xref: /linux/fs/btrfs/tree-checker.c (revision 16e5ac127d8d18adf85fe5ba847d77b58d1ed418)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) Qu Wenruo 2017.  All rights reserved.
4  */
5 
6 /*
7  * The module is used to catch unexpected/corrupted tree block data.
8  * Such behavior can be caused either by a fuzzed image or bugs.
9  *
10  * The objective is to do leaf/node validation checks when tree block is read
11  * from disk, and check *every* possible member, so other code won't
12  * need to checking them again.
13  *
14  * Due to the potential and unwanted damage, every checker needs to be
15  * carefully reviewed otherwise so it does not prevent mount of valid images.
16  */
17 
18 #include <linux/types.h>
19 #include <linux/stddef.h>
20 #include <linux/error-injection.h>
21 #include "messages.h"
22 #include "ctree.h"
23 #include "tree-checker.h"
24 #include "disk-io.h"
25 #include "compression.h"
26 #include "volumes.h"
27 #include "misc.h"
28 #include "fs.h"
29 #include "accessors.h"
30 #include "file-item.h"
31 #include "inode-item.h"
32 #include "dir-item.h"
33 #include "raid-stripe-tree.h"
34 
35 /*
36  * Error message should follow the following format:
37  * corrupt <type>: <identifier>, <reason>[, <bad_value>]
38  *
39  * @type:	leaf or node
40  * @identifier:	the necessary info to locate the leaf/node.
41  * 		It's recommended to decode key.objecitd/offset if it's
42  * 		meaningful.
43  * @reason:	describe the error
44  * @bad_value:	optional, it's recommended to output bad value and its
45  *		expected value (range).
46  *
47  * Since comma is used to separate the components, only space is allowed
48  * inside each component.
49  */
50 
51 /*
52  * Append generic "corrupt leaf/node root=%llu block=%llu slot=%d: " to @fmt.
53  * Allows callers to customize the output.
54  */
55 __printf(3, 4)
56 __cold
57 static void generic_err(const struct extent_buffer *eb, int slot,
58 			const char *fmt, ...)
59 {
60 	const struct btrfs_fs_info *fs_info = eb->fs_info;
61 	struct va_format vaf;
62 	va_list args;
63 
64 	va_start(args, fmt);
65 
66 	vaf.fmt = fmt;
67 	vaf.va = &args;
68 
69 	btrfs_crit(fs_info,
70 		"corrupt %s: root=%llu block=%llu slot=%d, %pV",
71 		btrfs_header_level(eb) == 0 ? "leaf" : "node",
72 		btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, &vaf);
73 	va_end(args);
74 }
75 
76 /*
77  * Customized reporter for extent data item, since its key objectid and
78  * offset has its own meaning.
79  */
80 __printf(3, 4)
81 __cold
82 static void file_extent_err(const struct extent_buffer *eb, int slot,
83 			    const char *fmt, ...)
84 {
85 	const struct btrfs_fs_info *fs_info = eb->fs_info;
86 	struct btrfs_key key;
87 	struct va_format vaf;
88 	va_list args;
89 
90 	btrfs_item_key_to_cpu(eb, &key, slot);
91 	va_start(args, fmt);
92 
93 	vaf.fmt = fmt;
94 	vaf.va = &args;
95 
96 	btrfs_crit(fs_info,
97 	"corrupt %s: root=%llu block=%llu slot=%d ino=%llu file_offset=%llu, %pV",
98 		btrfs_header_level(eb) == 0 ? "leaf" : "node",
99 		btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
100 		key.objectid, key.offset, &vaf);
101 	va_end(args);
102 }
103 
104 /*
105  * Return 0 if the btrfs_file_extent_##name is aligned to @alignment
106  * Else return 1
107  */
108 #define CHECK_FE_ALIGNED(leaf, slot, fi, name, alignment)		      \
109 ({									      \
110 	if (unlikely(!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)),      \
111 				 (alignment))))				      \
112 		file_extent_err((leaf), (slot),				      \
113 	"invalid %s for file extent, have %llu, should be aligned to %u",     \
114 			(#name), btrfs_file_extent_##name((leaf), (fi)),      \
115 			(alignment));					      \
116 	(!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), (alignment)));   \
117 })
118 
119 static u64 file_extent_end(struct extent_buffer *leaf,
120 			   struct btrfs_key *key,
121 			   struct btrfs_file_extent_item *extent)
122 {
123 	u64 end;
124 	u64 len;
125 
126 	if (btrfs_file_extent_type(leaf, extent) == BTRFS_FILE_EXTENT_INLINE) {
127 		len = btrfs_file_extent_ram_bytes(leaf, extent);
128 		end = ALIGN(key->offset + len, leaf->fs_info->sectorsize);
129 	} else {
130 		len = btrfs_file_extent_num_bytes(leaf, extent);
131 		end = key->offset + len;
132 	}
133 	return end;
134 }
135 
136 /*
137  * Customized report for dir_item, the only new important information is
138  * key->objectid, which represents inode number
139  */
140 __printf(3, 4)
141 __cold
142 static void dir_item_err(const struct extent_buffer *eb, int slot,
143 			 const char *fmt, ...)
144 {
145 	const struct btrfs_fs_info *fs_info = eb->fs_info;
146 	struct btrfs_key key;
147 	struct va_format vaf;
148 	va_list args;
149 
150 	btrfs_item_key_to_cpu(eb, &key, slot);
151 	va_start(args, fmt);
152 
153 	vaf.fmt = fmt;
154 	vaf.va = &args;
155 
156 	btrfs_crit(fs_info,
157 		"corrupt %s: root=%llu block=%llu slot=%d ino=%llu, %pV",
158 		btrfs_header_level(eb) == 0 ? "leaf" : "node",
159 		btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
160 		key.objectid, &vaf);
161 	va_end(args);
162 }
163 
164 /*
165  * This functions checks prev_key->objectid, to ensure current key and prev_key
166  * share the same objectid as inode number.
167  *
168  * This is to detect missing INODE_ITEM in subvolume trees.
169  *
170  * Return true if everything is OK or we don't need to check.
171  * Return false if anything is wrong.
172  */
173 static bool check_prev_ino(struct extent_buffer *leaf,
174 			   struct btrfs_key *key, int slot,
175 			   struct btrfs_key *prev_key)
176 {
177 	/* No prev key, skip check */
178 	if (slot == 0)
179 		return true;
180 
181 	/* Only these key->types needs to be checked */
182 	ASSERT(key->type == BTRFS_XATTR_ITEM_KEY ||
183 	       key->type == BTRFS_INODE_REF_KEY ||
184 	       key->type == BTRFS_DIR_INDEX_KEY ||
185 	       key->type == BTRFS_DIR_ITEM_KEY ||
186 	       key->type == BTRFS_EXTENT_DATA_KEY);
187 
188 	/*
189 	 * Only subvolume trees along with their reloc trees need this check.
190 	 * Things like log tree doesn't follow this ino requirement.
191 	 */
192 	if (!is_fstree(btrfs_header_owner(leaf)))
193 		return true;
194 
195 	if (key->objectid == prev_key->objectid)
196 		return true;
197 
198 	/* Error found */
199 	dir_item_err(leaf, slot,
200 		"invalid previous key objectid, have %llu expect %llu",
201 		prev_key->objectid, key->objectid);
202 	return false;
203 }
204 static int check_extent_data_item(struct extent_buffer *leaf,
205 				  struct btrfs_key *key, int slot,
206 				  struct btrfs_key *prev_key)
207 {
208 	struct btrfs_fs_info *fs_info = leaf->fs_info;
209 	struct btrfs_file_extent_item *fi;
210 	u32 sectorsize = fs_info->sectorsize;
211 	u32 item_size = btrfs_item_size(leaf, slot);
212 	u64 extent_end;
213 
214 	if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) {
215 		file_extent_err(leaf, slot,
216 "unaligned file_offset for file extent, have %llu should be aligned to %u",
217 			key->offset, sectorsize);
218 		return -EUCLEAN;
219 	}
220 
221 	/*
222 	 * Previous key must have the same key->objectid (ino).
223 	 * It can be XATTR_ITEM, INODE_ITEM or just another EXTENT_DATA.
224 	 * But if objectids mismatch, it means we have a missing
225 	 * INODE_ITEM.
226 	 */
227 	if (unlikely(!check_prev_ino(leaf, key, slot, prev_key)))
228 		return -EUCLEAN;
229 
230 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
231 
232 	/*
233 	 * Make sure the item contains at least inline header, so the file
234 	 * extent type is not some garbage.
235 	 */
236 	if (unlikely(item_size < BTRFS_FILE_EXTENT_INLINE_DATA_START)) {
237 		file_extent_err(leaf, slot,
238 				"invalid item size, have %u expect [%zu, %u)",
239 				item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START,
240 				SZ_4K);
241 		return -EUCLEAN;
242 	}
243 	if (unlikely(btrfs_file_extent_type(leaf, fi) >=
244 		     BTRFS_NR_FILE_EXTENT_TYPES)) {
245 		file_extent_err(leaf, slot,
246 		"invalid type for file extent, have %u expect range [0, %u]",
247 			btrfs_file_extent_type(leaf, fi),
248 			BTRFS_NR_FILE_EXTENT_TYPES - 1);
249 		return -EUCLEAN;
250 	}
251 
252 	/*
253 	 * Support for new compression/encryption must introduce incompat flag,
254 	 * and must be caught in open_ctree().
255 	 */
256 	if (unlikely(btrfs_file_extent_compression(leaf, fi) >=
257 		     BTRFS_NR_COMPRESS_TYPES)) {
258 		file_extent_err(leaf, slot,
259 	"invalid compression for file extent, have %u expect range [0, %u]",
260 			btrfs_file_extent_compression(leaf, fi),
261 			BTRFS_NR_COMPRESS_TYPES - 1);
262 		return -EUCLEAN;
263 	}
264 	if (unlikely(btrfs_file_extent_encryption(leaf, fi))) {
265 		file_extent_err(leaf, slot,
266 			"invalid encryption for file extent, have %u expect 0",
267 			btrfs_file_extent_encryption(leaf, fi));
268 		return -EUCLEAN;
269 	}
270 	if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
271 		/* Inline extent must have 0 as key offset */
272 		if (unlikely(key->offset)) {
273 			file_extent_err(leaf, slot,
274 		"invalid file_offset for inline file extent, have %llu expect 0",
275 				key->offset);
276 			return -EUCLEAN;
277 		}
278 
279 		/* Compressed inline extent has no on-disk size, skip it */
280 		if (btrfs_file_extent_compression(leaf, fi) !=
281 		    BTRFS_COMPRESS_NONE)
282 			return 0;
283 
284 		/* Uncompressed inline extent size must match item size */
285 		if (unlikely(item_size != BTRFS_FILE_EXTENT_INLINE_DATA_START +
286 					  btrfs_file_extent_ram_bytes(leaf, fi))) {
287 			file_extent_err(leaf, slot,
288 	"invalid ram_bytes for uncompressed inline extent, have %u expect %llu",
289 				item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START +
290 				btrfs_file_extent_ram_bytes(leaf, fi));
291 			return -EUCLEAN;
292 		}
293 		return 0;
294 	}
295 
296 	/* Regular or preallocated extent has fixed item size */
297 	if (unlikely(item_size != sizeof(*fi))) {
298 		file_extent_err(leaf, slot,
299 	"invalid item size for reg/prealloc file extent, have %u expect %zu",
300 			item_size, sizeof(*fi));
301 		return -EUCLEAN;
302 	}
303 	if (unlikely(CHECK_FE_ALIGNED(leaf, slot, fi, ram_bytes, sectorsize) ||
304 		     CHECK_FE_ALIGNED(leaf, slot, fi, disk_bytenr, sectorsize) ||
305 		     CHECK_FE_ALIGNED(leaf, slot, fi, disk_num_bytes, sectorsize) ||
306 		     CHECK_FE_ALIGNED(leaf, slot, fi, offset, sectorsize) ||
307 		     CHECK_FE_ALIGNED(leaf, slot, fi, num_bytes, sectorsize)))
308 		return -EUCLEAN;
309 
310 	/* Catch extent end overflow */
311 	if (unlikely(check_add_overflow(btrfs_file_extent_num_bytes(leaf, fi),
312 					key->offset, &extent_end))) {
313 		file_extent_err(leaf, slot,
314 	"extent end overflow, have file offset %llu extent num bytes %llu",
315 				key->offset,
316 				btrfs_file_extent_num_bytes(leaf, fi));
317 		return -EUCLEAN;
318 	}
319 
320 	/*
321 	 * Check that no two consecutive file extent items, in the same leaf,
322 	 * present ranges that overlap each other.
