1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) Qu Wenruo 2017. All rights reserved. 4 */ 5 6 /* 7 * The module is used to catch unexpected/corrupted tree block data. 8 * Such behavior can be caused either by a fuzzed image or bugs. 9 * 10 * The objective is to do leaf/node validation checks when tree block is read 11 * from disk, and check *every* possible member, so other code won't 12 * need to checking them again. 13 * 14 * Due to the potential and unwanted damage, every checker needs to be 15 * carefully reviewed otherwise so it does not prevent mount of valid images. 16 */ 17 18 #include <linux/types.h> 19 #include <linux/stddef.h> 20 #include <linux/error-injection.h> 21 #include "messages.h" 22 #include "ctree.h" 23 #include "tree-checker.h" 24 #include "compression.h" 25 #include "volumes.h" 26 #include "misc.h" 27 #include "fs.h" 28 #include "accessors.h" 29 #include "file-item.h" 30 #include "inode-item.h" 31 #include "dir-item.h" 32 #include "extent-tree.h" 33 34 /* 35 * Error message should follow the following format: 36 * corrupt <type>: <identifier>, <reason>[, <bad_value>] 37 * 38 * @type: leaf or node 39 * @identifier: the necessary info to locate the leaf/node. 40 * It's recommended to decode key.objecitd/offset if it's 41 * meaningful. 42 * @reason: describe the error 43 * @bad_value: optional, it's recommended to output bad value and its 44 * expected value (range). 45 * 46 * Since comma is used to separate the components, only space is allowed 47 * inside each component. 48 */ 49 50 /* 51 * Append generic "corrupt leaf/node root=%llu block=%llu slot=%d: " to @fmt. 52 * Allows callers to customize the output. 53 */ 54 __printf(3, 4) 55 __cold 56 static void generic_err(const struct extent_buffer *eb, int slot, 57 const char *fmt, ...) 58 { 59 const struct btrfs_fs_info *fs_info = eb->fs_info; 60 struct va_format vaf; 61 va_list args; 62 63 va_start(args, fmt); 64 65 vaf.fmt = fmt; 66 vaf.va = &args; 67 68 dump_page(folio_page(eb->folios[0], 0), "eb page dump"); 69 btrfs_crit(fs_info, 70 "corrupt %s: root=%llu block=%llu slot=%d, %pV", 71 btrfs_header_level(eb) == 0 ? "leaf" : "node", 72 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, &vaf); 73 va_end(args); 74 } 75 76 /* 77 * Customized reporter for extent data item, since its key objectid and 78 * offset has its own meaning. 79 */ 80 __printf(3, 4) 81 __cold 82 static void file_extent_err(const struct extent_buffer *eb, int slot, 83 const char *fmt, ...) 84 { 85 const struct btrfs_fs_info *fs_info = eb->fs_info; 86 struct btrfs_key key; 87 struct va_format vaf; 88 va_list args; 89 90 btrfs_item_key_to_cpu(eb, &key, slot); 91 va_start(args, fmt); 92 93 vaf.fmt = fmt; 94 vaf.va = &args; 95 96 dump_page(folio_page(eb->folios[0], 0), "eb page dump"); 97 btrfs_crit(fs_info, 98 "corrupt %s: root=%llu block=%llu slot=%d ino=%llu file_offset=%llu, %pV", 99 btrfs_header_level(eb) == 0 ? "leaf" : "node", 100 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, 101 key.objectid, key.offset, &vaf); 102 va_end(args); 103 } 104 105 /* 106 * Return 0 if the btrfs_file_extent_##name is aligned to @alignment 107 * Else return 1 108 */ 109 #define CHECK_FE_ALIGNED(leaf, slot, fi, name, alignment) \ 110 ({ \ 111 if (unlikely(!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), \ 112 (alignment)))) \ 113 file_extent_err((leaf), (slot), \ 114 "invalid %s for file extent, have %llu, should be aligned to %u", \ 115 (#name), btrfs_file_extent_##name((leaf), (fi)), \ 116 (alignment)); \ 117 (!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), (alignment))); \ 118 }) 119 120 static u64 file_extent_end(struct extent_buffer *leaf, 121 struct btrfs_key *key, 122 struct btrfs_file_extent_item *extent) 123 { 124 u64 end; 125 u64 len; 126 127 if (btrfs_file_extent_type(leaf, extent) == BTRFS_FILE_EXTENT_INLINE) { 128 len = btrfs_file_extent_ram_bytes(leaf, extent); 129 end = ALIGN(key->offset + len, leaf->fs_info->sectorsize); 130 } else { 131 len = btrfs_file_extent_num_bytes(leaf, extent); 132 end = key->offset + len; 133 } 134 return end; 135 } 136 137 /* 138 * Customized report for dir_item, the only new important information is 139 * key->objectid, which represents inode number 140 */ 141 __printf(3, 4) 142 __cold 143 static void dir_item_err(const struct extent_buffer *eb, int slot, 144 const char *fmt, ...) 145 { 146 const struct btrfs_fs_info *fs_info = eb->fs_info; 147 struct btrfs_key key; 148 struct va_format vaf; 149 va_list args; 150 151 btrfs_item_key_to_cpu(eb, &key, slot); 152 va_start(args, fmt); 153 154 vaf.fmt = fmt; 155 vaf.va = &args; 156 157 dump_page(folio_page(eb->folios[0], 0), "eb page dump"); 158 btrfs_crit(fs_info, 159 "corrupt %s: root=%llu block=%llu slot=%d ino=%llu, %pV", 160 btrfs_header_level(eb) == 0 ? "leaf" : "node", 161 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, 162 key.objectid, &vaf); 163 va_end(args); 164 } 165 166 /* 167 * This functions checks prev_key->objectid, to ensure current key and prev_key 168 * share the same objectid as inode number. 169 * 170 * This is to detect missing INODE_ITEM in subvolume trees. 171 * 172 * Return true if everything is OK or we don't need to check. 173 * Return false if anything is wrong. 174 */ 175 static bool check_prev_ino(struct extent_buffer *leaf, 176 struct btrfs_key *key, int slot, 177 struct btrfs_key *prev_key) 178 { 179 /* No prev key, skip check */ 180 if (slot == 0) 181 return true; 182 183 /* Only these key->types needs to be checked */ 184 ASSERT(key->type == BTRFS_XATTR_ITEM_KEY || 185 key->type == BTRFS_INODE_REF_KEY || 186 key->type == BTRFS_INODE_EXTREF_KEY || 187 key->type == BTRFS_DIR_INDEX_KEY || 188 key->type == BTRFS_DIR_ITEM_KEY || 189 key->type == BTRFS_EXTENT_DATA_KEY); 190 191 /* 192 * Only subvolume trees along with their reloc trees need this check. 193 * Things like log tree doesn't follow this ino requirement. 194 */ 195 if (!btrfs_is_fstree(btrfs_header_owner(leaf))) 196 return true; 197 198 if (key->objectid == prev_key->objectid) 199 return true; 200 201 /* Error found */ 202 dir_item_err(leaf, slot, 203 "invalid previous key objectid, have %llu expect %llu", 204 prev_key->objectid, key->objectid); 205 return false; 206 } 207 static int check_extent_data_item(struct extent_buffer *leaf, 208 struct btrfs_key *key, int slot, 209 struct btrfs_key *prev_key) 210 { 211 struct btrfs_fs_info *fs_info = leaf->fs_info; 212 struct btrfs_file_extent_item *fi; 213 u32 sectorsize = fs_info->sectorsize; 214 u32 item_size = btrfs_item_size(leaf, slot); 215 u64 extent_end; 216 217 if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) { 218 file_extent_err(leaf, slot, 219 "unaligned file_offset for file extent, have %llu should be aligned to %u", 220 key->offset, sectorsize); 221 return -EUCLEAN; 222 } 223 224 /* 225 * Previous key must have the same key->objectid (ino). 226 * It can be XATTR_ITEM, INODE_ITEM or just another EXTENT_DATA. 227 * But if objectids mismatch, it means we have a missing 228 * INODE_ITEM. 229 */ 230 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key))) 231 return -EUCLEAN; 232 233 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 234 235 /* 236 * Make sure the item contains at least inline header, so the file 237 * extent type is not some garbage. 238 */ 239 if (unlikely(item_size < BTRFS_FILE_EXTENT_INLINE_DATA_START)) { 240 file_extent_err(leaf, slot, 241 "invalid item size, have %u expect [%zu, %u)", 242 item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START, 243 SZ_4K); 244 return -EUCLEAN; 245 } 246 if (unlikely(btrfs_file_extent_type(leaf, fi) >= 247 BTRFS_NR_FILE_EXTENT_TYPES)) { 248 file_extent_err(leaf, slot, 249 "invalid type for file extent, have %u expect range [0, %u]", 250 btrfs_file_extent_type(leaf, fi), 251 BTRFS_NR_FILE_EXTENT_TYPES - 1); 252 return -EUCLEAN; 253 } 254 255 /* 256 * Support for new compression/encryption must introduce incompat flag, 257 * and must be caught in open_ctree(). 258 */ 259 if (unlikely(btrfs_file_extent_compression(leaf, fi) >= 260 BTRFS_NR_COMPRESS_TYPES)) { 261 file_extent_err(leaf, slot, 262 "invalid compression for file extent, have %u expect range [0, %u]", 263 btrfs_file_extent_compression(leaf, fi), 264 BTRFS_NR_COMPRESS_TYPES - 1); 265 return -EUCLEAN; 266 } 267 if (unlikely(btrfs_file_extent_encryption(leaf, fi))) { 268 file_extent_err(leaf, slot, 269 "invalid encryption for file extent, have %u expect 0", 270 btrfs_file_extent_encryption(leaf, fi)); 271 return -EUCLEAN; 272 } 273 if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) { 274 /* Inline extent must have 0 as key offset */ 275 if (unlikely(key->offset)) { 276 file_extent_err(leaf, slot, 277 "invalid file_offset for inline file extent, have %llu expect 0", 278 key->offset); 279 return -EUCLEAN; 280 } 281 282 /* Compressed inline extent has no on-disk size, skip it */ 283 if (btrfs_file_extent_compression(leaf, fi) != 284 BTRFS_COMPRESS_NONE) 285 return 0; 286 287 /* Uncompressed inline extent size must match item size */ 288 if (unlikely(item_size != BTRFS_FILE_EXTENT_INLINE_DATA_START + 289 btrfs_file_extent_ram_bytes(leaf, fi))) { 290 file_extent_err(leaf, slot, 291 "invalid ram_bytes for uncompressed inline extent, have %u expect %llu", 292 item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START + 293 btrfs_file_extent_ram_bytes(leaf, fi)); 294 return -EUCLEAN; 295 } 296 return 0; 297 } 298 299 /* Regular or preallocated extent has fixed item size */ 300 if (unlikely(item_size != sizeof(*fi))) { 301 file_extent_err(leaf, slot, 302 "invalid item size for reg/prealloc file extent, have %u expect %zu", 303 item_size, sizeof(*fi)); 304 return -EUCLEAN; 305 } 306 if (unlikely(CHECK_FE_ALIGNED(leaf, slot, fi, ram_bytes, sectorsize) || 307 CHECK_FE_ALIGNED(leaf, slot, fi, disk_bytenr, sectorsize) || 308 CHECK_FE_ALIGNED(leaf, slot, fi, disk_num_bytes, sectorsize) || 309 CHECK_FE_ALIGNED(leaf, slot, fi, offset, sectorsize) || 310 CHECK_FE_ALIGNED(leaf, slot, fi, num_bytes, sectorsize))) 311 return -EUCLEAN; 312 313 /* Catch extent end overflow */ 314 if (unlikely(check_add_overflow(btrfs_file_extent_num_bytes(leaf, fi), 315 key->offset, &extent_end))) { 316 file_extent_err(leaf, slot, 317 "extent end overflow, have file offset %llu extent num bytes %llu", 318 key->offset, 319 btrfs_file_extent_num_bytes(leaf, fi)); 320 return -EUCLEAN; 321 } 322 323 /* 324 * Check that no two consecutive file extent items, in the same leaf, 325 * present ranges that overlap each other. 