1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) Qu Wenruo 2017. All rights reserved. 4 */ 5 6 /* 7 * The module is used to catch unexpected/corrupted tree block data. 8 * Such behavior can be caused either by a fuzzed image or bugs. 9 * 10 * The objective is to do leaf/node validation checks when tree block is read 11 * from disk, and check *every* possible member, so other code won't 12 * need to checking them again. 13 * 14 * Due to the potential and unwanted damage, every checker needs to be 15 * carefully reviewed otherwise so it does not prevent mount of valid images. 16 */ 17 18 #include <linux/types.h> 19 #include <linux/stddef.h> 20 #include <linux/error-injection.h> 21 #include "messages.h" 22 #include "ctree.h" 23 #include "tree-checker.h" 24 #include "disk-io.h" 25 #include "compression.h" 26 #include "volumes.h" 27 #include "misc.h" 28 #include "fs.h" 29 #include "accessors.h" 30 #include "file-item.h" 31 #include "inode-item.h" 32 33 /* 34 * Error message should follow the following format: 35 * corrupt <type>: <identifier>, <reason>[, <bad_value>] 36 * 37 * @type: leaf or node 38 * @identifier: the necessary info to locate the leaf/node. 39 * It's recommended to decode key.objecitd/offset if it's 40 * meaningful. 41 * @reason: describe the error 42 * @bad_value: optional, it's recommended to output bad value and its 43 * expected value (range). 44 * 45 * Since comma is used to separate the components, only space is allowed 46 * inside each component. 47 */ 48 49 /* 50 * Append generic "corrupt leaf/node root=%llu block=%llu slot=%d: " to @fmt. 51 * Allows callers to customize the output. 52 */ 53 __printf(3, 4) 54 __cold 55 static void generic_err(const struct extent_buffer *eb, int slot, 56 const char *fmt, ...) 57 { 58 const struct btrfs_fs_info *fs_info = eb->fs_info; 59 struct va_format vaf; 60 va_list args; 61 62 va_start(args, fmt); 63 64 vaf.fmt = fmt; 65 vaf.va = &args; 66 67 btrfs_crit(fs_info, 68 "corrupt %s: root=%llu block=%llu slot=%d, %pV", 69 btrfs_header_level(eb) == 0 ? "leaf" : "node", 70 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, &vaf); 71 va_end(args); 72 } 73 74 /* 75 * Customized reporter for extent data item, since its key objectid and 76 * offset has its own meaning. 77 */ 78 __printf(3, 4) 79 __cold 80 static void file_extent_err(const struct extent_buffer *eb, int slot, 81 const char *fmt, ...) 82 { 83 const struct btrfs_fs_info *fs_info = eb->fs_info; 84 struct btrfs_key key; 85 struct va_format vaf; 86 va_list args; 87 88 btrfs_item_key_to_cpu(eb, &key, slot); 89 va_start(args, fmt); 90 91 vaf.fmt = fmt; 92 vaf.va = &args; 93 94 btrfs_crit(fs_info, 95 "corrupt %s: root=%llu block=%llu slot=%d ino=%llu file_offset=%llu, %pV", 96 btrfs_header_level(eb) == 0 ? "leaf" : "node", 97 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, 98 key.objectid, key.offset, &vaf); 99 va_end(args); 100 } 101 102 /* 103 * Return 0 if the btrfs_file_extent_##name is aligned to @alignment 104 * Else return 1 105 */ 106 #define CHECK_FE_ALIGNED(leaf, slot, fi, name, alignment) \ 107 ({ \ 108 if (unlikely(!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), \ 109 (alignment)))) \ 110 file_extent_err((leaf), (slot), \ 111 "invalid %s for file extent, have %llu, should be aligned to %u", \ 112 (#name), btrfs_file_extent_##name((leaf), (fi)), \ 113 (alignment)); \ 114 (!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), (alignment))); \ 115 }) 116 117 static u64 file_extent_end(struct extent_buffer *leaf, 118 struct btrfs_key *key, 119 struct btrfs_file_extent_item *extent) 120 { 121 u64 end; 122 u64 len; 123 124 if (btrfs_file_extent_type(leaf, extent) == BTRFS_FILE_EXTENT_INLINE) { 125 len = btrfs_file_extent_ram_bytes(leaf, extent); 126 end = ALIGN(key->offset + len, leaf->fs_info->sectorsize); 127 } else { 128 len = btrfs_file_extent_num_bytes(leaf, extent); 129 end = key->offset + len; 130 } 131 return end; 132 } 133 134 /* 135 * Customized report for dir_item, the only new important information is 136 * key->objectid, which represents inode number 137 */ 138 __printf(3, 4) 139 __cold 140 static void dir_item_err(const struct extent_buffer *eb, int slot, 141 const char *fmt, ...) 142 { 143 const struct btrfs_fs_info *fs_info = eb->fs_info; 144 struct btrfs_key key; 145 struct va_format vaf; 146 va_list args; 147 148 btrfs_item_key_to_cpu(eb, &key, slot); 149 va_start(args, fmt); 150 151 vaf.fmt = fmt; 152 vaf.va = &args; 153 154 btrfs_crit(fs_info, 155 "corrupt %s: root=%llu block=%llu slot=%d ino=%llu, %pV", 156 btrfs_header_level(eb) == 0 ? "leaf" : "node", 157 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, 158 key.objectid, &vaf); 159 va_end(args); 160 } 161 162 /* 163 * This functions checks prev_key->objectid, to ensure current key and prev_key 164 * share the same objectid as inode number. 165 * 166 * This is to detect missing INODE_ITEM in subvolume trees. 167 * 168 * Return true if everything is OK or we don't need to check. 169 * Return false if anything is wrong. 170 */ 171 static bool check_prev_ino(struct extent_buffer *leaf, 172 struct btrfs_key *key, int slot, 173 struct btrfs_key *prev_key) 174 { 175 /* No prev key, skip check */ 176 if (slot == 0) 177 return true; 178 179 /* Only these key->types needs to be checked */ 180 ASSERT(key->type == BTRFS_XATTR_ITEM_KEY || 181 key->type == BTRFS_INODE_REF_KEY || 182 key->type == BTRFS_DIR_INDEX_KEY || 183 key->type == BTRFS_DIR_ITEM_KEY || 184 key->type == BTRFS_EXTENT_DATA_KEY); 185 186 /* 187 * Only subvolume trees along with their reloc trees need this check. 188 * Things like log tree doesn't follow this ino requirement. 189 */ 190 if (!is_fstree(btrfs_header_owner(leaf))) 191 return true; 192 193 if (key->objectid == prev_key->objectid) 194 return true; 195 196 /* Error found */ 197 dir_item_err(leaf, slot, 198 "invalid previous key objectid, have %llu expect %llu", 199 prev_key->objectid, key->objectid); 200 return false; 201 } 202 static int check_extent_data_item(struct extent_buffer *leaf, 203 struct btrfs_key *key, int slot, 204 struct btrfs_key *prev_key) 205 { 206 struct btrfs_fs_info *fs_info = leaf->fs_info; 207 struct btrfs_file_extent_item *fi; 208 u32 sectorsize = fs_info->sectorsize; 209 u32 item_size = btrfs_item_size(leaf, slot); 210 u64 extent_end; 211 212 if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) { 213 file_extent_err(leaf, slot, 214 "unaligned file_offset for file extent, have %llu should be aligned to %u", 215 key->offset, sectorsize); 216 return -EUCLEAN; 217 } 218 219 /* 220 * Previous key must have the same key->objectid (ino). 221 * It can be XATTR_ITEM, INODE_ITEM or just another EXTENT_DATA. 222 * But if objectids mismatch, it means we have a missing 223 * INODE_ITEM. 224 */ 225 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key))) 226 return -EUCLEAN; 227 228 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 229 230 /* 231 * Make sure the item contains at least inline header, so the file 232 * extent type is not some garbage. 233 */ 234 if (unlikely(item_size < BTRFS_FILE_EXTENT_INLINE_DATA_START)) { 235 file_extent_err(leaf, slot, 236 "invalid item size, have %u expect [%zu, %u)", 237 item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START, 238 SZ_4K); 239 return -EUCLEAN; 240 } 241 if (unlikely(btrfs_file_extent_type(leaf, fi) >= 242 BTRFS_NR_FILE_EXTENT_TYPES)) { 243 file_extent_err(leaf, slot, 244 "invalid type for file extent, have %u expect range [0, %u]", 245 btrfs_file_extent_type(leaf, fi), 246 BTRFS_NR_FILE_EXTENT_TYPES - 1); 247 return -EUCLEAN; 248 } 249 250 /* 251 * Support for new compression/encryption must introduce incompat flag, 252 * and must be caught in open_ctree(). 