1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/slab.h> 8 #include <linux/sched.h> 9 #include <linux/writeback.h> 10 #include <linux/pagemap.h> 11 #include <linux/blkdev.h> 12 #include <linux/uuid.h> 13 #include "misc.h" 14 #include "ctree.h" 15 #include "disk-io.h" 16 #include "transaction.h" 17 #include "locking.h" 18 #include "tree-log.h" 19 #include "volumes.h" 20 #include "dev-replace.h" 21 #include "qgroup.h" 22 #include "block-group.h" 23 #include "space-info.h" 24 #include "zoned.h" 25 26 #define BTRFS_ROOT_TRANS_TAG 0 27 28 /* 29 * Transaction states and transitions 30 * 31 * No running transaction (fs tree blocks are not modified) 32 * | 33 * | To next stage: 34 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart(). 35 * V 36 * Transaction N [[TRANS_STATE_RUNNING]] 37 * | 38 * | New trans handles can be attached to transaction N by calling all 39 * | start_transaction() variants. 40 * | 41 * | To next stage: 42 * | Call btrfs_commit_transaction() on any trans handle attached to 43 * | transaction N 44 * V 45 * Transaction N [[TRANS_STATE_COMMIT_START]] 46 * | 47 * | Will wait for previous running transaction to completely finish if there 48 * | is one 49 * | 50 * | Then one of the following happes: 51 * | - Wait for all other trans handle holders to release. 52 * | The btrfs_commit_transaction() caller will do the commit work. 53 * | - Wait for current transaction to be committed by others. 54 * | Other btrfs_commit_transaction() caller will do the commit work. 55 * | 56 * | At this stage, only btrfs_join_transaction*() variants can attach 57 * | to this running transaction. 58 * | All other variants will wait for current one to finish and attach to 59 * | transaction N+1. 60 * | 61 * | To next stage: 62 * | Caller is chosen to commit transaction N, and all other trans handle 63 * | haven been released. 64 * V 65 * Transaction N [[TRANS_STATE_COMMIT_DOING]] 66 * | 67 * | The heavy lifting transaction work is started. 68 * | From running delayed refs (modifying extent tree) to creating pending 69 * | snapshots, running qgroups. 70 * | In short, modify supporting trees to reflect modifications of subvolume 71 * | trees. 72 * | 73 * | At this stage, all start_transaction() calls will wait for this 74 * | transaction to finish and attach to transaction N+1. 75 * | 76 * | To next stage: 77 * | Until all supporting trees are updated. 78 * V 79 * Transaction N [[TRANS_STATE_UNBLOCKED]] 80 * | Transaction N+1 81 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]] 82 * | need to write them back to disk and update | 83 * | super blocks. | 84 * | | 85 * | At this stage, new transaction is allowed to | 86 * | start. | 87 * | All new start_transaction() calls will be | 88 * | attached to transid N+1. | 89 * | | 90 * | To next stage: | 91 * | Until all tree blocks are super blocks are | 92 * | written to block devices | 93 * V | 94 * Transaction N [[TRANS_STATE_COMPLETED]] V 95 * All tree blocks and super blocks are written. Transaction N+1 96 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]] 97 * data structures will be cleaned up. | Life goes on 98 */ 99 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 100 [TRANS_STATE_RUNNING] = 0U, 101 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH), 102 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START | 103 __TRANS_ATTACH | 104 __TRANS_JOIN | 105 __TRANS_JOIN_NOSTART), 106 [TRANS_STATE_UNBLOCKED] = (__TRANS_START | 107 __TRANS_ATTACH | 108 __TRANS_JOIN | 109 __TRANS_JOIN_NOLOCK | 110 __TRANS_JOIN_NOSTART), 111 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START | 112 __TRANS_ATTACH | 113 __TRANS_JOIN | 114 __TRANS_JOIN_NOLOCK | 115 __TRANS_JOIN_NOSTART), 116 [TRANS_STATE_COMPLETED] = (__TRANS_START | 117 __TRANS_ATTACH | 118 __TRANS_JOIN | 119 __TRANS_JOIN_NOLOCK | 120 __TRANS_JOIN_NOSTART), 121 }; 122 123 void btrfs_put_transaction(struct btrfs_transaction *transaction) 124 { 125 WARN_ON(refcount_read(&transaction->use_count) == 0); 126 if (refcount_dec_and_test(&transaction->use_count)) { 127 BUG_ON(!list_empty(&transaction->list)); 128 WARN_ON(!RB_EMPTY_ROOT( 129 &transaction->delayed_refs.href_root.rb_root)); 130 WARN_ON(!RB_EMPTY_ROOT( 131 &transaction->delayed_refs.dirty_extent_root)); 132 if (transaction->delayed_refs.pending_csums) 133 btrfs_err(transaction->fs_info, 134 "pending csums is %llu", 135 transaction->delayed_refs.pending_csums); 136 /* 137 * If any block groups are found in ->deleted_bgs then it's 138 * because the transaction was aborted and a commit did not 139 * happen (things failed before writing the new superblock 140 * and calling btrfs_finish_extent_commit()), so we can not 141 * discard the physical locations of the block groups. 142 */ 143 while (!list_empty(&transaction->deleted_bgs)) { 144 struct btrfs_block_group *cache; 145 146 cache = list_first_entry(&transaction->deleted_bgs, 147 struct btrfs_block_group, 148 bg_list); 149 list_del_init(&cache->bg_list); 150 btrfs_unfreeze_block_group(cache); 151 btrfs_put_block_group(cache); 152 } 153 WARN_ON(!list_empty(&transaction->dev_update_list)); 154 kfree(transaction); 155 } 156 } 157 158 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans) 159 { 160 struct btrfs_transaction *cur_trans = trans->transaction; 161 struct btrfs_fs_info *fs_info = trans->fs_info; 162 struct btrfs_root *root, *tmp; 163 struct btrfs_caching_control *caching_ctl, *next; 164 165 down_write(&fs_info->commit_root_sem); 166 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits, 167 dirty_list) { 168 list_del_init(&root->dirty_list); 169 free_extent_buffer(root->commit_root); 170 root->commit_root = btrfs_root_node(root); 171 extent_io_tree_release(&root->dirty_log_pages); 172 btrfs_qgroup_clean_swapped_blocks(root); 173 } 174 175 /* We can free old roots now. */ 176 spin_lock(&cur_trans->dropped_roots_lock); 177 while (!list_empty(&cur_trans->dropped_roots)) { 178 root = list_first_entry(&cur_trans->dropped_roots, 179 struct btrfs_root, root_list); 180 list_del_init(&root->root_list); 181 spin_unlock(&cur_trans->dropped_roots_lock); 182 btrfs_free_log(trans, root); 183 btrfs_drop_and_free_fs_root(fs_info, root); 184 spin_lock(&cur_trans->dropped_roots_lock); 185 } 186 spin_unlock(&cur_trans->dropped_roots_lock); 187 188 /* 189 * We have to update the last_byte_to_unpin under the commit_root_sem, 190 * at the same time we swap out the commit roots. 191 * 192 * This is because we must have a real view of the last spot the caching 193 * kthreads were while caching. Consider the following views of the 194 * extent tree for a block group 195 * 196 * commit root 197 * +----+----+----+----+----+----+----+ 198 * |\\\\| |\\\\|\\\\| |\\\\|\\\\| 199 * +----+----+----+----+----+----+----+ 200 * 0 1 2 3 4 5 6 7 201 * 202 * new commit root 203 * +----+----+----+----+----+----+----+ 204 * | | | |\\\\| | |\\\\| 205 * +----+----+----+----+----+----+----+ 206 * 0 1 2 3 4 5 6 7 207 * 208 * If the cache_ctl->progress was at 3, then we are only allowed to 209 * unpin [0,1) and [2,3], because the caching thread has already 210 * processed those extents. We are not allowed to unpin [5,6), because 211 * the caching thread will re-start it's search from 3, and thus find 212 * the hole from [4,6) to add to the free space cache. 213 */ 214 spin_lock(&fs_info->block_group_cache_lock); 215 list_for_each_entry_safe(caching_ctl, next, 216 &fs_info->caching_block_groups, list) { 217 struct btrfs_block_group *cache = caching_ctl->block_group; 218 219 if (btrfs_block_group_done(cache)) { 220 cache->last_byte_to_unpin = (u64)-1; 221 list_del_init(&caching_ctl->list); 222 btrfs_put_caching_control(caching_ctl); 223 } else { 224 cache->last_byte_to_unpin = caching_ctl->progress; 225 } 226 } 227 spin_unlock(&fs_info->block_group_cache_lock); 228 up_write(&fs_info->commit_root_sem); 229 } 230 231 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 232 unsigned int type) 233 { 234 if (type & TRANS_EXTWRITERS) 235 atomic_inc(&trans->num_extwriters); 236 } 237 238 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 239 unsigned int type) 240 { 241 if (type & TRANS_EXTWRITERS) 242 atomic_dec(&trans->num_extwriters); 243 } 244 245 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 246 unsigned int type) 247 { 248 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 249 } 250 251 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 252 { 253 return atomic_read(&trans->num_extwriters); 254 } 255 256 /* 257 * To be called after all the new block groups attached to the transaction 258 * handle have been created (btrfs_create_pending_block_groups()). 259 */ 260 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 261 { 262 struct btrfs_fs_info *fs_info = trans->fs_info; 263 struct btrfs_transaction *cur_trans = trans->transaction; 264 265 if (!trans->chunk_bytes_reserved) 266 return; 267 268 WARN_ON_ONCE(!list_empty(&trans->new_bgs)); 269 270 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv, 271 trans->chunk_bytes_reserved, NULL); 272 atomic64_sub(trans->chunk_bytes_reserved, &cur_trans->chunk_bytes_reserved); 273 cond_wake_up(&cur_trans->chunk_reserve_wait); 274 trans->chunk_bytes_reserved = 0; 275 } 276 277 /* 278 * either allocate a new transaction or hop into the existing one 279 */ 280 static noinline int join_transaction(struct btrfs_fs_info *fs_info, 281 unsigned int type) 282 { 283 struct btrfs_transaction *cur_trans; 284 285 spin_lock(&fs_info->trans_lock); 286 loop: 287 /* The file system has been taken offline. No new transactions. */ 288 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 289 spin_unlock(&fs_info->trans_lock); 290 return -EROFS; 291 } 292 293 cur_trans = fs_info->running_transaction; 294 if (cur_trans) { 295 if (TRANS_ABORTED(cur_trans)) { 296 spin_unlock(&fs_info->trans_lock); 297 return cur_trans->aborted; 298 } 299 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 300 spin_unlock(&fs_info->trans_lock); 301 return -EBUSY; 302 } 303 refcount_inc(&cur_trans->use_count); 304 atomic_inc(&cur_trans->num_writers); 305 extwriter_counter_inc(cur_trans, type); 306 spin_unlock(&fs_info->trans_lock); 307 return 0; 308 } 309 spin_unlock(&fs_info->trans_lock); 310 311 /* 312 * If we are ATTACH, we just want to catch the current transaction, 313 * and commit it. If there is no transaction, just return ENOENT. 