1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) Qu Wenruo 2017. All rights reserved. 4 */ 5 6 /* 7 * The module is used to catch unexpected/corrupted tree block data. 8 * Such behavior can be caused either by a fuzzed image or bugs. 9 * 10 * The objective is to do leaf/node validation checks when tree block is read 11 * from disk, and check *every* possible member, so other code won't 12 * need to checking them again. 13 * 14 * Due to the potential and unwanted damage, every checker needs to be 15 * carefully reviewed otherwise so it does not prevent mount of valid images. 16 */ 17 18 #include <linux/types.h> 19 #include <linux/stddef.h> 20 #include <linux/error-injection.h> 21 #include "messages.h" 22 #include "ctree.h" 23 #include "tree-checker.h" 24 #include "compression.h" 25 #include "volumes.h" 26 #include "misc.h" 27 #include "fs.h" 28 #include "accessors.h" 29 #include "file-item.h" 30 #include "inode-item.h" 31 #include "dir-item.h" 32 #include "extent-tree.h" 33 34 /* 35 * Error message should follow the following format: 36 * corrupt <type>: <identifier>, <reason>[, <bad_value>] 37 * 38 * @type: leaf or node 39 * @identifier: the necessary info to locate the leaf/node. 40 * It's recommended to decode key.objecitd/offset if it's 41 * meaningful. 42 * @reason: describe the error 43 * @bad_value: optional, it's recommended to output bad value and its 44 * expected value (range). 45 * 46 * Since comma is used to separate the components, only space is allowed 47 * inside each component. 48 */ 49 50 /* 51 * Append generic "corrupt leaf/node root=%llu block=%llu slot=%d: " to @fmt. 52 * Allows callers to customize the output. 53 */ 54 __printf(3, 4) 55 __cold 56 static void generic_err(const struct extent_buffer *eb, int slot, 57 const char *fmt, ...) 58 { 59 const struct btrfs_fs_info *fs_info = eb->fs_info; 60 struct va_format vaf; 61 va_list args; 62 63 va_start(args, fmt); 64 65 vaf.fmt = fmt; 66 vaf.va = &args; 67 68 dump_page(folio_page(eb->folios[0], 0), "eb page dump"); 69 btrfs_crit(fs_info, 70 "corrupt %s: root=%llu block=%llu slot=%d, %pV", 71 btrfs_header_level(eb) == 0 ? "leaf" : "node", 72 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, &vaf); 73 va_end(args); 74 } 75 76 /* 77 * Customized reporter for extent data item, since its key objectid and 78 * offset has its own meaning. 79 */ 80 __printf(3, 4) 81 __cold 82 static void file_extent_err(const struct extent_buffer *eb, int slot, 83 const char *fmt, ...) 84 { 85 const struct btrfs_fs_info *fs_info = eb->fs_info; 86 struct btrfs_key key; 87 struct va_format vaf; 88 va_list args; 89 90 btrfs_item_key_to_cpu(eb, &key, slot); 91 va_start(args, fmt); 92 93 vaf.fmt = fmt; 94 vaf.va = &args; 95 96 dump_page(folio_page(eb->folios[0], 0), "eb page dump"); 97 btrfs_crit(fs_info, 98 "corrupt %s: root=%llu block=%llu slot=%d ino=%llu file_offset=%llu, %pV", 99 btrfs_header_level(eb) == 0 ? "leaf" : "node", 100 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, 101 key.objectid, key.offset, &vaf); 102 va_end(args); 103 } 104 105 /* 106 * Return 0 if the btrfs_file_extent_##name is aligned to @alignment 107 * Else return 1 108 */ 109 #define CHECK_FE_ALIGNED(leaf, slot, fi, name, alignment) \ 110 ({ \ 111 if (unlikely(!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), \ 112 (alignment)))) \ 113 file_extent_err((leaf), (slot), \ 114 "invalid %s for file extent, have %llu, should be aligned to %u", \ 115 (#name), btrfs_file_extent_##name((leaf), (fi)), \ 116 (alignment)); \ 117 (!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), (alignment))); \ 118 }) 119 120 static u64 file_extent_end(struct extent_buffer *leaf, 121 struct btrfs_key *key, 122 struct btrfs_file_extent_item *extent) 123 { 124 u64 end; 125 u64 len; 126 127 if (btrfs_file_extent_type(leaf, extent) == BTRFS_FILE_EXTENT_INLINE) { 128 len = btrfs_file_extent_ram_bytes(leaf, extent); 129 end = ALIGN(key->offset + len, leaf->fs_info->sectorsize); 130 } else { 131 len = btrfs_file_extent_num_bytes(leaf, extent); 132 end = key->offset + len; 133 } 134 return end; 135 } 136 137 /* 138 * Customized report for dir_item, the only new important information is 139 * key->objectid, which represents inode number 140 */ 141 __printf(3, 4) 142 __cold 143 static void dir_item_err(const struct extent_buffer *eb, int slot, 144 const char *fmt, ...) 145 { 146 const struct btrfs_fs_info *fs_info = eb->fs_info; 147 struct btrfs_key key; 148 struct va_format vaf; 149 va_list args; 150 151 btrfs_item_key_to_cpu(eb, &key, slot); 152 va_start(args, fmt); 153 154 vaf.fmt = fmt; 155 vaf.va = &args; 156 157 dump_page(folio_page(eb->folios[0], 0), "eb page dump"); 158 btrfs_crit(fs_info, 159 "corrupt %s: root=%llu block=%llu slot=%d ino=%llu, %pV", 160 btrfs_header_level(eb) == 0 ? "leaf" : "node", 161 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, 162 key.objectid, &vaf); 163 va_end(args); 164 } 165 166 /* 167 * This functions checks prev_key->objectid, to ensure current key and prev_key 168 * share the same objectid as inode number. 169 * 170 * This is to detect missing INODE_ITEM in subvolume trees. 171 * 172 * Return true if everything is OK or we don't need to check. 173 * Return false if anything is wrong. 174 */ 175 static bool check_prev_ino(struct extent_buffer *leaf, 176 struct btrfs_key *key, int slot, 177 struct btrfs_key *prev_key) 178 { 179 /* No prev key, skip check */ 180 if (slot == 0) 181 return true; 182 183 /* Only these key->types needs to be checked */ 184 ASSERT(key->type == BTRFS_XATTR_ITEM_KEY || 185 key->type == BTRFS_INODE_REF_KEY || 186 key->type == BTRFS_DIR_INDEX_KEY || 187 key->type == BTRFS_DIR_ITEM_KEY || 188 key->type == BTRFS_EXTENT_DATA_KEY); 189 190 /* 191 * Only subvolume trees along with their reloc trees need this check. 192 * Things like log tree doesn't follow this ino requirement. 193 */ 194 if (!is_fstree(btrfs_header_owner(leaf))) 195 return true; 196 197 if (key->objectid == prev_key->objectid) 198 return true; 199 200 /* Error found */ 201 dir_item_err(leaf, slot, 202 "invalid previous key objectid, have %llu expect %llu", 203 prev_key->objectid, key->objectid); 204 return false; 205 } 206 static int check_extent_data_item(struct extent_buffer *leaf, 207 struct btrfs_key *key, int slot, 208 struct btrfs_key *prev_key) 209 { 210 struct btrfs_fs_info *fs_info = leaf->fs_info; 211 struct btrfs_file_extent_item *fi; 212 u32 sectorsize = fs_info->sectorsize; 213 u32 item_size = btrfs_item_size(leaf, slot); 214 u64 extent_end; 215 216 if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) { 217 file_extent_err(leaf, slot, 218 "unaligned file_offset for file extent, have %llu should be aligned to %u", 219 key->offset, sectorsize); 220 return -EUCLEAN; 221 } 222 223 /* 224 * Previous key must have the same key->objectid (ino). 225 * It can be XATTR_ITEM, INODE_ITEM or just another EXTENT_DATA. 226 * But if objectids mismatch, it means we have a missing 227 * INODE_ITEM. 228 */ 229 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key))) 230 return -EUCLEAN; 231 232 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 233 234 /* 235 * Make sure the item contains at least inline header, so the file 236 * extent type is not some garbage. 237 */ 238 if (unlikely(item_size < BTRFS_FILE_EXTENT_INLINE_DATA_START)) { 239 file_extent_err(leaf, slot, 240 "invalid item size, have %u expect [%zu, %u)", 241 item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START, 242 SZ_4K); 243 return -EUCLEAN; 244 } 245 if (unlikely(btrfs_file_extent_type(leaf, fi) >= 246 BTRFS_NR_FILE_EXTENT_TYPES)) { 247 file_extent_err(leaf, slot, 248 "invalid type for file extent, have %u expect range [0, %u]", 249 btrfs_file_extent_type(leaf, fi), 250 BTRFS_NR_FILE_EXTENT_TYPES - 1); 251 return -EUCLEAN; 252 } 253 254 /* 255 * Support for new compression/encryption must introduce incompat flag, 256 * and must be caught in open_ctree(). 257 */ 258 if (unlikely(btrfs_file_extent_compression(leaf, fi) >= 259 BTRFS_NR_COMPRESS_TYPES)) { 260 file_extent_err(leaf, slot, 261 "invalid compression for file extent, have %u expect range [0, %u]", 262 btrfs_file_extent_compression(leaf, fi), 263 BTRFS_NR_COMPRESS_TYPES - 1); 264 return -EUCLEAN; 265 } 266 if (unlikely(btrfs_file_extent_encryption(leaf, fi))) { 267 file_extent_err(leaf, slot, 268 "invalid encryption for file extent, have %u expect 0", 269 btrfs_file_extent_encryption(leaf, fi)); 270 return -EUCLEAN; 271 } 272 if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) { 273 /* Inline extent must have 0 as key offset */ 274 if (unlikely(key->offset)) { 275 file_extent_err(leaf, slot, 276 "invalid file_offset for inline file extent, have %llu expect 0", 277 key->offset); 278 return -EUCLEAN; 279 } 280 281 /* Compressed inline extent has no on-disk size, skip it */ 282 if (btrfs_file_extent_compression(leaf, fi) != 283 BTRFS_COMPRESS_NONE) 284 return 0; 285 286 /* Uncompressed inline extent size must match item size */ 287 if (unlikely(item_size != BTRFS_FILE_EXTENT_INLINE_DATA_START + 288 btrfs_file_extent_ram_bytes(leaf, fi))) { 289 file_extent_err(leaf, slot, 290 "invalid ram_bytes for uncompressed inline extent, have %u expect %llu", 291 item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START + 292 btrfs_file_extent_ram_bytes(leaf, fi)); 293 return -EUCLEAN; 294 } 295 return 0; 296 } 297 298 /* Regular or preallocated extent has fixed item size */ 299 if (unlikely(item_size != sizeof(*fi))) { 300 file_extent_err(leaf, slot, 301 "invalid item size for reg/prealloc file extent, have %u expect %zu", 302 item_size, sizeof(*fi)); 303 return -EUCLEAN; 304 } 305 if (unlikely(CHECK_FE_ALIGNED(leaf, slot, fi, ram_bytes, sectorsize) || 306 CHECK_FE_ALIGNED(leaf, slot, fi, disk_bytenr, sectorsize) || 307 CHECK_FE_ALIGNED(leaf, slot, fi, disk_num_bytes, sectorsize) || 308 CHECK_FE_ALIGNED(leaf, slot, fi, offset, sectorsize) || 309 CHECK_FE_ALIGNED(leaf, slot, fi, num_bytes, sectorsize))) 310 return -EUCLEAN; 311 312 /* Catch extent end overflow */ 313 if (unlikely(check_add_overflow(btrfs_file_extent_num_bytes(leaf, fi), 314 key->offset, &extent_end))) { 315 file_extent_err(leaf, slot, 316 "extent end overflow, have file offset %llu extent num bytes %llu", 317 key->offset, 318 btrfs_file_extent_num_bytes(leaf, fi)); 319 return -EUCLEAN; 320 } 321 322 /* 323 * Check that no two consecutive file extent items, in the same leaf, 324 * present ranges that overlap each other. 