(&ri), BTRFS_MAX_LEVEL - 1); 1247 return -EUCLEAN; 1248 } 1249 1250 /* Flags check */ 1251 if (unlikely(btrfs_root_flags(&ri) & ~valid_root_flags)) { 1252 generic_err(leaf, slot, 1253 "invalid root flags, have 0x%llx expect mask 0x%llx", 1254 btrfs_root_flags(&ri), valid_root_flags); 1255 return -EUCLEAN; 1256 } 1257 return 0; 1258 } 1259 1260 __printf(3,4) 1261 __cold 1262 static void extent_err(const struct extent_buffer *eb, int slot, 1263 const char *fmt, ...) 1264 { 1265 struct btrfs_key key; 1266 struct va_format vaf; 1267 va_list args; 1268 u64 bytenr; 1269 u64 len; 1270 1271 btrfs_item_key_to_cpu(eb, &key, slot); 1272 bytenr = key.objectid; 1273 if (key.type == BTRFS_METADATA_ITEM_KEY || 1274 key.type == BTRFS_TREE_BLOCK_REF_KEY || 1275 key.type == BTRFS_SHARED_BLOCK_REF_KEY) 1276 len = eb->fs_info->nodesize; 1277 else 1278 len = key.offset; 1279 va_start(args, fmt); 1280 1281 vaf.fmt = fmt; 1282 vaf.va = &args; 1283 1284 dump_page(folio_page(eb->folios[0], 0), "eb page dump"); 1285 btrfs_crit(eb->fs_info, 1286 "corrupt %s: block=%llu slot=%d extent bytenr=%llu len=%llu %pV", 1287 btrfs_header_level(eb) == 0 ? "leaf" : "node", 1288 eb->start, slot, bytenr, len, &vaf); 1289 va_end(args); 1290 } 1291 1292 static int check_extent_item(struct extent_buffer *leaf, 1293 struct btrfs_key *key, int slot, 1294 struct btrfs_key *prev_key) 1295 { 1296 struct btrfs_fs_info *fs_info = leaf->fs_info; 1297 struct btrfs_extent_item *ei; 1298 bool is_tree_block = false; 1299 unsigned long ptr; /* Current pointer inside inline refs */ 1300 unsigned long end; /* Extent item end */ 1301 const u32 item_size = btrfs_item_size(leaf, slot); 1302 u8 last_type = 0; 1303 u64 last_seq = U64_MAX; 1304 u64 flags; 1305 u64 generation; 1306 u64 total_refs; /* Total refs in btrfs_extent_item */ 1307 u64 inline_refs = 0; /* found total inline refs */ 1308 1309 if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY && 1310 !btrfs_fs_incompat(fs_info, SKINNY_METADATA))) { 1311 generic_err(leaf, slot, 1312 "invalid key type, METADATA_ITEM type invalid when SKINNY_METADATA feature disabled"); 1313 return -EUCLEAN; 1314 } 1315 /* key->objectid is the bytenr for both key types */ 1316 if (unlikely(!IS_ALIGNED(key->objectid, fs_info->sectorsize))) { 1317 generic_err(leaf, slot, 1318 "invalid key objectid, have %llu expect to be aligned to %u", 1319 key->objectid, fs_info->sectorsize); 1320 return -EUCLEAN; 1321 } 1322 1323 /* key->offset is tree level for METADATA_ITEM_KEY */ 1324 if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY && 1325 key->offset >= BTRFS_MAX_LEVEL)) { 1326 extent_err(leaf, slot, 1327 "invalid tree level, have %llu expect [0, %u]", 1328 key->offset, BTRFS_MAX_LEVEL - 1); 1329 return -EUCLEAN; 1330 } 1331 1332 /* 1333 * EXTENT/METADATA_ITEM consists of: 1334 * 1) One btrfs_extent_item 1335 * Records the total refs, type and generation of the extent. 1336 * 1337 * 2) One btrfs_tree_block_info (for EXTENT_ITEM and tree backref only) 1338 * Records the first key and level of the tree block. 1339 * 1340 * 2) Zero or more btrfs_extent_inline_ref(s) 1341 * Each inline ref has one btrfs_extent_inline_ref shows: 1342 * 2.1) The ref type, one of the 4 1343 * TREE_BLOCK_REF Tree block only 1344 * SHARED_BLOCK_REF Tree block only 1345 * EXTENT_DATA_REF Data only 1346 * SHARED_DATA_REF Data only 1347 * 2.2) Ref type specific data 1348 * Either using btrfs_extent_inline_ref::offset, or specific 1349 * data structure. 