323 	 */
324 	if (slot > 0 &&
325 	    prev_key->objectid == key->objectid &&
326 	    prev_key->type == BTRFS_EXTENT_DATA_KEY) {
327 		struct btrfs_file_extent_item *prev_fi;
328 		u64 prev_end;
329 
330 		prev_fi = btrfs_item_ptr(leaf, slot - 1,
331 					 struct btrfs_file_extent_item);
332 		prev_end = file_extent_end(leaf, prev_key, prev_fi);
333 		if (unlikely(prev_end > key->offset)) {
334 			file_extent_err(leaf, slot - 1,
335 "file extent end range (%llu) goes beyond start offset (%llu) of the next file extent",
336 					prev_end, key->offset);
337 			return -EUCLEAN;
338 		}
339 	}
340 
341 	return 0;
342 }
343 
344 static int check_csum_item(struct extent_buffer *leaf, struct btrfs_key *key,
345 			   int slot, struct btrfs_key *prev_key)
346 {
347 	struct btrfs_fs_info *fs_info = leaf->fs_info;
348 	u32 sectorsize = fs_info->sectorsize;
349 	const u32 csumsize = fs_info->csum_size;
350 
351 	if (unlikely(key->objectid != BTRFS_EXTENT_CSUM_OBJECTID)) {
352 		generic_err(leaf, slot,
353 		"invalid key objectid for csum item, have %llu expect %llu",
354 			key->objectid, BTRFS_EXTENT_CSUM_OBJECTID);
355 		return -EUCLEAN;
356 	}
357 	if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) {
358 		generic_err(leaf, slot,
359 	"unaligned key offset for csum item, have %llu should be aligned to %u",
360 			key->offset, sectorsize);
361 		return -EUCLEAN;
362 	}
363 	if (unlikely(!IS_ALIGNED(btrfs_item_size(leaf, slot), csumsize))) {
364 		generic_err(leaf, slot,
365 	"unaligned item size for csum item, have %u should be aligned to %u",
366 			btrfs_item_size(leaf, slot), csumsize);
367 		return -EUCLEAN;
368 	}
369 	if (slot > 0 && prev_key->type == BTRFS_EXTENT_CSUM_KEY) {
370 		u64 prev_csum_end;
371 		u32 prev_item_size;
372 
373 		prev_item_size = btrfs_item_size(leaf, slot - 1);
374 		prev_csum_end = (prev_item_size / csumsize) * sectorsize;
375 		prev_csum_end += prev_key->offset;
376 		if (unlikely(prev_csum_end > key->offset)) {
377 			generic_err(leaf, slot - 1,
378 "csum end range (%llu) goes beyond the start range (%llu) of the next csum item",
379 				    prev_csum_end, key->offset);
380 			return -EUCLEAN;
381 		}
382 	}
383 	return 0;
384 }
385 
386 /* Inode item error output has the same format as dir_item_err() */
387 #define inode_item_err(eb, slot, fmt, ...)			\
388 	dir_item_err(eb, slot, fmt, __VA_ARGS__)
389 
390 static int check_inode_key(struct extent_buffer *leaf, struct btrfs_key *key,
391 			   int slot)
392 {
393 	struct btrfs_key item_key;
394 	bool is_inode_item;
395 
396 	btrfs_item_key_to_cpu(leaf, &item_key, slot);
397 	is_inode_item = (item_key.type == BTRFS_INODE_ITEM_KEY);
398 
399 	/* For XATTR_ITEM, location key should be all 0 */
400 	if (item_key.type == BTRFS_XATTR_ITEM_KEY) {
401 		if (unlikely(key->objectid != 0 || key->type != 0 ||
402 			     key->offset != 0))
403 			return -EUCLEAN;
404 		return 0;
405 	}
406 
407 	if (unlikely((key->objectid < BTRFS_FIRST_FREE_OBJECTID ||
408 		      key->objectid > BTRFS_LAST_FREE_OBJECTID) &&
409 		     key->objectid != BTRFS_ROOT_TREE_DIR_OBJECTID &&
410 		     key->objectid != BTRFS_FREE_INO_OBJECTID)) {
411 		if (is_inode_item) {
412 			generic_err(leaf, slot,
413 	"invalid key objectid: has %llu expect %llu or [%llu, %llu] or %llu",
414 				key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID,
415 				BTRFS_FIRST_FREE_OBJECTID,
416 				BTRFS_LAST_FREE_OBJECTID,
417 				BTRFS_FREE_INO_OBJECTID);
418 		} else {
419 			dir_item_err(leaf, slot,
420 "invalid location key objectid: has %llu expect %llu or [%llu, %llu] or %llu",
421 				key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID,
422 				BTRFS_FIRST_FREE_OBJECTID,
423 				BTRFS_LAST_FREE_OBJECTID,
424 				BTRFS_FREE_INO_OBJECTID);
425 		}
426 		return -EUCLEAN;
427 	}
428 	if (unlikely(key->offset != 0)) {
429 		if (is_inode_item)
430 			inode_item_err(leaf, slot,
431 				       "invalid key offset: has %llu expect 0",
432 				       key->offset);
433 		else
434 			dir_item_err(leaf, slot,
435 				"invalid location key offset:has %llu expect 0",
436 				key->offset);
437 		return -EUCLEAN;
438 	}
439 	return 0;
440 }
441 
442 static int check_root_key(struct extent_buffer *leaf, struct btrfs_key *key,
443 			  int slot)
444 {
445 	struct btrfs_key item_key;
446 	bool is_root_item;
447 
448 	btrfs_item_key_to_cpu(leaf, &item_key, slot);
449 	is_root_item = (item_key.type == BTRFS_ROOT_ITEM_KEY);
450 
451 	/*
452 	 * Bad rootid for reloc trees.
453 	 *
454 	 * Reloc trees are only for subvolume trees, other trees only need
455 	 * to be COWed to be relocated.
456 	 */
457 	if (unlikely(is_root_item && key->objectid == BTRFS_TREE_RELOC_OBJECTID &&
458 		     !is_fstree(key->offset))) {
459 		generic_err(leaf, slot,
460 		"invalid reloc tree for root %lld, root id is not a subvolume tree",
461 			    key->offset);
462 		return -EUCLEAN;
463 	}
464 
465 	/* No such tree id */
466 	if (unlikely(key->objectid == 0)) {
467 		if (is_root_item)
468 			generic_err(leaf, slot, "invalid root id 0");
469 		else
470 			dir_item_err(leaf, slot,
471 				     "invalid location key root id 0");
472 		return -EUCLEAN;
473 	}
474 
475 	/* DIR_ITEM/INDEX/INODE_REF is not allowed to point to non-fs trees */
476 	if (unlikely(!is_fstree(key->objectid) && !is_root_item)) {
477 		dir_item_err(leaf, slot,
478 		"invalid location key objectid, have %llu expect [%llu, %llu]",
479 				key->objectid, BTRFS_FIRST_FREE_OBJECTID,
480 				BTRFS_LAST_FREE_OBJECTID);
481 		return -EUCLEAN;
482 	}
483 
484 	/*
485 	 * ROOT_ITEM with non-zero offset means this is a snapshot, created at
486 	 * @offset transid.
487 	 * Furthermore, for location key in DIR_ITEM, its offset is always -1.
488 	 *
489 	 * So here we only check offset for reloc tree whose key->offset must
490 	 * be a valid tree.
