1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) Qu Wenruo 2017. All rights reserved. 4 */ 5 6 /* 7 * The module is used to catch unexpected/corrupted tree block data. 8 * Such behavior can be caused either by a fuzzed image or bugs. 9 * 10 * The objective is to do leaf/node validation checks when tree block is read 11 * from disk, and check *every* possible member, so other code won't 12 * need to checking them again. 13 * 14 * Due to the potential and unwanted damage, every checker needs to be 15 * carefully reviewed otherwise so it does not prevent mount of valid images. 16 */ 17 18 #include <linux/types.h> 19 #include <linux/stddef.h> 20 #include <linux/error-injection.h> 21 #include "messages.h" 22 #include "ctree.h" 23 #include "tree-checker.h" 24 #include "compression.h" 25 #include "volumes.h" 26 #include "misc.h" 27 #include "fs.h" 28 #include "accessors.h" 29 #include "file-item.h" 30 #include "inode-item.h" 31 #include "dir-item.h" 32 #include "extent-tree.h" 33 34 /* 35 * Error message should follow the following format: 36 * corrupt <type>: <identifier>, <reason>[, <bad_value>] 37 * 38 * @type: leaf or node 39 * @identifier: the necessary info to locate the leaf/node. 40 * It's recommended to decode key.objecitd/offset if it's 41 * meaningful. 42 * @reason: describe the error 43 * @bad_value: optional, it's recommended to output bad value and its 44 * expected value (range). 45 * 46 * Since comma is used to separate the components, only space is allowed 47 * inside each component. 48 */ 49 50 /* 51 * Append generic "corrupt leaf/node root=%llu block=%llu slot=%d: " to @fmt. 52 * Allows callers to customize the output. 53 */ 54 __printf(3, 4) 55 __cold 56 static void generic_err(const struct extent_buffer *eb, int slot, 57 const char *fmt, ...) 58 { 59 const struct btrfs_fs_info *fs_info = eb->fs_info; 60 struct va_format vaf; 61 va_list args; 62 63 va_start(args, fmt); 64 65 vaf.fmt = fmt; 66 vaf.va = &args; 67 68 dump_page(folio_page(eb->folios[0], 0), "eb page dump"); 69 btrfs_crit(fs_info, 70 "corrupt %s: root=%llu block=%llu slot=%d, %pV", 71 btrfs_header_level(eb) == 0 ? "leaf" : "node", 72 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, &vaf); 73 va_end(args); 74 } 75 76 /* 77 * Customized reporter for extent data item, since its key objectid and 78 * offset has its own meaning. 79 */ 80 __printf(3, 4) 81 __cold 82 static void file_extent_err(const struct extent_buffer *eb, int slot, 83 const char *fmt, ...) 84 { 85 const struct btrfs_fs_info *fs_info = eb->fs_info; 86 struct btrfs_key key; 87 struct va_format vaf; 88 va_list args; 89 90 btrfs_item_key_to_cpu(eb, &key, slot); 91 va_start(args, fmt); 92 93 vaf.fmt = fmt; 94 vaf.va = &args; 95 96 dump_page(folio_page(eb->folios[0], 0), "eb page dump"); 97 btrfs_crit(fs_info, 98 "corrupt %s: root=%llu block=%llu slot=%d ino=%llu file_offset=%llu, %pV", 99 btrfs_header_level(eb) == 0 ? "leaf" : "node", 100 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, 101 key.objectid, key.offset, &vaf); 102 va_end(args); 103 } 104 105 /* 106 * Return 0 if the btrfs_file_extent_##name is aligned to @alignment 107 * Else return 1 108 */ 109 #define CHECK_FE_ALIGNED(leaf, slot, fi, name, alignment) \ 110 ({ \ 111 if (unlikely(!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), \ 112 (alignment)))) \ 113 file_extent_err((leaf), (slot), \ 114 "invalid %s for file extent, have %llu, should be aligned to %u", \ 115 (#name), btrfs_file_extent_##name((leaf), (fi)), \ 116 (alignment)); \ 117 (!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), (alignment))); \ 118 }) 119 120 static u64 file_extent_end(struct extent_buffer *leaf, 121 struct btrfs_key *key, 122 struct btrfs_file_extent_item *extent) 123 { 124 u64 end; 125 u64 len; 126 127 if (btrfs_file_extent_type(leaf, extent) == BTRFS_FILE_EXTENT_INLINE) { 128 len = btrfs_file_extent_ram_bytes(leaf, extent); 129 end = ALIGN(key->offset + len, leaf->fs_info->sectorsize); 130 } else { 131 len = btrfs_file_extent_num_bytes(leaf, extent); 132 end = key->offset + len; 133 } 134 return end; 135 } 136 137 /* 138 * Customized report for dir_item, the only new important information is 139 * key->objectid, which represents inode number 140 */ 141 __printf(3, 4) 142 __cold 143 static void dir_item_err(const struct extent_buffer *eb, int slot, 144 const char *fmt, ...) 145 { 146 const struct btrfs_fs_info *fs_info = eb->fs_info; 147 struct btrfs_key key; 148 struct va_format vaf; 149 va_list args; 150 151 btrfs_item_key_to_cpu(eb, &key, slot); 152 va_start(args, fmt); 153 154 vaf.fmt = fmt; 155 vaf.va = &args; 156 157 dump_page(folio_page(eb->folios[0], 0), "eb page dump"); 158 btrfs_crit(fs_info, 159 "corrupt %s: root=%llu block=%llu slot=%d ino=%llu, %pV", 160 btrfs_header_level(eb) == 0 ? "leaf" : "node", 161 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, 162 key.objectid, &vaf); 163 va_end(args); 164 } 165 166 /* 167 * This functions checks prev_key->objectid, to ensure current key and prev_key 168 * share the same objectid as inode number. 169 * 170 * This is to detect missing INODE_ITEM in subvolume trees. 171 * 172 * Return true if everything is OK or we don't need to check. 173 * Return false if anything is wrong. 174 */ 175 static bool check_prev_ino(struct extent_buffer *leaf, 176 struct btrfs_key *key, int slot, 177 struct btrfs_key *prev_key) 178 { 179 /* No prev key, skip check */ 180 if (slot == 0) 181 return true; 182 183 /* Only these key->types needs to be checked */ 184 ASSERT(key->type == BTRFS_XATTR_ITEM_KEY || 185 key->type == BTRFS_INODE_REF_KEY || 186 key->type == BTRFS_DIR_INDEX_KEY || 187 key->type == BTRFS_DIR_ITEM_KEY || 188 key->type == BTRFS_EXTENT_DATA_KEY); 189 190 /* 191 * Only subvolume trees along with their reloc trees need this check. 192 * Things like log tree doesn't follow this ino requirement. 193 */ 194 if (!is_fstree(btrfs_header_owner(leaf))) 195 return true; 196 197 if (key->objectid == prev_key->objectid) 198 return true; 199 200 /* Error found */ 201 dir_item_err(leaf, slot, 202 "invalid previous key objectid, have %llu expect %llu", 203 prev_key->objectid, key->objectid); 204 return false; 205 } 206 static int check_extent_data_item(struct extent_buffer *leaf, 207 struct btrfs_key *key, int slot, 208 struct btrfs_key *prev_key) 209 { 210 struct btrfs_fs_info *fs_info = leaf->fs_info; 211 struct btrfs_file_extent_item *fi; 212 u32 sectorsize = fs_info->sectorsize; 213 u32 item_size = btrfs_item_size(leaf, slot); 214 u64 extent_end; 215 216 if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) { 217 file_extent_err(leaf, slot, 218 "unaligned file_offset for file extent, have %llu should be aligned to %u", 219 key->offset, sectorsize); 220 return -EUCLEAN; 221 } 222 223 /* 224 * Previous key must have the same key->objectid (ino). 225 * It can be XATTR_ITEM, INODE_ITEM or just another EXTENT_DATA. 226 * But if objectids mismatch, it means we have a missing 227 * INODE_ITEM. 228 */ 229 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key))) 230 return -EUCLEAN; 231 232 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 233 234 /* 235 * Make sure the item contains at least inline header, so the file 236 * extent type is not some garbage. 237 */ 238 if (unlikely(item_size < BTRFS_FILE_EXTENT_INLINE_DATA_START)) { 239 file_extent_err(leaf, slot, 240 "invalid item size, have %u expect [%zu, %u)", 241 item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START, 242 SZ_4K); 243 return -EUCLEAN; 244 } 245 if (unlikely(btrfs_file_extent_type(leaf, fi) >= 246 BTRFS_NR_FILE_EXTENT_TYPES)) { 247 file_extent_err(leaf, slot, 248 "invalid type for file extent, have %u expect range [0, %u]", 249 btrfs_file_extent_type(leaf, fi), 250 BTRFS_NR_FILE_EXTENT_TYPES - 1); 251 return -EUCLEAN; 252 } 253 254 /* 255 * Support for new compression/encryption must introduce incompat flag, 256 * and must be caught in open_ctree(). 257 */ 258 if (unlikely(btrfs_file_extent_compression(leaf, fi) >= 259 BTRFS_NR_COMPRESS_TYPES)) { 260 file_extent_err(leaf, slot, 261 "invalid compression for file extent, have %u expect range [0, %u]", 262 btrfs_file_extent_compression(leaf, fi), 263 BTRFS_NR_COMPRESS_TYPES - 1); 264 return -EUCLEAN; 265 } 266 if (unlikely(btrfs_file_extent_encryption(leaf, fi))) { 267 file_extent_err(leaf, slot, 268 "invalid encryption for file extent, have %u expect 0", 269 btrfs_file_extent_encryption(leaf, fi)); 270 return -EUCLEAN; 271 } 272 if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) { 273 /* Inline extent must have 0 as key offset */ 274 if (unlikely(key->offset)) { 275 file_extent_err(leaf, slot, 276 "invalid file_offset for inline file extent, have %llu expect 0", 277 key->offset); 278 return -EUCLEAN; 279 } 280 281 /* Compressed inline extent has no on-disk size, skip it */ 282 if (btrfs_file_extent_compression(leaf, fi) != 283 BTRFS_COMPRESS_NONE) 284 return 0; 285 286 /* Uncompressed inline extent size must match item size */ 287 if (unlikely(item_size != BTRFS_FILE_EXTENT_INLINE_DATA_START + 288 btrfs_file_extent_ram_bytes(leaf, fi))) { 289 file_extent_err(leaf, slot, 290 "invalid ram_bytes for uncompressed inline extent, have %u expect %llu", 291 item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START + 292 btrfs_file_extent_ram_bytes(leaf, fi)); 293 return -EUCLEAN; 294 } 295 return 0; 296 } 297 298 /* Regular or preallocated extent has fixed item size */ 299 if (unlikely(item_size != sizeof(*fi))) { 300 file_extent_err(leaf, slot, 301 "invalid item size for reg/prealloc file extent, have %u expect %zu", 302 item_size, sizeof(*fi)); 303 return -EUCLEAN; 304 } 305 if (unlikely(CHECK_FE_ALIGNED(leaf, slot, fi, ram_bytes, sectorsize) || 306 CHECK_FE_ALIGNED(leaf, slot, fi, disk_bytenr, sectorsize) || 307 CHECK_FE_ALIGNED(leaf, slot, fi, disk_num_bytes, sectorsize) || 308 CHECK_FE_ALIGNED(leaf, slot, fi, offset, sectorsize) || 309 CHECK_FE_ALIGNED(leaf, slot, fi, num_bytes, sectorsize))) 310 return -EUCLEAN; 311 312 /* Catch extent end overflow */ 313 if (unlikely(check_add_overflow(btrfs_file_extent_num_bytes(leaf, fi), 314 key->offset, &extent_end))) { 315 file_extent_err(leaf, slot, 316 "extent end overflow, have file offset %llu extent num bytes %llu", 317 key->offset, 318 btrfs_file_extent_num_bytes(leaf, fi)); 319 return -EUCLEAN; 320 } 321 322 /* 323 * Check that no two consecutive file extent items, in the same leaf, 324 * present ranges that overlap each other. 