325 */ 326 if (slot > 0 && 327 prev_key->objectid == key->objectid && 328 prev_key->type == BTRFS_EXTENT_DATA_KEY) { 329 struct btrfs_file_extent_item *prev_fi; 330 u64 prev_end; 331 332 prev_fi = btrfs_item_ptr(leaf, slot - 1, 333 struct btrfs_file_extent_item); 334 prev_end = file_extent_end(leaf, prev_key, prev_fi); 335 if (unlikely(prev_end > key->offset)) { 336 file_extent_err(leaf, slot - 1, 337 "file extent end range (%llu) goes beyond start offset (%llu) of the next file extent", 338 prev_end, key->offset); 339 return -EUCLEAN; 340 } 341 } 342 343 /* 344 * For non-compressed data extents, ram_bytes should match its 345 * disk_num_bytes. 346 * However we do not really utilize ram_bytes in this case, so this check 347 * is only optional for DEBUG builds for developers to catch the 348 * unexpected behaviors. 349 */ 350 if (IS_ENABLED(CONFIG_BTRFS_DEBUG) && 351 btrfs_file_extent_compression(leaf, fi) == BTRFS_COMPRESS_NONE && 352 btrfs_file_extent_disk_bytenr(leaf, fi)) { 353 if (WARN_ON(btrfs_file_extent_ram_bytes(leaf, fi) != 354 btrfs_file_extent_disk_num_bytes(leaf, fi))) 355 file_extent_err(leaf, slot, 356 "mismatch ram_bytes (%llu) and disk_num_bytes (%llu) for non-compressed extent", 357 btrfs_file_extent_ram_bytes(leaf, fi), 358 btrfs_file_extent_disk_num_bytes(leaf, fi)); 359 } 360 361 return 0; 362 } 363 364 static int check_csum_item(struct extent_buffer *leaf, struct btrfs_key *key, 365 int slot, struct btrfs_key *prev_key) 366 { 367 struct btrfs_fs_info *fs_info = leaf->fs_info; 368 u32 sectorsize = fs_info->sectorsize; 369 const u32 csumsize = fs_info->csum_size; 370 371 if (unlikely(key->objectid != BTRFS_EXTENT_CSUM_OBJECTID)) { 372 generic_err(leaf, slot, 373 "invalid key objectid for csum item, have %llu expect %llu", 374 key->objectid, BTRFS_EXTENT_CSUM_OBJECTID); 375 return -EUCLEAN; 376 } 377 if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) { 378 generic_err(leaf, slot, 379 "unaligned key offset for csum item, have %llu should be aligned to %u", 380 key->offset, sectorsize); 381 return -EUCLEAN; 382 } 383 if (unlikely(!IS_ALIGNED(btrfs_item_size(leaf, slot), csumsize))) { 384 generic_err(leaf, slot, 385 "unaligned item size for csum item, have %u should be aligned to %u", 386 btrfs_item_size(leaf, slot), csumsize); 387 return -EUCLEAN; 388 } 389 if (slot > 0 && prev_key->type == BTRFS_EXTENT_CSUM_KEY) { 390 u64 prev_csum_end; 391 u32 prev_item_size; 392 393 prev_item_size = btrfs_item_size(leaf, slot - 1); 394 prev_csum_end = (prev_item_size / csumsize) * sectorsize; 395 prev_csum_end += prev_key->offset; 396 if (unlikely(prev_csum_end > key->offset)) { 397 generic_err(leaf, slot - 1, 398 "csum end range (%llu) goes beyond the start range (%llu) of the next csum item", 399 prev_csum_end, key->offset); 400 return -EUCLEAN; 401 } 402 } 403 return 0; 404 } 405 406 /* Inode item error output has the same format as dir_item_err() */ 407 #define inode_item_err(eb, slot, fmt, ...) \ 408 dir_item_err(eb, slot, fmt, __VA_ARGS__) 409 410 static int check_inode_key(struct extent_buffer *leaf, struct btrfs_key *key, 411 int slot) 412 { 413 struct btrfs_key item_key; 414 bool is_inode_item; 415 416 btrfs_item_key_to_cpu(leaf, &item_key, slot); 417 is_inode_item = (item_key.type == BTRFS_INODE_ITEM_KEY); 418 419 /* For XATTR_ITEM, location key should be all 0 */ 420 if (item_key.type == BTRFS_XATTR_ITEM_KEY) { 421 if (unlikely(key->objectid != 0 || key->type != 0 || 422 key->offset != 0)) 423 return -EUCLEAN; 424 return 0; 425 } 426 427 if (unlikely((key->objectid < BTRFS_FIRST_FREE_OBJECTID || 428 key->objectid > BTRFS_LAST_FREE_OBJECTID) && 429 key->objectid != BTRFS_ROOT_TREE_DIR_OBJECTID && 430 key->objectid != BTRFS_FREE_INO_OBJECTID)) { 431 if (is_inode_item) { 432 generic_err(leaf, slot, 433 "invalid key objectid: has %llu expect %llu or [%llu, %llu] or %llu", 434 key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID, 435 BTRFS_FIRST_FREE_OBJECTID, 436 BTRFS_LAST_FREE_OBJECTID, 437 BTRFS_FREE_INO_OBJECTID); 438 } else { 439 dir_item_err(leaf, slot, 440 "invalid location key objectid: has %llu expect %llu or [%llu, %llu] or %llu", 441 key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID, 442 BTRFS_FIRST_FREE_OBJECTID, 443 BTRFS_LAST_FREE_OBJECTID, 444 BTRFS_FREE_INO_OBJECTID); 445 } 446 return -EUCLEAN; 447 } 448 if (unlikely(key->offset != 0)) { 449 if (is_inode_item) 450 inode_item_err(leaf, slot, 451 "invalid key offset: has %llu expect 0", 452 key->offset); 453 else 454 dir_item_err(leaf, slot, 455 "invalid location key offset:has %llu expect 0", 456 key->offset); 457 return -EUCLEAN; 458 } 459 return 0; 460 } 461 462 static int check_root_key(struct extent_buffer *leaf, struct btrfs_key *key, 463 int slot) 464 { 465 struct btrfs_key item_key; 466 bool is_root_item; 467 468 btrfs_item_key_to_cpu(leaf, &item_key, slot); 469 is_root_item = (item_key.type == BTRFS_ROOT_ITEM_KEY); 470 471 /* 472 * Bad rootid for reloc trees. 473 * 474 * Reloc trees are only for subvolume trees, other trees only need 475 * to be COWed to be relocated. 476 */ 477 if (unlikely(is_root_item && key->objectid == BTRFS_TREE_RELOC_OBJECTID && 478 !is_fstree(key->offset))) { 479 generic_err(leaf, slot, 480 "invalid reloc tree for root %lld, root id is not a subvolume tree", 481 key->offset); 482 return -EUCLEAN; 483 } 484 485 /* No such tree id */ 486 if (unlikely(key->objectid == 0)) { 487 if (is_root_item) 488 generic_err(leaf, slot, "invalid root id 0"); 489 else 490 dir_item_err(leaf, slot, 491 "invalid location key root id 0"); 492 return -EUCLEAN; 493 } 494 495 /* DIR_ITEM/INDEX/INODE_REF is not allowed to point to non-fs trees */ 496 if (unlikely(!is_fstree(key->objectid) && !is_root_item)) { 497 dir_item_err(leaf, slot, 498 "invalid location key objectid, have %llu expect [%llu, %llu]", 499 key->objectid, BTRFS_FIRST_FREE_OBJECTID, 500 BTRFS_LAST_FREE_OBJECTID); 501 return -EUCLEAN; 502 } 503 504 /* 505 * ROOT_ITEM with non-zero offset means this is a snapshot, created at 506 * @offset transid. 507 * Furthermore, for location key in DIR_ITEM, its offset is always -1. 508 * 509 * So here we only check offset for reloc tree whose key->offset must 510 * be a valid tree. 511 */ 512 if (unlikely(key->objectid == BTRFS_TREE_RELOC_OBJECTID && 513 key->offset == 0)) { 514 generic_err(leaf, slot, "invalid root id 0 for reloc tree"); 515 return -EUCLEAN; 516 } 517 return 0; 518 } 519 520 static int check_dir_item(struct extent_buffer *leaf, 521 struct btrfs_key *key, struct btrfs_key *prev_key, 522 int slot) 523 { 524 struct btrfs_fs_info *fs_info = leaf->fs_info; 525 struct btrfs_dir_item *di; 526 u32 item_size = btrfs_item_size(leaf, slot); 527 u32 cur = 0; 528 529 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key))) 530 return -EUCLEAN; 531 532 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 533 while (cur < item_size) { 534 struct btrfs_key location_key; 535 u32 name_len; 536 u32 data_len; 537 u32 max_name_len; 538 u32 total_size; 539 u32 name_hash; 540 u8 dir_type; 541 int ret; 542 543 /* header itself should not cross item boundary */ 544 if (unlikely(cur + sizeof(*di) > item_size)) { 545 dir_item_err(leaf, slot, 546 "dir item header crosses item boundary, have %zu boundary %u", 547 cur + sizeof(*di), item_size); 548 return -EUCLEAN; 549 } 550 551 /* Location key check */ 552 btrfs_dir_item_key_to_cpu(leaf, di, &location_key); 553 if (location_key.type == BTRFS_ROOT_ITEM_KEY) { 554 ret = check_root_key(leaf, &location_key, slot); 555 if (unlikely(ret < 0)) 556 return ret; 557 } else if (location_key.type == BTRFS_INODE_ITEM_KEY || 558 location_key.type == 0) { 559 ret = check_inode_key(leaf, &location_key, slot); 560 if (unlikely(ret < 0)) 561 return ret; 562 } else { 563 dir_item_err(leaf, slot, 564 "invalid location key type, have %u, expect %u or %u", 565 location_key.type, BTRFS_ROOT_ITEM_KEY, 566 BTRFS_INODE_ITEM_KEY); 567 return -EUCLEAN; 568 } 569 570 /* dir type check */ 571 dir_type = btrfs_dir_ftype(leaf, di); 572 if (unlikely(dir_type <= BTRFS_FT_UNKNOWN || 573 dir_type >= BTRFS_FT_MAX)) { 574 dir_item_err(leaf, slot, 575 "invalid dir item type, have %u expect (0, %u)", 576 dir_type, BTRFS_FT_MAX); 577 return -EUCLEAN; 578 } 579 580 if (unlikely(key->type == BTRFS_XATTR_ITEM_KEY && 581 dir_type != BTRFS_FT_XATTR)) { 582 dir_item_err(leaf, slot, 583 "invalid dir item type for XATTR key, have %u expect %u", 584 dir_type, BTRFS_FT_XATTR); 585 return -EUCLEAN; 586 } 587 if (unlikely(dir_type == BTRFS_FT_XATTR && 588 key->type != BTRFS_XATTR_ITEM_KEY)) { 589 dir_item_err(leaf, slot, 590 "xattr dir type found for non-XATTR key"); 591 return -EUCLEAN; 592 } 593 