1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/writeback.h> 23 #include <linux/pagemap.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include "ctree.h" 27 #include "disk-io.h" 28 #include "transaction.h" 29 #include "locking.h" 30 #include "tree-log.h" 31 #include "inode-map.h" 32 #include "volumes.h" 33 #include "dev-replace.h" 34 #include "qgroup.h" 35 36 #define BTRFS_ROOT_TRANS_TAG 0 37 38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 39 [TRANS_STATE_RUNNING] = 0U, 40 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE | 41 __TRANS_START), 42 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE | 43 __TRANS_START | 44 __TRANS_ATTACH), 45 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE | 46 __TRANS_START | 47 __TRANS_ATTACH | 48 __TRANS_JOIN), 49 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE | 50 __TRANS_START | 51 __TRANS_ATTACH | 52 __TRANS_JOIN | 53 __TRANS_JOIN_NOLOCK), 54 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE | 55 __TRANS_START | 56 __TRANS_ATTACH | 57 __TRANS_JOIN | 58 __TRANS_JOIN_NOLOCK), 59 }; 60 61 void btrfs_put_transaction(struct btrfs_transaction *transaction) 62 { 63 WARN_ON(atomic_read(&transaction->use_count) == 0); 64 if (atomic_dec_and_test(&transaction->use_count)) { 65 BUG_ON(!list_empty(&transaction->list)); 66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root)); 67 if (transaction->delayed_refs.pending_csums) 68 btrfs_err(transaction->fs_info, 69 "pending csums is %llu", 70 transaction->delayed_refs.pending_csums); 71 while (!list_empty(&transaction->pending_chunks)) { 72 struct extent_map *em; 73 74 em = list_first_entry(&transaction->pending_chunks, 75 struct extent_map, list); 76 list_del_init(&em->list); 77 free_extent_map(em); 78 } 79 /* 80 * If any block groups are found in ->deleted_bgs then it's 81 * because the transaction was aborted and a commit did not 82 * happen (things failed before writing the new superblock 83 * and calling btrfs_finish_extent_commit()), so we can not 84 * discard the physical locations of the block groups. 85 */ 86 while (!list_empty(&transaction->deleted_bgs)) { 87 struct btrfs_block_group_cache *cache; 88 89 cache = list_first_entry(&transaction->deleted_bgs, 90 struct btrfs_block_group_cache, 91 bg_list); 92 list_del_init(&cache->bg_list); 93 btrfs_put_block_group_trimming(cache); 94 btrfs_put_block_group(cache); 95 } 96 kmem_cache_free(btrfs_transaction_cachep, transaction); 97 } 98 } 99 100 static void clear_btree_io_tree(struct extent_io_tree *tree) 101 { 102 spin_lock(&tree->lock); 103 /* 104 * Do a single barrier for the waitqueue_active check here, the state 105 * of the waitqueue should not change once clear_btree_io_tree is 106 * called. 107 */ 108 smp_mb(); 109 while (!RB_EMPTY_ROOT(&tree->state)) { 110 struct rb_node *node; 111 struct extent_state *state; 112 113 node = rb_first(&tree->state); 114 state = rb_entry(node, struct extent_state, rb_node); 115 rb_erase(&state->rb_node, &tree->state); 116 RB_CLEAR_NODE(&state->rb_node); 117 /* 118 * btree io trees aren't supposed to have tasks waiting for 119 * changes in the flags of extent states ever. 120 */ 121 ASSERT(!waitqueue_active(&state->wq)); 122 free_extent_state(state); 123 124 cond_resched_lock(&tree->lock); 125 } 126 spin_unlock(&tree->lock); 127 } 128 129 static noinline void switch_commit_roots(struct btrfs_transaction *trans, 130 struct btrfs_fs_info *fs_info) 131 { 132 struct btrfs_root *root, *tmp; 133 134 down_write(&fs_info->commit_root_sem); 135 list_for_each_entry_safe(root, tmp, &trans->switch_commits, 136 dirty_list) { 137 list_del_init(&root->dirty_list); 138 free_extent_buffer(root->commit_root); 139 root->commit_root = btrfs_root_node(root); 140 if (is_fstree(root->objectid)) 141 btrfs_unpin_free_ino(root); 142 