314 */ 315 if (type == TRANS_ATTACH) 316 return -ENOENT; 317 318 /* 319 * JOIN_NOLOCK only happens during the transaction commit, so 320 * it is impossible that ->running_transaction is NULL 321 */ 322 BUG_ON(type == TRANS_JOIN_NOLOCK); 323 324 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS); 325 if (!cur_trans) 326 return -ENOMEM; 327 328 spin_lock(&fs_info->trans_lock); 329 if (fs_info->running_transaction) { 330 /* 331 * someone started a transaction after we unlocked. Make sure 332 * to redo the checks above 333 */ 334 kfree(cur_trans); 335 goto loop; 336 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 337 spin_unlock(&fs_info->trans_lock); 338 kfree(cur_trans); 339 return -EROFS; 340 } 341 342 cur_trans->fs_info = fs_info; 343 atomic_set(&cur_trans->pending_ordered, 0); 344 init_waitqueue_head(&cur_trans->pending_wait); 345 atomic_set(&cur_trans->num_writers, 1); 346 extwriter_counter_init(cur_trans, type); 347 init_waitqueue_head(&cur_trans->writer_wait); 348 init_waitqueue_head(&cur_trans->commit_wait); 349 cur_trans->state = TRANS_STATE_RUNNING; 350 /* 351 * One for this trans handle, one so it will live on until we 352 * commit the transaction. 353 */ 354 refcount_set(&cur_trans->use_count, 2); 355 cur_trans->flags = 0; 356 cur_trans->start_time = ktime_get_seconds(); 357 358 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs)); 359 360 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED; 361 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT; 362 atomic_set(&cur_trans->delayed_refs.num_entries, 0); 363 364 /* 365 * although the tree mod log is per file system and not per transaction, 366 * the log must never go across transaction boundaries. 367 */ 368 smp_mb(); 369 if (!list_empty(&fs_info->tree_mod_seq_list)) 370 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n"); 371 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 372 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n"); 373 atomic64_set(&fs_info->tree_mod_seq, 0); 374 375 spin_lock_init(&cur_trans->delayed_refs.lock); 376 377 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 378 INIT_LIST_HEAD(&cur_trans->dev_update_list); 379 INIT_LIST_HEAD(&cur_trans->switch_commits); 380 INIT_LIST_HEAD(&cur_trans->dirty_bgs); 381 INIT_LIST_HEAD(&cur_trans->io_bgs); 382 INIT_LIST_HEAD(&cur_trans->dropped_roots); 383 mutex_init(&cur_trans->cache_write_mutex); 384 spin_lock_init(&cur_trans->dirty_bgs_lock); 385 INIT_LIST_HEAD(&cur_trans->deleted_bgs); 386 spin_lock_init(&cur_trans->dropped_roots_lock); 387 INIT_LIST_HEAD(&cur_trans->releasing_ebs); 388 spin_lock_init(&cur_trans->releasing_ebs_lock); 389 atomic64_set(&cur_trans->chunk_bytes_reserved, 0); 390 init_waitqueue_head(&cur_trans->chunk_reserve_wait); 391 list_add_tail(&cur_trans->list, &fs_info->trans_list); 392 extent_io_tree_init(fs_info, &cur_trans->dirty_pages, 393 IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode); 394 extent_io_tree_init(fs_info, &cur_trans->pinned_extents, 395 IO_TREE_FS_PINNED_EXTENTS, NULL); 396 fs_info->generation++; 397 cur_trans->transid = fs_info->generation; 398 fs_info->running_transaction = cur_trans; 399 cur_trans->aborted = 0; 400 spin_unlock(&fs_info->trans_lock); 401 402 return 0; 403 } 404 405 /* 406 * This does all the record keeping required to make sure that a shareable root 407 * is properly recorded in a given transaction. This is required to make sure 408 * the old root from before we joined the transaction is deleted when the 409 * transaction commits. 410 */ 411 static int record_root_in_trans(struct btrfs_trans_handle *trans, 412 struct btrfs_root *root, 413 int force) 414 { 415 struct btrfs_fs_info *fs_info = root->fs_info; 416 int ret = 0; 417 418 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 419 root->last_trans < trans->transid) || force) { 420 WARN_ON(root == fs_info->extent_root); 421 WARN_ON(!force && root->commit_root != root->node); 422 423 /* 424 * see below for IN_TRANS_SETUP usage rules 425 * we have the reloc mutex held now, so there 426 * is only one writer in this function 427 */ 428 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 429 430 /* make sure readers find IN_TRANS_SETUP before 431 * they find our root->last_trans update 432 */ 433 smp_wmb(); 434 435 spin_lock(&fs_info->fs_roots_radix_lock); 436 if (root->last_trans == trans->transid && !force) { 437 spin_unlock(&fs_info->fs_roots_radix_lock); 438 return 0; 439 } 440 radix_tree_tag_set(&fs_info->fs_roots_radix, 441 (unsigned long)root->root_key.objectid, 442 BTRFS_ROOT_TRANS_TAG); 443 spin_unlock(&fs_info->fs_roots_radix_lock); 444 root->last_trans = trans->transid; 445 446 /* this is pretty tricky. We don't want to 447 * take the relocation lock in btrfs_record_root_in_trans 448 * unless we're really doing the first setup for this root in 449 * this transaction. 450 * 451 * Normally we'd use root->last_trans as a flag to decide 452 * if we want to take the expensive mutex. 453 * 454 * But, we have to set root->last_trans before we 455 * init the relocation root, otherwise, we trip over warnings 456 * in ctree.c. The solution used here is to flag ourselves 457 * with root IN_TRANS_SETUP. When this is 1, we're still 458 * fixing up the reloc trees and everyone must wait. 459 * 460 * When this is zero, they can trust root->last_trans and fly 461 * through btrfs_record_root_in_trans without having to take the 462 * lock. smp_wmb() makes sure that all the writes above are 463 * done before we pop in the zero below 464 */ 465 ret = btrfs_init_reloc_root(trans, root); 466 smp_mb__before_atomic(); 467 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 468 } 469 return ret; 470 } 471 472 473 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans, 474 struct btrfs_root *root) 475 { 476 struct btrfs_fs_info *fs_info = root->fs_info; 477 struct btrfs_transaction *cur_trans = trans->transaction; 478 479 /* Add ourselves to the transaction dropped list */ 480 spin_lock(&cur_trans->dropped_roots_lock); 481 list_add_tail(&root->root_list, &cur_trans->dropped_roots); 482 spin_unlock(&cur_trans->dropped_roots_lock); 483 484 /* Make sure we don't try to update the root at commit time */ 485 spin_lock(&fs_info->fs_roots_radix_lock); 486 radix_tree_tag_clear(&fs_info->fs_roots_radix, 487 (unsigned long)root->root_key.objectid, 488 BTRFS_ROOT_TRANS_TAG); 489 spin_unlock(&fs_info->fs_roots_radix_lock); 490 } 491 492 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 493 struct btrfs_root *root) 494 { 495 struct btrfs_fs_info *fs_info = root->fs_info; 496 int ret; 497 498 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 499 return 0; 500 501 /* 502 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 503 * and barriers 504 */ 505 smp_rmb(); 506 if (root->last_trans == trans->transid && 507 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 508 return 0; 509 510 mutex_lock(&fs_info->reloc_mutex); 511 ret = record_root_in_trans(trans, root, 0); 512 mutex_unlock(&fs_info->reloc_mutex); 513 514 return ret; 515 } 516 517 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 518 { 519 return (trans->state >= TRANS_STATE_COMMIT_START && 520 trans->state < TRANS_STATE_UNBLOCKED && 521 !TRANS_ABORTED(trans)); 522 } 523 524 /* wait for commit against the current transaction to become unblocked 525 * when this is done, it is safe to start a new transaction, but the current 526 * transaction might not be fully on disk. 527 */ 528 static void wait_current_trans(struct btrfs_fs_info *fs_info) 529 { 530 struct btrfs_transaction *cur_trans; 531 532 spin_lock(&fs_info->trans_lock); 533 cur_trans = fs_info->running_transaction; 534 if (cur_trans && is_transaction_blocked(cur_trans)) { 535 refcount_inc(&cur_trans->use_count); 536 spin_unlock(&fs_info->trans_lock); 537 538 wait_event(fs_info->transaction_wait, 539 cur_trans->state >= TRANS_STATE_UNBLOCKED || 540 TRANS_ABORTED(cur_trans)); 541 btrfs_put_transaction(cur_trans); 542 } else { 543 spin_unlock(&fs_info->trans_lock); 544 } 545 } 546 547 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type) 548 { 549 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 550 return 0; 551 552 if (type == TRANS_START) 553 return 1; 554 555 return 0; 556 } 557 558 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 559 { 560 struct btrfs_fs_info *fs_info = root->fs_info; 561 562 if (!fs_info->reloc_ctl || 563 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) || 564 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 565 root->reloc_root) 566 return false; 567 568 return true; 569 } 570 571 static struct btrfs_trans_handle * 572 start_transaction(struct btrfs_root *root, unsigned int num_items, 573 unsigned int type, enum btrfs_reserve_flush_enum flush, 574 bool enforce_qgroups) 575 { 576 struct btrfs_fs_info *fs_info = root->fs_info; 577 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 578 struct btrfs_trans_handle *h; 579 struct btrfs_transaction *cur_trans; 580 u64 num_bytes = 0; 581 u64 qgroup_reserved = 0; 582 bool reloc_reserved = false; 583 bool do_chunk_alloc = false; 584 int ret; 585 586 /* Send isn't supposed to start transactions. */ 587 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB); 588 589 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 590 return ERR_PTR(-EROFS); 591 592 if (current->journal_info) { 593 WARN_ON(type & TRANS_EXTWRITERS); 594 h = current->journal_info; 595 refcount_inc(&h->use_count); 596 WARN_ON(refcount_read(&h->use_count) > 2); 597 h->orig_rsv = h->block_rsv; 598 h->block_rsv = NULL; 599 goto got_it; 600 } 601 602 /* 603 * Do the reservation before we join the transaction so we can do all 604 * the appropriate flushing if need be. 605 */ 606 if (num_items && root != fs_info->chunk_root) { 607 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv; 608 u64 delayed_refs_bytes = 0; 609 610 qgroup_reserved = num_items * fs_info->nodesize; 611 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved, 612 enforce_qgroups); 613 if (ret) 614 return ERR_PTR(ret); 615 616 /* 617 * We want to reserve all the bytes we may need all at once, so 618 * we only do 1 enospc flushing cycle per transaction start. We 619 * accomplish this by simply assuming we'll do 2 x num_items 620 * worth of delayed refs updates in this trans handle, and 621 * refill that amount for whatever is missing in the reserve. 