325 */ 326 if (slot > 0 && 327 prev_key->objectid == key->objectid && 328 prev_key->type == BTRFS_EXTENT_DATA_KEY) { 329 struct btrfs_file_extent_item *prev_fi; 330 u64 prev_end; 331 332 prev_fi = btrfs_item_ptr(leaf, slot - 1, 333 struct btrfs_file_extent_item); 334 prev_end = file_extent_end(leaf, prev_key, prev_fi); 335 if (unlikely(prev_end > key->offset)) { 336 file_extent_err(leaf, slot - 1, 337 "file extent end range (%llu) goes beyond start offset (%llu) of the next file extent", 338 prev_end, key->offset); 339 return -EUCLEAN; 340 } 341 } 342 343 /* 344 * For non-compressed data extents, ram_bytes should match its 345 * disk_num_bytes. 346 * However we do not really utilize ram_bytes in this case, so this check 347 * is only optional for DEBUG builds for developers to catch the 348 * unexpected behaviors. 349 */ 350 if (IS_ENABLED(CONFIG_BTRFS_DEBUG) && 351 btrfs_file_extent_compression(leaf, fi) == BTRFS_COMPRESS_NONE && 352 btrfs_file_extent_disk_bytenr(leaf, fi)) { 353 if (WARN_ON(btrfs_file_extent_ram_bytes(leaf, fi) != 354 btrfs_file_extent_disk_num_bytes(leaf, fi))) 355 file_extent_err(leaf, slot, 356 "mismatch ram_bytes (%llu) and disk_num_bytes (%llu) for non-compressed extent", 357 btrfs_file_extent_ram_bytes(leaf, fi), 358 btrfs_file_extent_disk_num_bytes(leaf, fi)); 359 } 360 361 return 0; 362 } 363 364 static int check_csum_item(struct extent_buffer *leaf, struct btrfs_key *key, 365 int slot, struct btrfs_key *prev_key) 366 { 367 struct btrfs_fs_info *fs_info = leaf->fs_info; 368 u32 sectorsize = fs_info->sectorsize; 369 const u32 csumsize = fs_info->csum_size; 370 371 if (unlikely(key->objectid != BTRFS_EXTENT_CSUM_OBJECTID)) { 372 generic_err(leaf, slot, 373 "invalid key objectid for csum item, have %llu expect %llu", 374 key->objectid, BTRFS_EXTENT_CSUM_OBJECTID); 375 return -EUCLEAN; 376 } 377 if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) { 378 generic_err(leaf, slot, 379 "unaligned key offset for csum item, have %llu should be aligned to %u", 380 key->offset, sectorsize); 381 return -EUCLEAN; 382 } 383 if (unlikely(!IS_ALIGNED(btrfs_item_size(leaf, slot), csumsize))) { 384 generic_err(leaf, slot, 385 "unaligned item size for csum item, have %u should be aligned to %u", 386 btrfs_item_size(leaf, slot), csumsize); 387 return -EUCLEAN; 388 } 389 if (slot > 0 && prev_key->type == BTRFS_EXTENT_CSUM_KEY) { 390 u64 prev_csum_end; 391 u32 prev_item_size; 392 393 prev_item_size = btrfs_item_size(leaf, slot - 1); 394 prev_csum_end = (prev_item_size / csumsize) * sectorsize; 395 prev_csum_end += prev_key->offset; 396 if (unlikely(prev_csum_end > key->offset)) { 397 generic_err(leaf, slot - 1, 398 "csum end range (%llu) goes beyond the start range (%llu) of the next csum item", 399 prev_csum_end, key->offset); 400 return -EUCLEAN; 401 } 402 } 403 return 0; 404 } 405 406 /* Inode item error output has the same format as dir_item_err() */ 407 #define inode_item_err(eb, slot, fmt, ...) \ 408 dir_item_err(eb, slot, fmt, __VA_ARGS__) 409 410 static int check_inode_key(struct extent_buffer *leaf, struct btrfs_key *key, 411 int slot) 412 { 413 struct btrfs_key item_key; 414 bool is_inode_item; 415 416 btrfs_item_key_to_cpu(leaf, &item_key, slot); 417 is_inode_item = (item_key.type == BTRFS_INODE_ITEM_KEY); 418 419 /* For XATTR_ITEM, location key should be all 0 */ 420 if (item_key.type == BTRFS_XATTR_ITEM_KEY) { 421 if (unlikely(key->objectid != 0 || key->type != 0 || 422 key->offset != 0)) 423 return -EUCLEAN; 424 return 0; 425 } 426 427 if (unlikely((key->objectid < BTRFS_FIRST_FREE_OBJECTID || 428 key->objectid > BTRFS_LAST_FREE_OBJECTID) && 429 key->objectid != BTRFS_ROOT_TREE_DIR_OBJECTID && 430 key->objectid != BTRFS_FREE_INO_OBJECTID)) { 431 if (is_inode_item) { 432 generic_err(leaf, slot, 433 "invalid key objectid: has %llu expect %llu or [%llu, %llu] or %llu", 434 key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID, 435 BTRFS_FIRST_FREE_OBJECTID, 436 BTRFS_LAST_FREE_OBJECTID, 437 BTRFS_FREE_INO_OBJECTID); 438 } else { 439 dir_item_err(leaf, slot, 440 "invalid location key objectid: has %llu expect %llu or [%llu, %llu] or %llu", 441 key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID, 442 BTRFS_FIRST_FREE_OBJECTID, 443 BTRFS_LAST_FREE_OBJECTID, 444 BTRFS_FREE_INO_OBJECTID); 445 } 446 return -EUCLEAN; 447 } 448 if (unlikely(key->offset != 0)) { 449 if (is_inode_item) 450 inode_item_err(leaf, slot, 451 "invalid key offset: has %llu expect 0", 452 key->offset); 453 else 454 dir_item_err(leaf, slot, 455 "invalid location key offset:has %llu expect 0", 456 key->offset); 457 return -EUCLEAN; 458 } 459 return 0; 460 } 461 462 static int check_root_key(struct extent_buffer *leaf, struct btrfs_key *key, 463 int slot) 464 { 465 struct btrfs_key item_key; 466 bool is_root_item; 467 468 btrfs_item_key_to_cpu(leaf, &item_key, slot); 469 is_root_item = (item_key.type == BTRFS_ROOT_ITEM_KEY); 470 471 /* 472 * Bad rootid for reloc trees. 473 * 474 * Reloc trees are only for subvolume trees, other trees only need 475 * to be COWed to be relocated. 476 */ 477 if (unlikely(is_root_item && key->objectid == BTRFS_TREE_RELOC_OBJECTID && 478 !is_fstree(key->offset))) { 479 generic_err(leaf, slot, 480 "invalid reloc tree for root %lld, root id is not a subvolume tree", 481 key->offset); 482 return -EUCLEAN; 483 } 484 485 /* No such tree id */ 486 if (unlikely(key->objectid == 0)) { 487 if (is_root_item) 488 generic_err(leaf, slot, "invalid root id 0"); 489 else 490 dir_item_err(leaf, slot, 491 "invalid location key root id 0"); 492 return -EUCLEAN; 493 } 494 495 /* DIR_ITEM/INDEX/INODE_REF is not allowed to point to non-fs trees */ 496 if (unlikely(!is_fstree(key->objectid) && !is_root_item)) { 497 dir_item_err(leaf, slot, 498 "invalid location key objectid, have %llu expect [%llu, %llu]", 499 key->objectid, BTRFS_FIRST_FREE_OBJECTID, 500 BTRFS_LAST_FREE_OBJECTID); 501 return -EUCLEAN; 502 } 503 504 /* 505 * ROOT_ITEM with non-zero offset means this is a snapshot, created at 506 * @offset transid. 507 * Furthermore, for location key in DIR_ITEM, its offset is always -1. 508 * 509 * So here we only check offset for reloc tree whose key->offset must 510 * be a valid tree. 511 */ 512 if (unlikely(key->objectid == BTRFS_TREE_RELOC_OBJECTID && 513 key->offset == 0)) { 514 generic_err(leaf, slot, "invalid root id 0 for reloc tree"); 515 return -EUCLEAN; 516 } 517 return 0; 518 } 519 520 static int check_dir_item(struct extent_buffer *leaf, 521 struct btrfs_key *key, struct btrfs_key *prev_key, 522 int slot) 523 { 524 struct btrfs_fs_info *fs_info = leaf->fs_info; 525 struct btrfs_dir_item *di; 526 u32 item_size = btrfs_item_size(leaf, slot); 527 u32 cur = 0; 528 529 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key))) 530 return -EUCLEAN; 531 532 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 533 while (cur < item_size) { 534 struct btrfs_key location_key; 535 u32 name_len; 536 u32 data_len; 537 u32 max_name_len; 538 u32 total_size; 539 u32 name_hash; 540 u8 dir_type; 541 int ret; 542 543 /* header itself should not cross item boundary */ 544 if (unlikely(cur + sizeof(*di) > item_size)) { 545 dir_item_err(leaf, slot, 546 "dir item header crosses item boundary, have %zu boundary %u", 547 cur + sizeof(*di), item_size); 548 return -EUCLEAN; 549 } 550 551 /* Location key check */ 552 btrfs_dir_item_key_to_cpu(leaf, di, &location_key); 553 if (location_key.type == BTRFS_ROOT_ITEM_KEY) { 554 ret = check_root_key(leaf, &location_key, slot); 555 if (unlikely(ret < 0)) 556 return ret; 557 } else if (location_key.type == BTRFS_INODE_ITEM_KEY || 558 location_key.type == 0) { 559 ret = check_inode_key(leaf, &location_key, slot); 560 if (unlikely(ret < 0)) 561 return ret; 562 } else { 563 dir_item_err(leaf, slot, 564 "invalid location key type, have %u, expect %u or %u", 565 location_key.type, BTRFS_ROOT_ITEM_KEY, 566 BTRFS_INODE_ITEM_KEY); 567 return -EUCLEAN; 568 } 569 570 /* dir type check */ 571 dir_type = btrfs_dir_ftype(leaf, di); 572 if (unlikely(dir_type <= BTRFS_FT_UNKNOWN || 573 dir_type >= BTRFS_FT_MAX)) { 574 dir_item_err(leaf, slot, 575 "invalid dir item type, have %u expect (0, %u)", 576 dir_type, BTRFS_FT_MAX); 577 return -EUCLEAN; 578 } 579 580 if (unlikely(key->type == BTRFS_XATTR_ITEM_KEY && 581 dir_type != BTRFS_FT_XATTR)) { 582 dir_item_err(leaf, slot, 583 "invalid dir item type for XATTR key, have %u expect %u", 584 dir_type, BTRFS_FT_XATTR); 585 return -EUCLEAN; 586 } 587 if (unlikely(dir_type == BTRFS_FT_XATTR && 588 key->type != BTRFS_XATTR_ITEM_KEY)) { 589 dir_item_err(leaf, slot, 590 "xattr dir type found for non-XATTR key"); 591 return -EUCLEAN; 592 } 593 if (dir_type == BTRFS_FT_XATTR) 594 max_name_len = XATTR_NAME_MAX; 595 else 596 max_name_len = BTRFS_NAME_LEN; 597 598 /* Name/data length check */ 599 name_len = btrfs_dir_name_len(leaf, di); 600 data_len = btrfs_dir_data_len(leaf, di); 601 if (unlikely(name_len > max_name_len)) { 602 dir_item_err(leaf, slot, 603 "dir item name len too long, have %u max %u", 604 name_len, max_name_len); 605 return -EUCLEAN; 606 } 607 if (unlikely(name_len + data_len > BTRFS_MAX_XATTR_SIZE(fs_info))) { 608 dir_item_err(leaf, slot, 609 "dir item name and data len too long, have %u max %u", 610 name_len + data_len, 611 BTRFS_MAX_XATTR_SIZE(fs_info)); 612 return -EUCLEAN; 613 } 614 615 if (unlikely(data_len && dir_type != BTRFS_FT_XATTR)) { 616 dir_item_err(leaf, slot, 617 "dir item with invalid data len, have %u expect 0", 618 data_len); 619 return -EUCLEAN; 620 } 621 622 total_size = sizeof(*di) + name_len + data_len; 623 624 /* header and name/data should not cross item boundary */ 625 if (unlikely(cur + total_size > item_size)) { 626 dir_item_err(leaf, slot, 627 "dir item data crosses item boundary, have %u boundary %u", 628 cur + total_size, item_size); 629 return -EUCLEAN; 630 } 631 632 /* 633 * Special check for XATTR/DIR_ITEM, as key->offset is name 634 * hash, should match its name 635 */ 636 if (key->type == BTRFS_DIR_ITEM_KEY || 637 key->type == BTRFS_XATTR_ITEM_KEY) { 638 char namebuf[MAX(BTRFS_NAME_LEN, XATTR_NAME_MAX)]; 639 640 read_extent_buffer(leaf, namebuf, 641 (unsigned long)(di + 1), name_len); 642 name_hash = btrfs_name_hash(namebuf, name_len); 643 if (unlikely(key->offset != name_hash)) { 644 dir_item_err(leaf, slot, 645 "name hash mismatch with key, have 0x%016x expect 0x%016llx", 646 name_hash, key->offset); 647 return -EUCLEAN; 648 } 649 } 650 cur += total_size; 651 di = (struct btrfs_dir_item *)((void *)di + total_size); 652 } 653 return 0; 654 } 655 656 __printf(3, 4) 657 __cold 658 static void block_group_err(const struct extent_buffer *eb, int slot, 659 const char *fmt, ...) 660 { 661 const struct btrfs_fs_info *fs_info = eb->fs_info; 662 struct btrfs_key key; 663 struct va_format vaf; 664 va_list args; 665 666 btrfs_item_key_to_cpu(eb, &key, slot); 667 va_start(args, fmt); 668 669 vaf.fmt = fmt; 670 vaf.va = &args; 671 672 dump_page(folio_page(eb->folios[0], 0), "eb page dump"); 673 btrfs_crit(fs_info, 674 "corrupt %s: root=%llu block=%llu slot=%d bg_start=%llu bg_len=%llu, %pV", 675 btrfs_header_level(eb) == 0 ? "leaf" : "node", 676 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, 677 key.objectid, key.offset, &vaf); 678 va_end(args); 679 } 680 681 static int check_block_group_item(struct extent_buffer *leaf, 682 struct btrfs_key *key, int slot) 683 { 684 struct btrfs_fs_info *fs_info = leaf->fs_info; 685 struct btrfs_block_group_item bgi; 686 u32 item_size = btrfs_item_size(leaf, slot); 687 u64 chunk_objectid; 688 u64 flags; 689 u64 type; 690 691 /* 692 * Here we don't really care about alignment since extent allocator can 693 * handle it. We care more about the size. 694 */ 695 if (unlikely(key->offset == 0)) { 696 block_group_err(leaf, slot, 697 "invalid block group size 0"); 698 return -EUCLEAN; 699 } 700 701 if (unlikely(item_size != sizeof(bgi))) { 702 block_group_err(leaf, slot, 703 "invalid item size, have %u expect %zu", 704 item_size, sizeof(bgi)); 705 return -EUCLEAN; 706 } 707 708 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot), 709 sizeof(bgi)); 710 chunk_objectid = btrfs_stack_block_group_chunk_objectid(&bgi); 711 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 712 /* 713 * We don't init the nr_global_roots until we load the global 714 * roots, so this could be 0 at mount time. If it's 0 we'll 715 * just assume we're fine, and later we'll check against our 716 * actual value. 717 */ 718 if (unlikely(fs_info->nr_global_roots && 719 chunk_objectid >= fs_info->nr_global_roots)) { 720 block_group_err(leaf, slot, 721 "invalid block group global root id, have %llu, needs to be <= %llu", 722 chunk_objectid, 723 fs_info->nr_global_roots); 724 return -EUCLEAN; 725 } 726 } else if (unlikely(chunk_objectid != BTRFS_FIRST_CHUNK_TREE_OBJECTID)) { 727 block_group_err(leaf, slot, 728 "invalid block group chunk objectid, have %llu expect %llu", 729 btrfs_stack_block_group_chunk_objectid(&bgi), 730 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 731 return -EUCLEAN; 732 } 733 734 if (unlikely(btrfs_stack_block_group_used(&bgi) > key->offset)) { 735 block_group_err(leaf, slot, 736 "invalid block group used, have %llu expect [0, %llu)", 737 btrfs_stack_block_group_used(&bgi), key->offset); 738 return -EUCLEAN; 739 } 740 741 flags = btrfs_stack_block_group_flags(&bgi); 742 if (unlikely(hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) > 1)) { 743 block_group_err(leaf, slot, 744 "invalid profile flags, have 0x%llx (%lu bits set) expect no more than 1 bit set", 745 flags & BTRFS_BLOCK_GROUP_PROFILE_MASK, 746 hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)); 747 return -EUCLEAN; 748 } 749 750 type = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 751 if (unlikely(type != BTRFS_BLOCK_GROUP_DATA && 752 type != BTRFS_BLOCK_GROUP_METADATA && 753 type != BTRFS_BLOCK_GROUP_SYSTEM && 754 type != (BTRFS_BLOCK_GROUP_METADATA | 755 BTRFS_BLOCK_GROUP_DATA))) { 756 block_group_err(leaf, slot, 757 "invalid type, have 0x%llx (%lu bits set) expect either 0x%llx, 0x%llx, 0x%llx or 0x%llx", 758 type, hweight64(type), 759 BTRFS_BLOCK_GROUP_DATA, BTRFS_BLOCK_GROUP_METADATA, 760 BTRFS_BLOCK_GROUP_SYSTEM, 761 BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA); 762 return -EUCLEAN; 763 } 764 return 0; 765 } 766 767 __printf(4, 5) 768 __cold 769 static void chunk_err(const struct extent_buffer *leaf, 770 const struct btrfs_chunk *chunk, u64 logical, 771 const char *fmt, ...) 772 { 773 const struct btrfs_fs_info *fs_info = leaf->fs_info; 774 bool is_sb; 775 struct va_format vaf; 776 va_list args; 777 int i; 778 int slot = -1; 779 780 /* Only superblock eb is able to have such small offset */ 781 is_sb = (leaf->start == BTRFS_SUPER_INFO_OFFSET); 782 783 if (!is_sb) { 784 /* 785 * Get the slot number by iterating through all slots, this 786 * would provide better readability. 787 */ 788 for (i = 0; i < btrfs_header_nritems(leaf); i++) { 789 if (btrfs_item_ptr_offset(leaf, i) == 790 (unsigned long)chunk) { 791 slot = i; 792 break; 793 } 794 } 795 } 796 va_start(args, fmt); 797 vaf.fmt = fmt; 798 vaf.va = &args; 799 800 if (is_sb) 801 btrfs_crit(fs_info, 802 "corrupt superblock syschunk array: chunk_start=%llu, %pV", 803 logical, &vaf); 804 else 805 btrfs_crit(fs_info, 806 "corrupt leaf: root=%llu block=%llu slot=%d chunk_start=%llu, %pV", 807 BTRFS_CHUNK_TREE_OBJECTID, leaf->start, slot, 808 logical, &vaf); 809 va_end(args); 810 } 811 812 /* 813 * The common chunk check which could also work on super block sys chunk array. 814 * 815 * Return -EUCLEAN if anything is corrupted. 816 * Return 0 if everything is OK. 817 */ 818 int btrfs_check_chunk_valid(struct extent_buffer *leaf, 819 struct btrfs_chunk *chunk, u64 logical) 820 { 821 struct btrfs_fs_info *fs_info = leaf->fs_info; 822 u64 length; 823 u64 chunk_end; 824 u64 stripe_len; 825 u16 num_stripes; 826 u16 sub_stripes; 827 u64 type; 828 u64 features; 829 bool mixed = false; 830 int raid_index; 831 int nparity; 832 int ncopies; 833 834 length = btrfs_chunk_length(leaf, chunk); 835 stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 836 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 837 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 838 type = btrfs_chunk_type(leaf, chunk); 839 raid_index = btrfs_bg_flags_to_raid_index(type); 840 ncopies = btrfs_raid_array[raid_index].ncopies; 841 nparity = btrfs_raid_array[raid_index].nparity; 842 843 if (unlikely(!num_stripes)) { 844 chunk_err(leaf, chunk, logical, 845 "invalid chunk num_stripes, have %u", num_stripes); 846 return -EUCLEAN; 847 } 848 if (unlikely(num_stripes < ncopies)) { 849 chunk_err(leaf, chunk, logical, 850 "invalid chunk num_stripes < ncopies, have %u < %d", 851 num_stripes, ncopies); 852 return -EUCLEAN; 853 } 854 if (unlikely(nparity && num_stripes == nparity)) { 855 chunk_err(leaf, chunk, logical, 856 "invalid chunk num_stripes == nparity, have %u == %d", 857 num_stripes, nparity); 858 return -EUCLEAN; 859 } 860 if (unlikely(!IS_ALIGNED(logical, fs_info->sectorsize))) { 861 chunk_err(leaf, chunk, logical, 862 "invalid chunk logical, have %llu should aligned to %u", 863 logical, fs_info->sectorsize); 864 return -EUCLEAN; 865 } 866 if (unlikely(btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize)) { 867 chunk_err(leaf, chunk, logical, 868 "invalid chunk sectorsize, have %u expect %u", 869 btrfs_chunk_sector_size(leaf, chunk), 870 fs_info->sectorsize); 871 return -EUCLEAN; 872 } 873 if (unlikely(!length || !IS_ALIGNED(length, fs_info->sectorsize))) { 874 chunk_err(leaf, chunk, logical, 875 "invalid chunk length, have %llu", length); 876 return -EUCLEAN; 877 } 878 if (unlikely(check_add_overflow(logical, length, &chunk_end))) { 879 chunk_err(leaf, chunk, logical, 880 "invalid chunk logical start and length, have logical start %llu length %llu", 881 logical, length); 882 return -EUCLEAN; 883 } 884 if (unlikely(!