clear_btree_io_tree(&root->dirty_log_pages); 143 } 144 145 /* We can free old roots now. */ 146 spin_lock(&trans->dropped_roots_lock); 147 while (!list_empty(&trans->dropped_roots)) { 148 root = list_first_entry(&trans->dropped_roots, 149 struct btrfs_root, root_list); 150 list_del_init(&root->root_list); 151 spin_unlock(&trans->dropped_roots_lock); 152 btrfs_drop_and_free_fs_root(fs_info, root); 153 spin_lock(&trans->dropped_roots_lock); 154 } 155 spin_unlock(&trans->dropped_roots_lock); 156 up_write(&fs_info->commit_root_sem); 157 } 158 159 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 160 unsigned int type) 161 { 162 if (type & TRANS_EXTWRITERS) 163 atomic_inc(&trans->num_extwriters); 164 } 165 166 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 167 unsigned int type) 168 { 169 if (type & TRANS_EXTWRITERS) 170 atomic_dec(&trans->num_extwriters); 171 } 172 173 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 174 unsigned int type) 175 { 176 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 177 } 178 179 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 180 { 181 return atomic_read(&trans->num_extwriters); 182 } 183 184 /* 185 * either allocate a new transaction or hop into the existing one 186 */ 187 static noinline int join_transaction(struct btrfs_root *root, unsigned int type) 188 { 189 struct btrfs_transaction *cur_trans; 190 struct btrfs_fs_info *fs_info = root->fs_info; 191 192 spin_lock(&fs_info->trans_lock); 193 loop: 194 /* The file system has been taken offline. No new transactions. */ 195 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 196 spin_unlock(&fs_info->trans_lock); 197 return -EROFS; 198 } 199 200 cur_trans = fs_info->running_transaction; 201 if (cur_trans) { 202 if (cur_trans->aborted) { 203 spin_unlock(&fs_info->trans_lock); 204 return cur_trans->aborted; 205 } 206 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 207 spin_unlock(&fs_info->trans_lock); 208 return -EBUSY; 209 } 210 atomic_inc(&cur_trans->use_count); 211 atomic_inc(&cur_trans->num_writers); 212 extwriter_counter_inc(cur_trans, type); 213 spin_unlock(&fs_info->trans_lock); 214 return 0; 215 } 216 spin_unlock(&fs_info->trans_lock); 217 218 /* 219 * If we are ATTACH, we just want to catch the current transaction, 220 * and commit it. If there is no transaction, just return ENOENT. 221 */ 222 if (type == TRANS_ATTACH) 223 return -ENOENT; 224 225 /* 226 * JOIN_NOLOCK only happens during the transaction commit, so 227 * it is impossible that ->running_transaction is NULL 228 */ 229 BUG_ON(type == TRANS_JOIN_NOLOCK); 230 231 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS); 232 if (!cur_trans) 233 return -ENOMEM; 234 235 spin_lock(&fs_info->trans_lock); 236 if (fs_info->running_transaction) { 237 /* 238 * someone started a transaction after we unlocked. Make sure 239 * to redo the checks above 240 */ 241 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 242 goto loop; 243 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 244 spin_unlock(&fs_info->trans_lock); 245 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 246 return -EROFS; 247 } 248 249 cur_trans->fs_info = fs_info; 250 atomic_set(&cur_trans->num_writers, 1); 251 extwriter_counter_init(cur_trans, type); 252 init_waitqueue_head(&cur_trans->writer_wait); 253 init_waitqueue_head(&cur_trans->commit_wait); 254 init_waitqueue_head(&cur_trans->pending_wait); 255 cur_trans->state = TRANS_STATE_RUNNING; 256 /* 257 * One for this trans handle, one so it will live on until we 258 * commit the transaction. 