491 	 */
492 	if (unlikely(key->objectid == BTRFS_TREE_RELOC_OBJECTID &&
493 		     key->offset == 0)) {
494 		generic_err(leaf, slot, "invalid root id 0 for reloc tree");
495 		return -EUCLEAN;
496 	}
497 	return 0;
498 }
499 
500 static int check_dir_item(struct extent_buffer *leaf,
501 			  struct btrfs_key *key, struct btrfs_key *prev_key,
502 			  int slot)
503 {
504 	struct btrfs_fs_info *fs_info = leaf->fs_info;
505 	struct btrfs_dir_item *di;
506 	u32 item_size = btrfs_item_size(leaf, slot);
507 	u32 cur = 0;
508 
509 	if (unlikely(!check_prev_ino(leaf, key, slot, prev_key)))
510 		return -EUCLEAN;
511 
512 	di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
513 	while (cur < item_size) {
514 		struct btrfs_key location_key;
515 		u32 name_len;
516 		u32 data_len;
517 		u32 max_name_len;
518 		u32 total_size;
519 		u32 name_hash;
520 		u8 dir_type;
521 		int ret;
522 
523 		/* header itself should not cross item boundary */
524 		if (unlikely(cur + sizeof(*di) > item_size)) {
525 			dir_item_err(leaf, slot,
526 		"dir item header crosses item boundary, have %zu boundary %u",
527 				cur + sizeof(*di), item_size);
528 			return -EUCLEAN;
529 		}
530 
531 		/* Location key check */
532 		btrfs_dir_item_key_to_cpu(leaf, di, &location_key);
533 		if (location_key.type == BTRFS_ROOT_ITEM_KEY) {
534 			ret = check_root_key(leaf, &location_key, slot);
535 			if (unlikely(ret < 0))
536 				return ret;
537 		} else if (location_key.type == BTRFS_INODE_ITEM_KEY ||
538 			   location_key.type == 0) {
539 			ret = check_inode_key(leaf, &location_key, slot);
540 			if (unlikely(ret < 0))
541 				return ret;
542 		} else {
543 			dir_item_err(leaf, slot,
544 			"invalid location key type, have %u, expect %u or %u",
545 				     location_key.type, BTRFS_ROOT_ITEM_KEY,
546 				     BTRFS_INODE_ITEM_KEY);
547 			return -EUCLEAN;
548 		}
549 
550 		/* dir type check */
551 		dir_type = btrfs_dir_ftype(leaf, di);
552 		if (unlikely(dir_type >= BTRFS_FT_MAX)) {
553 			dir_item_err(leaf, slot,
554 			"invalid dir item type, have %u expect [0, %u)",
555 				dir_type, BTRFS_FT_MAX);
556 			return -EUCLEAN;
557 		}
558 
559 		if (unlikely(key->type == BTRFS_XATTR_ITEM_KEY &&
560 			     dir_type != BTRFS_FT_XATTR)) {
561 			dir_item_err(leaf, slot,
562 		"invalid dir item type for XATTR key, have %u expect %u",
563 				dir_type, BTRFS_FT_XATTR);
564 			return -EUCLEAN;
565 		}
566 		if (unlikely(dir_type == BTRFS_FT_XATTR &&
567 			     key->type != BTRFS_XATTR_ITEM_KEY)) {
568 			dir_item_err(leaf, slot,
569 			"xattr dir type found for non-XATTR key");
570 			return -EUCLEAN;
571 		}
572 		if (dir_type == BTRFS_FT_XATTR)
573 			max_name_len = XATTR_NAME_MAX;
574 		else
575 			max_name_len = BTRFS_NAME_LEN;
576 
577 		/* Name/data length check */
578 		name_len = btrfs_dir_name_len(leaf, di);
579 		data_len = btrfs_dir_data_len(leaf, di);
580 		if (unlikely(name_len > max_name_len)) {
581 			dir_item_err(leaf, slot,
582 			"dir item name len too long, have %u max %u",
583 				name_len, max_name_len);
584 			return -EUCLEAN;
585 		}
586 		if (unlikely(name_len + data_len > BTRFS_MAX_XATTR_SIZE(fs_info))) {
587 			dir_item_err(leaf, slot,
588 			"dir item name and data len too long, have %u max %u",
589 				name_len + data_len,
590 				BTRFS_MAX_XATTR_SIZE(fs_info));
591 			return -EUCLEAN;
592 		}
593 
594 		if (unlikely(data_len && dir_type != BTRFS_FT_XATTR)) {
595 			dir_item_err(leaf, slot,
596 			"dir item with invalid data len, have %u expect 0",
597 				data_len);
598 			return -EUCLEAN;
599 		}
600 
601 		total_size = sizeof(*di) + name_len + data_len;
602 
603 		/* header and name/data should not cross item boundary */
604 		if (unlikely(cur + total_size > item_size)) {
605 			dir_item_err(leaf, slot,
606 		"dir item data crosses item boundary, have %u boundary %u",
607 				cur + total_size, item_size);
608 			return -EUCLEAN;
609 		}
610 
611 		/*
612 		 * Special check for XATTR/DIR_ITEM, as key->offset is name
613 		 * hash, should match its name
614 		 */
615 		if (key->type == BTRFS_DIR_ITEM_KEY ||
616 		    key->type == BTRFS_XATTR_ITEM_KEY) {
617 			char namebuf[max(BTRFS_NAME_LEN, XATTR_NAME_MAX)];
618 
619 			read_extent_buffer(leaf, namebuf,
620 					(unsigned long)(di + 1), name_len);
621 			name_hash = btrfs_name_hash(namebuf, name_len);
622 			if (unlikely(key->offset != name_hash)) {
623 				dir_item_err(leaf, slot,
624 		"name hash mismatch with key, have 0x%016x expect 0x%016llx",
625 					name_hash, key->offset);
626 				return -EUCLEAN;
627 			}
628 		}
629 		cur += total_size;
630 		di = (struct btrfs_dir_item *)((void *)di + total_size);
631 	}
632 	return 0;
633 }
634 
635 __printf(3, 4)
636 __cold
637 static void block_group_err(const struct extent_buffer *eb, int slot,
638 			    const char *fmt, ...)
639 {
640 	const struct btrfs_fs_info *fs_info = eb->fs_info;
641 	struct btrfs_key key;
642 	struct va_format vaf;
643 	va_list args;
644 
645 	btrfs_item_key_to_cpu(eb, &key, slot);
646 	va_start(args, fmt);
647 
648 	vaf.fmt = fmt;
649 	vaf.va = &args;
650 
651 	btrfs_crit(fs_info,
652 	"corrupt %s: root=%llu block=%llu slot=%d bg_start=%llu bg_len=%llu, %pV",
653 		btrfs_header_level(eb) == 0 ? "leaf" : "node",
654 		btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
655 		key.objectid, key.offset, &vaf);
656 	va_end(args);
657 }
658 
659 static int check_block_group_item(struct extent_buffer *leaf,
660 				  struct btrfs_key *key, int slot)
661 {
662 	struct btrfs_fs_info *fs_info = leaf->fs_info;
663 	struct btrfs_block_group_item bgi;
664 	u32 item_size = btrfs_item_size(leaf, slot);
665 	u64 chunk_objectid;
666 	u64 flags;
667 	u64 type;
668 
669 	/*
670 	 * Here we don't really care about alignment since extent allocator can
671 	 * handle it.  We care more about the size.
672 	 */
673 	if (unlikely(key->offset == 0)) {
674 		block_group_err(leaf, slot,
675 				"invalid block group size 0");
676 		return -EUCLEAN;
677 	}
678 
679 	if (unlikely(item_size != sizeof(bgi))) {
680 		block_group_err(leaf, slot,
681 			"invalid item size, have %u expect %zu",
682 				item_size, sizeof(bgi));
683 		return -EUCLEAN;
684 	}
685 
686 	read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
687 			   sizeof(bgi));
688 	chunk_objectid = btrfs_stack_block_group_chunk_objectid(&bgi);
689 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
690 		/*
691 		 * We don't init the nr_global_roots until we load the global
692 		 * roots, so this could be 0 at mount time.  If it's 0 we'll
693 		 * just assume we're fine, and later we'll check against our
694 		 * actual value.
695 		 */
696 		if (unlikely(fs_info->nr_global_roots &&
697 			     chunk_objectid >= fs_info->nr_global_roots)) {
698 			block_group_err(leaf, slot,
699 	"invalid block group global root id, have %llu, needs to be <= %llu",
700 					chunk_objectid,
701 					fs_info->nr_global_roots);
702 			return -EUCLEAN;
703 		}
704 	} else if (unlikely(chunk_objectid != BTRFS_FIRST_CHUNK_TREE_OBJECTID)) {
705 		block_group_err(leaf, slot,
706 		"invalid block group chunk objectid, have %llu expect %llu",
707 				btrfs_stack_block_group_chunk_objectid(&bgi),
708 				BTRFS_FIRST_CHUNK_TREE_OBJECTID);
709 		return -EUCLEAN;
710 	}
711 
712 	if (unlikely(btrfs_stack_block_group_used(&bgi) > key->offset)) {
713 		block_group_err(leaf, slot,
714 			"invalid block group used, have %llu expect [0, %llu)",
715 				btrfs_stack_block_group_used(&bgi), key->offset);
716 		return -EUCLEAN;
717 	}
718 
719 	flags = btrfs_stack_block_group_flags(&bgi);
720 	if (unlikely(hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) > 1)) {
721 		block_group_err(leaf, slot,
722 "invalid profile flags, have 0x%llx (%lu bits set) expect no more than 1 bit set",
723 			flags & BTRFS_BLOCK_GROUP_PROFILE_MASK,
724 			hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK));
725 		return -EUCLEAN;
726 	}
727 
728 	type = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
729 	if (unlikely(type != BTRFS_BLOCK_GROUP_DATA &&
730 		     type != BTRFS_BLOCK_GROUP_METADATA &&
731 		     type != BTRFS_BLOCK_GROUP_SYSTEM &&
732 		     type != (BTRFS_BLOCK_GROUP_METADATA |
733 			      BTRFS_BLOCK_GROUP_DATA))) {
734 		block_group_err(leaf, slot,
735 "invalid type, have 0x%llx (%lu bits set) expect either 0x%llx, 0x%llx, 0x%llx or 0x%llx",
736 			type, hweight64(type),
737 			BTRFS_BLOCK_GROUP_DATA, BTRFS_BLOCK_GROUP_METADATA,
738 			BTRFS_BLOCK_GROUP_SYSTEM,
739 			BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA);
740 		return -EUCLEAN;
741 	}
742 	return 0;
743 }
744 
745 __printf(4, 5)
746 __cold
747 static void chunk_err(const struct extent_buffer *leaf,
748 		      const struct btrfs_chunk *chunk, u64 logical,
749 		      const char *fmt, ...)
750 {
751 	const struct btrfs_fs_info *fs_info = leaf->fs_info;
752 	bool is_sb;
753 	struct va_format vaf;
754 	va_list args;
755 	int i;
756 	int slot = -1;
757 
758 	/* Only superblock eb is able to have such small offset */
759 	is_sb = (leaf->start == BTRFS_SUPER_INFO_OFFSET);
760 
761 	if (!is_sb) {
762 		/*
763 		 * Get the slot number by iterating through all slots, this
764 		 * would provide better readability.
765 		 */
766 		for (i = 0; i < btrfs_header_nritems(leaf); i++) {
767 			if (btrfs_item_ptr_offset(leaf, i) ==
768 					(unsigned long)chunk) {
769 				slot = i;
770 				break;
771 			}
772 		}
773 	}
774 	va_start(args, fmt);
775 	vaf.fmt = fmt;
776 	vaf.va = &args;
777 
778 	if (is_sb)
779 		btrfs_crit(fs_info,
780 		"corrupt superblock syschunk array: chunk_start=%llu, %pV",
781 			   logical, &vaf);
782 	else
783 		btrfs_crit(fs_info,
784 	"corrupt leaf: root=%llu block=%llu slot=%d chunk_start=%llu, %pV",
785 			   BTRFS_CHUNK_TREE_OBJECTID, leaf->start, slot,
786 			   logical, &vaf);
787 	va_end(args);
788 }
789 
790 /*
791  * The common chunk check which could also work on super block sys chunk array.
792  *
793  * Return -EUCLEAN if anything is corrupted.
794  * Return 0 if everything is OK.
795  */
796 int btrfs_check_chunk_valid(struct extent_buffer *leaf,
797 			    struct btrfs_chunk *chunk, u64 logical)
798 {
799 	struct btrfs_fs_info *fs_info = leaf->fs_info;
800 	u64 length;
801 	u64 chunk_end;
802 	u64 stripe_len;
803 	u16 num_stripes;
804 	u16 sub_stripes;
805 	u64 type;
806 	u64 features;
807 	bool mixed = false;
808 	int raid_index;
809 	int nparity;
810 	int ncopies;
811 
812 	length = btrfs_chunk_length(leaf, chunk);
813 	stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
814 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
815 	sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
816 	type = btrfs_chunk_type(leaf, chunk);
817 	raid_index = btrfs_bg_flags_to_raid_index(type);
818 	ncopies = btrfs_raid_array[raid_index].ncopies;
819 	nparity = btrfs_raid_array[raid_index].nparity;
820 
821 	if (unlikely(!num_stripes)) {
822 		chunk_err(leaf, chunk, logical,
823 			  "invalid chunk num_stripes, have %u", num_stripes);
824 		return -EUCLEAN;
825 	}
826 	if (unlikely(num_stripes < ncopies)) {
827 		chunk_err(leaf, chunk, logical,
828 			  "invalid chunk num_stripes < ncopies, have %u < %d",
829 			  num_stripes, ncopies);
830 		return -EUCLEAN;
831 	}
832 	if (unlikely(nparity && num_stripes == nparity)) {
833 		chunk_err(leaf, chunk, logical,
834 			  "invalid chunk num_stripes == nparity, have %u == %d",
835 			  num_stripes, nparity);
836 		return -EUCLEAN;
837 	}
838 	if (unlikely(!IS_ALIGNED(logical, fs_info->sectorsize))) {
839 		chunk_err(leaf, chunk, logical,
840 		"invalid chunk logical, have %llu should aligned to %u",
841 			  logical, fs_info->sectorsize);
842 		return -EUCLEAN;
843 	}
844 	if (unlikely(btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize)) {
845 		chunk_err(leaf, chunk, logical,
846 			  "invalid chunk sectorsize, have %u expect %u",
847 			  btrfs_chunk_sector_size(leaf, chunk),
848 			  fs_info->sectorsize);
849 		return -EUCLEAN;
850 	}
851 	if (unlikely(!length || !IS_ALIGNED(length, fs_info->sectorsize))) {
852 		chunk_err(leaf, chunk, logical,
853 			  "invalid chunk length, have %llu", length);
854 		return -EUCLEAN;
855 	}
856 	if (unlikely(check_add_overflow(logical, length, &chunk_end))) {
857 		chunk_err(leaf, chunk, logical,
858 "invalid chunk logical start and length, have logical start %llu length %llu",
859 			  logical, length);
860 		return -EUCLEAN;
861 	}
862 	if (unlikely(!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN)) {
863 		chunk_err(leaf, chunk, logical,
864 			  "invalid chunk stripe length: %llu",
865 			  stripe_len);
866 		return -EUCLEAN;
867 	}
868 	/*
869 	 * We artificially limit the chunk size, so that the number of stripes
870 	 * inside a chunk can be fit into a U32.  The current limit (256G) is
871 	 * way too large for real world usage anyway, and it's also much larger
872 	 * than our existing limit (10G).