622 */ 623 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items); 624 if (flush == BTRFS_RESERVE_FLUSH_ALL && 625 delayed_refs_rsv->full == 0) { 626 delayed_refs_bytes = num_bytes; 627 num_bytes <<= 1; 628 } 629 630 /* 631 * Do the reservation for the relocation root creation 632 */ 633 if (need_reserve_reloc_root(root)) { 634 num_bytes += fs_info->nodesize; 635 reloc_reserved = true; 636 } 637 638 ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush); 639 if (ret) 640 goto reserve_fail; 641 if (delayed_refs_bytes) { 642 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv, 643 delayed_refs_bytes); 644 num_bytes -= delayed_refs_bytes; 645 } 646 647 if (rsv->space_info->force_alloc) 648 do_chunk_alloc = true; 649 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL && 650 !delayed_refs_rsv->full) { 651 /* 652 * Some people call with btrfs_start_transaction(root, 0) 653 * because they can be throttled, but have some other mechanism 654 * for reserving space. We still want these guys to refill the 655 * delayed block_rsv so just add 1 items worth of reservation 656 * here. 657 */ 658 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush); 659 if (ret) 660 goto reserve_fail; 661 } 662 again: 663 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS); 664 if (!h) { 665 ret = -ENOMEM; 666 goto alloc_fail; 667 } 668 669 /* 670 * If we are JOIN_NOLOCK we're already committing a transaction and 671 * waiting on this guy, so we don't need to do the sb_start_intwrite 672 * because we're already holding a ref. We need this because we could 673 * have raced in and did an fsync() on a file which can kick a commit 674 * and then we deadlock with somebody doing a freeze. 675 * 676 * If we are ATTACH, it means we just want to catch the current 677 * transaction and commit it, so we needn't do sb_start_intwrite(). 678 */ 679 if (type & __TRANS_FREEZABLE) 680 sb_start_intwrite(fs_info->sb); 681 682 if (may_wait_transaction(fs_info, type)) 683 wait_current_trans(fs_info); 684 685 do { 686 ret = join_transaction(fs_info, type); 687 if (ret == -EBUSY) { 688 wait_current_trans(fs_info); 689 if (unlikely(type == TRANS_ATTACH || 690 type == TRANS_JOIN_NOSTART)) 691 ret = -ENOENT; 692 } 693 } while (ret == -EBUSY); 694 695 if (ret < 0) 696 goto join_fail; 697 698 cur_trans = fs_info->running_transaction; 699 700 h->transid = cur_trans->transid; 701 h->transaction = cur_trans; 702 h->root = root; 703 refcount_set(&h->use_count, 1); 704 h->fs_info = root->fs_info; 705 706 h->type = type; 707 h->can_flush_pending_bgs = true; 708 INIT_LIST_HEAD(&h->new_bgs); 709 710 smp_mb(); 711 if (cur_trans->state >= TRANS_STATE_COMMIT_START && 712 may_wait_transaction(fs_info, type)) { 713 current->journal_info = h; 714 btrfs_commit_transaction(h); 715 goto again; 716 } 717 718 if (num_bytes) { 719 trace_btrfs_space_reservation(fs_info, "transaction", 720 h->transid, num_bytes, 1); 721 h->block_rsv = &fs_info->trans_block_rsv; 722 h->bytes_reserved = num_bytes; 723 h->reloc_reserved = reloc_reserved; 724 } 725 726 got_it: 727 if (!current->journal_info) 728 current->journal_info = h; 729 730 /* 731 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to 732 * ALLOC_FORCE the first run through, and then we won't allocate for 733 * anybody else who races in later. We don't care about the return 734 * value here. 735 */ 736 if (do_chunk_alloc && num_bytes) { 737 u64 flags = h->block_rsv->space_info->flags; 738 739 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags), 740 CHUNK_ALLOC_NO_FORCE); 741 } 742 743 /* 744 * btrfs_record_root_in_trans() needs to alloc new extents, and may 745 * call btrfs_join_transaction() while we're also starting a 746 * transaction. 747 * 748 * Thus it need to be called after current->journal_info initialized, 749 * or we can deadlock. 750 */ 751 ret = btrfs_record_root_in_trans(h, root); 752 if (ret) { 753 /* 754 * The transaction handle is fully initialized and linked with 755 * other structures so it needs to be ended in case of errors, 756 * not just freed. 757 */ 758 btrfs_end_transaction(h); 759 return ERR_PTR(ret); 760 } 761 762 return h; 763 764 join_fail: 765 if (type & __TRANS_FREEZABLE) 766 sb_end_intwrite(fs_info->sb); 767 kmem_cache_free(btrfs_trans_handle_cachep, h); 768 alloc_fail: 769 if (num_bytes) 770 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv, 771 num_bytes, NULL); 772 reserve_fail: 773 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved); 774 return ERR_PTR(ret); 775 } 776 777 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 778 unsigned int num_items) 779 { 780 return start_transaction(root, num_items, TRANS_START, 781 BTRFS_RESERVE_FLUSH_ALL, true); 782 } 783 784 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv( 785 struct btrfs_root *root, 786 unsigned int num_items) 787 { 788 return start_transaction(root, num_items, TRANS_START, 789 BTRFS_RESERVE_FLUSH_ALL_STEAL, false); 790 } 791 792 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 793 { 794 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH, 795 true); 796 } 797 798 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root) 799 { 800 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 801 BTRFS_RESERVE_NO_FLUSH, true); 802 } 803 804 /* 805 * Similar to regular join but it never starts a transaction when none is 806 * running or after waiting for the current one to finish. 807 */ 808 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root) 809 { 810 return start_transaction(root, 0, TRANS_JOIN_NOSTART, 811 BTRFS_RESERVE_NO_FLUSH, true); 812 } 813 814 /* 815 * btrfs_attach_transaction() - catch the running transaction 816 * 817 * It is used when we want to commit the current the transaction, but 818 * don't want to start a new one. 819 * 820 * Note: If this function return -ENOENT, it just means there is no 821 * running transaction. But it is possible that the inactive transaction 822 * is still in the memory, not fully on disk. If you hope there is no 823 * inactive transaction in the fs when -ENOENT is returned, you should 824 * invoke 825 * btrfs_attach_transaction_barrier() 826 */ 827 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 828 { 829 return start_transaction(root, 0, TRANS_ATTACH, 830 BTRFS_RESERVE_NO_FLUSH, true); 831 } 832 833 /* 834 * btrfs_attach_transaction_barrier() - catch the running transaction 835 * 836 * It is similar to the above function, the difference is this one 837 * will wait for all the inactive transactions until they fully 838 * complete. 839 */ 840 struct btrfs_trans_handle * 841 btrfs_attach_transaction_barrier(struct btrfs_root *root) 842 { 843 struct btrfs_trans_handle *trans; 844 845 trans = start_transaction(root, 0, TRANS_ATTACH, 846 BTRFS_RESERVE_NO_FLUSH, true); 847 if (trans == ERR_PTR(-ENOENT)) 848 btrfs_wait_for_commit(root->fs_info, 0); 849 850 return trans; 851 } 852 853 /* Wait for a transaction commit to reach at least the given state. */ 854 static noinline void wait_for_commit(struct btrfs_transaction *commit, 855 const enum btrfs_trans_state min_state) 856 { 857 wait_event(commit->commit_wait, commit->state >= min_state); 858 } 859 860 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid) 861 { 862 struct btrfs_transaction *cur_trans = NULL, *t; 863 int ret = 0; 864 865 if (transid) { 866 if (transid <= fs_info->last_trans_committed) 867 goto out; 868 869 /* find specified transaction */ 870 spin_lock(&fs_info->trans_lock); 871 list_for_each_entry(t, &fs_info->trans_list, list) { 872 if (t->transid == transid) { 873 cur_trans = t; 874 refcount_inc(&cur_trans->use_count); 875 ret = 0; 876 break; 877 } 878 if (t->transid > transid) { 879 ret = 0; 880 break; 881 } 882 } 883 spin_unlock(&fs_info->trans_lock); 884 885 /* 886 * The specified transaction doesn't exist, or we 887 * raced with btrfs_commit_transaction 888 */ 889 if (!cur_trans) { 890 if (transid > fs_info->last_trans_committed) 891 ret = -EINVAL; 892 goto out; 893 } 894 } else { 895 /* find newest transaction that is committing | committed */ 896 spin_lock(&fs_info->trans_lock); 897 list_for_each_entry_reverse(t, &fs_info->trans_list, 898 list) { 899 if (t->state >= TRANS_STATE_COMMIT_START) { 900 if (t->state == TRANS_STATE_COMPLETED) 901 break; 902 cur_trans = t; 903 refcount_inc(&cur_trans->use_count); 904 break; 905 } 906 } 907 spin_unlock(&fs_info->trans_lock); 908 if (!cur_trans) 909 goto out; /* nothing committing|committed */ 910 } 911 912 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED); 913 btrfs_put_transaction(cur_trans); 914 out: 915 return ret; 916 } 917 918 void btrfs_throttle(struct btrfs_fs_info *fs_info) 919 { 920 wait_current_trans(fs_info); 921 } 922 923 static bool should_end_transaction(struct btrfs_trans_handle *trans) 924 { 925 struct btrfs_fs_info *fs_info = trans->fs_info; 926 927 if (btrfs_check_space_for_delayed_refs(fs_info)) 928 return true; 929 930 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5); 931 } 932 933 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans) 934 { 935 