253 */ 254 if (unlikely(btrfs_file_extent_compression(leaf, fi) >= 255 BTRFS_NR_COMPRESS_TYPES)) { 256 file_extent_err(leaf, slot, 257 "invalid compression for file extent, have %u expect range [0, %u]", 258 btrfs_file_extent_compression(leaf, fi), 259 BTRFS_NR_COMPRESS_TYPES - 1); 260 return -EUCLEAN; 261 } 262 if (unlikely(btrfs_file_extent_encryption(leaf, fi))) { 263 file_extent_err(leaf, slot, 264 "invalid encryption for file extent, have %u expect 0", 265 btrfs_file_extent_encryption(leaf, fi)); 266 return -EUCLEAN; 267 } 268 if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) { 269 /* Inline extent must have 0 as key offset */ 270 if (unlikely(key->offset)) { 271 file_extent_err(leaf, slot, 272 "invalid file_offset for inline file extent, have %llu expect 0", 273 key->offset); 274 return -EUCLEAN; 275 } 276 277 /* Compressed inline extent has no on-disk size, skip it */ 278 if (btrfs_file_extent_compression(leaf, fi) != 279 BTRFS_COMPRESS_NONE) 280 return 0; 281 282 /* Uncompressed inline extent size must match item size */ 283 if (unlikely(item_size != BTRFS_FILE_EXTENT_INLINE_DATA_START + 284 btrfs_file_extent_ram_bytes(leaf, fi))) { 285 file_extent_err(leaf, slot, 286 "invalid ram_bytes for uncompressed inline extent, have %u expect %llu", 287 item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START + 288 btrfs_file_extent_ram_bytes(leaf, fi)); 289 return -EUCLEAN; 290 } 291 return 0; 292 } 293 294 /* Regular or preallocated extent has fixed item size */ 295 if (unlikely(item_size != sizeof(*fi))) { 296 file_extent_err(leaf, slot, 297 "invalid item size for reg/prealloc file extent, have %u expect %zu", 298 item_size, sizeof(*fi)); 299 return -EUCLEAN; 300 } 301 if (unlikely(CHECK_FE_ALIGNED(leaf, slot, fi, ram_bytes, sectorsize) || 302 CHECK_FE_ALIGNED(leaf, slot, fi, disk_bytenr, sectorsize) || 303 CHECK_FE_ALIGNED(leaf, slot, fi, disk_num_bytes, sectorsize) || 304 CHECK_FE_ALIGNED(leaf, slot, fi, offset, sectorsize) || 305 CHECK_FE_ALIGNED(leaf, slot, fi, num_bytes, sectorsize))) 306 return -EUCLEAN; 307 308 /* Catch extent end overflow */ 309 if (unlikely(check_add_overflow(btrfs_file_extent_num_bytes(leaf, fi), 310 key->offset, &extent_end))) { 311 file_extent_err(leaf, slot, 312 "extent end overflow, have file offset %llu extent num bytes %llu", 313 key->offset, 314 btrfs_file_extent_num_bytes(leaf, fi)); 315 return -EUCLEAN; 316 } 317 318 /* 319 * Check that no two consecutive file extent items, in the same leaf, 320 * present ranges that overlap each other. 321 */ 322 if (slot > 0 && 323 prev_key->objectid == key->objectid && 324 prev_key->type == BTRFS_EXTENT_DATA_KEY) { 325 struct btrfs_file_extent_item *prev_fi; 326 u64 prev_end; 327 328 prev_fi = btrfs_item_ptr(leaf, slot - 1, 329 struct btrfs_file_extent_item); 330 prev_end = file_extent_end(leaf, prev_key, prev_fi); 331 if (unlikely(prev_end > key->offset)) { 332 file_extent_err(leaf, slot - 1, 333 "file extent end range (%llu) goes beyond start offset (%llu) of the next file extent", 334 prev_end, key->offset); 335 return -EUCLEAN; 336 } 337 } 338 339 return 0; 340 } 341 342 static int check_csum_item(struct extent_buffer *leaf, struct btrfs_key *key, 343 int slot, struct btrfs_key *prev_key) 344 { 345 struct btrfs_fs_info *fs_info = leaf->fs_info; 346 u32 sectorsize = fs_info->sectorsize; 347 const u32 csumsize = fs_info->csum_size; 348 349 if (unlikely(key->objectid != BTRFS_EXTENT_CSUM_OBJECTID)) { 350 generic_err(leaf, slot, 351 "invalid key objectid for csum item, have %llu expect %llu", 352 key->objectid, BTRFS_EXTENT_CSUM_OBJECTID); 353 return -EUCLEAN; 354 } 355 if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) { 356 generic_err(leaf, slot, 357 "unaligned key offset for csum item, have %llu should be aligned to %u", 358 key->offset, sectorsize); 359 return -EUCLEAN; 360 } 361 if (unlikely(!IS_ALIGNED(btrfs_item_size(leaf, slot), csumsize))) { 362 generic_err(leaf, slot, 363 "unaligned item size for csum item, have %u should be aligned to %u", 364 btrfs_item_size(leaf, slot), csumsize); 365 return -EUCLEAN; 366 } 367 if (slot > 0 && prev_key->type == BTRFS_EXTENT_CSUM_KEY) { 368 u64 prev_csum_end; 369 u32 prev_item_size; 370 371 prev_item_size = btrfs_item_size(leaf, slot - 1); 372 prev_csum_end = (prev_item_size / csumsize) * sectorsize; 373 prev_csum_end += prev_key->offset; 374 if (unlikely(prev_csum_end > key->offset)) { 375 generic_err(leaf, slot - 1, 376 "csum end range (%llu) goes beyond the start range (%llu) of the next csum item", 377 prev_csum_end, key->offset); 378 return -EUCLEAN; 379 } 380 } 381 return 0; 382 } 383 384 /* Inode item error output has the same format as dir_item_err() */ 385 #define inode_item_err(eb, slot, fmt, ...) \ 386 dir_item_err(eb, slot, fmt, __VA_ARGS__) 387 388 static int check_inode_key(struct extent_buffer *leaf, struct btrfs_key *key, 389 int slot) 390 { 391 struct btrfs_key item_key; 392 bool is_inode_item; 393 394 btrfs_item_key_to_cpu(leaf, &item_key, slot); 395 is_inode_item = (item_key.type == BTRFS_INODE_ITEM_KEY); 396 397 /* For XATTR_ITEM, location key should be all 0 */ 398 if (item_key.type == BTRFS_XATTR_ITEM_KEY) { 399 if (unlikely(key->objectid != 0 || key->type != 0 || 400 key->offset != 0)) 401 return -EUCLEAN; 402 return 0; 403 } 404 405 if (unlikely((key->objectid < BTRFS_FIRST_FREE_OBJECTID || 406 key->objectid > BTRFS_LAST_FREE_OBJECTID) && 407 key->objectid != BTRFS_ROOT_TREE_DIR_OBJECTID && 408 key->objectid != BTRFS_FREE_INO_OBJECTID)) { 409 if (is_inode_item) { 410 generic_err(leaf, slot, 411 "invalid key objectid: has %llu expect %llu or [%llu, %llu] or %llu", 412 key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID, 413 BTRFS_FIRST_FREE_OBJECTID, 414 BTRFS_LAST_FREE_OBJECTID, 415 BTRFS_FREE_INO_OBJECTID); 416 } else { 417 dir_item_err(leaf, slot, 418 "invalid location key objectid: has %llu expect %llu or [%llu, %llu] or %llu", 419 key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID, 420 BTRFS_FIRST_FREE_OBJECTID, 421 BTRFS_LAST_FREE_OBJECTID, 422 BTRFS_FREE_INO_OBJECTID); 423 } 424 return -EUCLEAN; 425 } 426 if (unlikely(key->offset != 0)) { 427 if (is_inode_item) 428 inode_item_err(leaf, slot, 429 "invalid key offset: has %llu expect 0", 430 key->offset); 431 else 432 dir_item_err(leaf, slot, 433 "invalid location key offset:has %llu expect 0", 434 key->offset); 435 return -EUCLEAN; 436 } 437 return 0; 438 } 439 440 static int check_root_key(struct extent_buffer *leaf, struct btrfs_key *key, 441 int slot) 442 { 443 struct btrfs_key item_key; 444 bool is_root_item; 445 446 btrfs_item_key_to_cpu(leaf, &item_key, slot); 447 is_root_item = (item_key.type == BTRFS_ROOT_ITEM_KEY); 448 449 /* No such tree id */ 450 if (unlikely(key->objectid == 0)) { 451 if (is_root_item) 452 generic_err(leaf, slot, "invalid root id 0"); 453 else 454 dir_item_err(leaf, slot, 455 "invalid location key root id 0"); 456 return -EUCLEAN; 457 } 458 459 /* DIR_ITEM/INDEX/INODE_REF is not allowed to point to non-fs trees */ 460 if (unlikely(!is_fstree(key->objectid) && !is_root_item)) { 461 dir_item_err(leaf, slot, 462 "invalid location key objectid, have %llu expect [%llu, %llu]", 463 key->objectid, BTRFS_FIRST_FREE_OBJECTID, 464 BTRFS_LAST_FREE_OBJECTID); 465 return -EUCLEAN; 466 } 467 468 /* 469 * ROOT_ITEM with non-zero offset means this is a snapshot, created at 470 * @offset transid. 471 * Furthermore, for location key in DIR_ITEM, its offset is always -1. 472 * 473 * So here we only check offset for reloc tree whose key->offset must 474 * be a valid tree. 475 */ 476 if (unlikely(key->objectid == BTRFS_TREE_RELOC_OBJECTID && 477 key->offset == 0)) { 478 generic_err(leaf, slot, "invalid root id 0 for reloc tree"); 479 return -EUCLEAN; 480 } 481 return 0; 482 } 483 484 static int check_dir_item(struct extent_buffer *leaf, 485 struct btrfs_key *key, struct btrfs_key *prev_key, 486 int slot) 487 { 488 struct btrfs_fs_info *fs_info = leaf->fs_info; 489 struct btrfs_dir_item *di; 490 u32 item_size = btrfs_item_size(leaf, slot); 491 u32 cur = 0; 492 493 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key))) 494 return -EUCLEAN; 495 496 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 497 while (cur < item_size) { 498 struct btrfs_key location_key; 499 u32 name_len; 500 u32 data_len; 501 u32 max_name_len; 502 u32 total_size; 503 u32 name_hash; 504 u8 dir_type; 505 int ret; 506 507 /* header itself should not cross item boundary */ 508 if (unlikely(cur + sizeof(*di) > item_size)) { 509 dir_item_err(leaf, slot, 510 "dir item header crosses item boundary, have %zu boundary %u", 511 cur + sizeof(*di), item_size); 512 return -EUCLEAN; 513 } 514 515 /* Location key check */ 516 btrfs_dir_item_key_to_cpu(leaf, di, &location_key); 517 if (location_key.type == BTRFS_ROOT_ITEM_KEY) { 518 ret = check_root_key(leaf, &location_key, slot); 519 if (unlikely(ret < 0)) 520 return ret; 521 } else if (location_key.type == BTRFS_INODE_ITEM_KEY || 522 location_key.type == 0) { 523 ret = check_inode_key(leaf, &location_key, slot); 