1350 * 1351 * All above inline items should follow the order: 1352 * 1353 * - All btrfs_extent_inline_ref::type should be in an ascending 1354 * order 1355 * 1356 * - Within the same type, the items should follow a descending 1357 * order by their sequence number. The sequence number is 1358 * determined by: 1359 * * btrfs_extent_inline_ref::offset for all types other than 1360 * EXTENT_DATA_REF 1361 * * hash_extent_data_ref() for EXTENT_DATA_REF 1362 */ 1363 if (unlikely(item_size < sizeof(*ei))) { 1364 extent_err(leaf, slot, 1365 "invalid item size, have %u expect [%zu, %u)", 1366 item_size, sizeof(*ei), 1367 BTRFS_LEAF_DATA_SIZE(fs_info)); 1368 return -EUCLEAN; 1369 } 1370 end = item_size + btrfs_item_ptr_offset(leaf, slot); 1371 1372 /* Checks against extent_item */ 1373 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 1374 flags = btrfs_extent_flags(leaf, ei); 1375 total_refs = btrfs_extent_refs(leaf, ei); 1376 generation = btrfs_extent_generation(leaf, ei); 1377 if (unlikely(generation > 1378 btrfs_super_generation(fs_info->super_copy) + 1)) { 1379 extent_err(leaf, slot, 1380 "invalid generation, have %llu expect (0, %llu]", 1381 generation, 1382 btrfs_super_generation(fs_info->super_copy) + 1); 1383 return -EUCLEAN; 1384 } 1385 if (unlikely(!has_single_bit_set(flags & (BTRFS_EXTENT_FLAG_DATA | 1386 BTRFS_EXTENT_FLAG_TREE_BLOCK)))) { 1387 extent_err(leaf, slot, 1388 "invalid extent flag, have 0x%llx expect 1 bit set in 0x%llx", 1389 flags, BTRFS_EXTENT_FLAG_DATA | 1390 BTRFS_EXTENT_FLAG_TREE_BLOCK); 1391 return -EUCLEAN; 1392 } 1393 is_tree_block = !!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK); 1394 if (is_tree_block) { 1395 if (unlikely(key->type == BTRFS_EXTENT_ITEM_KEY && 1396 key->offset != fs_info->nodesize)) { 1397 extent_err(leaf, slot, 1398 "invalid extent length, have %llu expect %u", 1399 key->offset, fs_info->nodesize); 1400 return -EUCLEAN; 1401 } 1402 } else { 1403 if (unlikely(key->type != BTRFS_EXTENT_ITEM_KEY)) { 1404 extent_err(leaf, slot, 1405 "invalid key type, have %u expect %u for data backref", 1406 key->type, BTRFS_EXTENT_ITEM_KEY); 1407 return -EUCLEAN; 1408 } 1409 if (unlikely(!IS_ALIGNED(key->offset, fs_info->sectorsize))) { 1410 extent_err(leaf, slot, 1411 "invalid extent length, have %llu expect aligned to %u", 1412 key->offset, fs_info->sectorsize); 1413 return -EUCLEAN; 1414 } 1415 if (unlikely(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 1416 extent_err(leaf, slot, 1417 "invalid extent flag, data has full backref set"); 1418 return -EUCLEAN; 1419 } 1420 } 1421 ptr = (unsigned long)(struct btrfs_extent_item *)(ei + 1); 1422 1423 /* Check the special case of btrfs_tree_block_info */ 1424 if (is_tree_block && key->type != BTRFS_METADATA_ITEM_KEY) { 1425 struct btrfs_tree_block_info *info; 1426 1427 info = (struct btrfs_tree_block_info *)ptr; 1428 if (unlikely(btrfs_tree_block_level(leaf, info) >= BTRFS_MAX_LEVEL)) { 1429 extent_err(leaf, slot, 1430 "invalid tree block info level, have %u expect [0, %u]", 1431 btrfs_tree_block_level(leaf, info), 1432 BTRFS_MAX_LEVEL - 1); 1433 return -EUCLEAN; 1434 } 1435 ptr = (unsigned long)(struct btrfs_tree_block_info *)(info + 1); 1436 } 1437 1438 /* Check inline refs */ 1439 while (ptr < end) { 1440 struct btrfs_extent_inline_ref *iref; 1441 struct btrfs_extent_data_ref *dref; 1442 struct btrfs_shared_data_ref *sref; 1443 u64 seq; 1444 u64 dref_offset; 1445 u64 inline_offset; 1446 u8 inline_type; 1447 1448 if (unlikely(ptr + sizeof(*iref) > end)) { 1449 extent_err(leaf, slot, 1450 "inline ref item overflows extent item, ptr %lu iref size %zu end %lu", 1451 ptr, sizeof(*iref), end); 1452 return -EUCLEAN; 1453 } 1454 iref = (struct btrfs_extent_inline_ref *)ptr; 1455 inline_type = btrfs_extent_inline_ref_type(leaf, iref); 1456 inline_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1457 seq = inline_offset; 1458 if (unlikely(ptr + btrfs_extent_inline_ref_size(inline_type) > end)) { 1459 extent_err(leaf, slot, 1460 "inline