struct btrfs_transaction *cur_trans = trans->transaction; 936 937 if (cur_trans->state >= TRANS_STATE_COMMIT_START || 938 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags)) 939 return true; 940 941 return should_end_transaction(trans); 942 } 943 944 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans) 945 946 { 947 struct btrfs_fs_info *fs_info = trans->fs_info; 948 949 if (!trans->block_rsv) { 950 ASSERT(!trans->bytes_reserved); 951 return; 952 } 953 954 if (!trans->bytes_reserved) 955 return; 956 957 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv); 958 trace_btrfs_space_reservation(fs_info, "transaction", 959 trans->transid, trans->bytes_reserved, 0); 960 btrfs_block_rsv_release(fs_info, trans->block_rsv, 961 trans->bytes_reserved, NULL); 962 trans->bytes_reserved = 0; 963 } 964 965 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 966 int throttle) 967 { 968 struct btrfs_fs_info *info = trans->fs_info; 969 struct btrfs_transaction *cur_trans = trans->transaction; 970 int err = 0; 971 972 if (refcount_read(&trans->use_count) > 1) { 973 refcount_dec(&trans->use_count); 974 trans->block_rsv = trans->orig_rsv; 975 return 0; 976 } 977 978 btrfs_trans_release_metadata(trans); 979 trans->block_rsv = NULL; 980 981 btrfs_create_pending_block_groups(trans); 982 983 btrfs_trans_release_chunk_metadata(trans); 984 985 if (trans->type & __TRANS_FREEZABLE) 986 sb_end_intwrite(info->sb); 987 988 WARN_ON(cur_trans != info->running_transaction); 989 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 990 atomic_dec(&cur_trans->num_writers); 991 extwriter_counter_dec(cur_trans, trans->type); 992 993 cond_wake_up(&cur_trans->writer_wait); 994 btrfs_put_transaction(cur_trans); 995 996 if (current->journal_info == trans) 997 current->journal_info = NULL; 998 999 if (throttle) 1000 btrfs_run_delayed_iputs(info); 1001 1002 if (TRANS_ABORTED(trans) || 1003 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) { 1004 wake_up_process(info->transaction_kthread); 1005 if (TRANS_ABORTED(trans)) 1006 err = trans->aborted; 1007 else 1008 err = -EROFS; 1009 } 1010 1011 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1012 return err; 1013 } 1014 1015 int btrfs_end_transaction(struct btrfs_trans_handle *trans) 1016 { 1017 return __btrfs_end_transaction(trans, 0); 1018 } 1019 1020 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans) 1021 { 1022 return __btrfs_end_transaction(trans, 1); 1023 } 1024 1025 /* 1026 * when btree blocks are allocated, they have some corresponding bits set for 1027 * them in one of two extent_io trees. This is used to make sure all of 1028 * those extents are sent to disk but does not wait on them 1029 */ 1030 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info, 1031 struct extent_io_tree *dirty_pages, int mark) 1032 { 1033 int err = 0; 1034 int werr = 0; 1035 struct address_space *mapping = fs_info->btree_inode->i_mapping; 1036 struct extent_state *cached_state = NULL; 1037 u64 start = 0; 1038 u64 end; 1039 1040 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers); 1041 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 1042 mark, &cached_state)) { 1043 bool wait_writeback = false; 1044 1045 err = convert_extent_bit(dirty_pages, start, end, 1046 EXTENT_NEED_WAIT, 1047 mark, &cached_state); 1048 /* 1049 * convert_extent_bit can return -ENOMEM, which is most of the 1050 * time a temporary error. So when it happens, ignore the error 1051 * and wait for writeback of this range to finish - because we 1052 * failed to set the bit EXTENT_NEED_WAIT for the range, a call 1053 * to __btrfs_wait_marked_extents() would not know that 1054 * writeback for this range started and therefore wouldn't 1055 * wait for it to finish - we don't want to commit a 1056 * superblock that points to btree nodes/leafs for which 1057 * writeback hasn't finished yet (and without errors). 1058 * We cleanup any entries left in the io tree when committing 1059 * the transaction (through extent_io_tree_release()). 1060 */ 1061 if (err == -ENOMEM) { 1062 err = 0; 1063 wait_writeback = true; 1064 } 1065 if (!err) 1066 err = filemap_fdatawrite_range(mapping, start, end); 1067 if (err) 1068 werr = err; 1069 else if (wait_writeback) 1070 werr = filemap_fdatawait_range(mapping, start, end); 1071 free_extent_state(cached_state); 1072 cached_state = NULL; 1073 cond_resched(); 1074 start = end + 1; 1075 } 1076 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers); 1077 return werr; 1078 } 1079 1080 /* 1081 * when btree blocks are allocated, they have some corresponding bits set for 1082 * them in one of two extent_io trees. This is used to make sure all of 1083 * those extents are on disk for transaction or log commit. We wait 1084 * on all the pages and clear them from the dirty pages state tree 1085 */ 1086 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info, 1087 struct extent_io_tree *dirty_pages) 1088 { 1089 int err = 0; 1090 int werr = 0; 1091 struct address_space *mapping = fs_info->btree_inode->i_mapping; 1092 struct extent_state *cached_state = NULL; 1093 u64 start = 0; 1094 u64 end; 1095 1096 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 1097 EXTENT_NEED_WAIT, &cached_state)) { 1098 /* 1099 * Ignore -ENOMEM errors returned by clear_extent_bit(). 1100 * When committing the transaction, we'll remove any entries 1101 * left in the io tree. For a log commit, we don't remove them 1102 * after committing the log because the tree can be accessed 1103 * concurrently - we do it only at transaction commit time when 1104 * it's safe to do it (through extent_io_tree_release()). 1105 */ 1106 err = clear_extent_bit(dirty_pages, start, end, 1107 EXTENT_NEED_WAIT, 0, 0, &cached_state); 1108 if (err == -ENOMEM) 1109 err = 0; 1110 if (!err) 1111 err = filemap_fdatawait_range(mapping, start, end); 1112 if (err) 1113 werr = err; 1114 free_extent_state(cached_state); 1115 cached_state = NULL; 1116 cond_resched(); 1117 start = end + 1; 1118 } 1119 if (err) 1120 werr = err; 1121 return werr; 1122 } 1123 1124 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info, 1125 struct extent_io_tree *dirty_pages) 1126 { 1127 bool errors = false; 1128 int err; 1129 1130 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1131 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags)) 1132 errors = true; 1133 1134 if (errors && !err) 1135 err = -EIO; 1136 return err; 1137 } 1138 1139 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark) 1140 { 1141 struct btrfs_fs_info *fs_info = log_root->fs_info; 1142 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages; 1143 bool errors = false; 1144 int err; 1145 1146 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 1147 1148 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1149 if ((mark & EXTENT_DIRTY) && 1150 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags)) 1151 errors = true; 1152 1153 if ((mark & EXTENT_NEW) && 1154 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags)) 1155 errors = true; 1156 1157 if (errors && !err) 1158 err = -EIO; 1159 return err; 1160 } 1161 1162 /* 1163 * When btree blocks are allocated the corresponding extents are marked dirty. 1164 * This function ensures such extents are persisted on disk for transaction or 1165 * log commit. 1166 * 1167 * @trans: transaction whose dirty pages we'd like to write 1168 */ 1169 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans) 1170 { 1171 int ret; 1172 int ret2; 1173 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages; 1174 struct btrfs_fs_info *fs_info = trans->fs_info; 1175 struct blk_plug plug; 1176 1177 blk_start_plug(&plug); 1178 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY); 1179 blk_finish_plug(&plug); 1180 ret2 = btrfs_wait_extents(fs_info, dirty_pages); 1181 1182 extent_io_tree_release(&trans->transaction->dirty_pages); 1183 1184 if (ret) 1185 return ret; 1186 else if (ret2) 1187 return ret2; 1188 else 1189 return 0; 1190 } 1191 1192 /* 1193 * this is used to update the root pointer in the tree of tree roots. 1194 * 1195 * But, in the case of the extent allocation tree, updating the root 1196 * pointer may allocate blocks which may change the root of the extent 1197 * allocation tree. 1198 * 1199 * So, this loops and repeats and makes sure the cowonly root didn't 1200 * change while the root pointer was being updated in the metadata. 1201 */ 1202 static int update_cowonly_root(struct btrfs_trans_handle *trans, 1203 struct btrfs_root *root) 1204 { 1205 int ret; 1206 u64 old_root_bytenr; 1207 u64 old_root_used; 1208 struct btrfs_fs_info *fs_info = root->fs_info; 1209 struct btrfs_root *tree_root = fs_info->tree_root; 1210 1211 old_root_used = btrfs_root_used(&root->root_item); 1212 1213 while (1) { 1214 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 1215 if (old_root_bytenr == root->node->start && 1216 old_root_used == btrfs_root_used(&root->root_item)) 1217 break; 1218 1219 btrfs_set_root_node(&root->root_item, root->node); 1220 ret = btrfs_update_root(trans, tree_root, 1221 &root->root_key, 1222 &root->root_item); 1223 if (ret) 1224 return ret; 1225 1226 old_root_used = btrfs_root_used(&root->root_item); 1227 } 1228 1229 return 0; 1230 } 1231 1232 /* 1233 * update all the cowonly tree roots on disk 1234 * 1235 * The error handling in this function may not be obvious. Any of the 1236 * failures will cause the file system to go offline. We still need 1237 * to clean up the delayed refs. 1238 */ 1239 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans) 1240 { 1241 struct btrfs_fs_info *fs_info = trans->fs_info; 1242 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; 1243 struct list_head *io_bgs = &trans->transaction->io_bgs; 1244 struct list_head *next; 1245 struct extent_buffer *eb; 1246 int ret; 1247 1248 eb = btrfs_lock_root_node(fs_info->tree_root); 1249 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 1250 0, &eb, BTRFS_NESTING_COW); 