1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) Qu Wenruo 2017. All rights reserved. 4 */ 5 6 /* 7 * The module is used to catch unexpected/corrupted tree block data. 8 * Such behavior can be caused either by a fuzzed image or bugs. 9 * 10 * The objective is to do leaf/node validation checks when tree block is read 11 * from disk, and check *every* possible member, so other code won't 12 * need to checking them again. 13 * 14 * Due to the potential and unwanted damage, every checker needs to be 15 * carefully reviewed otherwise so it does not prevent mount of valid images. 16 */ 17 18 #include <linux/types.h> 19 #include <linux/stddef.h> 20 #include <linux/error-injection.h> 21 #include "messages.h" 22 #include "ctree.h" 23 #include "tree-checker.h" 24 #include "disk-io.h" 25 #include "compression.h" 26 #include "volumes.h" 27 #include "misc.h" 28 #include "fs.h" 29 #include "accessors.h" 30 #include "file-item.h" 31 #include "inode-item.h" 32 #include "dir-item.h" 33 #include "raid-stripe-tree.h" 34 #include "extent-tree.h" 35 36 /* 37 * Error message should follow the following format: 38 * corrupt <type>: <identifier>, <reason>[, <bad_value>] 39 * 40 * @type: leaf or node 41 * @identifier: the necessary info to locate the leaf/node. 42 * It's recommended to decode key.objecitd/offset if it's 43 * meaningful. 44 * @reason: describe the error 45 * @bad_value: optional, it's recommended to output bad value and its 46 * expected value (range). 47 * 48 * Since comma is used to separate the components, only space is allowed 49 * inside each component. 50 */ 51 52 /* 53 * Append generic "corrupt leaf/node root=%llu block=%llu slot=%d: " to @fmt. 54 * Allows callers to customize the output. 55 */ 56 __printf(3, 4) 57 __cold 58 static void generic_err(const struct extent_buffer *eb, int slot, 59 const char *fmt, ...) 60 { 61 const struct btrfs_fs_info *fs_info = eb->fs_info; 62 struct va_format vaf; 63 va_list args; 64 65 va_start(args, fmt); 66 67 vaf.fmt = fmt; 68 vaf.va = &args; 69 70 btrfs_crit(fs_info, 71 "corrupt %s: root=%llu block=%llu slot=%d, %pV", 72 btrfs_header_level(eb) == 0 ? "leaf" : "node", 73 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, &vaf); 74 va_end(args); 75 } 76 77 /* 78 * Customized reporter for extent data item, since its key objectid and 79 * offset has its own meaning. 80 */ 81 __printf(3, 4) 82 __cold 83 static void file_extent_err(const struct extent_buffer *eb, int slot, 84 const char *fmt, ...) 85 { 86 const struct btrfs_fs_info *fs_info = eb->fs_info; 87 struct btrfs_key key; 88 struct va_format vaf; 89 va_list args; 90 91 btrfs_item_key_to_cpu(eb, &key, slot); 92 va_start(args, fmt); 93 94 vaf.fmt = fmt; 95 vaf.va = &args; 96 97 btrfs_crit(fs_info, 98 "corrupt %s: root=%llu block=%llu slot=%d ino=%llu file_offset=%llu, %pV", 99 btrfs_header_level(eb) == 0 ? "leaf" : "node", 100 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, 101 key.objectid, key.offset, &vaf); 102 va_end(args); 103 } 104 105 /* 106 * Return 0 if the btrfs_file_extent_##name is aligned to @alignment 107 * Else return 1 108 */ 109 #define CHECK_FE_ALIGNED(leaf, slot, fi, name, alignment) \ 110 ({ \ 111 if (unlikely(!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), \ 112 (alignment)))) \ 113 file_extent_err((leaf), (slot), \ 114 "invalid %s for file extent, have %llu, should be aligned to %u", \ 115 (#name), btrfs_file_extent_##name((leaf), (fi)), \ 116 (alignment)); \ 117 (!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), (alignment))); \ 118 }) 119 120 static u64 file_extent_end(struct extent_buffer *leaf, 121 struct btrfs_key *key, 122 struct btrfs_file_extent_item *extent) 123 { 124 u64 end; 125 u64 len; 126 127 if (btrfs_file_extent_type(leaf, extent) == BTRFS_FILE_EXTENT_INLINE) { 128 len = btrfs_file_extent_ram_bytes(leaf, extent); 129 end = ALIGN(key->offset + len, leaf->fs_info->sectorsize); 130 } else { 131 len = btrfs_file_extent_num_bytes(leaf, extent); 132 end = key->offset + len; 133 } 134 return end; 135 } 136 137 /* 138 * Customized report for dir_item, the only new important information is 139 * key->objectid, which represents inode number 140 */ 141 __printf(3, 4) 142 __cold 143 static void dir_item_err(const struct extent_buffer *eb, int slot, 144 const char *fmt, ...) 145 { 146 const struct btrfs_fs_info *fs_info = eb->fs_info; 147 struct btrfs_key key; 148 struct va_format vaf; 149 va_list args; 150 151 btrfs_item_key_to_cpu(eb, &key, slot); 152 va_start(args, fmt); 153 154 vaf.fmt = fmt; 155 vaf.va = &args; 156 157 btrfs_crit(fs_info, 158 "corrupt %s: root=%llu block=%llu slot=%d ino=%llu, %pV", 159 btrfs_header_level(eb) == 0 ? "leaf" : "node", 160 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, 161 key.objectid, &vaf); 162 va_end(args); 163 } 164 165 /* 166 * This functions checks prev_key->objectid, to ensure current key and prev_key 167 * share the same objectid as inode number. 168 * 169 * This is to detect missing INODE_ITEM in subvolume trees. 170 * 171 * Return true if everything is OK or we don't need to check. 172 * Return false if anything is wrong. 173 */ 174 static bool check_prev_ino(struct extent_buffer *leaf, 175 struct btrfs_key *key, int slot, 176 struct btrfs_key *prev_key) 177 { 178 /* No prev key, skip check */ 179 if (slot == 0) 180 return true; 181 182 /* Only these key->types needs to be checked */ 183 ASSERT(key->type == BTRFS_XATTR_ITEM_KEY || 184 key->type == BTRFS_INODE_REF_KEY || 185 key->type == BTRFS_DIR_INDEX_KEY || 186 key->type == BTRFS_DIR_ITEM_KEY || 187 key->type == BTRFS_EXTENT_DATA_KEY); 188 189 /* 190 * Only subvolume trees along with their reloc trees need this check. 191 * Things like log tree doesn't follow this ino requirement. 192 */ 193 if (!is_fstree(btrfs_header_owner(leaf))) 194 return true; 195 196 if (key->objectid == prev_key->objectid) 197 return true; 198 199 /* Error found */ 200 dir_item_err(leaf, slot, 201 "invalid previous key objectid, have %llu expect %llu", 202 prev_key->objectid, key->objectid); 203 return false; 204 } 205 static int check_extent_data_item(struct extent_buffer *leaf, 206 struct btrfs_key *key, int slot, 207 struct btrfs_key *prev_key) 208 { 209 struct btrfs_fs_info *fs_info = leaf->fs_info; 210 struct btrfs_file_extent_item *fi; 211 u32 sectorsize = fs_info->sectorsize; 212 u32 item_size = btrfs_item_size(leaf, slot); 213 u64 extent_end; 214 215 if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) { 216 file_extent_err(leaf, slot, 217 "unaligned file_offset for file extent, have %llu should be aligned to %u", 218 key->offset, sectorsize); 219 return -EUCLEAN; 220 } 221 222 /* 223 * Previous key must have the same key->objectid (ino). 224 * It can be XATTR_ITEM, INODE_ITEM or just another EXTENT_DATA. 225 * But if objectids mismatch, it means we have a missing 226 * INODE_ITEM. 227 */ 228 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key))) 229 return -EUCLEAN; 230 231 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 232 233 /* 234 * Make sure the item contains at least inline header, so the file 235 * extent type is not some garbage. 236 */ 237 if (unlikely(item_size < BTRFS_FILE_EXTENT_INLINE_DATA_START)) { 238 file_extent_err(leaf, slot, 239 "invalid item size, have %u expect [%zu, %u)", 240 item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START, 241 SZ_4K); 242 return -EUCLEAN; 243 } 244 if (unlikely(btrfs_file_extent_type(leaf, fi) >= 245 BTRFS_NR_FILE_EXTENT_TYPES)) { 246 file_extent_err(leaf, slot, 247 "invalid type for file extent, have %u expect range [0, %u]", 248 btrfs_file_extent_type(leaf, fi), 249 BTRFS_NR_FILE_EXTENT_TYPES - 1); 250 return -EUCLEAN; 251 } 252 253 /* 254 * Support for new compression/encryption must introduce incompat flag, 255 * and must be caught in open_ctree(). 