873 	 *
874 	 * Thus it should be a good way to catch obvious bitflips.
875 	 */
876 	if (unlikely(length >= btrfs_stripe_nr_to_offset(U32_MAX))) {
877 		chunk_err(leaf, chunk, logical,
878 			  "chunk length too large: have %llu limit %llu",
879 			  length, btrfs_stripe_nr_to_offset(U32_MAX));
880 		return -EUCLEAN;
881 	}
882 	if (unlikely(type & ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
883 			      BTRFS_BLOCK_GROUP_PROFILE_MASK))) {
884 		chunk_err(leaf, chunk, logical,
885 			  "unrecognized chunk type: 0x%llx",
886 			  ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
887 			    BTRFS_BLOCK_GROUP_PROFILE_MASK) &
888 			  btrfs_chunk_type(leaf, chunk));
889 		return -EUCLEAN;
890 	}
891 
892 	if (unlikely(!has_single_bit_set(type & BTRFS_BLOCK_GROUP_PROFILE_MASK) &&
893 		     (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) != 0)) {
894 		chunk_err(leaf, chunk, logical,
895 		"invalid chunk profile flag: 0x%llx, expect 0 or 1 bit set",
896 			  type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
897 		return -EUCLEAN;
898 	}
899 	if (unlikely((type & BTRFS_BLOCK_GROUP_TYPE_MASK) == 0)) {
900 		chunk_err(leaf, chunk, logical,
901 	"missing chunk type flag, have 0x%llx one bit must be set in 0x%llx",
902 			  type, BTRFS_BLOCK_GROUP_TYPE_MASK);
903 		return -EUCLEAN;
904 	}
905 
906 	if (unlikely((type & BTRFS_BLOCK_GROUP_SYSTEM) &&
907 		     (type & (BTRFS_BLOCK_GROUP_METADATA |
908 			      BTRFS_BLOCK_GROUP_DATA)))) {
909 		chunk_err(leaf, chunk, logical,
910 			  "system chunk with data or metadata type: 0x%llx",
911 			  type);
912 		return -EUCLEAN;
913 	}
914 
915 	features = btrfs_super_incompat_flags(fs_info->super_copy);
916 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
917 		mixed = true;
918 
919 	if (!mixed) {
920 		if (unlikely((type & BTRFS_BLOCK_GROUP_METADATA) &&
921 			     (type & BTRFS_BLOCK_GROUP_DATA))) {
922 			chunk_err(leaf, chunk, logical,
923 			"mixed chunk type in non-mixed mode: 0x%llx", type);
924 			return -EUCLEAN;
925 		}
926 	}
927 
928 	if (unlikely((type & BTRFS_BLOCK_GROUP_RAID10 &&
929 		      sub_stripes != btrfs_raid_array[BTRFS_RAID_RAID10].sub_stripes) ||
930 		     (type & BTRFS_BLOCK_GROUP_RAID1 &&
931 		      num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1].devs_min) ||
932 		     (type & BTRFS_BLOCK_GROUP_RAID1C3 &&
933 		      num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C3].devs_min) ||
934 		     (type & BTRFS_BLOCK_GROUP_RAID1C4 &&
935 		      num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C4].devs_min) ||
936 		     (type & BTRFS_BLOCK_GROUP_RAID5 &&
937 		      num_stripes < btrfs_raid_array[BTRFS_RAID_RAID5].devs_min) ||
938 		     (type & BTRFS_BLOCK_GROUP_RAID6 &&
939 		      num_stripes < btrfs_raid_array[BTRFS_RAID_RAID6].devs_min) ||
940 		     (type & BTRFS_BLOCK_GROUP_DUP &&
941 		      num_stripes != btrfs_raid_array[BTRFS_RAID_DUP].dev_stripes) ||
942 		     ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
943 		      num_stripes != btrfs_raid_array[BTRFS_RAID_SINGLE].dev_stripes))) {
944 		chunk_err(leaf, chunk, logical,
945 			"invalid num_stripes:sub_stripes %u:%u for profile %llu",
946 			num_stripes, sub_stripes,
947 			type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
948 		return -EUCLEAN;
949 	}
950 
951 	return 0;
952 }
953 
954 /*
955  * Enhanced version of chunk item checker.
956  *
957  * The common btrfs_check_chunk_valid() doesn't check item size since it needs
958  * to work on super block sys_chunk_array which doesn't have full item ptr.
959  */
960 static int check_leaf_chunk_item(struct extent_buffer *leaf,
961 				 struct btrfs_chunk *chunk,
962 				 struct btrfs_key *key, int slot)
963 {
964 	int num_stripes;
965 
966 	if (unlikely(btrfs_item_size(leaf, slot) < sizeof(struct btrfs_chunk))) {
967 		chunk_err(leaf, chunk, key->offset,
968 			"invalid chunk item size: have %u expect [%zu, %u)",
969 			btrfs_item_size(leaf, slot),
970 			sizeof(struct btrfs_chunk),
971 			BTRFS_LEAF_DATA_SIZE(leaf->fs_info));
972 		return -EUCLEAN;
973 	}
974 
975 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
976 	/* Let btrfs_check_chunk_valid() handle this error type */
977 	if (num_stripes == 0)
978 		goto out;
979 
980 	if (unlikely(btrfs_chunk_item_size(num_stripes) !=
981 		     btrfs_item_size(leaf, slot))) {
982 		chunk_err(leaf, chunk, key->offset,
983 			"invalid chunk item size: have %u expect %lu",
984 			btrfs_item_size(leaf, slot),
985 			btrfs_chunk_item_size(num_stripes));
986 		return -EUCLEAN;
987 	}
988 out:
989 	return btrfs_check_chunk_valid(leaf, chunk, key->offset);
990 }
991 
992 __printf(3, 4)
993 __cold
994 static void dev_item_err(const struct extent_buffer *eb, int slot,
995 			 const char *fmt, ...)
996 {
997 	struct btrfs_key key;
998 	struct va_format vaf;
999 	va_list args;
1000 
1001 	btrfs_item_key_to_cpu(eb, &key, slot);
1002 	va_start(args, fmt);
1003 
1004 	vaf.fmt = fmt;
1005 	vaf.va = &args;
1006 
1007 	btrfs_crit(eb->fs_info,
1008 	"corrupt %s: root=%llu block=%llu slot=%d devid=%llu %pV",
1009 		btrfs_header_level(eb) == 0 ? "leaf" : "node",
1010 		btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
1011 		key.objectid, &vaf);
1012 	va_end(args);
1013 }
1014 
1015 static int check_dev_item(struct extent_buffer *leaf,
1016 			  struct btrfs_key *key, int slot)
1017 {
1018 	struct btrfs_dev_item *ditem;
1019 	const u32 item_size = btrfs_item_size(leaf, slot);
1020 
1021 	if (unlikely(key->objectid != BTRFS_DEV_ITEMS_OBJECTID)) {
1022 		dev_item_err(leaf, slot,
1023 			     "invalid objectid: has=%llu expect=%llu",
1024 			     key->objectid, BTRFS_DEV_ITEMS_OBJECTID);
1025 		return -EUCLEAN;
1026 	}
1027 
1028 	if (unlikely(item_size != sizeof(*ditem))) {
1029 		dev_item_err(leaf, slot, "invalid item size: has %u expect %zu",
1030 			     item_size, sizeof(*ditem));
1031 		return -EUCLEAN;
1032 	}
1033 
1034 	ditem = btrfs_item_ptr(leaf, slot, struct btrfs_dev_item);
1035 	if (unlikely(btrfs_device_id(leaf, ditem) != key->offset)) {
1036 		dev_item_err(leaf, slot,
1037 			     "devid mismatch: key has=%llu item has=%llu",
1038 			     key->offset, btrfs_device_id(leaf, ditem));
1039 		return -EUCLEAN;
1040 	}
1041 
1042 	/*
1043 	 * For device total_bytes, we don't have reliable way to check it, as
1044 	 * it can be 0 for device removal. Device size check can only be done
1045 	 * by dev extents check.
1046 	 */
1047 	if (unlikely(btrfs_device_bytes_used(leaf, ditem) >
1048 		     btrfs_device_total_bytes(leaf, ditem))) {
1049 		dev_item_err(leaf, slot,
1050 			     "invalid bytes used: have %llu expect [0, %llu]",
1051 			     btrfs_device_bytes_used(leaf, ditem),
1052 			     btrfs_device_total_bytes(leaf, ditem));
1053 		return -EUCLEAN;
1054 	}
1055 	/*
1056 	 * Remaining members like io_align/type/gen/dev_group aren't really
1057 	 * utilized.  Skip them to make later usage of them easier.
1058 	 */
1059 	return 0;
1060 }
1061 
1062 static int check_inode_item(struct extent_buffer *leaf,
1063 			    struct btrfs_key *key, int slot)
1064 {
1065 	struct btrfs_fs_info *fs_info = leaf->fs_info;
1066 	struct btrfs_inode_item *iitem;
1067 	u64 super_gen = btrfs_super_generation(fs_info->super_copy);
1068 	u32 valid_mask = (S_IFMT | S_ISUID | S_ISGID | S_ISVTX | 0777);
1069 	const u32 item_size = btrfs_item_size(leaf, slot);
1070 	u32 mode;
1071 	int ret;
1072 	u32 flags;
1073 	u32 ro_flags;
1074 
1075 	ret = check_inode_key(leaf, key, slot);
1076 	if (unlikely(ret < 0))
1077 		return ret;
1078 
1079 	if (unlikely(item_size != sizeof(*iitem))) {
1080 		generic_err(leaf, slot, "invalid item size: has %u expect %zu",
1081 			    item_size, sizeof(*iitem));
1082 		return -EUCLEAN;
1083 	}
1084 
1085 	iitem = btrfs_item_ptr(leaf, slot, struct btrfs_inode_item);
1086 
1087 	/* Here we use super block generation + 1 to handle log tree */
1088 	if (unlikely(btrfs_inode_generation(leaf, iitem) > super_gen + 1)) {
1089 		inode_item_err(leaf, slot,
1090 			"invalid inode generation: has %llu expect (0, %llu]",
1091 			       btrfs_inode_generation(leaf, iitem),
1092 			       super_gen + 1);
1093 		return -EUCLEAN;
1094 	}
1095 	/* Note for ROOT_TREE_DIR_ITEM, mkfs could set its transid 0 */
1096 	if (unlikely(btrfs_inode_transid(leaf, iitem) > super_gen + 1)) {
1097 		inode_item_err(leaf, slot,
1098 			"invalid inode transid: has %llu expect [0, %llu]",
1099 			       btrfs_inode_transid(leaf, iitem), super_gen + 1);
1100 		return -EUCLEAN;
1101 	}
1102 
1103 	/*
1104 	 * For size and nbytes it's better not to be too strict, as for dir
1105 	 * item its size/nbytes can easily get wrong, but doesn't affect
1106 	 * anything in the fs. So here we skip the check.
