1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) Qu Wenruo 2017. All rights reserved. 4 */ 5 6 /* 7 * The module is used to catch unexpected/corrupted tree block data. 8 * Such behavior can be caused either by a fuzzed image or bugs. 9 * 10 * The objective is to do leaf/node validation checks when tree block is read 11 * from disk, and check *every* possible member, so other code won't 12 * need to checking them again. 13 * 14 * Due to the potential and unwanted damage, every checker needs to be 15 * carefully reviewed otherwise so it does not prevent mount of valid images. 16 */ 17 18 #include <linux/types.h> 19 #include <linux/stddef.h> 20 #include <linux/error-injection.h> 21 #include "messages.h" 22 #include "ctree.h" 23 #include "tree-checker.h" 24 #include "compression.h" 25 #include "volumes.h" 26 #include "misc.h" 27 #include "fs.h" 28 #include "accessors.h" 29 #include "file-item.h" 30 #include "inode-item.h" 31 #include "dir-item.h" 32 #include "extent-tree.h" 33 34 /* 35 * Error message should follow the following format: 36 * corrupt <type>: <identifier>, <reason>[, <bad_value>] 37 * 38 * @type: leaf or node 39 * @identifier: the necessary info to locate the leaf/node. 40 * It's recommended to decode key.objecitd/offset if it's 41 * meaningful. 42 * @reason: describe the error 43 * @bad_value: optional, it's recommended to output bad value and its 44 * expected value (range). 45 * 46 * Since comma is used to separate the components, only space is allowed 47 * inside each component. 48 */ 49 50 /* 51 * Append generic "corrupt leaf/node root=%llu block=%llu slot=%d: " to @fmt. 52 * Allows callers to customize the output. 53 */ 54 __printf(3, 4) 55 __cold 56 static void generic_err(const struct extent_buffer *eb, int slot, 57 const char *fmt, ...) 58 { 59 const struct btrfs_fs_info *fs_info = eb->fs_info; 60 struct va_format vaf; 61 va_list args; 62 63 va_start(args, fmt); 64 65 vaf.fmt = fmt; 66 vaf.va = &args; 67 68 dump_page(folio_page(eb->folios[0], 0), "eb page dump"); 69 btrfs_crit(fs_info, 70 "corrupt %s: root=%llu block=%llu slot=%d, %pV", 71 btrfs_header_level(eb) == 0 ? "leaf" : "node", 72 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, &vaf); 73 va_end(args); 74 } 75 76 /* 77 * Customized reporter for extent data item, since its key objectid and 78 * offset has its own meaning. 79 */ 80 __printf(3, 4) 81 __cold 82 static void file_extent_err(const struct extent_buffer *eb, int slot, 83 const char *fmt, ...) 84 { 85 const struct btrfs_fs_info *fs_info = eb->fs_info; 86 struct btrfs_key key; 87 struct va_format vaf; 88 va_list args; 89 90 btrfs_item_key_to_cpu(eb, &key, slot); 91 va_start(args, fmt); 92 93 vaf.fmt = fmt; 94 vaf.va = &args; 95 96 dump_page(folio_page(eb->folios[0], 0), "eb page dump"); 97 btrfs_crit(fs_info, 98 "corrupt %s: root=%llu block=%llu slot=%d ino=%llu file_offset=%llu, %pV", 99 btrfs_header_level(eb) == 0 ? "leaf" : "node", 100 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, 101 key.objectid, key.offset, &vaf); 102 va_end(args); 103 } 104 105 /* 106 * Return 0 if the btrfs_file_extent_##name is aligned to @alignment 107 * Else return 1 108 */ 109 #define CHECK_FE_ALIGNED(leaf, slot, fi, name, alignment) \ 110 ({ \ 111 if (unlikely(!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), \ 112 (alignment)))) \ 113 file_extent_err((leaf), (slot), \ 114 "invalid %s for file extent, have %llu, should be aligned to %u", \ 115 (#name), btrfs_file_extent_##name((leaf), (fi)), \ 116 (alignment)); \ 117 (!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), (alignment))); \ 118 }) 119 120 static u64 file_extent_end(struct extent_buffer *leaf, 121 struct btrfs_key *key, 122 struct btrfs_file_extent_item *extent) 123 { 124 u64 end; 125 u64 len; 126 127 if (btrfs_file_extent_type(leaf, extent) == BTRFS_FILE_EXTENT_INLINE) { 128 len = btrfs_file_extent_ram_bytes(leaf, extent); 129 end = ALIGN(key->offset + len, leaf->fs_info->sectorsize); 130 } else { 131 len = btrfs_file_extent_num_bytes(leaf, extent); 132 end = key->offset + len; 133 } 134 return end; 135 } 136 137 /* 138 * Customized report for dir_item, the only new important information is 139 * key->objectid, which represents inode number 140 */ 141 __printf(3, 4) 142 __cold 143 static void dir_item_err(const struct extent_buffer *eb, int slot, 144 const char *fmt, ...) 145 { 146 const struct btrfs_fs_info *fs_info = eb->fs_info; 147 struct btrfs_key key; 148 struct va_format vaf; 149 va_list args; 150 151 btrfs_item_key_to_cpu(eb, &key, slot); 152 va_start(args, fmt); 153 154 vaf.fmt = fmt; 155 vaf.va = &args; 156 157 dump_page(folio_page(eb->folios[0], 0), "eb page dump"); 158 btrfs_crit(fs_info, 159 "corrupt %s: root=%llu block=%llu slot=%d ino=%llu, %pV", 160 btrfs_header_level(eb) == 0 ? "leaf" : "node", 161 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, 162 key.objectid, &vaf); 163 va_end(args); 164 } 165 166 /* 167 * This functions checks prev_key->objectid, to ensure current key and prev_key 168 * share the same objectid as inode number. 169 * 170 * This is to detect missing INODE_ITEM in subvolume trees. 171 * 172 * Return true if everything is OK or we don't need to check. 173 * Return false if anything is wrong. 174 */ 175 static bool check_prev_ino(struct extent_buffer *leaf, 176 struct btrfs_key *key, int slot, 177 struct btrfs_key *prev_key) 178 { 179 /* No prev key, skip check */ 180 if (slot == 0) 181 return true; 182 183 /* Only these key->types needs to be checked */ 184 ASSERT(key->type == BTRFS_XATTR_ITEM_KEY || 185 key->type == BTRFS_INODE_REF_KEY || 186 key->type == BTRFS_DIR_INDEX_KEY || 187 key->type == BTRFS_DIR_ITEM_KEY || 188 key->type == BTRFS_EXTENT_DATA_KEY); 189 190 /* 191 * Only subvolume trees along with their reloc trees need this check. 192 * Things like log tree doesn't follow this ino requirement. 193 */ 194 if (!is_fstree(btrfs_header_owner(leaf))) 195 return true; 196 197 if (key->objectid == prev_key->objectid) 198 return true; 199 200 /* Error found */ 201 dir_item_err(leaf, slot, 202 "invalid previous key objectid, have %llu expect %llu", 203 prev_key->objectid, key->objectid); 204 return false; 205 } 206 static int check_extent_data_item(struct extent_buffer *leaf, 207 struct btrfs_key *key, int slot, 208 struct btrfs_key *prev_key) 209 { 210 struct btrfs_fs_info *fs_info = leaf->fs_info; 211 struct btrfs_file_extent_item *fi; 212 u32 sectorsize = fs_info->sectorsize; 213 u32 item_size = btrfs_item_size(leaf, slot); 214 u64 extent_end; 215 216 if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) { 217 file_extent_err(leaf, slot, 218 "unaligned file_offset for file extent, have %llu should be aligned to %u", 219 key->offset, sectorsize); 220 return -EUCLEAN; 221 } 222 223 /* 224 * Previous key must have the same key->objectid (ino). 225 * It can be XATTR_ITEM, INODE_ITEM or just another EXTENT_DATA. 226 * But if objectids mismatch, it means we have a missing 227 * INODE_ITEM. 228 */ 229 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key))) 230 return -EUCLEAN; 231 232 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 233 234 /* 235 * Make sure the item contains at least inline header, so the file 236 * extent type is not some garbage. 237 */ 238 if (unlikely(item_size < BTRFS_FILE_EXTENT_INLINE_DATA_START)) { 239 file_extent_err(leaf, slot, 240 "invalid item size, have %u expect [%zu, %u)", 241 item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START, 242 SZ_4K); 243 return -EUCLEAN; 244 } 245 if (unlikely(btrfs_file_extent_type(leaf, fi) >= 246 BTRFS_NR_FILE_EXTENT_TYPES)) { 247 file_extent_err(leaf, slot, 248 "invalid type for file extent, have %u expect range [0, %u]", 249 btrfs_file_extent_type(leaf, fi), 250 BTRFS_NR_FILE_EXTENT_TYPES - 1); 251 return -EUCLEAN; 252 } 253 254 /* 255 * Support for new compression/encryption must introduce incompat flag, 256 * and must be caught in open_ctree(). 