256 */ 257 if (unlikely(btrfs_file_extent_compression(leaf, fi) >= 258 BTRFS_NR_COMPRESS_TYPES)) { 259 file_extent_err(leaf, slot, 260 "invalid compression for file extent, have %u expect range [0, %u]", 261 btrfs_file_extent_compression(leaf, fi), 262 BTRFS_NR_COMPRESS_TYPES - 1); 263 return -EUCLEAN; 264 } 265 if (unlikely(btrfs_file_extent_encryption(leaf, fi))) { 266 file_extent_err(leaf, slot, 267 "invalid encryption for file extent, have %u expect 0", 268 btrfs_file_extent_encryption(leaf, fi)); 269 return -EUCLEAN; 270 } 271 if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) { 272 /* Inline extent must have 0 as key offset */ 273 if (unlikely(key->offset)) { 274 file_extent_err(leaf, slot, 275 "invalid file_offset for inline file extent, have %llu expect 0", 276 key->offset); 277 return -EUCLEAN; 278 } 279 280 /* Compressed inline extent has no on-disk size, skip it */ 281 if (btrfs_file_extent_compression(leaf, fi) != 282 BTRFS_COMPRESS_NONE) 283 return 0; 284 285 /* Uncompressed inline extent size must match item size */ 286 if (unlikely(item_size != BTRFS_FILE_EXTENT_INLINE_DATA_START + 287 btrfs_file_extent_ram_bytes(leaf, fi))) { 288 file_extent_err(leaf, slot, 289 "invalid ram_bytes for uncompressed inline extent, have %u expect %llu", 290 item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START + 291 btrfs_file_extent_ram_bytes(leaf, fi)); 292 return -EUCLEAN; 293 } 294 return 0; 295 } 296 297 /* Regular or preallocated extent has fixed item size */ 298 if (unlikely(item_size != sizeof(*fi))) { 299 file_extent_err(leaf, slot, 300 "invalid item size for reg/prealloc file extent, have %u expect %zu", 301 item_size, sizeof(*fi)); 302 return -EUCLEAN; 303 } 304 if (unlikely(CHECK_FE_ALIGNED(leaf, slot, fi, ram_bytes, sectorsize) || 305 CHECK_FE_ALIGNED(leaf, slot, fi, disk_bytenr, sectorsize) || 306 CHECK_FE_ALIGNED(leaf, slot, fi, disk_num_bytes, sectorsize) || 307 CHECK_FE_ALIGNED(leaf, slot, fi, offset, sectorsize) || 308 CHECK_FE_ALIGNED(leaf, slot, fi, num_bytes, sectorsize))) 309 return -EUCLEAN; 310 311 /* Catch extent end overflow */ 312 if (unlikely(check_add_overflow(btrfs_file_extent_num_bytes(leaf, fi), 313 key->offset, &extent_end))) { 314 file_extent_err(leaf, slot, 315 "extent end overflow, have file offset %llu extent num bytes %llu", 316 key->offset, 317 btrfs_file_extent_num_bytes(leaf, fi)); 318 return -EUCLEAN; 319 } 320 321 /* 322 * Check that no two consecutive file extent items, in the same leaf, 323 * present ranges that overlap each other. 324 */ 325 if (slot > 0 && 326 prev_key->objectid == key->objectid && 327 prev_key->type == BTRFS_EXTENT_DATA_KEY) { 328 struct btrfs_file_extent_item *prev_fi; 329 u64 prev_end; 330 331 prev_fi = btrfs_item_ptr(leaf, slot - 1, 332 struct btrfs_file_extent_item); 333 prev_end = file_extent_end(leaf, prev_key, prev_fi); 334 if (unlikely(prev_end > key->offset)) { 335 file_extent_err(leaf, slot - 1, 336 "file extent end range (%llu) goes beyond start offset (%llu) of the next file extent", 337 prev_end, key->offset); 338 return -EUCLEAN; 339 } 340 } 341 342 return 0; 343 } 344 345 static int check_csum_item(struct extent_buffer *leaf, struct btrfs_key *key, 346 int slot, struct btrfs_key *prev_key) 347 { 348 struct btrfs_fs_info *fs_info = leaf->fs_info; 349 u32 sectorsize = fs_info->sectorsize; 350 const u32 csumsize = fs_info->csum_size; 351 352 if (unlikely(key->objectid != BTRFS_EXTENT_CSUM_OBJECTID)) { 353 generic_err(leaf, slot, 354 "invalid key objectid for csum item, have %llu expect %llu", 355 key->objectid, BTRFS_EXTENT_CSUM_OBJECTID); 356 return -EUCLEAN; 357 } 358 if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) { 359 generic_err(leaf, slot, 360 "unaligned key offset for csum item, have %llu should be aligned to %u", 361 key->offset, sectorsize); 362 return -EUCLEAN; 363 } 364 if (unlikely(!IS_ALIGNED(btrfs_item_size(leaf, slot), csumsize))) { 365 generic_err(leaf, slot, 366 "unaligned item size for csum item, have %u should be aligned to %u", 367 btrfs_item_size(leaf, slot), csumsize); 368 return -EUCLEAN; 369 } 370 if (slot > 0 && prev_key->type == BTRFS_EXTENT_CSUM_KEY) { 371 u64 prev_csum_end; 372 u32 prev_item_size; 373 374 prev_item_size = btrfs_item_size(leaf, slot - 1); 375 prev_csum_end = (prev_item_size / csumsize) * sectorsize; 376 prev_csum_end += prev_key->offset; 377 if (unlikely(prev_csum_end > key->offset)) { 378 generic_err(leaf, slot - 1, 379 "csum end range (%llu) goes beyond the start range (%llu) of the next csum item", 380 prev_csum_end, key->offset); 381 return -EUCLEAN; 382 } 383 } 384 return 0; 385 } 386 387 /* Inode item error output has the same format as dir_item_err() */ 388 #define inode_item_err(eb, slot, fmt, ...) \ 389 dir_item_err(eb, slot, fmt, __VA_ARGS__) 390 391 static int check_inode_key(struct extent_buffer *leaf, struct btrfs_key *key, 392 int slot) 393 { 394 struct btrfs_key item_key; 395 bool is_inode_item; 396 397 btrfs_item_key_to_cpu(leaf, &item_key, slot); 398 is_inode_item = (item_key.type == BTRFS_INODE_ITEM_KEY); 399 400 /* For XATTR_ITEM, location key should be all 0 */ 401 if (item_key.type == BTRFS_XATTR_ITEM_KEY) { 402 if (unlikely(key->objectid != 0 || key->type != 0 || 403 key->offset != 0)) 404 return -EUCLEAN; 405 return 0; 406 } 407 408 if (unlikely((key->objectid < BTRFS_FIRST_FREE_OBJECTID || 409 key->objectid > BTRFS_LAST_FREE_OBJECTID) && 410 key->objectid != BTRFS_ROOT_TREE_DIR_OBJECTID && 411 key->objectid != BTRFS_FREE_INO_OBJECTID)) { 412 if (is_inode_item) { 413 generic_err(leaf, slot, 414 "invalid key objectid: has %llu expect %llu or [%llu, %llu] or %llu", 415 key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID, 416 BTRFS_FIRST_FREE_OBJECTID, 417 BTRFS_LAST_FREE_OBJECTID, 418 BTRFS_FREE_INO_OBJECTID); 419 } else { 420 dir_item_err(leaf, slot, 421 "invalid location key objectid: has %llu expect %llu or [%llu, %llu] or %llu", 422 key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID, 423 BTRFS_FIRST_FREE_OBJECTID, 424 BTRFS_LAST_FREE_OBJECTID, 425 BTRFS_FREE_INO_OBJECTID); 426 } 427 return -EUCLEAN; 428 } 429 if (unlikely(key->offset != 0)) { 430 if (is_inode_item) 431 inode_item_err(leaf, slot, 432 "invalid key offset: has %llu expect 0", 433 key->offset); 434 else 435 dir_item_err(leaf, slot, 436 "invalid location key offset:has %llu expect 0", 437 key->offset); 438 return -EUCLEAN; 439 } 440 return 0; 441 } 442 443 static int check_root_key(struct extent_buffer *leaf, struct btrfs_key *key, 444 int slot) 445 { 446 struct btrfs_key item_key; 447 bool is_root_item; 448 449 btrfs_item_key_to_cpu(leaf, &item_key, slot); 450 is_root_item = (item_key.type == BTRFS_ROOT_ITEM_KEY); 451 452 /* 453 * Bad rootid for reloc trees. 454 * 455 * Reloc trees are only for subvolume trees, other trees only need 456 * to be COWed to be relocated. 457 */ 458 if (unlikely(is_root_item && key->objectid == BTRFS_TREE_RELOC_OBJECTID && 459 !is_fstree(key->offset))) { 460 generic_err(leaf, slot, 461 "invalid reloc tree for root %lld, root id is not a subvolume tree", 462 key->offset); 463 return -EUCLEAN; 464 } 465 466 /* No such tree id */ 467 if (unlikely(key->objectid == 0)) { 468 if (is_root_item) 469 generic_err(leaf, slot, "invalid root id 0"); 470 else 471 dir_item_err(leaf, slot, 472 "invalid location key root id 0"); 473 return -EUCLEAN; 474 } 475 476 /* DIR_ITEM/INDEX/INODE_REF is not allowed to point to non-fs trees */ 477 if (unlikely(!is_fstree(key->objectid) && !is_root_item)) { 478 dir_item_err(leaf, slot, 479 "invalid location key objectid, have %llu expect [%llu, %llu]", 480 key->objectid, BTRFS_FIRST_FREE_OBJECTID, 481 BTRFS_LAST_FREE_OBJECTID); 482 return -EUCLEAN; 483 } 484 485 /* 486 * ROOT_ITEM with non-zero offset means this is a snapshot, created at 487 * @offset transid. 488 * Furthermore, for location key in DIR_ITEM, its offset is always -1. 489 * 490 * So here we only check offset for reloc tree whose key->offset must 491 * be a valid tree. 492 */ 493 if (unlikely(key->objectid == BTRFS_TREE_RELOC_OBJECTID && 494 key->offset == 0)) { 495 generic_err(leaf, slot, "invalid root id 0 for reloc tree"); 496 return -EUCLEAN; 497 } 498 return 0; 499 } 500 501 static int check_dir_item(struct extent_buffer *leaf, 502 struct btrfs_key *key, struct btrfs_key *prev_key, 503 int slot) 504 { 505 struct btrfs_fs_info *fs_info = leaf->fs_info; 506 struct btrfs_dir_item *di; 507 u32 item_size = btrfs_item_size(leaf, slot); 508 u32 cur = 0; 509 510 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key))) 511 return -EUCLEAN; 512 513 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 514 while (cur < item_size) { 515 struct btrfs_key location_key; 516 u32 name_len; 517 u32 data_len; 518 u32 max_name_len; 519 u32 total_size; 520 u32 name_hash; 521 u8 dir_type; 522 int ret; 523 524 /* header itself should not cross item boundary */ 525 if (unlikely(cur + sizeof(*di) > item_size)) { 526 dir_item_err(leaf, slot, 527 "dir item header crosses item boundary, have %zu boundary %u", 528 cur + sizeof(*di), item_size); 529 return -EUCLEAN; 530 } 531 532 /* Location key check */ 533 btrfs_dir_item_key_to_cpu(leaf, di, &location_key); 534 if (location_key.type == BTRFS_ROOT_ITEM_KEY) { 535 ret = check_root_key(leaf, &location_key, slot); 536 if (unlikely(ret < 0)) 537 return ret; 538 } else if (location_key.type == BTRFS_INODE_ITEM_KEY || 539 location_key.type == 0) { 540 ret = check_inode_key(leaf, &location_key, slot); 541 if (unlikely(ret < 0)) 542 return ret; 543 } else { 544 dir_item_err(leaf, slot, 545 "invalid location key type, have %u, expect %u or %u", 546 location_key.type, BTRFS_ROOT_ITEM_KEY, 547 BTRFS_INODE_ITEM_KEY); 548 return -EUCLEAN; 549 } 550 551 /* dir type check */ 552 dir_type = btrfs_dir_ftype(leaf, di); 