1107 	 */
1108 	mode = btrfs_inode_mode(leaf, iitem);
1109 	if (unlikely(mode & ~valid_mask)) {
1110 		inode_item_err(leaf, slot,
1111 			       "unknown mode bit detected: 0x%x",
1112 			       mode & ~valid_mask);
1113 		return -EUCLEAN;
1114 	}
1115 
1116 	/*
1117 	 * S_IFMT is not bit mapped so we can't completely rely on
1118 	 * is_power_of_2/has_single_bit_set, but it can save us from checking
1119 	 * FIFO/CHR/DIR/REG.  Only needs to check BLK, LNK and SOCKS
1120 	 */
1121 	if (!has_single_bit_set(mode & S_IFMT)) {
1122 		if (unlikely(!S_ISLNK(mode) && !S_ISBLK(mode) && !S_ISSOCK(mode))) {
1123 			inode_item_err(leaf, slot,
1124 			"invalid mode: has 0%o expect valid S_IF* bit(s)",
1125 				       mode & S_IFMT);
1126 			return -EUCLEAN;
1127 		}
1128 	}
1129 	if (unlikely(S_ISDIR(mode) && btrfs_inode_nlink(leaf, iitem) > 1)) {
1130 		inode_item_err(leaf, slot,
1131 		       "invalid nlink: has %u expect no more than 1 for dir",
1132 			btrfs_inode_nlink(leaf, iitem));
1133 		return -EUCLEAN;
1134 	}
1135 	btrfs_inode_split_flags(btrfs_inode_flags(leaf, iitem), &flags, &ro_flags);
1136 	if (unlikely(flags & ~BTRFS_INODE_FLAG_MASK)) {
1137 		inode_item_err(leaf, slot,
1138 			       "unknown incompat flags detected: 0x%x", flags);
1139 		return -EUCLEAN;
1140 	}
1141 	if (unlikely(!sb_rdonly(fs_info->sb) &&
1142 		     (ro_flags & ~BTRFS_INODE_RO_FLAG_MASK))) {
1143 		inode_item_err(leaf, slot,
1144 			"unknown ro-compat flags detected on writeable mount: 0x%x",
1145 			ro_flags);
1146 		return -EUCLEAN;
1147 	}
1148 	return 0;
1149 }
1150 
1151 static int check_root_item(struct extent_buffer *leaf, struct btrfs_key *key,
1152 			   int slot)
1153 {
1154 	struct btrfs_fs_info *fs_info = leaf->fs_info;
1155 	struct btrfs_root_item ri = { 0 };
1156 	const u64 valid_root_flags = BTRFS_ROOT_SUBVOL_RDONLY |
1157 				     BTRFS_ROOT_SUBVOL_DEAD;
1158 	int ret;
1159 
1160 	ret = check_root_key(leaf, key, slot);
1161 	if (unlikely(ret < 0))
1162 		return ret;
1163 
1164 	if (unlikely(btrfs_item_size(leaf, slot) != sizeof(ri) &&
1165 		     btrfs_item_size(leaf, slot) !=
1166 		     btrfs_legacy_root_item_size())) {
1167 		generic_err(leaf, slot,
1168 			    "invalid root item size, have %u expect %zu or %u",
1169 			    btrfs_item_size(leaf, slot), sizeof(ri),
1170 			    btrfs_legacy_root_item_size());
1171 		return -EUCLEAN;
1172 	}
1173 
1174 	/*
1175 	 * For legacy root item, the members starting at generation_v2 will be
1176 	 * all filled with 0.
1177 	 * And since we allow geneartion_v2 as 0, it will still pass the check.
1178 	 */
1179 	read_extent_buffer(leaf, &ri, btrfs_item_ptr_offset(leaf, slot),
1180 			   btrfs_item_size(leaf, slot));
1181 
1182 	/* Generation related */
1183 	if (unlikely(btrfs_root_generation(&ri) >
1184 		     btrfs_super_generation(fs_info->super_copy) + 1)) {
1185 		generic_err(leaf, slot,
1186 			"invalid root generation, have %llu expect (0, %llu]",
1187 			    btrfs_root_generation(&ri),
1188 			    btrfs_super_generation(fs_info->super_copy) + 1);
1189 		return -EUCLEAN;
1190 	}
1191 	if (unlikely(btrfs_root_generation_v2(&ri) >
1192 		     btrfs_super_generation(fs_info->super_copy) + 1)) {
1193 		generic_err(leaf, slot,
1194 		"invalid root v2 generation, have %llu expect (0, %llu]",
1195 			    btrfs_root_generation_v2(&ri),
1196 			    btrfs_super_generation(fs_info->super_copy) + 1);
1197 		return -EUCLEAN;
1198 	}
1199 	if (unlikely(btrfs_root_last_snapshot(&ri) >
1200 		     btrfs_super_generation(fs_info->super_copy) + 1)) {
1201 		generic_err(leaf, slot,
1202 		"invalid root last_snapshot, have %llu expect (0, %llu]",
1203 			    btrfs_root_last_snapshot(&ri),
1204 			    btrfs_super_generation(fs_info->super_copy) + 1);
1205 		return -EUCLEAN;
1206 	}
1207 
1208 	/* Alignment and level check */
1209 	if (unlikely(!IS_ALIGNED(btrfs_root_bytenr(&ri), fs_info->sectorsize))) {
1210 		generic_err(leaf, slot,
1211 		"invalid root bytenr, have %llu expect to be aligned to %u",
1212 			    btrfs_root_bytenr(&ri), fs_info->sectorsize);
1213 		return -EUCLEAN;
1214 	}
1215 	if (unlikely(btrfs_root_level(&ri) >= BTRFS_MAX_LEVEL)) {
1216 		generic_err(leaf, slot,
1217 			    "invalid root level, have %u expect [0, %u]",
1218 			    btrfs_root_level(&ri), BTRFS_MAX_LEVEL - 1);
1219 		return -EUCLEAN;
1220 	}
1221 	if (unlikely(btrfs_root_drop_level(&ri) >= BTRFS_MAX_LEVEL)) {
1222 		generic_err(leaf, slot,
1223 			    "invalid root level, have %u expect [0, %u]",
1224 			    btrfs_root_drop_level(&ri), BTRFS_MAX_LEVEL - 1);
1225 		return -EUCLEAN;
1226 	}
1227 
1228 	/* Flags check */
1229 	if (unlikely(btrfs_root_flags(&ri) & ~valid_root_flags)) {
1230 		generic_err(leaf, slot,
1231 			    "invalid root flags, have 0x%llx expect mask 0x%llx",
1232 			    btrfs_root_flags(&ri), valid_root_flags);
1233 		return -EUCLEAN;
1234 	}
1235 	return 0;
1236 }
1237 
1238 __printf(3,4)
1239 __cold
1240 static void extent_err(const struct extent_buffer *eb, int slot,
1241 		       const char *fmt, ...)
1242 {
1243 	struct btrfs_key key;
1244 	struct va_format vaf;
1245 	va_list args;
1246 	u64 bytenr;
1247 	u64 len;
1248 
1249 	btrfs_item_key_to_cpu(eb, &key, slot);
1250 	bytenr = key.objectid;
1251 	if (key.type == BTRFS_METADATA_ITEM_KEY ||
1252 	    key.type == BTRFS_TREE_BLOCK_REF_KEY ||
1253 	    key.type == BTRFS_SHARED_BLOCK_REF_KEY)
1254 		len = eb->fs_info->nodesize;
1255 	else
1256 		len = key.offset;
1257 	va_start(args, fmt);
1258 
1259 	vaf.fmt = fmt;
1260 	vaf.va = &args;
1261 
1262 	btrfs_crit(eb->fs_info,
1263 	"corrupt %s: block=%llu slot=%d extent bytenr=%llu len=%llu %pV",
1264 		btrfs_header_level(eb) == 0 ? "leaf" : "node",
1265 		eb->start, slot, bytenr, len, &vaf);
1266 	va_end(args);
1267 }
1268 
1269 static int check_extent_item(struct extent_buffer *leaf,
1270 			     struct btrfs_key *key, int slot,
1271 			     struct btrfs_key *prev_key)
1272 {
1273 	struct btrfs_fs_info *fs_info = leaf->fs_info;
1274 	struct btrfs_extent_item *ei;
1275 	bool is_tree_block = false;
1276 	unsigned long ptr;	/* Current pointer inside inline refs */
1277 	unsigned long end;	/* Extent item end */
1278 	const u32 item_size = btrfs_item_size(leaf, slot);
1279 	u64 flags;
1280 	u64 generation;
1281 	u64 total_refs;		/* Total refs in btrfs_extent_item */
1282 	u64 inline_refs = 0;	/* found total inline refs */
1283 
1284 	if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY &&
1285 		     !btrfs_fs_incompat(fs_info, SKINNY_METADATA))) {
1286 		generic_err(leaf, slot,
1287 "invalid key type, METADATA_ITEM type invalid when SKINNY_METADATA feature disabled");
1288 		return -EUCLEAN;
1289 	}
1290 	/* key->objectid is the bytenr for both key types */
1291 	if (unlikely(!IS_ALIGNED(key->objectid, fs_info->sectorsize))) {
1292 		generic_err(leaf, slot,
1293 		"invalid key objectid, have %llu expect to be aligned to %u",
1294 			   key->objectid, fs_info->sectorsize);
1295 		return -EUCLEAN;
1296 	}
1297 
1298 	/* key->offset is tree level for METADATA_ITEM_KEY */
1299 	if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY &&
1300 		     key->offset >= BTRFS_MAX_LEVEL)) {
1301 		extent_err(leaf, slot,
1302 			   "invalid tree level, have %llu expect [0, %u]",
1303 			   key->offset, BTRFS_MAX_LEVEL - 1);
1304 		return -EUCLEAN;
1305 	}
1306 
1307 	/*
1308 	 * EXTENT/METADATA_ITEM consists of:
1309 	 * 1) One btrfs_extent_item
1310 	 *    Records the total refs, type and generation of the extent.
1311 	 *
1312 	 * 2) One btrfs_tree_block_info (for EXTENT_ITEM and tree backref only)
1313 	 *    Records the first key and level of the tree block.
1314 	 *
1315 	 * 2) Zero or more btrfs_extent_inline_ref(s)
1316 	 *    Each inline ref has one btrfs_extent_inline_ref shows:
1317 	 *    2.1) The ref type, one of the 4
1318 	 *         TREE_BLOCK_REF	Tree block only
1319 	 *         SHARED_BLOCK_REF	Tree block only
1320 	 *         EXTENT_DATA_REF	Data only
1321 	 *         SHARED_DATA_REF	Data only
1322 	 *    2.2) Ref type specific data
1323 	 *         Either using btrfs_extent_inline_ref::offset, or specific
1324 	 *         data structure.