326 */ 327 if (slot > 0 && 328 prev_key->objectid == key->objectid && 329 prev_key->type == BTRFS_EXTENT_DATA_KEY) { 330 struct btrfs_file_extent_item *prev_fi; 331 u64 prev_end; 332 333 prev_fi = btrfs_item_ptr(leaf, slot - 1, 334 struct btrfs_file_extent_item); 335 prev_end = file_extent_end(leaf, prev_key, prev_fi); 336 if (unlikely(prev_end > key->offset)) { 337 file_extent_err(leaf, slot - 1, 338 "file extent end range (%llu) goes beyond start offset (%llu) of the next file extent", 339 prev_end, key->offset); 340 return -EUCLEAN; 341 } 342 } 343 344 /* 345 * For non-compressed data extents, ram_bytes should match its 346 * disk_num_bytes. 347 * However we do not really utilize ram_bytes in this case, so this check 348 * is only optional for DEBUG builds for developers to catch the 349 * unexpected behaviors. 350 */ 351 if (IS_ENABLED(CONFIG_BTRFS_DEBUG) && 352 btrfs_file_extent_compression(leaf, fi) == BTRFS_COMPRESS_NONE && 353 btrfs_file_extent_disk_bytenr(leaf, fi)) { 354 if (WARN_ON(btrfs_file_extent_ram_bytes(leaf, fi) != 355 btrfs_file_extent_disk_num_bytes(leaf, fi))) 356 file_extent_err(leaf, slot, 357 "mismatch ram_bytes (%llu) and disk_num_bytes (%llu) for non-compressed extent", 358 btrfs_file_extent_ram_bytes(leaf, fi), 359 btrfs_file_extent_disk_num_bytes(leaf, fi)); 360 } 361 362 return 0; 363 } 364 365 static int check_csum_item(struct extent_buffer *leaf, struct btrfs_key *key, 366 int slot, struct btrfs_key *prev_key) 367 { 368 struct btrfs_fs_info *fs_info = leaf->fs_info; 369 u32 sectorsize = fs_info->sectorsize; 370 const u32 csumsize = fs_info->csum_size; 371 372 if (unlikely(key->objectid != BTRFS_EXTENT_CSUM_OBJECTID)) { 373 generic_err(leaf, slot, 374 "invalid key objectid for csum item, have %llu expect %llu", 375 key->objectid, BTRFS_EXTENT_CSUM_OBJECTID); 376 return -EUCLEAN; 377 } 378 if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) { 379 generic_err(leaf, slot, 380 "unaligned key offset for csum item, have %llu should be aligned to %u", 381 key->offset, sectorsize); 382 return -EUCLEAN; 383 } 384 if (unlikely(!IS_ALIGNED(btrfs_item_size(leaf, slot), csumsize))) { 385 generic_err(leaf, slot, 386 "unaligned item size for csum item, have %u should be aligned to %u", 387 btrfs_item_size(leaf, slot), csumsize); 388 return -EUCLEAN; 389 } 390 if (slot > 0 && prev_key->type == BTRFS_EXTENT_CSUM_KEY) { 391 u64 prev_csum_end; 392 u32 prev_item_size; 393 394 prev_item_size = btrfs_item_size(leaf, slot - 1); 395 prev_csum_end = (prev_item_size / csumsize) * sectorsize; 396 prev_csum_end += prev_key->offset; 397 if (unlikely(prev_csum_end > key->offset)) { 398 generic_err(leaf, slot - 1, 399 "csum end range (%llu) goes beyond the start range (%llu) of the next csum item", 400 prev_csum_end, key->offset); 401 return -EUCLEAN; 402 } 403 } 404 return 0; 405 } 406 407 /* Inode item error output has the same format as dir_item_err() */ 408 #define inode_item_err(eb, slot, fmt, ...) \ 409 dir_item_err(eb, slot, fmt, __VA_ARGS__) 410 411 static int check_inode_key(struct extent_buffer *leaf, struct btrfs_key *key, 412 int slot) 413 { 414 struct btrfs_key item_key; 415 bool is_inode_item; 416 417 btrfs_item_key_to_cpu(leaf, &item_key, slot); 418 is_inode_item = (item_key.type == BTRFS_INODE_ITEM_KEY); 419 420 /* For XATTR_ITEM, location key should be all 0 */ 421 if (item_key.type == BTRFS_XATTR_ITEM_KEY) { 422 if (unlikely(key->objectid != 0 || key->type != 0 || 423 key->offset != 0)) 424 return -EUCLEAN; 425 return 0; 426 } 427 428 if (unlikely((key->objectid < BTRFS_FIRST_FREE_OBJECTID || 429 key->objectid > BTRFS_LAST_FREE_OBJECTID) && 430 key->objectid != BTRFS_ROOT_TREE_DIR_OBJECTID && 431 key->objectid != BTRFS_FREE_INO_OBJECTID)) { 432 if (is_inode_item) { 433 generic_err(leaf, slot, 434 "invalid key objectid: has %llu expect %llu or [%llu, %llu] or %llu", 435 key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID, 436 BTRFS_FIRST_FREE_OBJECTID, 437 BTRFS_LAST_FREE_OBJECTID, 438 BTRFS_FREE_INO_OBJECTID); 439 } else { 440 dir_item_err(leaf, slot, 441 "invalid location key objectid: has %llu expect %llu or [%llu, %llu] or %llu", 442 key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID, 443 BTRFS_FIRST_FREE_OBJECTID, 444 BTRFS_LAST_FREE_OBJECTID, 445 BTRFS_FREE_INO_OBJECTID); 446 } 447 return -EUCLEAN; 448 } 449 if (unlikely(key->offset != 0)) { 450 if (is_inode_item) 451 inode_item_err(leaf, slot, 452 "invalid key offset: has %llu expect 0", 453 key->offset); 454 else 455 dir_item_err(leaf, slot, 456 "invalid location key offset:has %llu expect 0", 457 key->offset); 458 return -EUCLEAN; 459 } 460 return 0; 461 } 462 463 static int check_root_key(struct extent_buffer *leaf, struct btrfs_key *key, 464 int slot) 465 { 466 struct btrfs_key item_key; 467 bool is_root_item; 468 469 btrfs_item_key_to_cpu(leaf, &item_key, slot); 470 is_root_item = (item_key.type == BTRFS_ROOT_ITEM_KEY); 471 472 /* 473 * Bad rootid for reloc trees. 474 * 475 * Reloc trees are only for subvolume trees, other trees only need 476 * to be COWed to be relocated. 477 */ 478 if (unlikely(is_root_item && key->objectid == BTRFS_TREE_RELOC_OBJECTID && 479 !btrfs_is_fstree(key->offset))) { 480 generic_err(leaf, slot, 481 "invalid reloc tree for root %lld, root id is not a subvolume tree", 482 key->offset); 483 return -EUCLEAN; 484 } 485 486 /* No such tree id */ 487 if (unlikely(key->objectid == 0)) { 488 if (is_root_item) 489 generic_err(leaf, slot, "invalid root id 0"); 490 else 491 dir_item_err(leaf, slot, 492 "invalid location key root id 0"); 493 return -EUCLEAN; 494 } 495 496 /* DIR_ITEM/INDEX/INODE_REF is not allowed to point to non-fs trees */ 497 if (unlikely(!btrfs_is_fstree(key->objectid) && !is_root_item)) { 498 dir_item_err(leaf, slot, 499 "invalid location key objectid, have %llu expect [%llu, %llu]", 500 key->objectid, BTRFS_FIRST_FREE_OBJECTID, 501 BTRFS_LAST_FREE_OBJECTID); 502 return -EUCLEAN; 503 } 504 505 /* 506 * ROOT_ITEM with non-zero offset means this is a snapshot, created at 507 * @offset transid. 508 * Furthermore, for location key in DIR_ITEM, its offset is always -1. 509 * 510 * So here we only check offset for reloc tree whose key->offset must 511 * be a valid tree. 512 */ 513 if (unlikely(key->objectid == BTRFS_TREE_RELOC_OBJECTID && 514 key->offset == 0)) { 515 generic_err(leaf, slot, "invalid root id 0 for reloc tree"); 516 return -EUCLEAN; 517 } 518 return 0; 519 } 520 521 static int check_dir_item(struct extent_buffer *leaf, 522 struct btrfs_key *key, struct btrfs_key *prev_key, 523 int slot) 524 { 525 struct btrfs_fs_info *fs_info = leaf->fs_info; 526 struct btrfs_dir_item *di; 527 u32 item_size = btrfs_item_size(leaf, slot); 528 u32 cur = 0; 529 530 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key))) 531 return -EUCLEAN; 532 533 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 534 while (cur < item_size) { 535 struct btrfs_key location_key; 536 u32 name_len; 537 u32 data_len; 538 u32 max_name_len; 539 u32 total_size; 540 u32 name_hash; 541 u8 dir_type; 542 int ret; 543 544 /* header itself should not cross item boundary */ 545 if (unlikely(cur + sizeof(*di) > item_size)) { 546 dir_item_err(leaf, slot, 547 "dir item header crosses item boundary, have %zu boundary %u", 548 cur + sizeof(*di), item_size); 549 return -EUCLEAN; 550 } 551 552 /* Location key check */ 553 btrfs_dir_item_key_to_cpu(leaf, di, &location_key); 554 if (location_key.type == BTRFS_ROOT_ITEM_KEY) { 555 ret = check_root_key(leaf, &location_key, slot); 556 if (unlikely(ret < 0)) 557 return ret; 558 } else if (location_key.type == BTRFS_INODE_ITEM_KEY || 559 location_key.type == 0) { 560 ret = check_inode_key(leaf, &location_key, slot); 561 if (unlikely(ret < 0)) 562 return ret; 563 } else { 564 dir_item_err(leaf, slot, 565 "invalid location key type, have %u, expect %u or %u", 566 location_key.type, BTRFS_ROOT_ITEM_KEY, 567 BTRFS_INODE_ITEM_KEY); 568 return -EUCLEAN; 569 } 570 571 /* dir type check */ 572 dir_type = btrfs_dir_ftype(leaf, di); 573 if (unlikely(dir_type <= BTRFS_FT_UNKNOWN || 574 dir_type >= BTRFS_FT_MAX)) { 575 dir_item_err(leaf, slot, 576 "invalid dir item type, have %u expect (0, %u)", 577 dir_type, BTRFS_FT_MAX); 578 return -EUCLEAN; 579 } 580 581 if (unlikely(key->type == BTRFS_XATTR_ITEM_KEY && 582 dir_type != BTRFS_FT_XATTR)) { 583 dir_item_err(leaf, slot, 584 "invalid dir item type for XATTR key, have %u expect %u", 585 dir_type, BTRFS_FT_XATTR); 586 return -EUCLEAN; 587 } 588 if (unlikely(dir_type == BTRFS_FT_XATTR && 589 key->type != BTRFS_XATTR_ITEM_KEY)) { 590 dir_item_err(leaf, slot, 591 "xattr dir type found for non-XATTR key"); 592 return -EUCLEAN; 593 } 594 if (dir_type == BTRFS_FT_XATTR) 595 max_name_len = XATTR_NAME_MAX; 596 else 597 max_name_len = BTRFS_NAME_LEN; 598 599 /* Name/data length check */ 600 name_len = btrfs_dir_name_len(leaf, di); 601 data_len = btrfs_dir_data_len(leaf, di); 602 if (unlikely(name_len > max_name_len)) { 603 dir_item_err(leaf, slot, 604 "dir item name len too long, have %u max %u", 605 name_len, max_name_len); 606 return -EUCLEAN; 607 } 608 if (unlikely(name_len + data_len > BTRFS_MAX_XATTR_SIZE(fs_info))) { 609 dir_item_err(leaf, slot, 610 "dir item name and data len too long, have %u max %u", 611 name_len + data_len, 612 BTRFS_MAX_XATTR_SIZE(fs_info)); 613 return -EUCLEAN; 614 } 615 616 if (unlikely(data_len && dir_type != BTRFS_FT_XATTR)) { 617 dir_item_err(leaf, slot, 618 "dir item with invalid data len, have %u expect 0", 619 data_len); 620 return -EUCLEAN; 621 } 622 623 total_size = sizeof(*di) + name_len + data_len; 624 625 /* header and name/data should not cross item boundary */ 626 if (unlikely(cur + total_size > item_size)) { 627 dir_item_err(leaf, slot, 628 "dir item data crosses item boundary, have %u boundary %u", 629 cur + total_size, item_size); 630 return -EUCLEAN; 631 } 632 633 /* 634 * Special check for XATTR/DIR_ITEM, as key->offset is name 635 * hash, should match its name 636 */ 637 if (key->type == BTRFS_DIR_ITEM_KEY || 638 key->type == BTRFS_XATTR_ITEM_KEY) { 639 char namebuf[MAX(BTRFS_NAME_LEN, XATTR_NAME_MAX)]; 640 641 read_extent_buffer(leaf, namebuf, 642 (unsigned long)(di + 1), name_len); 643 name_hash = btrfs_name_hash(namebuf, name_len); 644 if (unlikely(key->offset != name_hash)) { 645 dir_item_err(leaf, slot, 646 "name hash mismatch with key, have 0x%016x expect 0x%016llx", 647 name_hash, key->offset); 648 return -EUCLEAN; 649 } 650 } 651 cur += total_size; 652 di = (struct btrfs_dir_item *)((void *)di + total_size); 653 } 654 return 0; 655 } 656 657 __printf(3, 4) 658 __cold 659 static void block_group_err(const struct extent_buffer *eb, int slot, 660 const char *fmt, ...) 661 { 662 const struct btrfs_fs_info *fs_info = eb->fs_info; 663 struct btrfs_key key; 664 struct va_format vaf; 665 va_list args; 666 667 btrfs_item_key_to_cpu(eb, &key, slot); 668 va_start(args, fmt); 669 670 vaf.fmt = fmt; 671 vaf.va = &args; 672 673 dump_page(folio_page(eb->folios[0], 0), "eb page dump"); 674 btrfs_crit(fs_info, 675 "corrupt %s: root=%llu block=%llu slot=%d bg_start=%llu bg_len=%llu, %pV", 676 btrfs_header_level(eb) == 0 ? "leaf" : "node", 677 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, 678 key.objectid, key.offset, &vaf); 679 va_end(args); 680 } 681 682 static int check_block_group_item(struct extent_buffer *leaf, 683 struct btrfs_key *key, int slot) 684 { 685 struct btrfs_fs_info *fs_info = leaf->fs_info; 686 struct btrfs_block_group_item bgi; 687 u32 item_size = btrfs_item_size(leaf, slot); 688 u64 chunk_objectid; 689 u64 flags; 690 u64 type; 691 692 /* 693 * Here we don't really care about alignment since extent allocator can 694 * handle it. We care more about the size. 695 */ 696 if (unlikely(key->offset == 0)) { 697 block_group_err(leaf, slot, 698 "invalid block group size 0"); 699 return -EUCLEAN; 700 } 701 702 if (unlikely(item_size != sizeof(bgi))) { 703 block_group_err(leaf, slot, 704 "invalid item size, have %u expect %zu", 705 item_size, sizeof(bgi)); 706 return -EUCLEAN; 707 } 708 709 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot), 710 sizeof(bgi)); 711 chunk_objectid = btrfs_stack_block_group_chunk_objectid(&bgi); 712 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 713 /* 714 * We don't init the nr_global_roots until we load the global 715 * roots, so this could be 0 at mount time. If it's 0 we'll 716 * just assume we're fine, and later we'll check against our 717 * actual value. 718 */ 719 if (unlikely(fs_info->nr_global_roots && 720 chunk_objectid >= fs_info->nr_global_roots)) { 721 block_group_err(leaf, slot, 722 "invalid block group global root id, have %llu, needs to be <= %llu", 723 chunk_objectid, 724 fs_info->nr_global_roots); 725 return -EUCLEAN; 726 } 727 } else if (unlikely(chunk_objectid != BTRFS_FIRST_CHUNK_TREE_OBJECTID)) { 728 block_group_err(leaf, slot, 729 "invalid block group chunk objectid, have %llu expect %llu", 730 btrfs_stack_block_group_chunk_objectid(&bgi), 731 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 732 return -EUCLEAN; 733 } 734 735 if (unlikely(btrfs_stack_block_group_used(&bgi) > key->offset)) { 736 block_group_err(leaf, slot, 737 "invalid block group used, have %llu expect [0, %llu)", 738 btrfs_stack_block_group_used(&bgi), key->offset); 739 return -EUCLEAN; 740 } 741 742 flags = btrfs_stack_block_group_flags(&bgi); 743 if (unlikely(hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) > 1)) { 744 block_group_err(leaf, slot, 745 "invalid profile flags, have 0x%llx (%lu bits set) expect no more than 1 bit set", 746 flags & BTRFS_BLOCK_GROUP_PROFILE_MASK, 747 hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)); 748 return -EUCLEAN; 749 } 750 751 type = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 752 if (unlikely(type != BTRFS_BLOCK_GROUP_DATA && 753 type != BTRFS_BLOCK_GROUP_METADATA && 754 type != BTRFS_BLOCK_GROUP_SYSTEM && 755 type != (BTRFS_BLOCK_GROUP_METADATA | 756 BTRFS_BLOCK_GROUP_DATA))) { 757 block_group_err(leaf, slot, 758 "invalid type, have 0x%llx (%lu bits set) expect either 0x%llx, 0x%llx, 0x%llx or 0x%llx", 759 type, hweight64(type), 760 BTRFS_BLOCK_GROUP_DATA, BTRFS_BLOCK_GROUP_METADATA, 761 BTRFS_BLOCK_GROUP_SYSTEM, 762 BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA); 763 return -EUCLEAN; 764 } 765 return 0; 766 } 767 768 __printf(5, 6) 769 __cold 770 static void chunk_err(const struct btrfs_fs_info *fs_info, 771 const struct extent_buffer *leaf, 772 const struct btrfs_chunk *chunk, u64 logical, 773 const char *fmt, ...) 774 { 775 bool is_sb = !leaf; 776 struct va_format vaf; 777 va_list args; 778 int i; 779 int slot = -1; 780 781 if (!is_sb) { 782 /* 783 * Get the slot number by iterating through all slots, this 784 * would provide better readability. 785 */ 786 for (i = 0; i < btrfs_header_nritems(leaf); i++) { 787 if (btrfs_item_ptr_offset(leaf, i) == 788 (unsigned long)chunk) { 789 slot = i; 790 break; 791 } 792 } 793 } 794 va_start(args, fmt); 795 vaf.fmt = fmt; 796 vaf.va = &args; 797 798 if (is_sb) 799 btrfs_crit(fs_info, 800 "corrupt superblock syschunk array: chunk_start=%llu, %pV", 801 logical, &vaf); 802 else 803 btrfs_crit(fs_info, 804 "corrupt leaf: root=%llu block=%llu slot=%d chunk_start=%llu, %pV", 805 BTRFS_CHUNK_TREE_OBJECTID, leaf->start, slot, 806 logical, &vaf); 807 va_end(args); 808 } 809 810 /* 811 * The common chunk check which could also work on super block sys chunk array. 812 * 813 * If @leaf is NULL, then @chunk must be an on-stack chunk item. 814 * (For superblock sys_chunk array, and fs_info->sectorsize is unreliable) 815 * 816 * Return -EUCLEAN if anything is corrupted. 817 * Return 0 if everything is OK. 818 */ 819 int btrfs_check_chunk_valid(const struct btrfs_fs_info *fs_info, 820 const struct extent_buffer *leaf, 821 const struct btrfs_chunk *chunk, u64 logical, 822 u32 sectorsize) 823 { 824 u64 length; 825 u64 chunk_end; 826 u64 stripe_len; 827 u16 num_stripes; 828 u16 sub_stripes; 829 u64 type; 830 u64 features; 831 u32 chunk_sector_size; 832 bool mixed = false; 833 int raid_index; 834 int nparity; 835 int ncopies; 836 837 if (leaf) { 838 length = btrfs_chunk_length(leaf, chunk); 839 stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 840 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 841 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 842 type = btrfs_chunk_type(leaf, chunk); 843 chunk_sector_size = btrfs_chunk_sector_size(leaf, chunk); 844 } else { 845 length = btrfs_stack_chunk_length(chunk); 846 stripe_len = btrfs_stack_chunk_stripe_len(chunk); 847 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 848 sub_stripes = btrfs_stack_chunk_sub_stripes(chunk); 849 type = btrfs_stack_chunk_type(chunk); 850 chunk_sector_size = btrfs_stack_chunk_sector_size(chunk); 851 } 852 raid_index = btrfs_bg_flags_to_raid_index(type); 853 ncopies = btrfs_raid_array[raid_index].ncopies; 854 nparity = btrfs_raid_array[raid_index].nparity; 855 856 if (unlikely(!num_stripes)) { 857 chunk_err(fs_info, leaf, chunk, logical, 858 "invalid chunk num_stripes, have %u", num_stripes); 859 return -EUCLEAN; 860 } 861 if (unlikely(num_stripes < ncopies)) { 862 chunk_err(fs_info, leaf, chunk, logical, 863 "invalid chunk num_stripes < ncopies, have %u < %d", 864 num_stripes, ncopies); 865 return -EUCLEAN; 866 } 867 if (unlikely(nparity && num_stripes == nparity)) { 868 chunk_err(fs_info, leaf, chunk, logical, 869 "invalid chunk num_stripes == nparity, have %u == %d", 870 num_stripes, nparity); 871 return -EUCLEAN; 872 } 873 if (unlikely(!IS_ALIGNED(logical, sectorsize))) { 874 chunk_err(fs_info, leaf, chunk, logical, 875 "invalid chunk logical, have %llu should aligned to %u", 876 logical, sectorsize); 877 return -EUCLEAN; 878 } 879 if (unlikely(chunk_sector_size != sectorsize)) { 880 chunk_err(fs_info, leaf, chunk, logical, 881 "invalid chunk sectorsize, have %u expect %u", 882 chunk_sector_size, sectorsize); 883 return -EUCLEAN; 884 } 885 if (unlikely(!length || !IS_ALIGNED(length, sectorsize))) { 886 chunk_err(fs_info, leaf, chunk, logical, 887 "invalid chunk length, have %llu", length); 888 return -EUCLEAN; 889 } 890 if (unlikely(check_add_overflow(logical, length, &chunk_end))) { 891 chunk_err(fs_info, leaf, chunk, logical, 892 "invalid chunk logical start and length, have logical start %llu length %llu", 893 logical, length); 894 return -EUCLEAN; 895 } 896 if (unlikely(!