553 if (unlikely(dir_type >= BTRFS_FT_MAX)) { 554 dir_item_err(leaf, slot, 555 "invalid dir item type, have %u expect [0, %u)", 556 dir_type, BTRFS_FT_MAX); 557 return -EUCLEAN; 558 } 559 560 if (unlikely(key->type == BTRFS_XATTR_ITEM_KEY && 561 dir_type != BTRFS_FT_XATTR)) { 562 dir_item_err(leaf, slot, 563 "invalid dir item type for XATTR key, have %u expect %u", 564 dir_type, BTRFS_FT_XATTR); 565 return -EUCLEAN; 566 } 567 if (unlikely(dir_type == BTRFS_FT_XATTR && 568 key->type != BTRFS_XATTR_ITEM_KEY)) { 569 dir_item_err(leaf, slot, 570 "xattr dir type found for non-XATTR key"); 571 return -EUCLEAN; 572 } 573 if (dir_type == BTRFS_FT_XATTR) 574 max_name_len = XATTR_NAME_MAX; 575 else 576 max_name_len = BTRFS_NAME_LEN; 577 578 /* Name/data length check */ 579 name_len = btrfs_dir_name_len(leaf, di); 580 data_len = btrfs_dir_data_len(leaf, di); 581 if (unlikely(name_len > max_name_len)) { 582 dir_item_err(leaf, slot, 583 "dir item name len too long, have %u max %u", 584 name_len, max_name_len); 585 return -EUCLEAN; 586 } 587 if (unlikely(name_len + data_len > BTRFS_MAX_XATTR_SIZE(fs_info))) { 588 dir_item_err(leaf, slot, 589 "dir item name and data len too long, have %u max %u", 590 name_len + data_len, 591 BTRFS_MAX_XATTR_SIZE(fs_info)); 592 return -EUCLEAN; 593 } 594 595 if (unlikely(data_len && dir_type != BTRFS_FT_XATTR)) { 596 dir_item_err(leaf, slot, 597 "dir item with invalid data len, have %u expect 0", 598 data_len); 599 return -EUCLEAN; 600 } 601 602 total_size = sizeof(*di) + name_len + data_len; 603 604 /* header and name/data should not cross item boundary */ 605 if (unlikely(cur + total_size > item_size)) { 606 dir_item_err(leaf, slot, 607 "dir item data crosses item boundary, have %u boundary %u", 608 cur + total_size, item_size); 609 return -EUCLEAN; 610 } 611 612 /* 613 * Special check for XATTR/DIR_ITEM, as key->offset is name 614 * hash, should match its name 615 */ 616 if (key->type == BTRFS_DIR_ITEM_KEY || 617 key->type == BTRFS_XATTR_ITEM_KEY) { 618 char namebuf[max(BTRFS_NAME_LEN, XATTR_NAME_MAX)]; 619 620 read_extent_buffer(leaf, namebuf, 621 (unsigned long)(di + 1), name_len); 622 name_hash = btrfs_name_hash(namebuf, name_len); 623 if (unlikely(key->offset != name_hash)) { 624 dir_item_err(leaf, slot, 625 "name hash mismatch with key, have 0x%016x expect 0x%016llx", 626 name_hash, key->offset); 627 return -EUCLEAN; 628 } 629 } 630 cur += total_size; 631 di = (struct btrfs_dir_item *)((void *)di + total_size); 632 } 633 return 0; 634 } 635 636 __printf(3, 4) 637 __cold 638 static void block_group_err(const struct extent_buffer *eb, int slot, 639 const char *fmt, ...) 640 { 641 const struct btrfs_fs_info *fs_info = eb->fs_info; 642 struct btrfs_key key; 643 struct va_format vaf; 644 va_list args; 645 646 btrfs_item_key_to_cpu(eb, &key, slot); 647 va_start(args, fmt); 648 649 vaf.fmt = fmt; 650 vaf.va = &args; 651 652 btrfs_crit(fs_info, 653 "corrupt %s: root=%llu block=%llu slot=%d bg_start=%llu bg_len=%llu, %pV", 654 btrfs_header_level(eb) == 0 ? "leaf" : "node", 655 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, 656 key.objectid, key.offset, &vaf); 657 va_end(args); 658 } 659 660 static int check_block_group_item(struct extent_buffer *leaf, 661 struct btrfs_key *key, int slot) 662 { 663 struct btrfs_fs_info *fs_info = leaf->fs_info; 664 struct btrfs_block_group_item bgi; 665 u32 item_size = btrfs_item_size(leaf, slot); 666 u64 chunk_objectid; 667 u64 flags; 668 u64 type; 669 670 /* 671 * Here we don't really care about alignment since extent allocator can 672 * handle it. We care more about the size. 673 */ 674 if (unlikely(key->offset == 0)) { 675 block_group_err(leaf, slot, 676 "invalid block group size 0"); 677 return -EUCLEAN; 678 } 679 680 if (unlikely(item_size != sizeof(bgi))) { 681 block_group_err(leaf, slot, 682 "invalid item size, have %u expect %zu", 683 item_size, sizeof(bgi)); 684 return -EUCLEAN; 685 } 686 687 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot), 688 sizeof(bgi)); 689 chunk_objectid = btrfs_stack_block_group_chunk_objectid(&bgi); 690 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 691 /* 692 * We don't init the nr_global_roots until we load the global 693 * roots, so this could be 0 at mount time. If it's 0 we'll 694 * just assume we're fine, and later we'll check against our 695 * actual value. 696 */ 697 if (unlikely(fs_info->nr_global_roots && 698 chunk_objectid >= fs_info->nr_global_roots)) { 699 block_group_err(leaf, slot, 700 "invalid block group global root id, have %llu, needs to be <= %llu", 701 chunk_objectid, 702 fs_info->nr_global_roots); 703 return -EUCLEAN; 704 } 705 } else if (unlikely(chunk_objectid != BTRFS_FIRST_CHUNK_TREE_OBJECTID)) { 706 block_group_err(leaf, slot, 707 "invalid block group chunk objectid, have %llu expect %llu", 708 btrfs_stack_block_group_chunk_objectid(&bgi), 709 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 710 return -EUCLEAN; 711 } 712 713 if (unlikely(btrfs_stack_block_group_used(&bgi) > key->offset)) { 714 block_group_err(leaf, slot, 715 "invalid block group used, have %llu expect [0, %llu)", 716 btrfs_stack_block_group_used(&bgi), key->offset); 717 return -EUCLEAN; 718 } 719 720 flags = btrfs_stack_block_group_flags(&bgi); 721 if (unlikely(hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) > 1)) { 722 block_group_err(leaf, slot, 723 "invalid profile flags, have 0x%llx (%lu bits set) expect no more than 1 bit set", 724 flags & BTRFS_BLOCK_GROUP_PROFILE_MASK, 725 hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)); 726 return -EUCLEAN; 727 } 728 729 type = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 730 if (unlikely(type != BTRFS_BLOCK_GROUP_DATA && 731 type != BTRFS_BLOCK_GROUP_METADATA && 732 type != BTRFS_BLOCK_GROUP_SYSTEM && 733 type != (BTRFS_BLOCK_GROUP_METADATA | 734 BTRFS_BLOCK_GROUP_DATA))) { 735 block_group_err(leaf, slot, 736 "invalid type, have 0x%llx (%lu bits set) expect either 0x%llx, 0x%llx, 0x%llx or 0x%llx", 737 type, hweight64(type), 738 BTRFS_BLOCK_GROUP_DATA, BTRFS_BLOCK_GROUP_METADATA, 739 BTRFS_BLOCK_GROUP_SYSTEM, 740 BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA); 741 return -EUCLEAN; 742 } 743 return 0; 744 } 745 746 __printf(4, 5) 747 __cold 748 static void chunk_err(const struct extent_buffer *leaf, 749 const struct btrfs_chunk *chunk, u64 logical, 750 const char *fmt, ...) 751 { 752 const struct btrfs_fs_info *fs_info = leaf->fs_info; 753 bool is_sb; 754 struct va_format vaf; 755 va_list args; 756 int i; 757 int slot = -1; 758 759 /* Only superblock eb is able to have such small offset */ 760 is_sb = (leaf->start == BTRFS_SUPER_INFO_OFFSET); 761 762 if (!is_sb) { 763 /* 764 * Get the slot number by iterating through all slots, this 765 * would provide better readability. 766 */ 767 for (i = 0; i < btrfs_header_nritems(leaf); i++) { 768 if (btrfs_item_ptr_offset(leaf, i) == 769 (unsigned long)chunk) { 770 slot = i; 771 break; 772 } 773 } 774 } 775 va_start(args, fmt); 776 vaf.fmt = fmt; 777 vaf.va = &args; 778 779 if (is_sb) 780 btrfs_crit(fs_info, 781 "corrupt superblock syschunk array: chunk_start=%llu, %pV", 782 logical, &vaf); 783 else 784 btrfs_crit(fs_info, 785 "corrupt leaf: root=%llu block=%llu slot=%d chunk_start=%llu, %pV", 786 BTRFS_CHUNK_TREE_OBJECTID, leaf->start, slot, 787 logical, &vaf); 788 va_end(args); 789 } 790 791 /* 792 * The common chunk check which could also work on super block sys chunk array. 793 * 794 * Return -EUCLEAN if anything is corrupted. 795 * Return 0 if everything is OK. 796 */ 797 int btrfs_check_chunk_valid(struct extent_buffer *leaf, 798 struct btrfs_chunk *chunk, u64 logical) 799 { 800 struct btrfs_fs_info *fs_info = leaf->fs_info; 801 u64 length; 802 u64 chunk_end; 803 u64 stripe_len; 804 u16 num_stripes; 805 u16 sub_stripes; 806 u64 type; 807 u64 features; 808 bool mixed = false; 809 int raid_index; 810 int nparity; 811 int ncopies; 812 813 length = btrfs_chunk_length(leaf, chunk); 814 stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 815 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 816 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 817 type = btrfs_chunk_type(leaf, chunk); 818 raid_index = btrfs_bg_flags_to_raid_index(type); 819 ncopies = btrfs_raid_array[raid_index].ncopies; 820 nparity = btrfs_raid_array[raid_index].nparity; 821 822 if (unlikely(!num_stripes)) { 823 chunk_err(leaf, chunk, logical, 824 "invalid chunk num_stripes, have %u", num_stripes); 825 return -EUCLEAN; 826 } 827 if (unlikely(num_stripes < ncopies)) { 828 chunk_err(leaf, chunk, logical, 829 "invalid chunk num_stripes < ncopies, have %u < %d", 830 num_stripes, ncopies); 831 return -EUCLEAN; 832 } 833 if (unlikely(nparity && num_stripes == nparity)) { 834 chunk_err(leaf, chunk, logical, 835 "invalid chunk num_stripes == nparity, have %u == %d", 836 num_stripes, nparity); 837 return -EUCLEAN; 838 } 839 if (unlikely(!IS_ALIGNED(logical, fs_info->sectorsize))) { 840 chunk_err(leaf, chunk, logical, 841 "invalid chunk logical, have %llu should aligned to %u", 842 logical, fs_info->sectorsize); 843 return -EUCLEAN; 844 } 845 if (unlikely(btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize)) { 846 chunk_err(leaf, chunk, logical, 847 "invalid chunk sectorsize, have %u expect %u", 848 btrfs_chunk_sector_size(leaf, chunk), 849 fs_info->sectorsize); 850 return -EUCLEAN; 851 } 852 if (unlikely(!length || !IS_ALIGNED(length, fs_info->sectorsize))) { 853 chunk_err(leaf, chunk, logical, 854 "invalid chunk length, have %llu", length); 855 return -EUCLEAN; 856 } 857 if (unlikely(check_add_overflow(logical, length, &chunk_end))) { 858 chunk_err(leaf, chunk, logical, 859 "invalid chunk logical start and length, have logical start %llu length %llu", 860 logical, length); 861 return -EUCLEAN; 862 } 863 if (unlikely(!