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN)) { 885 chunk_err(leaf, chunk, logical, 886 "invalid chunk stripe length: %llu", 887 stripe_len); 888 return -EUCLEAN; 889 } 890 /* 891 * We artificially limit the chunk size, so that the number of stripes 892 * inside a chunk can be fit into a U32. The current limit (256G) is 893 * way too large for real world usage anyway, and it's also much larger 894 * than our existing limit (10G). 895 * 896 * Thus it should be a good way to catch obvious bitflips. 897 */ 898 if (unlikely(length >= btrfs_stripe_nr_to_offset(U32_MAX))) { 899 chunk_err(leaf, chunk, logical, 900 "chunk length too large: have %llu limit %llu", 901 length, btrfs_stripe_nr_to_offset(U32_MAX)); 902 return -EUCLEAN; 903 } 904 if (unlikely(type & ~(BTRFS_BLOCK_GROUP_TYPE_MASK | 905 BTRFS_BLOCK_GROUP_PROFILE_MASK))) { 906 chunk_err(leaf, chunk, logical, 907 "unrecognized chunk type: 0x%llx", 908 ~(BTRFS_BLOCK_GROUP_TYPE_MASK | 909 BTRFS_BLOCK_GROUP_PROFILE_MASK) & 910 btrfs_chunk_type(leaf, chunk)); 911 return -EUCLEAN; 912 } 913 914 if (unlikely(!has_single_bit_set(type & BTRFS_BLOCK_GROUP_PROFILE_MASK) && 915 (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) != 0)) { 916 chunk_err(leaf, chunk, logical, 917 "invalid chunk profile flag: 0x%llx, expect 0 or 1 bit set", 918 type & BTRFS_BLOCK_GROUP_PROFILE_MASK); 919 return -EUCLEAN; 920 } 921 if (unlikely((type & BTRFS_BLOCK_GROUP_TYPE_MASK) == 0)) { 922 chunk_err(leaf, chunk, logical, 923 "missing chunk type flag, have 0x%llx one bit must be set in 0x%llx", 924 type, BTRFS_BLOCK_GROUP_TYPE_MASK); 925 return -EUCLEAN; 926 } 927 928 if (unlikely((type & BTRFS_BLOCK_GROUP_SYSTEM) && 929 (type & (BTRFS_BLOCK_GROUP_METADATA | 930 BTRFS_BLOCK_GROUP_DATA)))) { 931 chunk_err(leaf, chunk, logical, 932 "system chunk with data or metadata type: 0x%llx", 933 type); 934 return -EUCLEAN; 935 } 936 937 features = btrfs_super_incompat_flags(fs_info->super_copy); 938 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 939 mixed = true; 940 941 if (!mixed) { 942 if (unlikely((type & BTRFS_BLOCK_GROUP_METADATA) && 943 (type & BTRFS_BLOCK_GROUP_DATA))) { 944 chunk_err(leaf, chunk, logical, 945 "mixed chunk type in non-mixed mode: 0x%llx", type); 946 return -EUCLEAN; 947 } 948 } 949 950 if (unlikely((type & BTRFS_BLOCK_GROUP_RAID10 && 951 sub_stripes != btrfs_raid_array[BTRFS_RAID_RAID10].sub_stripes) || 952 (type & BTRFS_BLOCK_GROUP_RAID1 && 953 num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1].devs_min) || 954 (type & BTRFS_BLOCK_GROUP_RAID1C3 && 955 num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C3].devs_min) || 956 (type & BTRFS_BLOCK_GROUP_RAID1C4 && 957 num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C4].devs_min) || 958 (type & BTRFS_BLOCK_GROUP_RAID5 && 959 num_stripes < btrfs_raid_array[BTRFS_RAID_RAID5].devs_min) || 960 (type & BTRFS_BLOCK_GROUP_RAID6 && 961 num_stripes < btrfs_raid_array[BTRFS_RAID_RAID6].devs_min) || 962 (type & BTRFS_BLOCK_GROUP_DUP && 963 num_stripes != btrfs_raid_array[BTRFS_RAID_DUP].dev_stripes) || 964 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 && 965 num_stripes != btrfs_raid_array[BTRFS_RAID_SINGLE].dev_stripes))) { 966 chunk_err(leaf, chunk, logical, 967 "invalid num_stripes:sub_stripes %u:%u for profile %llu", 968 num_stripes, sub_stripes, 969 type & BTRFS_BLOCK_GROUP_PROFILE_MASK); 970 return -EUCLEAN; 971 } 972 973 return 0; 974 } 975 976 /* 977 * Enhanced version of chunk item checker. 978 * 979 * The common btrfs_check_chunk_valid() doesn't check item size since it needs 980 * to work on super block sys_chunk_array which doesn't have full item ptr. 981 */ 982 static int check_leaf_chunk_item(struct extent_buffer *leaf, 983 struct btrfs_chunk *chunk, 984 struct btrfs_key *key, int slot) 985 { 986 int num_stripes; 987 988 if (unlikely(btrfs_item_size(leaf, slot) < sizeof(struct btrfs_chunk))) { 989 chunk_err(leaf, chunk, key->offset, 990 "invalid chunk item size: have %u expect [%zu, %u)", 991 btrfs_item_size(leaf, slot), 992 sizeof(struct btrfs_chunk), 993 BTRFS_LEAF_DATA_SIZE(leaf->fs_info)); 994 return -EUCLEAN; 995 } 996 997 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 998 /* Let btrfs_check_chunk_valid() handle this error type */ 999 if (num_stripes == 0) 1000 goto out; 1001 1002 if (unlikely(btrfs_chunk_item_size(num_stripes) != 1003 btrfs_item_size(leaf, slot))) { 1004 chunk_err(leaf, chunk, key->offset, 1005 "invalid chunk item size: have %u expect %lu", 1006 btrfs_item_size(leaf, slot), 1007 btrfs_chunk_item_size(num_stripes)); 1008 return -EUCLEAN; 1009 } 1010 out: 1011 return btrfs_check_chunk_valid(leaf, chunk, key->offset); 1012 } 1013 1014 __printf(3, 4) 1015 __cold 1016 static void dev_item_err(const struct extent_buffer *eb, int slot, 1017 const char *fmt, ...) 1018 { 1019 struct btrfs_key key; 1020 struct va_format vaf; 1021 va_list args; 1022 1023 btrfs_item_key_to_cpu(eb, &key, slot); 1024 va_start(args, fmt); 1025 1026 vaf.fmt = fmt; 1027 vaf.va = &args; 1028 1029 dump_page(folio_page(eb->folios[0], 0), "eb page dump"); 1030 btrfs_crit(eb->fs_info, 1031 "corrupt %s: root=%llu block=%llu slot=%d devid=%llu %pV", 1032 btrfs_header_level(eb) == 0 ? "leaf" : "node", 1033 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, 1034 key.objectid, &vaf); 1035 va_end(args); 1036 } 1037 1038 static int check_dev_item(struct extent_buffer *leaf, 1039 struct btrfs_key *key, int slot) 1040 { 1041 struct btrfs_dev_item *ditem; 1042 const u32 item_size = btrfs_item_size(leaf, slot); 1043 1044 if (unlikely(key->objectid != BTRFS_DEV_ITEMS_OBJECTID)) { 1045 dev_item_err(leaf, slot, 1046 "invalid objectid: has=%llu expect=%llu", 1047 key->objectid, BTRFS_DEV_ITEMS_OBJECTID); 1048 return -EUCLEAN; 1049 } 1050 1051 if (unlikely(item_size != sizeof(*ditem))) { 1052 dev_item_err(leaf, slot, "invalid item size: has %u expect %zu", 1053 item_size, sizeof(*ditem)); 1054 return -EUCLEAN; 1055 } 1056 1057 ditem = btrfs_item_ptr(leaf, slot, struct btrfs_dev_item); 1058 if (unlikely(btrfs_device_id(leaf, ditem) != key->offset)) { 1059 dev_item_err(leaf, slot, 1060 "devid mismatch: key has=%llu item has=%llu", 1061 key->offset, btrfs_device_id(leaf, ditem)); 1062 return -EUCLEAN; 1063 } 1064 1065 /* 1066 * For device total_bytes, we don't have reliable way to check it, as 1067 * it can be 0 for device removal. Device size check can only be done 1068 * by dev extents check. 1069 */ 1070 if (unlikely(btrfs_device_bytes_used(leaf, ditem) > 1071 btrfs_device_total_bytes(leaf, ditem))) { 1072 dev_item_err(leaf, slot, 1073 "invalid bytes used: have %llu expect [0, %llu]", 1074 btrfs_device_bytes_used(leaf, ditem), 1075 btrfs_device_total_bytes(leaf, ditem)); 1076 return -EUCLEAN; 1077 } 1078 /* 1079 * Remaining members like io_align/type/gen/dev_group aren't really 1080 * utilized. Skip them to make later usage of them easier. 1081 */ 1082 return 0; 1083 } 1084 1085 static int check_inode_item(struct extent_buffer *leaf, 1086 struct btrfs_key *key, int slot) 1087 { 1088 struct btrfs_fs_info *fs_info = leaf->fs_info; 1089 struct btrfs_inode_item *iitem; 1090 u64 super_gen = btrfs_super_generation(fs_info->super_copy); 1091 u32 valid_mask = (S_IFMT | S_ISUID | S_ISGID | S_ISVTX | 0777); 1092 const u32 item_size = btrfs_item_size(leaf, slot); 1093 u32 mode; 1094 int ret; 1095 u32 flags; 1096 u32 ro_flags; 1097 1098 ret = check_inode_key(leaf, key, slot); 1099 if (unlikely(ret < 0)) 1100 return ret; 1101 1102 if (unlikely(item_size != sizeof(*iitem))) { 1103 generic_err(leaf, slot, "invalid item size: has %u expect %zu", 1104 item_size, sizeof(*iitem)); 1105 return -EUCLEAN; 1106 } 1107 1108 iitem = btrfs_item_ptr(leaf, slot, struct btrfs_inode_item); 1109 1110 /* Here we use super block generation + 1 to handle log tree */ 1111 if (unlikely(btrfs_inode_generation(leaf, iitem) > super_gen + 1)) { 1112 inode_item_err(leaf, slot, 1113 "invalid inode generation: has %llu expect (0, %llu]", 1114 btrfs_inode_generation(leaf, iitem), 1115 super_gen + 1); 1116 return -EUCLEAN; 1117 } 1118 /* Note for ROOT_TREE_DIR_ITEM, mkfs could set its transid 0 */ 1119 if (unlikely(btrfs_inode_transid(leaf, iitem) > super_gen + 1)) { 1120 inode_item_err(leaf, slot, 1121 "invalid inode transid: has %llu expect [0, %llu]", 1122 btrfs_inode_transid(leaf, iitem), super_gen + 1); 1123 return -EUCLEAN; 1124 } 1125 1126 /* 1127 * For size and nbytes it's better not to be too strict, as for dir 1128 * item its size/nbytes can easily get wrong, but doesn't affect 1129 * anything in the fs. So here we skip the check. 