257 */ 258 if (unlikely(btrfs_file_extent_compression(leaf, fi) >= 259 BTRFS_NR_COMPRESS_TYPES)) { 260 file_extent_err(leaf, slot, 261 "invalid compression for file extent, have %u expect range [0, %u]", 262 btrfs_file_extent_compression(leaf, fi), 263 BTRFS_NR_COMPRESS_TYPES - 1); 264 return -EUCLEAN; 265 } 266 if (unlikely(btrfs_file_extent_encryption(leaf, fi))) { 267 file_extent_err(leaf, slot, 268 "invalid encryption for file extent, have %u expect 0", 269 btrfs_file_extent_encryption(leaf, fi)); 270 return -EUCLEAN; 271 } 272 if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) { 273 /* Inline extent must have 0 as key offset */ 274 if (unlikely(key->offset)) { 275 file_extent_err(leaf, slot, 276 "invalid file_offset for inline file extent, have %llu expect 0", 277 key->offset); 278 return -EUCLEAN; 279 } 280 281 /* Compressed inline extent has no on-disk size, skip it */ 282 if (btrfs_file_extent_compression(leaf, fi) != 283 BTRFS_COMPRESS_NONE) 284 return 0; 285 286 /* Uncompressed inline extent size must match item size */ 287 if (unlikely(item_size != BTRFS_FILE_EXTENT_INLINE_DATA_START + 288 btrfs_file_extent_ram_bytes(leaf, fi))) { 289 file_extent_err(leaf, slot, 290 "invalid ram_bytes for uncompressed inline extent, have %u expect %llu", 291 item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START + 292 btrfs_file_extent_ram_bytes(leaf, fi)); 293 return -EUCLEAN; 294 } 295 return 0; 296 } 297 298 /* Regular or preallocated extent has fixed item size */ 299 if (unlikely(item_size != sizeof(*fi))) { 300 file_extent_err(leaf, slot, 301 "invalid item size for reg/prealloc file extent, have %u expect %zu", 302 item_size, sizeof(*fi)); 303 return -EUCLEAN; 304 } 305 if (unlikely(CHECK_FE_ALIGNED(leaf, slot, fi, ram_bytes, sectorsize) || 306 CHECK_FE_ALIGNED(leaf, slot, fi, disk_bytenr, sectorsize) || 307 CHECK_FE_ALIGNED(leaf, slot, fi, disk_num_bytes, sectorsize) || 308 CHECK_FE_ALIGNED(leaf, slot, fi, offset, sectorsize) || 309 CHECK_FE_ALIGNED(leaf, slot, fi, num_bytes, sectorsize))) 310 return -EUCLEAN; 311 312 /* Catch extent end overflow */ 313 if (unlikely(check_add_overflow(btrfs_file_extent_num_bytes(leaf, fi), 314 key->offset, &extent_end))) { 315 file_extent_err(leaf, slot, 316 "extent end overflow, have file offset %llu extent num bytes %llu", 317 key->offset, 318 btrfs_file_extent_num_bytes(leaf, fi)); 319 return -EUCLEAN; 320 } 321 322 /* 323 * Check that no two consecutive file extent items, in the same leaf, 324 * present ranges that overlap each other. 325 */ 326 if (slot > 0 && 327 prev_key->objectid == key->objectid && 328 prev_key->type == BTRFS_EXTENT_DATA_KEY) { 329 struct btrfs_file_extent_item *prev_fi; 330 u64 prev_end; 331 332 prev_fi = btrfs_item_ptr(leaf, slot - 1, 333 struct btrfs_file_extent_item); 334 prev_end = file_extent_end(leaf, prev_key, prev_fi); 335 if (unlikely(prev_end > key->offset)) { 336 file_extent_err(leaf, slot - 1, 337 "file extent end range (%llu) goes beyond start offset (%llu) of the next file extent", 338 prev_end, key->offset); 339 return -EUCLEAN; 340 } 341 } 342 343 return 0; 344 } 345 346 static int check_csum_item(struct extent_buffer *leaf, struct btrfs_key *key, 347 int slot, struct btrfs_key *prev_key) 348 { 349 struct btrfs_fs_info *fs_info = leaf->fs_info; 350 u32 sectorsize = fs_info->sectorsize; 351 const u32 csumsize = fs_info->csum_size; 352 353 if (unlikely(key->objectid != BTRFS_EXTENT_CSUM_OBJECTID)) { 354 generic_err(leaf, slot, 355 "invalid key objectid for csum item, have %llu expect %llu", 356 key->objectid, BTRFS_EXTENT_CSUM_OBJECTID); 357 return -EUCLEAN; 358 } 359 if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) { 360 generic_err(leaf, slot, 361 "unaligned key offset for csum item, have %llu should be aligned to %u", 362 key->offset, sectorsize); 363 return -EUCLEAN; 364 } 365 if (unlikely(!IS_ALIGNED(btrfs_item_size(leaf, slot), csumsize))) { 366 generic_err(leaf, slot, 367 "unaligned item size for csum item, have %u should be aligned to %u", 368 btrfs_item_size(leaf, slot), csumsize); 369 return -EUCLEAN; 370 } 371 if (slot > 0 && prev_key->type == BTRFS_EXTENT_CSUM_KEY) { 372 u64 prev_csum_end; 373 u32 prev_item_size; 374 375 prev_item_size = btrfs_item_size(leaf, slot - 1); 376 prev_csum_end = (prev_item_size / csumsize) * sectorsize; 377 prev_csum_end += prev_key->offset; 378 if (unlikely(prev_csum_end > key->offset)) { 379 generic_err(leaf, slot - 1, 380 "csum end range (%llu) goes beyond the start range (%llu) of the next csum item", 381 prev_csum_end, key->offset); 382 return -EUCLEAN; 383 } 384 } 385 return 0; 386 } 387 388 /* Inode item error output has the same format as dir_item_err() */ 389 #define inode_item_err(eb, slot, fmt, ...) \ 390 dir_item_err(eb, slot, fmt, __VA_ARGS__) 391 392 static int check_inode_key(struct extent_buffer *leaf, struct btrfs_key *key, 393 int slot) 394 { 395 struct btrfs_key item_key; 396 bool is_inode_item; 397 398 btrfs_item_key_to_cpu(leaf, &item_key, slot); 399 is_inode_item = (item_key.type == BTRFS_INODE_ITEM_KEY); 400 401 /* For XATTR_ITEM, location key should be all 0 */ 402 if (item_key.type == BTRFS_XATTR_ITEM_KEY) { 403 if (unlikely(key->objectid != 0 || key->type != 0 || 404 key->offset != 0)) 405 return -EUCLEAN; 406 return 0; 407 } 408 409 if (unlikely((key->objectid < BTRFS_FIRST_FREE_OBJECTID || 410 key->objectid > BTRFS_LAST_FREE_OBJECTID) && 411 key->objectid != BTRFS_ROOT_TREE_DIR_OBJECTID && 412 key->objectid != BTRFS_FREE_INO_OBJECTID)) { 413 if (is_inode_item) { 414 generic_err(leaf, slot, 415 "invalid key objectid: has %llu expect %llu or [%llu, %llu] or %llu", 416 key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID, 417 BTRFS_FIRST_FREE_OBJECTID, 418 BTRFS_LAST_FREE_OBJECTID, 419 BTRFS_FREE_INO_OBJECTID); 420 } else { 421 dir_item_err(leaf, slot, 422 "invalid location key objectid: has %llu expect %llu or [%llu, %llu] or %llu", 423 key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID, 424 BTRFS_FIRST_FREE_OBJECTID, 425 BTRFS_LAST_FREE_OBJECTID, 426 BTRFS_FREE_INO_OBJECTID); 427 } 428 return -EUCLEAN; 429 } 430 if (unlikely(key->offset != 0)) { 431 if (is_inode_item) 432 inode_item_err(leaf, slot, 433 "invalid key offset: has %llu expect 0", 434 key->offset); 435 else 436 dir_item_err(leaf, slot, 437 "invalid location key offset:has %llu expect 0", 438 key->offset); 439 return -EUCLEAN; 440 } 441 return 0; 442 } 443 444 static int check_root_key(struct extent_buffer *leaf, struct btrfs_key *key, 445 int slot) 446 { 447 struct btrfs_key item_key; 448 bool is_root_item; 449 450 btrfs_item_key_to_cpu(leaf, &item_key, slot); 451 is_root_item = (item_key.type == BTRFS_ROOT_ITEM_KEY); 452 453 /* 454 * Bad rootid for reloc trees. 455 * 456 * Reloc trees are only for subvolume trees, other trees only need 457 * to be COWed to be relocated. 458 */ 459 if (unlikely(is_root_item && key->objectid == BTRFS_TREE_RELOC_OBJECTID && 460 !is_fstree(key->offset))) { 461 generic_err(leaf, slot, 462 "invalid reloc tree for root %lld, root id is not a subvolume tree", 463 key->offset); 464 return -EUCLEAN; 465 } 466 467 /* No such tree id */ 468 if (unlikely(key->objectid == 0)) { 469 if (is_root_item) 470 generic_err(leaf, slot, "invalid root id 0"); 471 else 472 dir_item_err(leaf, slot, 473 "invalid location key root id 0"); 474 return -EUCLEAN; 475 } 476 477 /* DIR_ITEM/INDEX/INODE_REF is not allowed to point to non-fs trees */ 478 if (unlikely(!is_fstree(key->objectid) && !is_root_item)) { 479 dir_item_err(leaf, slot, 480 "invalid location key objectid, have %llu expect [%llu, %llu]", 481 key->objectid, BTRFS_FIRST_FREE_OBJECTID, 482 BTRFS_LAST_FREE_OBJECTID); 483 return -EUCLEAN; 484 } 485 486 /* 487 * ROOT_ITEM with non-zero offset means this is a snapshot, created at 488 * @offset transid. 489 * Furthermore, for location key in DIR_ITEM, its offset is always -1. 490 * 491 * So here we only check offset for reloc tree whose key->offset must 492 * be a valid tree. 493 */ 494 if (unlikely(key->objectid == BTRFS_TREE_RELOC_OBJECTID && 495 key->offset == 0)) { 496 generic_err(leaf, slot, "invalid root id 0 for reloc tree"); 497 return -EUCLEAN; 498 } 499 return 0; 500 } 501 502 static int check_dir_item(struct extent_buffer *leaf, 503 struct btrfs_key *key, struct btrfs_key *prev_key, 504 int slot) 505 { 506 struct btrfs_fs_info *fs_info = leaf->fs_info; 507 struct btrfs_dir_item *di; 508 u32 item_size = btrfs_item_size(leaf, slot); 509 u32 cur = 0; 510 511 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key))) 512 return -EUCLEAN; 513 514 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 515 while (cur < item_size) { 516 struct btrfs_key location_key; 517 u32 name_len; 518 u32 data_len; 519 u32 max_name_len; 520 u32 total_size; 521 u32 name_hash; 522 u8 dir_type; 523 int ret; 524 525 /* header itself should not cross item boundary */ 526 if (unlikely(cur + sizeof(*di) > item_size)) { 527 dir_item_err(leaf, slot, 528 "dir item header crosses item boundary, have %zu boundary %u", 529 cur + sizeof(*di), item_size); 530 return -EUCLEAN; 531 } 532 533 /* Location key check */ 534 btrfs_dir_item_key_to_cpu(leaf, di, &location_key); 535 if (location_key.type == BTRFS_ROOT_ITEM_KEY) { 536 ret = check_root_key(leaf, &location_key, slot); 537 if (unlikely(ret < 0)) 538 return ret; 539 } else if (location_key.type == BTRFS_INODE_ITEM_KEY || 540 location_key.type == 0) { 541 ret = check_inode_key(leaf, &location_key, slot); 542 if (unlikely(ret < 0)) 543 return ret; 544 } else { 545 dir_item_err(leaf, slot, 546 "invalid location key type, have %u, expect %u or %u", 547 location_key.type, BTRFS_ROOT_ITEM_KEY, 548 BTRFS_INODE_ITEM_KEY); 549 return -EUCLEAN; 550 } 551 552 /* dir type check */ 553 dir_type = btrfs_dir_ftype(leaf, di); 554 if (unlikely(dir_type >= BTRFS_FT_MAX)) { 555 dir_item_err(leaf, slot, 556 "invalid dir item type, have %u expect [0, %u)", 557 dir_type, BTRFS_FT_MAX); 558 return -EUCLEAN; 559 } 560 561 if (unlikely(key->type == BTRFS_XATTR_ITEM_KEY && 562 dir_type != BTRFS_FT_XATTR)) { 563 dir_item_err(leaf, slot, 564 "invalid dir item type for XATTR key, have %u expect %u", 565 dir_type, BTRFS_FT_XATTR); 566 return -EUCLEAN; 567 } 568 if (unlikely(dir_type == BTRFS_FT_XATTR && 569 key->type != BTRFS_XATTR_ITEM_KEY)) { 570 dir_item_err(leaf, slot, 571 "xattr dir type found for non-XATTR key"); 572 return -EUCLEAN; 573 } 574 if (dir_type == BTRFS_FT_XATTR) 575 max_name_len = XATTR_NAME_MAX; 576 else 577 max_name_len = BTRFS_NAME_LEN; 578 579 /* Name/data length check */ 580 name_len = btrfs_dir_name_len(leaf, di); 581 data_len = btrfs_dir_data_len(leaf, di); 582 if (unlikely(name_len > max_name_len)) { 583 dir_item_err(leaf, slot, 584 "dir item name len too long, have %u max %u", 585 name_len, max_name_len); 586 return -EUCLEAN; 587 } 588 if (unlikely(name_len + data_len > BTRFS_MAX_XATTR_SIZE(fs_info))) { 589 dir_item_err(leaf, slot, 590 "dir item name and data len too long, have %u max %u", 591 name_len + data_len, 592 BTRFS_MAX_XATTR_SIZE(fs_info)); 593 return -EUCLEAN; 594 } 595 596 if (unlikely(data_len && dir_type != BTRFS_FT_XATTR)) { 597 dir_item_err(leaf, slot, 598 "dir item with invalid data len, have %u expect 0", 599 data_len); 600 return -EUCLEAN; 601 } 602 603 total_size = sizeof(*di) + name_len + data_len; 604 605 /* header and name/data should not cross item boundary */ 606 if (unlikely(cur + total_size > item_size)) { 607 dir_item_err(leaf, slot, 608 "dir item data crosses item boundary, have %u boundary %u", 609 cur + total_size, item_size); 610 return -EUCLEAN; 611 } 612 613 /* 614 * Special check for XATTR/DIR_ITEM, as key->offset is name 615 * hash, should match its name 616 */ 617 if (key->type == BTRFS_DIR_ITEM_KEY || 618 key->type == BTRFS_XATTR_ITEM_KEY) { 619 char namebuf[max(BTRFS_NAME_LEN, XATTR_NAME_MAX)]; 620 621 read_extent_buffer(leaf, namebuf, 622 (unsigned long)(di + 1), name_len); 623 name_hash = btrfs_name_hash(namebuf, name_len); 624 if (unlikely(key->offset != name_hash)) { 625 dir_item_err(leaf, slot, 626 "name hash mismatch with key, have 0x%016x expect 0x%016llx", 627 name_hash, key->offset); 628 return -EUCLEAN; 629 } 630 } 631 cur += total_size; 632 di = (struct btrfs_dir_item *)((void *)di + total_size); 633 } 634 return 0; 635 } 636 637 __printf(3, 4) 638 __cold 639 static void block_group_err(const struct extent_buffer *eb, int slot, 640 const char *fmt, ...) 641 { 642 const struct btrfs_fs_info *fs_info = eb->fs_info; 643 struct btrfs_key key; 644 struct va_format vaf; 645 va_list args; 646 647 btrfs_item_key_to_cpu(eb, &key, slot); 648 va_start(args, fmt); 649 650 vaf.fmt = fmt; 651 vaf.va = &args; 652 653 dump_page(folio_page(eb->folios[0], 0), "eb page dump"); 654 btrfs_crit(fs_info, 655 "corrupt %s: root=%llu block=%llu slot=%d bg_start=%llu bg_len=%llu, %pV", 656 btrfs_header_level(eb) == 0 ? "leaf" : "node", 657 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, 658 key.objectid, key.offset, &vaf); 659 va_end(args); 660 } 661 662 static int check_block_group_item(struct extent_buffer *leaf, 663 struct btrfs_key *key, int slot) 664 { 665 struct btrfs_fs_info *fs_info = leaf->fs_info; 666 struct btrfs_block_group_item bgi; 667 u32 item_size = btrfs_item_size(leaf, slot); 668 u64 chunk_objectid; 669 u64 flags; 670 u64 type; 671 672 /* 673 * Here we don't really care about alignment since extent allocator can 674 * handle it. We care more about the size. 675 */ 676 if (unlikely(key->offset == 0)) { 677 block_group_err(leaf, slot, 678 "invalid block group size 0"); 679 return -EUCLEAN; 680 } 681 682 if (unlikely(item_size != sizeof(bgi))) { 683 block_group_err(leaf, slot, 684 "invalid item size, have %u expect %zu", 685 item_size, sizeof(bgi)); 686 return -EUCLEAN; 687 } 688 689 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot), 690 sizeof(bgi)); 691 chunk_objectid = btrfs_stack_block_group_chunk_objectid(&bgi); 692 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 693 /* 694 * We don't init the nr_global_roots until we load the global 695 * roots, so this could be 0 at mount time. If it's 0 we'll 696 * just assume we're fine, and later we'll check against our 697 * actual value. 698 */ 699 if (unlikely(fs_info->nr_global_roots && 700 chunk_objectid >= fs_info->nr_global_roots)) { 701 block_group_err(leaf, slot, 702 "invalid block group global root id, have %llu, needs to be <= %llu", 703 chunk_objectid, 704 fs_info->nr_global_roots); 705 return -EUCLEAN; 706 } 707 } else if (unlikely(chunk_objectid != BTRFS_FIRST_CHUNK_TREE_OBJECTID)) { 708 block_group_err(leaf, slot, 709 "invalid block group chunk objectid, have %llu expect %llu", 710 btrfs_stack_block_group_chunk_objectid(&bgi), 711 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 712 return -EUCLEAN; 713 } 714 715 if (unlikely(btrfs_stack_block_group_used(&bgi) > key->offset)) { 716 block_group_err(leaf, slot, 717 "invalid block group used, have %llu expect [0, %llu)", 718 btrfs_stack_block_group_used(&bgi), key->offset); 719 return -EUCLEAN; 720 } 721 722 flags = btrfs_stack_block_group_flags(&bgi); 723 if (unlikely(hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) > 1)) { 724 block_group_err(leaf, slot, 725 "invalid profile flags, have 0x%llx (%lu bits set) expect no more than 1 bit set", 726 flags & BTRFS_BLOCK_GROUP_PROFILE_MASK, 727 hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)); 728 return -EUCLEAN; 729 } 730 731 type = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 732 if (unlikely(type != BTRFS_BLOCK_GROUP_DATA && 733 type != BTRFS_BLOCK_GROUP_METADATA && 734 type != BTRFS_BLOCK_GROUP_SYSTEM && 735 type != (BTRFS_BLOCK_GROUP_METADATA | 736 BTRFS_BLOCK_GROUP_DATA))) { 737 block_group_err(leaf, slot, 738 "invalid type, have 0x%llx (%lu bits set) expect either 0x%llx, 0x%llx, 0x%llx or 0x%llx", 739 type, hweight64(type), 740 BTRFS_BLOCK_GROUP_DATA, BTRFS_BLOCK_GROUP_METADATA, 741 BTRFS_BLOCK_GROUP_SYSTEM, 742 BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA); 743 return -EUCLEAN; 744 } 745 return 0; 746 } 747 748 __printf(4, 5) 749 __cold 750 static void chunk_err(const struct extent_buffer *leaf, 751 const struct btrfs_chunk *chunk, u64 logical, 752 const char *fmt, ...) 753 { 754 const struct btrfs_fs_info *fs_info = leaf->fs_info; 755 bool is_sb; 756 struct va_format vaf; 757 va_list args; 758 int i; 759 int slot = -1; 760 761 /* Only superblock eb is able to have such small offset */ 762 is_sb = (leaf->start == BTRFS_SUPER_INFO_OFFSET); 763 764 if (!is_sb) { 765 /* 766 * Get the slot number by iterating through all slots, this 767 * would provide better readability. 768 */ 769 for (i = 0; i < btrfs_header_nritems(leaf); i++) { 770 if (btrfs_item_ptr_offset(leaf, i) == 771 (unsigned long)chunk) { 772 slot = i; 773 break; 774 } 775 } 776 } 777 va_start(args, fmt); 778 vaf.fmt = fmt; 779 vaf.va = &args; 780 781 if (is_sb) 782 btrfs_crit(fs_info, 783 "corrupt superblock syschunk array: chunk_start=%llu, %pV", 784 logical, &vaf); 785 else 786 btrfs_crit(fs_info, 787 "corrupt leaf: root=%llu block=%llu slot=%d chunk_start=%llu, %pV", 788 BTRFS_CHUNK_TREE_OBJECTID, leaf->start, slot, 789 logical, &vaf); 790 va_end(args); 791 } 792 793 /* 794 * The common chunk check which could also work on super block sys chunk array. 795 * 796 * Return -EUCLEAN if anything is corrupted. 797 * Return 0 if everything is OK. 798 */ 799 int btrfs_check_chunk_valid(struct extent_buffer *leaf, 800 struct btrfs_chunk *chunk, u64 logical) 801 { 802 struct btrfs_fs_info *fs_info = leaf->fs_info; 803 u64 length; 804 u64 chunk_end; 805 u64 stripe_len; 806 u16 num_stripes; 807 u16 sub_stripes; 808 u64 type; 809 u64 features; 810 bool mixed = false; 811 int raid_index; 812 int nparity; 813 int ncopies; 814 815 length = btrfs_chunk_length(leaf, chunk); 816 stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 817 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 818 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 819 type = btrfs_chunk_type(leaf, chunk); 820 raid_index = btrfs_bg_flags_to_raid_index(type); 821 ncopies = btrfs_raid_array[raid_index].ncopies; 822 nparity = btrfs_raid_array[raid_index].nparity; 823 824 if (unlikely(!num_stripes)) { 825 chunk_err(leaf, chunk, logical, 826 "invalid chunk num_stripes, have %u", num_stripes); 827 return -EUCLEAN; 828 } 829 if (unlikely(num_stripes < ncopies)) { 830 chunk_err(leaf, chunk, logical, 831 "invalid chunk num_stripes < ncopies, have %u < %d", 832 num_stripes, ncopies); 833 return -EUCLEAN; 834 } 835 if (unlikely(nparity && num_stripes == nparity)) { 836 chunk_err(leaf, chunk, logical, 837 "invalid chunk num_stripes == nparity, have %u == %d", 838 num_stripes, nparity); 839 return -EUCLEAN; 840 } 841 if (unlikely(!IS_ALIGNED(logical, fs_info->sectorsize))) { 842 chunk_err(leaf, chunk, logical, 843 "invalid chunk logical, have %llu should aligned to %u", 844 logical, fs_info->sectorsize); 845 return -EUCLEAN; 846 } 847 if (unlikely(btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize)) { 848 chunk_err(leaf, chunk, logical, 849 "invalid chunk sectorsize, have %u expect %u", 850 btrfs_chunk_sector_size(leaf, chunk), 851 fs_info->sectorsize); 852 return -EUCLEAN; 853 } 854 if (unlikely(!length || !IS_ALIGNED(length, fs_info->sectorsize))) { 855 chunk_err(leaf, chunk, logical, 856 "invalid chunk length, have %llu", length); 857 return -EUCLEAN; 858 } 859 if (unlikely(check_add_overflow(logical, length, &chunk_end))) { 860 chunk_err(leaf, chunk, logical, 861 "invalid chunk logical start and length, have logical start %llu length %llu", 862 logical, length); 863 return -EUCLEAN; 864 } 865 if (unlikely(!