1251 btrfs_tree_unlock(eb); 1252 free_extent_buffer(eb); 1253 1254 if (ret) 1255 return ret; 1256 1257 ret = btrfs_run_dev_stats(trans); 1258 if (ret) 1259 return ret; 1260 ret = btrfs_run_dev_replace(trans); 1261 if (ret) 1262 return ret; 1263 ret = btrfs_run_qgroups(trans); 1264 if (ret) 1265 return ret; 1266 1267 ret = btrfs_setup_space_cache(trans); 1268 if (ret) 1269 return ret; 1270 1271 again: 1272 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1273 struct btrfs_root *root; 1274 next = fs_info->dirty_cowonly_roots.next; 1275 list_del_init(next); 1276 root = list_entry(next, struct btrfs_root, dirty_list); 1277 clear_bit(BTRFS_ROOT_DIRTY, &root->state); 1278 1279 if (root != fs_info->extent_root) 1280 list_add_tail(&root->dirty_list, 1281 &trans->transaction->switch_commits); 1282 ret = update_cowonly_root(trans, root); 1283 if (ret) 1284 return ret; 1285 } 1286 1287 /* Now flush any delayed refs generated by updating all of the roots */ 1288 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1289 if (ret) 1290 return ret; 1291 1292 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { 1293 ret = btrfs_write_dirty_block_groups(trans); 1294 if (ret) 1295 return ret; 1296 1297 /* 1298 * We're writing the dirty block groups, which could generate 1299 * delayed refs, which could generate more dirty block groups, 1300 * so we want to keep this flushing in this loop to make sure 1301 * everything gets run. 1302 */ 1303 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1304 if (ret) 1305 return ret; 1306 } 1307 1308 if (!list_empty(&fs_info->dirty_cowonly_roots)) 1309 goto again; 1310 1311 list_add_tail(&fs_info->extent_root->dirty_list, 1312 &trans->transaction->switch_commits); 1313 1314 /* Update dev-replace pointer once everything is committed */ 1315 fs_info->dev_replace.committed_cursor_left = 1316 fs_info->dev_replace.cursor_left_last_write_of_item; 1317 1318 return 0; 1319 } 1320 1321 /* 1322 * dead roots are old snapshots that need to be deleted. This allocates 1323 * a dirty root struct and adds it into the list of dead roots that need to 1324 * be deleted 1325 */ 1326 void btrfs_add_dead_root(struct btrfs_root *root) 1327 { 1328 struct btrfs_fs_info *fs_info = root->fs_info; 1329 1330 spin_lock(&fs_info->trans_lock); 1331 if (list_empty(&root->root_list)) { 1332 btrfs_grab_root(root); 1333 list_add_tail(&root->root_list, &fs_info->dead_roots); 1334 } 1335 spin_unlock(&fs_info->trans_lock); 1336 } 1337 1338 /* 1339 * update all the cowonly tree roots on disk 1340 */ 1341 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans) 1342 { 1343 struct btrfs_fs_info *fs_info = trans->fs_info; 1344 struct btrfs_root *gang[8]; 1345 int i; 1346 int ret; 1347 1348 spin_lock(&fs_info->fs_roots_radix_lock); 1349 while (1) { 1350 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1351 (void **)gang, 0, 1352 ARRAY_SIZE(gang), 1353 BTRFS_ROOT_TRANS_TAG); 1354 if (ret == 0) 1355 break; 1356 for (i = 0; i < ret; i++) { 1357 struct btrfs_root *root = gang[i]; 1358 int ret2; 1359 1360 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1361 (unsigned long)root->root_key.objectid, 1362 BTRFS_ROOT_TRANS_TAG); 1363 spin_unlock(&fs_info->fs_roots_radix_lock); 1364 1365 btrfs_free_log(trans, root); 1366 ret2 = btrfs_update_reloc_root(trans, root); 1367 if (ret2) 1368 return ret2; 1369 1370 /* see comments in should_cow_block() */ 1371 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1372 smp_mb__after_atomic(); 1373 1374 if (root->commit_root != root->node) { 1375 list_add_tail(&root->dirty_list, 1376 &trans->transaction->switch_commits); 1377 btrfs_set_root_node(&root->root_item, 1378 root->node); 1379 } 1380 1381 ret2 = btrfs_update_root(trans, fs_info->tree_root, 1382 &root->root_key, 1383 &root->root_item); 1384 if (ret2) 1385 return ret2; 1386 spin_lock(&fs_info->fs_roots_radix_lock); 1387 btrfs_qgroup_free_meta_all_pertrans(root); 1388 } 1389 } 1390 spin_unlock(&fs_info->fs_roots_radix_lock); 1391 return 0; 1392 } 1393 1394 /* 1395 * defrag a given btree. 1396 * Every leaf in the btree is read and defragged. 1397 */ 1398 int btrfs_defrag_root(struct btrfs_root *root) 1399 { 1400 struct btrfs_fs_info *info = root->fs_info; 1401 struct btrfs_trans_handle *trans; 1402 int ret; 1403 1404 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) 1405 return 0; 1406 1407 while (1) { 1408 trans = btrfs_start_transaction(root, 0); 1409 if (IS_ERR(trans)) 1410 return PTR_ERR(trans); 1411 1412 ret = btrfs_defrag_leaves(trans, root); 1413 1414 btrfs_end_transaction(trans); 1415 btrfs_btree_balance_dirty(info); 1416 cond_resched(); 1417 1418 if (btrfs_fs_closing(info) || ret != -EAGAIN) 1419 break; 1420 1421 if (btrfs_defrag_cancelled(info)) { 1422 btrfs_debug(info, "defrag_root cancelled"); 1423 ret = -EAGAIN; 1424 break; 1425 } 1426 } 1427 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); 1428 return ret; 1429 } 1430 1431 /* 1432 * Do all special snapshot related qgroup dirty hack. 1433 * 1434 * Will do all needed qgroup inherit and dirty hack like switch commit 1435 * roots inside one transaction and write all btree into disk, to make 1436 * qgroup works. 1437 */ 1438 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans, 1439 struct btrfs_root *src, 1440 struct btrfs_root *parent, 1441 struct btrfs_qgroup_inherit *inherit, 1442 u64 dst_objectid) 1443 { 1444 struct btrfs_fs_info *fs_info = src->fs_info; 1445 int ret; 1446 1447 /* 1448 * Save some performance in the case that qgroups are not 1449 * enabled. If this check races with the ioctl, rescan will 1450 * kick in anyway. 1451 */ 1452 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) 1453 return 0; 1454 1455 /* 1456 * Ensure dirty @src will be committed. Or, after coming 1457 * commit_fs_roots() and switch_commit_roots(), any dirty but not 1458 * recorded root will never be updated again, causing an outdated root 1459 * item. 1460 */ 1461 ret = record_root_in_trans(trans, src, 1); 1462 if (ret) 1463 return ret; 1464 1465 /* 1466 * btrfs_qgroup_inherit relies on a consistent view of the usage for the 1467 * src root, so we must run the delayed refs here. 1468 * 1469 * However this isn't particularly fool proof, because there's no 1470 * synchronization keeping us from changing the tree after this point 1471 * before we do the qgroup_inherit, or even from making changes while 1472 * we're doing the qgroup_inherit. But that's a problem for the future, 1473 * for now flush the delayed refs to narrow the race window where the 1474 * qgroup counters could end up wrong. 1475 */ 1476 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1477 if (ret) { 1478 btrfs_abort_transaction(trans, ret); 1479 goto out; 1480 } 1481 1482 /* 1483 * We are going to commit transaction, see btrfs_commit_transaction() 1484 * comment for reason locking tree_log_mutex 1485 */ 1486 mutex_lock(&fs_info->tree_log_mutex); 1487 1488 ret = commit_fs_roots(trans); 1489 if (ret) 1490 goto out; 1491 ret = btrfs_qgroup_account_extents(trans); 1492 if (ret < 0) 1493 goto out; 1494 1495 /* Now qgroup are all updated, we can inherit it to new qgroups */ 1496 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid, 1497 inherit); 1498 if (ret < 0) 1499 goto out; 1500 1501 /* 1502 * Now we do a simplified commit transaction, which will: 1503 * 1) commit all subvolume and extent tree 1504 * To ensure all subvolume and extent tree have a valid 1505 * commit_root to accounting later insert_dir_item() 1506 * 2) write all btree blocks onto disk 1507 * This is to make sure later btree modification will be cowed 1508 * Or commit_root can be populated and cause wrong qgroup numbers 1509 * In this simplified commit, we don't really care about other trees 1510 * like chunk and root tree, as they won't affect qgroup. 1511 * And we don't write super to avoid half committed status. 1512 */ 1513 ret = commit_cowonly_roots(trans); 1514 if (ret) 1515 goto out; 1516 switch_commit_roots(trans); 1517 ret = btrfs_write_and_wait_transaction(trans); 1518 if (ret) 1519 btrfs_handle_fs_error(fs_info, ret, 1520 "Error while writing out transaction for qgroup"); 1521 1522 out: 1523 mutex_unlock(&fs_info->tree_log_mutex); 1524 1525 /* 1526 * Force parent root to be updated, as we recorded it before so its 1527 * last_trans == cur_transid. 1528 * Or it won't be committed again onto disk after later 1529 * insert_dir_item() 1530 */ 1531 if (!ret) 1532 ret = record_root_in_trans(trans, parent, 1); 1533 return ret; 1534 } 1535 1536 /* 1537 * new snapshots need to be created at a very specific time in the 1538 * transaction commit. This does the actual creation. 1539 * 1540 * Note: 1541 * If the error which may affect the commitment of the current transaction 1542 * happens, we should return the error number. If the error which just affect 1543 * the creation of the pending snapshots, just return 0. 1544 */ 1545 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1546 struct btrfs_pending_snapshot *pending) 1547 { 1548 1549 struct btrfs_fs_info *fs_info = trans->fs_info; 1550 struct btrfs_key key; 1551 struct btrfs_root_item *new_root_item; 1552 struct btrfs_root *tree_root = fs_info->tree_root; 1553 struct btrfs_root *root = pending->root; 1554 struct btrfs_root *parent_root; 1555 struct btrfs_block_rsv *rsv; 1556 struct inode *parent_inode; 1557 struct btrfs_path *path; 1558 struct btrfs_dir_item *dir_item; 1559 struct dentry *dentry; 1560 struct extent_buffer *tmp; 1561 struct extent_buffer *old; 1562 struct timespec64 cur_time; 1563 int ret = 0; 1564 u64 to_reserve = 0; 1565 u64 index = 0; 1566 u64 objectid; 1567 u64 root_flags; 1568 1569 ASSERT(pending->path); 1570 path = pending->path; 1571 1572 ASSERT(pending->root_item); 1573 new_root_item = pending->root_item; 1574 1575 pending->error = btrfs_get_free_objectid(tree_root, &objectid); 1576 if (pending->error) 1577 goto no_free_objectid; 1578 1579 /* 1580 * Make qgroup to skip current new snapshot's qgroupid, as it is 1581 * accounted by later btrfs_qgroup_inherit(). 