524 if (unlikely(ret < 0)) 525 return ret; 526 } else { 527 dir_item_err(leaf, slot, 528 "invalid location key type, have %u, expect %u or %u", 529 location_key.type, BTRFS_ROOT_ITEM_KEY, 530 BTRFS_INODE_ITEM_KEY); 531 return -EUCLEAN; 532 } 533 534 /* dir type check */ 535 dir_type = btrfs_dir_ftype(leaf, di); 536 if (unlikely(dir_type >= BTRFS_FT_MAX)) { 537 dir_item_err(leaf, slot, 538 "invalid dir item type, have %u expect [0, %u)", 539 dir_type, BTRFS_FT_MAX); 540 return -EUCLEAN; 541 } 542 543 if (unlikely(key->type == BTRFS_XATTR_ITEM_KEY && 544 dir_type != BTRFS_FT_XATTR)) { 545 dir_item_err(leaf, slot, 546 "invalid dir item type for XATTR key, have %u expect %u", 547 dir_type, BTRFS_FT_XATTR); 548 return -EUCLEAN; 549 } 550 if (unlikely(dir_type == BTRFS_FT_XATTR && 551 key->type != BTRFS_XATTR_ITEM_KEY)) { 552 dir_item_err(leaf, slot, 553 "xattr dir type found for non-XATTR key"); 554 return -EUCLEAN; 555 } 556 if (dir_type == BTRFS_FT_XATTR) 557 max_name_len = XATTR_NAME_MAX; 558 else 559 max_name_len = BTRFS_NAME_LEN; 560 561 /* Name/data length check */ 562 name_len = btrfs_dir_name_len(leaf, di); 563 data_len = btrfs_dir_data_len(leaf, di); 564 if (unlikely(name_len > max_name_len)) { 565 dir_item_err(leaf, slot, 566 "dir item name len too long, have %u max %u", 567 name_len, max_name_len); 568 return -EUCLEAN; 569 } 570 if (unlikely(name_len + data_len > BTRFS_MAX_XATTR_SIZE(fs_info))) { 571 dir_item_err(leaf, slot, 572 "dir item name and data len too long, have %u max %u", 573 name_len + data_len, 574 BTRFS_MAX_XATTR_SIZE(fs_info)); 575 return -EUCLEAN; 576 } 577 578 if (unlikely(data_len && dir_type != BTRFS_FT_XATTR)) { 579 dir_item_err(leaf, slot, 580 "dir item with invalid data len, have %u expect 0", 581 data_len); 582 return -EUCLEAN; 583 } 584 585 total_size = sizeof(*di) + name_len + data_len; 586 587 /* header and name/data should not cross item boundary */ 588 if (unlikely(cur + total_size > item_size)) { 589 dir_item_err(leaf, slot, 590 "dir item data crosses item boundary, have %u boundary %u", 591 cur + total_size, item_size); 592 return -EUCLEAN; 593 } 594 595 /* 596 * Special check for XATTR/DIR_ITEM, as key->offset is name 597 * hash, should match its name 598 */ 599 if (key->type == BTRFS_DIR_ITEM_KEY || 600 key->type == BTRFS_XATTR_ITEM_KEY) { 601 char namebuf[max(BTRFS_NAME_LEN, XATTR_NAME_MAX)]; 602 603 read_extent_buffer(leaf, namebuf, 604 (unsigned long)(di + 1), name_len); 605 name_hash = btrfs_name_hash(namebuf, name_len); 606 if (unlikely(key->offset != name_hash)) { 607 dir_item_err(leaf, slot, 608 "name hash mismatch with key, have 0x%016x expect 0x%016llx", 609 name_hash, key->offset); 610 return -EUCLEAN; 611 } 612 } 613 cur += total_size; 614 di = (struct btrfs_dir_item *)((void *)di + total_size); 615 } 616 return 0; 617 } 618 619 __printf(3, 4) 620 __cold 621 static void block_group_err(const struct extent_buffer *eb, int slot, 622 const char *fmt, ...) 623 { 624 const struct btrfs_fs_info *fs_info = eb->fs_info; 625 struct btrfs_key key; 626 struct va_format vaf; 627 va_list args; 628 629 btrfs_item_key_to_cpu(eb, &key, slot); 630 va_start(args, fmt); 631 632 vaf.fmt = fmt; 633 vaf.va = &args; 634 635 btrfs_crit(fs_info, 636 "corrupt %s: root=%llu block=%llu slot=%d bg_start=%llu bg_len=%llu, %pV", 637 btrfs_header_level(eb) == 0 ? "leaf" : "node", 638 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, 639 key.objectid, key.offset, &vaf); 640 va_end(args); 641 } 642 643 static int check_block_group_item(struct extent_buffer *leaf, 644 struct btrfs_key *key, int slot) 645 { 646 struct btrfs_fs_info *fs_info = leaf->fs_info; 647 struct btrfs_block_group_item bgi; 648 u32 item_size = btrfs_item_size(leaf, slot); 649 u64 chunk_objectid; 650 u64 flags; 651 u64 type; 652 653 /* 654 * Here we don't really care about alignment since extent allocator can 655 * handle it. We care more about the size. 656 */ 657 if (unlikely(key->offset == 0)) { 658 block_group_err(leaf, slot, 659 "invalid block group size 0"); 660 return -EUCLEAN; 661 } 662 663 if (unlikely(item_size != sizeof(bgi))) { 664 block_group_err(leaf, slot, 665 "invalid item size, have %u expect %zu", 666 item_size, sizeof(bgi)); 667 return -EUCLEAN; 668 } 669 670 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot), 671 sizeof(bgi)); 672 chunk_objectid = btrfs_stack_block_group_chunk_objectid(&bgi); 673 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 674 /* 675 * We don't init the nr_global_roots until we load the global 676 * roots, so this could be 0 at mount time. If it's 0 we'll 677 * just assume we're fine, and later we'll check against our 678 * actual value. 679 */ 680 if (unlikely(fs_info->nr_global_roots && 681 chunk_objectid >= fs_info->nr_global_roots)) { 682 block_group_err(leaf, slot, 683 "invalid block group global root id, have %llu, needs to be <= %llu", 684 chunk_objectid, 685 fs_info->nr_global_roots); 686 return -EUCLEAN; 687 } 688 } else if (unlikely(chunk_objectid != BTRFS_FIRST_CHUNK_TREE_OBJECTID)) { 689 block_group_err(leaf, slot, 690 "invalid block group chunk objectid, have %llu expect %llu", 691 btrfs_stack_block_group_chunk_objectid(&bgi), 692 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 693 return -EUCLEAN; 694 } 695 696 if (unlikely(btrfs_stack_block_group_used(&bgi) > key->offset)) { 697 block_group_err(leaf, slot, 698 "invalid block group used, have %llu expect [0, %llu)", 699 btrfs_stack_block_group_used(&bgi), key->offset); 700 return -EUCLEAN; 701 } 702 703 flags = btrfs_stack_block_group_flags(&bgi); 704 if (unlikely(hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) > 1)) { 705 block_group_err(leaf, slot, 706 "invalid profile flags, have 0x%llx (%lu bits set) expect no more than 1 bit set", 707 flags & BTRFS_BLOCK_GROUP_PROFILE_MASK, 708 hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)); 709 return -EUCLEAN; 710 } 711 712 type = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 713 if (unlikely(type != BTRFS_BLOCK_GROUP_DATA && 714 type != BTRFS_BLOCK_GROUP_METADATA && 715 type != BTRFS_BLOCK_GROUP_SYSTEM && 716 type != (BTRFS_BLOCK_GROUP_METADATA | 717 BTRFS_BLOCK_GROUP_DATA))) { 718 block_group_err(leaf, slot, 719 "invalid type, have 0x%llx (%lu bits set) expect either 0x%llx, 0x%llx, 0x%llx or 0x%llx", 720 type, hweight64(type), 721 BTRFS_BLOCK_GROUP_DATA, BTRFS_BLOCK_GROUP_METADATA, 722 BTRFS_BLOCK_GROUP_SYSTEM, 723 BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA); 724 return -EUCLEAN; 725 } 726 return 0; 727 } 728 729 __printf(4, 5) 730 __cold 731 static void chunk_err(const struct extent_buffer *leaf, 732 const struct btrfs_chunk *chunk, u64 logical, 733 const char *fmt, ...) 734 { 735 const struct btrfs_fs_info *fs_info = leaf->fs_info; 736 bool is_sb; 737 struct va_format vaf; 738 va_list args; 739 int i; 740 int slot = -1; 741 742 /* Only superblock eb is able to have such small offset */ 743 is_sb = (leaf->start == BTRFS_SUPER_INFO_OFFSET); 744 745 if (!is_sb) { 746 /* 747 * Get the slot number by iterating through all slots, this 748 * would provide better readability. 749 */ 750 for (i = 0; i < btrfs_header_nritems(leaf); i++) { 751 if (btrfs_item_ptr_offset(leaf, i) == 752 (unsigned long)chunk) { 753 slot = i; 754 break; 755 } 756 } 757 } 758 va_start(args, fmt); 759 vaf.fmt = fmt; 760 vaf.va = &args; 761 762 if (is_sb) 763 btrfs_crit(fs_info, 764 "corrupt superblock syschunk array: chunk_start=%llu, %pV", 765 logical, &vaf); 766 else 767 btrfs_crit(fs_info, 768 "corrupt leaf: root=%llu block=%llu slot=%d chunk_start=%llu, %pV", 769 BTRFS_CHUNK_TREE_OBJECTID, leaf->start, slot, 770 logical, &vaf); 771 va_end(args); 772 } 773 774 /* 775 * The common chunk check which could also work on super block sys chunk array. 776 * 777 * Return -EUCLEAN if anything is corrupted. 