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN)) { 866 chunk_err(leaf, chunk, logical, 867 "invalid chunk stripe length: %llu", 868 stripe_len); 869 return -EUCLEAN; 870 } 871 /* 872 * We artificially limit the chunk size, so that the number of stripes 873 * inside a chunk can be fit into a U32. The current limit (256G) is 874 * way too large for real world usage anyway, and it's also much larger 875 * than our existing limit (10G). 876 * 877 * Thus it should be a good way to catch obvious bitflips. 878 */ 879 if (unlikely(length >= btrfs_stripe_nr_to_offset(U32_MAX))) { 880 chunk_err(leaf, chunk, logical, 881 "chunk length too large: have %llu limit %llu", 882 length, btrfs_stripe_nr_to_offset(U32_MAX)); 883 return -EUCLEAN; 884 } 885 if (unlikely(type & ~(BTRFS_BLOCK_GROUP_TYPE_MASK | 886 BTRFS_BLOCK_GROUP_PROFILE_MASK))) { 887 chunk_err(leaf, chunk, logical, 888 "unrecognized chunk type: 0x%llx", 889 ~(BTRFS_BLOCK_GROUP_TYPE_MASK | 890 BTRFS_BLOCK_GROUP_PROFILE_MASK) & 891 btrfs_chunk_type(leaf, chunk)); 892 return -EUCLEAN; 893 } 894 895 if (unlikely(!has_single_bit_set(type & BTRFS_BLOCK_GROUP_PROFILE_MASK) && 896 (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) != 0)) { 897 chunk_err(leaf, chunk, logical, 898 "invalid chunk profile flag: 0x%llx, expect 0 or 1 bit set", 899 type & BTRFS_BLOCK_GROUP_PROFILE_MASK); 900 return -EUCLEAN; 901 } 902 if (unlikely((type & BTRFS_BLOCK_GROUP_TYPE_MASK) == 0)) { 903 chunk_err(leaf, chunk, logical, 904 "missing chunk type flag, have 0x%llx one bit must be set in 0x%llx", 905 type, BTRFS_BLOCK_GROUP_TYPE_MASK); 906 return -EUCLEAN; 907 } 908 909 if (unlikely((type & BTRFS_BLOCK_GROUP_SYSTEM) && 910 (type & (BTRFS_BLOCK_GROUP_METADATA | 911 BTRFS_BLOCK_GROUP_DATA)))) { 912 chunk_err(leaf, chunk, logical, 913 "system chunk with data or metadata type: 0x%llx", 914 type); 915 return -EUCLEAN; 916 } 917 918 features = btrfs_super_incompat_flags(fs_info->super_copy); 919 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 920 mixed = true; 921 922 if (!mixed) { 923 if (unlikely((type & BTRFS_BLOCK_GROUP_METADATA) && 924 (type & BTRFS_BLOCK_GROUP_DATA))) { 925 chunk_err(leaf, chunk, logical, 926 "mixed chunk type in non-mixed mode: 0x%llx", type); 927 return -EUCLEAN; 928 } 929 } 930 931 if (unlikely((type & BTRFS_BLOCK_GROUP_RAID10 && 932 sub_stripes != btrfs_raid_array[BTRFS_RAID_RAID10].sub_stripes) || 933 (type & BTRFS_BLOCK_GROUP_RAID1 && 934 num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1].devs_min) || 935 (type & BTRFS_BLOCK_GROUP_RAID1C3 && 936 num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C3].devs_min) || 937 (type & BTRFS_BLOCK_GROUP_RAID1C4 && 938 num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C4].devs_min) || 939 (type & BTRFS_BLOCK_GROUP_RAID5 && 940 num_stripes < btrfs_raid_array[BTRFS_RAID_RAID5].devs_min) || 941 (type & BTRFS_BLOCK_GROUP_RAID6 && 942 num_stripes < btrfs_raid_array[BTRFS_RAID_RAID6].devs_min) || 943 (type & BTRFS_BLOCK_GROUP_DUP && 944 num_stripes != btrfs_raid_array[BTRFS_RAID_DUP].dev_stripes) || 945 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 && 946 num_stripes != btrfs_raid_array[BTRFS_RAID_SINGLE].dev_stripes))) { 947 chunk_err(leaf, chunk, logical, 948 "invalid num_stripes:sub_stripes %u:%u for profile %llu", 949 num_stripes, sub_stripes, 950 type & BTRFS_BLOCK_GROUP_PROFILE_MASK); 951 return -EUCLEAN; 952 } 953 954 return 0; 955 } 956 957 /* 958 * Enhanced version of chunk item checker. 959 * 960 * The common btrfs_check_chunk_valid() doesn't check item size since it needs 961 * to work on super block sys_chunk_array which doesn't have full item ptr. 962 */ 963 static int check_leaf_chunk_item(struct extent_buffer *leaf, 964 struct btrfs_chunk *chunk, 965 struct btrfs_key *key, int slot) 966 { 967 int num_stripes; 968 969 if (unlikely(btrfs_item_size(leaf, slot) < sizeof(struct btrfs_chunk))) { 970 chunk_err(leaf, chunk, key->offset, 971 "invalid chunk item size: have %u expect [%zu, %u)", 972 btrfs_item_size(leaf, slot), 973 sizeof(struct btrfs_chunk), 974 BTRFS_LEAF_DATA_SIZE(leaf->fs_info)); 975 return -EUCLEAN; 976 } 977 978 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 979 /* Let btrfs_check_chunk_valid() handle this error type */ 980 if (num_stripes == 0) 981 goto out; 982 983 if (unlikely(btrfs_chunk_item_size(num_stripes) != 984 btrfs_item_size(leaf, slot))) { 985 chunk_err(leaf, chunk, key->offset, 986 "invalid chunk item size: have %u expect %lu", 987 btrfs_item_size(leaf, slot), 988 btrfs_chunk_item_size(num_stripes)); 989 return -EUCLEAN; 990 } 991 out: 992 return btrfs_check_chunk_valid(leaf, chunk, key->offset); 993 } 994 995 __printf(3, 4) 996 __cold 997 static void dev_item_err(const struct extent_buffer *eb, int slot, 998 const char *fmt, ...) 999 { 1000 struct btrfs_key key; 1001 struct va_format vaf; 1002 va_list args; 1003 1004 btrfs_item_key_to_cpu(eb, &key, slot); 1005 va_start(args, fmt); 1006 1007 vaf.fmt = fmt; 1008 vaf.va = &args; 1009 1010 dump_page(folio_page(eb->folios[0], 0), "eb page dump"); 1011 btrfs_crit(eb->fs_info, 1012 "corrupt %s: root=%llu block=%llu slot=%d devid=%llu %pV", 1013 btrfs_header_level(eb) == 0 ? "leaf" : "node", 1014 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, 1015 key.objectid, &vaf); 1016 va_end(args); 1017 } 1018 1019 static int check_dev_item(struct extent_buffer *leaf, 1020 struct btrfs_key *key, int slot) 1021 { 1022 struct btrfs_dev_item *ditem; 1023 const u32 item_size = btrfs_item_size(leaf, slot); 1024 1025 if (unlikely(key->objectid != BTRFS_DEV_ITEMS_OBJECTID)) { 1026 dev_item_err(leaf, slot, 1027 "invalid objectid: has=%llu expect=%llu", 1028 key->objectid, BTRFS_DEV_ITEMS_OBJECTID); 1029 return -EUCLEAN; 1030 } 1031 1032 if (unlikely(item_size != sizeof(*ditem))) { 1033 dev_item_err(leaf, slot, "invalid item size: has %u expect %zu", 1034 item_size, sizeof(*ditem)); 1035 return -EUCLEAN; 1036 } 1037 1038 ditem = btrfs_item_ptr(leaf, slot, struct btrfs_dev_item); 1039 if (unlikely(btrfs_device_id(leaf, ditem) != key->offset)) { 1040 dev_item_err(leaf, slot, 1041 "devid mismatch: key has=%llu item has=%llu", 1042 key->offset, btrfs_device_id(leaf, ditem)); 1043 return -EUCLEAN; 1044 } 1045 1046 /* 1047 * For device total_bytes, we don't have reliable way to check it, as 1048 * it can be 0 for device removal. Device size check can only be done 1049 * by dev extents check. 1050 */ 1051 if (unlikely(btrfs_device_bytes_used(leaf, ditem) > 1052 btrfs_device_total_bytes(leaf, ditem))) { 1053 dev_item_err(leaf, slot, 1054 "invalid bytes used: have %llu expect [0, %llu]", 1055 btrfs_device_bytes_used(leaf, ditem), 1056 btrfs_device_total_bytes(leaf, ditem)); 1057 return -EUCLEAN; 1058 } 1059 /* 1060 * Remaining members like io_align/type/gen/dev_group aren't really 1061 * utilized. Skip them to make later usage of them easier. 1062 */ 1063 return 0; 1064 } 1065 1066 static int check_inode_item(struct extent_buffer *leaf, 1067 struct btrfs_key *key, int slot) 1068 { 1069 struct btrfs_fs_info *fs_info = leaf->fs_info; 1070 struct btrfs_inode_item *iitem; 1071 u64 super_gen = btrfs_super_generation(fs_info->super_copy); 1072 u32 valid_mask = (S_IFMT | S_ISUID | S_ISGID | S_ISVTX | 0777); 1073 const u32 item_size = btrfs_item_size(leaf, slot); 1074 u32 mode; 1075 int ret; 1076 u32 flags; 1077 u32 ro_flags; 1078 1079 ret = check_inode_key(leaf, key, slot); 1080 if (unlikely(ret < 0)) 1081 return ret; 1082 1083 if (unlikely(item_size != sizeof(*iitem))) { 1084 generic_err(leaf, slot, "invalid item size: has %u expect %zu", 1085 item_size, sizeof(*iitem)); 1086 return -EUCLEAN; 1087 } 1088 1089 iitem = btrfs_item_ptr(leaf, slot, struct btrfs_inode_item); 1090 1091 /* Here we use super block generation + 1 to handle log tree */ 1092 if (unlikely(btrfs_inode_generation(leaf, iitem) > super_gen + 1)) { 1093 inode_item_err(leaf, slot, 1094 "invalid inode generation: has %llu expect (0, %llu]", 1095 btrfs_inode_generation(leaf, iitem), 1096 super_gen + 1); 1097 return -EUCLEAN; 1098 } 1099 /* Note for ROOT_TREE_DIR_ITEM, mkfs could set its transid 0 */ 1100 if (unlikely(btrfs_inode_transid(leaf, iitem) > super_gen + 1)) { 1101 inode_item_err(leaf, slot, 1102 "invalid inode transid: has %llu expect [0, %llu]", 1103 btrfs_inode_transid(leaf, iitem), super_gen + 1); 1104 return -EUCLEAN; 1105 } 1106 1107 /* 1108 * For size and nbytes it's better not to be too strict, as for dir 1109 * item its size/nbytes can easily get wrong, but doesn't affect 1110 * anything in the fs. So here we skip the check. 