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN)) { 864 chunk_err(leaf, chunk, logical, 865 "invalid chunk stripe length: %llu", 866 stripe_len); 867 return -EUCLEAN; 868 } 869 /* 870 * We artificially limit the chunk size, so that the number of stripes 871 * inside a chunk can be fit into a U32. The current limit (256G) is 872 * way too large for real world usage anyway, and it's also much larger 873 * than our existing limit (10G). 874 * 875 * Thus it should be a good way to catch obvious bitflips. 876 */ 877 if (unlikely(length >= btrfs_stripe_nr_to_offset(U32_MAX))) { 878 chunk_err(leaf, chunk, logical, 879 "chunk length too large: have %llu limit %llu", 880 length, btrfs_stripe_nr_to_offset(U32_MAX)); 881 return -EUCLEAN; 882 } 883 if (unlikely(type & ~(BTRFS_BLOCK_GROUP_TYPE_MASK | 884 BTRFS_BLOCK_GROUP_PROFILE_MASK))) { 885 chunk_err(leaf, chunk, logical, 886 "unrecognized chunk type: 0x%llx", 887 ~(BTRFS_BLOCK_GROUP_TYPE_MASK | 888 BTRFS_BLOCK_GROUP_PROFILE_MASK) & 889 btrfs_chunk_type(leaf, chunk)); 890 return -EUCLEAN; 891 } 892 893 if (unlikely(!has_single_bit_set(type & BTRFS_BLOCK_GROUP_PROFILE_MASK) && 894 (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) != 0)) { 895 chunk_err(leaf, chunk, logical, 896 "invalid chunk profile flag: 0x%llx, expect 0 or 1 bit set", 897 type & BTRFS_BLOCK_GROUP_PROFILE_MASK); 898 return -EUCLEAN; 899 } 900 if (unlikely((type & BTRFS_BLOCK_GROUP_TYPE_MASK) == 0)) { 901 chunk_err(leaf, chunk, logical, 902 "missing chunk type flag, have 0x%llx one bit must be set in 0x%llx", 903 type, BTRFS_BLOCK_GROUP_TYPE_MASK); 904 return -EUCLEAN; 905 } 906 907 if (unlikely((type & BTRFS_BLOCK_GROUP_SYSTEM) && 908 (type & (BTRFS_BLOCK_GROUP_METADATA | 909 BTRFS_BLOCK_GROUP_DATA)))) { 910 chunk_err(leaf, chunk, logical, 911 "system chunk with data or metadata type: 0x%llx", 912 type); 913 return -EUCLEAN; 914 } 915 916 features = btrfs_super_incompat_flags(fs_info->super_copy); 917 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 918 mixed = true; 919 920 if (!mixed) { 921 if (unlikely((type & BTRFS_BLOCK_GROUP_METADATA) && 922 (type & BTRFS_BLOCK_GROUP_DATA))) { 923 chunk_err(leaf, chunk, logical, 924 "mixed chunk type in non-mixed mode: 0x%llx", type); 925 return -EUCLEAN; 926 } 927 } 928 929 if (unlikely((type & BTRFS_BLOCK_GROUP_RAID10 && 930 sub_stripes != btrfs_raid_array[BTRFS_RAID_RAID10].sub_stripes) || 931 (type & BTRFS_BLOCK_GROUP_RAID1 && 932 num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1].devs_min) || 933 (type & BTRFS_BLOCK_GROUP_RAID1C3 && 934 num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C3].devs_min) || 935 (type & BTRFS_BLOCK_GROUP_RAID1C4 && 936 num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C4].devs_min) || 937 (type & BTRFS_BLOCK_GROUP_RAID5 && 938 num_stripes < btrfs_raid_array[BTRFS_RAID_RAID5].devs_min) || 939 (type & BTRFS_BLOCK_GROUP_RAID6 && 940 num_stripes < btrfs_raid_array[BTRFS_RAID_RAID6].devs_min) || 941 (type & BTRFS_BLOCK_GROUP_DUP && 942 num_stripes != btrfs_raid_array[BTRFS_RAID_DUP].dev_stripes) || 943 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 && 944 num_stripes != btrfs_raid_array[BTRFS_RAID_SINGLE].dev_stripes))) { 945 chunk_err(leaf, chunk, logical, 946 "invalid num_stripes:sub_stripes %u:%u for profile %llu", 947 num_stripes, sub_stripes, 948 type & BTRFS_BLOCK_GROUP_PROFILE_MASK); 949 return -EUCLEAN; 950 } 951 952 return 0; 953 } 954 955 /* 956 * Enhanced version of chunk item checker. 957 * 958 * The common btrfs_check_chunk_valid() doesn't check item size since it needs 959 * to work on super block sys_chunk_array which doesn't have full item ptr. 960 */ 961 static int check_leaf_chunk_item(struct extent_buffer *leaf, 962 struct btrfs_chunk *chunk, 963 struct btrfs_key *key, int slot) 964 { 965 int num_stripes; 966 967 if (unlikely(btrfs_item_size(leaf, slot) < sizeof(struct btrfs_chunk))) { 968 chunk_err(leaf, chunk, key->offset, 969 "invalid chunk item size: have %u expect [%zu, %u)", 970 btrfs_item_size(leaf, slot), 971 sizeof(struct btrfs_chunk), 972 BTRFS_LEAF_DATA_SIZE(leaf->fs_info)); 973 return -EUCLEAN; 974 } 975 976 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 977 /* Let btrfs_check_chunk_valid() handle this error type */ 978 if (num_stripes == 0) 979 goto out; 980 981 if (unlikely(btrfs_chunk_item_size(num_stripes) != 982 btrfs_item_size(leaf, slot))) { 983 chunk_err(leaf, chunk, key->offset, 984 "invalid chunk item size: have %u expect %lu", 985 btrfs_item_size(leaf, slot), 986 btrfs_chunk_item_size(num_stripes)); 987 return -EUCLEAN; 988 } 989 out: 990 return btrfs_check_chunk_valid(leaf, chunk, key->offset); 991 } 992 993 __printf(3, 4) 994 __cold 995 static void dev_item_err(const struct extent_buffer *eb, int slot, 996 const char *fmt, ...) 997 { 998 struct btrfs_key key; 999 struct va_format vaf; 1000 va_list args; 1001 1002 btrfs_item_key_to_cpu(eb, &key, slot); 1003 va_start(args, fmt); 1004 1005 vaf.fmt = fmt; 1006 vaf.va = &args; 1007 1008 btrfs_crit(eb->fs_info, 1009 "corrupt %s: root=%llu block=%llu slot=%d devid=%llu %pV", 1010 btrfs_header_level(eb) == 0 ? "leaf" : "node", 1011 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, 1012 key.objectid, &vaf); 1013 va_end(args); 1014 } 1015 1016 static int check_dev_item(struct extent_buffer *leaf, 1017 struct btrfs_key *key, int slot) 1018 { 1019 struct btrfs_dev_item *ditem; 1020 const u32 item_size = btrfs_item_size(leaf, slot); 1021 1022 if (unlikely(key->objectid != BTRFS_DEV_ITEMS_OBJECTID)) { 1023 dev_item_err(leaf, slot, 1024 "invalid objectid: has=%llu expect=%llu", 1025 key->objectid, BTRFS_DEV_ITEMS_OBJECTID); 1026 return -EUCLEAN; 1027 } 1028 1029 if (unlikely(item_size != sizeof(*ditem))) { 1030 dev_item_err(leaf, slot, "invalid item size: has %u expect %zu", 1031 item_size, sizeof(*ditem)); 1032 return -EUCLEAN; 1033 } 1034 1035 ditem = btrfs_item_ptr(leaf, slot, struct btrfs_dev_item); 1036 if (unlikely(btrfs_device_id(leaf, ditem) != key->offset)) { 1037 dev_item_err(leaf, slot, 1038 "devid mismatch: key has=%llu item has=%llu", 1039 key->offset, btrfs_device_id(leaf, ditem)); 1040 return -EUCLEAN; 1041 } 1042 1043 /* 1044 * For device total_bytes, we don't have reliable way to check it, as 1045 * it can be 0 for device removal. Device size check can only be done 1046 * by dev extents check. 1047 */ 1048 if (unlikely(btrfs_device_bytes_used(leaf, ditem) > 1049 btrfs_device_total_bytes(leaf, ditem))) { 1050 dev_item_err(leaf, slot, 1051 "invalid bytes used: have %llu expect [0, %llu]", 1052 btrfs_device_bytes_used(leaf, ditem), 1053 btrfs_device_total_bytes(leaf, ditem)); 1054 return -EUCLEAN; 1055 } 1056 /* 1057 * Remaining members like io_align/type/gen/dev_group aren't really 1058 * utilized. Skip them to make later usage of them easier. 1059 */ 1060 return 0; 1061 } 1062 1063 static int check_inode_item(struct extent_buffer *leaf, 1064 struct btrfs_key *key, int slot) 1065 { 1066 struct btrfs_fs_info *fs_info = leaf->fs_info; 1067 struct btrfs_inode_item *iitem; 1068 u64 super_gen = btrfs_super_generation(fs_info->super_copy); 1069 u32 valid_mask = (S_IFMT | S_ISUID | S_ISGID | S_ISVTX | 0777); 1070 const u32 item_size = btrfs_item_size(leaf, slot); 1071 u32 mode; 1072 int ret; 1073 u32 flags; 1074 u32 ro_flags; 1075 1076 ret = check_inode_key(leaf, key, slot); 1077 if (unlikely(ret < 0)) 1078 return ret; 1079 1080 if (unlikely(item_size != sizeof(*iitem))) { 1081 generic_err(leaf, slot, "invalid item size: has %u expect %zu", 1082 item_size, sizeof(*iitem)); 1083 return -EUCLEAN; 1084 } 1085 1086 iitem = btrfs_item_ptr(leaf, slot, struct btrfs_inode_item); 1087 1088 /* Here we use super block generation + 1 to handle log tree */ 1089 if (unlikely(btrfs_inode_generation(leaf, iitem) > super_gen + 1)) { 1090 inode_item_err(leaf, slot, 1091 "invalid inode generation: has %llu expect (0, %llu]", 1092 btrfs_inode_generation(leaf, iitem), 1093 super_gen + 1); 1094 return -EUCLEAN; 1095 } 1096 /* Note for ROOT_TREE_DIR_ITEM, mkfs could set its transid 0 */ 1097 if (unlikely(btrfs_inode_transid(leaf, iitem) > super_gen + 1)) { 1098 inode_item_err(leaf, slot, 1099 "invalid inode transid: has %llu expect [0, %llu]", 1100 btrfs_inode_transid(leaf, iitem), super_gen + 1); 1101 return -EUCLEAN; 1102 } 1103 1104 /* 1105 * For size and nbytes it's better not to be too strict, as for dir 1106 * item its size/nbytes can easily get wrong, but doesn't affect 1107 * anything in the fs. So here we skip the check. 