778 * Return 0 if everything is OK. 779 */ 780 int btrfs_check_chunk_valid(struct extent_buffer *leaf, 781 struct btrfs_chunk *chunk, u64 logical) 782 { 783 struct btrfs_fs_info *fs_info = leaf->fs_info; 784 u64 length; 785 u64 chunk_end; 786 u64 stripe_len; 787 u16 num_stripes; 788 u16 sub_stripes; 789 u64 type; 790 u64 features; 791 bool mixed = false; 792 int raid_index; 793 int nparity; 794 int ncopies; 795 796 length = btrfs_chunk_length(leaf, chunk); 797 stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 798 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 799 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 800 type = btrfs_chunk_type(leaf, chunk); 801 raid_index = btrfs_bg_flags_to_raid_index(type); 802 ncopies = btrfs_raid_array[raid_index].ncopies; 803 nparity = btrfs_raid_array[raid_index].nparity; 804 805 if (unlikely(!num_stripes)) { 806 chunk_err(leaf, chunk, logical, 807 "invalid chunk num_stripes, have %u", num_stripes); 808 return -EUCLEAN; 809 } 810 if (unlikely(num_stripes < ncopies)) { 811 chunk_err(leaf, chunk, logical, 812 "invalid chunk num_stripes < ncopies, have %u < %d", 813 num_stripes, ncopies); 814 return -EUCLEAN; 815 } 816 if (unlikely(nparity && num_stripes == nparity)) { 817 chunk_err(leaf, chunk, logical, 818 "invalid chunk num_stripes == nparity, have %u == %d", 819 num_stripes, nparity); 820 return -EUCLEAN; 821 } 822 if (unlikely(!IS_ALIGNED(logical, fs_info->sectorsize))) { 823 chunk_err(leaf, chunk, logical, 824 "invalid chunk logical, have %llu should aligned to %u", 825 logical, fs_info->sectorsize); 826 return -EUCLEAN; 827 } 828 if (unlikely(btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize)) { 829 chunk_err(leaf, chunk, logical, 830 "invalid chunk sectorsize, have %u expect %u", 831 btrfs_chunk_sector_size(leaf, chunk), 832 fs_info->sectorsize); 833 return -EUCLEAN; 834 } 835 if (unlikely(!length || !IS_ALIGNED(length, fs_info->sectorsize))) { 836 chunk_err(leaf, chunk, logical, 837 "invalid chunk length, have %llu", length); 838 return -EUCLEAN; 839 } 840 if (unlikely(check_add_overflow(logical, length, &chunk_end))) { 841 chunk_err(leaf, chunk, logical, 842 "invalid chunk logical start and length, have logical start %llu length %llu", 843 logical, length); 844 return -EUCLEAN; 845 } 846 if (unlikely(!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN)) { 847 chunk_err(leaf, chunk, logical, 848 "invalid chunk stripe length: %llu", 849 stripe_len); 850 return -EUCLEAN; 851 } 852 /* 853 * We artificially limit the chunk size, so that the number of stripes 854 * inside a chunk can be fit into a U32. The current limit (256G) is 855 * way too large for real world usage anyway, and it's also much larger 856 * than our existing limit (10G). 857 * 858 * Thus it should be a good way to catch obvious bitflips. 859 */ 860 if (unlikely(length >= btrfs_stripe_nr_to_offset(U32_MAX))) { 861 chunk_err(leaf, chunk, logical, 862 "chunk length too large: have %llu limit %llu", 863 length, btrfs_stripe_nr_to_offset(U32_MAX)); 864 return -EUCLEAN; 865 } 866 if (unlikely(type & ~(BTRFS_BLOCK_GROUP_TYPE_MASK | 867 BTRFS_BLOCK_GROUP_PROFILE_MASK))) { 868 chunk_err(leaf, chunk, logical, 869 "unrecognized chunk type: 0x%llx", 870 ~(BTRFS_BLOCK_GROUP_TYPE_MASK | 871 BTRFS_BLOCK_GROUP_PROFILE_MASK) & 872 btrfs_chunk_type(leaf, chunk)); 873 return -EUCLEAN; 874 } 875 876 if (unlikely(!has_single_bit_set(type & BTRFS_BLOCK_GROUP_PROFILE_MASK) && 877 (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) != 0)) { 878 chunk_err(leaf, chunk, logical, 879 "invalid chunk profile flag: 0x%llx, expect 0 or 1 bit set", 880 type & BTRFS_BLOCK_GROUP_PROFILE_MASK); 881 return -EUCLEAN; 882 } 883 if (unlikely((type & BTRFS_BLOCK_GROUP_TYPE_MASK) == 0)) { 884 chunk_err(leaf, chunk, logical, 885 "missing chunk type flag, have 0x%llx one bit must be set in 0x%llx", 886 type, BTRFS_BLOCK_GROUP_TYPE_MASK); 887 return -EUCLEAN; 888 } 889 890 if (unlikely((type & BTRFS_BLOCK_GROUP_SYSTEM) && 891 (type & (BTRFS_BLOCK_GROUP_METADATA | 892 BTRFS_BLOCK_GROUP_DATA)))) { 893 chunk_err(leaf, chunk, logical, 894 "system chunk with data or metadata type: 0x%llx", 895 type); 896 return -EUCLEAN; 897 } 898 899 features = btrfs_super_incompat_flags(fs_info->super_copy); 900 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 901 mixed = true; 902 903 if (!mixed) { 904 if (unlikely((type & BTRFS_BLOCK_GROUP_METADATA) && 905 (type & BTRFS_BLOCK_GROUP_DATA))) { 906 chunk_err(leaf, chunk, logical, 907 "mixed chunk type in non-mixed mode: 0x%llx", type); 908 return -EUCLEAN; 909 } 910 } 911 912 if (unlikely((type & BTRFS_BLOCK_GROUP_RAID10 && 913 sub_stripes != btrfs_raid_array[BTRFS_RAID_RAID10].sub_stripes) || 914 (type & BTRFS_BLOCK_GROUP_RAID1 && 915 num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1].devs_min) || 916 (type & BTRFS_BLOCK_GROUP_RAID1C3 && 917 num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C3].devs_min) || 918 (type & BTRFS_BLOCK_GROUP_RAID1C4 && 919 num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C4].devs_min) || 920 (type & BTRFS_BLOCK_GROUP_RAID5 && 921 num_stripes < btrfs_raid_array[BTRFS_RAID_RAID5].devs_min) || 922 (type & BTRFS_BLOCK_GROUP_RAID6 && 923 num_stripes < btrfs_raid_array[BTRFS_RAID_RAID6].devs_min) || 924 (type & BTRFS_BLOCK_GROUP_DUP && 925 num_stripes != btrfs_raid_array[BTRFS_RAID_DUP].dev_stripes) || 926 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 && 927 num_stripes != btrfs_raid_array[BTRFS_RAID_SINGLE].dev_stripes))) { 928 chunk_err(leaf, chunk, logical, 929 "invalid num_stripes:sub_stripes %u:%u for profile %llu", 930 num_stripes, sub_stripes, 931 type & BTRFS_BLOCK_GROUP_PROFILE_MASK); 932 return -EUCLEAN; 933 } 934 935 return 0; 936 } 937 938 /* 939 * Enhanced version of chunk item checker. 940 * 941 * The common btrfs_check_chunk_valid() doesn't check item size since it needs 942 * to work on super block sys_chunk_array which doesn't have full item ptr. 943 */ 944 static int check_leaf_chunk_item(struct extent_buffer *leaf, 945 struct btrfs_chunk *chunk, 946 struct btrfs_key *key, int slot) 947 { 948 int num_stripes; 949 950 if (unlikely(btrfs_item_size(leaf, slot) < sizeof(struct btrfs_chunk))) { 951 chunk_err(leaf, chunk, key->offset, 952 "invalid chunk item size: have %u expect [%zu, %u)", 953 btrfs_item_size(leaf, slot), 954 sizeof(struct btrfs_chunk), 955 BTRFS_LEAF_DATA_SIZE(leaf->fs_info)); 956 return -EUCLEAN; 957 } 958 959 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 960 /* Let btrfs_check_chunk_valid() handle this error type */ 961 if (num_stripes == 0) 962 goto out; 963 964 if (unlikely(btrfs_chunk_item_size(num_stripes) != 965 btrfs_item_size(leaf, slot))) { 966 chunk_err(leaf, chunk, key->offset, 967 "invalid chunk item size: have %u expect %lu", 968 btrfs_item_size(leaf, slot), 969 btrfs_chunk_item_size(num_stripes)); 970 return -EUCLEAN; 971 } 972 out: 973 return btrfs_check_chunk_valid(leaf, chunk, key->offset); 974 } 975 976 __printf(3, 4) 977 __cold 978 static void dev_item_err(const struct extent_buffer *eb, int slot, 979 const char *fmt, ...) 980 { 981 struct btrfs_key key; 982 struct va_format vaf; 983 va_list args; 984 985 btrfs_item_key_to_cpu(eb, &key, slot); 986 va_start(args, fmt); 987 988 vaf.fmt = fmt; 989 vaf.va = &args; 990 991 btrfs_crit(eb->fs_info, 992 "corrupt %s: root=%llu block=%llu slot=%d devid=%llu %pV", 993 btrfs_header_level(eb) == 0 ? "leaf" : "node", 994 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, 995 key.objectid, &vaf); 996 va_end(args); 997 } 998 999 static int check_dev_item(struct extent_buffer *leaf, 1000 struct btrfs_key *key, int slot) 1001 { 1002 struct btrfs_dev_item *ditem; 1003 const u32 item_size = btrfs_item_size(leaf, slot); 1004 1005 if (unlikely(key->objectid != BTRFS_DEV_ITEMS_OBJECTID)) { 1006 dev_item_err(leaf, slot, 1007 "invalid objectid: has=%llu expect=%llu", 1008 key->objectid, BTRFS_DEV_ITEMS_OBJECTID); 1009 return -EUCLEAN; 1010 } 1011 1012 if (unlikely(item_size != sizeof(*ditem))) { 1013 dev_item_err(leaf, slot, "invalid item size: has %u expect %zu", 1014 item_size, sizeof(*ditem)); 1015 return -EUCLEAN; 1016 } 1017 1018 ditem = btrfs_item_ptr(leaf, slot, struct btrfs_dev_item); 1019 if (unlikely(btrfs_device_id(leaf, ditem) != key->offset)) { 1020 dev_item_err(leaf, slot, 1021 "devid mismatch: key has=%llu item has=%llu", 1022 key->offset, btrfs_device_id(leaf, ditem)); 1023 return -EUCLEAN; 1024 } 1025 1026 /* 1027 * For device total_bytes, we don't have reliable way to check it, as 1028 * it can be 0 for device removal. Device size check can only be done 1029 * by dev extents check. 1030 */ 1031 if (unlikely(btrfs_device_bytes_used(leaf, ditem) > 1032 btrfs_device_total_bytes(leaf, ditem))) { 1033 dev_item_err(leaf, slot, 1034 "invalid bytes used: have %llu expect [0, %llu]", 1035 btrfs_device_bytes_used(leaf, ditem), 1036 btrfs_device_total_bytes(leaf, ditem)); 1037 return -EUCLEAN; 1038 } 1039 /* 1040 * Remaining members like io_align/type/gen/dev_group aren't really 1041 * utilized. Skip them to make later usage of them easier. 