ref item overflows extent item, ptr %lu iref size %u end %lu", 1461 ptr, btrfs_extent_inline_ref_size(inline_type), end); 1462 return -EUCLEAN; 1463 } 1464 1465 switch (inline_type) { 1466 /* inline_offset is subvolid of the owner, no need to check */ 1467 case BTRFS_TREE_BLOCK_REF_KEY: 1468 inline_refs++; 1469 break; 1470 /* Contains parent bytenr */ 1471 case BTRFS_SHARED_BLOCK_REF_KEY: 1472 if (unlikely(!IS_ALIGNED(inline_offset, 1473 fs_info->sectorsize))) { 1474 extent_err(leaf, slot, 1475 "invalid tree parent bytenr, have %llu expect aligned to %u", 1476 inline_offset, fs_info->sectorsize); 1477 return -EUCLEAN; 1478 } 1479 inline_refs++; 1480 break; 1481 /* 1482 * Contains owner subvolid, owner key objectid, adjusted offset. 1483 * The only obvious corruption can happen in that offset. 1484 */ 1485 case BTRFS_EXTENT_DATA_REF_KEY: 1486 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1487 dref_offset = btrfs_extent_data_ref_offset(leaf, dref); 1488 seq = hash_extent_data_ref( 1489 btrfs_extent_data_ref_root(leaf, dref), 1490 btrfs_extent_data_ref_objectid(leaf, dref), 1491 btrfs_extent_data_ref_offset(leaf, dref)); 1492 if (unlikely(!IS_ALIGNED(dref_offset, 1493 fs_info->sectorsize))) { 1494 extent_err(leaf, slot, 1495 "invalid data ref offset, have %llu expect aligned to %u", 1496 dref_offset, fs_info->sectorsize); 1497 return -EUCLEAN; 1498 } 1499 inline_refs += btrfs_extent_data_ref_count(leaf, dref); 1500 break; 1501 /* Contains parent bytenr and ref count */ 1502 case BTRFS_SHARED_DATA_REF_KEY: 1503 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1504 if (unlikely(!IS_ALIGNED(inline_offset, 1505 fs_info->sectorsize))) { 1506 extent_err(leaf, slot, 1507 "invalid data parent bytenr, have %llu expect aligned to %u", 1508 inline_offset, fs_info->sectorsize); 1509 return -EUCLEAN; 1510 } 1511 inline_refs += btrfs_shared_data_ref_count(leaf, sref); 1512 break; 1513 case BTRFS_EXTENT_OWNER_REF_KEY: 1514 WARN_ON(!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA)); 1515 break; 1516 default: 1517 extent_err(leaf, slot, "unknown inline ref type: %u", 1518 inline_type); 1519 return -EUCLEAN; 1520 } 1521 if (inline_type < last_type) { 1522 extent_err(leaf, slot, 1523 "inline ref out-of-order: has type %u, prev type %u", 1524 inline_type, last_type); 1525 return -EUCLEAN; 1526 } 1527 /* Type changed, allow the sequence starts from U64_MAX again. */ 1528 if (inline_type > last_type) 1529 last_seq = U64_MAX; 1530 if (seq > last_seq) { 1531 extent_err(leaf, slot, 1532 "inline ref out-of-order: has type %u offset %llu seq 0x%llx, prev type %u seq 0x%llx", 1533 inline_type, inline_offset, seq, 1534 last_type, last_seq); 1535 return -EUCLEAN; 1536 } 1537 last_type = inline_type; 1538 last_seq = seq; 1539 ptr += btrfs_extent_inline_ref_size(inline_type); 1540 } 1541 /* No padding is allowed */ 1542 if (unlikely(ptr != end)) { 1543 extent_err(leaf, slot, 1544 "invalid extent item size, padding bytes found"); 1545 return -EUCLEAN; 1546 } 1547 1548 /* Finally, check the inline refs against total refs */ 1549 if (unlikely(inline_refs > total_refs)) { 1550 extent_err(leaf, slot, 1551 "invalid extent refs, have %llu expect >= inline %llu", 1552 total_refs, inline_refs); 1553 return -EUCLEAN; 1554 } 1555 1556 if ((prev_key->type == BTRFS_EXTENT_ITEM_KEY) || 1557 (prev_key->type == BTRFS_METADATA_ITEM_KEY)) { 1558 u64 prev_end = prev_key->objectid; 1559 1560 if (prev_key->type == BTRFS_METADATA_ITEM_KEY) 1561 prev_end += fs_info->nodesize; 1562 else 1563 prev_end += prev_key->offset; 1564 1565 if (unlikely(prev_end > key->objectid)) { 1566 extent_err(leaf, slot, 1567 "previous extent [%llu %u %llu] overlaps current extent [%llu %u %llu]", 1568 prev_key->objectid, prev_key->type, 