1108 */ 1109 mode = btrfs_inode_mode(leaf, iitem); 1110 if (unlikely(mode & ~valid_mask)) { 1111 inode_item_err(leaf, slot, 1112 "unknown mode bit detected: 0x%x", 1113 mode & ~valid_mask); 1114 return -EUCLEAN; 1115 } 1116 1117 /* 1118 * S_IFMT is not bit mapped so we can't completely rely on 1119 * is_power_of_2/has_single_bit_set, but it can save us from checking 1120 * FIFO/CHR/DIR/REG. Only needs to check BLK, LNK and SOCKS 1121 */ 1122 if (!has_single_bit_set(mode & S_IFMT)) { 1123 if (unlikely(!S_ISLNK(mode) && !S_ISBLK(mode) && !S_ISSOCK(mode))) { 1124 inode_item_err(leaf, slot, 1125 "invalid mode: has 0%o expect valid S_IF* bit(s)", 1126 mode & S_IFMT); 1127 return -EUCLEAN; 1128 } 1129 } 1130 if (unlikely(S_ISDIR(mode) && btrfs_inode_nlink(leaf, iitem) > 1)) { 1131 inode_item_err(leaf, slot, 1132 "invalid nlink: has %u expect no more than 1 for dir", 1133 btrfs_inode_nlink(leaf, iitem)); 1134 return -EUCLEAN; 1135 } 1136 btrfs_inode_split_flags(btrfs_inode_flags(leaf, iitem), &flags, &ro_flags); 1137 if (unlikely(flags & ~BTRFS_INODE_FLAG_MASK)) { 1138 inode_item_err(leaf, slot, 1139 "unknown incompat flags detected: 0x%x", flags); 1140 return -EUCLEAN; 1141 } 1142 if (unlikely(!sb_rdonly(fs_info->sb) && 1143 (ro_flags & ~BTRFS_INODE_RO_FLAG_MASK))) { 1144 inode_item_err(leaf, slot, 1145 "unknown ro-compat flags detected on writeable mount: 0x%x", 1146 ro_flags); 1147 return -EUCLEAN; 1148 } 1149 return 0; 1150 } 1151 1152 static int check_root_item(struct extent_buffer *leaf, struct btrfs_key *key, 1153 int slot) 1154 { 1155 struct btrfs_fs_info *fs_info = leaf->fs_info; 1156 struct btrfs_root_item ri = { 0 }; 1157 const u64 valid_root_flags = BTRFS_ROOT_SUBVOL_RDONLY | 1158 BTRFS_ROOT_SUBVOL_DEAD; 1159 int ret; 1160 1161 ret = check_root_key(leaf, key, slot); 1162 if (unlikely(ret < 0)) 1163 return ret; 1164 1165 if (unlikely(btrfs_item_size(leaf, slot) != sizeof(ri) && 1166 btrfs_item_size(leaf, slot) != 1167 btrfs_legacy_root_item_size())) { 1168 generic_err(leaf, slot, 1169 "invalid root item size, have %u expect %zu or %u", 1170 btrfs_item_size(leaf, slot), sizeof(ri), 1171 btrfs_legacy_root_item_size()); 1172 return -EUCLEAN; 1173 } 1174 1175 /* 1176 * For legacy root item, the members starting at generation_v2 will be 1177 * all filled with 0. 1178 * And since we allow geneartion_v2 as 0, it will still pass the check. 1179 */ 1180 read_extent_buffer(leaf, &ri, btrfs_item_ptr_offset(leaf, slot), 1181 btrfs_item_size(leaf, slot)); 1182 1183 /* Generation related */ 1184 if (unlikely(btrfs_root_generation(&ri) > 1185 btrfs_super_generation(fs_info->super_copy) + 1)) { 1186 generic_err(leaf, slot, 1187 "invalid root generation, have %llu expect (0, %llu]", 1188 btrfs_root_generation(&ri), 1189 btrfs_super_generation(fs_info->super_copy) + 1); 1190 return -EUCLEAN; 1191 } 1192 if (unlikely(btrfs_root_generation_v2(&ri) > 1193 btrfs_super_generation(fs_info->super_copy) + 1)) { 1194 generic_err(leaf, slot, 1195 "invalid root v2 generation, have %llu expect (0, %llu]", 1196 btrfs_root_generation_v2(&ri), 1197 btrfs_super_generation(fs_info->super_copy) + 1); 1198 return -EUCLEAN; 1199 } 1200 if (unlikely(btrfs_root_last_snapshot(&ri) > 1201 btrfs_super_generation(fs_info->super_copy) + 1)) { 1202 generic_err(leaf, slot, 1203 "invalid root last_snapshot, have %llu expect (0, %llu]", 1204 btrfs_root_last_snapshot(&ri), 1205 btrfs_super_generation(fs_info->super_copy) + 1); 1206 return -EUCLEAN; 1207 } 1208 1209 /* Alignment and level check */ 1210 if (unlikely(!IS_ALIGNED(btrfs_root_bytenr(&ri), fs_info->sectorsize))) { 1211 generic_err(leaf, slot, 1212 "invalid root bytenr, have %llu expect to be aligned to %u", 1213 btrfs_root_bytenr(&ri), fs_info->sectorsize); 1214 return -EUCLEAN; 1215 } 1216 if (unlikely(btrfs_root_level(&ri) >= BTRFS_MAX_LEVEL)) { 1217 generic_err(leaf, slot, 1218 "invalid root level, have %u expect [0, %u]", 1219 btrfs_root_level(&ri), BTRFS_MAX_LEVEL - 1); 1220 return -EUCLEAN; 1221 } 1222 if (unlikely(btrfs_root_drop_level(&ri) >= BTRFS_MAX_LEVEL)) { 1223 generic_err(leaf, slot, 1224 "invalid root level, have %u expect [0, %u]", 1225 btrfs_root_drop_level(&ri), BTRFS_MAX_LEVEL - 1); 1226 return -EUCLEAN; 1227 } 1228 1229 /* Flags check */ 1230 if (unlikely(btrfs_root_flags(&ri) & ~valid_root_flags)) { 1231 generic_err(leaf, slot, 1232 "invalid root flags, have 0x%llx expect mask 0x%llx", 1233 btrfs_root_flags(&ri), valid_root_flags); 1234 return -EUCLEAN; 1235 } 1236 return 0; 1237 } 1238 1239 __printf(3,4) 1240 __cold 1241 static void extent_err(const struct extent_buffer *eb, int slot, 1242 const char *fmt, ...) 1243 { 1244 struct btrfs_key key; 1245 struct va_format vaf; 1246 va_list args; 1247 u64 bytenr; 1248 u64 len; 1249 1250 btrfs_item_key_to_cpu(eb, &key, slot); 1251 bytenr = key.objectid; 1252 if (key.type == BTRFS_METADATA_ITEM_KEY || 1253 key.type == BTRFS_TREE_BLOCK_REF_KEY || 1254 key.type == BTRFS_SHARED_BLOCK_REF_KEY) 1255 len = eb->fs_info->nodesize; 1256 else 1257 len = key.offset; 1258 va_start(args, fmt); 1259 1260 vaf.fmt = fmt; 1261 vaf.va = &args; 1262 1263 btrfs_crit(eb->fs_info, 1264 "corrupt %s: block=%llu slot=%d extent bytenr=%llu len=%llu %pV", 1265 btrfs_header_level(eb) == 0 ? "leaf" : "node", 1266 eb->start, slot, bytenr, len, &vaf); 1267 va_end(args); 1268 } 1269 1270 static int check_extent_item(struct extent_buffer *leaf, 1271 struct btrfs_key *key, int slot, 1272 struct btrfs_key *prev_key) 1273 { 1274 struct btrfs_fs_info *fs_info = leaf->fs_info; 1275 struct btrfs_extent_item *ei; 1276 bool is_tree_block = false; 1277 unsigned long ptr; /* Current pointer inside inline refs */ 1278 unsigned long end; /* Extent item end */ 1279 const u32 item_size = btrfs_item_size(leaf, slot); 1280 u8 last_type = 0; 1281 u64 last_seq = U64_MAX; 1282 u64 flags; 1283 u64 generation; 1284 u64 total_refs; /* Total refs in btrfs_extent_item */ 1285 u64 inline_refs = 0; /* found total inline refs */ 1286 1287 if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY && 1288 !btrfs_fs_incompat(fs_info, SKINNY_METADATA))) { 1289 generic_err(leaf, slot, 1290 "invalid key type, METADATA_ITEM type invalid when SKINNY_METADATA feature disabled"); 1291 return -EUCLEAN; 1292 } 1293 /* key->objectid is the bytenr for both key types */ 1294 if (unlikely(!IS_ALIGNED(key->objectid, fs_info->sectorsize))) { 1295 generic_err(leaf, slot, 1296 "invalid key objectid, have %llu expect to be aligned to %u", 1297 key->objectid, fs_info->sectorsize); 1298 return -EUCLEAN; 1299 } 1300 1301 /* key->offset is tree level for METADATA_ITEM_KEY */ 1302 if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY && 1303 key->offset >= BTRFS_MAX_LEVEL)) { 1304 extent_err(leaf, slot, 1305 "invalid tree level, have %llu expect [0, %u]", 1306 key->offset, BTRFS_MAX_LEVEL - 1); 1307 return -EUCLEAN; 1308 } 1309 1310 /* 1311 * EXTENT/METADATA_ITEM consists of: 1312 * 1) One btrfs_extent_item 1313 * Records the total refs, type and generation of the extent. 1314 * 1315 * 2) One btrfs_tree_block_info (for EXTENT_ITEM and tree backref only) 1316 * Records the first key and level of the tree block. 1317 * 1318 * 2) Zero or more btrfs_extent_inline_ref(s) 1319 * Each inline ref has one btrfs_extent_inline_ref shows: 1320 * 2.1) The ref type, one of the 4 1321 * TREE_BLOCK_REF Tree block only 1322 * SHARED_BLOCK_REF Tree block only 1323 * EXTENT_DATA_REF Data only 1324 * SHARED_DATA_REF Data only 1325 * 2.2) Ref type specific data 1326 * Either using btrfs_extent_inline_ref::offset, or specific 1327 * data structure. 