if (dir_type == BTRFS_FT_XATTR) 594 max_name_len = XATTR_NAME_MAX; 595 else 596 max_name_len = BTRFS_NAME_LEN; 597 598 /* Name/data length check */ 599 name_len = btrfs_dir_name_len(leaf, di); 600 data_len = btrfs_dir_data_len(leaf, di); 601 if (unlikely(name_len > max_name_len)) { 602 dir_item_err(leaf, slot, 603 "dir item name len too long, have %u max %u", 604 name_len, max_name_len); 605 return -EUCLEAN; 606 } 607 if (unlikely(name_len + data_len > BTRFS_MAX_XATTR_SIZE(fs_info))) { 608 dir_item_err(leaf, slot, 609 "dir item name and data len too long, have %u max %u", 610 name_len + data_len, 611 BTRFS_MAX_XATTR_SIZE(fs_info)); 612 return -EUCLEAN; 613 } 614 615 if (unlikely(data_len && dir_type != BTRFS_FT_XATTR)) { 616 dir_item_err(leaf, slot, 617 "dir item with invalid data len, have %u expect 0", 618 data_len); 619 return -EUCLEAN; 620 } 621 622 total_size = sizeof(*di) + name_len + data_len; 623 624 /* header and name/data should not cross item boundary */ 625 if (unlikely(cur + total_size > item_size)) { 626 dir_item_err(leaf, slot, 627 "dir item data crosses item boundary, have %u boundary %u", 628 cur + total_size, item_size); 629 return -EUCLEAN; 630 } 631 632 /* 633 * Special check for XATTR/DIR_ITEM, as key->offset is name 634 * hash, should match its name 635 */ 636 if (key->type == BTRFS_DIR_ITEM_KEY || 637 key->type == BTRFS_XATTR_ITEM_KEY) { 638 char namebuf[MAX(BTRFS_NAME_LEN, XATTR_NAME_MAX)]; 639 640 read_extent_buffer(leaf, namebuf, 641 (unsigned long)(di + 1), name_len); 642 name_hash = btrfs_name_hash(namebuf, name_len); 643 if (unlikely(key->offset != name_hash)) { 644 dir_item_err(leaf, slot, 645 "name hash mismatch with key, have 0x%016x expect 0x%016llx", 646 name_hash, key->offset); 647 return -EUCLEAN; 648 } 649 } 650 cur += total_size; 651 di = (struct btrfs_dir_item *)((void *)di + total_size); 652 } 653 return 0; 654 } 655 656 __printf(3, 4) 657 __cold 658 static void block_group_err(const struct extent_buffer *eb, int slot, 659 const char *fmt, ...) 660 { 661 const struct btrfs_fs_info *fs_info = eb->fs_info; 662 struct btrfs_key key; 663 struct va_format vaf; 664 va_list args; 665 666 btrfs_item_key_to_cpu(eb, &key, slot); 667 va_start(args, fmt); 668 669 vaf.fmt = fmt; 670 vaf.va = &args; 671 672 dump_page(folio_page(eb->folios[0], 0), "eb page dump"); 673 btrfs_crit(fs_info, 674 "corrupt %s: root=%llu block=%llu slot=%d bg_start=%llu bg_len=%llu, %pV", 675 btrfs_header_level(eb) == 0 ? "leaf" : "node", 676 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, 677 key.objectid, key.offset, &vaf); 678 va_end(args); 679 } 680 681 static int check_block_group_item(struct extent_buffer *leaf, 682 struct btrfs_key *key, int slot) 683 { 684 struct btrfs_fs_info *fs_info = leaf->fs_info; 685 struct btrfs_block_group_item bgi; 686 u32 item_size = btrfs_item_size(leaf, slot); 687 u64 chunk_objectid; 688 u64 flags; 689 u64 type; 690 691 /* 692 * Here we don't really care about alignment since extent allocator can 693 * handle it. We care more about the size. 694 */ 695 if (unlikely(key->offset == 0)) { 696 block_group_err(leaf, slot, 697 "invalid block group size 0"); 698 return -EUCLEAN; 699 } 700 701 if (unlikely(item_size != sizeof(bgi))) { 702 block_group_err(leaf, slot, 703 "invalid item size, have %u expect %zu", 704 item_size, sizeof(bgi)); 705 return -EUCLEAN; 706 } 707 708 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot), 709 sizeof(bgi)); 710 chunk_objectid = btrfs_stack_block_group_chunk_objectid(&bgi); 711 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 712 /* 713 * We don't init the nr_global_roots until we load the global 714 * roots, so this could be 0 at mount time. If it's 0 we'll 715 * just assume we're fine, and later we'll check against our 716 * actual value. 717 */ 718 if (unlikely(fs_info->nr_global_roots && 719 chunk_objectid >= fs_info->nr_global_roots)) { 720 block_group_err(leaf, slot, 721 "invalid block group global root id, have %llu, needs to be <= %llu", 722 chunk_objectid, 723 fs_info->nr_global_roots); 724 return -EUCLEAN; 725 } 726 } else if (unlikely(chunk_objectid != BTRFS_FIRST_CHUNK_TREE_OBJECTID)) { 727 block_group_err(leaf, slot, 728 "invalid block group chunk objectid, have %llu expect %llu", 729 btrfs_stack_block_group_chunk_objectid(&bgi), 730 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 731 return -EUCLEAN; 732 } 733 734 if (unlikely(btrfs_stack_block_group_used(&bgi) > key->offset)) { 735 block_group_err(leaf, slot, 736 "invalid block group used, have %llu expect [0, %llu)", 737 btrfs_stack_block_group_used(&bgi), key->offset); 738 return -EUCLEAN; 739 } 740 741 flags = btrfs_stack_block_group_flags(&bgi); 742 if (unlikely(hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) > 1)) { 743 block_group_err(leaf, slot, 744 "invalid profile flags, have 0x%llx (%lu bits set) expect no more than 1 bit set", 745 flags & BTRFS_BLOCK_GROUP_PROFILE_MASK, 746 hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)); 747 return -EUCLEAN; 748 } 749 750 type = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 751 if (unlikely(type != BTRFS_BLOCK_GROUP_DATA && 752 type != BTRFS_BLOCK_GROUP_METADATA && 753 type != BTRFS_BLOCK_GROUP_SYSTEM && 754 type != (BTRFS_BLOCK_GROUP_METADATA | 755 BTRFS_BLOCK_GROUP_DATA))) { 756 block_group_err(leaf, slot, 757 "invalid type, have 0x%llx (%lu bits set) expect either 0x%llx, 0x%llx, 0x%llx or 0x%llx", 758 type, hweight64(type), 759 BTRFS_BLOCK_GROUP_DATA, BTRFS_BLOCK_GROUP_METADATA, 760 BTRFS_BLOCK_GROUP_SYSTEM, 761 BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA); 762 return -EUCLEAN; 763 } 764 return 0; 765 } 766 767 __printf(5, 6) 768 __cold 769 static void chunk_err(const struct btrfs_fs_info *fs_info, 770 const struct extent_buffer *leaf, 771 const struct btrfs_chunk *chunk, u64 logical, 772 const char *fmt, ...) 773 { 774 bool is_sb = !leaf; 775 struct va_format vaf; 776 va_list args; 777 int i; 778 int slot = -1; 779 780 if (!is_sb) { 781 /* 782 * Get the slot number by iterating through all slots, this 783 * would provide better readability. 784 */ 785 for (i = 0; i < btrfs_header_nritems(leaf); i++) { 786 if (btrfs_item_ptr_offset(leaf, i) == 787 (unsigned long)chunk) { 788 slot = i; 789 break; 790 } 791 } 792 } 793 va_start(args, fmt); 794 vaf.fmt = fmt; 795 vaf.va = &args; 796 797 if (is_sb) 798 btrfs_crit(fs_info, 799 "corrupt superblock syschunk array: chunk_start=%llu, %pV", 800 logical, &vaf); 801 else 802 btrfs_crit(fs_info, 803 "corrupt leaf: root=%llu block=%llu slot=%d chunk_start=%llu, %pV", 804 BTRFS_CHUNK_TREE_OBJECTID, leaf->start, slot, 805 logical, &vaf); 806 va_end(args); 807 } 808 809 /* 810 * The common chunk check which could also work on super block sys chunk array. 811 * 812 * If @leaf is NULL, then @chunk must be an on-stack chunk item. 813 * (For superblock sys_chunk array, and fs_info->sectorsize is unreliable) 814 * 815 * Return -EUCLEAN if anything is corrupted. 816 * Return 0 if everything is OK. 817 */ 818 int btrfs_check_chunk_valid(const struct btrfs_fs_info *fs_info, 819 const struct extent_buffer *leaf, 820 const struct btrfs_chunk *chunk, u64 logical, 821 u32 sectorsize) 822 { 823 u64 length; 824 u64 chunk_end; 825 u64 stripe_len; 826 u16 num_stripes; 827 u16 sub_stripes; 828 u64 type; 829 u64 features; 830 u32 chunk_sector_size; 831 bool mixed = false; 832 int raid_index; 833 int nparity; 834 int ncopies; 835 836 if (leaf) { 837 length = btrfs_chunk_length(leaf, chunk); 838 stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 839 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 840 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 841 type = btrfs_chunk_type(leaf, chunk); 842 chunk_sector_size = btrfs_chunk_sector_size(leaf, chunk); 843 } else { 844 length = btrfs_stack_chunk_length(chunk); 845 stripe_len = btrfs_stack_chunk_stripe_len(chunk); 846 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 847 sub_stripes = btrfs_stack_chunk_sub_stripes(chunk); 848 type = btrfs_stack_chunk_type(chunk); 849 chunk_sector_size = btrfs_stack_chunk_sector_size(chunk); 850 } 851 raid_index = btrfs_bg_flags_to_raid_index(type); 852 ncopies = btrfs_raid_array[raid_index].ncopies; 853 nparity = btrfs_raid_array[raid_index].nparity; 854 855 if (unlikely(!num_stripes)) { 856 chunk_err(fs_info, leaf, chunk, logical, 857 "invalid chunk num_stripes, have %u", num_stripes); 858 return -EUCLEAN; 859 } 860 if (unlikely(num_stripes < ncopies)) { 861 chunk_err(fs_info, leaf, chunk, logical, 862 "invalid chunk num_stripes < ncopies, have %u < %d", 863 num_stripes, ncopies); 864 return -EUCLEAN; 865 } 866 if (unlikely(nparity && num_stripes == nparity)) { 867 chunk_err(fs_info, leaf, chunk, logical, 868 "invalid chunk num_stripes == nparity, have %u == %d", 869 num_stripes, nparity); 870 return -EUCLEAN; 871 } 872 if (unlikely(!IS_ALIGNED(logical, sectorsize))) { 873 chunk_err(fs_info, leaf, chunk, logical, 874 "invalid chunk logical, have %llu should aligned to %u", 875 logical, sectorsize); 876 return -EUCLEAN; 877 } 878 if (unlikely(chunk_sector_size != sectorsize)) { 879 chunk_err(fs_info, leaf, chunk, logical, 880 "invalid chunk sectorsize, have %u expect %u", 881 chunk_sector_size, sectorsize); 882 return -EUCLEAN; 883 } 884 if (unlikely(!length || !IS_ALIGNED(length, sectorsize))) { 885 chunk_err(fs_info, leaf, chunk, logical, 886 "invalid chunk length, have %llu", length); 887 return -EUCLEAN; 888 } 889 if (unlikely(check_add_overflow(logical, length, &chunk_end))) { 890 chunk_err(fs_info, leaf, chunk, logical, 891 "invalid chunk logical start and length, have logical start %llu length %llu", 892 logical, length); 893 return -EUCLEAN; 894 } 895 if (unlikely(!