1111 */ 1112 mode = btrfs_inode_mode(leaf, iitem); 1113 if (unlikely(mode & ~valid_mask)) { 1114 inode_item_err(leaf, slot, 1115 "unknown mode bit detected: 0x%x", 1116 mode & ~valid_mask); 1117 return -EUCLEAN; 1118 } 1119 1120 /* 1121 * S_IFMT is not bit mapped so we can't completely rely on 1122 * is_power_of_2/has_single_bit_set, but it can save us from checking 1123 * FIFO/CHR/DIR/REG. Only needs to check BLK, LNK and SOCKS 1124 */ 1125 if (!has_single_bit_set(mode & S_IFMT)) { 1126 if (unlikely(!S_ISLNK(mode) && !S_ISBLK(mode) && !S_ISSOCK(mode))) { 1127 inode_item_err(leaf, slot, 1128 "invalid mode: has 0%o expect valid S_IF* bit(s)", 1129 mode & S_IFMT); 1130 return -EUCLEAN; 1131 } 1132 } 1133 if (unlikely(S_ISDIR(mode) && btrfs_inode_nlink(leaf, iitem) > 1)) { 1134 inode_item_err(leaf, slot, 1135 "invalid nlink: has %u expect no more than 1 for dir", 1136 btrfs_inode_nlink(leaf, iitem)); 1137 return -EUCLEAN; 1138 } 1139 btrfs_inode_split_flags(btrfs_inode_flags(leaf, iitem), &flags, &ro_flags); 1140 if (unlikely(flags & ~BTRFS_INODE_FLAG_MASK)) { 1141 inode_item_err(leaf, slot, 1142 "unknown incompat flags detected: 0x%x", flags); 1143 return -EUCLEAN; 1144 } 1145 if (unlikely(!sb_rdonly(fs_info->sb) && 1146 (ro_flags & ~BTRFS_INODE_RO_FLAG_MASK))) { 1147 inode_item_err(leaf, slot, 1148 "unknown ro-compat flags detected on writeable mount: 0x%x", 1149 ro_flags); 1150 return -EUCLEAN; 1151 } 1152 return 0; 1153 } 1154 1155 static int check_root_item(struct extent_buffer *leaf, struct btrfs_key *key, 1156 int slot) 1157 { 1158 struct btrfs_fs_info *fs_info = leaf->fs_info; 1159 struct btrfs_root_item ri = { 0 }; 1160 const u64 valid_root_flags = BTRFS_ROOT_SUBVOL_RDONLY | 1161 BTRFS_ROOT_SUBVOL_DEAD; 1162 int ret; 1163 1164 ret = check_root_key(leaf, key, slot); 1165 if (unlikely(ret < 0)) 1166 return ret; 1167 1168 if (unlikely(btrfs_item_size(leaf, slot) != sizeof(ri) && 1169 btrfs_item_size(leaf, slot) != 1170 btrfs_legacy_root_item_size())) { 1171 generic_err(leaf, slot, 1172 "invalid root item size, have %u expect %zu or %u", 1173 btrfs_item_size(leaf, slot), sizeof(ri), 1174 btrfs_legacy_root_item_size()); 1175 return -EUCLEAN; 1176 } 1177 1178 /* 1179 * For legacy root item, the members starting at generation_v2 will be 1180 * all filled with 0. 1181 * And since we allow geneartion_v2 as 0, it will still pass the check. 1182 */ 1183 read_extent_buffer(leaf, &ri, btrfs_item_ptr_offset(leaf, slot), 1184 btrfs_item_size(leaf, slot)); 1185 1186 /* Generation related */ 1187 if (unlikely(btrfs_root_generation(&ri) > 1188 btrfs_super_generation(fs_info->super_copy) + 1)) { 1189 generic_err(leaf, slot, 1190 "invalid root generation, have %llu expect (0, %llu]", 1191 btrfs_root_generation(&ri), 1192 btrfs_super_generation(fs_info->super_copy) + 1); 1193 return -EUCLEAN; 1194 } 1195 if (unlikely(btrfs_root_generation_v2(&ri) > 1196 btrfs_super_generation(fs_info->super_copy) + 1)) { 1197 generic_err(leaf, slot, 1198 "invalid root v2 generation, have %llu expect (0, %llu]", 1199 btrfs_root_generation_v2(&ri), 1200 btrfs_super_generation(fs_info->super_copy) + 1); 1201 return -EUCLEAN; 1202 } 1203 if (unlikely(btrfs_root_last_snapshot(&ri) > 1204 btrfs_super_generation(fs_info->super_copy) + 1)) { 1205 generic_err(leaf, slot, 1206 "invalid root last_snapshot, have %llu expect (0, %llu]", 1207 btrfs_root_last_snapshot(&ri), 1208 btrfs_super_generation(fs_info->super_copy) + 1); 1209 return -EUCLEAN; 1210 } 1211 1212 /* Alignment and level check */ 1213 if (unlikely(!IS_ALIGNED(btrfs_root_bytenr(&ri), fs_info->sectorsize))) { 1214 generic_err(leaf, slot, 1215 "invalid root bytenr, have %llu expect to be aligned to %u", 1216 btrfs_root_bytenr(&ri), fs_info->sectorsize); 1217 return -EUCLEAN; 1218 } 1219 if (unlikely(btrfs_root_level(&ri) >= BTRFS_MAX_LEVEL)) { 1220 generic_err(leaf, slot, 1221 "invalid root level, have %u expect [0, %u]", 1222 btrfs_root_level(&ri), BTRFS_MAX_LEVEL - 1); 1223 return -EUCLEAN; 1224 } 1225 if (unlikely(btrfs_root_drop_level(&ri) >= BTRFS_MAX_LEVEL)) { 1226 generic_err(leaf, slot, 1227 "invalid root level, have %u expect [0, %u]", 1228 btrfs_root_drop_level(&ri), BTRFS_MAX_LEVEL - 1); 1229 return -EUCLEAN; 1230 } 1231 1232 /* Flags check */ 1233 if (unlikely(btrfs_root_flags(&ri) & ~valid_root_flags)) { 1234 generic_err(leaf, slot, 1235 "invalid root flags, have 0x%llx expect mask 0x%llx", 1236 btrfs_root_flags(&ri), valid_root_flags); 1237 return -EUCLEAN; 1238 } 1239 return 0; 1240 } 1241 1242 __printf(3,4) 1243 __cold 1244 static void extent_err(const struct extent_buffer *eb, int slot, 1245 const char *fmt, ...) 1246 { 1247 struct btrfs_key key; 1248 struct va_format vaf; 1249 va_list args; 1250 u64 bytenr; 1251 u64 len; 1252 1253 btrfs_item_key_to_cpu(eb, &key, slot); 1254 bytenr = key.objectid; 1255 if (key.type == BTRFS_METADATA_ITEM_KEY || 1256 key.type == BTRFS_TREE_BLOCK_REF_KEY || 1257 key.type == BTRFS_SHARED_BLOCK_REF_KEY) 1258 len = eb->fs_info->nodesize; 1259 else 1260 len = key.offset; 1261 va_start(args, fmt); 1262 1263 vaf.fmt = fmt; 1264 vaf.va = &args; 1265 1266 dump_page(folio_page(eb->folios[0], 0), "eb page dump"); 1267 btrfs_crit(eb->fs_info, 1268 "corrupt %s: block=%llu slot=%d extent bytenr=%llu len=%llu %pV", 1269 btrfs_header_level(eb) == 0 ? "leaf" : "node", 1270 eb->start, slot, bytenr, len, &vaf); 1271 va_end(args); 1272 } 1273 1274 static int check_extent_item(struct extent_buffer *leaf, 1275 struct btrfs_key *key, int slot, 1276 struct btrfs_key *prev_key) 1277 { 1278 struct btrfs_fs_info *fs_info = leaf->fs_info; 1279 struct btrfs_extent_item *ei; 1280 bool is_tree_block = false; 1281 unsigned long ptr; /* Current pointer inside inline refs */ 1282 unsigned long end; /* Extent item end */ 1283 const u32 item_size = btrfs_item_size(leaf, slot); 1284 u8 last_type = 0; 1285 u64 last_seq = U64_MAX; 1286 u64 flags; 1287 u64 generation; 1288 u64 total_refs; /* Total refs in btrfs_extent_item */ 1289 u64 inline_refs = 0; /* found total inline refs */ 1290 1291 if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY && 1292 !btrfs_fs_incompat(fs_info, SKINNY_METADATA))) { 1293 generic_err(leaf, slot, 1294 "invalid key type, METADATA_ITEM type invalid when SKINNY_METADATA feature disabled"); 1295 return -EUCLEAN; 1296 } 1297 /* key->objectid is the bytenr for both key types */ 1298 if (unlikely(!IS_ALIGNED(key->objectid, fs_info->sectorsize))) { 1299 generic_err(leaf, slot, 1300 "invalid key objectid, have %llu expect to be aligned to %u", 1301 key->objectid, fs_info->sectorsize); 1302 return -EUCLEAN; 1303 } 1304 1305 /* key->offset is tree level for METADATA_ITEM_KEY */ 1306 if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY && 1307 key->offset >= BTRFS_MAX_LEVEL)) { 1308 extent_err(leaf, slot, 1309 "invalid tree level, have %llu expect [0, %u]", 1310 key->offset, BTRFS_MAX_LEVEL - 1); 1311 return -EUCLEAN; 1312 } 1313 1314 /* 1315 * EXTENT/METADATA_ITEM consists of: 1316 * 1) One btrfs_extent_item 1317 * Records the total refs, type and generation of the extent. 1318 * 1319 * 2) One btrfs_tree_block_info (for EXTENT_ITEM and tree backref only) 1320 * Records the first key and level of the tree block. 1321 * 1322 * 2) Zero or more btrfs_extent_inline_ref(s) 1323 * Each inline ref has one btrfs_extent_inline_ref shows: 1324 * 2.1) The ref type, one of the 4 1325 * TREE_BLOCK_REF Tree block only 1326 * SHARED_BLOCK_REF Tree block only 1327 * EXTENT_DATA_REF Data only 1328 * SHARED_DATA_REF Data only 1329 * 2.2) Ref type specific data 1330 * Either using btrfs_extent_inline_ref::offset, or specific 1331 * data structure. 