259 */ 260 atomic_set(&cur_trans->use_count, 2); 261 atomic_set(&cur_trans->pending_ordered, 0); 262 cur_trans->flags = 0; 263 cur_trans->start_time = get_seconds(); 264 265 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs)); 266 267 cur_trans->delayed_refs.href_root = RB_ROOT; 268 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT; 269 atomic_set(&cur_trans->delayed_refs.num_entries, 0); 270 271 /* 272 * although the tree mod log is per file system and not per transaction, 273 * the log must never go across transaction boundaries. 274 */ 275 smp_mb(); 276 if (!list_empty(&fs_info->tree_mod_seq_list)) 277 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n"); 278 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 279 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n"); 280 atomic64_set(&fs_info->tree_mod_seq, 0); 281 282 spin_lock_init(&cur_trans->delayed_refs.lock); 283 284 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 285 INIT_LIST_HEAD(&cur_trans->pending_chunks); 286 INIT_LIST_HEAD(&cur_trans->switch_commits); 287 INIT_LIST_HEAD(&cur_trans->dirty_bgs); 288 INIT_LIST_HEAD(&cur_trans->io_bgs); 289 INIT_LIST_HEAD(&cur_trans->dropped_roots); 290 mutex_init(&cur_trans->cache_write_mutex); 291 cur_trans->num_dirty_bgs = 0; 292 spin_lock_init(&cur_trans->dirty_bgs_lock); 293 INIT_LIST_HEAD(&cur_trans->deleted_bgs); 294 spin_lock_init(&cur_trans->dropped_roots_lock); 295 list_add_tail(&cur_trans->list, &fs_info->trans_list); 296 extent_io_tree_init(&cur_trans->dirty_pages, 297 fs_info->btree_inode->i_mapping); 298 fs_info->generation++; 299 cur_trans->transid = fs_info->generation; 300 fs_info->running_transaction = cur_trans; 301 cur_trans->aborted = 0; 302 spin_unlock(&fs_info->trans_lock); 303 304 return 0; 305 } 306 307 /* 308 * this does all the record keeping required to make sure that a reference 309 * counted root is properly recorded in a given transaction. This is required 310 * to make sure the old root from before we joined the transaction is deleted 311 * when the transaction commits 312 */ 313 static int record_root_in_trans(struct btrfs_trans_handle *trans, 314 struct btrfs_root *root, 315 int force) 316 { 317 if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 318 root->last_trans < trans->transid) || force) { 319 WARN_ON(root == root->fs_info->extent_root); 320 WARN_ON(root->commit_root != root->node); 321 322 /* 323 * see below for IN_TRANS_SETUP usage rules 324 * we have the reloc mutex held now, so there 325 * is only one writer in this function 326 */ 327 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 328 329 /* make sure readers find IN_TRANS_SETUP before 330 * they find our root->last_trans update 331 */ 332 smp_wmb(); 333 334 spin_lock(&root->fs_info->fs_roots_radix_lock); 335 if (root->last_trans == trans->transid && !force) { 336 spin_unlock(&root->fs_info->fs_roots_radix_lock); 337 return 0; 338 } 339 radix_tree_tag_set(&root->fs_info->fs_roots_radix, 340 (unsigned long)root->root_key.objectid, 341 BTRFS_ROOT_TRANS_TAG); 342 spin_unlock(&root->fs_info->fs_roots_radix_lock); 343 root->last_trans = trans->transid; 344 345 /* this is pretty tricky. We don't want to 346 * take the relocation lock in btrfs_record_root_in_trans 347 * unless we're really doing the first setup for this root in 348 * this transaction. 349 * 350 * Normally we'd use root->last_trans as a flag to decide 351 * if we want to take the expensive mutex. 352 * 353 * But, we have to set root->last_trans before we 354 * init the relocation root, otherwise, we trip over warnings 355 * in ctree.c. The solution used here is to flag ourselves 356 * with root IN_TRANS_SETUP. When this is 1, we're still 357 * fixing up the reloc trees and everyone must wait. 358 * 359 * When this is zero, they can trust root->last_trans and fly 360 * through btrfs_record_root_in_trans without having to take the 361 * lock. smp_wmb() makes sure that all the writes above are 362 * done before we pop in the zero below 363 */ 364 