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN)) { 897 chunk_err(fs_info, leaf, chunk, logical, 898 "invalid chunk stripe length: %llu", 899 stripe_len); 900 return -EUCLEAN; 901 } 902 /* 903 * We artificially limit the chunk size, so that the number of stripes 904 * inside a chunk can be fit into a U32. The current limit (256G) is 905 * way too large for real world usage anyway, and it's also much larger 906 * than our existing limit (10G). 907 * 908 * Thus it should be a good way to catch obvious bitflips. 909 */ 910 if (unlikely(length >= btrfs_stripe_nr_to_offset(U32_MAX))) { 911 chunk_err(fs_info, leaf, chunk, logical, 912 "chunk length too large: have %llu limit %llu", 913 length, btrfs_stripe_nr_to_offset(U32_MAX)); 914 return -EUCLEAN; 915 } 916 if (unlikely(type & ~(BTRFS_BLOCK_GROUP_TYPE_MASK | 917 BTRFS_BLOCK_GROUP_PROFILE_MASK))) { 918 chunk_err(fs_info, leaf, chunk, logical, 919 "unrecognized chunk type: 0x%llx", 920 ~(BTRFS_BLOCK_GROUP_TYPE_MASK | 921 BTRFS_BLOCK_GROUP_PROFILE_MASK) & type); 922 return -EUCLEAN; 923 } 924 925 if (unlikely(!has_single_bit_set(type & BTRFS_BLOCK_GROUP_PROFILE_MASK) && 926 (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) != 0)) { 927 chunk_err(fs_info, leaf, chunk, logical, 928 "invalid chunk profile flag: 0x%llx, expect 0 or 1 bit set", 929 type & BTRFS_BLOCK_GROUP_PROFILE_MASK); 930 return -EUCLEAN; 931 } 932 if (unlikely((type & BTRFS_BLOCK_GROUP_TYPE_MASK) == 0)) { 933 chunk_err(fs_info, leaf, chunk, logical, 934 "missing chunk type flag, have 0x%llx one bit must be set in 0x%llx", 935 type, BTRFS_BLOCK_GROUP_TYPE_MASK); 936 return -EUCLEAN; 937 } 938 939 if (unlikely((type & BTRFS_BLOCK_GROUP_SYSTEM) && 940 (type & (BTRFS_BLOCK_GROUP_METADATA | 941 BTRFS_BLOCK_GROUP_DATA)))) { 942 chunk_err(fs_info, leaf, chunk, logical, 943 "system chunk with data or metadata type: 0x%llx", 944 type); 945 return -EUCLEAN; 946 } 947 948 features = btrfs_super_incompat_flags(fs_info->super_copy); 949 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 950 mixed = true; 951 952 if (!mixed) { 953 if (unlikely((type & BTRFS_BLOCK_GROUP_METADATA) && 954 (type & BTRFS_BLOCK_GROUP_DATA))) { 955 chunk_err(fs_info, leaf, chunk, logical, 956 "mixed chunk type in non-mixed mode: 0x%llx", type); 957 return -EUCLEAN; 958 } 959 } 960 961 if (unlikely((type & BTRFS_BLOCK_GROUP_RAID10 && 962 sub_stripes != btrfs_raid_array[BTRFS_RAID_RAID10].sub_stripes) || 963 (type & BTRFS_BLOCK_GROUP_RAID1 && 964 num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1].devs_min) || 965 (type & BTRFS_BLOCK_GROUP_RAID1C3 && 966 num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C3].devs_min) || 967 (type & BTRFS_BLOCK_GROUP_RAID1C4 && 968 num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C4].devs_min) || 969 (type & BTRFS_BLOCK_GROUP_RAID5 && 970 num_stripes < btrfs_raid_array[BTRFS_RAID_RAID5].devs_min) || 971 (type & BTRFS_BLOCK_GROUP_RAID6 && 972 num_stripes < btrfs_raid_array[BTRFS_RAID_RAID6].devs_min) || 973 (type & BTRFS_BLOCK_GROUP_DUP && 974 num_stripes != btrfs_raid_array[BTRFS_RAID_DUP].dev_stripes) || 975 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 && 976 num_stripes != btrfs_raid_array[BTRFS_RAID_SINGLE].dev_stripes))) { 977 chunk_err(fs_info, leaf, chunk, logical, 978 "invalid num_stripes:sub_stripes %u:%u for profile %llu", 979 num_stripes, sub_stripes, 980 type & BTRFS_BLOCK_GROUP_PROFILE_MASK); 981 return -EUCLEAN; 982 } 983 984 return 0; 985 } 986 987 /* 988 * Enhanced version of chunk item checker. 989 * 990 * The common btrfs_check_chunk_valid() doesn't check item size since it needs 991 * to work on super block sys_chunk_array which doesn't have full item ptr. 992 */ 993 static int check_leaf_chunk_item(struct extent_buffer *leaf, 994 struct btrfs_chunk *chunk, 995 struct btrfs_key *key, int slot) 996 { 997 struct btrfs_fs_info *fs_info = leaf->fs_info; 998 int num_stripes; 999 1000 if (unlikely(btrfs_item_size(leaf, slot) < sizeof(struct btrfs_chunk))) { 1001 chunk_err(fs_info, leaf, chunk, key->offset, 1002 "invalid chunk item size: have %u expect [%zu, %u)", 1003 btrfs_item_size(leaf, slot), 1004 sizeof(struct btrfs_chunk), 1005 BTRFS_LEAF_DATA_SIZE(fs_info)); 1006 return -EUCLEAN; 1007 } 1008 1009 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 1010 /* Let btrfs_check_chunk_valid() handle this error type */ 1011 if (num_stripes == 0) 1012 goto out; 1013 1014 if (unlikely(btrfs_chunk_item_size(num_stripes) != 1015 btrfs_item_size(leaf, slot))) { 1016 chunk_err(fs_info, leaf, chunk, key->offset, 1017 "invalid chunk item size: have %u expect %lu", 1018 btrfs_item_size(leaf, slot), 1019 btrfs_chunk_item_size(num_stripes)); 1020 return -EUCLEAN; 1021 } 1022 out: 1023 return btrfs_check_chunk_valid(fs_info, leaf, chunk, key->offset, 1024 fs_info->sectorsize); 1025 } 1026 1027 __printf(3, 4) 1028 __cold 1029 static void dev_item_err(const struct extent_buffer *eb, int slot, 1030 const char *fmt, ...) 1031 { 1032 struct btrfs_key key; 1033 struct va_format vaf; 1034 va_list args; 1035 1036 btrfs_item_key_to_cpu(eb, &key, slot); 1037 va_start(args, fmt); 1038 1039 vaf.fmt = fmt; 1040 vaf.va = &args; 1041 1042 dump_page(folio_page(eb->folios[0], 0), "eb page dump"); 1043 btrfs_crit(eb->fs_info, 1044 "corrupt %s: root=%llu block=%llu slot=%d devid=%llu %pV", 1045 btrfs_header_level(eb) == 0 ? "leaf" : "node", 1046 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, 1047 key.objectid, &vaf); 1048 va_end(args); 1049 } 1050 1051 static int check_dev_item(struct extent_buffer *leaf, 1052 struct btrfs_key *key, int slot) 1053 { 1054 struct btrfs_dev_item *ditem; 1055 const u32 item_size = btrfs_item_size(leaf, slot); 1056 1057 if (unlikely(key->objectid != BTRFS_DEV_ITEMS_OBJECTID)) { 1058 dev_item_err(leaf, slot, 1059 "invalid objectid: has=%llu expect=%llu", 1060 key->objectid, BTRFS_DEV_ITEMS_OBJECTID); 1061 return -EUCLEAN; 1062 } 1063 1064 if (unlikely(item_size != sizeof(*ditem))) { 1065 dev_item_err(leaf, slot, "invalid item size: has %u expect %zu", 1066 item_size, sizeof(*ditem)); 1067 return -EUCLEAN; 1068 } 1069 1070 ditem = btrfs_item_ptr(leaf, slot, struct btrfs_dev_item); 1071 if (unlikely(btrfs_device_id(leaf, ditem) != key->offset)) { 1072 dev_item_err(leaf, slot, 1073 "devid mismatch: key has=%llu item has=%llu", 1074 key->offset, btrfs_device_id(leaf, ditem)); 1075 return -EUCLEAN; 1076 } 1077 1078 /* 1079 * For device total_bytes, we don't have reliable way to check it, as 1080 * it can be 0 for device removal. Device size check can only be done 1081 * by dev extents check. 1082 */ 1083 if (unlikely(btrfs_device_bytes_used(leaf, ditem) > 1084 btrfs_device_total_bytes(leaf, ditem))) { 1085 dev_item_err(leaf, slot, 1086 "invalid bytes used: have %llu expect [0, %llu]", 1087 btrfs_device_bytes_used(leaf, ditem), 1088 btrfs_device_total_bytes(leaf, ditem)); 1089 return -EUCLEAN; 1090 } 1091 /* 1092 * Remaining members like io_align/type/gen/dev_group aren't really 1093 * utilized. Skip them to make later usage of them easier. 1094 */ 1095 return 0; 1096 } 1097 1098 static int check_inode_item(struct extent_buffer *leaf, 1099 struct btrfs_key *key, int slot) 1100 { 1101 struct btrfs_fs_info *fs_info = leaf->fs_info; 1102 struct btrfs_inode_item *iitem; 1103 u64 super_gen = btrfs_super_generation(fs_info->super_copy); 1104 u32 valid_mask = (S_IFMT | S_ISUID | S_ISGID | S_ISVTX | 0777); 1105 const u32 item_size = btrfs_item_size(leaf, slot); 1106 u32 mode; 1107 int ret; 1108 u32 flags; 1109 u32 ro_flags; 1110 1111 ret = check_inode_key(leaf, key, slot); 1112 if (unlikely(ret < 0)) 1113 return ret; 1114 1115 if (unlikely(item_size != sizeof(*iitem))) { 1116 generic_err(leaf, slot, "invalid item size: has %u expect %zu", 1117 item_size, sizeof(*iitem)); 1118 return -EUCLEAN; 1119 } 1120 1121 iitem = btrfs_item_ptr(leaf, slot, struct btrfs_inode_item); 1122 1123 /* Here we use super block generation + 1 to handle log tree */ 1124 if (unlikely(btrfs_inode_generation(leaf, iitem) > super_gen + 1)) { 1125 inode_item_err(leaf, slot, 1126 "invalid inode generation: has %llu expect (0, %llu]", 1127 btrfs_inode_generation(leaf, iitem), 1128 super_gen + 1); 1129 return -EUCLEAN; 1130 } 1131 /* Note for ROOT_TREE_DIR_ITEM, mkfs could set its transid 0 */ 1132 if (unlikely(btrfs_inode_transid(leaf, iitem) > super_gen + 1)) { 1133 inode_item_err(leaf, slot, 1134 "invalid inode transid: has %llu expect [0, %llu]", 1135 btrfs_inode_transid(leaf, iitem), super_gen + 1); 1136 return -EUCLEAN; 1137 } 1138 1139 /* 1140 * For size and nbytes it's better not to be too strict, as for dir 1141 * item its size/nbytes can easily get wrong, but doesn't affect 1142 * anything in the fs. So here we skip the check. 