1332 * 1333 * All above inline items should follow the order: 1334 * 1335 * - All btrfs_extent_inline_ref::type should be in an ascending 1336 * order 1337 * 1338 * - Within the same type, the items should follow a descending 1339 * order by their sequence number. The sequence number is 1340 * determined by: 1341 * * btrfs_extent_inline_ref::offset for all types other than 1342 * EXTENT_DATA_REF 1343 * * hash_extent_data_ref() for EXTENT_DATA_REF 1344 */ 1345 if (unlikely(item_size < sizeof(*ei))) { 1346 extent_err(leaf, slot, 1347 "invalid item size, have %u expect [%zu, %u)", 1348 item_size, sizeof(*ei), 1349 BTRFS_LEAF_DATA_SIZE(fs_info)); 1350 return -EUCLEAN; 1351 } 1352 end = item_size + btrfs_item_ptr_offset(leaf, slot); 1353 1354 /* Checks against extent_item */ 1355 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 1356 flags = btrfs_extent_flags(leaf, ei); 1357 total_refs = btrfs_extent_refs(leaf, ei); 1358 generation = btrfs_extent_generation(leaf, ei); 1359 if (unlikely(generation > 1360 btrfs_super_generation(fs_info->super_copy) + 1)) { 1361 extent_err(leaf, slot, 1362 "invalid generation, have %llu expect (0, %llu]", 1363 generation, 1364 btrfs_super_generation(fs_info->super_copy) + 1); 1365 return -EUCLEAN; 1366 } 1367 if (unlikely(!has_single_bit_set(flags & (BTRFS_EXTENT_FLAG_DATA | 1368 BTRFS_EXTENT_FLAG_TREE_BLOCK)))) { 1369 extent_err(leaf, slot, 1370 "invalid extent flag, have 0x%llx expect 1 bit set in 0x%llx", 1371 flags, BTRFS_EXTENT_FLAG_DATA | 1372 BTRFS_EXTENT_FLAG_TREE_BLOCK); 1373 return -EUCLEAN; 1374 } 1375 is_tree_block = !!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK); 1376 if (is_tree_block) { 1377 if (unlikely(key->type == BTRFS_EXTENT_ITEM_KEY && 1378 key->offset != fs_info->nodesize)) { 1379 extent_err(leaf, slot, 1380 "invalid extent length, have %llu expect %u", 1381 key->offset, fs_info->nodesize); 1382 return -EUCLEAN; 1383 } 1384 } else { 1385 if (unlikely(key->type != BTRFS_EXTENT_ITEM_KEY)) { 1386 extent_err(leaf, slot, 1387 "invalid key type, have %u expect %u for data backref", 1388 key->type, BTRFS_EXTENT_ITEM_KEY); 1389 return -EUCLEAN; 1390 } 1391 if (unlikely(!IS_ALIGNED(key->offset, fs_info->sectorsize))) { 1392 extent_err(leaf, slot, 1393 "invalid extent length, have %llu expect aligned to %u", 1394 key->offset, fs_info->sectorsize); 1395 return -EUCLEAN; 1396 } 1397 if (unlikely(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 1398 extent_err(leaf, slot, 1399 "invalid extent flag, data has full backref set"); 1400 return -EUCLEAN; 1401 } 1402 } 1403 ptr = (unsigned long)(struct btrfs_extent_item *)(ei + 1); 1404 1405 /* Check the special case of btrfs_tree_block_info */ 1406 if (is_tree_block && key->type != BTRFS_METADATA_ITEM_KEY) { 1407 struct btrfs_tree_block_info *info; 1408 1409 info = (struct btrfs_tree_block_info *)ptr; 1410 if (unlikely(btrfs_tree_block_level(leaf, info) >= BTRFS_MAX_LEVEL)) { 1411 extent_err(leaf, slot, 1412 "invalid tree block info level, have %u expect [0, %u]", 1413 btrfs_tree_block_level(leaf, info), 1414 BTRFS_MAX_LEVEL - 1); 1415 return -EUCLEAN; 1416 } 1417 ptr = (unsigned long)(struct btrfs_tree_block_info *)(info + 1); 1418 } 1419 1420 /* Check inline refs */ 1421 while (ptr < end) { 1422 struct btrfs_extent_inline_ref *iref; 1423 struct btrfs_extent_data_ref *dref; 1424 struct btrfs_shared_data_ref *sref; 1425 u64 seq; 1426 u64 dref_offset; 1427 u64 inline_offset; 1428 u8 inline_type; 1429 1430 if (unlikely(ptr + sizeof(*iref) > end)) { 1431 extent_err(leaf, slot, 1432 "inline ref item overflows extent item, ptr %lu iref size %zu end %lu", 1433 ptr, sizeof(*iref), end); 1434 return -EUCLEAN; 1435 } 1436 iref = (struct btrfs_extent_inline_ref *)ptr; 1437 inline_type = btrfs_extent_inline_ref_type(leaf, iref); 1438 inline_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1439 seq = inline_offset; 1440 if (unlikely(ptr + btrfs_extent_inline_ref_size(inline_type) > end)) { 1441 extent_err(leaf, slot, 1442 "inline ref item overflows extent item, ptr %lu iref size %u end %lu", 1443 ptr, btrfs_extent_inline_ref_size(inline_type), end); 1444 return -EUCLEAN; 1445 } 1446 1447 switch (inline_type) { 1448 /* inline_offset is subvolid of the owner, no need to check */ 1449 case BTRFS_TREE_BLOCK_REF_KEY: 1450 inline_refs++; 1451 break; 1452 /* Contains parent bytenr */ 1453 case BTRFS_SHARED_BLOCK_REF_KEY: 1454 if (unlikely(!IS_ALIGNED(inline_offset, 1455 fs_info->sectorsize))) { 1456 extent_err(leaf, slot, 1457 "invalid tree parent bytenr, have %llu expect aligned to %u", 1458 inline_offset, fs_info->sectorsize); 1459 return -EUCLEAN; 1460 } 1461 inline_refs++; 1462 break; 1463 /* 1464 * Contains owner subvolid, owner key objectid, adjusted offset. 1465 * The only obvious corruption can happen in that offset. 1466 */ 1467 case BTRFS_EXTENT_DATA_REF_KEY: 1468 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1469 dref_offset = btrfs_extent_data_ref_offset(leaf, dref); 1470 seq = hash_extent_data_ref( 1471 btrfs_extent_data_ref_root(leaf, dref), 1472 btrfs_extent_data_ref_objectid(leaf, dref), 1473 btrfs_extent_data_ref_offset(leaf, dref)); 1474 if (unlikely(!IS_ALIGNED(dref_offset, 1475 fs_info->sectorsize))) { 1476 extent_err(leaf, slot, 1477 "invalid data ref offset, have %llu expect aligned to %u", 1478 dref_offset, fs_info->sectorsize); 1479 return -EUCLEAN; 1480 } 1481 inline_refs += btrfs_extent_data_ref_count(leaf, dref); 1482 break; 1483 /* Contains parent bytenr and ref count */ 1484 case BTRFS_SHARED_DATA_REF_KEY: 1485 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1486 if (unlikely(!IS_ALIGNED(inline_offset, 1487 fs_info->sectorsize))) { 1488 extent_err(leaf, slot, 1489 "invalid data parent bytenr, have %llu expect aligned to %u", 1490 inline_offset, fs_info->sectorsize); 1491 return -EUCLEAN; 1492 } 1493 inline_refs += btrfs_shared_data_ref_count(leaf, sref); 1494 break; 1495 case BTRFS_EXTENT_OWNER_REF_KEY: 1496 WARN_ON(!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA)); 1497 break; 1498 default: 1499 extent_err(leaf, slot, "unknown inline ref type: %u", 1500 inline_type); 1501 return -EUCLEAN; 1502 } 1503 if (inline_type < last_type) { 1504 extent_err(leaf, slot, 1505 "inline ref out-of-order: has type %u, prev type %u", 1506 inline_type, last_type); 1507 return -EUCLEAN; 1508 } 1509 /* Type changed, allow the sequence starts from U64_MAX again. */ 1510 if (inline_type > last_type) 1511 last_seq = U64_MAX; 1512 if (seq > last_seq) { 1513 extent_err(leaf, slot, 1514 "inline ref out-of-order: has type %u offset %llu seq 0x%llx, prev type %u seq 0x%llx", 1515 inline_type, inline_offset, seq, 1516 last_type, last_seq); 1517 return -EUCLEAN; 1518 } 1519 last_type = inline_type; 1520 last_seq = seq; 1521 ptr += btrfs_extent_inline_ref_size(inline_type); 1522 } 1523 /* No padding is allowed */ 1524 if (unlikely(ptr != end)) { 1525 extent_err(leaf, slot, 1526 "invalid extent item size, padding bytes found"); 1527 return -EUCLEAN; 1528 } 1529 1530 /* Finally, check the inline refs against total refs */ 1531 if (unlikely(inline_refs > total_refs)) { 1532 extent_err(leaf, slot, 1533 "invalid extent refs, have %llu expect >= inline %llu", 1534 total_refs, inline_refs); 1535 return -EUCLEAN; 1536 } 1537 1538 if ((prev_key->type == BTRFS_EXTENT_ITEM_KEY) || 1539 (prev_key->type == BTRFS_METADATA_ITEM_KEY)) { 1540 u64 prev_end = prev_key->objectid; 1541 1542 if (prev_key->type == BTRFS_METADATA_ITEM_KEY) 1543 prev_end += fs_info->nodesize; 1544 else 1545 prev_end += prev_key->offset; 1546 1547 if (unlikely(prev_end > key->objectid)) { 1548 extent_err(leaf, slot, 1549 "previous extent [%llu %u %llu] overlaps current extent [%llu %u %llu]", 1550 prev_key->objectid, prev_key->type, 1551 prev_key->offset, key->objectid, key->type, 1552 key->offset); 1553 return -EUCLEAN; 1554 } 1555 } 1556 1557 return 0; 1558 } 1559 1560 static int check_simple_keyed_refs(struct extent_buffer *leaf, 1561 struct btrfs_key *key, int slot) 1562 { 1563 u32 expect_item_size = 0; 1564 1565 if (key->type == BTRFS_SHARED_DATA_REF_KEY) 1566 expect_item_size = sizeof(struct btrfs_shared_data_ref); 1567 1568 if (unlikely(btrfs_item_size(leaf, slot) != expect_item_size)) { 1569 generic_err(leaf, slot, 1570 "invalid item size, have %u expect %u for key type %u", 1571 btrfs_item_size(leaf, slot), 1572 expect_item_size, key->type); 1573 return -EUCLEAN; 1574 } 1575 if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) { 1576 generic_err(leaf, slot, 1577 "invalid key objectid for shared block ref, have %llu expect aligned to %u", 1578 key->objectid, leaf->fs_info->sectorsize); 1579 return -EUCLEAN; 1580 } 1581 if (unlikely(key->type != BTRFS_TREE_BLOCK_REF_KEY && 1582 !IS_ALIGNED(key->offset, leaf->fs_info->sectorsize))) { 1583 extent_err(leaf, slot, 1584 "invalid tree parent bytenr, have %llu expect aligned to %u", 1585 key->offset, leaf->fs_info->sectorsize); 1586 return -EUCLEAN; 1587 } 1588 return 0; 1589 } 1590 1591 static int check_extent_data_ref(struct extent_buffer *leaf, 1592 struct btrfs_key *key, int slot) 1593 { 1594 struct btrfs_extent_data_ref *dref; 1595 unsigned long ptr = btrfs_item_ptr_offset(leaf, slot); 1596 const unsigned long end = ptr + btrfs_item_size(leaf, slot); 1597 1598 if (unlikely(btrfs_item_size(leaf, slot) % sizeof(*dref) != 0)) { 1599 generic_err(leaf, slot, 1600 "invalid item size, have %u expect aligned to %zu for key type %u", 1601 btrfs_item_size(leaf, slot), 1602 sizeof(*dref), key->type); 1603 return -EUCLEAN; 1604 } 1605 if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) { 1606 generic_err(leaf, slot, 1607 "invalid key objectid for shared block ref, have %llu expect aligned to %u", 1608 key->objectid, leaf->fs_info->sectorsize); 1609 return -EUCLEAN; 1610 } 1611 for (; ptr < end; ptr += sizeof(*dref)) { 1612 u64 offset; 1613 1614 /* 1615 * We cannot check the extent_data_ref hash due to possible 1616 * overflow from the leaf due to hash collisions. 