1130 */ 1131 mode = btrfs_inode_mode(leaf, iitem); 1132 if (unlikely(mode & ~valid_mask)) { 1133 inode_item_err(leaf, slot, 1134 "unknown mode bit detected: 0x%x", 1135 mode & ~valid_mask); 1136 return -EUCLEAN; 1137 } 1138 1139 /* 1140 * S_IFMT is not bit mapped so we can't completely rely on 1141 * is_power_of_2/has_single_bit_set, but it can save us from checking 1142 * FIFO/CHR/DIR/REG. Only needs to check BLK, LNK and SOCKS 1143 */ 1144 if (!has_single_bit_set(mode & S_IFMT)) { 1145 if (unlikely(!S_ISLNK(mode) && !S_ISBLK(mode) && !S_ISSOCK(mode))) { 1146 inode_item_err(leaf, slot, 1147 "invalid mode: has 0%o expect valid S_IF* bit(s)", 1148 mode & S_IFMT); 1149 return -EUCLEAN; 1150 } 1151 } 1152 if (unlikely(S_ISDIR(mode) && btrfs_inode_nlink(leaf, iitem) > 1)) { 1153 inode_item_err(leaf, slot, 1154 "invalid nlink: has %u expect no more than 1 for dir", 1155 btrfs_inode_nlink(leaf, iitem)); 1156 return -EUCLEAN; 1157 } 1158 btrfs_inode_split_flags(btrfs_inode_flags(leaf, iitem), &flags, &ro_flags); 1159 if (unlikely(flags & ~BTRFS_INODE_FLAG_MASK)) { 1160 inode_item_err(leaf, slot, 1161 "unknown incompat flags detected: 0x%x", flags); 1162 return -EUCLEAN; 1163 } 1164 if (unlikely(!sb_rdonly(fs_info->sb) && 1165 (ro_flags & ~BTRFS_INODE_RO_FLAG_MASK))) { 1166 inode_item_err(leaf, slot, 1167 "unknown ro-compat flags detected on writeable mount: 0x%x", 1168 ro_flags); 1169 return -EUCLEAN; 1170 } 1171 return 0; 1172 } 1173 1174 static int check_root_item(struct extent_buffer *leaf, struct btrfs_key *key, 1175 int slot) 1176 { 1177 struct btrfs_fs_info *fs_info = leaf->fs_info; 1178 struct btrfs_root_item ri = { 0 }; 1179 const u64 valid_root_flags = BTRFS_ROOT_SUBVOL_RDONLY | 1180 BTRFS_ROOT_SUBVOL_DEAD; 1181 int ret; 1182 1183 ret = check_root_key(leaf, key, slot); 1184 if (unlikely(ret < 0)) 1185 return ret; 1186 1187 if (unlikely(btrfs_item_size(leaf, slot) != sizeof(ri) && 1188 btrfs_item_size(leaf, slot) != 1189 btrfs_legacy_root_item_size())) { 1190 generic_err(leaf, slot, 1191 "invalid root item size, have %u expect %zu or %u", 1192 btrfs_item_size(leaf, slot), sizeof(ri), 1193 btrfs_legacy_root_item_size()); 1194 return -EUCLEAN; 1195 } 1196 1197 /* 1198 * For legacy root item, the members starting at generation_v2 will be 1199 * all filled with 0. 1200 * And since we allow geneartion_v2 as 0, it will still pass the check. 1201 */ 1202 read_extent_buffer(leaf, &ri, btrfs_item_ptr_offset(leaf, slot), 1203 btrfs_item_size(leaf, slot)); 1204 1205 /* Generation related */ 1206 if (unlikely(btrfs_root_generation(&ri) > 1207 btrfs_super_generation(fs_info->super_copy) + 1)) { 1208 generic_err(leaf, slot, 1209 "invalid root generation, have %llu expect (0, %llu]", 1210 btrfs_root_generation(&ri), 1211 btrfs_super_generation(fs_info->super_copy) + 1); 1212 return -EUCLEAN; 1213 } 1214 if (unlikely(btrfs_root_generation_v2(&ri) > 1215 btrfs_super_generation(fs_info->super_copy) + 1)) { 1216 generic_err(leaf, slot, 1217 "invalid root v2 generation, have %llu expect (0, %llu]", 1218 btrfs_root_generation_v2(&ri), 1219 btrfs_super_generation(fs_info->super_copy) + 1); 1220 return -EUCLEAN; 1221 } 1222 if (unlikely(btrfs_root_last_snapshot(&ri) > 1223 btrfs_super_generation(fs_info->super_copy) + 1)) { 1224 generic_err(leaf, slot, 1225 "invalid root last_snapshot, have %llu expect (0, %llu]", 1226 btrfs_root_last_snapshot(&ri), 1227 btrfs_super_generation(fs_info->super_copy) + 1); 1228 return -EUCLEAN; 1229 } 1230 1231 /* Alignment and level check */ 1232 if (unlikely(!IS_ALIGNED(btrfs_root_bytenr(&ri), fs_info->sectorsize))) { 1233 generic_err(leaf, slot, 1234 "invalid root bytenr, have %llu expect to be aligned to %u", 1235 btrfs_root_bytenr(&ri), fs_info->sectorsize); 1236 return -EUCLEAN; 1237 } 1238 if (unlikely(btrfs_root_level(&ri) >= BTRFS_MAX_LEVEL)) { 1239 generic_err(leaf, slot, 1240 "invalid root level, have %u expect [0, %u]", 1241 btrfs_root_level(&ri), BTRFS_MAX_LEVEL - 1); 1242 return -EUCLEAN; 1243 } 1244 if (unlikely(btrfs_root_drop_level(&ri) >= BTRFS_MAX_LEVEL)) { 1245 generic_err(leaf, slot, 1246 "invalid root level, have %u expect [0, %u]", 1247 btrfs_root_drop_level(&ri), BTRFS_MAX_LEVEL - 1); 1248 return -EUCLEAN; 1249 } 1250 1251 /* Flags check */ 1252 if (unlikely(btrfs_root_flags(&ri) & ~valid_root_flags)) { 1253 generic_err(leaf, slot, 1254 "invalid root flags, have 0x%llx expect mask 0x%llx", 1255 btrfs_root_flags(&ri), valid_root_flags); 1256 return -EUCLEAN; 1257 } 1258 return 0; 1259 } 1260 1261 __printf(3,4) 1262 __cold 1263 static void extent_err(const struct extent_buffer *eb, int slot, 1264 const char *fmt, ...) 1265 { 1266 struct btrfs_key key; 1267 struct va_format vaf; 1268 va_list args; 1269 u64 bytenr; 1270 u64 len; 1271 1272 btrfs_item_key_to_cpu(eb, &key, slot); 1273 bytenr = key.objectid; 1274 if (key.type == BTRFS_METADATA_ITEM_KEY || 1275 key.type == BTRFS_TREE_BLOCK_REF_KEY || 1276 key.type == BTRFS_SHARED_BLOCK_REF_KEY) 1277 len = eb->fs_info->nodesize; 1278 else 1279 len = key.offset; 1280 va_start(args, fmt); 1281 1282 vaf.fmt = fmt; 1283 vaf.va = &args; 1284 1285 dump_page(folio_page(eb->folios[0], 0), "eb page dump"); 1286 btrfs_crit(eb->fs_info, 1287 "corrupt %s: block=%llu slot=%d extent bytenr=%llu len=%llu %pV", 1288 btrfs_header_level(eb) == 0 ? "leaf" : "node", 1289 eb->start, slot, bytenr, len, &vaf); 1290 va_end(args); 1291 } 1292 1293 static bool is_valid_dref_root(u64 rootid) 1294 { 1295 /* 1296 * The following tree root objectids are allowed to have a data backref: 1297 * - subvolume trees 1298 * - data reloc tree 1299 * - tree root 1300 * For v1 space cache 1301 */ 1302 return is_fstree(rootid) || rootid == BTRFS_DATA_RELOC_TREE_OBJECTID || 1303 rootid == BTRFS_ROOT_TREE_OBJECTID; 1304 } 1305 1306 static int check_extent_item(struct extent_buffer *leaf, 1307 struct btrfs_key *key, int slot, 1308 struct btrfs_key *prev_key) 1309 { 1310 struct btrfs_fs_info *fs_info = leaf->fs_info; 1311 struct btrfs_extent_item *ei; 1312 bool is_tree_block = false; 1313 unsigned long ptr; /* Current pointer inside inline refs */ 1314 unsigned long end; /* Extent item end */ 1315 const u32 item_size = btrfs_item_size(leaf, slot); 1316 u8 last_type = 0; 1317 u64 last_seq = U64_MAX; 1318 u64 flags; 1319 u64 generation; 1320 u64 total_refs; /* Total refs in btrfs_extent_item */ 1321 u64 inline_refs = 0; /* found total inline refs */ 1322 1323 if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY && 1324 !btrfs_fs_incompat(fs_info, SKINNY_METADATA))) { 1325 generic_err(leaf, slot, 1326 "invalid key type, METADATA_ITEM type invalid when SKINNY_METADATA feature disabled"); 1327 return -EUCLEAN; 1328 } 1329 /* key->objectid is the bytenr for both key types */ 1330 if (unlikely(!IS_ALIGNED(key->objectid, fs_info->sectorsize))) { 1331 generic_err(leaf, slot, 1332 "invalid key objectid, have %llu expect to be aligned to %u", 1333 key->objectid, fs_info->sectorsize); 1334 return -EUCLEAN; 1335 } 1336 1337 /* key->offset is tree level for METADATA_ITEM_KEY */ 1338 if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY && 1339 key->offset >= BTRFS_MAX_LEVEL)) { 1340 extent_err(leaf, slot, 1341 "invalid tree level, have %llu expect [0, %u]", 1342 key->offset, BTRFS_MAX_LEVEL - 1); 1343 return -EUCLEAN; 1344 } 1345 1346 /* 1347 * EXTENT/METADATA_ITEM consists of: 1348 * 1) One btrfs_extent_item 1349 * Records the total refs, type and generation of the extent. 1350 * 1351 * 2) One btrfs_tree_block_info (for EXTENT_ITEM and tree backref only) 1352 * Records the first key and level of the tree block. 1353 * 1354 * 2) Zero or more btrfs_extent_inline_ref(s) 1355 * Each inline ref has one btrfs_extent_inline_ref shows: 1356 * 2.1) The ref type, one of the 4 1357 * TREE_BLOCK_REF Tree block only 1358 * SHARED_BLOCK_REF Tree block only 1359 * EXTENT_DATA_REF Data only 1360 * SHARED_DATA_REF Data only 1361 * 2.2) Ref type specific data 1362 * Either using btrfs_extent_inline_ref::offset, or specific 1363 * data structure. 1364 * 1365 * All above inline items should follow the order: 1366 * 1367 * - All btrfs_extent_inline_ref::type should be in an ascending 1368 * order 1369 * 1370 * - Within the same type, the items should follow a descending 1371 * order by their sequence number. The sequence number is 1372 * determined by: 1373 * * btrfs_extent_inline_ref::offset for all types other than 1374 * EXTENT_DATA_REF 1375 * * hash_extent_data_ref() for EXTENT_DATA_REF 1376 */ 1377 if (unlikely(item_size < sizeof(*ei))) { 1378 extent_err(leaf, slot, 1379 "invalid item size, have %u expect [%zu, %u)", 1380 item_size, sizeof(*ei), 1381 BTRFS_LEAF_DATA_SIZE(fs_info)); 1382 return -EUCLEAN; 1383 } 1384 end = item_size + btrfs_item_ptr_offset(leaf, slot); 1385 1386 /* Checks against extent_item */ 1387 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 1388 flags = btrfs_extent_flags(leaf, ei); 1389 total_refs = btrfs_extent_refs(leaf, ei); 1390 generation = btrfs_extent_generation(leaf, ei); 1391 if (unlikely(generation > 1392 btrfs_super_generation(fs_info->super_copy) + 1)) { 1393 extent_err(leaf, slot, 1394 "invalid generation, have %llu expect (0, %llu]", 1395 generation, 1396 btrfs_super_generation(fs_info->super_copy) + 1); 1397 return -EUCLEAN; 1398 } 1399 if (unlikely(!has_single_bit_set(flags & (BTRFS_EXTENT_FLAG_DATA | 1400 BTRFS_EXTENT_FLAG_TREE_BLOCK)))) { 1401 extent_err(leaf, slot, 1402 "invalid extent flag, have 0x%llx expect 1 bit set in 0x%llx", 1403 flags, BTRFS_EXTENT_FLAG_DATA | 1404 BTRFS_EXTENT_FLAG_TREE_BLOCK); 1405 return -EUCLEAN; 1406 } 1407 is_tree_block = !!