1143 */ 1144 mode = btrfs_inode_mode(leaf, iitem); 1145 if (unlikely(mode & ~valid_mask)) { 1146 inode_item_err(leaf, slot, 1147 "unknown mode bit detected: 0x%x", 1148 mode & ~valid_mask); 1149 return -EUCLEAN; 1150 } 1151 1152 /* 1153 * S_IFMT is not bit mapped so we can't completely rely on 1154 * is_power_of_2/has_single_bit_set, but it can save us from checking 1155 * FIFO/CHR/DIR/REG. Only needs to check BLK, LNK and SOCKS 1156 */ 1157 if (!has_single_bit_set(mode & S_IFMT)) { 1158 if (unlikely(!S_ISLNK(mode) && !S_ISBLK(mode) && !S_ISSOCK(mode))) { 1159 inode_item_err(leaf, slot, 1160 "invalid mode: has 0%o expect valid S_IF* bit(s)", 1161 mode & S_IFMT); 1162 return -EUCLEAN; 1163 } 1164 } 1165 if (unlikely(S_ISDIR(mode) && btrfs_inode_nlink(leaf, iitem) > 1)) { 1166 inode_item_err(leaf, slot, 1167 "invalid nlink: has %u expect no more than 1 for dir", 1168 btrfs_inode_nlink(leaf, iitem)); 1169 return -EUCLEAN; 1170 } 1171 btrfs_inode_split_flags(btrfs_inode_flags(leaf, iitem), &flags, &ro_flags); 1172 if (unlikely(flags & ~BTRFS_INODE_FLAG_MASK)) { 1173 inode_item_err(leaf, slot, 1174 "unknown incompat flags detected: 0x%x", flags); 1175 return -EUCLEAN; 1176 } 1177 if (unlikely(!sb_rdonly(fs_info->sb) && 1178 (ro_flags & ~BTRFS_INODE_RO_FLAG_MASK))) { 1179 inode_item_err(leaf, slot, 1180 "unknown ro-compat flags detected on writeable mount: 0x%x", 1181 ro_flags); 1182 return -EUCLEAN; 1183 } 1184 return 0; 1185 } 1186 1187 static int check_root_item(struct extent_buffer *leaf, struct btrfs_key *key, 1188 int slot) 1189 { 1190 struct btrfs_fs_info *fs_info = leaf->fs_info; 1191 struct btrfs_root_item ri = { 0 }; 1192 const u64 valid_root_flags = BTRFS_ROOT_SUBVOL_RDONLY | 1193 BTRFS_ROOT_SUBVOL_DEAD; 1194 int ret; 1195 1196 ret = check_root_key(leaf, key, slot); 1197 if (unlikely(ret < 0)) 1198 return ret; 1199 1200 if (unlikely(btrfs_item_size(leaf, slot) != sizeof(ri) && 1201 btrfs_item_size(leaf, slot) != 1202 btrfs_legacy_root_item_size())) { 1203 generic_err(leaf, slot, 1204 "invalid root item size, have %u expect %zu or %u", 1205 btrfs_item_size(leaf, slot), sizeof(ri), 1206 btrfs_legacy_root_item_size()); 1207 return -EUCLEAN; 1208 } 1209 1210 /* 1211 * For legacy root item, the members starting at generation_v2 will be 1212 * all filled with 0. 1213 * And since we allow generation_v2 as 0, it will still pass the check. 1214 */ 1215 read_extent_buffer(leaf, &ri, btrfs_item_ptr_offset(leaf, slot), 1216 btrfs_item_size(leaf, slot)); 1217 1218 /* Generation related */ 1219 if (unlikely(btrfs_root_generation(&ri) > 1220 btrfs_super_generation(fs_info->super_copy) + 1)) { 1221 generic_err(leaf, slot, 1222 "invalid root generation, have %llu expect (0, %llu]", 1223 btrfs_root_generation(&ri), 1224 btrfs_super_generation(fs_info->super_copy) + 1); 1225 return -EUCLEAN; 1226 } 1227 if (unlikely(btrfs_root_generation_v2(&ri) > 1228 btrfs_super_generation(fs_info->super_copy) + 1)) { 1229 generic_err(leaf, slot, 1230 "invalid root v2 generation, have %llu expect (0, %llu]", 1231 btrfs_root_generation_v2(&ri), 1232 btrfs_super_generation(fs_info->super_copy) + 1); 1233 return -EUCLEAN; 1234 } 1235 if (unlikely(btrfs_root_last_snapshot(&ri) > 1236 btrfs_super_generation(fs_info->super_copy) + 1)) { 1237 generic_err(leaf, slot, 1238 "invalid root last_snapshot, have %llu expect (0, %llu]", 1239 btrfs_root_last_snapshot(&ri), 1240 btrfs_super_generation(fs_info->super_copy) + 1); 1241 return -EUCLEAN; 1242 } 1243 1244 /* Alignment and level check */ 1245 if (unlikely(!IS_ALIGNED(btrfs_root_bytenr(&ri), fs_info->sectorsize))) { 1246 generic_err(leaf, slot, 1247 "invalid root bytenr, have %llu expect to be aligned to %u", 1248 btrfs_root_bytenr(&ri), fs_info->sectorsize); 1249 return -EUCLEAN; 1250 } 1251 if (unlikely(btrfs_root_level(&ri) >= BTRFS_MAX_LEVEL)) { 1252 generic_err(leaf, slot, 1253 "invalid root level, have %u expect [0, %u]", 1254 btrfs_root_level(&ri), BTRFS_MAX_LEVEL - 1); 1255 return -EUCLEAN; 1256 } 1257 if (unlikely(btrfs_root_drop_level(&ri) >= BTRFS_MAX_LEVEL)) { 1258 generic_err(leaf, slot, 1259 "invalid root level, have %u expect [0, %u]", 1260 btrfs_root_drop_level(&ri), BTRFS_MAX_LEVEL - 1); 1261 return -EUCLEAN; 1262 } 1263 1264 /* Flags check */ 1265 if (unlikely(btrfs_root_flags(&ri) & ~valid_root_flags)) { 1266 generic_err(leaf, slot, 1267 "invalid root flags, have 0x%llx expect mask 0x%llx", 1268 btrfs_root_flags(&ri), valid_root_flags); 1269 return -EUCLEAN; 1270 } 1271 return 0; 1272 } 1273 1274 __printf(3,4) 1275 __cold 1276 static void extent_err(const struct extent_buffer *eb, int slot, 1277 const char *fmt, ...) 1278 { 1279 struct btrfs_key key; 1280 struct va_format vaf; 1281 va_list args; 1282 u64 bytenr; 1283 u64 len; 1284 1285 btrfs_item_key_to_cpu(eb, &key, slot); 1286 bytenr = key.objectid; 1287 if (key.type == BTRFS_METADATA_ITEM_KEY || 1288 key.type == BTRFS_TREE_BLOCK_REF_KEY || 1289 key.type == BTRFS_SHARED_BLOCK_REF_KEY) 1290 len = eb->fs_info->nodesize; 1291 else 1292 len = key.offset; 1293 va_start(args, fmt); 1294 1295 vaf.fmt = fmt; 1296 vaf.va = &args; 1297 1298 dump_page(folio_page(eb->folios[0], 0), "eb page dump"); 1299 btrfs_crit(eb->fs_info, 1300 "corrupt %s: block=%llu slot=%d extent bytenr=%llu len=%llu %pV", 1301 btrfs_header_level(eb) == 0 ? "leaf" : "node", 1302 eb->start, slot, bytenr, len, &vaf); 1303 va_end(args); 1304 } 1305 1306 static bool is_valid_dref_root(u64 rootid) 1307 { 1308 /* 1309 * The following tree root objectids are allowed to have a data backref: 1310 * - subvolume trees 1311 * - data reloc tree 1312 * - tree root 1313 * For v1 space cache 1314 */ 1315 return btrfs_is_fstree(rootid) || rootid == BTRFS_DATA_RELOC_TREE_OBJECTID || 1316 rootid == BTRFS_ROOT_TREE_OBJECTID; 1317 } 1318 1319 static int check_extent_item(struct extent_buffer *leaf, 1320 struct btrfs_key *key, int slot, 1321 struct btrfs_key *prev_key) 1322 { 1323 struct btrfs_fs_info *fs_info = leaf->fs_info; 1324 struct btrfs_extent_item *ei; 1325 bool is_tree_block = false; 1326 unsigned long ptr; /* Current pointer inside inline refs */ 1327 unsigned long end; /* Extent item end */ 1328 const u32 item_size = btrfs_item_size(leaf, slot); 1329 u8 last_type = 0; 1330 u64 last_seq = U64_MAX; 1331 u64 flags; 1332 u64 generation; 1333 u64 total_refs; /* Total refs in btrfs_extent_item */ 1334 u64 inline_refs = 0; /* found total inline refs */ 1335 1336 if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY && 1337 !btrfs_fs_incompat(fs_info, SKINNY_METADATA))) { 1338 generic_err(leaf, slot, 1339 "invalid key type, METADATA_ITEM type invalid when SKINNY_METADATA feature disabled"); 1340 return -EUCLEAN; 1341 } 1342 /* key->objectid is the bytenr for both key types */ 1343 if (unlikely(!IS_ALIGNED(key->objectid, fs_info->sectorsize))) { 1344 generic_err(leaf, slot, 1345 "invalid key objectid, have %llu expect to be aligned to %u", 1346 key->objectid, fs_info->sectorsize); 1347 return -EUCLEAN; 1348 } 1349 1350 /* key->offset is tree level for METADATA_ITEM_KEY */ 1351 if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY && 1352 key->offset >= BTRFS_MAX_LEVEL)) { 1353 extent_err(leaf, slot, 1354 "invalid tree level, have %llu expect [0, %u]", 1355 key->offset, BTRFS_MAX_LEVEL - 1); 1356 return -EUCLEAN; 1357 } 1358 1359 /* 1360 * EXTENT/METADATA_ITEM consists of: 1361 * 1) One btrfs_extent_item 1362 * Records the total refs, type and generation of the extent. 1363 * 1364 * 2) One btrfs_tree_block_info (for EXTENT_ITEM and tree backref only) 1365 * Records the first key and level of the tree block. 1366 * 1367 * 2) Zero or more btrfs_extent_inline_ref(s) 1368 * Each inline ref has one btrfs_extent_inline_ref shows: 1369 * 2.1) The ref type, one of the 4 1370 * TREE_BLOCK_REF Tree block only 1371 * SHARED_BLOCK_REF Tree block only 1372 * EXTENT_DATA_REF Data only 1373 * SHARED_DATA_REF Data only 1374 * 2.2) Ref type specific data 1375 * Either using btrfs_extent_inline_ref::offset, or specific 1376 * data structure. 1377 * 1378 * All above inline items should follow the order: 1379 * 1380 * - All btrfs_extent_inline_ref::type should be in an ascending 1381 * order 1382 * 1383 * - Within the same type, the items should follow a descending 1384 * order by their sequence number. The sequence number is 1385 * determined by: 1386 * * btrfs_extent_inline_ref::offset for all types other than 1387 * EXTENT_DATA_REF 1388 * * hash_extent_data_ref() for EXTENT_DATA_REF 1389 */ 1390 if (unlikely(item_size < sizeof(*ei))) { 1391 extent_err(leaf, slot, 1392 "invalid item size, have %u expect [%zu, %u)", 1393 item_size, sizeof(*ei), 1394 BTRFS_LEAF_DATA_SIZE(fs_info)); 1395 return -EUCLEAN; 1396 } 1397 end = item_size + btrfs_item_ptr_offset(leaf, slot); 1398 1399 /* Checks against extent_item */ 1400 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 1401 flags = btrfs_extent_flags(leaf, ei); 1402 total_refs = btrfs_extent_refs(leaf, ei); 1403 generation = btrfs_extent_generation(leaf, ei); 1404 if (unlikely(generation > 1405 btrfs_super_generation(fs_info->super_copy) + 1)) { 1406 extent_err(leaf, slot, 1407 "invalid generation, have %llu expect (0, %llu]", 1408 generation, 1409 btrfs_super_generation(fs_info->super_copy) + 1); 1410 return -EUCLEAN; 1411 } 1412 if (unlikely(!has_single_bit_set(flags & (BTRFS_EXTENT_FLAG_DATA | 1413 BTRFS_EXTENT_FLAG_TREE_BLOCK)))) { 1414 extent_err(leaf, slot, 1415 "invalid extent flag, have 0x%llx expect 1 bit set in 0x%llx", 1416 flags, BTRFS_EXTENT_FLAG_DATA | 1417 BTRFS_EXTENT_FLAG_TREE_BLOCK); 1418 return -EUCLEAN; 1419 } 1420 is_tree_block = !!