1617 */ 1618 dref = (struct btrfs_extent_data_ref *)ptr; 1619 offset = btrfs_extent_data_ref_offset(leaf, dref); 1620 if (unlikely(!IS_ALIGNED(offset, leaf->fs_info->sectorsize))) { 1621 extent_err(leaf, slot, 1622 "invalid extent data backref offset, have %llu expect aligned to %u", 1623 offset, leaf->fs_info->sectorsize); 1624 return -EUCLEAN; 1625 } 1626 } 1627 return 0; 1628 } 1629 1630 #define inode_ref_err(eb, slot, fmt, args...) \ 1631 inode_item_err(eb, slot, fmt, ##args) 1632 static int check_inode_ref(struct extent_buffer *leaf, 1633 struct btrfs_key *key, struct btrfs_key *prev_key, 1634 int slot) 1635 { 1636 struct btrfs_inode_ref *iref; 1637 unsigned long ptr; 1638 unsigned long end; 1639 1640 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key))) 1641 return -EUCLEAN; 1642 /* namelen can't be 0, so item_size == sizeof() is also invalid */ 1643 if (unlikely(btrfs_item_size(leaf, slot) <= sizeof(*iref))) { 1644 inode_ref_err(leaf, slot, 1645 "invalid item size, have %u expect (%zu, %u)", 1646 btrfs_item_size(leaf, slot), 1647 sizeof(*iref), BTRFS_LEAF_DATA_SIZE(leaf->fs_info)); 1648 return -EUCLEAN; 1649 } 1650 1651 ptr = btrfs_item_ptr_offset(leaf, slot); 1652 end = ptr + btrfs_item_size(leaf, slot); 1653 while (ptr < end) { 1654 u16 namelen; 1655 1656 if (unlikely(ptr + sizeof(iref) > end)) { 1657 inode_ref_err(leaf, slot, 1658 "inode ref overflow, ptr %lu end %lu inode_ref_size %zu", 1659 ptr, end, sizeof(iref)); 1660 return -EUCLEAN; 1661 } 1662 1663 iref = (struct btrfs_inode_ref *)ptr; 1664 namelen = btrfs_inode_ref_name_len(leaf, iref); 1665 if (unlikely(ptr + sizeof(*iref) + namelen > end)) { 1666 inode_ref_err(leaf, slot, 1667 "inode ref overflow, ptr %lu end %lu namelen %u", 1668 ptr, end, namelen); 1669 return -EUCLEAN; 1670 } 1671 1672 /* 1673 * NOTE: In theory we should record all found index numbers 1674 * to find any duplicated indexes, but that will be too time 1675 * consuming for inodes with too many hard links. 1676 */ 1677 ptr += sizeof(*iref) + namelen; 1678 } 1679 return 0; 1680 } 1681 1682 static int check_raid_stripe_extent(const struct extent_buffer *leaf, 1683 const struct btrfs_key *key, int slot) 1684 { 1685 struct btrfs_stripe_extent *stripe_extent = 1686 btrfs_item_ptr(leaf, slot, struct btrfs_stripe_extent); 1687 1688 if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) { 1689 generic_err(leaf, slot, 1690 "invalid key objectid for raid stripe extent, have %llu expect aligned to %u", 1691 key->objectid, leaf->fs_info->sectorsize); 1692 return -EUCLEAN; 1693 } 1694 1695 if (unlikely(!btrfs_fs_incompat(leaf->fs_info, RAID_STRIPE_TREE))) { 1696 generic_err(leaf, slot, 1697 "RAID_STRIPE_EXTENT present but RAID_STRIPE_TREE incompat bit unset"); 1698 return -EUCLEAN; 1699 } 1700 1701 switch (btrfs_stripe_extent_encoding(leaf, stripe_extent)) { 1702 case BTRFS_STRIPE_RAID0: 1703 case BTRFS_STRIPE_RAID1: 1704 case BTRFS_STRIPE_DUP: 1705 case BTRFS_STRIPE_RAID10: 1706 case BTRFS_STRIPE_RAID5: 1707 case BTRFS_STRIPE_RAID6: 1708 case BTRFS_STRIPE_RAID1C3: 1709 case BTRFS_STRIPE_RAID1C4: 1710 break; 1711 default: 1712 generic_err(leaf, slot, "invalid raid stripe encoding %u", 1713 btrfs_stripe_extent_encoding(leaf, stripe_extent)); 1714 return -EUCLEAN; 1715 } 1716 1717 return 0; 1718 } 1719 1720 /* 1721 * Common point to switch the item-specific validation. 1722 */ 1723 static enum btrfs_tree_block_status check_leaf_item(struct extent_buffer *leaf, 1724 struct btrfs_key *key, 1725 int slot, 1726 struct btrfs_key *prev_key) 1727 { 1728 int ret = 0; 1729 struct btrfs_chunk *chunk; 1730 1731 switch (key->type) { 1732 case BTRFS_EXTENT_DATA_KEY: 1733 ret = check_extent_data_item(leaf, key, slot, prev_key); 1734 break; 1735 case BTRFS_EXTENT_CSUM_KEY: 1736 ret = check_csum_item(leaf, key, slot, prev_key); 1737 break; 1738 case BTRFS_DIR_ITEM_KEY: 1739 case BTRFS_DIR_INDEX_KEY: 1740 case BTRFS_XATTR_ITEM_KEY: 1741 ret = check_dir_item(leaf, key, prev_key, slot); 1742 break; 1743 case BTRFS_INODE_REF_KEY: 1744 ret = check_inode_ref(leaf, key, prev_key, slot); 1745 break; 1746 case BTRFS_BLOCK_GROUP_ITEM_KEY: 1747 ret = check_block_group_item(leaf, key, slot); 1748 break; 1749 case BTRFS_CHUNK_ITEM_KEY: 1750 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 1751 ret = check_leaf_chunk_item(leaf, chunk, key, slot); 1752 break; 1753 case BTRFS_DEV_ITEM_KEY: 1754 ret = check_dev_item(leaf, key, slot); 1755 break; 1756 case BTRFS_INODE_ITEM_KEY: 1757 ret = check_inode_item(leaf, key, slot); 1758 break; 1759 case BTRFS_ROOT_ITEM_KEY: 1760 ret = check_root_item(leaf, key, slot); 1761 break; 1762 case BTRFS_EXTENT_ITEM_KEY: 1763 case BTRFS_METADATA_ITEM_KEY: 1764 ret = check_extent_item(leaf, key, slot, prev_key); 1765 break; 1766 case BTRFS_TREE_BLOCK_REF_KEY: 1767 case BTRFS_SHARED_DATA_REF_KEY: 1768 case BTRFS_SHARED_BLOCK_REF_KEY: 1769 ret = check_simple_keyed_refs(leaf, key, slot); 1770 break; 1771 case BTRFS_EXTENT_DATA_REF_KEY: 1772 ret = check_extent_data_ref(leaf, key, slot); 1773 break; 1774 case BTRFS_RAID_STRIPE_KEY: 1775 ret = check_raid_stripe_extent(leaf, key, slot); 1776 break; 1777 } 1778 1779 if (ret) 1780 return BTRFS_TREE_BLOCK_INVALID_ITEM; 1781 return BTRFS_TREE_BLOCK_CLEAN; 1782 } 1783 1784 enum btrfs_tree_block_status __btrfs_check_leaf(struct extent_buffer *leaf) 1785 { 1786 struct btrfs_fs_info *fs_info = leaf->fs_info; 1787 /* No valid key type is 0, so all key should be larger than this key */ 1788 struct btrfs_key prev_key = {0, 0, 0}; 1789 struct btrfs_key key; 1790 u32 nritems = btrfs_header_nritems(leaf); 1791 int slot; 1792 1793 if (unlikely(btrfs_header_level(leaf) != 0)) { 1794 generic_err(leaf, 0, 1795 "invalid level for leaf, have %d expect 0", 1796 btrfs_header_level(leaf)); 1797 return BTRFS_TREE_BLOCK_INVALID_LEVEL; 1798 } 1799 1800 if (unlikely(!btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_WRITTEN))) { 1801 generic_err(leaf, 0, "invalid flag for leaf, WRITTEN not set"); 1802 return BTRFS_TREE_BLOCK_WRITTEN_NOT_SET; 1803 } 1804 1805 /* 1806 * Extent buffers from a relocation tree have a owner field that 1807 * corresponds to the subvolume tree they are based on. So just from an 1808 * extent buffer alone we can not find out what is the id of the 1809 * corresponding subvolume tree, so we can not figure out if the extent 1810 * buffer corresponds to the root of the relocation tree or not. So 1811 * skip this check for relocation trees. 1812 */ 1813 if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) { 1814 u64 owner = btrfs_header_owner(leaf); 1815 1816 /* These trees must never be empty */ 1817 if (unlikely(owner == BTRFS_ROOT_TREE_OBJECTID || 1818 owner == BTRFS_CHUNK_TREE_OBJECTID || 1819 owner == BTRFS_DEV_TREE_OBJECTID || 1820 owner == BTRFS_FS_TREE_OBJECTID || 1821 owner == BTRFS_DATA_RELOC_TREE_OBJECTID)) { 1822 generic_err(leaf, 0, 1823 "invalid root, root %llu must never be empty", 1824 owner); 1825 return BTRFS_TREE_BLOCK_INVALID_NRITEMS; 1826 } 1827 1828 /* Unknown tree */ 1829 if (unlikely(owner == 0)) { 1830 generic_err(leaf, 0, 1831 "invalid owner, root 0 is not defined"); 1832 return BTRFS_TREE_BLOCK_INVALID_OWNER; 1833 } 1834 1835 /* EXTENT_TREE_V2 can have empty extent trees. */ 1836 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 1837 return BTRFS_TREE_BLOCK_CLEAN; 1838 1839 if (unlikely(owner == BTRFS_EXTENT_TREE_OBJECTID)) { 1840 generic_err(leaf, 0, 1841 "invalid root, root %llu must never be empty", 1842 owner); 1843 return BTRFS_TREE_BLOCK_INVALID_NRITEMS; 1844 } 1845 1846 return BTRFS_TREE_BLOCK_CLEAN; 1847 } 1848 1849 if (unlikely(nritems == 0)) 1850 return BTRFS_TREE_BLOCK_CLEAN; 1851 1852 /* 1853 * Check the following things to make sure this is a good leaf, and 1854 * leaf users won't need to bother with similar sanity checks: 1855 * 1856 * 1) key ordering 1857 * 2) item offset and size 1858 * No overlap, no hole, all inside the leaf. 1859 * 3) item content 1860 * If possible, do comprehensive sanity check. 1861 * NOTE: All checks must only rely on the item data itself. 