1582 */ 1583 btrfs_set_skip_qgroup(trans, objectid); 1584 1585 btrfs_reloc_pre_snapshot(pending, &to_reserve); 1586 1587 if (to_reserve > 0) { 1588 pending->error = btrfs_block_rsv_add(root, 1589 &pending->block_rsv, 1590 to_reserve, 1591 BTRFS_RESERVE_NO_FLUSH); 1592 if (pending->error) 1593 goto clear_skip_qgroup; 1594 } 1595 1596 key.objectid = objectid; 1597 key.offset = (u64)-1; 1598 key.type = BTRFS_ROOT_ITEM_KEY; 1599 1600 rsv = trans->block_rsv; 1601 trans->block_rsv = &pending->block_rsv; 1602 trans->bytes_reserved = trans->block_rsv->reserved; 1603 trace_btrfs_space_reservation(fs_info, "transaction", 1604 trans->transid, 1605 trans->bytes_reserved, 1); 1606 dentry = pending->dentry; 1607 parent_inode = pending->dir; 1608 parent_root = BTRFS_I(parent_inode)->root; 1609 ret = record_root_in_trans(trans, parent_root, 0); 1610 if (ret) 1611 goto fail; 1612 cur_time = current_time(parent_inode); 1613 1614 /* 1615 * insert the directory item 1616 */ 1617 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index); 1618 BUG_ON(ret); /* -ENOMEM */ 1619 1620 /* check if there is a file/dir which has the same name. */ 1621 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1622 btrfs_ino(BTRFS_I(parent_inode)), 1623 dentry->d_name.name, 1624 dentry->d_name.len, 0); 1625 if (dir_item != NULL && !IS_ERR(dir_item)) { 1626 pending->error = -EEXIST; 1627 goto dir_item_existed; 1628 } else if (IS_ERR(dir_item)) { 1629 ret = PTR_ERR(dir_item); 1630 btrfs_abort_transaction(trans, ret); 1631 goto fail; 1632 } 1633 btrfs_release_path(path); 1634 1635 /* 1636 * pull in the delayed directory update 1637 * and the delayed inode item 1638 * otherwise we corrupt the FS during 1639 * snapshot 1640 */ 1641 ret = btrfs_run_delayed_items(trans); 1642 if (ret) { /* Transaction aborted */ 1643 btrfs_abort_transaction(trans, ret); 1644 goto fail; 1645 } 1646 1647 ret = record_root_in_trans(trans, root, 0); 1648 if (ret) { 1649 btrfs_abort_transaction(trans, ret); 1650 goto fail; 1651 } 1652 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1653 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1654 btrfs_check_and_init_root_item(new_root_item); 1655 1656 root_flags = btrfs_root_flags(new_root_item); 1657 if (pending->readonly) 1658 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1659 else 1660 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1661 btrfs_set_root_flags(new_root_item, root_flags); 1662 1663 btrfs_set_root_generation_v2(new_root_item, 1664 trans->transid); 1665 generate_random_guid(new_root_item->uuid); 1666 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1667 BTRFS_UUID_SIZE); 1668 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1669 memset(new_root_item->received_uuid, 0, 1670 sizeof(new_root_item->received_uuid)); 1671 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1672 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1673 btrfs_set_root_stransid(new_root_item, 0); 1674 btrfs_set_root_rtransid(new_root_item, 0); 1675 } 1676 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1677 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1678 btrfs_set_root_otransid(new_root_item, trans->transid); 1679 1680 old = btrfs_lock_root_node(root); 1681 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old, 1682 BTRFS_NESTING_COW); 1683 if (ret) { 1684 btrfs_tree_unlock(old); 1685 free_extent_buffer(old); 1686 btrfs_abort_transaction(trans, ret); 1687 goto fail; 1688 } 1689 1690 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1691 /* clean up in any case */ 1692 btrfs_tree_unlock(old); 1693 free_extent_buffer(old); 1694 if (ret) { 1695 btrfs_abort_transaction(trans, ret); 1696 goto fail; 1697 } 1698 /* see comments in should_cow_block() */ 1699 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1700 smp_wmb(); 1701 1702 btrfs_set_root_node(new_root_item, tmp); 1703 /* record when the snapshot was created in key.offset */ 1704 key.offset = trans->transid; 1705 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1706 btrfs_tree_unlock(tmp); 1707 free_extent_buffer(tmp); 1708 if (ret) { 1709 btrfs_abort_transaction(trans, ret); 1710 goto fail; 1711 } 1712 1713 /* 1714 * insert root back/forward references 1715 */ 1716 ret = btrfs_add_root_ref(trans, objectid, 1717 parent_root->root_key.objectid, 1718 btrfs_ino(BTRFS_I(parent_inode)), index, 1719 dentry->d_name.name, dentry->d_name.len); 1720 if (ret) { 1721 btrfs_abort_transaction(trans, ret); 1722 goto fail; 1723 } 1724 1725 key.offset = (u64)-1; 1726 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev); 1727 if (IS_ERR(pending->snap)) { 1728 ret = PTR_ERR(pending->snap); 1729 pending->snap = NULL; 1730 btrfs_abort_transaction(trans, ret); 1731 goto fail; 1732 } 1733 1734 ret = btrfs_reloc_post_snapshot(trans, pending); 1735 if (ret) { 1736 btrfs_abort_transaction(trans, ret); 1737 goto fail; 1738 } 1739 1740 /* 1741 * Do special qgroup accounting for snapshot, as we do some qgroup 1742 * snapshot hack to do fast snapshot. 1743 * To co-operate with that hack, we do hack again. 1744 * Or snapshot will be greatly slowed down by a subtree qgroup rescan 1745 */ 1746 ret = qgroup_account_snapshot(trans, root, parent_root, 1747 pending->inherit, objectid); 1748 if (ret < 0) 1749 goto fail; 1750 1751 ret = btrfs_insert_dir_item(trans, dentry->d_name.name, 1752 dentry->d_name.len, BTRFS_I(parent_inode), 1753 &key, BTRFS_FT_DIR, index); 1754 /* We have check then name at the beginning, so it is impossible. */ 1755 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1756 if (ret) { 1757 btrfs_abort_transaction(trans, ret); 1758 goto fail; 1759 } 1760 1761 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size + 1762 dentry->d_name.len * 2); 1763 parent_inode->i_mtime = parent_inode->i_ctime = 1764 current_time(parent_inode); 1765 ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode)); 1766 if (ret) { 1767 btrfs_abort_transaction(trans, ret); 1768 goto fail; 1769 } 1770 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid, 1771 BTRFS_UUID_KEY_SUBVOL, 1772 objectid); 1773 if (ret) { 1774 btrfs_abort_transaction(trans, ret); 1775 goto fail; 1776 } 1777 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1778 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid, 1779 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1780 objectid); 1781 if (ret && ret != -EEXIST) { 1782 btrfs_abort_transaction(trans, ret); 1783 goto fail; 1784 } 1785 } 1786 1787 fail: 1788 pending->error = ret; 1789 dir_item_existed: 1790 trans->block_rsv = rsv; 1791 trans->bytes_reserved = 0; 1792 clear_skip_qgroup: 1793 btrfs_clear_skip_qgroup(trans); 1794 no_free_objectid: 1795 kfree(new_root_item); 1796 pending->root_item = NULL; 1797 btrfs_free_path(path); 1798 pending->path = NULL; 1799 1800 return ret; 1801 } 1802 1803 /* 1804 * create all the snapshots we've scheduled for creation 1805 */ 1806 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans) 1807 { 1808 struct btrfs_pending_snapshot *pending, *next; 1809 struct list_head *head = &trans->transaction->pending_snapshots; 1810 int ret = 0; 1811 1812 list_for_each_entry_safe(pending, next, head, list) { 1813 list_del(&pending->list); 1814 ret = create_pending_snapshot(trans, pending); 1815 if (ret) 1816 break; 1817 } 1818 return ret; 1819 } 1820 1821 static void update_super_roots(struct btrfs_fs_info *fs_info) 1822 { 1823 struct btrfs_root_item *root_item; 1824 struct btrfs_super_block *super; 1825 1826 super = fs_info->super_copy; 1827 1828 root_item = &fs_info->chunk_root->root_item; 1829 super->chunk_root = root_item->bytenr; 1830 super->chunk_root_generation = root_item->generation; 1831 super->chunk_root_level = root_item->level; 1832 1833 root_item = &fs_info->tree_root->root_item; 1834 super->root = root_item->bytenr; 1835 super->generation = root_item->generation; 1836 super->root_level = root_item->level; 1837 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 1838 super->cache_generation = root_item->generation; 1839 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags)) 1840 super->cache_generation = 0; 1841 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags)) 1842 super->uuid_tree_generation = root_item->generation; 1843 } 1844 1845 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1846 { 1847 struct btrfs_transaction *trans; 1848 int ret = 0; 1849 1850 spin_lock(&info->trans_lock); 1851 trans = info->running_transaction; 1852 if (trans) 1853 ret = (trans->state >= TRANS_STATE_COMMIT_START); 1854 spin_unlock(&info->trans_lock); 1855 return ret; 1856 } 1857 1858 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1859 { 1860 struct btrfs_transaction *trans; 1861 int ret = 0; 1862 1863 spin_lock(&info->trans_lock); 1864 trans = info->running_transaction; 1865 if (trans) 1866 ret = is_transaction_blocked(trans); 1867 spin_unlock(&info->trans_lock); 1868 return ret; 1869 } 1870 1871 /* 1872 * wait for the current transaction commit to start and block subsequent 1873 * transaction joins 1874 */ 1875 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info, 1876 struct btrfs_transaction *trans) 1877 { 1878 wait_event(fs_info->transaction_blocked_wait, 1879 trans->state >= TRANS_STATE_COMMIT_START || 1880 TRANS_ABORTED(trans)); 1881 } 1882 1883 /* 1884 * wait for the current transaction to start and then become unblocked. 1885 * caller holds ref. 1886 */ 1887 static void wait_current_trans_commit_start_and_unblock( 1888 struct btrfs_fs_info *fs_info, 1889 struct btrfs_transaction *trans) 1890 { 1891 wait_event(fs_info->transaction_wait, 1892 trans->state >= TRANS_STATE_UNBLOCKED || 1893 TRANS_ABORTED(trans)); 1894 } 1895 1896 /* 1897 * commit transactions asynchronously. once btrfs_commit_transaction_async 1898 * returns, any subsequent transaction will not be allowed to join. 1899 */ 1900 struct btrfs_async_commit { 1901 struct btrfs_trans_handle *newtrans; 1902 struct work_struct work; 1903 }; 1904 1905 static void do_async_commit(struct work_struct *work) 1906 { 1907 struct btrfs_async_commit *ac = 1908 container_of(work, struct btrfs_async_commit, work); 1909 1910 /* 1911 * We've got freeze protection passed with the transaction. 