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK); 1421 if (is_tree_block) { 1422 if (unlikely(key->type == BTRFS_EXTENT_ITEM_KEY && 1423 key->offset != fs_info->nodesize)) { 1424 extent_err(leaf, slot, 1425 "invalid extent length, have %llu expect %u", 1426 key->offset, fs_info->nodesize); 1427 return -EUCLEAN; 1428 } 1429 } else { 1430 if (unlikely(key->type != BTRFS_EXTENT_ITEM_KEY)) { 1431 extent_err(leaf, slot, 1432 "invalid key type, have %u expect %u for data backref", 1433 key->type, BTRFS_EXTENT_ITEM_KEY); 1434 return -EUCLEAN; 1435 } 1436 if (unlikely(!IS_ALIGNED(key->offset, fs_info->sectorsize))) { 1437 extent_err(leaf, slot, 1438 "invalid extent length, have %llu expect aligned to %u", 1439 key->offset, fs_info->sectorsize); 1440 return -EUCLEAN; 1441 } 1442 if (unlikely(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 1443 extent_err(leaf, slot, 1444 "invalid extent flag, data has full backref set"); 1445 return -EUCLEAN; 1446 } 1447 } 1448 ptr = (unsigned long)(struct btrfs_extent_item *)(ei + 1); 1449 1450 /* Check the special case of btrfs_tree_block_info */ 1451 if (is_tree_block && key->type != BTRFS_METADATA_ITEM_KEY) { 1452 struct btrfs_tree_block_info *info; 1453 1454 info = (struct btrfs_tree_block_info *)ptr; 1455 if (unlikely(btrfs_tree_block_level(leaf, info) >= BTRFS_MAX_LEVEL)) { 1456 extent_err(leaf, slot, 1457 "invalid tree block info level, have %u expect [0, %u]", 1458 btrfs_tree_block_level(leaf, info), 1459 BTRFS_MAX_LEVEL - 1); 1460 return -EUCLEAN; 1461 } 1462 ptr = (unsigned long)(struct btrfs_tree_block_info *)(info + 1); 1463 } 1464 1465 /* Check inline refs */ 1466 while (ptr < end) { 1467 struct btrfs_extent_inline_ref *iref; 1468 struct btrfs_extent_data_ref *dref; 1469 struct btrfs_shared_data_ref *sref; 1470 u64 seq; 1471 u64 dref_root; 1472 u64 dref_objectid; 1473 u64 dref_offset; 1474 u64 inline_offset; 1475 u8 inline_type; 1476 1477 if (unlikely(ptr + sizeof(*iref) > end)) { 1478 extent_err(leaf, slot, 1479 "inline ref item overflows extent item, ptr %lu iref size %zu end %lu", 1480 ptr, sizeof(*iref), end); 1481 return -EUCLEAN; 1482 } 1483 iref = (struct btrfs_extent_inline_ref *)ptr; 1484 inline_type = btrfs_extent_inline_ref_type(leaf, iref); 1485 inline_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1486 seq = inline_offset; 1487 if (unlikely(ptr + btrfs_extent_inline_ref_size(inline_type) > end)) { 1488 extent_err(leaf, slot, 1489 "inline ref item overflows extent item, ptr %lu iref size %u end %lu", 1490 ptr, btrfs_extent_inline_ref_size(inline_type), end); 1491 return -EUCLEAN; 1492 } 1493 1494 switch (inline_type) { 1495 /* inline_offset is subvolid of the owner, no need to check */ 1496 case BTRFS_TREE_BLOCK_REF_KEY: 1497 inline_refs++; 1498 break; 1499 /* Contains parent bytenr */ 1500 case BTRFS_SHARED_BLOCK_REF_KEY: 1501 if (unlikely(!IS_ALIGNED(inline_offset, 1502 fs_info->sectorsize))) { 1503 extent_err(leaf, slot, 1504 "invalid tree parent bytenr, have %llu expect aligned to %u", 1505 inline_offset, fs_info->sectorsize); 1506 return -EUCLEAN; 1507 } 1508 inline_refs++; 1509 break; 1510 /* 1511 * Contains owner subvolid, owner key objectid, adjusted offset. 1512 * The only obvious corruption can happen in that offset. 1513 */ 1514 case BTRFS_EXTENT_DATA_REF_KEY: 1515 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1516 dref_root = btrfs_extent_data_ref_root(leaf, dref); 1517 dref_objectid = btrfs_extent_data_ref_objectid(leaf, dref); 1518 dref_offset = btrfs_extent_data_ref_offset(leaf, dref); 1519 seq = hash_extent_data_ref( 1520 btrfs_extent_data_ref_root(leaf, dref), 1521 btrfs_extent_data_ref_objectid(leaf, dref), 1522 btrfs_extent_data_ref_offset(leaf, dref)); 1523 if (unlikely(!is_valid_dref_root(dref_root))) { 1524 extent_err(leaf, slot, 1525 "invalid data ref root value %llu", 1526 dref_root); 1527 return -EUCLEAN; 1528 } 1529 if (unlikely(dref_objectid < BTRFS_FIRST_FREE_OBJECTID || 1530 dref_objectid > BTRFS_LAST_FREE_OBJECTID)) { 1531 extent_err(leaf, slot, 1532 "invalid data ref objectid value %llu", 1533 dref_objectid); 1534 return -EUCLEAN; 1535 } 1536 if (unlikely(!IS_ALIGNED(dref_offset, 1537 fs_info->sectorsize))) { 1538 extent_err(leaf, slot, 1539 "invalid data ref offset, have %llu expect aligned to %u", 1540 dref_offset, fs_info->sectorsize); 1541 return -EUCLEAN; 1542 } 1543 if (unlikely(btrfs_extent_data_ref_count(leaf, dref) == 0)) { 1544 extent_err(leaf, slot, 1545 "invalid data ref count, should have non-zero value"); 1546 return -EUCLEAN; 1547 } 1548 inline_refs += btrfs_extent_data_ref_count(leaf, dref); 1549 break; 1550 /* Contains parent bytenr and ref count */ 1551 case BTRFS_SHARED_DATA_REF_KEY: 1552 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1553 if (unlikely(!IS_ALIGNED(inline_offset, 1554 fs_info->sectorsize))) { 1555 extent_err(leaf, slot, 1556 "invalid data parent bytenr, have %llu expect aligned to %u", 1557 inline_offset, fs_info->sectorsize); 1558 return -EUCLEAN; 1559 } 1560 if (unlikely(btrfs_shared_data_ref_count(leaf, sref) == 0)) { 1561 extent_err(leaf, slot, 1562 "invalid shared data ref count, should have non-zero value"); 1563 return -EUCLEAN; 1564 } 1565 inline_refs += btrfs_shared_data_ref_count(leaf, sref); 1566 break; 1567 case BTRFS_EXTENT_OWNER_REF_KEY: 1568 WARN_ON(!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA)); 1569 break; 1570 default: 1571 extent_err(leaf, slot, "unknown inline ref type: %u", 1572 inline_type); 1573 return -EUCLEAN; 1574 } 1575 if (unlikely(inline_type < last_type)) { 1576 extent_err(leaf, slot, 1577 "inline ref out-of-order: has type %u, prev type %u", 1578 inline_type, last_type); 1579 return -EUCLEAN; 1580 } 1581 /* Type changed, allow the sequence starts from U64_MAX again. */ 1582 if (inline_type > last_type) 1583 last_seq = U64_MAX; 1584 if (unlikely(seq > last_seq)) { 1585 extent_err(leaf, slot, 1586 "inline ref out-of-order: has type %u offset %llu seq 0x%llx, prev type %u seq 0x%llx", 1587 inline_type, inline_offset, seq, 1588 last_type, last_seq); 1589 return -EUCLEAN; 1590 } 1591 last_type = inline_type; 1592 last_seq = seq; 1593 ptr += btrfs_extent_inline_ref_size(inline_type); 1594 } 1595 /* No padding is allowed */ 1596 if (unlikely(ptr != end)) { 1597 extent_err(leaf, slot, 1598 "invalid extent item size, padding bytes found"); 1599 return -EUCLEAN; 1600 } 1601 1602 /* Finally, check the inline refs against total refs */ 1603 if (unlikely(inline_refs > total_refs)) { 1604 extent_err(leaf, slot, 1605 "invalid extent refs, have %llu expect >= inline %llu", 1606 total_refs, inline_refs); 1607 return -EUCLEAN; 1608 } 1609 1610 if ((prev_key->type == BTRFS_EXTENT_ITEM_KEY) || 1611 (prev_key->type == BTRFS_METADATA_ITEM_KEY)) { 1612 u64 prev_end = prev_key->objectid; 1613 1614 if (prev_key->type == BTRFS_METADATA_ITEM_KEY) 1615 prev_end += fs_info->nodesize; 1616 else 1617 prev_end += prev_key->offset; 1618 1619 if (unlikely(prev_end > key->objectid)) { 1620 extent_err(leaf, slot, 1621 "previous extent [%llu %u %llu] overlaps current extent [%llu %u %llu]", 1622 prev_key->objectid, prev_key->type, 1623 prev_key->offset, key->objectid, key->type, 1624 key->offset); 1625 return -EUCLEAN; 1626 } 1627 } 1628 1629 return 0; 1630 } 1631 1632 static int check_simple_keyed_refs(struct extent_buffer *leaf, 1633 struct btrfs_key *key, int slot) 1634 { 1635 u32 expect_item_size = 0; 1636 1637 if (key->type == BTRFS_SHARED_DATA_REF_KEY) { 1638 struct btrfs_shared_data_ref *sref; 1639 1640 sref = btrfs_item_ptr(leaf, slot, struct btrfs_shared_data_ref); 1641 if (unlikely(btrfs_shared_data_ref_count(leaf, sref) == 0)) { 1642 extent_err(leaf, slot, 1643 "invalid shared data backref count, should have non-zero value"); 1644 return -EUCLEAN; 1645 } 1646 1647 expect_item_size = sizeof(struct btrfs_shared_data_ref); 1648 } 1649 1650 if (unlikely(btrfs_item_size(leaf, slot) != expect_item_size)) { 1651 generic_err(leaf, slot, 1652 "invalid item size, have %u expect %u for key type %u", 1653 btrfs_item_size(leaf, slot), 1654 expect_item_size, key->type); 1655 return -EUCLEAN; 1656 } 1657 if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) { 1658 generic_err(leaf, slot, 1659 "invalid key objectid for shared block ref, have %llu expect aligned to %u", 1660 key->objectid, leaf->fs_info->sectorsize); 1661 return -EUCLEAN; 1662 } 1663 if (unlikely(key->type != BTRFS_TREE_BLOCK_REF_KEY && 1664 !IS_ALIGNED(key->offset, leaf->fs_info->sectorsize))) { 1665 extent_err(leaf, slot, 1666 "invalid tree parent bytenr, have %llu expect aligned to %u", 1667 key->offset, leaf->fs_info->sectorsize); 1668 return -EUCLEAN; 1669 } 1670 return 0; 1671 } 1672 1673 static int check_extent_data_ref(struct extent_buffer *leaf, 1674 struct btrfs_key *key, int slot) 1675 { 1676 struct btrfs_extent_data_ref *dref; 1677 unsigned long ptr = btrfs_item_ptr_offset(leaf, slot); 1678 const unsigned long end = ptr + btrfs_item_size(leaf, slot); 1679 1680 if (unlikely(btrfs_item_size(leaf, slot) % sizeof(*dref) != 0)) { 1681 generic_err(leaf, slot, 1682 "invalid item size, have %u expect aligned to %zu for key type %u", 1683 btrfs_item_size(leaf, slot), 1684 sizeof(*dref), key->type); 1685 return -EUCLEAN; 1686 } 1687 if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) { 1688 generic_err(leaf, slot, 1689 "invalid key objectid for shared block ref, have %llu expect aligned to %u", 1690 key->objectid, leaf->fs_info->sectorsize); 1691 return -EUCLEAN; 1692 } 1693 for (; ptr < end; ptr += sizeof(*dref)) { 1694 u64 root; 1695 u64 objectid; 1696 u64 offset; 1697 1698 /* 1699 * We cannot check the extent_data_ref hash due to possible 1700 * overflow from the leaf due to hash collisions. 