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK); 1408 if (is_tree_block) { 1409 if (unlikely(key->type == BTRFS_EXTENT_ITEM_KEY && 1410 key->offset != fs_info->nodesize)) { 1411 extent_err(leaf, slot, 1412 "invalid extent length, have %llu expect %u", 1413 key->offset, fs_info->nodesize); 1414 return -EUCLEAN; 1415 } 1416 } else { 1417 if (unlikely(key->type != BTRFS_EXTENT_ITEM_KEY)) { 1418 extent_err(leaf, slot, 1419 "invalid key type, have %u expect %u for data backref", 1420 key->type, BTRFS_EXTENT_ITEM_KEY); 1421 return -EUCLEAN; 1422 } 1423 if (unlikely(!IS_ALIGNED(key->offset, fs_info->sectorsize))) { 1424 extent_err(leaf, slot, 1425 "invalid extent length, have %llu expect aligned to %u", 1426 key->offset, fs_info->sectorsize); 1427 return -EUCLEAN; 1428 } 1429 if (unlikely(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 1430 extent_err(leaf, slot, 1431 "invalid extent flag, data has full backref set"); 1432 return -EUCLEAN; 1433 } 1434 } 1435 ptr = (unsigned long)(struct btrfs_extent_item *)(ei + 1); 1436 1437 /* Check the special case of btrfs_tree_block_info */ 1438 if (is_tree_block && key->type != BTRFS_METADATA_ITEM_KEY) { 1439 struct btrfs_tree_block_info *info; 1440 1441 info = (struct btrfs_tree_block_info *)ptr; 1442 if (unlikely(btrfs_tree_block_level(leaf, info) >= BTRFS_MAX_LEVEL)) { 1443 extent_err(leaf, slot, 1444 "invalid tree block info level, have %u expect [0, %u]", 1445 btrfs_tree_block_level(leaf, info), 1446 BTRFS_MAX_LEVEL - 1); 1447 return -EUCLEAN; 1448 } 1449 ptr = (unsigned long)(struct btrfs_tree_block_info *)(info + 1); 1450 } 1451 1452 /* Check inline refs */ 1453 while (ptr < end) { 1454 struct btrfs_extent_inline_ref *iref; 1455 struct btrfs_extent_data_ref *dref; 1456 struct btrfs_shared_data_ref *sref; 1457 u64 seq; 1458 u64 dref_root; 1459 u64 dref_objectid; 1460 u64 dref_offset; 1461 u64 inline_offset; 1462 u8 inline_type; 1463 1464 if (unlikely(ptr + sizeof(*iref) > end)) { 1465 extent_err(leaf, slot, 1466 "inline ref item overflows extent item, ptr %lu iref size %zu end %lu", 1467 ptr, sizeof(*iref), end); 1468 return -EUCLEAN; 1469 } 1470 iref = (struct btrfs_extent_inline_ref *)ptr; 1471 inline_type = btrfs_extent_inline_ref_type(leaf, iref); 1472 inline_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1473 seq = inline_offset; 1474 if (unlikely(ptr + btrfs_extent_inline_ref_size(inline_type) > end)) { 1475 extent_err(leaf, slot, 1476 "inline ref item overflows extent item, ptr %lu iref size %u end %lu", 1477 ptr, btrfs_extent_inline_ref_size(inline_type), end); 1478 return -EUCLEAN; 1479 } 1480 1481 switch (inline_type) { 1482 /* inline_offset is subvolid of the owner, no need to check */ 1483 case BTRFS_TREE_BLOCK_REF_KEY: 1484 inline_refs++; 1485 break; 1486 /* Contains parent bytenr */ 1487 case BTRFS_SHARED_BLOCK_REF_KEY: 1488 if (unlikely(!IS_ALIGNED(inline_offset, 1489 fs_info->sectorsize))) { 1490 extent_err(leaf, slot, 1491 "invalid tree parent bytenr, have %llu expect aligned to %u", 1492 inline_offset, fs_info->sectorsize); 1493 return -EUCLEAN; 1494 } 1495 inline_refs++; 1496 break; 1497 /* 1498 * Contains owner subvolid, owner key objectid, adjusted offset. 1499 * The only obvious corruption can happen in that offset. 1500 */ 1501 case BTRFS_EXTENT_DATA_REF_KEY: 1502 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1503 dref_root = btrfs_extent_data_ref_root(leaf, dref); 1504 dref_objectid = btrfs_extent_data_ref_objectid(leaf, dref); 1505 dref_offset = btrfs_extent_data_ref_offset(leaf, dref); 1506 seq = hash_extent_data_ref( 1507 btrfs_extent_data_ref_root(leaf, dref), 1508 btrfs_extent_data_ref_objectid(leaf, dref), 1509 btrfs_extent_data_ref_offset(leaf, dref)); 1510 if (unlikely(!is_valid_dref_root(dref_root))) { 1511 extent_err(leaf, slot, 1512 "invalid data ref root value %llu", 1513 dref_root); 1514 return -EUCLEAN; 1515 } 1516 if (unlikely(dref_objectid < BTRFS_FIRST_FREE_OBJECTID || 1517 dref_objectid > BTRFS_LAST_FREE_OBJECTID)) { 1518 extent_err(leaf, slot, 1519 "invalid data ref objectid value %llu", 1520 dref_objectid); 1521 return -EUCLEAN; 1522 } 1523 if (unlikely(!IS_ALIGNED(dref_offset, 1524 fs_info->sectorsize))) { 1525 extent_err(leaf, slot, 1526 "invalid data ref offset, have %llu expect aligned to %u", 1527 dref_offset, fs_info->sectorsize); 1528 return -EUCLEAN; 1529 } 1530 if (unlikely(btrfs_extent_data_ref_count(leaf, dref) == 0)) { 1531 extent_err(leaf, slot, 1532 "invalid data ref count, should have non-zero value"); 1533 return -EUCLEAN; 1534 } 1535 inline_refs += btrfs_extent_data_ref_count(leaf, dref); 1536 break; 1537 /* Contains parent bytenr and ref count */ 1538 case BTRFS_SHARED_DATA_REF_KEY: 1539 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1540 if (unlikely(!IS_ALIGNED(inline_offset, 1541 fs_info->sectorsize))) { 1542 extent_err(leaf, slot, 1543 "invalid data parent bytenr, have %llu expect aligned to %u", 1544 inline_offset, fs_info->sectorsize); 1545 return -EUCLEAN; 1546 } 1547 if (unlikely(btrfs_shared_data_ref_count(leaf, sref) == 0)) { 1548 extent_err(leaf, slot, 1549 "invalid shared data ref count, should have non-zero value"); 1550 return -EUCLEAN; 1551 } 1552 inline_refs += btrfs_shared_data_ref_count(leaf, sref); 1553 break; 1554 case BTRFS_EXTENT_OWNER_REF_KEY: 1555 WARN_ON(!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA)); 1556 break; 1557 default: 1558 extent_err(leaf, slot, "unknown inline ref type: %u", 1559 inline_type); 1560 return -EUCLEAN; 1561 } 1562 if (inline_type < last_type) { 1563 extent_err(leaf, slot, 1564 "inline ref out-of-order: has type %u, prev type %u", 1565 inline_type, last_type); 1566 return -EUCLEAN; 1567 } 1568 /* Type changed, allow the sequence starts from U64_MAX again. */ 1569 if (inline_type > last_type) 1570 last_seq = U64_MAX; 1571 if (seq > last_seq) { 1572 extent_err(leaf, slot, 1573 "inline ref out-of-order: has type %u offset %llu seq 0x%llx, prev type %u seq 0x%llx", 1574 inline_type, inline_offset, seq, 1575 last_type, last_seq); 1576 return -EUCLEAN; 1577 } 1578 last_type = inline_type; 1579 last_seq = seq; 1580 ptr += btrfs_extent_inline_ref_size(inline_type); 1581 } 1582 /* No padding is allowed */ 1583 if (unlikely(ptr != end)) { 1584 extent_err(leaf, slot, 1585 "invalid extent item size, padding bytes found"); 1586 return -EUCLEAN; 1587 } 1588 1589 /* Finally, check the inline refs against total refs */ 1590 if (unlikely(inline_refs > total_refs)) { 1591 extent_err(leaf, slot, 1592 "invalid extent refs, have %llu expect >= inline %llu", 1593 total_refs, inline_refs); 1594 return -EUCLEAN; 1595 } 1596 1597 if ((prev_key->type == BTRFS_EXTENT_ITEM_KEY) || 1598 (prev_key->type == BTRFS_METADATA_ITEM_KEY)) { 1599 u64 prev_end = prev_key->objectid; 1600 1601 if (prev_key->type == BTRFS_METADATA_ITEM_KEY) 1602 prev_end += fs_info->nodesize; 1603 else 1604 prev_end += prev_key->offset; 1605 1606 if (unlikely(prev_end > key->objectid)) { 1607 extent_err(leaf, slot, 1608 "previous extent [%llu %u %llu] overlaps current extent [%llu %u %llu]", 1609 prev_key->objectid, prev_key->type, 1610 prev_key->offset, key->objectid, key->type, 1611 key->offset); 1612 return -EUCLEAN; 1613 } 1614 } 1615 1616 return 0; 1617 } 1618 1619 static int check_simple_keyed_refs(struct extent_buffer *leaf, 1620 struct btrfs_key *key, int slot) 1621 { 1622 u32 expect_item_size = 0; 1623 1624 if (key->type == BTRFS_SHARED_DATA_REF_KEY) { 1625 struct btrfs_shared_data_ref *sref; 1626 1627 sref = btrfs_item_ptr(leaf, slot, struct btrfs_shared_data_ref); 1628 if (unlikely(btrfs_shared_data_ref_count(leaf, sref) == 0)) { 1629 extent_err(leaf, slot, 1630 "invalid shared data backref count, should have non-zero value"); 1631 return -EUCLEAN; 1632 } 1633 1634 expect_item_size = sizeof(struct btrfs_shared_data_ref); 1635 } 1636 1637 if (unlikely(btrfs_item_size(leaf, slot) != expect_item_size)) { 1638 generic_err(leaf, slot, 1639 "invalid item size, have %u expect %u for key type %u", 1640 btrfs_item_size(leaf, slot), 1641 expect_item_size, key->type); 1642 return -EUCLEAN; 1643 } 1644 if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) { 1645 generic_err(leaf, slot, 1646 "invalid key objectid for shared block ref, have %llu expect aligned to %u", 1647 key->objectid, leaf->fs_info->sectorsize); 1648 return -EUCLEAN; 1649 } 1650 if (unlikely(key->type != BTRFS_TREE_BLOCK_REF_KEY && 1651 !IS_ALIGNED(key->offset, leaf->fs_info->sectorsize))) { 1652 extent_err(leaf, slot, 1653 "invalid tree parent bytenr, have %llu expect aligned to %u", 1654 key->offset, leaf->fs_info->sectorsize); 1655 return -EUCLEAN; 1656 } 1657 return 0; 1658 } 1659 1660 static int check_extent_data_ref(struct extent_buffer *leaf, 1661 struct btrfs_key *key, int slot) 1662 { 1663 struct btrfs_extent_data_ref *dref; 1664 unsigned long ptr = btrfs_item_ptr_offset(leaf, slot); 1665 const unsigned long end = ptr + btrfs_item_size(leaf, slot); 1666 1667 if (unlikely(btrfs_item_size(leaf, slot) % sizeof(*dref) != 0)) { 1668 generic_err(leaf, slot, 1669 "invalid item size, have %u expect aligned to %zu for key type %u", 1670 btrfs_item_size(leaf, slot), 1671 sizeof(*dref), key->type); 1672 return -EUCLEAN; 1673 } 1674 if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) { 1675 generic_err(leaf, slot, 1676 "invalid key objectid for shared block ref, have %llu expect aligned to %u", 1677 key->objectid, leaf->fs_info->sectorsize); 1678 return -EUCLEAN; 1679 } 1680 for (; ptr < end; ptr += sizeof(*dref)) { 1681 u64 root; 1682 u64 objectid; 1683 u64 offset; 1684 1685 /* 1686 * We cannot check the extent_data_ref hash due to possible 1687 * overflow from the leaf due to hash collisions. 