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN)) { 896 chunk_err(fs_info, leaf, chunk, logical, 897 "invalid chunk stripe length: %llu", 898 stripe_len); 899 return -EUCLEAN; 900 } 901 /* 902 * We artificially limit the chunk size, so that the number of stripes 903 * inside a chunk can be fit into a U32. The current limit (256G) is 904 * way too large for real world usage anyway, and it's also much larger 905 * than our existing limit (10G). 906 * 907 * Thus it should be a good way to catch obvious bitflips. 908 */ 909 if (unlikely(length >= btrfs_stripe_nr_to_offset(U32_MAX))) { 910 chunk_err(fs_info, leaf, chunk, logical, 911 "chunk length too large: have %llu limit %llu", 912 length, btrfs_stripe_nr_to_offset(U32_MAX)); 913 return -EUCLEAN; 914 } 915 if (unlikely(type & ~(BTRFS_BLOCK_GROUP_TYPE_MASK | 916 BTRFS_BLOCK_GROUP_PROFILE_MASK))) { 917 chunk_err(fs_info, leaf, chunk, logical, 918 "unrecognized chunk type: 0x%llx", 919 ~(BTRFS_BLOCK_GROUP_TYPE_MASK | 920 BTRFS_BLOCK_GROUP_PROFILE_MASK) & type); 921 return -EUCLEAN; 922 } 923 924 if (unlikely(!has_single_bit_set(type & BTRFS_BLOCK_GROUP_PROFILE_MASK) && 925 (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) != 0)) { 926 chunk_err(fs_info, leaf, chunk, logical, 927 "invalid chunk profile flag: 0x%llx, expect 0 or 1 bit set", 928 type & BTRFS_BLOCK_GROUP_PROFILE_MASK); 929 return -EUCLEAN; 930 } 931 if (unlikely((type & BTRFS_BLOCK_GROUP_TYPE_MASK) == 0)) { 932 chunk_err(fs_info, leaf, chunk, logical, 933 "missing chunk type flag, have 0x%llx one bit must be set in 0x%llx", 934 type, BTRFS_BLOCK_GROUP_TYPE_MASK); 935 return -EUCLEAN; 936 } 937 938 if (unlikely((type & BTRFS_BLOCK_GROUP_SYSTEM) && 939 (type & (BTRFS_BLOCK_GROUP_METADATA | 940 BTRFS_BLOCK_GROUP_DATA)))) { 941 chunk_err(fs_info, leaf, chunk, logical, 942 "system chunk with data or metadata type: 0x%llx", 943 type); 944 return -EUCLEAN; 945 } 946 947 features = btrfs_super_incompat_flags(fs_info->super_copy); 948 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 949 mixed = true; 950 951 if (!mixed) { 952 if (unlikely((type & BTRFS_BLOCK_GROUP_METADATA) && 953 (type & BTRFS_BLOCK_GROUP_DATA))) { 954 chunk_err(fs_info, leaf, chunk, logical, 955 "mixed chunk type in non-mixed mode: 0x%llx", type); 956 return -EUCLEAN; 957 } 958 } 959 960 if (unlikely((type & BTRFS_BLOCK_GROUP_RAID10 && 961 sub_stripes != btrfs_raid_array[BTRFS_RAID_RAID10].sub_stripes) || 962 (type & BTRFS_BLOCK_GROUP_RAID1 && 963 num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1].devs_min) || 964 (type & BTRFS_BLOCK_GROUP_RAID1C3 && 965 num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C3].devs_min) || 966 (type & BTRFS_BLOCK_GROUP_RAID1C4 && 967 num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C4].devs_min) || 968 (type & BTRFS_BLOCK_GROUP_RAID5 && 969 num_stripes < btrfs_raid_array[BTRFS_RAID_RAID5].devs_min) || 970 (type & BTRFS_BLOCK_GROUP_RAID6 && 971 num_stripes < btrfs_raid_array[BTRFS_RAID_RAID6].devs_min) || 972 (type & BTRFS_BLOCK_GROUP_DUP && 973 num_stripes != btrfs_raid_array[BTRFS_RAID_DUP].dev_stripes) || 974 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 && 975 num_stripes != btrfs_raid_array[BTRFS_RAID_SINGLE].dev_stripes))) { 976 chunk_err(fs_info, leaf, chunk, logical, 977 "invalid num_stripes:sub_stripes %u:%u for profile %llu", 978 num_stripes, sub_stripes, 979 type & BTRFS_BLOCK_GROUP_PROFILE_MASK); 980 return -EUCLEAN; 981 } 982 983 return 0; 984 } 985 986 /* 987 * Enhanced version of chunk item checker. 988 * 989 * The common btrfs_check_chunk_valid() doesn't check item size since it needs 990 * to work on super block sys_chunk_array which doesn't have full item ptr. 991 */ 992 static int check_leaf_chunk_item(struct extent_buffer *leaf, 993 struct btrfs_chunk *chunk, 994 struct btrfs_key *key, int slot) 995 { 996 struct btrfs_fs_info *fs_info = leaf->fs_info; 997 int num_stripes; 998 999 if (unlikely(btrfs_item_size(leaf, slot) < sizeof(struct btrfs_chunk))) { 1000 chunk_err(fs_info, leaf, chunk, key->offset, 1001 "invalid chunk item size: have %u expect [%zu, %u)", 1002 btrfs_item_size(leaf, slot), 1003 sizeof(struct btrfs_chunk), 1004 BTRFS_LEAF_DATA_SIZE(fs_info)); 1005 return -EUCLEAN; 1006 } 1007 1008 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 1009 /* Let btrfs_check_chunk_valid() handle this error type */ 1010 if (num_stripes == 0) 1011 goto out; 1012 1013 if (unlikely(btrfs_chunk_item_size(num_stripes) != 1014 btrfs_item_size(leaf, slot))) { 1015 chunk_err(fs_info, leaf, chunk, key->offset, 1016 "invalid chunk item size: have %u expect %lu", 1017 btrfs_item_size(leaf, slot), 1018 btrfs_chunk_item_size(num_stripes)); 1019 return -EUCLEAN; 1020 } 1021 out: 1022 return btrfs_check_chunk_valid(fs_info, leaf, chunk, key->offset, 1023 fs_info->sectorsize); 1024 } 1025 1026 __printf(3, 4) 1027 __cold 1028 static void dev_item_err(const struct extent_buffer *eb, int slot, 1029 const char *fmt, ...) 1030 { 1031 struct btrfs_key key; 1032 struct va_format vaf; 1033 va_list args; 1034 1035 btrfs_item_key_to_cpu(eb, &key, slot); 1036 va_start(args, fmt); 1037 1038 vaf.fmt = fmt; 1039 vaf.va = &args; 1040 1041 dump_page(folio_page(eb->folios[0], 0), "eb page dump"); 1042 btrfs_crit(eb->fs_info, 1043 "corrupt %s: root=%llu block=%llu slot=%d devid=%llu %pV", 1044 btrfs_header_level(eb) == 0 ? "leaf" : "node", 1045 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, 1046 key.objectid, &vaf); 1047 va_end(args); 1048 } 1049 1050 static int check_dev_item(struct extent_buffer *leaf, 1051 struct btrfs_key *key, int slot) 1052 { 1053 struct btrfs_dev_item *ditem; 1054 const u32 item_size = btrfs_item_size(leaf, slot); 1055 1056 if (unlikely(key->objectid != BTRFS_DEV_ITEMS_OBJECTID)) { 1057 dev_item_err(leaf, slot, 1058 "invalid objectid: has=%llu expect=%llu", 1059 key->objectid, BTRFS_DEV_ITEMS_OBJECTID); 1060 return -EUCLEAN; 1061 } 1062 1063 if (unlikely(item_size != sizeof(*ditem))) { 1064 dev_item_err(leaf, slot, "invalid item size: has %u expect %zu", 1065 item_size, sizeof(*ditem)); 1066 return -EUCLEAN; 1067 } 1068 1069 ditem = btrfs_item_ptr(leaf, slot, struct btrfs_dev_item); 1070 if (unlikely(btrfs_device_id(leaf, ditem) != key->offset)) { 1071 dev_item_err(leaf, slot, 1072 "devid mismatch: key has=%llu item has=%llu", 1073 key->offset, btrfs_device_id(leaf, ditem)); 1074 return -EUCLEAN; 1075 } 1076 1077 /* 1078 * For device total_bytes, we don't have reliable way to check it, as 1079 * it can be 0 for device removal. Device size check can only be done 1080 * by dev extents check. 1081 */ 1082 if (unlikely(btrfs_device_bytes_used(leaf, ditem) > 1083 btrfs_device_total_bytes(leaf, ditem))) { 1084 dev_item_err(leaf, slot, 1085 "invalid bytes used: have %llu expect [0, %llu]", 1086 btrfs_device_bytes_used(leaf, ditem), 1087 btrfs_device_total_bytes(leaf, ditem)); 1088 return -EUCLEAN; 1089 } 1090 /* 1091 * Remaining members like io_align/type/gen/dev_group aren't really 1092 * utilized. Skip them to make later usage of them easier. 1093 */ 1094 return 0; 1095 } 1096 1097 static int check_inode_item(struct extent_buffer *leaf, 1098 struct btrfs_key *key, int slot) 1099 { 1100 struct btrfs_fs_info *fs_info = leaf->fs_info; 1101 struct btrfs_inode_item *iitem; 1102 u64 super_gen = btrfs_super_generation(fs_info->super_copy); 1103 u32 valid_mask = (S_IFMT | S_ISUID | S_ISGID | S_ISVTX | 0777); 1104 const u32 item_size = btrfs_item_size(leaf, slot); 1105 u32 mode; 1106 int ret; 1107 u32 flags; 1108 u32 ro_flags; 1109 1110 ret = check_inode_key(leaf, key, slot); 1111 if (unlikely(ret < 0)) 1112 return ret; 1113 1114 if (unlikely(item_size != sizeof(*iitem))) { 1115 generic_err(leaf, slot, "invalid item size: has %u expect %zu", 1116 item_size, sizeof(*iitem)); 1117 return -EUCLEAN; 1118 } 1119 1120 iitem = btrfs_item_ptr(leaf, slot, struct btrfs_inode_item); 1121 1122 /* Here we use super block generation + 1 to handle log tree */ 1123 if (unlikely(btrfs_inode_generation(leaf, iitem) > super_gen + 1)) { 1124 inode_item_err(leaf, slot, 1125 "invalid inode generation: has %llu expect (0, %llu]", 1126 btrfs_inode_generation(leaf, iitem), 1127 super_gen + 1); 1128 return -EUCLEAN; 1129 } 1130 /* Note for ROOT_TREE_DIR_ITEM, mkfs could set its transid 0 */ 1131 if (unlikely(btrfs_inode_transid(leaf, iitem) > super_gen + 1)) { 1132 inode_item_err(leaf, slot, 1133 "invalid inode transid: has %llu expect [0, %llu]", 1134 btrfs_inode_transid(leaf, iitem), super_gen + 1); 1135 return -EUCLEAN; 1136 } 1137 1138 /* 1139 * For size and nbytes it's better not to be too strict, as for dir 1140 * item its size/nbytes can easily get wrong, but doesn't affect 1141 * anything in the fs. So here we skip the check. 