1701 */ 1702 dref = (struct btrfs_extent_data_ref *)ptr; 1703 root = btrfs_extent_data_ref_root(leaf, dref); 1704 objectid = btrfs_extent_data_ref_objectid(leaf, dref); 1705 offset = btrfs_extent_data_ref_offset(leaf, dref); 1706 if (unlikely(!is_valid_dref_root(root))) { 1707 extent_err(leaf, slot, 1708 "invalid extent data backref root value %llu", 1709 root); 1710 return -EUCLEAN; 1711 } 1712 if (unlikely(objectid < BTRFS_FIRST_FREE_OBJECTID || 1713 objectid > BTRFS_LAST_FREE_OBJECTID)) { 1714 extent_err(leaf, slot, 1715 "invalid extent data backref objectid value %llu", 1716 root); 1717 return -EUCLEAN; 1718 } 1719 if (unlikely(!IS_ALIGNED(offset, leaf->fs_info->sectorsize))) { 1720 extent_err(leaf, slot, 1721 "invalid extent data backref offset, have %llu expect aligned to %u", 1722 offset, leaf->fs_info->sectorsize); 1723 return -EUCLEAN; 1724 } 1725 if (unlikely(btrfs_extent_data_ref_count(leaf, dref) == 0)) { 1726 extent_err(leaf, slot, 1727 "invalid extent data backref count, should have non-zero value"); 1728 return -EUCLEAN; 1729 } 1730 } 1731 return 0; 1732 } 1733 1734 #define inode_ref_err(eb, slot, fmt, args...) \ 1735 inode_item_err(eb, slot, fmt, ##args) 1736 static int check_inode_ref(struct extent_buffer *leaf, 1737 struct btrfs_key *key, struct btrfs_key *prev_key, 1738 int slot) 1739 { 1740 struct btrfs_inode_ref *iref; 1741 unsigned long ptr; 1742 unsigned long end; 1743 1744 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key))) 1745 return -EUCLEAN; 1746 /* namelen can't be 0, so item_size == sizeof() is also invalid */ 1747 if (unlikely(btrfs_item_size(leaf, slot) <= sizeof(*iref))) { 1748 inode_ref_err(leaf, slot, 1749 "invalid item size, have %u expect (%zu, %u)", 1750 btrfs_item_size(leaf, slot), 1751 sizeof(*iref), BTRFS_LEAF_DATA_SIZE(leaf->fs_info)); 1752 return -EUCLEAN; 1753 } 1754 1755 ptr = btrfs_item_ptr_offset(leaf, slot); 1756 end = ptr + btrfs_item_size(leaf, slot); 1757 while (ptr < end) { 1758 u16 namelen; 1759 1760 if (unlikely(ptr + sizeof(*iref) > end)) { 1761 inode_ref_err(leaf, slot, 1762 "inode ref overflow, ptr %lu end %lu inode_ref_size %zu", 1763 ptr, end, sizeof(*iref)); 1764 return -EUCLEAN; 1765 } 1766 1767 iref = (struct btrfs_inode_ref *)ptr; 1768 namelen = btrfs_inode_ref_name_len(leaf, iref); 1769 if (unlikely(ptr + sizeof(*iref) + namelen > end)) { 1770 inode_ref_err(leaf, slot, 1771 "inode ref overflow, ptr %lu end %lu namelen %u", 1772 ptr, end, namelen); 1773 return -EUCLEAN; 1774 } 1775 1776 /* 1777 * NOTE: In theory we should record all found index numbers 1778 * to find any duplicated indexes, but that will be too time 1779 * consuming for inodes with too many hard links. 1780 */ 1781 ptr += sizeof(*iref) + namelen; 1782 } 1783 return 0; 1784 } 1785 1786 static int check_inode_extref(struct extent_buffer *leaf, 1787 struct btrfs_key *key, struct btrfs_key *prev_key, 1788 int slot) 1789 { 1790 unsigned long ptr = btrfs_item_ptr_offset(leaf, slot); 1791 unsigned long end = ptr + btrfs_item_size(leaf, slot); 1792 1793 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key))) 1794 return -EUCLEAN; 1795 1796 while (ptr < end) { 1797 struct btrfs_inode_extref *extref = (struct btrfs_inode_extref *)ptr; 1798 u16 namelen; 1799 1800 if (unlikely(ptr + sizeof(*extref)) > end) { 1801 inode_ref_err(leaf, slot, 1802 "inode extref overflow, ptr %lu end %lu inode_extref size %zu", 1803 ptr, end, sizeof(*extref)); 1804 return -EUCLEAN; 1805 } 1806 1807 namelen = btrfs_inode_extref_name_len(leaf, extref); 1808 if (unlikely(ptr + sizeof(*extref) + namelen > end)) { 1809 inode_ref_err(leaf, slot, 1810 "inode extref overflow, ptr %lu end %lu namelen %u", 1811 ptr, end, namelen); 1812 return -EUCLEAN; 1813 } 1814 ptr += sizeof(*extref) + namelen; 1815 } 1816 return 0; 1817 } 1818 1819 static int check_raid_stripe_extent(const struct extent_buffer *leaf, 1820 const struct btrfs_key *key, int slot) 1821 { 1822 if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) { 1823 generic_err(leaf, slot, 1824 "invalid key objectid for raid stripe extent, have %llu expect aligned to %u", 1825 key->objectid, leaf->fs_info->sectorsize); 1826 return -EUCLEAN; 1827 } 1828 1829 if (unlikely(!btrfs_fs_incompat(leaf->fs_info, RAID_STRIPE_TREE))) { 1830 generic_err(leaf, slot, 1831 "RAID_STRIPE_EXTENT present but RAID_STRIPE_TREE incompat bit unset"); 1832 return -EUCLEAN; 1833 } 1834 1835 return 0; 1836 } 1837 1838 static int check_dev_extent_item(const struct extent_buffer *leaf, 1839 const struct btrfs_key *key, 1840 int slot, 1841 struct btrfs_key *prev_key) 1842 { 1843 struct btrfs_dev_extent *de; 1844 const u32 sectorsize = leaf->fs_info->sectorsize; 1845 1846 de = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); 1847 /* Basic fixed member checks. */ 1848 if (unlikely(btrfs_dev_extent_chunk_tree(leaf, de) != 1849 BTRFS_CHUNK_TREE_OBJECTID)) { 1850 generic_err(leaf, slot, 1851 "invalid dev extent chunk tree id, has %llu expect %llu", 1852 btrfs_dev_extent_chunk_tree(leaf, de), 1853 BTRFS_CHUNK_TREE_OBJECTID); 1854 return -EUCLEAN; 1855 } 1856 if (unlikely(btrfs_dev_extent_chunk_objectid(leaf, de) != 1857 BTRFS_FIRST_CHUNK_TREE_OBJECTID)) { 1858 generic_err(leaf, slot, 1859 "invalid dev extent chunk objectid, has %llu expect %llu", 1860 btrfs_dev_extent_chunk_objectid(leaf, de), 1861 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 1862 return -EUCLEAN; 1863 } 1864 /* Alignment check. */ 1865 if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) { 1866 generic_err(leaf, slot, 1867 "invalid dev extent key.offset, has %llu not aligned to %u", 1868 key->offset, sectorsize); 1869 return -EUCLEAN; 1870 } 1871 if (unlikely(!IS_ALIGNED(btrfs_dev_extent_chunk_offset(leaf, de), 1872 sectorsize))) { 1873 generic_err(leaf, slot, 1874 "invalid dev extent chunk offset, has %llu not aligned to %u", 1875 btrfs_dev_extent_chunk_objectid(leaf, de), 1876 sectorsize); 1877 return -EUCLEAN; 1878 } 1879 if (unlikely(!IS_ALIGNED(btrfs_dev_extent_length(leaf, de), 1880 sectorsize))) { 1881 generic_err(leaf, slot, 1882 "invalid dev extent length, has %llu not aligned to %u", 1883 btrfs_dev_extent_length(leaf, de), sectorsize); 1884 return -EUCLEAN; 1885 } 1886 /* Overlap check with previous dev extent. */ 1887 if (slot && prev_key->objectid == key->objectid && 1888 prev_key->type == key->type) { 1889 struct btrfs_dev_extent *prev_de; 1890 u64 prev_len; 1891 1892 prev_de = btrfs_item_ptr(leaf, slot - 1, struct btrfs_dev_extent); 1893 prev_len = btrfs_dev_extent_length(leaf, prev_de); 1894 if (unlikely(prev_key->offset + prev_len > key->offset)) { 1895 generic_err(leaf, slot, 1896 "dev extent overlap, prev offset %llu len %llu current offset %llu", 1897 prev_key->objectid, prev_len, key->offset); 1898 return -EUCLEAN; 1899 } 1900 } 1901 return 0; 1902 } 1903 1904 /* 1905 * Common point to switch the item-specific validation. 1906 */ 1907 static enum btrfs_tree_block_status check_leaf_item(struct extent_buffer *leaf, 1908 struct btrfs_key *key, 1909 int slot, 1910 struct btrfs_key *prev_key) 1911 { 1912 int ret = 0; 1913 struct btrfs_chunk *chunk; 1914 1915 switch (key->type) { 1916 case BTRFS_EXTENT_DATA_KEY: 1917 ret = check_extent_data_item(leaf, key, slot, prev_key); 1918 break; 1919 case BTRFS_EXTENT_CSUM_KEY: 1920 ret = check_csum_item(leaf, key, slot, prev_key); 1921 break; 1922 case BTRFS_DIR_ITEM_KEY: 1923 case BTRFS_DIR_INDEX_KEY: 1924 case BTRFS_XATTR_ITEM_KEY: 1925 ret = check_dir_item(leaf, key, prev_key, slot); 1926 break; 1927 case BTRFS_INODE_REF_KEY: 1928 ret = check_inode_ref(leaf, key, prev_key, slot); 1929 break; 1930 case BTRFS_INODE_EXTREF_KEY: 1931 ret = check_inode_extref(leaf, key, prev_key, slot); 1932 break; 1933 case BTRFS_BLOCK_GROUP_ITEM_KEY: 1934 ret = check_block_group_item(leaf, key, slot); 1935 break; 1936 case BTRFS_CHUNK_ITEM_KEY: 1937 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 1938 ret = check_leaf_chunk_item(leaf, chunk, key, slot); 1939 break; 1940 case BTRFS_DEV_ITEM_KEY: 1941 ret = check_dev_item(leaf, key, slot); 1942 break; 1943 case BTRFS_DEV_EXTENT_KEY: 1944 ret = check_dev_extent_item(leaf, key, slot, prev_key); 1945 break; 1946 case BTRFS_INODE_ITEM_KEY: 1947 ret = check_inode_item(leaf, key, slot); 1948 break; 1949 case BTRFS_ROOT_ITEM_KEY: 1950 ret = check_root_item(leaf, key, slot); 1951 break; 1952 case BTRFS_EXTENT_ITEM_KEY: 1953 case BTRFS_METADATA_ITEM_KEY: 1954 ret = check_extent_item(leaf, key, slot, prev_key); 1955 break; 1956 case BTRFS_TREE_BLOCK_REF_KEY: 1957 case BTRFS_SHARED_DATA_REF_KEY: 1958 case BTRFS_SHARED_BLOCK_REF_KEY: 1959 ret = check_simple_keyed_refs(leaf, key, slot); 1960 break; 1961 case BTRFS_EXTENT_DATA_REF_KEY: 1962 ret = check_extent_data_ref(leaf, key, slot); 1963 break; 1964 case BTRFS_RAID_STRIPE_KEY: 1965 ret = check_raid_stripe_extent(leaf, key, slot); 1966 break; 1967 } 1968 1969 if (unlikely(ret)) 1970 return BTRFS_TREE_BLOCK_INVALID_ITEM; 1971 return BTRFS_TREE_BLOCK_CLEAN; 1972 } 1973 1974 enum btrfs_tree_block_status __btrfs_check_leaf(struct extent_buffer *leaf) 1975 { 1976 struct btrfs_fs_info *fs_info = leaf->fs_info; 1977 /* No valid key type is 0, so all key should be larger than this key */ 1978 struct btrfs_key prev_key = {0, 0, 0}; 1979 struct btrfs_key key; 1980 u32 nritems = btrfs_header_nritems(leaf); 1981 int slot; 1982 1983 if (unlikely(btrfs_header_level(leaf) != 0)) { 1984 generic_err(leaf, 0, 1985 "invalid level for leaf, have %d expect 0", 1986 btrfs_header_level(leaf)); 1987 return BTRFS_TREE_BLOCK_INVALID_LEVEL; 1988 } 1989 1990 if (unlikely(!btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_WRITTEN))) { 1991 generic_err(leaf, 0, "invalid flag for leaf, WRITTEN not set"); 1992 return BTRFS_TREE_BLOCK_WRITTEN_NOT_SET; 1993 } 1994 1995 /* 1996 * Extent buffers from a relocation tree have a owner field that 1997 * corresponds to the subvolume tree they are based on. So just from an 1998 * extent buffer alone we can not find out what is the id of the 1999 * corresponding subvolume tree, so we can not figure out if the extent 2000 * buffer corresponds to the root of the relocation tree or not. So 2001 * skip this check for relocation trees. 