1912 * Tell lockdep about it. 1913 */ 1914 if (ac->newtrans->type & __TRANS_FREEZABLE) 1915 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS); 1916 1917 current->journal_info = ac->newtrans; 1918 1919 btrfs_commit_transaction(ac->newtrans); 1920 kfree(ac); 1921 } 1922 1923 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, 1924 int wait_for_unblock) 1925 { 1926 struct btrfs_fs_info *fs_info = trans->fs_info; 1927 struct btrfs_async_commit *ac; 1928 struct btrfs_transaction *cur_trans; 1929 1930 ac = kmalloc(sizeof(*ac), GFP_NOFS); 1931 if (!ac) 1932 return -ENOMEM; 1933 1934 INIT_WORK(&ac->work, do_async_commit); 1935 ac->newtrans = btrfs_join_transaction(trans->root); 1936 if (IS_ERR(ac->newtrans)) { 1937 int err = PTR_ERR(ac->newtrans); 1938 kfree(ac); 1939 return err; 1940 } 1941 1942 /* take transaction reference */ 1943 cur_trans = trans->transaction; 1944 refcount_inc(&cur_trans->use_count); 1945 1946 btrfs_end_transaction(trans); 1947 1948 /* 1949 * Tell lockdep we've released the freeze rwsem, since the 1950 * async commit thread will be the one to unlock it. 1951 */ 1952 if (ac->newtrans->type & __TRANS_FREEZABLE) 1953 __sb_writers_release(fs_info->sb, SB_FREEZE_FS); 1954 1955 schedule_work(&ac->work); 1956 1957 /* wait for transaction to start and unblock */ 1958 if (wait_for_unblock) 1959 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans); 1960 else 1961 wait_current_trans_commit_start(fs_info, cur_trans); 1962 1963 if (current->journal_info == trans) 1964 current->journal_info = NULL; 1965 1966 btrfs_put_transaction(cur_trans); 1967 return 0; 1968 } 1969 1970 1971 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err) 1972 { 1973 struct btrfs_fs_info *fs_info = trans->fs_info; 1974 struct btrfs_transaction *cur_trans = trans->transaction; 1975 1976 WARN_ON(refcount_read(&trans->use_count) > 1); 1977 1978 btrfs_abort_transaction(trans, err); 1979 1980 spin_lock(&fs_info->trans_lock); 1981 1982 /* 1983 * If the transaction is removed from the list, it means this 1984 * transaction has been committed successfully, so it is impossible 1985 * to call the cleanup function. 1986 */ 1987 BUG_ON(list_empty(&cur_trans->list)); 1988 1989 if (cur_trans == fs_info->running_transaction) { 1990 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1991 spin_unlock(&fs_info->trans_lock); 1992 wait_event(cur_trans->writer_wait, 1993 atomic_read(&cur_trans->num_writers) == 1); 1994 1995 spin_lock(&fs_info->trans_lock); 1996 } 1997 1998 /* 1999 * Now that we know no one else is still using the transaction we can 2000 * remove the transaction from the list of transactions. This avoids 2001 * the transaction kthread from cleaning up the transaction while some 2002 * other task is still using it, which could result in a use-after-free 2003 * on things like log trees, as it forces the transaction kthread to 2004 * wait for this transaction to be cleaned up by us. 2005 */ 2006 list_del_init(&cur_trans->list); 2007 2008 spin_unlock(&fs_info->trans_lock); 2009 2010 btrfs_cleanup_one_transaction(trans->transaction, fs_info); 2011 2012 spin_lock(&fs_info->trans_lock); 2013 if (cur_trans == fs_info->running_transaction) 2014 fs_info->running_transaction = NULL; 2015 spin_unlock(&fs_info->trans_lock); 2016 2017 if (trans->type & __TRANS_FREEZABLE) 2018 sb_end_intwrite(fs_info->sb); 2019 btrfs_put_transaction(cur_trans); 2020 btrfs_put_transaction(cur_trans); 2021 2022 trace_btrfs_transaction_commit(trans->root); 2023 2024 if (current->journal_info == trans) 2025 current->journal_info = NULL; 2026 btrfs_scrub_cancel(fs_info); 2027 2028 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2029 } 2030 2031 /* 2032 * Release reserved delayed ref space of all pending block groups of the 2033 * transaction and remove them from the list 2034 */ 2035 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans) 2036 { 2037 struct btrfs_fs_info *fs_info = trans->fs_info; 2038 struct btrfs_block_group *block_group, *tmp; 2039 2040 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 2041 btrfs_delayed_refs_rsv_release(fs_info, 1); 2042 list_del_init(&block_group->bg_list); 2043 } 2044 } 2045 2046 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info) 2047 { 2048 /* 2049 * We use writeback_inodes_sb here because if we used 2050 * btrfs_start_delalloc_roots we would deadlock with fs freeze. 2051 * Currently are holding the fs freeze lock, if we do an async flush 2052 * we'll do btrfs_join_transaction() and deadlock because we need to 2053 * wait for the fs freeze lock. Using the direct flushing we benefit 2054 * from already being in a transaction and our join_transaction doesn't 2055 * have to re-take the fs freeze lock. 2056 */ 2057 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 2058 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC); 2059 return 0; 2060 } 2061 2062 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info) 2063 { 2064 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 2065 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 2066 } 2067 2068 int btrfs_commit_transaction(struct btrfs_trans_handle *trans) 2069 { 2070 struct btrfs_fs_info *fs_info = trans->fs_info; 2071 struct btrfs_transaction *cur_trans = trans->transaction; 2072 struct btrfs_transaction *prev_trans = NULL; 2073 int ret; 2074 2075 ASSERT(refcount_read(&trans->use_count) == 1); 2076 2077 /* 2078 * Some places just start a transaction to commit it. We need to make 2079 * sure that if this commit fails that the abort code actually marks the 2080 * transaction as failed, so set trans->dirty to make the abort code do 2081 * the right thing. 2082 */ 2083 trans->dirty = true; 2084 2085 /* Stop the commit early if ->aborted is set */ 2086 if (TRANS_ABORTED(cur_trans)) { 2087 ret = cur_trans->aborted; 2088 btrfs_end_transaction(trans); 2089 return ret; 2090 } 2091 2092 btrfs_trans_release_metadata(trans); 2093 trans->block_rsv = NULL; 2094 2095 /* 2096 * We only want one transaction commit doing the flushing so we do not 2097 * waste a bunch of time on lock contention on the extent root node. 2098 */ 2099 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING, 2100 &cur_trans->delayed_refs.flags)) { 2101 /* 2102 * Make a pass through all the delayed refs we have so far. 2103 * Any running threads may add more while we are here. 2104 */ 2105 ret = btrfs_run_delayed_refs(trans, 0); 2106 if (ret) { 2107 btrfs_end_transaction(trans); 2108 return ret; 2109 } 2110 } 2111 2112 btrfs_create_pending_block_groups(trans); 2113 2114 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) { 2115 int run_it = 0; 2116 2117 /* this mutex is also taken before trying to set 2118 * block groups readonly. We need to make sure 2119 * that nobody has set a block group readonly 2120 * after a extents from that block group have been 2121 * allocated for cache files. btrfs_set_block_group_ro 2122 * will wait for the transaction to commit if it 2123 * finds BTRFS_TRANS_DIRTY_BG_RUN set. 2124 * 2125 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure 2126 * only one process starts all the block group IO. It wouldn't 2127 * hurt to have more than one go through, but there's no 2128 * real advantage to it either. 2129 */ 2130 mutex_lock(&fs_info->ro_block_group_mutex); 2131 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN, 2132 &cur_trans->flags)) 2133 run_it = 1; 2134 mutex_unlock(&fs_info->ro_block_group_mutex); 2135 2136 if (run_it) { 2137 ret = btrfs_start_dirty_block_groups(trans); 2138 if (ret) { 2139 btrfs_end_transaction(trans); 2140 return ret; 2141 } 2142 } 2143 } 2144 2145 spin_lock(&fs_info->trans_lock); 2146 if (cur_trans->state >= TRANS_STATE_COMMIT_START) { 2147 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED; 2148 2149 spin_unlock(&fs_info->trans_lock); 2150 refcount_inc(&cur_trans->use_count); 2151 2152 if (trans->in_fsync) 2153 want_state = TRANS_STATE_SUPER_COMMITTED; 2154 ret = btrfs_end_transaction(trans); 2155 wait_for_commit(cur_trans, want_state); 2156 2157 if (TRANS_ABORTED(cur_trans)) 2158 ret = cur_trans->aborted; 2159 2160 btrfs_put_transaction(cur_trans); 2161 2162 return ret; 2163 } 2164 2165 cur_trans->state = TRANS_STATE_COMMIT_START; 2166 wake_up(&fs_info->transaction_blocked_wait); 2167 2168 if (cur_trans->list.prev != &fs_info->trans_list) { 2169 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED; 2170 2171 if (trans->in_fsync) 2172 want_state = TRANS_STATE_SUPER_COMMITTED; 2173 2174 prev_trans = list_entry(cur_trans->list.prev, 2175 struct btrfs_transaction, list); 2176 if (prev_trans->state < want_state) { 2177 refcount_inc(&prev_trans->use_count); 2178 spin_unlock(&fs_info->trans_lock); 2179 2180 wait_for_commit(prev_trans, want_state); 2181 2182 ret = READ_ONCE(prev_trans->aborted); 2183 2184 btrfs_put_transaction(prev_trans); 2185 if (ret) 2186 goto cleanup_transaction; 2187 } else { 2188 spin_unlock(&fs_info->trans_lock); 2189 } 2190 } else { 2191 spin_unlock(&fs_info->trans_lock); 2192 /* 2193 * The previous transaction was aborted and was already removed 2194 * from the list of transactions at fs_info->trans_list. So we 2195 * abort to prevent writing a new superblock that reflects a 2196 * corrupt state (pointing to trees with unwritten nodes/leafs). 