1142 */ 1143 mode = btrfs_inode_mode(leaf, iitem); 1144 if (unlikely(mode & ~valid_mask)) { 1145 inode_item_err(leaf, slot, 1146 "unknown mode bit detected: 0x%x", 1147 mode & ~valid_mask); 1148 return -EUCLEAN; 1149 } 1150 1151 /* 1152 * S_IFMT is not bit mapped so we can't completely rely on 1153 * is_power_of_2/has_single_bit_set, but it can save us from checking 1154 * FIFO/CHR/DIR/REG. Only needs to check BLK, LNK and SOCKS 1155 */ 1156 if (!has_single_bit_set(mode & S_IFMT)) { 1157 if (unlikely(!S_ISLNK(mode) && !S_ISBLK(mode) && !S_ISSOCK(mode))) { 1158 inode_item_err(leaf, slot, 1159 "invalid mode: has 0%o expect valid S_IF* bit(s)", 1160 mode & S_IFMT); 1161 return -EUCLEAN; 1162 } 1163 } 1164 if (unlikely(S_ISDIR(mode) && btrfs_inode_nlink(leaf, iitem) > 1)) { 1165 inode_item_err(leaf, slot, 1166 "invalid nlink: has %u expect no more than 1 for dir", 1167 btrfs_inode_nlink(leaf, iitem)); 1168 return -EUCLEAN; 1169 } 1170 btrfs_inode_split_flags(btrfs_inode_flags(leaf, iitem), &flags, &ro_flags); 1171 if (unlikely(flags & ~BTRFS_INODE_FLAG_MASK)) { 1172 inode_item_err(leaf, slot, 1173 "unknown incompat flags detected: 0x%x", flags); 1174 return -EUCLEAN; 1175 } 1176 if (unlikely(!sb_rdonly(fs_info->sb) && 1177 (ro_flags & ~BTRFS_INODE_RO_FLAG_MASK))) { 1178 inode_item_err(leaf, slot, 1179 "unknown ro-compat flags detected on writeable mount: 0x%x", 1180 ro_flags); 1181 return -EUCLEAN; 1182 } 1183 return 0; 1184 } 1185 1186 static int check_root_item(struct extent_buffer *leaf, struct btrfs_key *key, 1187 int slot) 1188 { 1189 struct btrfs_fs_info *fs_info = leaf->fs_info; 1190 struct btrfs_root_item ri = { 0 }; 1191 const u64 valid_root_flags = BTRFS_ROOT_SUBVOL_RDONLY | 1192 BTRFS_ROOT_SUBVOL_DEAD; 1193 int ret; 1194 1195 ret = check_root_key(leaf, key, slot); 1196 if (unlikely(ret < 0)) 1197 return ret; 1198 1199 if (unlikely(btrfs_item_size(leaf, slot) != sizeof(ri) && 1200 btrfs_item_size(leaf, slot) != 1201 btrfs_legacy_root_item_size())) { 1202 generic_err(leaf, slot, 1203 "invalid root item size, have %u expect %zu or %u", 1204 btrfs_item_size(leaf, slot), sizeof(ri), 1205 btrfs_legacy_root_item_size()); 1206 return -EUCLEAN; 1207 } 1208 1209 /* 1210 * For legacy root item, the members starting at generation_v2 will be 1211 * all filled with 0. 1212 * And since we allow geneartion_v2 as 0, it will still pass the check. 1213 */ 1214 read_extent_buffer(leaf, &ri, btrfs_item_ptr_offset(leaf, slot), 1215 btrfs_item_size(leaf, slot)); 1216 1217 /* Generation related */ 1218 if (unlikely(btrfs_root_generation(&ri) > 1219 btrfs_super_generation(fs_info->super_copy) + 1)) { 1220 generic_err(leaf, slot, 1221 "invalid root generation, have %llu expect (0, %llu]", 1222 btrfs_root_generation(&ri), 1223 btrfs_super_generation(fs_info->super_copy) + 1); 1224 return -EUCLEAN; 1225 } 1226 if (unlikely(btrfs_root_generation_v2(&ri) > 1227 btrfs_super_generation(fs_info->super_copy) + 1)) { 1228 generic_err(leaf, slot, 1229 "invalid root v2 generation, have %llu expect (0, %llu]", 1230 btrfs_root_generation_v2(&ri), 1231 btrfs_super_generation(fs_info->super_copy) + 1); 1232 return -EUCLEAN; 1233 } 1234 if (unlikely(btrfs_root_last_snapshot(&ri) > 1235 btrfs_super_generation(fs_info->super_copy) + 1)) { 1236 generic_err(leaf, slot, 1237 "invalid root last_snapshot, have %llu expect (0, %llu]", 1238 btrfs_root_last_snapshot(&ri), 1239 btrfs_super_generation(fs_info->super_copy) + 1); 1240 return -EUCLEAN; 1241 } 1242 1243 /* Alignment and level check */ 1244 if (unlikely(!IS_ALIGNED(btrfs_root_bytenr(&ri), fs_info->sectorsize))) { 1245 generic_err(leaf, slot, 1246 "invalid root bytenr, have %llu expect to be aligned to %u", 1247 btrfs_root_bytenr(&ri), fs_info->sectorsize); 1248 return -EUCLEAN; 1249 } 1250 if (unlikely(btrfs_root_level(&ri) >= BTRFS_MAX_LEVEL)) { 1251 generic_err(leaf, slot, 1252 "invalid root level, have %u expect [0, %u]", 1253 btrfs_root_level(&ri), BTRFS_MAX_LEVEL - 1); 1254 return -EUCLEAN; 1255 } 1256 if (unlikely(btrfs_root_drop_level(&ri) >= BTRFS_MAX_LEVEL)) { 1257 generic_err(leaf, slot, 1258 "invalid root level, have %u expect [0, %u]", 1259 btrfs_root_drop_level(&ri), BTRFS_MAX_LEVEL - 1); 1260 return -EUCLEAN; 1261 } 1262 1263 /* Flags check */ 1264 if (unlikely(btrfs_root_flags(&ri) & ~valid_root_flags)) { 1265 generic_err(leaf, slot, 1266 "invalid root flags, have 0x%llx expect mask 0x%llx", 1267 btrfs_root_flags(&ri), valid_root_flags); 1268 return -EUCLEAN; 1269 } 1270 return 0; 1271 } 1272 1273 __printf(3,4) 1274 __cold 1275 static void extent_err(const struct extent_buffer *eb, int slot, 1276 const char *fmt, ...) 1277 { 1278 struct btrfs_key key; 1279 struct va_format vaf; 1280 va_list args; 1281 u64 bytenr; 1282 u64 len; 1283 1284 btrfs_item_key_to_cpu(eb, &key, slot); 1285 bytenr = key.objectid; 1286 if (key.type == BTRFS_METADATA_ITEM_KEY || 1287 key.type == BTRFS_TREE_BLOCK_REF_KEY || 1288 key.type == BTRFS_SHARED_BLOCK_REF_KEY) 1289 len = eb->fs_info->nodesize; 1290 else 1291 len = key.offset; 1292 va_start(args, fmt); 1293 1294 vaf.fmt = fmt; 1295 vaf.va = &args; 1296 1297 dump_page(folio_page(eb->folios[0], 0), "eb page dump"); 1298 btrfs_crit(eb->fs_info, 1299 "corrupt %s: block=%llu slot=%d extent bytenr=%llu len=%llu %pV", 1300 btrfs_header_level(eb) == 0 ? "leaf" : "node", 1301 eb->start, slot, bytenr, len, &vaf); 1302 va_end(args); 1303 } 1304 1305 static bool is_valid_dref_root(u64 rootid) 1306 { 1307 /* 1308 * The following tree root objectids are allowed to have a data backref: 1309 * - subvolume trees 1310 * - data reloc tree 1311 * - tree root 1312 * For v1 space cache 1313 */ 1314 return is_fstree(rootid) || rootid == BTRFS_DATA_RELOC_TREE_OBJECTID || 1315 rootid == BTRFS_ROOT_TREE_OBJECTID; 1316 } 1317 1318 static int check_extent_item(struct extent_buffer *leaf, 1319 struct btrfs_key *key, int slot, 1320 struct btrfs_key *prev_key) 1321 { 1322 struct btrfs_fs_info *fs_info = leaf->fs_info; 1323 struct btrfs_extent_item *ei; 1324 bool is_tree_block = false; 1325 unsigned long ptr; /* Current pointer inside inline refs */ 1326 unsigned long end; /* Extent item end */ 1327 const u32 item_size = btrfs_item_size(leaf, slot); 1328 u8 last_type = 0; 1329 u64 last_seq = U64_MAX; 1330 u64 flags; 1331 u64 generation; 1332 u64 total_refs; /* Total refs in btrfs_extent_item */ 1333 u64 inline_refs = 0; /* found total inline refs */ 1334 1335 if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY && 1336 !btrfs_fs_incompat(fs_info, SKINNY_METADATA))) { 1337 generic_err(leaf, slot, 1338 "invalid key type, METADATA_ITEM type invalid when SKINNY_METADATA feature disabled"); 1339 return -EUCLEAN; 1340 } 1341 /* key->objectid is the bytenr for both key types */ 1342 if (unlikely(!IS_ALIGNED(key->objectid, fs_info->sectorsize))) { 1343 generic_err(leaf, slot, 1344 "invalid key objectid, have %llu expect to be aligned to %u", 1345 key->objectid, fs_info->sectorsize); 1346 return -EUCLEAN; 1347 } 1348 1349 /* key->offset is tree level for METADATA_ITEM_KEY */ 1350 if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY && 1351 key->offset >= BTRFS_MAX_LEVEL)) { 1352 extent_err(leaf, slot, 1353 "invalid tree level, have %llu expect [0, %u]", 1354 key->offset, BTRFS_MAX_LEVEL - 1); 1355 return -EUCLEAN; 1356 } 1357 1358 /* 1359 * EXTENT/METADATA_ITEM consists of: 1360 * 1) One btrfs_extent_item 1361 * Records the total refs, type and generation of the extent. 1362 * 1363 * 2) One btrfs_tree_block_info (for EXTENT_ITEM and tree backref only) 1364 * Records the first key and level of the tree block. 1365 * 1366 * 2) Zero or more btrfs_extent_inline_ref(s) 1367 * Each inline ref has one btrfs_extent_inline_ref shows: 1368 * 2.1) The ref type, one of the 4 1369 * TREE_BLOCK_REF Tree block only 1370 * SHARED_BLOCK_REF Tree block only 1371 * EXTENT_DATA_REF Data only 1372 * SHARED_DATA_REF Data only 1373 * 2.2) Ref type specific data 1374 * Either using btrfs_extent_inline_ref::offset, or specific 1375 * data structure. 1376 * 1377 * All above inline items should follow the order: 1378 * 1379 * - All btrfs_extent_inline_ref::type should be in an ascending 1380 * order 1381 * 1382 * - Within the same type, the items should follow a descending 1383 * order by their sequence number. The sequence number is 1384 * determined by: 1385 * * btrfs_extent_inline_ref::offset for all types other than 1386 * EXTENT_DATA_REF 1387 * * hash_extent_data_ref() for EXTENT_DATA_REF 1388 */ 1389 if (unlikely(item_size < sizeof(*ei))) { 1390 extent_err(leaf, slot, 1391 "invalid item size, have %u expect [%zu, %u)", 1392 item_size, sizeof(*ei), 1393 BTRFS_LEAF_DATA_SIZE(fs_info)); 1394 return -EUCLEAN; 1395 } 1396 end = item_size + btrfs_item_ptr_offset(leaf, slot); 1397 1398 /* Checks against extent_item */ 1399 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 1400 flags = btrfs_extent_flags(leaf, ei); 1401 total_refs = btrfs_extent_refs(leaf, ei); 1402 generation = btrfs_extent_generation(leaf, ei); 1403 if (unlikely(generation > 1404 btrfs_super_generation(fs_info->super_copy) + 1)) { 1405 extent_err(leaf, slot, 1406 "invalid generation, have %llu expect (0, %llu]", 1407 generation, 1408 btrfs_super_generation(fs_info->super_copy) + 1); 1409 return -EUCLEAN; 1410 } 1411 if (unlikely(!has_single_bit_set(flags & (BTRFS_EXTENT_FLAG_DATA | 1412 BTRFS_EXTENT_FLAG_TREE_BLOCK)))) { 1413 extent_err(leaf, slot, 1414 "invalid extent flag, have 0x%llx expect 1 bit set in 0x%llx", 1415 flags, BTRFS_EXTENT_FLAG_DATA | 1416 BTRFS_EXTENT_FLAG_TREE_BLOCK); 1417 return -EUCLEAN; 1418 } 1419 is_tree_block = !!