1569 prev_key->offset, key->objectid, key->type, 1570 key->offset); 1571 return -EUCLEAN; 1572 } 1573 } 1574 1575 return 0; 1576 } 1577 1578 static int check_simple_keyed_refs(struct extent_buffer *leaf, 1579 struct btrfs_key *key, int slot) 1580 { 1581 u32 expect_item_size = 0; 1582 1583 if (key->type == BTRFS_SHARED_DATA_REF_KEY) 1584 expect_item_size = sizeof(struct btrfs_shared_data_ref); 1585 1586 if (unlikely(btrfs_item_size(leaf, slot) != expect_item_size)) { 1587 generic_err(leaf, slot, 1588 "invalid item size, have %u expect %u for key type %u", 1589 btrfs_item_size(leaf, slot), 1590 expect_item_size, key->type); 1591 return -EUCLEAN; 1592 } 1593 if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) { 1594 generic_err(leaf, slot, 1595 "invalid key objectid for shared block ref, have %llu expect aligned to %u", 1596 key->objectid, leaf->fs_info->sectorsize); 1597 return -EUCLEAN; 1598 } 1599 if (unlikely(key->type != BTRFS_TREE_BLOCK_REF_KEY && 1600 !IS_ALIGNED(key->offset, leaf->fs_info->sectorsize))) { 1601 extent_err(leaf, slot, 1602 "invalid tree parent bytenr, have %llu expect aligned to %u", 1603 key->offset, leaf->fs_info->sectorsize); 1604 return -EUCLEAN; 1605 } 1606 return 0; 1607 } 1608 1609 static int check_extent_data_ref(struct extent_buffer *leaf, 1610 struct btrfs_key *key, int slot) 1611 { 1612 struct btrfs_extent_data_ref *dref; 1613 unsigned long ptr = btrfs_item_ptr_offset(leaf, slot); 1614 const unsigned long end = ptr + btrfs_item_size(leaf, slot); 1615 1616 if (unlikely(btrfs_item_size(leaf, slot) % sizeof(*dref) != 0)) { 1617 generic_err(leaf, slot, 1618 "invalid item size, have %u expect aligned to %zu for key type %u", 1619 btrfs_item_size(leaf, slot), 1620 sizeof(*dref), key->type); 1621 return -EUCLEAN; 1622 } 1623 if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) { 1624 generic_err(leaf, slot, 1625 "invalid key objectid for shared block ref, have %llu expect aligned to %u", 1626 key->objectid, leaf->fs_info->sectorsize); 1627 return -EUCLEAN; 1628 } 1629 for (; ptr < end; ptr += sizeof(*dref)) { 1630 u64 offset; 1631 1632 /* 1633 * We cannot check the extent_data_ref hash due to possible 1634 * overflow from the leaf due to hash collisions. 1635 */ 1636 dref = (struct btrfs_extent_data_ref *)ptr; 1637 offset = btrfs_extent_data_ref_offset(leaf, dref); 1638 if (unlikely(!IS_ALIGNED(offset, leaf->fs_info->sectorsize))) { 1639 extent_err(leaf, slot, 1640 "invalid extent data backref offset, have %llu expect aligned to %u", 1641 offset, leaf->fs_info->sectorsize); 1642 return -EUCLEAN; 1643 } 1644 } 1645 return 0; 1646 } 1647 1648 #define inode_ref_err(eb, slot, fmt, args...) \ 1649 inode_item_err(eb, slot, fmt, ##args) 1650 static int check_inode_ref(struct extent_buffer *leaf, 1651 struct btrfs_key *key, struct btrfs_key *prev_key, 1652 int slot) 1653 { 1654 struct btrfs_inode_ref *iref; 1655 unsigned long ptr; 1656 unsigned long end; 1657 1658 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key))) 1659 return -EUCLEAN; 1660 /* namelen can't be 0, so item_size == sizeof() is also invalid */ 1661 if (unlikely(btrfs_item_size(leaf, slot) <= sizeof(*iref))) { 1662 inode_ref_err(leaf, slot, 1663 "invalid item size, have %u expect (%zu, %u)", 1664 btrfs_item_size(leaf, slot), 1665 sizeof(*iref), BTRFS_LEAF_DATA_SIZE(leaf->fs_info)); 1666 return -EUCLEAN; 1667 } 1668 1669 ptr = btrfs_item_ptr_offset(leaf, slot); 1670 end = ptr + btrfs_item_size(leaf, slot); 1671 while (ptr < end) { 1672 u16 namelen; 1673 1674 if (unlikely(ptr + sizeof(iref) > end)) { 1675 inode_ref_err(leaf, slot, 1676 "inode ref overflow, ptr %lu end %lu inode_ref_size %zu", 1677 ptr, end, sizeof(iref)); 1678 return -EUCLEAN; 1679 } 1680 1681 iref = (struct btrfs_inode_ref *)ptr; 1682 namelen = btrfs_inode_ref_name_len(leaf, iref); 1683 if (unlikely(ptr + sizeof(*iref) + namelen > end)) { 1684 inode_ref_err(leaf, slot, 1685 "inode ref overflow, ptr %lu end %lu namelen %u", 1686 ptr, end, namelen); 1687 return -EUCLEAN; 1688 } 1689 1690 /* 1691 * NOTE: In theory we should record all found index numbers 1692 * to find any duplicated indexes, but that will be too time 1693 * consuming for inodes with too many hard links. 