1328 * 1329 * All above inline items should follow the order: 1330 * 1331 * - All btrfs_extent_inline_ref::type should be in an ascending 1332 * order 1333 * 1334 * - Within the same type, the items should follow a descending 1335 * order by their sequence number. The sequence number is 1336 * determined by: 1337 * * btrfs_extent_inline_ref::offset for all types other than 1338 * EXTENT_DATA_REF 1339 * * hash_extent_data_ref() for EXTENT_DATA_REF 1340 */ 1341 if (unlikely(item_size < sizeof(*ei))) { 1342 extent_err(leaf, slot, 1343 "invalid item size, have %u expect [%zu, %u)", 1344 item_size, sizeof(*ei), 1345 BTRFS_LEAF_DATA_SIZE(fs_info)); 1346 return -EUCLEAN; 1347 } 1348 end = item_size + btrfs_item_ptr_offset(leaf, slot); 1349 1350 /* Checks against extent_item */ 1351 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 1352 flags = btrfs_extent_flags(leaf, ei); 1353 total_refs = btrfs_extent_refs(leaf, ei); 1354 generation = btrfs_extent_generation(leaf, ei); 1355 if (unlikely(generation > 1356 btrfs_super_generation(fs_info->super_copy) + 1)) { 1357 extent_err(leaf, slot, 1358 "invalid generation, have %llu expect (0, %llu]", 1359 generation, 1360 btrfs_super_generation(fs_info->super_copy) + 1); 1361 return -EUCLEAN; 1362 } 1363 if (unlikely(!has_single_bit_set(flags & (BTRFS_EXTENT_FLAG_DATA | 1364 BTRFS_EXTENT_FLAG_TREE_BLOCK)))) { 1365 extent_err(leaf, slot, 1366 "invalid extent flag, have 0x%llx expect 1 bit set in 0x%llx", 1367 flags, BTRFS_EXTENT_FLAG_DATA | 1368 BTRFS_EXTENT_FLAG_TREE_BLOCK); 1369 return -EUCLEAN; 1370 } 1371 is_tree_block = !!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK); 1372 if (is_tree_block) { 1373 if (unlikely(key->type == BTRFS_EXTENT_ITEM_KEY && 1374 key->offset != fs_info->nodesize)) { 1375 extent_err(leaf, slot, 1376 "invalid extent length, have %llu expect %u", 1377 key->offset, fs_info->nodesize); 1378 return -EUCLEAN; 1379 } 1380 } else { 1381 if (unlikely(key->type != BTRFS_EXTENT_ITEM_KEY)) { 1382 extent_err(leaf, slot, 1383 "invalid key type, have %u expect %u for data backref", 1384 key->type, BTRFS_EXTENT_ITEM_KEY); 1385 return -EUCLEAN; 1386 } 1387 if (unlikely(!IS_ALIGNED(key->offset, fs_info->sectorsize))) { 1388 extent_err(leaf, slot, 1389 "invalid extent length, have %llu expect aligned to %u", 1390 key->offset, fs_info->sectorsize); 1391 return -EUCLEAN; 1392 } 1393 if (unlikely(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 1394 extent_err(leaf, slot, 1395 "invalid extent flag, data has full backref set"); 1396 return -EUCLEAN; 1397 } 1398 } 1399 ptr = (unsigned long)(struct btrfs_extent_item *)(ei + 1); 1400 1401 /* Check the special case of btrfs_tree_block_info */ 1402 if (is_tree_block && key->type != BTRFS_METADATA_ITEM_KEY) { 1403 struct btrfs_tree_block_info *info; 1404 1405 info = (struct btrfs_tree_block_info *)ptr; 1406 if (unlikely(btrfs_tree_block_level(leaf, info) >= BTRFS_MAX_LEVEL)) { 1407 extent_err(leaf, slot, 1408 "invalid tree block info level, have %u expect [0, %u]", 1409 btrfs_tree_block_level(leaf, info), 1410 BTRFS_MAX_LEVEL - 1); 1411 return -EUCLEAN; 1412 } 1413 ptr = (unsigned long)(struct btrfs_tree_block_info *)(info + 1); 1414 } 1415 1416 /* Check inline refs */ 1417 while (ptr < end) { 1418 struct btrfs_extent_inline_ref *iref; 1419 struct btrfs_extent_data_ref *dref; 1420 struct btrfs_shared_data_ref *sref; 1421 u64 seq; 1422 u64 dref_offset; 1423 u64 inline_offset; 1424 u8 inline_type; 1425 1426 if (unlikely(ptr + sizeof(*iref) > end)) { 1427 extent_err(leaf, slot, 1428 "inline ref item overflows extent item, ptr %lu iref size %zu end %lu", 1429 ptr, sizeof(*iref), end); 1430 return -EUCLEAN; 1431 } 1432 iref = (struct btrfs_extent_inline_ref *)ptr; 1433 inline_type = btrfs_extent_inline_ref_type(leaf, iref); 1434 inline_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1435 seq = inline_offset; 1436 if (unlikely(ptr + btrfs_extent_inline_ref_size(inline_type) > end)) { 1437 extent_err(leaf, slot, 1438 "inline ref item overflows extent item, ptr %lu iref size %u end %lu", 1439 ptr, btrfs_extent_inline_ref_size(inline_type), end); 1440 return -EUCLEAN; 1441 } 1442 1443 switch (inline_type) { 1444 /* inline_offset is subvolid of the owner, no need to check */ 1445 case BTRFS_TREE_BLOCK_REF_KEY: 1446 inline_refs++; 1447 break; 1448 /* Contains parent bytenr */ 1449 case BTRFS_SHARED_BLOCK_REF_KEY: 1450 if (unlikely(!IS_ALIGNED(inline_offset, 1451 fs_info->sectorsize))) { 1452 extent_err(leaf, slot, 1453 "invalid tree parent bytenr, have %llu expect aligned to %u", 1454 inline_offset, fs_info->sectorsize); 1455 return -EUCLEAN; 1456 } 1457 inline_refs++; 1458 break; 1459 /* 1460 * Contains owner subvolid, owner key objectid, adjusted offset. 1461 * The only obvious corruption can happen in that offset. 1462 */ 1463 case BTRFS_EXTENT_DATA_REF_KEY: 1464 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1465 dref_offset = btrfs_extent_data_ref_offset(leaf, dref); 1466 seq = hash_extent_data_ref( 1467 btrfs_extent_data_ref_root(leaf, dref), 1468 btrfs_extent_data_ref_objectid(leaf, dref), 1469 btrfs_extent_data_ref_offset(leaf, dref)); 1470 if (unlikely(!IS_ALIGNED(dref_offset, 1471 fs_info->sectorsize))) { 1472 extent_err(leaf, slot, 1473 "invalid data ref offset, have %llu expect aligned to %u", 1474 dref_offset, fs_info->sectorsize); 1475 return -EUCLEAN; 1476 } 1477 inline_refs += btrfs_extent_data_ref_count(leaf, dref); 1478 break; 1479 /* Contains parent bytenr and ref count */ 1480 case BTRFS_SHARED_DATA_REF_KEY: 1481 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1482 if (unlikely(!IS_ALIGNED(inline_offset, 1483 fs_info->sectorsize))) { 1484 extent_err(leaf, slot, 1485 "invalid data parent bytenr, have %llu expect aligned to %u", 1486 inline_offset, fs_info->sectorsize); 1487 return -EUCLEAN; 1488 } 1489 inline_refs += btrfs_shared_data_ref_count(leaf, sref); 1490 break; 1491 case BTRFS_EXTENT_OWNER_REF_KEY: 1492 WARN_ON(!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA)); 1493 break; 1494 default: 1495 extent_err(leaf, slot, "unknown inline ref type: %u", 1496 inline_type); 1497 return -EUCLEAN; 1498 } 1499 if (inline_type < last_type) { 1500 extent_err(leaf, slot, 1501 "inline ref out-of-order: has type %u, prev type %u", 1502 inline_type, last_type); 1503 return -EUCLEAN; 1504 } 1505 /* Type changed, allow the sequence starts from U64_MAX again. */ 1506 if (inline_type > last_type) 1507 last_seq = U64_MAX; 1508 if (seq > last_seq) { 1509 extent_err(leaf, slot, 1510 "inline ref out-of-order: has type %u offset %llu seq 0x%llx, prev type %u seq 0x%llx", 1511 inline_type, inline_offset, seq, 1512 last_type, last_seq); 1513 return -EUCLEAN; 1514 } 1515 last_type = inline_type; 1516 last_seq = seq; 1517 ptr += btrfs_extent_inline_ref_size(inline_type); 1518 } 1519 /* No padding is allowed */ 1520 if (unlikely(ptr != end)) { 1521 extent_err(leaf, slot, 1522 "invalid extent item size, padding bytes found"); 1523 return -EUCLEAN; 1524 } 1525 1526 /* Finally, check the inline refs against total refs */ 1527 if (unlikely(inline_refs > total_refs)) { 1528 extent_err(leaf, slot, 1529 "invalid extent refs, have %llu expect >= inline %llu", 1530 total_refs, inline_refs); 1531 return -EUCLEAN; 1532 } 1533 1534 if ((prev_key->type == BTRFS_EXTENT_ITEM_KEY) || 1535 (prev_key->type == BTRFS_METADATA_ITEM_KEY)) { 1536 u64 prev_end = prev_key->objectid; 1537 1538 if (prev_key->type == BTRFS_METADATA_ITEM_KEY) 1539 prev_end += fs_info->nodesize; 1540 else 1541 prev_end += prev_key->offset; 1542 1543 if (unlikely(prev_end > key->objectid)) { 1544 extent_err(leaf, slot, 1545 "previous extent [%llu %u %llu] overlaps current extent [%llu %u %llu]", 1546 prev_key->objectid, prev_key->type, 1547 prev_key->offset, key->objectid, key->type, 1548 key->offset); 1549 return -EUCLEAN; 1550 } 1551 } 1552 1553 return 0; 1554 } 1555 1556 static int check_simple_keyed_refs(struct extent_buffer *leaf, 1557 struct btrfs_key *key, int slot) 1558 { 1559 u32 expect_item_size = 0; 1560 1561 if (key->type == BTRFS_SHARED_DATA_REF_KEY) 1562 expect_item_size = sizeof(struct btrfs_shared_data_ref); 1563 1564 if (unlikely(btrfs_item_size(leaf, slot) != expect_item_size)) { 1565 generic_err(leaf, slot, 1566 "invalid item size, have %u expect %u for key type %u", 1567 btrfs_item_size(leaf, slot), 1568 expect_item_size, key->type); 1569 return -EUCLEAN; 1570 } 1571 if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) { 1572 generic_err(leaf, slot, 1573 "invalid key objectid for shared block ref, have %llu expect aligned to %u", 1574 key->objectid, leaf->fs_info->sectorsize); 1575 return -EUCLEAN; 1576 } 1577 if (unlikely(key->type != BTRFS_TREE_BLOCK_REF_KEY && 1578 !IS_ALIGNED(key->offset, leaf->fs_info->sectorsize))) { 1579 extent_err(leaf, slot, 1580 "invalid tree parent bytenr, have %llu expect aligned to %u", 1581 key->offset, leaf->fs_info->sectorsize); 1582 return -EUCLEAN; 1583 } 1584 return 0; 1585 } 1586 1587 static int check_extent_data_ref(struct extent_buffer *leaf, 1588 struct btrfs_key *key, int slot) 1589 { 1590 struct btrfs_extent_data_ref *dref; 1591 unsigned long ptr = btrfs_item_ptr_offset(leaf, slot); 1592 const unsigned long end = ptr + btrfs_item_size(leaf, slot); 1593 1594 if (unlikely(btrfs_item_size(leaf, slot) % sizeof(*dref) != 0)) { 1595 generic_err(leaf, slot, 1596 "invalid item size, have %u expect aligned to %zu for key type %u", 1597 btrfs_item_size(leaf, slot), 1598 sizeof(*dref), key->type); 1599 return -EUCLEAN; 1600 } 1601 if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) { 1602 generic_err(leaf, slot, 1603 "invalid key objectid for shared block ref, have %llu expect aligned to %u", 1604 key->objectid, leaf->fs_info->sectorsize); 1605 return -EUCLEAN; 1606 } 1607 for (; ptr < end; ptr += sizeof(*dref)) { 1608 u64 offset; 1609 1610 /* 1611 * We cannot check the extent_data_ref hash due to possible 1612 * overflow from the leaf due to hash collisions. 