1325 	 */
1326 	if (unlikely(item_size < sizeof(*ei))) {
1327 		extent_err(leaf, slot,
1328 			   "invalid item size, have %u expect [%zu, %u)",
1329 			   item_size, sizeof(*ei),
1330 			   BTRFS_LEAF_DATA_SIZE(fs_info));
1331 		return -EUCLEAN;
1332 	}
1333 	end = item_size + btrfs_item_ptr_offset(leaf, slot);
1334 
1335 	/* Checks against extent_item */
1336 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
1337 	flags = btrfs_extent_flags(leaf, ei);
1338 	total_refs = btrfs_extent_refs(leaf, ei);
1339 	generation = btrfs_extent_generation(leaf, ei);
1340 	if (unlikely(generation >
1341 		     btrfs_super_generation(fs_info->super_copy) + 1)) {
1342 		extent_err(leaf, slot,
1343 			   "invalid generation, have %llu expect (0, %llu]",
1344 			   generation,
1345 			   btrfs_super_generation(fs_info->super_copy) + 1);
1346 		return -EUCLEAN;
1347 	}
1348 	if (unlikely(!has_single_bit_set(flags & (BTRFS_EXTENT_FLAG_DATA |
1349 						  BTRFS_EXTENT_FLAG_TREE_BLOCK)))) {
1350 		extent_err(leaf, slot,
1351 		"invalid extent flag, have 0x%llx expect 1 bit set in 0x%llx",
1352 			flags, BTRFS_EXTENT_FLAG_DATA |
1353 			BTRFS_EXTENT_FLAG_TREE_BLOCK);
1354 		return -EUCLEAN;
1355 	}
1356 	is_tree_block = !!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK);
1357 	if (is_tree_block) {
1358 		if (unlikely(key->type == BTRFS_EXTENT_ITEM_KEY &&
1359 			     key->offset != fs_info->nodesize)) {
1360 			extent_err(leaf, slot,
1361 				   "invalid extent length, have %llu expect %u",
1362 				   key->offset, fs_info->nodesize);
1363 			return -EUCLEAN;
1364 		}
1365 	} else {
1366 		if (unlikely(key->type != BTRFS_EXTENT_ITEM_KEY)) {
1367 			extent_err(leaf, slot,
1368 			"invalid key type, have %u expect %u for data backref",
1369 				   key->type, BTRFS_EXTENT_ITEM_KEY);
1370 			return -EUCLEAN;
1371 		}
1372 		if (unlikely(!IS_ALIGNED(key->offset, fs_info->sectorsize))) {
1373 			extent_err(leaf, slot,
1374 			"invalid extent length, have %llu expect aligned to %u",
1375 				   key->offset, fs_info->sectorsize);
1376 			return -EUCLEAN;
1377 		}
1378 		if (unlikely(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1379 			extent_err(leaf, slot,
1380 			"invalid extent flag, data has full backref set");
1381 			return -EUCLEAN;
1382 		}
1383 	}
1384 	ptr = (unsigned long)(struct btrfs_extent_item *)(ei + 1);
1385 
1386 	/* Check the special case of btrfs_tree_block_info */
1387 	if (is_tree_block && key->type != BTRFS_METADATA_ITEM_KEY) {
1388 		struct btrfs_tree_block_info *info;
1389 
1390 		info = (struct btrfs_tree_block_info *)ptr;
1391 		if (unlikely(btrfs_tree_block_level(leaf, info) >= BTRFS_MAX_LEVEL)) {
1392 			extent_err(leaf, slot,
1393 			"invalid tree block info level, have %u expect [0, %u]",
1394 				   btrfs_tree_block_level(leaf, info),
1395 				   BTRFS_MAX_LEVEL - 1);
1396 			return -EUCLEAN;
1397 		}
1398 		ptr = (unsigned long)(struct btrfs_tree_block_info *)(info + 1);
1399 	}
1400 
1401 	/* Check inline refs */
1402 	while (ptr < end) {
1403 		struct btrfs_extent_inline_ref *iref;
1404 		struct btrfs_extent_data_ref *dref;
1405 		struct btrfs_shared_data_ref *sref;
1406 		u64 dref_offset;
1407 		u64 inline_offset;
1408 		u8 inline_type;
1409 
1410 		if (unlikely(ptr + sizeof(*iref) > end)) {
1411 			extent_err(leaf, slot,
1412 "inline ref item overflows extent item, ptr %lu iref size %zu end %lu",
1413 				   ptr, sizeof(*iref), end);
1414 			return -EUCLEAN;
1415 		}
1416 		iref = (struct btrfs_extent_inline_ref *)ptr;
1417 		inline_type = btrfs_extent_inline_ref_type(leaf, iref);
1418 		inline_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1419 		if (unlikely(ptr + btrfs_extent_inline_ref_size(inline_type) > end)) {
1420 			extent_err(leaf, slot,
1421 "inline ref item overflows extent item, ptr %lu iref size %u end %lu",
1422 				   ptr, inline_type, end);
1423 			return -EUCLEAN;
1424 		}
1425 
1426 		switch (inline_type) {
1427 		/* inline_offset is subvolid of the owner, no need to check */
1428 		case BTRFS_TREE_BLOCK_REF_KEY:
1429 			inline_refs++;
1430 			break;
1431 		/* Contains parent bytenr */
1432 		case BTRFS_SHARED_BLOCK_REF_KEY:
1433 			if (unlikely(!IS_ALIGNED(inline_offset,
1434 						 fs_info->sectorsize))) {
1435 				extent_err(leaf, slot,
1436 		"invalid tree parent bytenr, have %llu expect aligned to %u",
1437 					   inline_offset, fs_info->sectorsize);
1438 				return -EUCLEAN;
1439 			}
1440 			inline_refs++;
1441 			break;
1442 		/*
1443 		 * Contains owner subvolid, owner key objectid, adjusted offset.
1444 		 * The only obvious corruption can happen in that offset.
1445 		 */
1446 		case BTRFS_EXTENT_DATA_REF_KEY:
1447 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1448 			dref_offset = btrfs_extent_data_ref_offset(leaf, dref);
1449 			if (unlikely(!IS_ALIGNED(dref_offset,
1450 						 fs_info->sectorsize))) {
1451 				extent_err(leaf, slot,
1452 		"invalid data ref offset, have %llu expect aligned to %u",
1453 					   dref_offset, fs_info->sectorsize);
1454 				return -EUCLEAN;
1455 			}
1456 			inline_refs += btrfs_extent_data_ref_count(leaf, dref);
1457 			break;
1458 		/* Contains parent bytenr and ref count */
1459 		case BTRFS_SHARED_DATA_REF_KEY:
1460 			sref = (struct btrfs_shared_data_ref *)(iref + 1);
1461 			if (unlikely(!IS_ALIGNED(inline_offset,
1462 						 fs_info->sectorsize))) {
1463 				extent_err(leaf, slot,
1464 		"invalid data parent bytenr, have %llu expect aligned to %u",
1465 					   inline_offset, fs_info->sectorsize);
1466 				return -EUCLEAN;
1467 			}
1468 			inline_refs += btrfs_shared_data_ref_count(leaf, sref);
1469 			break;
1470 		case BTRFS_EXTENT_OWNER_REF_KEY:
1471 			WARN_ON(!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
1472 			break;
1473 		default:
1474 			extent_err(leaf, slot, "unknown inline ref type: %u",
1475 				   inline_type);
1476 			return -EUCLEAN;
1477 		}
1478 		ptr += btrfs_extent_inline_ref_size(inline_type);
1479 	}
1480 	/* No padding is allowed */
1481 	if (unlikely(ptr != end)) {
1482 		extent_err(leaf, slot,
1483 			   "invalid extent item size, padding bytes found");
1484 		return -EUCLEAN;
1485 	}
1486 
1487 	/* Finally, check the inline refs against total refs */
1488 	if (unlikely(inline_refs > total_refs)) {
1489 		extent_err(leaf, slot,
1490 			"invalid extent refs, have %llu expect >= inline %llu",
1491 			   total_refs, inline_refs);
1492 		return -EUCLEAN;
1493 	}
1494 
1495 	if ((prev_key->type == BTRFS_EXTENT_ITEM_KEY) ||
1496 	    (prev_key->type == BTRFS_METADATA_ITEM_KEY)) {
1497 		u64 prev_end = prev_key->objectid;
1498 
1499 		if (prev_key->type == BTRFS_METADATA_ITEM_KEY)
1500 			prev_end += fs_info->nodesize;
1501 		else
1502 			prev_end += prev_key->offset;
1503 
1504 		if (unlikely(prev_end > key->objectid)) {
1505 			extent_err(leaf, slot,
1506 	"previous extent [%llu %u %llu] overlaps current extent [%llu %u %llu]",
1507 				   prev_key->objectid, prev_key->type,
1508 				   prev_key->offset, key->objectid, key->type,
1509 				   key->offset);
1510 			return -EUCLEAN;
1511 		}
1512 	}
1513 
1514 	return 0;
1515 }
1516 
1517 static int check_simple_keyed_refs(struct extent_buffer *leaf,
1518 				   struct btrfs_key *key, int slot)
1519 {
1520 	u32 expect_item_size = 0;
1521 
1522 	if (key->type == BTRFS_SHARED_DATA_REF_KEY)
1523 		expect_item_size = sizeof(struct btrfs_shared_data_ref);
1524 
1525 	if (unlikely(btrfs_item_size(leaf, slot) != expect_item_size)) {
1526 		generic_err(leaf, slot,
1527 		"invalid item size, have %u expect %u for key type %u",
1528 			    btrfs_item_size(leaf, slot),
1529 			    expect_item_size, key->type);
1530 		return -EUCLEAN;
1531 	}
1532 	if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) {
1533 		generic_err(leaf, slot,
1534 "invalid key objectid for shared block ref, have %llu expect aligned to %u",
1535 			    key->objectid, leaf->fs_info->sectorsize);
1536 		return -EUCLEAN;
1537 	}
1538 	if (unlikely(key->type != BTRFS_TREE_BLOCK_REF_KEY &&
1539 		     !IS_ALIGNED(key->offset, leaf->fs_info->sectorsize))) {
1540 		extent_err(leaf, slot,
1541 		"invalid tree parent bytenr, have %llu expect aligned to %u",
1542 			   key->offset, leaf->fs_info->sectorsize);
1543 		return -EUCLEAN;
1544 	}
1545 	return 0;
1546 }
1547 
1548 static int check_extent_data_ref(struct extent_buffer *leaf,
1549 				 struct btrfs_key *key, int slot)
1550 {
1551 	struct btrfs_extent_data_ref *dref;
1552 	unsigned long ptr = btrfs_item_ptr_offset(leaf, slot);
1553 	const unsigned long end = ptr + btrfs_item_size(leaf, slot);
1554 
1555 	if (unlikely(btrfs_item_size(leaf, slot) % sizeof(*dref) != 0)) {
1556 		generic_err(leaf, slot,
1557 	"invalid item size, have %u expect aligned to %zu for key type %u",
1558 			    btrfs_item_size(leaf, slot),
1559 			    sizeof(*dref), key->type);
1560 		return -EUCLEAN;
1561 	}
1562 	if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) {
1563 		generic_err(leaf, slot,
1564 "invalid key objectid for shared block ref, have %llu expect aligned to %u",
1565 			    key->objectid, leaf->fs_info->sectorsize);
1566 		return -EUCLEAN;
1567 	}
1568 	for (; ptr < end; ptr += sizeof(*dref)) {
1569 		u64 offset;
1570 
1571 		/*
1572 		 * We cannot check the extent_data_ref hash due to possible
1573 		 * overflow from the leaf due to hash collisions.