1688 */ 1689 dref = (struct btrfs_extent_data_ref *)ptr; 1690 root = btrfs_extent_data_ref_root(leaf, dref); 1691 objectid = btrfs_extent_data_ref_objectid(leaf, dref); 1692 offset = btrfs_extent_data_ref_offset(leaf, dref); 1693 if (unlikely(!is_valid_dref_root(root))) { 1694 extent_err(leaf, slot, 1695 "invalid extent data backref root value %llu", 1696 root); 1697 return -EUCLEAN; 1698 } 1699 if (unlikely(objectid < BTRFS_FIRST_FREE_OBJECTID || 1700 objectid > BTRFS_LAST_FREE_OBJECTID)) { 1701 extent_err(leaf, slot, 1702 "invalid extent data backref objectid value %llu", 1703 root); 1704 return -EUCLEAN; 1705 } 1706 if (unlikely(!IS_ALIGNED(offset, leaf->fs_info->sectorsize))) { 1707 extent_err(leaf, slot, 1708 "invalid extent data backref offset, have %llu expect aligned to %u", 1709 offset, leaf->fs_info->sectorsize); 1710 return -EUCLEAN; 1711 } 1712 if (unlikely(btrfs_extent_data_ref_count(leaf, dref) == 0)) { 1713 extent_err(leaf, slot, 1714 "invalid extent data backref count, should have non-zero value"); 1715 return -EUCLEAN; 1716 } 1717 } 1718 return 0; 1719 } 1720 1721 #define inode_ref_err(eb, slot, fmt, args...) \ 1722 inode_item_err(eb, slot, fmt, ##args) 1723 static int check_inode_ref(struct extent_buffer *leaf, 1724 struct btrfs_key *key, struct btrfs_key *prev_key, 1725 int slot) 1726 { 1727 struct btrfs_inode_ref *iref; 1728 unsigned long ptr; 1729 unsigned long end; 1730 1731 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key))) 1732 return -EUCLEAN; 1733 /* namelen can't be 0, so item_size == sizeof() is also invalid */ 1734 if (unlikely(btrfs_item_size(leaf, slot) <= sizeof(*iref))) { 1735 inode_ref_err(leaf, slot, 1736 "invalid item size, have %u expect (%zu, %u)", 1737 btrfs_item_size(leaf, slot), 1738 sizeof(*iref), BTRFS_LEAF_DATA_SIZE(leaf->fs_info)); 1739 return -EUCLEAN; 1740 } 1741 1742 ptr = btrfs_item_ptr_offset(leaf, slot); 1743 end = ptr + btrfs_item_size(leaf, slot); 1744 while (ptr < end) { 1745 u16 namelen; 1746 1747 if (unlikely(ptr + sizeof(iref) > end)) { 1748 inode_ref_err(leaf, slot, 1749 "inode ref overflow, ptr %lu end %lu inode_ref_size %zu", 1750 ptr, end, sizeof(iref)); 1751 return -EUCLEAN; 1752 } 1753 1754 iref = (struct btrfs_inode_ref *)ptr; 1755 namelen = btrfs_inode_ref_name_len(leaf, iref); 1756 if (unlikely(ptr + sizeof(*iref) + namelen > end)) { 1757 inode_ref_err(leaf, slot, 1758 "inode ref overflow, ptr %lu end %lu namelen %u", 1759 ptr, end, namelen); 1760 return -EUCLEAN; 1761 } 1762 1763 /* 1764 * NOTE: In theory we should record all found index numbers 1765 * to find any duplicated indexes, but that will be too time 1766 * consuming for inodes with too many hard links. 1767 */ 1768 ptr += sizeof(*iref) + namelen; 1769 } 1770 return 0; 1771 } 1772 1773 static int check_raid_stripe_extent(const struct extent_buffer *leaf, 1774 const struct btrfs_key *key, int slot) 1775 { 1776 if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) { 1777 generic_err(leaf, slot, 1778 "invalid key objectid for raid stripe extent, have %llu expect aligned to %u", 1779 key->objectid, leaf->fs_info->sectorsize); 1780 return -EUCLEAN; 1781 } 1782 1783 if (unlikely(!btrfs_fs_incompat(leaf->fs_info, RAID_STRIPE_TREE))) { 1784 generic_err(leaf, slot, 1785 "RAID_STRIPE_EXTENT present but RAID_STRIPE_TREE incompat bit unset"); 1786 return -EUCLEAN; 1787 } 1788 1789 return 0; 1790 } 1791 1792 static int check_dev_extent_item(const struct extent_buffer *leaf, 1793 const struct btrfs_key *key, 1794 int slot, 1795 struct btrfs_key *prev_key) 1796 { 1797 struct btrfs_dev_extent *de; 1798 const u32 sectorsize = leaf->fs_info->sectorsize; 1799 1800 de = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); 1801 /* Basic fixed member checks. */ 1802 if (unlikely(btrfs_dev_extent_chunk_tree(leaf, de) != 1803 BTRFS_CHUNK_TREE_OBJECTID)) { 1804 generic_err(leaf, slot, 1805 "invalid dev extent chunk tree id, has %llu expect %llu", 1806 btrfs_dev_extent_chunk_tree(leaf, de), 1807 BTRFS_CHUNK_TREE_OBJECTID); 1808 return -EUCLEAN; 1809 } 1810 if (unlikely(btrfs_dev_extent_chunk_objectid(leaf, de) != 1811 BTRFS_FIRST_CHUNK_TREE_OBJECTID)) { 1812 generic_err(leaf, slot, 1813 "invalid dev extent chunk objectid, has %llu expect %llu", 1814 btrfs_dev_extent_chunk_objectid(leaf, de), 1815 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 1816 return -EUCLEAN; 1817 } 1818 /* Alignment check. */ 1819 if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) { 1820 generic_err(leaf, slot, 1821 "invalid dev extent key.offset, has %llu not aligned to %u", 1822 key->offset, sectorsize); 1823 return -EUCLEAN; 1824 } 1825 if (unlikely(!IS_ALIGNED(btrfs_dev_extent_chunk_offset(leaf, de), 1826 sectorsize))) { 1827 generic_err(leaf, slot, 1828 "invalid dev extent chunk offset, has %llu not aligned to %u", 1829 btrfs_dev_extent_chunk_objectid(leaf, de), 1830 sectorsize); 1831 return -EUCLEAN; 1832 } 1833 if (unlikely(!IS_ALIGNED(btrfs_dev_extent_length(leaf, de), 1834 sectorsize))) { 1835 generic_err(leaf, slot, 1836 "invalid dev extent length, has %llu not aligned to %u", 1837 btrfs_dev_extent_length(leaf, de), sectorsize); 1838 return -EUCLEAN; 1839 } 1840 /* Overlap check with previous dev extent. */ 1841 if (slot && prev_key->objectid == key->objectid && 1842 prev_key->type == key->type) { 1843 struct btrfs_dev_extent *prev_de; 1844 u64 prev_len; 1845 1846 prev_de = btrfs_item_ptr(leaf, slot - 1, struct btrfs_dev_extent); 1847 prev_len = btrfs_dev_extent_length(leaf, prev_de); 1848 if (unlikely(prev_key->offset + prev_len > key->offset)) { 1849 generic_err(leaf, slot, 1850 "dev extent overlap, prev offset %llu len %llu current offset %llu", 1851 prev_key->objectid, prev_len, key->offset); 1852 return -EUCLEAN; 1853 } 1854 } 1855 return 0; 1856 } 1857 1858 /* 1859 * Common point to switch the item-specific validation. 1860 */ 1861 static enum btrfs_tree_block_status check_leaf_item(struct extent_buffer *leaf, 1862 struct btrfs_key *key, 1863 int slot, 1864 struct btrfs_key *prev_key) 1865 { 1866 int ret = 0; 1867 struct btrfs_chunk *chunk; 1868 1869 switch (key->type) { 1870 case BTRFS_EXTENT_DATA_KEY: 1871 ret = check_extent_data_item(leaf, key, slot, prev_key); 1872 break; 1873 case BTRFS_EXTENT_CSUM_KEY: 1874 ret = check_csum_item(leaf, key, slot, prev_key); 1875 break; 1876 case BTRFS_DIR_ITEM_KEY: 1877 case BTRFS_DIR_INDEX_KEY: 1878 case BTRFS_XATTR_ITEM_KEY: 1879 ret = check_dir_item(leaf, key, prev_key, slot); 1880 break; 1881 case BTRFS_INODE_REF_KEY: 1882 ret = check_inode_ref(leaf, key, prev_key, slot); 1883 break; 1884 case BTRFS_BLOCK_GROUP_ITEM_KEY: 1885 ret = check_block_group_item(leaf, key, slot); 1886 break; 1887 case BTRFS_CHUNK_ITEM_KEY: 1888 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 1889 ret = check_leaf_chunk_item(leaf, chunk, key, slot); 1890 break; 1891 case BTRFS_DEV_ITEM_KEY: 1892 ret = check_dev_item(leaf, key, slot); 1893 break; 1894 case BTRFS_DEV_EXTENT_KEY: 1895 ret = check_dev_extent_item(leaf, key, slot, prev_key); 1896 break; 1897 case BTRFS_INODE_ITEM_KEY: 1898 ret = check_inode_item(leaf, key, slot); 1899 break; 1900 case BTRFS_ROOT_ITEM_KEY: 1901 ret = check_root_item(leaf, key, slot); 1902 break; 1903 case BTRFS_EXTENT_ITEM_KEY: 1904 case BTRFS_METADATA_ITEM_KEY: 1905 ret = check_extent_item(leaf, key, slot, prev_key); 1906 break; 1907 case BTRFS_TREE_BLOCK_REF_KEY: 1908 case BTRFS_SHARED_DATA_REF_KEY: 1909 case BTRFS_SHARED_BLOCK_REF_KEY: 1910 ret = check_simple_keyed_refs(leaf, key, slot); 1911 break; 1912 case BTRFS_EXTENT_DATA_REF_KEY: 1913 ret = check_extent_data_ref(leaf, key, slot); 1914 break; 1915 case BTRFS_RAID_STRIPE_KEY: 1916 ret = check_raid_stripe_extent(leaf, key, slot); 1917 break; 1918 } 1919 1920 if (ret) 1921 return BTRFS_TREE_BLOCK_INVALID_ITEM; 1922 return BTRFS_TREE_BLOCK_CLEAN; 1923 } 1924 1925 enum btrfs_tree_block_status __btrfs_check_leaf(struct extent_buffer *leaf) 1926 { 1927 struct btrfs_fs_info *fs_info = leaf->fs_info; 1928 /* No valid key type is 0, so all key should be larger than this key */ 1929 struct btrfs_key prev_key = {0, 0, 0}; 1930 struct btrfs_key key; 1931 u32 nritems = btrfs_header_nritems(leaf); 1932 int slot; 1933 1934 if (unlikely(btrfs_header_level(leaf) != 0)) { 1935 generic_err(leaf, 0, 1936 "invalid level for leaf, have %d expect 0", 1937 btrfs_header_level(leaf)); 1938 return BTRFS_TREE_BLOCK_INVALID_LEVEL; 1939 } 1940 1941 if (unlikely(!btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_WRITTEN))) { 1942 generic_err(leaf, 0, "invalid flag for leaf, WRITTEN not set"); 1943 return BTRFS_TREE_BLOCK_WRITTEN_NOT_SET; 1944 } 1945 1946 /* 1947 * Extent buffers from a relocation tree have a owner field that 1948 * corresponds to the subvolume tree they are based on. So just from an 1949 * extent buffer alone we can not find out what is the id of the 1950 * corresponding subvolume tree, so we can not figure out if the extent 1951 * buffer corresponds to the root of the relocation tree or not. So 1952 * skip this check for relocation trees. 1953 */ 1954 if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) { 1955 u64 owner = btrfs_header_owner(leaf); 1956 1957 /* These trees must never be empty */ 1958 if (unlikely(owner == BTRFS_ROOT_TREE_OBJECTID || 1959 owner == BTRFS_CHUNK_TREE_OBJECTID || 1960 owner == BTRFS_DEV_TREE_OBJECTID || 1961 owner == BTRFS_FS_TREE_OBJECTID || 1962 owner == BTRFS_DATA_RELOC_TREE_OBJECTID)) { 1963 generic_err(leaf, 0, 1964 "invalid root, root %llu must never be empty", 1965 owner); 1966 return BTRFS_TREE_BLOCK_INVALID_NRITEMS; 1967 } 1968 1969 /* Unknown tree */ 1970 if (unlikely(owner == 0)) { 1971 generic_err(leaf, 0, 1972 "invalid owner, root 0 is not defined"); 1973 return BTRFS_TREE_BLOCK_INVALID_OWNER; 1974 } 1975 1976 /* EXTENT_TREE_V2 can have empty extent trees. */ 1977 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 1978 return BTRFS_TREE_BLOCK_CLEAN; 1979 1980 if (unlikely(owner == BTRFS_EXTENT_TREE_OBJECTID)) { 1981 generic_err(leaf, 0, 1982 "invalid root, root %llu must never be empty", 1983 owner); 1984 return BTRFS_TREE_BLOCK_INVALID_NRITEMS; 1985 } 1986 1987 return BTRFS_TREE_BLOCK_CLEAN; 1988 } 1989 1990 if (unlikely(nritems == 0)) 1991 return BTRFS_TREE_BLOCK_CLEAN; 1992 1993 /* 1994 * Check the following things to make sure this is a good leaf, and 1995 * leaf users won't need to bother with similar sanity checks: 1996 * 1997 * 1) key ordering 1998 * 2) item offset and size 1999 * No overlap, no hole, all inside the leaf. 2000 * 3) item content 2001 * If possible, do comprehensive sanity check. 