1613 */ 1614 dref = (struct btrfs_extent_data_ref *)ptr; 1615 offset = btrfs_extent_data_ref_offset(leaf, dref); 1616 if (unlikely(!IS_ALIGNED(offset, leaf->fs_info->sectorsize))) { 1617 extent_err(leaf, slot, 1618 "invalid extent data backref offset, have %llu expect aligned to %u", 1619 offset, leaf->fs_info->sectorsize); 1620 return -EUCLEAN; 1621 } 1622 } 1623 return 0; 1624 } 1625 1626 #define inode_ref_err(eb, slot, fmt, args...) \ 1627 inode_item_err(eb, slot, fmt, ##args) 1628 static int check_inode_ref(struct extent_buffer *leaf, 1629 struct btrfs_key *key, struct btrfs_key *prev_key, 1630 int slot) 1631 { 1632 struct btrfs_inode_ref *iref; 1633 unsigned long ptr; 1634 unsigned long end; 1635 1636 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key))) 1637 return -EUCLEAN; 1638 /* namelen can't be 0, so item_size == sizeof() is also invalid */ 1639 if (unlikely(btrfs_item_size(leaf, slot) <= sizeof(*iref))) { 1640 inode_ref_err(leaf, slot, 1641 "invalid item size, have %u expect (%zu, %u)", 1642 btrfs_item_size(leaf, slot), 1643 sizeof(*iref), BTRFS_LEAF_DATA_SIZE(leaf->fs_info)); 1644 return -EUCLEAN; 1645 } 1646 1647 ptr = btrfs_item_ptr_offset(leaf, slot); 1648 end = ptr + btrfs_item_size(leaf, slot); 1649 while (ptr < end) { 1650 u16 namelen; 1651 1652 if (unlikely(ptr + sizeof(iref) > end)) { 1653 inode_ref_err(leaf, slot, 1654 "inode ref overflow, ptr %lu end %lu inode_ref_size %zu", 1655 ptr, end, sizeof(iref)); 1656 return -EUCLEAN; 1657 } 1658 1659 iref = (struct btrfs_inode_ref *)ptr; 1660 namelen = btrfs_inode_ref_name_len(leaf, iref); 1661 if (unlikely(ptr + sizeof(*iref) + namelen > end)) { 1662 inode_ref_err(leaf, slot, 1663 "inode ref overflow, ptr %lu end %lu namelen %u", 1664 ptr, end, namelen); 1665 return -EUCLEAN; 1666 } 1667 1668 /* 1669 * NOTE: In theory we should record all found index numbers 1670 * to find any duplicated indexes, but that will be too time 1671 * consuming for inodes with too many hard links. 1672 */ 1673 ptr += sizeof(*iref) + namelen; 1674 } 1675 return 0; 1676 } 1677 1678 static int check_raid_stripe_extent(const struct extent_buffer *leaf, 1679 const struct btrfs_key *key, int slot) 1680 { 1681 struct btrfs_stripe_extent *stripe_extent = 1682 btrfs_item_ptr(leaf, slot, struct btrfs_stripe_extent); 1683 1684 if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) { 1685 generic_err(leaf, slot, 1686 "invalid key objectid for raid stripe extent, have %llu expect aligned to %u", 1687 key->objectid, leaf->fs_info->sectorsize); 1688 return -EUCLEAN; 1689 } 1690 1691 if (unlikely(!btrfs_fs_incompat(leaf->fs_info, RAID_STRIPE_TREE))) { 1692 generic_err(leaf, slot, 1693 "RAID_STRIPE_EXTENT present but RAID_STRIPE_TREE incompat bit unset"); 1694 return -EUCLEAN; 1695 } 1696 1697 switch (btrfs_stripe_extent_encoding(leaf, stripe_extent)) { 1698 case BTRFS_STRIPE_RAID0: 1699 case BTRFS_STRIPE_RAID1: 1700 case BTRFS_STRIPE_DUP: 1701 case BTRFS_STRIPE_RAID10: 1702 case BTRFS_STRIPE_RAID5: 1703 case BTRFS_STRIPE_RAID6: 1704 case BTRFS_STRIPE_RAID1C3: 1705 case BTRFS_STRIPE_RAID1C4: 1706 break; 1707 default: 1708 generic_err(leaf, slot, "invalid raid stripe encoding %u", 1709 btrfs_stripe_extent_encoding(leaf, stripe_extent)); 1710 return -EUCLEAN; 1711 } 1712 1713 return 0; 1714 } 1715 1716 /* 1717 * Common point to switch the item-specific validation. 1718 */ 1719 static enum btrfs_tree_block_status check_leaf_item(struct extent_buffer *leaf, 1720 struct btrfs_key *key, 1721 int slot, 1722 struct btrfs_key *prev_key) 1723 { 1724 int ret = 0; 1725 struct btrfs_chunk *chunk; 1726 1727 switch (key->type) { 1728 case BTRFS_EXTENT_DATA_KEY: 1729 ret = check_extent_data_item(leaf, key, slot, prev_key); 1730 break; 1731 case BTRFS_EXTENT_CSUM_KEY: 1732 ret = check_csum_item(leaf, key, slot, prev_key); 1733 break; 1734 case BTRFS_DIR_ITEM_KEY: 1735 case BTRFS_DIR_INDEX_KEY: 1736 case BTRFS_XATTR_ITEM_KEY: 1737 ret = check_dir_item(leaf, key, prev_key, slot); 1738 break; 1739 case BTRFS_INODE_REF_KEY: 1740 ret = check_inode_ref(leaf, key, prev_key, slot); 1741 break; 1742 case BTRFS_BLOCK_GROUP_ITEM_KEY: 1743 ret = check_block_group_item(leaf, key, slot); 1744 break; 1745 case BTRFS_CHUNK_ITEM_KEY: 1746 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 1747 ret = check_leaf_chunk_item(leaf, chunk, key, slot); 1748 break; 1749 case BTRFS_DEV_ITEM_KEY: 1750 ret = check_dev_item(leaf, key, slot); 1751 break; 1752 case BTRFS_INODE_ITEM_KEY: 1753 ret = check_inode_item(leaf, key, slot); 1754 break; 1755 case BTRFS_ROOT_ITEM_KEY: 1756 ret = check_root_item(leaf, key, slot); 1757 break; 1758 case BTRFS_EXTENT_ITEM_KEY: 1759 case BTRFS_METADATA_ITEM_KEY: 1760 ret = check_extent_item(leaf, key, slot, prev_key); 1761 break; 1762 case BTRFS_TREE_BLOCK_REF_KEY: 1763 case BTRFS_SHARED_DATA_REF_KEY: 1764 case BTRFS_SHARED_BLOCK_REF_KEY: 1765 ret = check_simple_keyed_refs(leaf, key, slot); 1766 break; 1767 case BTRFS_EXTENT_DATA_REF_KEY: 1768 ret = check_extent_data_ref(leaf, key, slot); 1769 break; 1770 case BTRFS_RAID_STRIPE_KEY: 1771 ret = check_raid_stripe_extent(leaf, key, slot); 1772 break; 1773 } 1774 1775 if (ret) 1776 return BTRFS_TREE_BLOCK_INVALID_ITEM; 1777 return BTRFS_TREE_BLOCK_CLEAN; 1778 } 1779 1780 enum btrfs_tree_block_status __btrfs_check_leaf(struct extent_buffer *leaf) 1781 { 1782 struct btrfs_fs_info *fs_info = leaf->fs_info; 1783 /* No valid key type is 0, so all key should be larger than this key */ 1784 struct btrfs_key prev_key = {0, 0, 0}; 1785 struct btrfs_key key; 1786 u32 nritems = btrfs_header_nritems(leaf); 1787 int slot; 1788 1789 if (unlikely(btrfs_header_level(leaf) != 0)) { 1790 generic_err(leaf, 0, 1791 "invalid level for leaf, have %d expect 0", 1792 btrfs_header_level(leaf)); 1793 return BTRFS_TREE_BLOCK_INVALID_LEVEL; 1794 } 1795 1796 /* 1797 * Extent buffers from a relocation tree have a owner field that 1798 * corresponds to the subvolume tree they are based on. So just from an 1799 * extent buffer alone we can not find out what is the id of the 1800 * corresponding subvolume tree, so we can not figure out if the extent 1801 * buffer corresponds to the root of the relocation tree or not. So 1802 * skip this check for relocation trees. 1803 */ 1804 if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) { 1805 u64 owner = btrfs_header_owner(leaf); 1806 1807 /* These trees must never be empty */ 1808 if (unlikely(owner == BTRFS_ROOT_TREE_OBJECTID || 1809 owner == BTRFS_CHUNK_TREE_OBJECTID || 1810 owner == BTRFS_DEV_TREE_OBJECTID || 1811 owner == BTRFS_FS_TREE_OBJECTID || 1812 owner == BTRFS_DATA_RELOC_TREE_OBJECTID)) { 1813 generic_err(leaf, 0, 1814 "invalid root, root %llu must never be empty", 1815 owner); 1816 return BTRFS_TREE_BLOCK_INVALID_NRITEMS; 1817 } 1818 1819 /* Unknown tree */ 1820 if (unlikely(owner == 0)) { 1821 generic_err(leaf, 0, 1822 "invalid owner, root 0 is not defined"); 1823 return BTRFS_TREE_BLOCK_INVALID_OWNER; 1824 } 1825 1826 /* EXTENT_TREE_V2 can have empty extent trees. */ 1827 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 1828 return BTRFS_TREE_BLOCK_CLEAN; 1829 1830 if (unlikely(owner == BTRFS_EXTENT_TREE_OBJECTID)) { 1831 generic_err(leaf, 0, 1832 "invalid root, root %llu must never be empty", 1833 owner); 1834 return BTRFS_TREE_BLOCK_INVALID_NRITEMS; 1835 } 1836 1837 return BTRFS_TREE_BLOCK_CLEAN; 1838 } 1839 1840 if (unlikely(nritems == 0)) 1841 return BTRFS_TREE_BLOCK_CLEAN; 1842 1843 /* 1844 * Check the following things to make sure this is a good leaf, and 1845 * leaf users won't need to bother with similar sanity checks: 1846 * 1847 * 1) key ordering 1848 * 2) item offset and size 1849 * No overlap, no hole, all inside the leaf. 1850 * 3) item content 1851 * If possible, do comprehensive sanity check. 1852 * NOTE: All checks must only rely on the item data itself. 