1574 		 */
1575 		dref = (struct btrfs_extent_data_ref *)ptr;
1576 		offset = btrfs_extent_data_ref_offset(leaf, dref);
1577 		if (unlikely(!IS_ALIGNED(offset, leaf->fs_info->sectorsize))) {
1578 			extent_err(leaf, slot,
1579 	"invalid extent data backref offset, have %llu expect aligned to %u",
1580 				   offset, leaf->fs_info->sectorsize);
1581 			return -EUCLEAN;
1582 		}
1583 	}
1584 	return 0;
1585 }
1586 
1587 #define inode_ref_err(eb, slot, fmt, args...)			\
1588 	inode_item_err(eb, slot, fmt, ##args)
1589 static int check_inode_ref(struct extent_buffer *leaf,
1590 			   struct btrfs_key *key, struct btrfs_key *prev_key,
1591 			   int slot)
1592 {
1593 	struct btrfs_inode_ref *iref;
1594 	unsigned long ptr;
1595 	unsigned long end;
1596 
1597 	if (unlikely(!check_prev_ino(leaf, key, slot, prev_key)))
1598 		return -EUCLEAN;
1599 	/* namelen can't be 0, so item_size == sizeof() is also invalid */
1600 	if (unlikely(btrfs_item_size(leaf, slot) <= sizeof(*iref))) {
1601 		inode_ref_err(leaf, slot,
1602 			"invalid item size, have %u expect (%zu, %u)",
1603 			btrfs_item_size(leaf, slot),
1604 			sizeof(*iref), BTRFS_LEAF_DATA_SIZE(leaf->fs_info));
1605 		return -EUCLEAN;
1606 	}
1607 
1608 	ptr = btrfs_item_ptr_offset(leaf, slot);
1609 	end = ptr + btrfs_item_size(leaf, slot);
1610 	while (ptr < end) {
1611 		u16 namelen;
1612 
1613 		if (unlikely(ptr + sizeof(iref) > end)) {
1614 			inode_ref_err(leaf, slot,
1615 			"inode ref overflow, ptr %lu end %lu inode_ref_size %zu",
1616 				ptr, end, sizeof(iref));
1617 			return -EUCLEAN;
1618 		}
1619 
1620 		iref = (struct btrfs_inode_ref *)ptr;
1621 		namelen = btrfs_inode_ref_name_len(leaf, iref);
1622 		if (unlikely(ptr + sizeof(*iref) + namelen > end)) {
1623 			inode_ref_err(leaf, slot,
1624 				"inode ref overflow, ptr %lu end %lu namelen %u",
1625 				ptr, end, namelen);
1626 			return -EUCLEAN;
1627 		}
1628 
1629 		/*
1630 		 * NOTE: In theory we should record all found index numbers
1631 		 * to find any duplicated indexes, but that will be too time
1632 		 * consuming for inodes with too many hard links.
1633 		 */
1634 		ptr += sizeof(*iref) + namelen;
1635 	}
1636 	return 0;
1637 }
1638 
1639 static int check_raid_stripe_extent(const struct extent_buffer *leaf,
1640 				    const struct btrfs_key *key, int slot)
1641 {
1642 	struct btrfs_stripe_extent *stripe_extent =
1643 		btrfs_item_ptr(leaf, slot, struct btrfs_stripe_extent);
1644 
1645 	if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) {
1646 		generic_err(leaf, slot,
1647 "invalid key objectid for raid stripe extent, have %llu expect aligned to %u",
1648 			    key->objectid, leaf->fs_info->sectorsize);
1649 		return -EUCLEAN;
1650 	}
1651 
1652 	if (unlikely(!btrfs_fs_incompat(leaf->fs_info, RAID_STRIPE_TREE))) {
1653 		generic_err(leaf, slot,
1654 	"RAID_STRIPE_EXTENT present but RAID_STRIPE_TREE incompat bit unset");
1655 		return -EUCLEAN;
1656 	}
1657 
1658 	switch (btrfs_stripe_extent_encoding(leaf, stripe_extent)) {
1659 	case BTRFS_STRIPE_RAID0:
1660 	case BTRFS_STRIPE_RAID1:
1661 	case BTRFS_STRIPE_DUP:
1662 	case BTRFS_STRIPE_RAID10:
1663 	case BTRFS_STRIPE_RAID5:
1664 	case BTRFS_STRIPE_RAID6:
1665 	case BTRFS_STRIPE_RAID1C3:
1666 	case BTRFS_STRIPE_RAID1C4:
1667 		break;
1668 	default:
1669 		generic_err(leaf, slot, "invalid raid stripe encoding %u",
1670 			    btrfs_stripe_extent_encoding(leaf, stripe_extent));
1671 		return -EUCLEAN;
1672 	}
1673 
1674 	return 0;
1675 }
1676 
1677 /*
1678  * Common point to switch the item-specific validation.
1679  */
1680 static enum btrfs_tree_block_status check_leaf_item(struct extent_buffer *leaf,
1681 						    struct btrfs_key *key,
1682 						    int slot,
1683 						    struct btrfs_key *prev_key)
1684 {
1685 	int ret = 0;
1686 	struct btrfs_chunk *chunk;
1687 
1688 	switch (key->type) {
1689 	case BTRFS_EXTENT_DATA_KEY:
1690 		ret = check_extent_data_item(leaf, key, slot, prev_key);
1691 		break;
1692 	case BTRFS_EXTENT_CSUM_KEY:
1693 		ret = check_csum_item(leaf, key, slot, prev_key);
1694 		break;
1695 	case BTRFS_DIR_ITEM_KEY:
1696 	case BTRFS_DIR_INDEX_KEY:
1697 	case BTRFS_XATTR_ITEM_KEY:
1698 		ret = check_dir_item(leaf, key, prev_key, slot);
1699 		break;
1700 	case BTRFS_INODE_REF_KEY:
1701 		ret = check_inode_ref(leaf, key, prev_key, slot);
1702 		break;
1703 	case BTRFS_BLOCK_GROUP_ITEM_KEY:
1704 		ret = check_block_group_item(leaf, key, slot);
1705 		break;
1706 	case BTRFS_CHUNK_ITEM_KEY:
1707 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
1708 		ret = check_leaf_chunk_item(leaf, chunk, key, slot);
1709 		break;
1710 	case BTRFS_DEV_ITEM_KEY:
1711 		ret = check_dev_item(leaf, key, slot);
1712 		break;
1713 	case BTRFS_INODE_ITEM_KEY:
1714 		ret = check_inode_item(leaf, key, slot);
1715 		break;
1716 	case BTRFS_ROOT_ITEM_KEY:
1717 		ret = check_root_item(leaf, key, slot);
1718 		break;
1719 	case BTRFS_EXTENT_ITEM_KEY:
1720 	case BTRFS_METADATA_ITEM_KEY:
1721 		ret = check_extent_item(leaf, key, slot, prev_key);
1722 		break;
1723 	case BTRFS_TREE_BLOCK_REF_KEY:
1724 	case BTRFS_SHARED_DATA_REF_KEY:
1725 	case BTRFS_SHARED_BLOCK_REF_KEY:
1726 		ret = check_simple_keyed_refs(leaf, key, slot);
1727 		break;
1728 	case BTRFS_EXTENT_DATA_REF_KEY:
1729 		ret = check_extent_data_ref(leaf, key, slot);
1730 		break;
1731 	case BTRFS_RAID_STRIPE_KEY:
1732 		ret = check_raid_stripe_extent(leaf, key, slot);
1733 		break;
1734 	}
1735 
1736 	if (ret)
1737 		return BTRFS_TREE_BLOCK_INVALID_ITEM;
1738 	return BTRFS_TREE_BLOCK_CLEAN;
1739 }
1740 
1741 enum btrfs_tree_block_status __btrfs_check_leaf(struct extent_buffer *leaf)
1742 {
1743 	struct btrfs_fs_info *fs_info = leaf->fs_info;
1744 	/* No valid key type is 0, so all key should be larger than this key */
1745 	struct btrfs_key prev_key = {0, 0, 0};
1746 	struct btrfs_key key;
1747 	u32 nritems = btrfs_header_nritems(leaf);
1748 	int slot;
1749 
1750 	if (unlikely(btrfs_header_level(leaf) != 0)) {
1751 		generic_err(leaf, 0,
1752 			"invalid level for leaf, have %d expect 0",
1753 			btrfs_header_level(leaf));
1754 		return BTRFS_TREE_BLOCK_INVALID_LEVEL;
1755 	}
1756 
1757 	/*
1758 	 * Extent buffers from a relocation tree have a owner field that
1759 	 * corresponds to the subvolume tree they are based on. So just from an
1760 	 * extent buffer alone we can not find out what is the id of the
1761 	 * corresponding subvolume tree, so we can not figure out if the extent
1762 	 * buffer corresponds to the root of the relocation tree or not. So
1763 	 * skip this check for relocation trees.
1764 	 */
1765 	if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) {
1766 		u64 owner = btrfs_header_owner(leaf);
1767 
1768 		/* These trees must never be empty */
1769 		if (unlikely(owner == BTRFS_ROOT_TREE_OBJECTID ||
1770 			     owner == BTRFS_CHUNK_TREE_OBJECTID ||
1771 			     owner == BTRFS_DEV_TREE_OBJECTID ||
1772 			     owner == BTRFS_FS_TREE_OBJECTID ||
1773 			     owner == BTRFS_DATA_RELOC_TREE_OBJECTID)) {
1774 			generic_err(leaf, 0,
1775 			"invalid root, root %llu must never be empty",
1776 				    owner);
1777 			return BTRFS_TREE_BLOCK_INVALID_NRITEMS;
1778 		}
1779 
1780 		/* Unknown tree */
1781 		if (unlikely(owner == 0)) {
1782 			generic_err(leaf, 0,
1783 				"invalid owner, root 0 is not defined");
1784 			return BTRFS_TREE_BLOCK_INVALID_OWNER;
1785 		}
1786 
1787 		/* EXTENT_TREE_V2 can have empty extent trees. */
1788 		if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
1789 			return BTRFS_TREE_BLOCK_CLEAN;
1790 
1791 		if (unlikely(owner == BTRFS_EXTENT_TREE_OBJECTID)) {
1792 			generic_err(leaf, 0,
1793 			"invalid root, root %llu must never be empty",
1794 				    owner);
1795 			return BTRFS_TREE_BLOCK_INVALID_NRITEMS;
1796 		}
1797 
1798 		return BTRFS_TREE_BLOCK_CLEAN;
1799 	}
1800 
1801 	if (unlikely(nritems == 0))
1802 		return BTRFS_TREE_BLOCK_CLEAN;
1803 
1804 	/*
1805 	 * Check the following things to make sure this is a good leaf, and
1806 	 * leaf users won't need to bother with similar sanity checks:
1807 	 *
1808 	 * 1) key ordering
1809 	 * 2) item offset and size
1810 	 *    No overlap, no hole, all inside the leaf.
1811 	 * 3) item content
1812 	 *    If possible, do comprehensive sanity check.
1813 	 *    NOTE: All checks must only rely on the item data itself.