1694 */ 1695 ptr += sizeof(*iref) + namelen; 1696 } 1697 return 0; 1698 } 1699 1700 static int check_raid_stripe_extent(const struct extent_buffer *leaf, 1701 const struct btrfs_key *key, int slot) 1702 { 1703 if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) { 1704 generic_err(leaf, slot, 1705 "invalid key objectid for raid stripe extent, have %llu expect aligned to %u", 1706 key->objectid, leaf->fs_info->sectorsize); 1707 return -EUCLEAN; 1708 } 1709 1710 if (unlikely(!btrfs_fs_incompat(leaf->fs_info, RAID_STRIPE_TREE))) { 1711 generic_err(leaf, slot, 1712 "RAID_STRIPE_EXTENT present but RAID_STRIPE_TREE incompat bit unset"); 1713 return -EUCLEAN; 1714 } 1715 1716 return 0; 1717 } 1718 1719 /* 1720 * Common point to switch the item-specific validation. 1721 */ 1722 static enum btrfs_tree_block_status check_leaf_item(struct extent_buffer *leaf, 1723 struct btrfs_key *key, 1724 int slot, 1725 struct btrfs_key *prev_key) 1726 { 1727 int ret = 0; 1728 struct btrfs_chunk *chunk; 1729 1730 switch (key->type) { 1731 case BTRFS_EXTENT_DATA_KEY: 1732 ret = check_extent_data_item(leaf, key, slot, prev_key); 1733 break; 1734 case BTRFS_EXTENT_CSUM_KEY: 1735 ret = check_csum_item(leaf, key, slot, prev_key); 1736 break; 1737 case BTRFS_DIR_ITEM_KEY: 1738 case BTRFS_DIR_INDEX_KEY: 1739 case BTRFS_XATTR_ITEM_KEY: 1740 ret = check_dir_item(leaf, key, prev_key, slot); 1741 break; 1742 case BTRFS_INODE_REF_KEY: 1743 ret = check_inode_ref(leaf, key, prev_key, slot); 1744 break; 1745 case BTRFS_BLOCK_GROUP_ITEM_KEY: 1746 ret = check_block_group_item(leaf, key, slot); 1747 break; 1748 case BTRFS_CHUNK_ITEM_KEY: 1749 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 1750 ret = check_leaf_chunk_item(leaf, chunk, key, slot); 1751 break; 1752 case BTRFS_DEV_ITEM_KEY: 1753 ret = check_dev_item(leaf, key, slot); 1754 break; 1755 case BTRFS_INODE_ITEM_KEY: 1756 ret = check_inode_item(leaf, key, slot); 1757 break; 1758 case BTRFS_ROOT_ITEM_KEY: 1759 ret = check_root_item(leaf, key, slot); 1760 break; 1761 case BTRFS_EXTENT_ITEM_KEY: 1762 case BTRFS_METADATA_ITEM_KEY: 1763 ret = check_extent_item(leaf, key, slot, prev_key); 1764 break; 1765 case BTRFS_TREE_BLOCK_REF_KEY: 1766 case BTRFS_SHARED_DATA_REF_KEY: 1767 case BTRFS_SHARED_BLOCK_REF_KEY: 1768 ret = check_simple_keyed_refs(leaf, key, slot); 1769 break; 1770 case BTRFS_EXTENT_DATA_REF_KEY: 1771 ret = check_extent_data_ref(leaf, key, slot); 1772 break; 1773 case BTRFS_RAID_STRIPE_KEY: 1774 ret = check_raid_stripe_extent(leaf, key, slot); 1775 break; 1776 } 1777 1778 if (ret) 1779 return BTRFS_TREE_BLOCK_INVALID_ITEM; 1780 return BTRFS_TREE_BLOCK_CLEAN; 1781 } 1782 1783 enum btrfs_tree_block_status __btrfs_check_leaf(struct extent_buffer *leaf) 1784 { 1785 struct btrfs_fs_info *fs_info = leaf->fs_info; 1786 /* No valid key type is 0, so all key should be larger than this key */ 1787 struct btrfs_key prev_key = {0, 0, 0}; 1788 struct btrfs_key key; 1789 u32 nritems = btrfs_header_nritems(leaf); 1790 int slot; 1791 1792 if (unlikely(btrfs_header_level(leaf) != 0)) { 1793 generic_err(leaf, 0, 1794 "invalid level for leaf, have %d expect 0", 1795 btrfs_header_level(leaf)); 1796 return BTRFS_TREE_BLOCK_INVALID_LEVEL; 1797 } 1798 1799 if (unlikely(!btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_WRITTEN))) { 1800 generic_err(leaf, 0, "invalid flag for leaf, WRITTEN not set"); 1801 return BTRFS_TREE_BLOCK_WRITTEN_NOT_SET; 1802 } 1803 1804 /* 1805 * Extent buffers from a relocation tree have a owner field that 1806 * corresponds to the subvolume tree they are based on. So just from an 1807 * extent buffer alone we can not find out what is the id of the 1808 * corresponding subvolume tree, so we can not figure out if the extent 1809 * buffer corresponds to the root of the relocation tree or not. So 1810 * skip this check for relocation trees. 1811 */ 1812 if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) { 1813 u64 owner = btrfs_header_owner(leaf); 1814 1815 /* These trees must never be empty */ 1816 if (unlikely(owner == BTRFS_ROOT_TREE_OBJECTID || 1817 owner == BTRFS_CHUNK_TREE_OBJECTID || 1818 owner == BTRFS_DEV_TREE_OBJECTID || 1819 owner == BTRFS_FS_TREE_OBJECTID || 1820 owner == BTRFS_DATA_RELOC_TREE_OBJECTID)) { 1821 generic_err(leaf, 0, 1822 "invalid root, root %llu must never be empty", 1823 owner); 1824 return BTRFS_TREE_BLOCK_INVALID_NRITEMS; 1825 } 1826 1827 /* Unknown tree */ 1828 if (unlikely(owner == 0)) { 1829 generic_err(leaf, 0, 1830 "invalid owner, root 0 is not defined"); 1831 return BTRFS_TREE_BLOCK_INVALID_OWNER; 1832 } 1833 1834 /* EXTENT_TREE_V2 can have empty extent trees. */ 1835 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 1836 return BTRFS_TREE_BLOCK_CLEAN; 1837 1838 if (unlikely(owner == BTRFS_EXTENT_TREE_OBJECTID)) { 1839 generic_err(leaf, 0, 1840 "invalid root, root %llu must never be empty", 1841 owner); 1842 return BTRFS_TREE_BLOCK_INVALID_NRITEMS; 1843 } 1844 1845 return BTRFS_TREE_BLOCK_CLEAN; 1846 } 1847 1848 if (unlikely(nritems == 0)) 1849 return BTRFS_TREE_BLOCK_CLEAN; 1850 1851 /* 1852 * Check the following things to make sure this is a good leaf, and 1853 * leaf users won't need to bother with similar sanity checks: 1854 * 1855 * 1) key ordering 1856 * 2) item offset and size 1857 * No overlap, no hole, all inside the leaf. 1858 * 3) item content 1859 * If possible, do comprehensive sanity check. 1860 * NOTE: All checks must only rely on the item data itself. 1861 */ 1862 for (slot = 0; slot < nritems; slot++) { 1863 u32 item_end_expected; 1864 u64 item_data_end; 1865 enum btrfs_tree_block_status ret; 1866 1867 btrfs_item_key_to_cpu(leaf, &key, slot); 1868 1869 /* Make sure the keys are in the right order */ 1870 if (unlikely(btrfs_comp_cpu_keys(&prev_key, &key) >= 0)) { 1871 generic_err(leaf, slot, 1872 "bad key order, prev (%llu %u %llu) current (%llu %u %llu)", 1873 prev_key.objectid, prev_key.type, 1874 prev_key.offset, key.objectid, key.type, 1875 key.offset); 1876 return BTRFS_TREE_BLOCK_BAD_KEY_ORDER; 1877 } 1878 1879 item_data_end = (u64)btrfs_item_offset(leaf, slot) + 1880 btrfs_item_size(leaf, slot); 1881 /* 1882 * Make sure the offset and ends are right, remember that the 1883 * item data starts at the end of the leaf and grows towards the 1884 * front. 1885 */ 1886 if (slot == 0) 1887 item_end_expected = BTRFS_LEAF_DATA_SIZE(fs_info); 1888 else 1889 item_end_expected = btrfs_item_offset(leaf, 1890 slot - 1); 1891 if (unlikely(item_data_end != item_end_expected)) { 1892 generic_err(leaf, slot, 1893 "unexpected item end, have %llu expect %u", 1894 item_data_end, item_end_expected); 1895 return BTRFS_TREE_BLOCK_INVALID_OFFSETS; 1896 } 1897 1898 /* 1899 * Check to make sure that we don't point outside of the leaf, 1900 * just in case all the items are consistent to each other, but 1901 * all point outside of the leaf. 1902 */ 1903 if (unlikely(item_data_end > BTRFS_LEAF_DATA_SIZE(fs_info))) { 1904 generic_err(leaf, slot, 1905 "slot end