2002 */ 2003 if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) { 2004 u64 owner = btrfs_header_owner(leaf); 2005 2006 /* These trees must never be empty */ 2007 if (unlikely(owner == BTRFS_ROOT_TREE_OBJECTID || 2008 owner == BTRFS_CHUNK_TREE_OBJECTID || 2009 owner == BTRFS_DEV_TREE_OBJECTID || 2010 owner == BTRFS_FS_TREE_OBJECTID || 2011 owner == BTRFS_DATA_RELOC_TREE_OBJECTID)) { 2012 generic_err(leaf, 0, 2013 "invalid root, root %llu must never be empty", 2014 owner); 2015 return BTRFS_TREE_BLOCK_INVALID_NRITEMS; 2016 } 2017 2018 /* Unknown tree */ 2019 if (unlikely(owner == 0)) { 2020 generic_err(leaf, 0, 2021 "invalid owner, root 0 is not defined"); 2022 return BTRFS_TREE_BLOCK_INVALID_OWNER; 2023 } 2024 2025 /* EXTENT_TREE_V2 can have empty extent trees. */ 2026 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 2027 return BTRFS_TREE_BLOCK_CLEAN; 2028 2029 if (unlikely(owner == BTRFS_EXTENT_TREE_OBJECTID)) { 2030 generic_err(leaf, 0, 2031 "invalid root, root %llu must never be empty", 2032 owner); 2033 return BTRFS_TREE_BLOCK_INVALID_NRITEMS; 2034 } 2035 2036 return BTRFS_TREE_BLOCK_CLEAN; 2037 } 2038 2039 if (unlikely(nritems == 0)) 2040 return BTRFS_TREE_BLOCK_CLEAN; 2041 2042 /* 2043 * Check the following things to make sure this is a good leaf, and 2044 * leaf users won't need to bother with similar sanity checks: 2045 * 2046 * 1) key ordering 2047 * 2) item offset and size 2048 * No overlap, no hole, all inside the leaf. 2049 * 3) item content 2050 * If possible, do comprehensive sanity check. 2051 * NOTE: All checks must only rely on the item data itself. 2052 */ 2053 for (slot = 0; slot < nritems; slot++) { 2054 u32 item_end_expected; 2055 u64 item_data_end; 2056 enum btrfs_tree_block_status ret; 2057 2058 btrfs_item_key_to_cpu(leaf, &key, slot); 2059 2060 /* Make sure the keys are in the right order */ 2061 if (unlikely(btrfs_comp_cpu_keys(&prev_key, &key) >= 0)) { 2062 generic_err(leaf, slot, 2063 "bad key order, prev (%llu %u %llu) current (%llu %u %llu)", 2064 prev_key.objectid, prev_key.type, 2065 prev_key.offset, key.objectid, key.type, 2066 key.offset); 2067 return BTRFS_TREE_BLOCK_BAD_KEY_ORDER; 2068 } 2069 2070 item_data_end = (u64)btrfs_item_offset(leaf, slot) + 2071 btrfs_item_size(leaf, slot); 2072 /* 2073 * Make sure the offset and ends are right, remember that the 2074 * item data starts at the end of the leaf and grows towards the 2075 * front. 2076 */ 2077 if (slot == 0) 2078 item_end_expected = BTRFS_LEAF_DATA_SIZE(fs_info); 2079 else 2080 item_end_expected = btrfs_item_offset(leaf, 2081 slot - 1); 2082 if (unlikely(item_data_end != item_end_expected)) { 2083 generic_err(leaf, slot, 2084 "unexpected item end, have %llu expect %u", 2085 item_data_end, item_end_expected); 2086 return BTRFS_TREE_BLOCK_INVALID_OFFSETS; 2087 } 2088 2089 /* 2090 * Check to make sure that we don't point outside of the leaf, 2091 * just in case all the items are consistent to each other, but 2092 * all point outside of the leaf. 2093 */ 2094 if (unlikely(item_data_end > BTRFS_LEAF_DATA_SIZE(fs_info))) { 2095 generic_err(leaf, slot, 2096 "slot end outside of leaf, have %llu expect range [0, %u]", 2097 item_data_end, BTRFS_LEAF_DATA_SIZE(fs_info)); 2098 return BTRFS_TREE_BLOCK_INVALID_OFFSETS; 2099 } 2100 2101 /* Also check if the item pointer overlaps with btrfs item. */ 2102 if (unlikely(btrfs_item_ptr_offset(leaf, slot) < 2103 btrfs_item_nr_offset(leaf, slot) + sizeof(struct btrfs_item))) { 2104 generic_err(leaf, slot, 2105 "slot overlaps with its data, item end %lu data start %lu", 2106 btrfs_item_nr_offset(leaf, slot) + 2107 sizeof(struct btrfs_item), 2108 btrfs_item_ptr_offset(leaf, slot)); 2109 return BTRFS_TREE_BLOCK_INVALID_OFFSETS; 2110 } 2111 2112 /* Check if the item size and content meet other criteria. */ 2113 ret = check_leaf_item(leaf, &key, slot, &prev_key); 2114 if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN)) 2115 return ret; 2116 2117 prev_key.objectid = key.objectid; 2118 prev_key.type = key.type; 2119 prev_key.offset = key.offset; 2120 } 2121 2122 return BTRFS_TREE_BLOCK_CLEAN; 2123 } 2124 2125 int btrfs_check_leaf(struct extent_buffer *leaf) 2126 { 2127 enum btrfs_tree_block_status ret; 2128 2129 ret = __btrfs_check_leaf(leaf); 2130 if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN)) 2131 return -EUCLEAN; 2132 return 0; 2133 } 2134 ALLOW_ERROR_INJECTION(btrfs_check_leaf, ERRNO); 2135 2136 enum btrfs_tree_block_status __btrfs_check_node(struct extent_buffer *node) 2137 { 2138 struct btrfs_fs_info *fs_info = node->fs_info; 2139 unsigned long nr = btrfs_header_nritems(node); 2140 struct btrfs_key key, next_key; 2141 int slot; 2142 int level = btrfs_header_level(node); 2143 u64 bytenr; 2144 2145 if (unlikely(!btrfs_header_flag(node, BTRFS_HEADER_FLAG_WRITTEN))) { 2146 generic_err(node, 0, "invalid flag for node, WRITTEN not set"); 2147 return BTRFS_TREE_BLOCK_WRITTEN_NOT_SET; 2148 } 2149 2150 if (unlikely(level <= 0 || level >= BTRFS_MAX_LEVEL)) { 2151 generic_err(node, 0, 2152 "invalid level for node, have %d expect [1, %d]", 2153 level, BTRFS_MAX_LEVEL - 1); 2154 return BTRFS_TREE_BLOCK_INVALID_LEVEL; 2155 } 2156 if (unlikely(nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(fs_info))) { 2157 btrfs_crit(fs_info, 2158 "corrupt node: root=%llu block=%llu, nritems too %s, have %lu expect range [1,%u]", 2159 btrfs_header_owner(node), node->start, 2160 nr == 0 ? "small" : "large", nr, 2161 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 2162 return BTRFS_TREE_BLOCK_INVALID_NRITEMS; 2163 } 2164 2165 for (slot = 0; slot < nr - 1; slot++) { 2166 bytenr = btrfs_node_blockptr(node, slot); 2167 btrfs_node_key_to_cpu(node, &key, slot); 2168 btrfs_node_key_to_cpu(node, &next_key, slot + 1); 2169 2170 if (unlikely(!bytenr)) { 2171 generic_err(node, slot, 2172 "invalid NULL node pointer"); 2173 return BTRFS_TREE_BLOCK_INVALID_BLOCKPTR; 2174 } 2175 if (unlikely(!IS_ALIGNED(bytenr, fs_info->sectorsize))) { 2176 generic_err(node, slot, 2177 "unaligned pointer, have %llu should be aligned to %u", 2178 bytenr, fs_info->sectorsize); 2179 return BTRFS_TREE_BLOCK_INVALID_BLOCKPTR; 2180 } 2181 2182 if (unlikely(btrfs_comp_cpu_keys(&key, &next_key) >= 0)) { 2183 generic_err(node, slot, 2184 "bad key order, current (%llu %u %llu) next (%llu %u %llu)", 2185 key.objectid, key.type, key.offset, 2186 next_key.objectid, next_key.type, 2187 next_key.offset); 2188 return BTRFS_TREE_BLOCK_BAD_KEY_ORDER; 2189 } 2190 } 2191 return BTRFS_TREE_BLOCK_CLEAN; 2192 } 2193 2194 int btrfs_check_node(struct extent_buffer *node) 2195 { 2196 enum btrfs_tree_block_status ret; 2197 2198 ret = __btrfs_check_node(node); 2199 if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN)) 2200 return -EUCLEAN; 2201 return 0; 2202 } 2203 ALLOW_ERROR_INJECTION(btrfs_check_node, ERRNO); 2204 2205 int btrfs_check_eb_owner(const struct extent_buffer *eb, u64 root_owner) 2206 { 2207 const bool is_subvol = btrfs_is_fstree(root_owner); 2208 const u64 eb_owner = btrfs_header_owner(eb); 2209 2210 /* 2211 * Skip dummy fs, as selftests don't create unique ebs for each dummy 2212 * root. 2213 */ 2214 if (btrfs_is_testing(eb->fs_info)) 2215 return 0; 2216 /* 2217 * There are several call sites (backref walking, qgroup, and data 2218 * reloc) passing 0 as @root_owner, as they are not holding the 2219 * tree root. In that case, we can not do a reliable ownership check, 2220 * so just exit. 2221 */ 2222 if (root_owner == 0) 2223 return 0; 2224 /* 2225 * These trees use key.offset as their owner, our callers don't have 2226 * the extra capacity to pass key.offset here. So we just skip them. 2227 */ 2228 if (root_owner == BTRFS_TREE_LOG_OBJECTID || 2229 root_owner == BTRFS_TREE_RELOC_OBJECTID) 2230 return 0; 2231 2232 if (!is_subvol) { 2233 /* For non-subvolume trees, the eb owner should match root owner */ 2234 if (unlikely(root_owner != eb_owner)) { 2235 btrfs_crit(eb->fs_info, 2236 "corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect %llu", 2237 btrfs_header_level(eb) == 0 ? "leaf" : "node", 2238 root_owner, btrfs_header_bytenr(eb), eb_owner, 2239 root_owner); 2240 return -EUCLEAN; 2241 } 2242 return 0; 2243 } 2244 2245 /* 2246 * For subvolume trees, owners can mismatch, but they should all belong 2247 * to subvolume trees. 2248 */ 2249 if (unlikely(is_subvol != btrfs_is_fstree(eb_owner))) { 2250 btrfs_crit(eb->fs_info, 2251 "corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect [%llu, %llu]", 2252 btrfs_header_level(eb) == 0 ? "leaf" : "node", 2253 root_owner, btrfs_header_bytenr(eb), eb_owner, 2254 BTRFS_FIRST_FREE_OBJECTID, BTRFS_LAST_FREE_OBJECTID); 2255 return -EUCLEAN; 2256 } 2257 return 0; 2258 } 2259 2260 int btrfs_verify_level_key(struct extent_buffer *eb, 2261 const struct btrfs_tree_parent_check *check) 2262 { 2263 struct btrfs_fs_info *fs_info = eb->fs_info; 2264 int found_level; 2265 struct btrfs_key found_key; 2266 int ret; 2267 2268 found_level = btrfs_header_level(eb); 2269 if (unlikely(found_level != check->level)) { 2270 DEBUG_WARN(); 2271 btrfs_err(fs_info, 2272 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", 2273 eb->start, check->level, found_level); 2274 return -EUCLEAN; 2275 } 2276 2277 if (!check->has_first_key) 2278 return 0; 2279 2280 /* 2281 * For live tree block (new tree blocks in current transaction), 2282 * we need proper lock context to avoid race, which is impossible here. 2283 * So we only checks tree blocks which is read from disk, whose 2284 * generation <= fs_info->last_trans_committed. 2285 */ 2286 if (btrfs_header_generation(eb) > btrfs_get_last_trans_committed(fs_info)) 2287 return 0; 2288 2289 /* We have @first_key, so this @eb must have at least one item */ 2290 if (unlikely(btrfs_header_nritems(eb) == 0)) { 2291 btrfs_err(fs_info, 2292 "invalid tree nritems, bytenr=%llu nritems=0 expect >0", 2293 eb->start); 2294 DEBUG_WARN(); 2295 return -EUCLEAN; 2296 } 2297 2298 if (found_level) 2299 btrfs_node_key_to_cpu(eb, &found_key, 0); 2300 else 2301 btrfs_item_key_to_cpu(eb, &found_key, 0); 2302 2303 ret = btrfs_comp_cpu_keys(&check->first_key, &found_key); 2304 if (unlikely(ret)) { 2305 DEBUG_WARN(); 2306 btrfs_err(fs_info, 2307 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 2308 eb->start, check->transid, check->first_key.objectid, 2309 check->first_key.type, check->first_key.offset, 2310 found_key.objectid, found_key.type, 2311 found_key.offset); 2312 } 2313 return ret; 2314 } 2315