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK); 1420 if (is_tree_block) { 1421 if (unlikely(key->type == BTRFS_EXTENT_ITEM_KEY && 1422 key->offset != fs_info->nodesize)) { 1423 extent_err(leaf, slot, 1424 "invalid extent length, have %llu expect %u", 1425 key->offset, fs_info->nodesize); 1426 return -EUCLEAN; 1427 } 1428 } else { 1429 if (unlikely(key->type != BTRFS_EXTENT_ITEM_KEY)) { 1430 extent_err(leaf, slot, 1431 "invalid key type, have %u expect %u for data backref", 1432 key->type, BTRFS_EXTENT_ITEM_KEY); 1433 return -EUCLEAN; 1434 } 1435 if (unlikely(!IS_ALIGNED(key->offset, fs_info->sectorsize))) { 1436 extent_err(leaf, slot, 1437 "invalid extent length, have %llu expect aligned to %u", 1438 key->offset, fs_info->sectorsize); 1439 return -EUCLEAN; 1440 } 1441 if (unlikely(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 1442 extent_err(leaf, slot, 1443 "invalid extent flag, data has full backref set"); 1444 return -EUCLEAN; 1445 } 1446 } 1447 ptr = (unsigned long)(struct btrfs_extent_item *)(ei + 1); 1448 1449 /* Check the special case of btrfs_tree_block_info */ 1450 if (is_tree_block && key->type != BTRFS_METADATA_ITEM_KEY) { 1451 struct btrfs_tree_block_info *info; 1452 1453 info = (struct btrfs_tree_block_info *)ptr; 1454 if (unlikely(btrfs_tree_block_level(leaf, info) >= BTRFS_MAX_LEVEL)) { 1455 extent_err(leaf, slot, 1456 "invalid tree block info level, have %u expect [0, %u]", 1457 btrfs_tree_block_level(leaf, info), 1458 BTRFS_MAX_LEVEL - 1); 1459 return -EUCLEAN; 1460 } 1461 ptr = (unsigned long)(struct btrfs_tree_block_info *)(info + 1); 1462 } 1463 1464 /* Check inline refs */ 1465 while (ptr < end) { 1466 struct btrfs_extent_inline_ref *iref; 1467 struct btrfs_extent_data_ref *dref; 1468 struct btrfs_shared_data_ref *sref; 1469 u64 seq; 1470 u64 dref_root; 1471 u64 dref_objectid; 1472 u64 dref_offset; 1473 u64 inline_offset; 1474 u8 inline_type; 1475 1476 if (unlikely(ptr + sizeof(*iref) > end)) { 1477 extent_err(leaf, slot, 1478 "inline ref item overflows extent item, ptr %lu iref size %zu end %lu", 1479 ptr, sizeof(*iref), end); 1480 return -EUCLEAN; 1481 } 1482 iref = (struct btrfs_extent_inline_ref *)ptr; 1483 inline_type = btrfs_extent_inline_ref_type(leaf, iref); 1484 inline_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1485 seq = inline_offset; 1486 if (unlikely(ptr + btrfs_extent_inline_ref_size(inline_type) > end)) { 1487 extent_err(leaf, slot, 1488 "inline ref item overflows extent item, ptr %lu iref size %u end %lu", 1489 ptr, btrfs_extent_inline_ref_size(inline_type), end); 1490 return -EUCLEAN; 1491 } 1492 1493 switch (inline_type) { 1494 /* inline_offset is subvolid of the owner, no need to check */ 1495 case BTRFS_TREE_BLOCK_REF_KEY: 1496 inline_refs++; 1497 break; 1498 /* Contains parent bytenr */ 1499 case BTRFS_SHARED_BLOCK_REF_KEY: 1500 if (unlikely(!IS_ALIGNED(inline_offset, 1501 fs_info->sectorsize))) { 1502 extent_err(leaf, slot, 1503 "invalid tree parent bytenr, have %llu expect aligned to %u", 1504 inline_offset, fs_info->sectorsize); 1505 return -EUCLEAN; 1506 } 1507 inline_refs++; 1508 break; 1509 /* 1510 * Contains owner subvolid, owner key objectid, adjusted offset. 1511 * The only obvious corruption can happen in that offset. 1512 */ 1513 case BTRFS_EXTENT_DATA_REF_KEY: 1514 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1515 dref_root = btrfs_extent_data_ref_root(leaf, dref); 1516 dref_objectid = btrfs_extent_data_ref_objectid(leaf, dref); 1517 dref_offset = btrfs_extent_data_ref_offset(leaf, dref); 1518 seq = hash_extent_data_ref( 1519 btrfs_extent_data_ref_root(leaf, dref), 1520 btrfs_extent_data_ref_objectid(leaf, dref), 1521 btrfs_extent_data_ref_offset(leaf, dref)); 1522 if (unlikely(!is_valid_dref_root(dref_root))) { 1523 extent_err(leaf, slot, 1524 "invalid data ref root value %llu", 1525 dref_root); 1526 return -EUCLEAN; 1527 } 1528 if (unlikely(dref_objectid < BTRFS_FIRST_FREE_OBJECTID || 1529 dref_objectid > BTRFS_LAST_FREE_OBJECTID)) { 1530 extent_err(leaf, slot, 1531 "invalid data ref objectid value %llu", 1532 dref_objectid); 1533 return -EUCLEAN; 1534 } 1535 if (unlikely(!IS_ALIGNED(dref_offset, 1536 fs_info->sectorsize))) { 1537 extent_err(leaf, slot, 1538 "invalid data ref offset, have %llu expect aligned to %u", 1539 dref_offset, fs_info->sectorsize); 1540 return -EUCLEAN; 1541 } 1542 if (unlikely(btrfs_extent_data_ref_count(leaf, dref) == 0)) { 1543 extent_err(leaf, slot, 1544 "invalid data ref count, should have non-zero value"); 1545 return -EUCLEAN; 1546 } 1547 inline_refs += btrfs_extent_data_ref_count(leaf, dref); 1548 break; 1549 /* Contains parent bytenr and ref count */ 1550 case BTRFS_SHARED_DATA_REF_KEY: 1551 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1552 if (unlikely(!IS_ALIGNED(inline_offset, 1553 fs_info->sectorsize))) { 1554 extent_err(leaf, slot, 1555 "invalid data parent bytenr, have %llu expect aligned to %u", 1556 inline_offset, fs_info->sectorsize); 1557 return -EUCLEAN; 1558 } 1559 if (unlikely(btrfs_shared_data_ref_count(leaf, sref) == 0)) { 1560 extent_err(leaf, slot, 1561 "invalid shared data ref count, should have non-zero value"); 1562 return -EUCLEAN; 1563 } 1564 inline_refs += btrfs_shared_data_ref_count(leaf, sref); 1565 break; 1566 case BTRFS_EXTENT_OWNER_REF_KEY: 1567 WARN_ON(!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA)); 1568 break; 1569 default: 1570 extent_err(leaf, slot, "unknown inline ref type: %u", 1571 inline_type); 1572 return -EUCLEAN; 1573 } 1574 if (inline_type < last_type) { 1575 extent_err(leaf, slot, 1576 "inline ref out-of-order: has type %u, prev type %u", 1577 inline_type, last_type); 1578 return -EUCLEAN; 1579 } 1580 /* Type changed, allow the sequence starts from U64_MAX again. */ 1581 if (inline_type > last_type) 1582 last_seq = U64_MAX; 1583 if (seq > last_seq) { 1584 extent_err(leaf, slot, 1585 "inline ref out-of-order: has type %u offset %llu seq 0x%llx, prev type %u seq 0x%llx", 1586 inline_type, inline_offset, seq, 1587 last_type, last_seq); 1588 return -EUCLEAN; 1589 } 1590 last_type = inline_type; 1591 last_seq = seq; 1592 ptr += btrfs_extent_inline_ref_size(inline_type); 1593 } 1594 /* No padding is allowed */ 1595 if (unlikely(ptr != end)) { 1596 extent_err(leaf, slot, 1597 "invalid extent item size, padding bytes found"); 1598 return -EUCLEAN; 1599 } 1600 1601 /* Finally, check the inline refs against total refs */ 1602 if (unlikely(inline_refs > total_refs)) { 1603 extent_err(leaf, slot, 1604 "invalid extent refs, have %llu expect >= inline %llu", 1605 total_refs, inline_refs); 1606 return -EUCLEAN; 1607 } 1608 1609 if ((prev_key->type == BTRFS_EXTENT_ITEM_KEY) || 1610 (prev_key->type == BTRFS_METADATA_ITEM_KEY)) { 1611 u64 prev_end = prev_key->objectid; 1612 1613 if (prev_key->type == BTRFS_METADATA_ITEM_KEY) 1614 prev_end += fs_info->nodesize; 1615 else 1616 prev_end += prev_key->offset; 1617 1618 if (unlikely(prev_end > key->objectid)) { 1619 extent_err(leaf, slot, 1620 "previous extent [%llu %u %llu] overlaps current extent [%llu %u %llu]", 1621 prev_key->objectid, prev_key->type, 1622 prev_key->offset, key->objectid, key->type, 1623 key->offset); 1624 return -EUCLEAN; 1625 } 1626 } 1627 1628 return 0; 1629 } 1630 1631 static int check_simple_keyed_refs(struct extent_buffer *leaf, 1632 struct btrfs_key *key, int slot) 1633 { 1634 u32 expect_item_size = 0; 1635 1636 if (key->type == BTRFS_SHARED_DATA_REF_KEY) { 1637 struct btrfs_shared_data_ref *sref; 1638 1639 sref = btrfs_item_ptr(leaf, slot, struct btrfs_shared_data_ref); 1640 if (unlikely(btrfs_shared_data_ref_count(leaf, sref) == 0)) { 1641 extent_err(leaf, slot, 1642 "invalid shared data backref count, should have non-zero value"); 1643 return -EUCLEAN; 1644 } 1645 1646 expect_item_size = sizeof(struct btrfs_shared_data_ref); 1647 } 1648 1649 if (unlikely(btrfs_item_size(leaf, slot) != expect_item_size)) { 1650 generic_err(leaf, slot, 1651 "invalid item size, have %u expect %u for key type %u", 1652 btrfs_item_size(leaf, slot), 1653 expect_item_size, key->type); 1654 return -EUCLEAN; 1655 } 1656 if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) { 1657 generic_err(leaf, slot, 1658 "invalid key objectid for shared block ref, have %llu expect aligned to %u", 1659 key->objectid, leaf->fs_info->sectorsize); 1660 return -EUCLEAN; 1661 } 1662 if (unlikely(key->type != BTRFS_TREE_BLOCK_REF_KEY && 1663 !IS_ALIGNED(key->offset, leaf->fs_info->sectorsize))) { 1664 extent_err(leaf, slot, 1665 "invalid tree parent bytenr, have %llu expect aligned to %u", 1666 key->offset, leaf->fs_info->sectorsize); 1667 return -EUCLEAN; 1668 } 1669 return 0; 1670 } 1671 1672 static int check_extent_data_ref(struct extent_buffer *leaf, 1673 struct btrfs_key *key, int slot) 1674 { 1675 struct btrfs_extent_data_ref *dref; 1676 unsigned long ptr = btrfs_item_ptr_offset(leaf, slot); 1677 const unsigned long end = ptr + btrfs_item_size(leaf, slot); 1678 1679 if (unlikely(btrfs_item_size(leaf, slot) % sizeof(*dref) != 0)) { 1680 generic_err(leaf, slot, 1681 "invalid item size, have %u expect aligned to %zu for key type %u", 1682 btrfs_item_size(leaf, slot), 1683 sizeof(*dref), key->type); 1684 return -EUCLEAN; 1685 } 1686 if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) { 1687 generic_err(leaf, slot, 1688 "invalid key objectid for shared block ref, have %llu expect aligned to %u", 1689 key->objectid, leaf->fs_info->sectorsize); 1690 return -EUCLEAN; 1691 } 1692 for (; ptr < end; ptr += sizeof(*dref)) { 1693 u64 root; 1694 u64 objectid; 1695 u64 offset; 1696 1697 /* 1698 * We cannot check the extent_data_ref hash due to possible 1699 * overflow from the leaf due to hash collisions. 