outside of leaf, have %llu expect range [0, %u]", 1906 item_data_end, BTRFS_LEAF_DATA_SIZE(fs_info)); 1907 return BTRFS_TREE_BLOCK_INVALID_OFFSETS; 1908 } 1909 1910 /* Also check if the item pointer overlaps with btrfs item. */ 1911 if (unlikely(btrfs_item_ptr_offset(leaf, slot) < 1912 btrfs_item_nr_offset(leaf, slot) + sizeof(struct btrfs_item))) { 1913 generic_err(leaf, slot, 1914 "slot overlaps with its data, item end %lu data start %lu", 1915 btrfs_item_nr_offset(leaf, slot) + 1916 sizeof(struct btrfs_item), 1917 btrfs_item_ptr_offset(leaf, slot)); 1918 return BTRFS_TREE_BLOCK_INVALID_OFFSETS; 1919 } 1920 1921 /* Check if the item size and content meet other criteria. */ 1922 ret = check_leaf_item(leaf, &key, slot, &prev_key); 1923 if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN)) 1924 return ret; 1925 1926 prev_key.objectid = key.objectid; 1927 prev_key.type = key.type; 1928 prev_key.offset = key.offset; 1929 } 1930 1931 return BTRFS_TREE_BLOCK_CLEAN; 1932 } 1933 1934 int btrfs_check_leaf(struct extent_buffer *leaf) 1935 { 1936 enum btrfs_tree_block_status ret; 1937 1938 ret = __btrfs_check_leaf(leaf); 1939 if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN)) 1940 return -EUCLEAN; 1941 return 0; 1942 } 1943 ALLOW_ERROR_INJECTION(btrfs_check_leaf, ERRNO); 1944 1945 enum btrfs_tree_block_status __btrfs_check_node(struct extent_buffer *node) 1946 { 1947 struct btrfs_fs_info *fs_info = node->fs_info; 1948 unsigned long nr = btrfs_header_nritems(node); 1949 struct btrfs_key key, next_key; 1950 int slot; 1951 int level = btrfs_header_level(node); 1952 u64 bytenr; 1953 1954 if (unlikely(!btrfs_header_flag(node, BTRFS_HEADER_FLAG_WRITTEN))) { 1955 generic_err(node, 0, "invalid flag for node, WRITTEN not set"); 1956 return BTRFS_TREE_BLOCK_WRITTEN_NOT_SET; 1957 } 1958 1959 if (unlikely(level <= 0 || level >= BTRFS_MAX_LEVEL)) { 1960 generic_err(node, 0, 1961 "invalid level for node, have %d expect [1, %d]", 1962 level, BTRFS_MAX_LEVEL - 1); 1963 return BTRFS_TREE_BLOCK_INVALID_LEVEL; 1964 } 1965 if (unlikely(nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(fs_info))) { 1966 btrfs_crit(fs_info, 1967 "corrupt node: root=%llu block=%llu, nritems too %s, have %lu expect range [1,%u]", 1968 btrfs_header_owner(node), node->start, 1969 nr == 0 ? "small" : "large", nr, 1970 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 1971 return BTRFS_TREE_BLOCK_INVALID_NRITEMS; 1972 } 1973 1974 for (slot = 0; slot < nr - 1; slot++) { 1975 bytenr = btrfs_node_blockptr(node, slot); 1976 btrfs_node_key_to_cpu(node, &key, slot); 1977 btrfs_node_key_to_cpu(node, &next_key, slot + 1); 1978 1979 if (unlikely(!bytenr)) { 1980 generic_err(node, slot, 1981 "invalid NULL node pointer"); 1982 return BTRFS_TREE_BLOCK_INVALID_BLOCKPTR; 1983 } 1984 if (unlikely(!IS_ALIGNED(bytenr, fs_info->sectorsize))) { 1985 generic_err(node, slot, 1986 "unaligned pointer, have %llu should be aligned to %u", 1987 bytenr, fs_info->sectorsize); 1988 return BTRFS_TREE_BLOCK_INVALID_BLOCKPTR; 1989 } 1990 1991 if (unlikely(btrfs_comp_cpu_keys(&key, &next_key) >= 0)) { 1992 generic_err(node, slot, 1993 "bad key order, current (%llu %u %llu) next (%llu %u %llu)", 1994 key.objectid, key.type, key.offset, 1995 next_key.objectid, next_key.type, 1996 next_key.offset); 1997 return BTRFS_TREE_BLOCK_BAD_KEY_ORDER; 1998 } 1999 } 2000 return BTRFS_TREE_BLOCK_CLEAN; 2001 } 2002 2003 int btrfs_check_node(struct extent_buffer *node) 2004 { 2005 enum btrfs_tree_block_status ret; 2006 2007 ret = __btrfs_check_node(node); 2008 if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN)) 2009 return -EUCLEAN; 2010 return 0; 2011 } 2012 ALLOW_ERROR_INJECTION(btrfs_check_node, ERRNO); 2013 2014 int btrfs_check_eb_owner(const