2002 * NOTE: All checks must only rely on the item data itself. 2003 */ 2004 for (slot = 0; slot < nritems; slot++) { 2005 u32 item_end_expected; 2006 u64 item_data_end; 2007 enum btrfs_tree_block_status ret; 2008 2009 btrfs_item_key_to_cpu(leaf, &key, slot); 2010 2011 /* Make sure the keys are in the right order */ 2012 if (unlikely(btrfs_comp_cpu_keys(&prev_key, &key) >= 0)) { 2013 generic_err(leaf, slot, 2014 "bad key order, prev (%llu %u %llu) current (%llu %u %llu)", 2015 prev_key.objectid, prev_key.type, 2016 prev_key.offset, key.objectid, key.type, 2017 key.offset); 2018 return BTRFS_TREE_BLOCK_BAD_KEY_ORDER; 2019 } 2020 2021 item_data_end = (u64)btrfs_item_offset(leaf, slot) + 2022 btrfs_item_size(leaf, slot); 2023 /* 2024 * Make sure the offset and ends are right, remember that the 2025 * item data starts at the end of the leaf and grows towards the 2026 * front. 2027 */ 2028 if (slot == 0) 2029 item_end_expected = BTRFS_LEAF_DATA_SIZE(fs_info); 2030 else 2031 item_end_expected = btrfs_item_offset(leaf, 2032 slot - 1); 2033 if (unlikely(item_data_end != item_end_expected)) { 2034 generic_err(leaf, slot, 2035 "unexpected item end, have %llu expect %u", 2036 item_data_end, item_end_expected); 2037 return BTRFS_TREE_BLOCK_INVALID_OFFSETS; 2038 } 2039 2040 /* 2041 * Check to make sure that we don't point outside of the leaf, 2042 * just in case all the items are consistent to each other, but 2043 * all point outside of the leaf. 2044 */ 2045 if (unlikely(item_data_end > BTRFS_LEAF_DATA_SIZE(fs_info))) { 2046 generic_err(leaf, slot, 2047 "slot end outside of leaf, have %llu expect range [0, %u]", 2048 item_data_end, BTRFS_LEAF_DATA_SIZE(fs_info)); 2049 return BTRFS_TREE_BLOCK_INVALID_OFFSETS; 2050 } 2051 2052 /* Also check if the item pointer overlaps with btrfs item. */ 2053 if (unlikely(btrfs_item_ptr_offset(leaf, slot) < 2054 btrfs_item_nr_offset(leaf, slot) + sizeof(struct btrfs_item))) { 2055 generic_err(leaf, slot, 2056 "slot overlaps with its data, item end %lu data start %lu", 2057 btrfs_item_nr_offset(leaf, slot) + 2058 sizeof(struct btrfs_item), 2059 btrfs_item_ptr_offset(leaf, slot)); 2060 return BTRFS_TREE_BLOCK_INVALID_OFFSETS; 2061 } 2062 2063 /* Check if the item size and content meet other criteria. */ 2064 ret = check_leaf_item(leaf, &key, slot, &prev_key); 2065 if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN)) 2066 return ret; 2067 2068 prev_key.objectid = key.objectid; 2069 prev_key.type = key.type; 2070 prev_key.offset = key.offset; 2071 } 2072 2073 return BTRFS_TREE_BLOCK_CLEAN; 2074 } 2075 2076 int btrfs_check_leaf(struct extent_buffer *leaf) 2077 { 2078 enum btrfs_tree_block_status ret; 2079 2080 ret = __btrfs_check_leaf(leaf); 2081 if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN)) 2082 return -EUCLEAN; 2083 return 0; 2084 } 2085 ALLOW_ERROR_INJECTION(btrfs_check_leaf, ERRNO); 2086 2087 enum btrfs_tree_block_status __btrfs_check_node(struct extent_buffer *node) 2088 { 2089 struct btrfs_fs_info *fs_info = node->fs_info; 2090 unsigned long nr = btrfs_header_nritems(node); 2091 struct btrfs_key key, next_key; 2092 int slot; 2093 int level = btrfs_header_level(node); 2094 u64 bytenr; 2095 2096 if (unlikely(!btrfs_header_flag(node, BTRFS_HEADER_FLAG_WRITTEN))) { 2097 generic_err(node, 0, "invalid flag for node, WRITTEN not set"); 2098 return BTRFS_TREE_BLOCK_WRITTEN_NOT_SET; 2099 } 2100 2101 if (unlikely(level <= 0 || level >= BTRFS_MAX_LEVEL)) { 2102 generic_err(node, 0, 2103 "invalid level for node, have %d expect [1, %d]", 2104 level, BTRFS_MAX_LEVEL - 1); 2105 return BTRFS_TREE_BLOCK_INVALID_LEVEL; 2106 } 2107 if (unlikely(nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(fs_info))) { 2108 btrfs_crit(fs_info, 2109 "corrupt node: root=%llu block=%llu, nritems too %s, have %lu expect range [1,%u]", 2110 btrfs_header_owner(node), node->start, 2111 nr == 0 ? "small" : "large", nr, 2112 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 2113 return BTRFS_TREE_BLOCK_INVALID_NRITEMS; 2114 } 2115 2116 for (slot = 0; slot < nr - 1; slot++) { 2117 bytenr = btrfs_node_blockptr(node, slot); 2118 btrfs_node_key_to_cpu(node, &key, slot); 2119 btrfs_node_key_to_cpu(node, &next_key, slot + 1); 2120 2121 if (unlikely(!bytenr)) { 2122 generic_err(node, slot, 2123 "invalid NULL node pointer"); 2124 return BTRFS_TREE_BLOCK_INVALID_BLOCKPTR; 2125 } 2126 if (unlikely(!IS_ALIGNED(bytenr, fs_info->sectorsize))) { 2127 generic_err(node, slot, 2128 "unaligned pointer, have %llu should be aligned to %u", 2129 bytenr, fs_info->sectorsize); 2130 return BTRFS_TREE_BLOCK_INVALID_BLOCKPTR; 2131 } 2132 2133 if (unlikely(btrfs_comp_cpu_keys(&key, &next_key) >= 0)) { 2134 generic_err(node, slot, 2135 "bad key order, current (%llu %u %llu) next (%llu %u %llu)", 2136 key.objectid, key.type, key.offset, 2137 next_key.objectid, next_key.type, 2138 next_key.offset); 2139 return BTRFS_TREE_BLOCK_BAD_KEY_ORDER; 2140 } 2141 } 2142 return BTRFS_TREE_BLOCK_CLEAN; 2143 } 2144 2145 int btrfs_check_node(struct extent_buffer *node) 2146 { 2147 enum btrfs_tree_block_status ret; 2148 2149 ret = __btrfs_check_node(node); 2150 if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN)) 2151 return -EUCLEAN; 2152 return 0; 2153 } 2154 ALLOW_ERROR_INJECTION(btrfs_check_node, ERRNO); 2155 2156 int btrfs_check_eb_owner(const struct extent_buffer *eb, u64 root_owner) 2157 { 2158 const bool is_subvol = is_fstree(root_owner); 2159 const u64 eb_owner = btrfs_header_owner(eb); 2160 2161 /* 2162 * Skip dummy fs, as selftests don't create unique ebs for each dummy 2163 * root. 2164 */ 2165 if (btrfs_is_testing(eb->fs_info)) 2166 return 0; 2167 /* 2168 * There are several call sites (backref walking, qgroup, and data 2169 * reloc) passing 0 as @root_owner, as they are not holding the 2170 * tree root. In that case, we can not do a reliable ownership check, 2171 * so just exit. 2172 */ 2173 if (root_owner == 0) 2174 return 0; 2175 /* 2176 * These trees use key.offset as their owner, our callers don't have 2177 * the extra capacity to pass key.offset here. So we just skip them. 2178 */ 2179 if (root_owner == BTRFS_TREE_LOG_OBJECTID || 2180 root_owner == BTRFS_TREE_RELOC_OBJECTID) 2181 return 0; 2182 2183 if (!is_subvol) { 2184 /* For non-subvolume trees, the eb owner should match root owner */ 2185 if (unlikely(root_owner != eb_owner)) { 2186 btrfs_crit(eb->fs_info, 2187 "corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect %llu", 2188 btrfs_header_level(eb) == 0 ? "leaf" : "node", 2189 root_owner, btrfs_header_bytenr(eb), eb_owner, 2190 root_owner); 2191 return -EUCLEAN; 2192 } 2193 return 0; 2194 } 2195 2196 /* 2197 * For subvolume trees, owners can mismatch, but they should all belong 2198 * to subvolume trees. 2199 */ 2200 if (unlikely(is_subvol != is_fstree(eb_owner))) { 2201 btrfs_crit(eb->fs_info, 2202 "corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect [%llu, %llu]", 2203 btrfs_header_level(eb) == 0 ? "leaf" : "node", 2204 root_owner, btrfs_header_bytenr(eb), eb_owner, 2205 BTRFS_FIRST_FREE_OBJECTID, BTRFS_LAST_FREE_OBJECTID); 2206 return -EUCLEAN; 2207 } 2208 return 0; 2209 } 2210 2211 int btrfs_verify_level_key(struct extent_buffer *eb, 2212 const struct btrfs_tree_parent_check *check) 2213 { 2214 struct btrfs_fs_info *fs_info = eb->fs_info; 2215 int found_level; 2216 struct btrfs_key found_key; 2217 int ret; 2218 2219 found_level = btrfs_header_level(eb); 2220 if (found_level != check->level) { 2221 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 2222 KERN_ERR "BTRFS: tree level check failed\n"); 2223 btrfs_err(fs_info, 2224 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", 2225 eb->start, check->level, found_level); 2226 return -EIO; 2227 } 2228 2229 if (!check->has_first_key) 2230 return 0; 2231 2232 /* 2233 * For live tree block (new tree blocks in current transaction), 2234 * we need proper lock context to avoid race, which is impossible here. 2235 * So we only checks tree blocks which is read from disk, whose 2236 * generation <= fs_info->last_trans_committed. 2237 */ 2238 if (btrfs_header_generation(eb) > btrfs_get_last_trans_committed(fs_info)) 2239 return 0; 2240 2241 /* We have @first_key, so this @eb must have at least one item */ 2242 if (btrfs_header_nritems(eb) == 0) { 2243 btrfs_err(fs_info, 2244 "invalid tree nritems, bytenr=%llu nritems=0 expect >0", 2245 eb->start); 2246 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 2247 return -EUCLEAN; 2248 } 2249 2250 if (found_level) 2251 btrfs_node_key_to_cpu(eb, &found_key, 0); 2252 else 2253 btrfs_item_key_to_cpu(eb, &found_key, 0); 2254 ret = btrfs_comp_cpu_keys(&check->first_key, &found_key); 2255 2256 if (ret) { 2257 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 2258 KERN_ERR "BTRFS: tree first key check failed\n"); 2259 btrfs_err(fs_info, 2260 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 2261 eb->start, check->transid, check->first_key.objectid, 2262 check->first_key.type, check->first_key.offset, 2263 found_key.objectid, found_key.type, 2264 found_key.offset); 2265 } 2266 return ret; 2267 } 2268