1700 */ 1701 dref = (struct btrfs_extent_data_ref *)ptr; 1702 root = btrfs_extent_data_ref_root(leaf, dref); 1703 objectid = btrfs_extent_data_ref_objectid(leaf, dref); 1704 offset = btrfs_extent_data_ref_offset(leaf, dref); 1705 if (unlikely(!is_valid_dref_root(root))) { 1706 extent_err(leaf, slot, 1707 "invalid extent data backref root value %llu", 1708 root); 1709 return -EUCLEAN; 1710 } 1711 if (unlikely(objectid < BTRFS_FIRST_FREE_OBJECTID || 1712 objectid > BTRFS_LAST_FREE_OBJECTID)) { 1713 extent_err(leaf, slot, 1714 "invalid extent data backref objectid value %llu", 1715 root); 1716 return -EUCLEAN; 1717 } 1718 if (unlikely(!IS_ALIGNED(offset, leaf->fs_info->sectorsize))) { 1719 extent_err(leaf, slot, 1720 "invalid extent data backref offset, have %llu expect aligned to %u", 1721 offset, leaf->fs_info->sectorsize); 1722 return -EUCLEAN; 1723 } 1724 if (unlikely(btrfs_extent_data_ref_count(leaf, dref) == 0)) { 1725 extent_err(leaf, slot, 1726 "invalid extent data backref count, should have non-zero value"); 1727 return -EUCLEAN; 1728 } 1729 } 1730 return 0; 1731 } 1732 1733 #define inode_ref_err(eb, slot, fmt, args...) \ 1734 inode_item_err(eb, slot, fmt, ##args) 1735 static int check_inode_ref(struct extent_buffer *leaf, 1736 struct btrfs_key *key, struct btrfs_key *prev_key, 1737 int slot) 1738 { 1739 struct btrfs_inode_ref *iref; 1740 unsigned long ptr; 1741 unsigned long end; 1742 1743 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key))) 1744 return -EUCLEAN; 1745 /* namelen can't be 0, so item_size == sizeof() is also invalid */ 1746 if (unlikely(btrfs_item_size(leaf, slot) <= sizeof(*iref))) { 1747 inode_ref_err(leaf, slot, 1748 "invalid item size, have %u expect (%zu, %u)", 1749 btrfs_item_size(leaf, slot), 1750 sizeof(*iref), BTRFS_LEAF_DATA_SIZE(leaf->fs_info)); 1751 return -EUCLEAN; 1752 } 1753 1754 ptr = btrfs_item_ptr_offset(leaf, slot); 1755 end = ptr + btrfs_item_size(leaf, slot); 1756 while (ptr < end) { 1757 u16 namelen; 1758 1759 if (unlikely(ptr + sizeof(iref) > end)) { 1760 inode_ref_err(leaf, slot, 1761 "inode ref overflow, ptr %lu end %lu inode_ref_size %zu", 1762 ptr, end, sizeof(iref)); 1763 return -EUCLEAN; 1764 } 1765 1766 iref = (struct btrfs_inode_ref *)ptr; 1767 namelen = btrfs_inode_ref_name_len(leaf, iref); 1768 if (unlikely(ptr + sizeof(*iref) + namelen > end)) { 1769 inode_ref_err(leaf, slot, 1770 "inode ref overflow, ptr %lu end %lu namelen %u", 1771 ptr, end, namelen); 1772 return -EUCLEAN; 1773 } 1774 1775 /* 1776 * NOTE: In theory we should record all found index numbers 1777 * to find any duplicated indexes, but that will be too time 1778 * consuming for inodes with too many hard links. 1779 */ 1780 ptr += sizeof(*iref) + namelen; 1781 } 1782 return 0; 1783 } 1784 1785 static int check_raid_stripe_extent(const struct extent_buffer *leaf, 1786 const struct btrfs_key *key, int slot) 1787 { 1788 if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) { 1789 generic_err(leaf, slot, 1790 "invalid key objectid for raid stripe extent, have %llu expect aligned to %u", 1791 key->objectid, leaf->fs_info->sectorsize); 1792 return -EUCLEAN; 1793 } 1794 1795 if (unlikely(!btrfs_fs_incompat(leaf->fs_info, RAID_STRIPE_TREE))) { 1796 generic_err(leaf, slot, 1797 "RAID_STRIPE_EXTENT present but RAID_STRIPE_TREE incompat bit unset"); 1798 return -EUCLEAN; 1799 } 1800 1801 return 0; 1802 } 1803 1804 static int check_dev_extent_item(const struct extent_buffer *leaf, 1805 const struct btrfs_key *key, 1806 int slot, 1807 struct btrfs_key *prev_key) 1808 { 1809 struct btrfs_dev_extent *de; 1810 const u32 sectorsize = leaf->fs_info->sectorsize; 1811 1812 de = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); 1813 /* Basic fixed member checks. */ 1814 if (unlikely(btrfs_dev_extent_chunk_tree(leaf, de) != 1815 BTRFS_CHUNK_TREE_OBJECTID)) { 1816 generic_err(leaf, slot, 1817 "invalid dev extent chunk tree id, has %llu expect %llu", 1818 btrfs_dev_extent_chunk_tree(leaf, de), 1819 BTRFS_CHUNK_TREE_OBJECTID); 1820 return -EUCLEAN; 1821 } 1822 if (unlikely(btrfs_dev_extent_chunk_objectid(leaf, de) != 1823 BTRFS_FIRST_CHUNK_TREE_OBJECTID)) { 1824 generic_err(leaf, slot, 1825 "invalid dev extent chunk objectid, has %llu expect %llu", 1826 btrfs_dev_extent_chunk_objectid(leaf, de), 1827 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 1828 return -EUCLEAN; 1829 } 1830 /* Alignment check. */ 1831 if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) { 1832 generic_err(leaf, slot, 1833 "invalid dev extent key.offset, has %llu not aligned to %u", 1834 key->offset, sectorsize); 1835 return -EUCLEAN; 1836 } 1837 if (unlikely(!IS_ALIGNED(btrfs_dev_extent_chunk_offset(leaf, de), 1838 sectorsize))) { 1839 generic_err(leaf, slot, 1840 "invalid dev extent chunk offset, has %llu not aligned to %u", 1841 btrfs_dev_extent_chunk_objectid(leaf, de), 1842 sectorsize); 1843 return -EUCLEAN; 1844 } 1845 if (unlikely(!IS_ALIGNED(btrfs_dev_extent_length(leaf, de), 1846 sectorsize))) { 1847 generic_err(leaf, slot, 1848 "invalid dev extent length, has %llu not aligned to %u", 1849 btrfs_dev_extent_length(leaf, de), sectorsize); 1850 return -EUCLEAN; 1851 } 1852 /* Overlap check with previous dev extent. */ 1853 if (slot && prev_key->objectid == key->objectid && 1854 prev_key->type == key->type) { 1855 struct btrfs_dev_extent *prev_de; 1856 u64 prev_len; 1857 1858 prev_de = btrfs_item_ptr(leaf, slot - 1, struct btrfs_dev_extent); 1859 prev_len = btrfs_dev_extent_length(leaf, prev_de); 1860 if (unlikely(prev_key->offset + prev_len > key->offset)) { 1861 generic_err(leaf, slot, 1862 "dev extent overlap, prev offset %llu len %llu current offset %llu", 1863 prev_key->objectid, prev_len, key->offset); 1864 return -EUCLEAN; 1865 } 1866 } 1867 return 0; 1868 } 1869 1870 /* 1871 * Common point to switch the item-specific validation. 1872 */ 1873 static enum btrfs_tree_block_status check_leaf_item(struct extent_buffer *leaf, 1874 struct btrfs_key *key, 1875 int slot, 1876 struct btrfs_key *prev_key) 1877 { 1878 int ret = 0; 1879 struct btrfs_chunk *chunk; 1880 1881 switch (key->type) { 1882 case BTRFS_EXTENT_DATA_KEY: 1883 ret = check_extent_data_item(leaf, key, slot, prev_key); 1884 break; 1885 case BTRFS_EXTENT_CSUM_KEY: 1886 ret = check_csum_item(leaf, key, slot, prev_key); 1887 break; 1888 case BTRFS_DIR_ITEM_KEY: 1889 case BTRFS_DIR_INDEX_KEY: 1890 case BTRFS_XATTR_ITEM_KEY: 1891 ret = check_dir_item(leaf, key, prev_key, slot); 1892 break; 1893 case BTRFS_INODE_REF_KEY: 1894 ret = check_inode_ref(leaf, key, prev_key, slot); 1895 break; 1896 case BTRFS_BLOCK_GROUP_ITEM_KEY: 1897 ret = check_block_group_item(leaf, key, slot); 1898 break; 1899 case BTRFS_CHUNK_ITEM_KEY: 1900 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 1901 ret = check_leaf_chunk_item(leaf, chunk, key, slot); 1902 break; 1903 case BTRFS_DEV_ITEM_KEY: 1904 ret = check_dev_item(leaf, key, slot); 1905 break; 1906 case BTRFS_DEV_EXTENT_KEY: 1907 ret = check_dev_extent_item(leaf, key, slot, prev_key); 1908 break; 1909 case BTRFS_INODE_ITEM_KEY: 1910 ret = check_inode_item(leaf, key, slot); 1911 break; 1912 case BTRFS_ROOT_ITEM_KEY: 1913 ret = check_root_item(leaf, key, slot); 1914 break; 1915 case BTRFS_EXTENT_ITEM_KEY: 1916 case BTRFS_METADATA_ITEM_KEY: 1917 ret = check_extent_item(leaf, key, slot, prev_key); 1918 break; 1919 case BTRFS_TREE_BLOCK_REF_KEY: 1920 case BTRFS_SHARED_DATA_REF_KEY: 1921 case BTRFS_SHARED_BLOCK_REF_KEY: 1922 ret = check_simple_keyed_refs(leaf, key, slot); 1923 break; 1924 case BTRFS_EXTENT_DATA_REF_KEY: 1925 ret = check_extent_data_ref(leaf, key, slot); 1926 break; 1927 case BTRFS_RAID_STRIPE_KEY: 1928 ret = check_raid_stripe_extent(leaf, key, slot); 1929 break; 1930 } 1931 1932 if (ret) 1933 return BTRFS_TREE_BLOCK_INVALID_ITEM; 1934 return BTRFS_TREE_BLOCK_CLEAN; 1935 } 1936 1937 enum btrfs_tree_block_status __btrfs_check_leaf(struct extent_buffer *leaf) 1938 { 1939 struct btrfs_fs_info *fs_info = leaf->fs_info; 1940 /* No valid key type is 0, so all key should be larger than this key */ 1941 struct btrfs_key prev_key = {0, 0, 0}; 1942 struct btrfs_key key; 1943 u32 nritems = btrfs_header_nritems(leaf); 1944 int slot; 1945 1946 if (unlikely(btrfs_header_level(leaf) != 0)) { 1947 generic_err(leaf, 0, 1948 "invalid level for leaf, have %d expect 0", 1949 btrfs_header_level(leaf)); 1950 return BTRFS_TREE_BLOCK_INVALID_LEVEL; 1951 } 1952 1953 if (unlikely(!btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_WRITTEN))) { 1954 generic_err(leaf, 0, "invalid flag for leaf, WRITTEN not set"); 1955 return BTRFS_TREE_BLOCK_WRITTEN_NOT_SET; 1956 } 1957 1958 /* 1959 * Extent buffers from a relocation tree have a owner field that 1960 * corresponds to the subvolume tree they are based on. So just from an 1961 * extent buffer alone we can not find out what is the id of the 1962 * corresponding subvolume tree, so we can not figure out if the extent 1963 * buffer corresponds to the root of the relocation tree or not. So 1964 * skip this check for relocation trees. 1965 */ 1966 if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) { 1967 u64 owner = btrfs_header_owner(leaf); 1968 1969 /* These trees must never be empty */ 1970 if (unlikely(owner == BTRFS_ROOT_TREE_OBJECTID || 1971 owner == BTRFS_CHUNK_TREE_OBJECTID || 1972 owner == BTRFS_DEV_TREE_OBJECTID || 1973 owner == BTRFS_FS_TREE_OBJECTID || 1974 owner == BTRFS_DATA_RELOC_TREE_OBJECTID)) { 1975 generic_err(leaf, 0, 1976 "invalid root, root %llu must never be empty", 1977 owner); 1978 return BTRFS_TREE_BLOCK_INVALID_NRITEMS; 1979 } 1980 1981 /* Unknown tree */ 1982 if (unlikely(owner == 0)) { 1983 generic_err(leaf, 0, 1984 "invalid owner, root 0 is not defined"); 1985 return BTRFS_TREE_BLOCK_INVALID_OWNER; 1986 } 1987 1988 /* EXTENT_TREE_V2 can have empty extent trees. */ 1989 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 1990 return BTRFS_TREE_BLOCK_CLEAN; 1991 1992 if (unlikely(owner == BTRFS_EXTENT_TREE_OBJECTID)) { 1993 generic_err(leaf, 0, 1994 "invalid root, root %llu must never be empty", 1995 owner); 1996 return BTRFS_TREE_BLOCK_INVALID_NRITEMS; 1997 } 1998 1999 return BTRFS_TREE_BLOCK_CLEAN; 2000 } 2001 2002 if (unlikely(nritems == 0)) 2003 return BTRFS_TREE_BLOCK_CLEAN; 2004 2005 /* 2006 * Check the following things to make sure this is a good leaf, and 2007 * leaf users won't need to bother with similar sanity checks: 2008 * 2009 * 1) key ordering 2010 * 2) item offset and size 2011 * No overlap, no hole, all inside the leaf. 2012 * 3) item content 2013 * If possible, do comprehensive sanity check. 