1042 */ 1043 return 0; 1044 } 1045 1046 static int check_inode_item(struct extent_buffer *leaf, 1047 struct btrfs_key *key, int slot) 1048 { 1049 struct btrfs_fs_info *fs_info = leaf->fs_info; 1050 struct btrfs_inode_item *iitem; 1051 u64 super_gen = btrfs_super_generation(fs_info->super_copy); 1052 u32 valid_mask = (S_IFMT | S_ISUID | S_ISGID | S_ISVTX | 0777); 1053 const u32 item_size = btrfs_item_size(leaf, slot); 1054 u32 mode; 1055 int ret; 1056 u32 flags; 1057 u32 ro_flags; 1058 1059 ret = check_inode_key(leaf, key, slot); 1060 if (unlikely(ret < 0)) 1061 return ret; 1062 1063 if (unlikely(item_size != sizeof(*iitem))) { 1064 generic_err(leaf, slot, "invalid item size: has %u expect %zu", 1065 item_size, sizeof(*iitem)); 1066 return -EUCLEAN; 1067 } 1068 1069 iitem = btrfs_item_ptr(leaf, slot, struct btrfs_inode_item); 1070 1071 /* Here we use super block generation + 1 to handle log tree */ 1072 if (unlikely(btrfs_inode_generation(leaf, iitem) > super_gen + 1)) { 1073 inode_item_err(leaf, slot, 1074 "invalid inode generation: has %llu expect (0, %llu]", 1075 btrfs_inode_generation(leaf, iitem), 1076 super_gen + 1); 1077 return -EUCLEAN; 1078 } 1079 /* Note for ROOT_TREE_DIR_ITEM, mkfs could set its transid 0 */ 1080 if (unlikely(btrfs_inode_transid(leaf, iitem) > super_gen + 1)) { 1081 inode_item_err(leaf, slot, 1082 "invalid inode transid: has %llu expect [0, %llu]", 1083 btrfs_inode_transid(leaf, iitem), super_gen + 1); 1084 return -EUCLEAN; 1085 } 1086 1087 /* 1088 * For size and nbytes it's better not to be too strict, as for dir 1089 * item its size/nbytes can easily get wrong, but doesn't affect 1090 * anything in the fs. So here we skip the check. 1091 */ 1092 mode = btrfs_inode_mode(leaf, iitem); 1093 if (unlikely(mode & ~valid_mask)) { 1094 inode_item_err(leaf, slot, 1095 "unknown mode bit detected: 0x%x", 1096 mode & ~valid_mask); 1097 return -EUCLEAN; 1098 } 1099 1100 /* 1101 * S_IFMT is not bit mapped so we can't completely rely on 1102 * is_power_of_2/has_single_bit_set, but it can save us from checking 1103 * FIFO/CHR/DIR/REG. Only needs to check BLK, LNK and SOCKS 1104 */ 1105 if (!has_single_bit_set(mode & S_IFMT)) { 1106 if (unlikely(!S_ISLNK(mode) && !S_ISBLK(mode) && !S_ISSOCK(mode))) { 1107 inode_item_err(leaf, slot, 1108 "invalid mode: has 0%o expect valid S_IF* bit(s)", 1109 mode & S_IFMT); 1110 return -EUCLEAN; 1111 } 1112 } 1113 if (unlikely(S_ISDIR(mode) && btrfs_inode_nlink(leaf, iitem) > 1)) { 1114 inode_item_err(leaf, slot, 1115 "invalid nlink: has %u expect no more than 1 for dir", 1116 btrfs_inode_nlink(leaf, iitem)); 1117 return -EUCLEAN; 1118 } 1119 btrfs_inode_split_flags(btrfs_inode_flags(leaf, iitem), &flags, &ro_flags); 1120 if (unlikely(flags & ~BTRFS_INODE_FLAG_MASK)) { 1121 inode_item_err(leaf, slot, 1122 "unknown incompat flags detected: 0x%x", flags); 1123 return -EUCLEAN; 1124 } 1125 if (unlikely(!sb_rdonly(fs_info->sb) && 1126 (ro_flags & ~BTRFS_INODE_RO_FLAG_MASK))) { 1127 inode_item_err(leaf, slot, 1128 "unknown ro-compat flags detected on writeable mount: 0x%x", 1129 ro_flags); 1130 return -EUCLEAN; 1131 } 1132 return 0; 1133 } 1134 1135 static int check_root_item(struct extent_buffer *leaf, struct btrfs_key *key, 1136 int slot) 1137 { 1138 struct btrfs_fs_info *fs_info = leaf->fs_info; 1139 struct btrfs_root_item ri = { 0 }; 1140 const u64 valid_root_flags = BTRFS_ROOT_SUBVOL_RDONLY | 1141 BTRFS_ROOT_SUBVOL_DEAD; 1142 int ret; 1143 1144 ret = check_root_key(leaf, key, slot); 1145 if (unlikely(ret < 0)) 1146 return ret; 1147 1148 if (unlikely(btrfs_item_size(leaf, slot) != sizeof(ri) && 1149 btrfs_item_size(leaf, slot) != 1150 btrfs_legacy_root_item_size())) { 1151 generic_err(leaf, slot, 1152 "invalid root item size, have %u expect %zu or %u", 1153 btrfs_item_size(leaf, slot), sizeof(ri), 1154 btrfs_legacy_root_item_size()); 1155 return -EUCLEAN; 1156 } 1157 1158 /* 1159 * For legacy root item, the members starting at generation_v2 will be 1160 * all filled with 0. 1161 * And since we allow geneartion_v2 as 0, it will still pass the check. 1162 */ 1163 read_extent_buffer(leaf, &ri, btrfs_item_ptr_offset(leaf, slot), 1164 btrfs_item_size(leaf, slot)); 1165 1166 /* Generation related */ 1167 if (unlikely(btrfs_root_generation(&ri) > 1168 btrfs_super_generation(fs_info->super_copy) + 1)) { 1169 generic_err(leaf, slot, 1170 "invalid root generation, have %llu expect (0, %llu]", 1171 btrfs_root_generation(&ri), 1172 btrfs_super_generation(fs_info->super_copy) + 1); 1173 return -EUCLEAN; 1174 } 1175 if (unlikely(btrfs_root_generation_v2(&ri) > 1176 btrfs_super_generation(fs_info->super_copy) + 1)) { 1177 generic_err(leaf, slot, 1178 "invalid root v2 generation, have %llu expect (0, %llu]", 1179 btrfs_root_generation_v2(&ri), 1180 btrfs_super_generation(fs_info->super_copy) + 1); 1181 return -EUCLEAN; 1182 } 1183 if (unlikely(btrfs_root_last_snapshot(&ri) > 1184 btrfs_super_generation(fs_info->super_copy) + 1)) { 1185 generic_err(leaf, slot, 1186 "invalid root last_snapshot, have %llu expect (0, %llu]", 1187 btrfs_root_last_snapshot(&ri), 1188 btrfs_super_generation(fs_info->super_copy) + 1); 1189 return -EUCLEAN; 1190 } 1191 1192 /* Alignment and level check */ 1193 if (unlikely(!IS_ALIGNED(btrfs_root_bytenr(&ri), fs_info->sectorsize))) { 1194 generic_err(leaf, slot, 1195 "invalid root bytenr, have %llu expect to be aligned to %u", 1196 btrfs_root_bytenr(&ri), fs_info->sectorsize); 1197 return -EUCLEAN; 1198 } 1199 if (unlikely(btrfs_root_level(&ri) >= BTRFS_MAX_LEVEL)) { 1200 generic_err(leaf, slot, 1201 "invalid root level, have %u expect [0, %u]", 1202 btrfs_root_level(&ri), BTRFS_MAX_LEVEL - 1); 1203 return -EUCLEAN; 1204 } 1205 if (unlikely(btrfs_root_drop_level(&ri) >= BTRFS_MAX_LEVEL)) { 1206 generic_err(leaf, slot, 1207 "invalid root level, have %u expect [0, %u]", 1208 btrfs_root_drop_level(&ri), BTRFS_MAX_LEVEL - 1); 1209 return -EUCLEAN; 1210 } 1211 1212 /* Flags check */ 1213 if (unlikely(btrfs_root_flags(&ri) & ~valid_root_flags)) { 1214 generic_err(leaf, slot, 1215 "invalid root flags, have 0x%llx expect mask 0x%llx", 1216 btrfs_root_flags(&ri), valid_root_flags); 1217 return -EUCLEAN; 1218 } 1219 return 0; 1220 } 1221 1222 __printf(3,4) 1223 __cold 1224 static void extent_err(const struct extent_buffer *eb, int slot, 1225 const char *fmt, ...) 1226 { 1227 struct btrfs_key key; 1228 struct va_format vaf; 1229 va_list args; 1230 u64 bytenr; 1231 u64 len; 1232 1233 btrfs_item_key_to_cpu(eb, &key, slot); 1234 bytenr = key.objectid; 1235 if (key.type == BTRFS_METADATA_ITEM_KEY || 1236 key.type == BTRFS_TREE_BLOCK_REF_KEY || 1237 key.type == BTRFS_SHARED_BLOCK_REF_KEY) 1238 len = eb->fs_info->nodesize; 1239 else 1240 len = key.offset; 1241 va_start(args, fmt); 1242 1243 vaf.fmt = fmt; 1244 vaf.va = &args; 1245 1246 btrfs_crit(eb->fs_info, 1247 "corrupt %s: block=%llu slot=%d extent bytenr=%llu len=%llu %pV", 1248 btrfs_header_level(eb) == 0 ? "leaf" : "node", 1249 eb->start, slot, bytenr, len, &vaf); 1250 va_end(args); 1251 } 1252 1253 static int check_extent_item(struct extent_buffer *leaf, 1254 struct btrfs_key *key, int slot, 1255 struct btrfs_key *prev_key) 1256 { 1257 struct btrfs_fs_info *fs_info = leaf->fs_info; 1258 struct btrfs_extent_item *ei; 1259 bool is_tree_block = false; 1260 unsigned long ptr; /* Current pointer inside inline refs */ 1261 unsigned long end; /* Extent item end */ 1262 const u32 item_size = btrfs_item_size(leaf, slot); 1263 u64 flags; 1264 u64 generation; 1265 u64 total_refs; /* Total refs in btrfs_extent_item */ 1266 u64 inline_refs = 0; /* found total inline refs */ 1267 1268 if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY && 1269 !btrfs_fs_incompat(fs_info, SKINNY_METADATA))) { 1270 generic_err(leaf, slot, 1271 "invalid key type, METADATA_ITEM type invalid when SKINNY_METADATA feature disabled"); 1272 return -EUCLEAN; 1273 } 1274 /* key->objectid is the bytenr for both key types */ 1275 if (unlikely(!IS_ALIGNED(key->objectid, fs_info->sectorsize))) { 1276 generic_err(leaf, slot, 1277 "invalid key objectid, have %llu expect to be aligned to %u", 1278 key->objectid, fs_info->sectorsize); 1279 return -EUCLEAN; 1280 } 1281 1282 /* key->offset is tree level for METADATA_ITEM_KEY */ 1283 if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY && 1284 key->offset >= BTRFS_MAX_LEVEL)) { 1285 extent_err(leaf, slot, 1286 "invalid tree level, have %llu expect [0, %u]", 1287 key->offset, BTRFS_MAX_LEVEL - 1); 1288 return -EUCLEAN; 1289 } 1290 1291 /* 1292 * EXTENT/METADATA_ITEM consists of: 1293 * 1) One btrfs_extent_item 1294 * Records the total refs, type and generation of the extent. 