1814 	 */
1815 	for (slot = 0; slot < nritems; slot++) {
1816 		u32 item_end_expected;
1817 		u64 item_data_end;
1818 
1819 		btrfs_item_key_to_cpu(leaf, &key, slot);
1820 
1821 		/* Make sure the keys are in the right order */
1822 		if (unlikely(btrfs_comp_cpu_keys(&prev_key, &key) >= 0)) {
1823 			generic_err(leaf, slot,
1824 	"bad key order, prev (%llu %u %llu) current (%llu %u %llu)",
1825 				prev_key.objectid, prev_key.type,
1826 				prev_key.offset, key.objectid, key.type,
1827 				key.offset);
1828 			return BTRFS_TREE_BLOCK_BAD_KEY_ORDER;
1829 		}
1830 
1831 		item_data_end = (u64)btrfs_item_offset(leaf, slot) +
1832 				btrfs_item_size(leaf, slot);
1833 		/*
1834 		 * Make sure the offset and ends are right, remember that the
1835 		 * item data starts at the end of the leaf and grows towards the
1836 		 * front.
1837 		 */
1838 		if (slot == 0)
1839 			item_end_expected = BTRFS_LEAF_DATA_SIZE(fs_info);
1840 		else
1841 			item_end_expected = btrfs_item_offset(leaf,
1842 								 slot - 1);
1843 		if (unlikely(item_data_end != item_end_expected)) {
1844 			generic_err(leaf, slot,
1845 				"unexpected item end, have %llu expect %u",
1846 				item_data_end, item_end_expected);
1847 			return BTRFS_TREE_BLOCK_INVALID_OFFSETS;
1848 		}
1849 
1850 		/*
1851 		 * Check to make sure that we don't point outside of the leaf,
1852 		 * just in case all the items are consistent to each other, but
1853 		 * all point outside of the leaf.
1854 		 */
1855 		if (unlikely(item_data_end > BTRFS_LEAF_DATA_SIZE(fs_info))) {
1856 			generic_err(leaf, slot,
1857 			"slot end outside of leaf, have %llu expect range [0, %u]",
1858 				item_data_end, BTRFS_LEAF_DATA_SIZE(fs_info));
1859 			return BTRFS_TREE_BLOCK_INVALID_OFFSETS;
1860 		}
1861 
1862 		/* Also check if the item pointer overlaps with btrfs item. */
1863 		if (unlikely(btrfs_item_ptr_offset(leaf, slot) <
1864 			     btrfs_item_nr_offset(leaf, slot) + sizeof(struct btrfs_item))) {
1865 			generic_err(leaf, slot,
1866 		"slot overlaps with its data, item end %lu data start %lu",
1867 				btrfs_item_nr_offset(leaf, slot) +
1868 				sizeof(struct btrfs_item),
1869 				btrfs_item_ptr_offset(leaf, slot));
1870 			return BTRFS_TREE_BLOCK_INVALID_OFFSETS;
1871 		}
1872 
1873 		/*
1874 		 * We only want to do this if WRITTEN is set, otherwise the leaf
1875 		 * may be in some intermediate state and won't appear valid.
1876 		 */
1877 		if (btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_WRITTEN)) {
1878 			enum btrfs_tree_block_status ret;
1879 
1880 			/*
1881 			 * Check if the item size and content meet other
1882 			 * criteria
1883 			 */
1884 			ret = check_leaf_item(leaf, &key, slot, &prev_key);
1885 			if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN))
1886 				return ret;
1887 		}
1888 
1889 		prev_key.objectid = key.objectid;
1890 		prev_key.type = key.type;
1891 		prev_key.offset = key.offset;
1892 	}
1893 
1894 	return BTRFS_TREE_BLOCK_CLEAN;
1895 }
1896 
1897 int btrfs_check_leaf(struct extent_buffer *leaf)
1898 {
1899 	enum btrfs_tree_block_status ret;
1900 
1901 	ret = __btrfs_check_leaf(leaf);
1902 	if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN))
1903 		return -EUCLEAN;
1904 	return 0;
1905 }
1906 ALLOW_ERROR_INJECTION(btrfs_check_leaf, ERRNO);
1907 
1908 enum btrfs_tree_block_status __btrfs_check_node(struct extent_buffer *node)
1909 {
1910 	struct btrfs_fs_info *fs_info = node->fs_info;
1911 	unsigned long nr = btrfs_header_nritems(node);
1912 	struct btrfs_key key, next_key;
1913 	int slot;
1914 	int level = btrfs_header_level(node);
1915 	u64 bytenr;
1916 
1917 	if (unlikely(level <= 0 || level >= BTRFS_MAX_LEVEL)) {
1918 		generic_err(node, 0,
1919 			"invalid level for node, have %d expect [1, %d]",
1920 			level, BTRFS_MAX_LEVEL - 1);
1921 		return BTRFS_TREE_BLOCK_INVALID_LEVEL;
1922 	}
1923 	if (unlikely(nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(fs_info))) {
1924 		btrfs_crit(fs_info,
1925 "corrupt node: root=%llu block=%llu, nritems too %s, have %lu expect range [1,%u]",
1926 			   btrfs_header_owner(node), node->start,
1927 			   nr == 0 ? "small" : "large", nr,
1928 			   BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1929 		return BTRFS_TREE_BLOCK_INVALID_NRITEMS;
1930 	}
1931 
1932 	for (slot = 0; slot < nr - 1; slot++) {
1933 		bytenr = btrfs_node_blockptr(node, slot);
1934 		btrfs_node_key_to_cpu(node, &key, slot);
1935 		btrfs_node_key_to_cpu(node, &next_key, slot + 1);
1936 
1937 		if (unlikely(!bytenr)) {
1938 			generic_err(node, slot,
1939 				"invalid NULL node pointer");
1940 			return BTRFS_TREE_BLOCK_INVALID_BLOCKPTR;
1941 		}
1942 		if (unlikely(!IS_ALIGNED(bytenr, fs_info->sectorsize))) {
1943 			generic_err(node, slot,
1944 			"unaligned pointer, have %llu should be aligned to %u",
1945 				bytenr, fs_info->sectorsize);
1946 			return BTRFS_TREE_BLOCK_INVALID_BLOCKPTR;
1947 		}
1948 
1949 		if (unlikely(btrfs_comp_cpu_keys(&key, &next_key) >= 0)) {
1950 			generic_err(node, slot,
1951 	"bad key order, current (%llu %u %llu) next (%llu %u %llu)",
1952 				key.objectid, key.type, key.offset,
1953 				next_key.objectid, next_key.type,
1954 				next_key.offset);
1955 			return BTRFS_TREE_BLOCK_BAD_KEY_ORDER;
1956 		}
1957 	}
1958 	return BTRFS_TREE_BLOCK_CLEAN;
1959 }
1960 
1961 int btrfs_check_node(struct extent_buffer *node)
1962 {
1963 	enum btrfs_tree_block_status ret;
1964 
1965 	ret = __btrfs_check_node(node);
1966 	if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN))
1967 		return -EUCLEAN;
1968 	return 0;
1969 }
1970 ALLOW_ERROR_INJECTION(btrfs_check_node, ERRNO);
1971 
1972 int btrfs_check_eb_owner(const struct extent_buffer *eb, u64 root_owner)
1973 {
1974 	const bool is_subvol = is_fstree(root_owner);
1975 	const u64 eb_owner = btrfs_header_owner(eb);
1976 
1977 	/*
1978 	 * Skip dummy fs, as selftests don't create unique ebs for each dummy
1979 	 * root.
1980 	 */
1981 	if (test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &eb->fs_info->fs_state))
1982 		return 0;
1983 	/*
1984 	 * There are several call sites (backref walking, qgroup, and data
1985 	 * reloc) passing 0 as @root_owner, as they are not holding the
1986 	 * tree root.  In that case, we can not do a reliable ownership check,
1987 	 * so just exit.
1988 	 */
1989 	if (root_owner == 0)
1990 		return 0;
1991 	/*
1992 	 * These trees use key.offset as their owner, our callers don't have
1993 	 * the extra capacity to pass key.offset here.  So we just skip them.
1994 	 */
1995 	if (root_owner == BTRFS_TREE_LOG_OBJECTID ||
1996 	    root_owner == BTRFS_TREE_RELOC_OBJECTID)
1997 		return 0;
1998 
1999 	if (!is_subvol) {
2000 		/* For non-subvolume trees, the eb owner should match root owner */
2001 		if (unlikely(root_owner != eb_owner)) {
2002 			btrfs_crit(eb->fs_info,
2003 "corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect %llu",
2004 				btrfs_header_level(eb) == 0 ? "leaf" : "node",
2005 				root_owner, btrfs_header_bytenr(eb), eb_owner,
2006 				root_owner);
2007 			return -EUCLEAN;
2008 		}
2009 		return 0;
2010 	}
2011 
2012 	/*
2013 	 * For subvolume trees, owners can mismatch, but they should all belong
2014 	 * to subvolume trees.
2015 	 */
2016 	if (unlikely(is_subvol != is_fstree(eb_owner))) {
2017 		btrfs_crit(eb->fs_info,
2018 "corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect [%llu, %llu]",
2019 			btrfs_header_level(eb) == 0 ? "leaf" : "node",
2020 			root_owner, btrfs_header_bytenr(eb), eb_owner,
2021 			BTRFS_FIRST_FREE_OBJECTID, BTRFS_LAST_FREE_OBJECTID);
2022 		return -EUCLEAN;
2023 	}
2024 	return 0;
2025 }
2026 
2027 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
2028 			   struct btrfs_key *first_key, u64 parent_transid)
2029 {
2030 	struct btrfs_fs_info *fs_info = eb->fs_info;
2031 	int found_level;
2032 	struct btrfs_key found_key;
2033 	int ret;
2034 
2035 	found_level = btrfs_header_level(eb);
2036 	if (found_level != level) {
2037 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
2038 		     KERN_ERR "BTRFS: tree level check failed\n");
2039 		btrfs_err(fs_info,
2040 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
2041 			  eb->start, level, found_level);
2042 		return -EIO;
2043 	}
2044 
2045 	if (!first_key)
2046 		return 0;
2047 
2048 	/*
2049 	 * For live tree block (new tree blocks in current transaction),
2050 	 * we need proper lock context to avoid race, which is impossible here.
2051 	 * So we only checks tree blocks which is read from disk, whose
2052 	 * generation <= fs_info->last_trans_committed.
2053 	 */
2054 	if (btrfs_header_generation(eb) > btrfs_get_last_trans_committed(fs_info))
2055 		return 0;
2056 
2057 	/* We have @first_key, so this @eb must have at least one item */
2058 	if (btrfs_header_nritems(eb) == 0) {
2059 		btrfs_err(fs_info,
2060 		"invalid tree nritems, bytenr=%llu nritems=0 expect >0",
2061 			  eb->start);
2062 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2063 		return -EUCLEAN;
2064 	}
2065 
2066 	if (found_level)
2067 		btrfs_node_key_to_cpu(eb, &found_key, 0);
2068 	else
2069 		btrfs_item_key_to_cpu(eb, &found_key, 0);
2070 	ret = btrfs_comp_cpu_keys(first_key, &found_key);
2071 
2072 	if (ret) {
2073 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
2074 		     KERN_ERR "BTRFS: tree first key check failed\n");
2075 		btrfs_err(fs_info,
2076 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
2077 			  eb->start, parent_transid, first_key->objectid,
2078 			  first_key->type, first_key->offset,
2079 			  found_key.objectid, found_key.type,
2080 			  found_key.offset);
2081 	}
2082 	return ret;
2083 }
2084