1853 */ 1854 for (slot = 0; slot < nritems; slot++) { 1855 u32 item_end_expected; 1856 u64 item_data_end; 1857 1858 btrfs_item_key_to_cpu(leaf, &key, slot); 1859 1860 /* Make sure the keys are in the right order */ 1861 if (unlikely(btrfs_comp_cpu_keys(&prev_key, &key) >= 0)) { 1862 generic_err(leaf, slot, 1863 "bad key order, prev (%llu %u %llu) current (%llu %u %llu)", 1864 prev_key.objectid, prev_key.type, 1865 prev_key.offset, key.objectid, key.type, 1866 key.offset); 1867 return BTRFS_TREE_BLOCK_BAD_KEY_ORDER; 1868 } 1869 1870 item_data_end = (u64)btrfs_item_offset(leaf, slot) + 1871 btrfs_item_size(leaf, slot); 1872 /* 1873 * Make sure the offset and ends are right, remember that the 1874 * item data starts at the end of the leaf and grows towards the 1875 * front. 1876 */ 1877 if (slot == 0) 1878 item_end_expected = BTRFS_LEAF_DATA_SIZE(fs_info); 1879 else 1880 item_end_expected = btrfs_item_offset(leaf, 1881 slot - 1); 1882 if (unlikely(item_data_end != item_end_expected)) { 1883 generic_err(leaf, slot, 1884 "unexpected item end, have %llu expect %u", 1885 item_data_end, item_end_expected); 1886 return BTRFS_TREE_BLOCK_INVALID_OFFSETS; 1887 } 1888 1889 /* 1890 * Check to make sure that we don't point outside of the leaf, 1891 * just in case all the items are consistent to each other, but 1892 * all point outside of the leaf. 1893 */ 1894 if (unlikely(item_data_end > BTRFS_LEAF_DATA_SIZE(fs_info))) { 1895 generic_err(leaf, slot, 1896 "slot end outside of leaf, have %llu expect range [0, %u]", 1897 item_data_end, BTRFS_LEAF_DATA_SIZE(fs_info)); 1898 return BTRFS_TREE_BLOCK_INVALID_OFFSETS; 1899 } 1900 1901 /* Also check if the item pointer overlaps with btrfs item. */ 1902 if (unlikely(btrfs_item_ptr_offset(leaf, slot) < 1903 btrfs_item_nr_offset(leaf, slot) + sizeof(struct btrfs_item))) { 1904 generic_err(leaf, slot, 1905 "slot overlaps with its data, item end %lu data start %lu", 1906 btrfs_item_nr_offset(leaf, slot) + 1907 sizeof(struct btrfs_item), 1908 btrfs_item_ptr_offset(leaf, slot)); 1909 return BTRFS_TREE_BLOCK_INVALID_OFFSETS; 1910 } 1911 1912 /* 1913 * We only want to do this if WRITTEN is set, otherwise the leaf 1914 * may be in some intermediate state and won't appear valid. 1915 */ 1916 if (btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_WRITTEN)) { 1917 enum btrfs_tree_block_status ret; 1918 1919 /* 1920 * Check if the item size and content meet other 1921 * criteria 1922 */ 1923 ret = check_leaf_item(leaf, &key, slot, &prev_key); 1924 if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN)) 1925 return ret; 1926 } 1927 1928 prev_key.objectid = key.objectid; 1929 prev_key.type = key.type; 1930 prev_key.offset = key.offset; 1931 } 1932 1933 return BTRFS_TREE_BLOCK_CLEAN; 1934 } 1935 1936 int btrfs_check_leaf(struct extent_buffer *leaf) 1937 { 1938 enum btrfs_tree_block_status ret; 1939 1940 ret = __btrfs_check_leaf(leaf); 1941 if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN)) 1942 return -EUCLEAN; 1943 return 0; 1944 } 1945 ALLOW_ERROR_INJECTION(btrfs_check_leaf, ERRNO); 1946 1947 enum btrfs_tree_block_status __btrfs_check_node(struct extent_buffer *node) 1948 { 1949 struct btrfs_fs_info *fs_info = node->fs_info; 1950 unsigned long nr = btrfs_header_nritems(node); 1951 struct btrfs_key key, next_key; 1952 int slot; 1953 int level = btrfs_header_level(node); 1954 u64 bytenr; 1955 1956 if (unlikely(level <= 0 || level >= BTRFS_MAX_LEVEL)) { 1957 generic_err(node, 0, 1958 "invalid level for node, have %d expect [1, %d]", 1959 level, BTRFS_MAX_LEVEL - 1); 1960 return BTRFS_TREE_BLOCK_INVALID_LEVEL; 1961 } 1962 if (unlikely(nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(fs_info))) { 1963 btrfs_crit(fs_info, 1964 "corrupt node: root=%llu block=%llu, nritems too %s, have %lu expect range [1,%u]", 1965 btrfs_header_owner(node), node->start, 1966 nr == 0 ? "small" : "large", nr, 1967 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 1968 return BTRFS_TREE_BLOCK_INVALID_NRITEMS; 1969 } 1970 1971 for (slot = 0; slot < nr - 1; slot++) { 1972 bytenr = btrfs_node_blockptr(node, slot); 1973 btrfs_node_key_to_cpu(node, &key, slot); 1974 btrfs_node_key_to_cpu(node, &next_key, slot + 1); 1975 1976 if (unlikely(!bytenr)) { 1977 generic_err(node, slot, 1978 "invalid NULL node pointer"); 1979 return BTRFS_TREE_BLOCK_INVALID_BLOCKPTR; 1980 } 1981 if (unlikely(!IS_ALIGNED(bytenr, fs_info->sectorsize))) { 1982 generic_err(node, slot, 1983 "unaligned pointer, have %llu should be aligned to %u", 1984 bytenr, fs_info->sectorsize); 1985 return BTRFS_TREE_BLOCK_INVALID_BLOCKPTR; 1986 } 1987 1988 if (unlikely(btrfs_comp_cpu_keys(&key, &next_key) >= 0)) { 1989 generic_err(node, slot, 1990 "bad key order, current (%llu %u %llu) next (%llu %u %llu)", 1991 key.objectid, key.type, key.offset, 1992 next_key.objectid, next_key.type, 1993 next_key.offset); 1994 return BTRFS_TREE_BLOCK_BAD_KEY_ORDER; 1995 } 1996 } 1997 return BTRFS_TREE_BLOCK_CLEAN; 1998 } 1999 2000 int btrfs_check_node(struct extent_buffer *node) 2001 { 2002 enum btrfs_tree_block_status ret; 2003 2004 ret = __btrfs_check_node(node); 2005 if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN)) 2006 return -EUCLEAN; 2007 return 0; 2008 } 2009 ALLOW_ERROR_INJECTION(btrfs_check_node, ERRNO); 2010 2011 int btrfs_check_eb_owner(const struct extent_buffer *eb, u64 root_owner) 2012 { 2013 const bool is_subvol = is_fstree(root_owner); 2014 const u64 eb_owner = btrfs_header_owner(eb); 2015 2016 /* 2017 * Skip dummy fs, as selftests don't create unique ebs for each dummy 2018 * root. 2019 */ 2020 if (test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &eb->fs_info->fs_state)) 2021 return 0; 2022 /* 2023 * There are several call sites (backref walking, qgroup, and data 2024 * reloc) passing 0 as @root_owner, as they are not holding the 2025 * tree root. In that case, we can not do a reliable ownership check, 2026 * so just exit. 2027 */ 2028 if (root_owner == 0) 2029 return 0; 2030 /* 2031 * These trees use key.offset as their owner, our callers don't have 2032 * the extra capacity to pass key.offset here. So we just skip them. 2033 */ 2034 if (root_owner == BTRFS_TREE_LOG_OBJECTID || 2035 root_owner == BTRFS_TREE_RELOC_OBJECTID) 2036 return 0; 2037 2038 if (!is_subvol) { 2039 /* For non-subvolume trees, the eb owner should match root owner */ 2040 if (unlikely(root_owner != eb_owner)) { 2041 btrfs_crit(eb->fs_info, 2042 "corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect %llu", 2043 btrfs_header_level(eb) == 0 ? "leaf" : "node", 2044 root_owner, btrfs_header_bytenr(eb), eb_owner, 2045 root_owner); 2046 return -EUCLEAN; 2047 } 2048 return 0; 2049 } 2050 2051 /* 2052 * For subvolume trees, owners can mismatch, but they should all belong 2053 * to subvolume trees. 2054 */ 2055 if (unlikely(is_subvol != is_fstree(eb_owner))) { 2056 btrfs_crit(eb->fs_info, 2057 "corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect [%llu, %llu]", 2058 btrfs_header_level(eb) == 0 ? "leaf" : "node", 2059 root_owner, btrfs_header_bytenr(eb), eb_owner, 2060 BTRFS_FIRST_FREE_OBJECTID, BTRFS_LAST_FREE_OBJECTID); 2061 return -EUCLEAN; 2062 } 2063 return 0; 2064 } 2065 2066 int btrfs_verify_level_key(struct extent_buffer *eb, int level, 2067 struct btrfs_key *first_key, u64 parent_transid) 2068 { 2069 struct btrfs_fs_info *fs_info = eb->fs_info; 2070 int found_level; 2071 struct btrfs_key found_key; 2072 int ret; 2073 2074 found_level = btrfs_header_level(eb); 2075 if (found_level != level) { 2076 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 2077 KERN_ERR "BTRFS: tree level check failed\n"); 2078 btrfs_err(fs_info, 2079 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", 2080 eb->start, level, found_level); 2081 return -EIO; 2082 } 2083 2084 if (!first_key) 2085 return 0; 2086 2087 /* 2088 * For live tree block (new tree blocks in current transaction), 2089 * we need proper lock context to avoid race, which is impossible here. 2090 * So we only checks tree blocks which is read from disk, whose 2091 * generation <= fs_info->last_trans_committed. 2092 */ 2093 if (btrfs_header_generation(eb) > btrfs_get_last_trans_committed(fs_info)) 2094 return 0; 2095 2096 /* We have @first_key, so this @eb must have at least one item */ 2097 if (btrfs_header_nritems(eb) == 0) { 2098 btrfs_err(fs_info, 2099 "invalid tree nritems, bytenr=%llu nritems=0 expect >0", 2100 eb->start); 2101 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 2102 return -EUCLEAN; 2103 } 2104 2105 if (found_level) 2106 btrfs_node_key_to_cpu(eb, &found_key, 0); 2107 else 2108 btrfs_item_key_to_cpu(eb, &found_key, 0); 2109 ret = btrfs_comp_cpu_keys(first_key, &found_key); 2110 2111 if (ret) { 2112 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 2113 KERN_ERR "BTRFS: tree first key check failed\n"); 2114 btrfs_err(fs_info, 2115 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 2116 eb->start, parent_transid, first_key->objectid, 2117 first_key->type, first_key->offset, 2118 found_key.objectid, found_key.type, 2119 found_key.offset); 2120 } 2121 return ret; 2122 } 2123