1295 * 1296 * 2) One btrfs_tree_block_info (for EXTENT_ITEM and tree backref only) 1297 * Records the first key and level of the tree block. 1298 * 1299 * 2) Zero or more btrfs_extent_inline_ref(s) 1300 * Each inline ref has one btrfs_extent_inline_ref shows: 1301 * 2.1) The ref type, one of the 4 1302 * TREE_BLOCK_REF Tree block only 1303 * SHARED_BLOCK_REF Tree block only 1304 * EXTENT_DATA_REF Data only 1305 * SHARED_DATA_REF Data only 1306 * 2.2) Ref type specific data 1307 * Either using btrfs_extent_inline_ref::offset, or specific 1308 * data structure. 1309 */ 1310 if (unlikely(item_size < sizeof(*ei))) { 1311 extent_err(leaf, slot, 1312 "invalid item size, have %u expect [%zu, %u)", 1313 item_size, sizeof(*ei), 1314 BTRFS_LEAF_DATA_SIZE(fs_info)); 1315 return -EUCLEAN; 1316 } 1317 end = item_size + btrfs_item_ptr_offset(leaf, slot); 1318 1319 /* Checks against extent_item */ 1320 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 1321 flags = btrfs_extent_flags(leaf, ei); 1322 total_refs = btrfs_extent_refs(leaf, ei); 1323 generation = btrfs_extent_generation(leaf, ei); 1324 if (unlikely(generation > 1325 btrfs_super_generation(fs_info->super_copy) + 1)) { 1326 extent_err(leaf, slot, 1327 "invalid generation, have %llu expect (0, %llu]", 1328 generation, 1329 btrfs_super_generation(fs_info->super_copy) + 1); 1330 return -EUCLEAN; 1331 } 1332 if (unlikely(!has_single_bit_set(flags & (BTRFS_EXTENT_FLAG_DATA | 1333 BTRFS_EXTENT_FLAG_TREE_BLOCK)))) { 1334 extent_err(leaf, slot, 1335 "invalid extent flag, have 0x%llx expect 1 bit set in 0x%llx", 1336 flags, BTRFS_EXTENT_FLAG_DATA | 1337 BTRFS_EXTENT_FLAG_TREE_BLOCK); 1338 return -EUCLEAN; 1339 } 1340 is_tree_block = !!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK); 1341 if (is_tree_block) { 1342 if (unlikely(key->type == BTRFS_EXTENT_ITEM_KEY && 1343 key->offset != fs_info->nodesize)) { 1344 extent_err(leaf, slot, 1345 "invalid extent length, have %llu expect %u", 1346 key->offset, fs_info->nodesize); 1347 return -EUCLEAN; 1348 } 1349 } else { 1350 if (unlikely(key->type != BTRFS_EXTENT_ITEM_KEY)) { 1351 extent_err(leaf, slot, 1352 "invalid key type, have %u expect %u for data backref", 1353 key->type, BTRFS_EXTENT_ITEM_KEY); 1354 return -EUCLEAN; 1355 } 1356 if (unlikely(!IS_ALIGNED(key->offset, fs_info->sectorsize))) { 1357 extent_err(leaf, slot, 1358 "invalid extent length, have %llu expect aligned to %u", 1359 key->offset, fs_info->sectorsize); 1360 return -EUCLEAN; 1361 } 1362 if (unlikely(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 1363 extent_err(leaf, slot, 1364 "invalid extent flag, data has full backref set"); 1365 return -EUCLEAN; 1366 } 1367 } 1368 ptr = (unsigned long)(struct btrfs_extent_item *)(ei + 1); 1369 1370 /* Check the special case of btrfs_tree_block_info */ 1371 if (is_tree_block && key->type != BTRFS_METADATA_ITEM_KEY) { 1372 struct btrfs_tree_block_info *info; 1373 1374 info = (struct btrfs_tree_block_info *)ptr; 1375 if (unlikely(btrfs_tree_block_level(leaf, info) >= BTRFS_MAX_LEVEL)) { 1376 extent_err(leaf, slot, 1377 "invalid tree block info level, have %u expect [0, %u]", 1378 btrfs_tree_block_level(leaf, info), 1379 BTRFS_MAX_LEVEL - 1); 1380 return -EUCLEAN; 1381 } 1382 ptr = (unsigned long)(struct btrfs_tree_block_info *)(info + 1); 1383 } 1384 1385 /* Check inline refs */ 1386 while (ptr < end) { 1387 struct btrfs_extent_inline_ref *iref; 1388 struct btrfs_extent_data_ref *dref; 1389 struct btrfs_shared_data_ref *sref; 1390 u64 dref_offset; 1391 u64 inline_offset; 1392 u8 inline_type; 1393 1394 if (unlikely(ptr + sizeof(*iref) > end)) { 1395 extent_err(leaf, slot, 1396 "inline ref item overflows extent item, ptr %lu iref size %zu end %lu", 1397 ptr, sizeof(*iref), end); 1398 return -EUCLEAN; 1399 } 1400 iref = (struct btrfs_extent_inline_ref *)ptr; 1401 inline_type = btrfs_extent_inline_ref_type(leaf, iref); 1402 inline_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1403 if (unlikely(ptr + btrfs_extent_inline_ref_size(inline_type) > end)) { 1404 extent_err(leaf, slot, 1405 "inline ref item overflows extent item, ptr %lu iref size %u end %lu", 1406 ptr, inline_type, end); 1407 return -EUCLEAN; 1408 } 1409 1410 switch (inline_type) { 1411 /* inline_offset is subvolid of the owner, no need to check */ 1412 case BTRFS_TREE_BLOCK_REF_KEY: 1413 inline_refs++; 1414 break; 1415 /* Contains parent bytenr */ 1416 case BTRFS_SHARED_BLOCK_REF_KEY: 1417 if (unlikely(!IS_ALIGNED(inline_offset, 1418 fs_info->sectorsize))) { 1419 extent_err(leaf, slot, 1420 "invalid tree parent bytenr, have %llu expect aligned to %u", 1421 inline_offset, fs_info->sectorsize); 1422 return -EUCLEAN; 1423 } 1424 inline_refs++; 1425 break; 1426 /* 1427 * Contains owner subvolid, owner key objectid, adjusted offset. 1428 * The only obvious corruption can happen in that offset. 1429 */ 1430 case BTRFS_EXTENT_DATA_REF_KEY: 1431 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1432 dref_offset = btrfs_extent_data_ref_offset(leaf, dref); 1433 if (unlikely(!IS_ALIGNED(dref_offset, 1434 fs_info->sectorsize))) { 1435 extent_err(leaf, slot, 1436 "invalid data ref offset, have %llu expect aligned to %u", 1437 dref_offset, fs_info->sectorsize); 1438 return -EUCLEAN; 1439 } 1440 inline_refs += btrfs_extent_data_ref_count(leaf, dref); 1441 break; 1442 /* Contains parent bytenr and ref count */ 1443 case BTRFS_SHARED_DATA_REF_KEY: 1444 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1445 if (unlikely(!IS_ALIGNED(inline_offset, 1446 fs_info->sectorsize))) { 1447 extent_err(leaf, slot, 1448 "invalid data parent bytenr, have %llu expect aligned to %u", 1449 inline_offset, fs_info->sectorsize); 1450 return -EUCLEAN; 1451 } 1452 inline_refs += btrfs_shared_data_ref_count(leaf, sref); 1453 break; 1454 default: 1455 extent_err(leaf, slot, "unknown inline ref type: %u", 1456 inline_type); 1457 return -EUCLEAN; 1458 } 1459 ptr += btrfs_extent_inline_ref_size(inline_type); 1460 } 1461 /* No padding is allowed */ 1462 if (unlikely(ptr != end)) { 1463 extent_err(leaf, slot, 1464 "invalid extent item size, padding bytes found"); 1465 return -EUCLEAN; 1466 } 1467 1468 /* Finally, check the inline refs against total refs */ 1469 if (unlikely(inline_refs > total_refs)) { 1470 extent_err(leaf, slot, 1471 "invalid extent refs, have %llu expect >= inline %llu", 1472 total_refs, inline_refs); 1473 return -EUCLEAN; 1474 } 1475 1476 if ((prev_key->type == BTRFS_EXTENT_ITEM_KEY) || 1477 (prev_key->type == BTRFS_METADATA_ITEM_KEY)) { 1478 u64 prev_end = prev_key->objectid; 1479 1480 if (prev_key->type == BTRFS_METADATA_ITEM_KEY) 1481 prev_end += fs_info->nodesize; 1482 else 1483 prev_end += prev_key->offset; 1484 1485 if (unlikely(prev_end > key->objectid)) { 1486 extent_err(leaf, slot, 1487 "previous extent [%llu %u %llu] overlaps current extent [%llu %u %llu]", 1488 prev_key->objectid, prev_key->type, 1489 prev_key->offset, key->objectid, key->type, 1490 key->offset); 1491 return -EUCLEAN; 1492 } 1493 } 1494 1495 return 0; 1496 } 1497 1498 static int check_simple_keyed_refs(struct extent_buffer *leaf, 1499 struct btrfs_key *key, int slot) 1500 { 1501 u32 expect_item_size = 0; 1502 1503 if (key->type == BTRFS_SHARED_DATA_REF_KEY) 1504 expect_item_size = sizeof(struct btrfs_shared_data_ref); 1505 1506 if (unlikely(btrfs_item_size(leaf, slot) != expect_item_size)) { 1507 generic_err(leaf, slot, 1508 "invalid item size, have %u expect %u for key type %u", 1509 btrfs_item_size(leaf, slot), 1510 expect_item_size, key->type); 1511 return -EUCLEAN; 1512 } 1513 if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) { 1514 generic_err(leaf, slot, 1515 "invalid key objectid for shared block ref, have %llu expect aligned to %u", 1516 key->objectid, leaf->fs_info->sectorsize); 1517 return -EUCLEAN; 1518 } 1519 if (unlikely(key->type != BTRFS_TREE_BLOCK_REF_KEY && 1520 !IS_ALIGNED(key->offset, leaf->fs_info->sectorsize))) { 1521 extent_err(leaf, slot, 1522 "invalid tree parent bytenr, have %llu expect aligned to %u", 1523 key->offset, leaf->fs_info->sectorsize); 1524 return -EUCLEAN; 1525 } 1526 return 0; 1527 } 1528 1529 static int check_extent_data_ref(struct extent_buffer *leaf, 1530 struct btrfs_key *key, int slot) 1531 { 1532 struct btrfs_extent_data_ref *dref; 1533 unsigned long ptr = btrfs_item_ptr_offset(leaf, slot); 1534 const unsigned long end = ptr + btrfs_item_size(leaf, slot); 1535 1536 if (unlikely(btrfs_item_size(leaf, slot) % sizeof(*dref) != 0)) { 1537 generic_err(leaf, slot, 1538 "invalid item size, have %u expect aligned to %zu for key type %u", 1539 btrfs_item_size(leaf, slot), 1540 sizeof(*dref), key->type); 1541 return -EUCLEAN; 1542 } 1543 if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) { 1544 generic_err(leaf, slot, 1545 "invalid key objectid for shared block ref, have %llu expect aligned to %u", 1546 key->objectid, leaf->fs_info->sectorsize); 1547 return -EUCLEAN; 1548 } 1549 for (; ptr < end; ptr += sizeof(*dref)) { 1550 u64 offset; 1551 1552 /* 1553 * We cannot check the extent_data_ref hash due to possible 1554 * overflow from the leaf due to hash collisions. 