2197 */ 2198 if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) { 2199 ret = -EROFS; 2200 goto cleanup_transaction; 2201 } 2202 } 2203 2204 extwriter_counter_dec(cur_trans, trans->type); 2205 2206 ret = btrfs_start_delalloc_flush(fs_info); 2207 if (ret) 2208 goto cleanup_transaction; 2209 2210 ret = btrfs_run_delayed_items(trans); 2211 if (ret) 2212 goto cleanup_transaction; 2213 2214 wait_event(cur_trans->writer_wait, 2215 extwriter_counter_read(cur_trans) == 0); 2216 2217 /* some pending stuffs might be added after the previous flush. */ 2218 ret = btrfs_run_delayed_items(trans); 2219 if (ret) 2220 goto cleanup_transaction; 2221 2222 btrfs_wait_delalloc_flush(fs_info); 2223 2224 /* 2225 * Wait for all ordered extents started by a fast fsync that joined this 2226 * transaction. Otherwise if this transaction commits before the ordered 2227 * extents complete we lose logged data after a power failure. 2228 */ 2229 wait_event(cur_trans->pending_wait, 2230 atomic_read(&cur_trans->pending_ordered) == 0); 2231 2232 btrfs_scrub_pause(fs_info); 2233 /* 2234 * Ok now we need to make sure to block out any other joins while we 2235 * commit the transaction. We could have started a join before setting 2236 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 2237 */ 2238 spin_lock(&fs_info->trans_lock); 2239 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2240 spin_unlock(&fs_info->trans_lock); 2241 wait_event(cur_trans->writer_wait, 2242 atomic_read(&cur_trans->num_writers) == 1); 2243 2244 if (TRANS_ABORTED(cur_trans)) { 2245 ret = cur_trans->aborted; 2246 goto scrub_continue; 2247 } 2248 /* 2249 * the reloc mutex makes sure that we stop 2250 * the balancing code from coming in and moving 2251 * extents around in the middle of the commit 2252 */ 2253 mutex_lock(&fs_info->reloc_mutex); 2254 2255 /* 2256 * We needn't worry about the delayed items because we will 2257 * deal with them in create_pending_snapshot(), which is the 2258 * core function of the snapshot creation. 2259 */ 2260 ret = create_pending_snapshots(trans); 2261 if (ret) 2262 goto unlock_reloc; 2263 2264 /* 2265 * We insert the dir indexes of the snapshots and update the inode 2266 * of the snapshots' parents after the snapshot creation, so there 2267 * are some delayed items which are not dealt with. Now deal with 2268 * them. 2269 * 2270 * We needn't worry that this operation will corrupt the snapshots, 2271 * because all the tree which are snapshoted will be forced to COW 2272 * the nodes and leaves. 2273 */ 2274 ret = btrfs_run_delayed_items(trans); 2275 if (ret) 2276 goto unlock_reloc; 2277 2278 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 2279 if (ret) 2280 goto unlock_reloc; 2281 2282 /* 2283 * make sure none of the code above managed to slip in a 2284 * delayed item 2285 */ 2286 btrfs_assert_delayed_root_empty(fs_info); 2287 2288 WARN_ON(cur_trans != trans->transaction); 2289 2290 /* btrfs_commit_tree_roots is responsible for getting the 2291 * various roots consistent with each other. Every pointer 2292 * in the tree of tree roots has to point to the most up to date 2293 * root for every subvolume and other tree. So, we have to keep 2294 * the tree logging code from jumping in and changing any 2295 * of the trees. 2296 * 2297 * At this point in the commit, there can't be any tree-log 2298 * writers, but a little lower down we drop the trans mutex 2299 * and let new people in. By holding the tree_log_mutex 2300 * from now until after the super is written, we avoid races 2301 * with the tree-log code. 2302 */ 2303 mutex_lock(&fs_info->tree_log_mutex); 2304 2305 ret = commit_fs_roots(trans); 2306 if (ret) 2307 goto unlock_tree_log; 2308 2309 /* 2310 * Since the transaction is done, we can apply the pending changes 2311 * before the next transaction. 2312 */ 2313 btrfs_apply_pending_changes(fs_info); 2314 2315 /* commit_fs_roots gets rid of all the tree log roots, it is now 2316 * safe to free the root of tree log roots 2317 */ 2318 btrfs_free_log_root_tree(trans, fs_info); 2319 2320 /* 2321 * Since fs roots are all committed, we can get a quite accurate 2322 * new_roots. So let's do quota accounting. 2323 */ 2324 ret = btrfs_qgroup_account_extents(trans); 2325 if (ret < 0) 2326 goto unlock_tree_log; 2327 2328 ret = commit_cowonly_roots(trans); 2329 if (ret) 2330 goto unlock_tree_log; 2331 2332 /* 2333 * The tasks which save the space cache and inode cache may also 2334 * update ->aborted, check it. 2335 */ 2336 if (TRANS_ABORTED(cur_trans)) { 2337 ret = cur_trans->aborted; 2338 goto unlock_tree_log; 2339 } 2340 2341 cur_trans = fs_info->running_transaction; 2342 2343 btrfs_set_root_node(&fs_info->tree_root->root_item, 2344 fs_info->tree_root->node); 2345 list_add_tail(&fs_info->tree_root->dirty_list, 2346 &cur_trans->switch_commits); 2347 2348 btrfs_set_root_node(&fs_info->chunk_root->root_item, 2349 fs_info->chunk_root->node); 2350 list_add_tail(&fs_info->chunk_root->dirty_list, 2351 &cur_trans->switch_commits); 2352 2353 switch_commit_roots(trans); 2354 2355 ASSERT(list_empty(&cur_trans->dirty_bgs)); 2356 ASSERT(list_empty(&cur_trans->io_bgs)); 2357 update_super_roots(fs_info); 2358 2359 btrfs_set_super_log_root(fs_info->super_copy, 0); 2360 btrfs_set_super_log_root_level(fs_info->super_copy, 0); 2361 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2362 sizeof(*fs_info->super_copy)); 2363 2364 btrfs_commit_device_sizes(cur_trans); 2365 2366 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 2367 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 2368 2369 btrfs_trans_release_chunk_metadata(trans); 2370 2371 spin_lock(&fs_info->trans_lock); 2372 cur_trans->state = TRANS_STATE_UNBLOCKED; 2373 fs_info->running_transaction = NULL; 2374 spin_unlock(&fs_info->trans_lock); 2375 mutex_unlock(&fs_info->reloc_mutex); 2376 2377 wake_up(&fs_info->transaction_wait); 2378 2379 ret = btrfs_write_and_wait_transaction(trans); 2380 if (ret) { 2381 btrfs_handle_fs_error(fs_info, ret, 2382 "Error while writing out transaction"); 2383 /* 2384 * reloc_mutex has been unlocked, tree_log_mutex is still held 2385 * but we can't jump to unlock_tree_log causing double unlock 2386 */ 2387 mutex_unlock(&fs_info->tree_log_mutex); 2388 goto scrub_continue; 2389 } 2390 2391 /* 2392 * At this point, we should have written all the tree blocks allocated 2393 * in this transaction. So it's now safe to free the redirtyied extent 2394 * buffers. 2395 */ 2396 btrfs_free_redirty_list(cur_trans); 2397 2398 ret = write_all_supers(fs_info, 0); 2399 /* 2400 * the super is written, we can safely allow the tree-loggers 2401 * to go about their business 2402 */ 2403 mutex_unlock(&fs_info->tree_log_mutex); 2404 if (ret) 2405 goto scrub_continue; 2406 2407 /* 2408 * We needn't acquire the lock here because there is no other task 2409 * which can change it. 2410 */ 2411 cur_trans->state = TRANS_STATE_SUPER_COMMITTED; 2412 wake_up(&cur_trans->commit_wait); 2413 2414 btrfs_finish_extent_commit(trans); 2415 2416 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags)) 2417 btrfs_clear_space_info_full(fs_info); 2418 2419 fs_info->last_trans_committed = cur_trans->transid; 2420 /* 2421 * We needn't acquire the lock here because there is no other task 2422 * which can change it. 2423 */ 2424 cur_trans->state = TRANS_STATE_COMPLETED; 2425 wake_up(&cur_trans->commit_wait); 2426 2427 spin_lock(&fs_info->trans_lock); 2428 list_del_init(&cur_trans->list); 2429 spin_unlock(&fs_info->trans_lock); 2430 2431 btrfs_put_transaction(cur_trans); 2432 btrfs_put_transaction(cur_trans); 2433 2434 if (trans->type & __TRANS_FREEZABLE) 2435 sb_end_intwrite(fs_info->sb); 2436 2437 trace_btrfs_transaction_commit(trans->root); 2438 2439 btrfs_scrub_continue(fs_info); 2440 2441 if (current->journal_info == trans) 2442 current->journal_info = NULL; 2443 2444 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2445 2446 return ret; 2447 2448 unlock_tree_log: 2449 mutex_unlock(&fs_info->tree_log_mutex); 2450 unlock_reloc: 2451 mutex_unlock(&fs_info->reloc_mutex); 2452 scrub_continue: 2453 btrfs_scrub_continue(fs_info); 2454 cleanup_transaction: 2455 btrfs_trans_release_metadata(trans); 2456 btrfs_cleanup_pending_block_groups(trans); 2457 btrfs_trans_release_chunk_metadata(trans); 2458 trans->block_rsv = NULL; 2459 btrfs_warn(fs_info, "Skipping commit of aborted transaction."); 2460 if (current->journal_info == trans) 2461 current->journal_info = NULL; 2462 cleanup_transaction(trans, ret); 2463 2464 return ret; 2465 } 2466 2467 /* 2468 * return < 0 if error 2469 * 0 if there are no more dead_roots at the time of call 2470 * 1 there are more to be processed, call me again 2471 * 2472 * The return value indicates there are certainly more snapshots to delete, but 2473 * if there comes a new one during processing, it may return 0. We don't mind, 2474 * because btrfs_commit_super will poke cleaner thread and it will process it a 2475 * few seconds later. 2476 */ 2477 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root) 2478 { 2479 int ret; 2480 struct btrfs_fs_info *fs_info = root->fs_info; 2481 2482 spin_lock(&fs_info->trans_lock); 2483 if (list_empty(&fs_info->dead_roots)) { 2484 spin_unlock(&fs_info->trans_lock); 2485 return 0; 2486 } 2487 root = list_first_entry(&fs_info->dead_roots, 2488 struct btrfs_root, root_list); 2489 list_del_init(&root->root_list); 2490 spin_unlock(&fs_info->trans_lock); 2491 2492 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid); 2493 2494 btrfs_kill_all_delayed_nodes(root); 2495 2496 if (btrfs_header_backref_rev(root->node) < 2497 BTRFS_MIXED_BACKREF_REV) 2498 ret = btrfs_drop_snapshot(root, 0, 0); 2499 else 2500 ret = btrfs_drop_snapshot(root, 1, 0); 2501 2502 btrfs_put_root(root); 2503 return (ret < 0) ? 0 : 1; 2504 } 2505 2506 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info) 2507 { 2508 unsigned long prev; 2509 unsigned long bit; 2510 2511 prev = xchg(&fs_info->pending_changes, 0); 2512 if (!prev) 2513 return; 2514 2515 bit = 1 << BTRFS_PENDING_COMMIT; 2516 if (prev & bit) 2517 btrfs_debug(fs_info, "pending commit done"); 2518 prev &= ~bit; 2519 2520 if (prev) 2521 btrfs_warn(fs_info, 2522 "unknown pending changes left 0x%lx, ignoring", prev); 2523 } 2524