struct extent_buffer *eb, u64 root_owner) 2015 { 2016 const bool is_subvol = is_fstree(root_owner); 2017 const u64 eb_owner = btrfs_header_owner(eb); 2018 2019 /* 2020 * Skip dummy fs, as selftests don't create unique ebs for each dummy 2021 * root. 2022 */ 2023 if (btrfs_is_testing(eb->fs_info)) 2024 return 0; 2025 /* 2026 * There are several call sites (backref walking, qgroup, and data 2027 * reloc) passing 0 as @root_owner, as they are not holding the 2028 * tree root. In that case, we can not do a reliable ownership check, 2029 * so just exit. 2030 */ 2031 if (root_owner == 0) 2032 return 0; 2033 /* 2034 * These trees use key.offset as their owner, our callers don't have 2035 * the extra capacity to pass key.offset here. So we just skip them. 2036 */ 2037 if (root_owner == BTRFS_TREE_LOG_OBJECTID || 2038 root_owner == BTRFS_TREE_RELOC_OBJECTID) 2039 return 0; 2040 2041 if (!is_subvol) { 2042 /* For non-subvolume trees, the eb owner should match root owner */ 2043 if (unlikely(root_owner != eb_owner)) { 2044 btrfs_crit(eb->fs_info, 2045 "corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect %llu", 2046 btrfs_header_level(eb) == 0 ? "leaf" : "node", 2047 root_owner, btrfs_header_bytenr(eb), eb_owner, 2048 root_owner); 2049 return -EUCLEAN; 2050 } 2051 return 0; 2052 } 2053 2054 /* 2055 * For subvolume trees, owners can mismatch, but they should all belong 2056 * to subvolume trees. 2057 */ 2058 if (unlikely(is_subvol != is_fstree(eb_owner))) { 2059 btrfs_crit(eb->fs_info, 2060 "corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect [%llu, %llu]", 2061 btrfs_header_level(eb) == 0 ? "leaf" : "node", 2062 root_owner, btrfs_header_bytenr(eb), eb_owner, 2063 BTRFS_FIRST_FREE_OBJECTID, BTRFS_LAST_FREE_OBJECTID); 2064 return -EUCLEAN; 2065 } 2066 return 0; 2067 } 2068 2069 int btrfs_verify_level_key(struct extent_buffer *eb, int level, 2070 struct btrfs_key *first_key, u64 parent_transid) 2071 { 2072 struct btrfs_fs_info *fs_info = eb->fs_info; 2073 int found_level; 2074 struct btrfs_key found_key; 2075 int ret; 2076 2077 found_level = btrfs_header_level(eb); 2078 if (found_level != level) { 2079 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 2080 KERN_ERR "BTRFS: tree level check failed\n"); 2081 btrfs_err(fs_info, 2082 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", 2083 eb->start, level, found_level); 2084 return -EIO; 2085 } 2086 2087 if (!first_key) 2088 return 0; 2089 2090 /* 2091 * For live tree block (new tree blocks in current transaction), 2092 * we need proper lock context to avoid race, which is impossible here. 2093 * So we only checks tree blocks which is read from disk, whose 2094 * generation <= fs_info->last_trans_committed. 2095 */ 2096 if (btrfs_header_generation(eb) > btrfs_get_last_trans_committed(fs_info)) 2097 return 0; 2098 2099 /* We have @first_key, so this @eb must have at least one item */ 2100 if (btrfs_header_nritems(eb) == 0) { 2101 btrfs_err(fs_info, 2102 "invalid tree nritems, bytenr=%llu nritems=0 expect >0", 2103 eb->start); 2104 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 2105 return -EUCLEAN; 2106 } 2107 2108 if (found_level) 2109 btrfs_node_key_to_cpu(eb, &found_key, 0); 2110 else 2111 btrfs_item_key_to_cpu(eb, &found_key, 0); 2112 ret = btrfs_comp_cpu_keys(first_key, &found_key); 2113 2114 if (ret) { 2115 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 2116 KERN_ERR "BTRFS: tree first key check failed\n"); 2117 btrfs_err(fs_info, 2118 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 2119 eb->start, parent_transid, first_key->objectid, 2120 first_key->type, first_key->offset, 2121 found_key.objectid, found_key.type, 2122 found_key.offset); 2123 } 2124 return ret; 2125 } 2126