1555 */ 1556 dref = (struct btrfs_extent_data_ref *)ptr; 1557 offset = btrfs_extent_data_ref_offset(leaf, dref); 1558 if (unlikely(!IS_ALIGNED(offset, leaf->fs_info->sectorsize))) { 1559 extent_err(leaf, slot, 1560 "invalid extent data backref offset, have %llu expect aligned to %u", 1561 offset, leaf->fs_info->sectorsize); 1562 return -EUCLEAN; 1563 } 1564 } 1565 return 0; 1566 } 1567 1568 #define inode_ref_err(eb, slot, fmt, args...) \ 1569 inode_item_err(eb, slot, fmt, ##args) 1570 static int check_inode_ref(struct extent_buffer *leaf, 1571 struct btrfs_key *key, struct btrfs_key *prev_key, 1572 int slot) 1573 { 1574 struct btrfs_inode_ref *iref; 1575 unsigned long ptr; 1576 unsigned long end; 1577 1578 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key))) 1579 return -EUCLEAN; 1580 /* namelen can't be 0, so item_size == sizeof() is also invalid */ 1581 if (unlikely(btrfs_item_size(leaf, slot) <= sizeof(*iref))) { 1582 inode_ref_err(leaf, slot, 1583 "invalid item size, have %u expect (%zu, %u)", 1584 btrfs_item_size(leaf, slot), 1585 sizeof(*iref), BTRFS_LEAF_DATA_SIZE(leaf->fs_info)); 1586 return -EUCLEAN; 1587 } 1588 1589 ptr = btrfs_item_ptr_offset(leaf, slot); 1590 end = ptr + btrfs_item_size(leaf, slot); 1591 while (ptr < end) { 1592 u16 namelen; 1593 1594 if (unlikely(ptr + sizeof(iref) > end)) { 1595 inode_ref_err(leaf, slot, 1596 "inode ref overflow, ptr %lu end %lu inode_ref_size %zu", 1597 ptr, end, sizeof(iref)); 1598 return -EUCLEAN; 1599 } 1600 1601 iref = (struct btrfs_inode_ref *)ptr; 1602 namelen = btrfs_inode_ref_name_len(leaf, iref); 1603 if (unlikely(ptr + sizeof(*iref) + namelen > end)) { 1604 inode_ref_err(leaf, slot, 1605 "inode ref overflow, ptr %lu end %lu namelen %u", 1606 ptr, end, namelen); 1607 return -EUCLEAN; 1608 } 1609 1610 /* 1611 * NOTE: In theory we should record all found index numbers 1612 * to find any duplicated indexes, but that will be too time 1613 * consuming for inodes with too many hard links. 1614 */ 1615 ptr += sizeof(*iref) + namelen; 1616 } 1617 return 0; 1618 } 1619 1620 /* 1621 * Common point to switch the item-specific validation. 1622 */ 1623 static enum btrfs_tree_block_status check_leaf_item(struct extent_buffer *leaf, 1624 struct btrfs_key *key, 1625 int slot, 1626 struct btrfs_key *prev_key) 1627 { 1628 int ret = 0; 1629 struct btrfs_chunk *chunk; 1630 1631 switch (key->type) { 1632 case BTRFS_EXTENT_DATA_KEY: 1633 ret = check_extent_data_item(leaf, key, slot, prev_key); 1634 break; 1635 case BTRFS_EXTENT_CSUM_KEY: 1636 ret = check_csum_item(leaf, key, slot, prev_key); 1637 break; 1638 case BTRFS_DIR_ITEM_KEY: 1639 case BTRFS_DIR_INDEX_KEY: 1640 case BTRFS_XATTR_ITEM_KEY: 1641 ret = check_dir_item(leaf, key, prev_key, slot); 1642 break; 1643 case BTRFS_INODE_REF_KEY: 1644 ret = check_inode_ref(leaf, key, prev_key, slot); 1645 break; 1646 case BTRFS_BLOCK_GROUP_ITEM_KEY: 1647 ret = check_block_group_item(leaf, key, slot); 1648 break; 1649 case BTRFS_CHUNK_ITEM_KEY: 1650 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 1651 ret = check_leaf_chunk_item(leaf, chunk, key, slot); 1652 break; 1653 case BTRFS_DEV_ITEM_KEY: 1654 ret = check_dev_item(leaf, key, slot); 1655 break; 1656 case BTRFS_INODE_ITEM_KEY: 1657 ret = check_inode_item(leaf, key, slot); 1658 break; 1659 case BTRFS_ROOT_ITEM_KEY: 1660 ret = check_root_item(leaf, key, slot); 1661 break; 1662 case BTRFS_EXTENT_ITEM_KEY: 1663 case BTRFS_METADATA_ITEM_KEY: 1664 ret = check_extent_item(leaf, key, slot, prev_key); 1665 break; 1666 case BTRFS_TREE_BLOCK_REF_KEY: 1667 case BTRFS_SHARED_DATA_REF_KEY: 1668 case BTRFS_SHARED_BLOCK_REF_KEY: 1669 ret = check_simple_keyed_refs(leaf, key, slot); 1670 break; 1671 case BTRFS_EXTENT_DATA_REF_KEY: 1672 ret = check_extent_data_ref(leaf, key, slot); 1673 break; 1674 } 1675 1676 if (ret) 1677 return BTRFS_TREE_BLOCK_INVALID_ITEM; 1678 return BTRFS_TREE_BLOCK_CLEAN; 1679 } 1680 1681 enum btrfs_tree_block_status __btrfs_check_leaf(struct extent_buffer *leaf) 1682 { 1683 struct btrfs_fs_info *fs_info = leaf->fs_info; 1684 /* No valid key type is 0, so all key should be larger than this key */ 1685 struct btrfs_key prev_key = {0, 0, 0}; 1686 struct btrfs_key key; 1687 u32 nritems = btrfs_header_nritems(leaf); 1688 int slot; 1689 1690 if (unlikely(btrfs_header_level(leaf) != 0)) { 1691 generic_err(leaf, 0, 1692 "invalid level for leaf, have %d expect 0", 1693 btrfs_header_level(leaf)); 1694 return BTRFS_TREE_BLOCK_INVALID_LEVEL; 1695 } 1696 1697 /* 1698 * Extent buffers from a relocation tree have a owner field that 1699 * corresponds to the subvolume tree they are based on. So just from an 1700 * extent buffer alone we can not find out what is the id of the 1701 * corresponding subvolume tree, so we can not figure out if the extent 1702 * buffer corresponds to the root of the relocation tree or not. So 1703 * skip this check for relocation trees. 1704 */ 1705 if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) { 1706 u64 owner = btrfs_header_owner(leaf); 1707 1708 /* These trees must never be empty */ 1709 if (unlikely(owner == BTRFS_ROOT_TREE_OBJECTID || 1710 owner == BTRFS_CHUNK_TREE_OBJECTID || 1711 owner == BTRFS_DEV_TREE_OBJECTID || 1712 owner == BTRFS_FS_TREE_OBJECTID || 1713 owner == BTRFS_DATA_RELOC_TREE_OBJECTID)) { 1714 generic_err(leaf, 0, 1715 "invalid root, root %llu must never be empty", 1716 owner); 1717 return BTRFS_TREE_BLOCK_INVALID_NRITEMS; 1718 } 1719 1720 /* Unknown tree */ 1721 if (unlikely(owner == 0)) { 1722 generic_err(leaf, 0, 1723 "invalid owner, root 0 is not defined"); 1724 return BTRFS_TREE_BLOCK_INVALID_OWNER; 1725 } 1726 1727 /* EXTENT_TREE_V2 can have empty extent trees. */ 1728 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 1729 return BTRFS_TREE_BLOCK_CLEAN; 1730 1731 if (unlikely(owner == BTRFS_EXTENT_TREE_OBJECTID)) { 1732 generic_err(leaf, 0, 1733 "invalid root, root %llu must never be empty", 1734 owner); 1735 return BTRFS_TREE_BLOCK_INVALID_NRITEMS; 1736 } 1737 1738 return BTRFS_TREE_BLOCK_CLEAN; 1739 } 1740 1741 if (unlikely(nritems == 0)) 1742 return BTRFS_TREE_BLOCK_CLEAN; 1743 1744 /* 1745 * Check the following things to make sure this is a good leaf, and 1746 * leaf users won't need to bother with similar sanity checks: 1747 * 1748 * 1) key ordering 1749 * 2) item offset and size 1750 * No overlap, no hole, all inside the leaf. 1751 * 3) item content 1752 * If possible, do comprehensive sanity check. 1753 * NOTE: All checks must only rely on the item data itself. 1754 */ 1755 for (slot = 0; slot < nritems; slot++) { 1756 u32 item_end_expected; 1757 u64 item_data_end; 1758 1759 btrfs_item_key_to_cpu(leaf, &key, slot); 1760 1761 /* Make sure the keys are in the right order */ 1762 if (unlikely(btrfs_comp_cpu_keys(&prev_key, &key) >= 0)) { 1763 generic_err(leaf, slot, 1764 "bad key order, prev (%llu %u %llu) current (%llu %u %llu)", 1765 prev_key.objectid, prev_key.type, 1766 prev_key.offset, key.objectid, key.type, 1767 key.offset); 1768 return BTRFS_TREE_BLOCK_BAD_KEY_ORDER; 1769 } 1770 1771 item_data_end = (u64)btrfs_item_offset(leaf, slot) + 1772 btrfs_item_size(leaf, slot); 1773 /* 1774 * Make sure the offset and ends are right, remember that the 1775 * item data starts at the end of the leaf and grows towards the 1776 * front. 