1862 */ 1863 for (slot = 0; slot < nritems; slot++) { 1864 u32 item_end_expected; 1865 u64 item_data_end; 1866 enum btrfs_tree_block_status ret; 1867 1868 btrfs_item_key_to_cpu(leaf, &key, slot); 1869 1870 /* Make sure the keys are in the right order */ 1871 if (unlikely(btrfs_comp_cpu_keys(&prev_key, &key) >= 0)) { 1872 generic_err(leaf, slot, 1873 "bad key order, prev (%llu %u %llu) current (%llu %u %llu)", 1874 prev_key.objectid, prev_key.type, 1875 prev_key.offset, key.objectid, key.type, 1876 key.offset); 1877 return BTRFS_TREE_BLOCK_BAD_KEY_ORDER; 1878 } 1879 1880 item_data_end = (u64)btrfs_item_offset(leaf, slot) + 1881 btrfs_item_size(leaf, slot); 1882 /* 1883 * Make sure the offset and ends are right, remember that the 1884 * item data starts at the end of the leaf and grows towards the 1885 * front. 1886 */ 1887 if (slot == 0) 1888 item_end_expected = BTRFS_LEAF_DATA_SIZE(fs_info); 1889 else 1890 item_end_expected = btrfs_item_offset(leaf, 1891 slot - 1); 1892 if (unlikely(item_data_end != item_end_expected)) { 1893 generic_err(leaf, slot, 1894 "unexpected item end, have %llu expect %u", 1895 item_data_end, item_end_expected); 1896 return BTRFS_TREE_BLOCK_INVALID_OFFSETS; 1897 } 1898 1899 /* 1900 * Check to make sure that we don't point outside of the leaf, 1901 * just in case all the items are consistent to each other, but 1902 * all point outside of the leaf. 1903 */ 1904 if (unlikely(item_data_end > BTRFS_LEAF_DATA_SIZE(fs_info))) { 1905 generic_err(leaf, slot, 1906 "slot end outside of leaf, have %llu expect range [0, %u]", 1907 item_data_end, BTRFS_LEAF_DATA_SIZE(fs_info)); 1908 return BTRFS_TREE_BLOCK_INVALID_OFFSETS; 1909 } 1910 1911 /* Also check if the item pointer overlaps with btrfs item. */ 1912 if (unlikely(btrfs_item_ptr_offset(leaf, slot) < 1913 btrfs_item_nr_offset(leaf, slot) + sizeof(struct btrfs_item))) { 1914 generic_err(leaf, slot, 1915 "slot overlaps with its data, item end %lu data start %lu", 1916 btrfs_item_nr_offset(leaf, slot) + 1917 sizeof(struct btrfs_item), 1918 btrfs_item_ptr_offset(leaf, slot)); 1919 return BTRFS_TREE_BLOCK_INVALID_OFFSETS; 1920 } 1921 1922 /* Check if the item size and content meet other criteria. */ 1923 ret = check_leaf_item(leaf, &key, slot, &prev_key); 1924 if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN)) 1925 return ret; 1926 1927 prev_key.objectid = key.objectid; 1928 prev_key.type = key.type; 1929 prev_key.offset = key.offset; 1930 } 1931 1932 return BTRFS_TREE_BLOCK_CLEAN; 1933 } 1934 1935 int btrfs_check_leaf(struct extent_buffer *leaf) 1936 { 1937 enum btrfs_tree_block_status ret; 1938 1939 ret = __btrfs_check_leaf(leaf); 1940 if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN)) 1941 return -EUCLEAN; 1942 return 0; 1943 } 1944 ALLOW_ERROR_INJECTION(btrfs_check_leaf, ERRNO); 1945 1946 enum btrfs_tree_block_status __btrfs_check_node(struct extent_buffer *node) 1947 { 1948 struct btrfs_fs_info *fs_info = node->fs_info; 1949 unsigned long nr = btrfs_header_nritems(node); 1950 struct btrfs_key key, next_key; 1951 int slot; 1952 int level = btrfs_header_level(node); 1953 u64 bytenr; 1954 1955 if (unlikely(!btrfs_header_flag(node, BTRFS_HEADER_FLAG_WRITTEN))) { 1956 generic_err(node, 0, "invalid flag for node, WRITTEN not set"); 1957 return BTRFS_TREE_BLOCK_WRITTEN_NOT_SET; 1958 } 1959 1960 if (unlikely(level <= 0 || level >= BTRFS_MAX_LEVEL)) { 1961 generic_err(node, 0, 1962 "invalid level for node, have %d expect [1, %d]", 1963 level, BTRFS_MAX_LEVEL - 1); 1964 return BTRFS_TREE_BLOCK_INVALID_LEVEL; 1965 } 1966 if (unlikely(nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(fs_info))) { 1967 btrfs_crit(fs_info, 1968 "corrupt node: root=%llu block=%llu, nritems too %s, have %lu expect range [1,%u]", 1969 btrfs_header_owner(node), node->start, 1970 nr == 0 ? "small" : "large", nr, 1971 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 1972 return BTRFS_TREE_BLOCK_INVALID_NRITEMS; 1973 } 1974 1975 for (slot = 0; slot < nr - 1; slot++) { 1976 bytenr = btrfs_node_blockptr(node, slot); 1977 btrfs_node_key_to_cpu(node, &key, slot); 1978 btrfs_node_key_to_cpu(node, &next_key, slot + 1); 1979 1980 if (unlikely(!bytenr)) { 1981 generic_err(node, slot, 1982 "invalid NULL node pointer"); 1983 return BTRFS_TREE_BLOCK_INVALID_BLOCKPTR; 1984 } 1985 if (unlikely(!IS_ALIGNED(bytenr, fs_info->sectorsize))) { 1986 generic_err(node, slot, 1987 "unaligned pointer, have %llu should be aligned to %u", 1988 bytenr, fs_info->sectorsize); 1989 return BTRFS_TREE_BLOCK_INVALID_BLOCKPTR; 1990 } 1991 1992 if (unlikely(btrfs_comp_cpu_keys(&key, &next_key) >= 0)) { 1993 generic_err(node, slot, 1994 "bad key order, current (%llu %u %llu) next (%llu %u %llu)", 1995 key.objectid, key.type, key.offset, 1996 next_key.objectid, next_key.type, 1997 next_key.offset); 1998 return BTRFS_TREE_BLOCK_BAD_KEY_ORDER; 1999 } 2000 } 2001 return BTRFS_TREE_BLOCK_CLEAN; 2002 } 2003 2004 int btrfs_check_node(struct extent_buffer *node) 2005 { 2006 enum btrfs_tree_block_status ret; 2007 2008 ret = __btrfs_check_node(node); 2009 if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN)) 2010 return -EUCLEAN; 2011 return 0; 2012 } 2013 ALLOW_ERROR_INJECTION(btrfs_check_node, ERRNO); 2014 2015 int btrfs_check_eb_owner(const struct extent_buffer *eb, u64 root_owner) 2016 { 2017 const bool is_subvol = is_fstree(root_owner); 2018 const u64 eb_owner = btrfs_header_owner(eb); 2019 2020 /* 2021 * Skip dummy fs, as selftests don't create unique ebs for each dummy 2022 * root. 2023 */ 2024 if (btrfs_is_testing(eb->fs_info)) 2025 return 0; 2026 /* 2027 * There are several call sites (backref walking, qgroup, and data 2028 * reloc) passing 0 as @root_owner, as they are not holding the 2029 * tree root. In that case, we can not do a reliable ownership check, 2030 * so just exit. 2031 */ 2032 if (root_owner == 0) 2033 return 0; 2034 /* 2035 * These trees use key.offset as their owner, our callers don't have 2036 * the extra capacity to pass key.offset here. So we just skip them. 2037 */ 2038 if (root_owner == BTRFS_TREE_LOG_OBJECTID || 2039 root_owner == BTRFS_TREE_RELOC_OBJECTID) 2040 return 0; 2041 2042 if (!is_subvol) { 2043 /* For non-subvolume trees, the eb owner should match root owner */ 2044 if (unlikely(root_owner != eb_owner)) { 2045 btrfs_crit(eb->fs_info, 2046 "corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect %llu", 2047 btrfs_header_level(eb) == 0 ? "leaf" : "node", 2048 root_owner, btrfs_header_bytenr(eb), eb_owner, 2049 root_owner); 2050 return -EUCLEAN; 2051 } 2052 return 0; 2053 } 2054 2055 /* 2056 * For subvolume trees, owners can mismatch, but they should all belong 2057 * to subvolume trees. 2058 */ 2059 if (unlikely(is_subvol != is_fstree(eb_owner))) { 2060 btrfs_crit(eb->fs_info, 2061 "corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect [%llu, %llu]", 2062 btrfs_header_level(eb) == 0 ? "leaf" : "node", 2063 root_owner, btrfs_header_bytenr(eb), eb_owner, 2064 BTRFS_FIRST_FREE_OBJECTID, BTRFS_LAST_FREE_OBJECTID); 2065 return -EUCLEAN; 2066 } 2067 return 0; 2068 } 2069 2070 int btrfs_verify_level_key(struct extent_buffer *eb, int level, 2071 struct btrfs_key *first_key, u64 parent_transid) 2072 { 2073 struct btrfs_fs_info *fs_info = eb->fs_info; 2074 int found_level; 2075 struct btrfs_key found_key; 2076 int ret; 2077 2078 found_level = btrfs_header_level(eb); 2079 if (found_level != level) { 2080 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 2081 KERN_ERR "BTRFS: tree level check failed\n"); 2082 btrfs_err(fs_info, 2083 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", 2084 eb->start, level, found_level); 2085 return -EIO; 2086 } 2087 2088 if (!first_key) 2089 return 0; 2090 2091 /* 2092 * For live tree block (new tree blocks in current transaction), 2093 * we need proper lock context to avoid race, which is impossible here. 2094 * So we only checks tree blocks which is read from disk, whose 2095 * generation <= fs_info->last_trans_committed. 2096 */ 2097 if (btrfs_header_generation(eb) > btrfs_get_last_trans_committed(fs_info)) 2098 return 0; 2099 2100 /* We have @first_key, so this @eb must have at least one item */ 2101 if (btrfs_header_nritems(eb) == 0) { 2102 btrfs_err(fs_info, 2103 "invalid tree nritems, bytenr=%llu nritems=0 expect >0", 2104 eb->start); 2105 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 2106 return -EUCLEAN; 2107 } 2108 2109 if (found_level) 2110 btrfs_node_key_to_cpu(eb, &found_key, 0); 2111 else 2112 btrfs_item_key_to_cpu(eb, &found_key, 0); 2113 ret = btrfs_comp_cpu_keys(first_key, &found_key); 2114 2115 if (ret) { 2116 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 2117 KERN_ERR "BTRFS: tree first key check failed\n"); 2118 btrfs_err(fs_info, 2119 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 2120 eb->start, parent_transid, first_key->objectid, 2121 first_key->type, first_key->offset, 2122 found_key.objectid, found_key.type, 2123 found_key.offset); 2124 } 2125 return ret; 2126 } 2127