2014 * NOTE: All checks must only rely on the item data itself. 2015 */ 2016 for (slot = 0; slot < nritems; slot++) { 2017 u32 item_end_expected; 2018 u64 item_data_end; 2019 enum btrfs_tree_block_status ret; 2020 2021 btrfs_item_key_to_cpu(leaf, &key, slot); 2022 2023 /* Make sure the keys are in the right order */ 2024 if (unlikely(btrfs_comp_cpu_keys(&prev_key, &key) >= 0)) { 2025 generic_err(leaf, slot, 2026 "bad key order, prev (%llu %u %llu) current (%llu %u %llu)", 2027 prev_key.objectid, prev_key.type, 2028 prev_key.offset, key.objectid, key.type, 2029 key.offset); 2030 return BTRFS_TREE_BLOCK_BAD_KEY_ORDER; 2031 } 2032 2033 item_data_end = (u64)btrfs_item_offset(leaf, slot) + 2034 btrfs_item_size(leaf, slot); 2035 /* 2036 * Make sure the offset and ends are right, remember that the 2037 * item data starts at the end of the leaf and grows towards the 2038 * front. 2039 */ 2040 if (slot == 0) 2041 item_end_expected = BTRFS_LEAF_DATA_SIZE(fs_info); 2042 else 2043 item_end_expected = btrfs_item_offset(leaf, 2044 slot - 1); 2045 if (unlikely(item_data_end != item_end_expected)) { 2046 generic_err(leaf, slot, 2047 "unexpected item end, have %llu expect %u", 2048 item_data_end, item_end_expected); 2049 return BTRFS_TREE_BLOCK_INVALID_OFFSETS; 2050 } 2051 2052 /* 2053 * Check to make sure that we don't point outside of the leaf, 2054 * just in case all the items are consistent to each other, but 2055 * all point outside of the leaf. 2056 */ 2057 if (unlikely(item_data_end > BTRFS_LEAF_DATA_SIZE(fs_info))) { 2058 generic_err(leaf, slot, 2059 "slot end outside of leaf, have %llu expect range [0, %u]", 2060 item_data_end, BTRFS_LEAF_DATA_SIZE(fs_info)); 2061 return BTRFS_TREE_BLOCK_INVALID_OFFSETS; 2062 } 2063 2064 /* Also check if the item pointer overlaps with btrfs item. */ 2065 if (unlikely(btrfs_item_ptr_offset(leaf, slot) < 2066 btrfs_item_nr_offset(leaf, slot) + sizeof(struct btrfs_item))) { 2067 generic_err(leaf, slot, 2068 "slot overlaps with its data, item end %lu data start %lu", 2069 btrfs_item_nr_offset(leaf, slot) + 2070 sizeof(struct btrfs_item), 2071 btrfs_item_ptr_offset(leaf, slot)); 2072 return BTRFS_TREE_BLOCK_INVALID_OFFSETS; 2073 } 2074 2075 /* Check if the item size and content meet other criteria. */ 2076 ret = check_leaf_item(leaf, &key, slot, &prev_key); 2077 if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN)) 2078 return ret; 2079 2080 prev_key.objectid = key.objectid; 2081 prev_key.type = key.type; 2082 prev_key.offset = key.offset; 2083 } 2084 2085 return BTRFS_TREE_BLOCK_CLEAN; 2086 } 2087 2088 int btrfs_check_leaf(struct extent_buffer *leaf) 2089 { 2090 enum btrfs_tree_block_status ret; 2091 2092 ret = __btrfs_check_leaf(leaf); 2093 if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN)) 2094 return -EUCLEAN; 2095 return 0; 2096 } 2097 ALLOW_ERROR_INJECTION(btrfs_check_leaf, ERRNO); 2098 2099 enum btrfs_tree_block_status __btrfs_check_node(struct extent_buffer *node) 2100 { 2101 struct btrfs_fs_info *fs_info = node->fs_info; 2102 unsigned long nr = btrfs_header_nritems(node); 2103 struct btrfs_key key, next_key; 2104 int slot; 2105 int level = btrfs_header_level(node); 2106 u64 bytenr; 2107 2108 if (unlikely(!btrfs_header_flag(node, BTRFS_HEADER_FLAG_WRITTEN))) { 2109 generic_err(node, 0, "invalid flag for node, WRITTEN not set"); 2110 return BTRFS_TREE_BLOCK_WRITTEN_NOT_SET; 2111 } 2112 2113 if (unlikely(level <= 0 || level >= BTRFS_MAX_LEVEL)) { 2114 generic_err(node, 0, 2115 "invalid level for node, have %d expect [1, %d]", 2116 level, BTRFS_MAX_LEVEL - 1); 2117 return BTRFS_TREE_BLOCK_INVALID_LEVEL; 2118 } 2119 if (unlikely(nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(fs_info))) { 2120 btrfs_crit(fs_info, 2121 "corrupt node: root=%llu block=%llu, nritems too %s, have %lu expect range [1,%u]", 2122 btrfs_header_owner(node), node->start, 2123 nr == 0 ? "small" : "large", nr, 2124 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 2125 return BTRFS_TREE_BLOCK_INVALID_NRITEMS; 2126 } 2127 2128 for (slot = 0; slot < nr - 1; slot++) { 2129 bytenr = btrfs_node_blockptr(node, slot); 2130 btrfs_node_key_to_cpu(node, &key, slot); 2131 btrfs_node_key_to_cpu(node, &next_key, slot + 1); 2132 2133 if (unlikely(!bytenr)) { 2134 generic_err(node, slot, 2135 "invalid NULL node pointer"); 2136 return BTRFS_TREE_BLOCK_INVALID_BLOCKPTR; 2137 } 2138 if (unlikely(!IS_ALIGNED(bytenr, fs_info->sectorsize))) { 2139 generic_err(node, slot, 2140 "unaligned pointer, have %llu should be aligned to %u", 2141 bytenr, fs_info->sectorsize); 2142 return BTRFS_TREE_BLOCK_INVALID_BLOCKPTR; 2143 } 2144 2145 if (unlikely(btrfs_comp_cpu_keys(&key, &next_key) >= 0)) { 2146 generic_err(node, slot, 2147 "bad key order, current (%llu %u %llu) next (%llu %u %llu)", 2148 key.objectid, key.type, key.offset, 2149 next_key.objectid, next_key.type, 2150 next_key.offset); 2151 return BTRFS_TREE_BLOCK_BAD_KEY_ORDER; 2152 } 2153 } 2154 return BTRFS_TREE_BLOCK_CLEAN; 2155 } 2156 2157 int btrfs_check_node(struct extent_buffer *node) 2158 { 2159 enum btrfs_tree_block_status ret; 2160 2161 ret = __btrfs_check_node(node); 2162 if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN)) 2163 return -EUCLEAN; 2164 return 0; 2165 } 2166 ALLOW_ERROR_INJECTION(btrfs_check_node, ERRNO); 2167 2168 int btrfs_check_eb_owner(const struct extent_buffer *eb, u64 root_owner) 2169 { 2170 const bool is_subvol = is_fstree(root_owner); 2171 const u64 eb_owner = btrfs_header_owner(eb); 2172 2173 /* 2174 * Skip dummy fs, as selftests don't create unique ebs for each dummy 2175 * root. 2176 */ 2177 if (btrfs_is_testing(eb->fs_info)) 2178 return 0; 2179 /* 2180 * There are several call sites (backref walking, qgroup, and data 2181 * reloc) passing 0 as @root_owner, as they are not holding the 2182 * tree root. In that case, we can not do a reliable ownership check, 2183 * so just exit. 2184 */ 2185 if (root_owner == 0) 2186 return 0; 2187 /* 2188 * These trees use key.offset as their owner, our callers don't have 2189 * the extra capacity to pass key.offset here. So we just skip them. 2190 */ 2191 if (root_owner == BTRFS_TREE_LOG_OBJECTID || 2192 root_owner == BTRFS_TREE_RELOC_OBJECTID) 2193 return 0; 2194 2195 if (!is_subvol) { 2196 /* For non-subvolume trees, the eb owner should match root owner */ 2197 if (unlikely(root_owner != eb_owner)) { 2198 btrfs_crit(eb->fs_info, 2199 "corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect %llu", 2200 btrfs_header_level(eb) == 0 ? "leaf" : "node", 2201 root_owner, btrfs_header_bytenr(eb), eb_owner, 2202 root_owner); 2203 return -EUCLEAN; 2204 } 2205 return 0; 2206 } 2207 2208 /* 2209 * For subvolume trees, owners can mismatch, but they should all belong 2210 * to subvolume trees. 2211 */ 2212 if (unlikely(is_subvol != is_fstree(eb_owner))) { 2213 btrfs_crit(eb->fs_info, 2214 "corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect [%llu, %llu]", 2215 btrfs_header_level(eb) == 0 ? "leaf" : "node", 2216 root_owner, btrfs_header_bytenr(eb), eb_owner, 2217 BTRFS_FIRST_FREE_OBJECTID, BTRFS_LAST_FREE_OBJECTID); 2218 return -EUCLEAN; 2219 } 2220 return 0; 2221 } 2222 2223 int btrfs_verify_level_key(struct extent_buffer *eb, 2224 const struct btrfs_tree_parent_check *check) 2225 { 2226 struct btrfs_fs_info *fs_info = eb->fs_info; 2227 int found_level; 2228 struct btrfs_key found_key; 2229 int ret; 2230 2231 found_level = btrfs_header_level(eb); 2232 if (found_level != check->level) { 2233 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 2234 KERN_ERR "BTRFS: tree level check failed\n"); 2235 btrfs_err(fs_info, 2236 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", 2237 eb->start, check->level, found_level); 2238 return -EIO; 2239 } 2240 2241 if (!check->has_first_key) 2242 return 0; 2243 2244 /* 2245 * For live tree block (new tree blocks in current transaction), 2246 * we need proper lock context to avoid race, which is impossible here. 2247 * So we only checks tree blocks which is read from disk, whose 2248 * generation <= fs_info->last_trans_committed. 2249 */ 2250 if (btrfs_header_generation(eb) > btrfs_get_last_trans_committed(fs_info)) 2251 return 0; 2252 2253 /* We have @first_key, so this @eb must have at least one item */ 2254 if (btrfs_header_nritems(eb) == 0) { 2255 btrfs_err(fs_info, 2256 "invalid tree nritems, bytenr=%llu nritems=0 expect >0", 2257 eb->start); 2258 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 2259 return -EUCLEAN; 2260 } 2261 2262 if (found_level) 2263 btrfs_node_key_to_cpu(eb, &found_key, 0); 2264 else 2265 btrfs_item_key_to_cpu(eb, &found_key, 0); 2266 ret = btrfs_comp_cpu_keys(&check->first_key, &found_key); 2267 2268 if (ret) { 2269 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 2270 KERN_ERR "BTRFS: tree first key check failed\n"); 2271 btrfs_err(fs_info, 2272 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 2273 eb->start, check->transid, check->first_key.objectid, 2274 check->first_key.type, check->first_key.offset, 2275 found_key.objectid, found_key.type, 2276 found_key.offset); 2277 } 2278 return ret; 2279 } 2280