1777 */ 1778 if (slot == 0) 1779 item_end_expected = BTRFS_LEAF_DATA_SIZE(fs_info); 1780 else 1781 item_end_expected = btrfs_item_offset(leaf, 1782 slot - 1); 1783 if (unlikely(item_data_end != item_end_expected)) { 1784 generic_err(leaf, slot, 1785 "unexpected item end, have %llu expect %u", 1786 item_data_end, item_end_expected); 1787 return BTRFS_TREE_BLOCK_INVALID_OFFSETS; 1788 } 1789 1790 /* 1791 * Check to make sure that we don't point outside of the leaf, 1792 * just in case all the items are consistent to each other, but 1793 * all point outside of the leaf. 1794 */ 1795 if (unlikely(item_data_end > BTRFS_LEAF_DATA_SIZE(fs_info))) { 1796 generic_err(leaf, slot, 1797 "slot end outside of leaf, have %llu expect range [0, %u]", 1798 item_data_end, BTRFS_LEAF_DATA_SIZE(fs_info)); 1799 return BTRFS_TREE_BLOCK_INVALID_OFFSETS; 1800 } 1801 1802 /* Also check if the item pointer overlaps with btrfs item. */ 1803 if (unlikely(btrfs_item_ptr_offset(leaf, slot) < 1804 btrfs_item_nr_offset(leaf, slot) + sizeof(struct btrfs_item))) { 1805 generic_err(leaf, slot, 1806 "slot overlaps with its data, item end %lu data start %lu", 1807 btrfs_item_nr_offset(leaf, slot) + 1808 sizeof(struct btrfs_item), 1809 btrfs_item_ptr_offset(leaf, slot)); 1810 return BTRFS_TREE_BLOCK_INVALID_OFFSETS; 1811 } 1812 1813 /* 1814 * We only want to do this if WRITTEN is set, otherwise the leaf 1815 * may be in some intermediate state and won't appear valid. 1816 */ 1817 if (btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_WRITTEN)) { 1818 enum btrfs_tree_block_status ret; 1819 1820 /* 1821 * Check if the item size and content meet other 1822 * criteria 1823 */ 1824 ret = check_leaf_item(leaf, &key, slot, &prev_key); 1825 if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN)) 1826 return ret; 1827 } 1828 1829 prev_key.objectid = key.objectid; 1830 prev_key.type = key.type; 1831 prev_key.offset = key.offset; 1832 } 1833 1834 return BTRFS_TREE_BLOCK_CLEAN; 1835 } 1836 1837 int btrfs_check_leaf(struct extent_buffer *leaf) 1838 { 1839 enum btrfs_tree_block_status ret; 1840 1841 ret = __btrfs_check_leaf(leaf); 1842 if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN)) 1843 return -EUCLEAN; 1844 return 0; 1845 } 1846 ALLOW_ERROR_INJECTION(btrfs_check_leaf, ERRNO); 1847 1848 enum btrfs_tree_block_status __btrfs_check_node(struct extent_buffer *node) 1849 { 1850 struct btrfs_fs_info *fs_info = node->fs_info; 1851 unsigned long nr = btrfs_header_nritems(node); 1852 struct btrfs_key key, next_key; 1853 int slot; 1854 int level = btrfs_header_level(node); 1855 u64 bytenr; 1856 1857 if (unlikely(level <= 0 || level >= BTRFS_MAX_LEVEL)) { 1858 generic_err(node, 0, 1859 "invalid level for node, have %d expect [1, %d]", 1860 level, BTRFS_MAX_LEVEL - 1); 1861 return BTRFS_TREE_BLOCK_INVALID_LEVEL; 1862 } 1863 if (unlikely(nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(fs_info))) { 1864 btrfs_crit(fs_info, 1865 "corrupt node: root=%llu block=%llu, nritems too %s, have %lu expect range [1,%u]", 1866 btrfs_header_owner(node), node->start, 1867 nr == 0 ? "small" : "large", nr, 1868 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 1869 return BTRFS_TREE_BLOCK_INVALID_NRITEMS; 1870 } 1871 1872 for (slot = 0; slot < nr - 1; slot++) { 1873 bytenr = btrfs_node_blockptr(node, slot); 1874 btrfs_node_key_to_cpu(node, &key, slot); 1875 btrfs_node_key_to_cpu(node, &next_key, slot + 1); 1876 1877 if (unlikely(!bytenr)) { 1878 generic_err(node, slot, 1879 "invalid NULL node pointer"); 1880 return BTRFS_TREE_BLOCK_INVALID_BLOCKPTR; 1881 } 1882 if (unlikely(!IS_ALIGNED(bytenr, fs_info->sectorsize))) { 1883 generic_err(node, slot, 1884 "unaligned pointer, have %llu should be aligned to %u", 1885 bytenr, fs_info->sectorsize); 1886 return BTRFS_TREE_BLOCK_INVALID_BLOCKPTR; 1887 } 1888 1889 if (unlikely(btrfs_comp_cpu_keys(&key, &next_key) >= 0)) { 1890 generic_err(node, slot, 1891 "bad key order, current (%llu %u %llu) next (%llu %u %llu)", 1892 key.objectid, key.type, key.offset, 1893 next_key.objectid, next_key.type, 1894 next_key.offset); 1895 return BTRFS_TREE_BLOCK_BAD_KEY_ORDER; 1896 } 1897 } 1898 return BTRFS_TREE_BLOCK_CLEAN; 1899 } 1900 1901 int btrfs_check_node(struct extent_buffer *node) 1902 { 1903 enum btrfs_tree_block_status ret; 1904 1905 ret = __btrfs_check_node(node); 1906 if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN)) 1907 return -EUCLEAN; 1908 return 0; 1909 } 1910 ALLOW_ERROR_INJECTION(btrfs_check_node, ERRNO); 1911 1912 int btrfs_check_eb_owner(const struct extent_buffer *eb, u64 root_owner) 1913 { 1914 const bool is_subvol = is_fstree(root_owner); 1915 const u64 eb_owner = btrfs_header_owner(eb); 1916 1917 /* 1918 * Skip dummy fs, as selftests don't create unique ebs for each dummy 1919 * root. 1920 */ 1921 if (test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &eb->fs_info->fs_state)) 1922 return 0; 1923 /* 1924 * There are several call sites (backref walking, qgroup, and data 1925 * reloc) passing 0 as @root_owner, as they are not holding the 1926 * tree root. In that case, we can not do a reliable ownership check, 1927 * so just exit. 1928 */ 1929 if (root_owner == 0) 1930 return 0; 1931 /* 1932 * These trees use key.offset as their owner, our callers don't have 1933 * the extra capacity to pass key.offset here. So we just skip them. 1934 */ 1935 if (root_owner == BTRFS_TREE_LOG_OBJECTID || 1936 root_owner == BTRFS_TREE_RELOC_OBJECTID) 1937 return 0; 1938 1939 if (!is_subvol) { 1940 /* For non-subvolume trees, the eb owner should match root owner */ 1941 if (unlikely(root_owner != eb_owner)) { 1942 btrfs_crit(eb->fs_info, 1943 "corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect %llu", 1944 btrfs_header_level(eb) == 0 ? "leaf" : "node", 1945 root_owner, btrfs_header_bytenr(eb), eb_owner, 1946 root_owner); 1947 return -EUCLEAN; 1948 } 1949 return 0; 1950 } 1951 1952 /* 1953 * For subvolume trees, owners can mismatch, but they should all belong 1954 * to subvolume trees. 1955 */ 1956 if (unlikely(is_subvol != is_fstree(eb_owner))) { 1957 btrfs_crit(eb->fs_info, 1958 "corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect [%llu, %llu]", 1959 btrfs_header_level(eb) == 0 ? "leaf" : "node", 1960 root_owner, btrfs_header_bytenr(eb), eb_owner, 1961 BTRFS_FIRST_FREE_OBJECTID, BTRFS_LAST_FREE_OBJECTID); 1962 return -EUCLEAN; 1963 } 1964 return 0; 1965 } 1966 1967 int btrfs_verify_level_key(struct extent_buffer *eb, int level, 1968 struct btrfs_key *first_key, u64 parent_transid) 1969 { 1970 struct btrfs_fs_info *fs_info = eb->fs_info; 1971 int found_level; 1972 struct btrfs_key found_key; 1973 int ret; 1974 1975 found_level = btrfs_header_level(eb); 1976 if (found_level != level) { 1977 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 1978 KERN_ERR "BTRFS: tree level check failed\n"); 1979 btrfs_err(fs_info, 1980 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", 1981 eb->start, level, found_level); 1982 return -EIO; 1983 } 1984 1985 if (!first_key) 1986 return 0; 1987 1988 /* 1989 * For live tree block (new tree blocks in current transaction), 1990 * we need proper lock context to avoid race, which is impossible here. 1991 * So we only checks tree blocks which is read from disk, whose 1992 * generation <= fs_info->last_trans_committed. 1993 */ 1994 if (btrfs_header_generation(eb) > fs_info->last_trans_committed) 1995 return 0; 1996 1997 /* We have @first_key, so this @eb must have at least one item */ 1998 if (btrfs_header_nritems(eb) == 0) { 1999 btrfs_err(fs_info, 2000 "invalid tree nritems, bytenr=%llu nritems=0 expect >0", 2001 eb->start); 2002 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 2003 return -EUCLEAN; 2004 } 2005 2006 if (found_level) 2007 btrfs_node_key_to_cpu(eb, &found_key, 0); 2008 else 2009 btrfs_item_key_to_cpu(eb, &found_key, 0); 2010 ret = btrfs_comp_cpu_keys(first_key, &found_key); 2011 2012 if (ret) { 2013 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 2014 KERN_ERR "BTRFS: tree first key check failed\n"); 2015 btrfs_err(fs_info, 2016 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 2017 eb->start, parent_transid, first_key->objectid, 2018 first_key->type, first_key->offset, 2019 found_key.objectid, found_key.type, 2020 found_key.offset); 2021 } 2022 return ret; 2023 } 2024