btrfs_init_reloc_root(trans, root); 365 smp_mb__before_atomic(); 366 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 367 } 368 return 0; 369 } 370 371 372 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans, 373 struct btrfs_root *root) 374 { 375 struct btrfs_transaction *cur_trans = trans->transaction; 376 377 /* Add ourselves to the transaction dropped list */ 378 spin_lock(&cur_trans->dropped_roots_lock); 379 list_add_tail(&root->root_list, &cur_trans->dropped_roots); 380 spin_unlock(&cur_trans->dropped_roots_lock); 381 382 /* Make sure we don't try to update the root at commit time */ 383 spin_lock(&root->fs_info->fs_roots_radix_lock); 384 radix_tree_tag_clear(&root->fs_info->fs_roots_radix, 385 (unsigned long)root->root_key.objectid, 386 BTRFS_ROOT_TRANS_TAG); 387 spin_unlock(&root->fs_info->fs_roots_radix_lock); 388 } 389 390 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 391 struct btrfs_root *root) 392 { 393 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 394 return 0; 395 396 /* 397 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 398 * and barriers 399 */ 400 smp_rmb(); 401 if (root->last_trans == trans->transid && 402 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 403 return 0; 404 405 mutex_lock(&root->fs_info->reloc_mutex); 406 record_root_in_trans(trans, root, 0); 407 mutex_unlock(&root->fs_info->reloc_mutex); 408 409 return 0; 410 } 411 412 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 413 { 414 return (trans->state >= TRANS_STATE_BLOCKED && 415 trans->state < TRANS_STATE_UNBLOCKED && 416 !trans->aborted); 417 } 418 419 /* wait for commit against the current transaction to become unblocked 420 * when this is done, it is safe to start a new transaction, but the current 421 * transaction might not be fully on disk. 422 */ 423 static void wait_current_trans(struct btrfs_root *root) 424 { 425 struct btrfs_transaction *cur_trans; 426 427 spin_lock(&root->fs_info->trans_lock); 428 cur_trans = root->fs_info->running_transaction; 429 if (cur_trans && is_transaction_blocked(cur_trans)) { 430 atomic_inc(&cur_trans->use_count); 431 spin_unlock(&root->fs_info->trans_lock); 432 433 wait_event(root->fs_info->transaction_wait, 434 cur_trans->state >= TRANS_STATE_UNBLOCKED || 435 cur_trans->aborted); 436 btrfs_put_transaction(cur_trans); 437 } else { 438 spin_unlock(&root->fs_info->trans_lock); 439 } 440 } 441 442 static int may_wait_transaction(struct btrfs_root *root, int type) 443 { 444 if (test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) 445 return 0; 446 447 if (type == TRANS_USERSPACE) 448 return 1; 449 450 if (type == TRANS_START && 451 !atomic_read(&root->fs_info->open_ioctl_trans)) 452 return 1; 453 454 return 0; 455 } 456 457 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 458 { 459 if (!root->fs_info->reloc_ctl || 460 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 461 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 462 root->reloc_root) 463 return false; 464 465 return true; 466 } 467 468 static struct btrfs_trans_handle * 469 start_transaction(struct btrfs_root *root, unsigned int num_items, 470 unsigned int type, enum btrfs_reserve_flush_enum flush) 471 { 472 struct btrfs_trans_handle *h; 473 struct btrfs_transaction *cur_trans; 474 u64 num_bytes = 0; 475 u64 qgroup_reserved = 0; 476 bool reloc_reserved = false; 477 int ret; 478 479 /* Send isn't supposed to start transactions. */ 480 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB); 481 482 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 483 return ERR_PTR(-EROFS); 484 485 if (current->journal_info) { 486 WARN_ON(type & TRANS_EXTWRITERS); 487 h = current->journal_info; 488 h->use_count++; 489 WARN_ON(h->use_count > 2); 490 h->orig_rsv = h->block_rsv; 491 h->block_rsv = NULL; 492 goto got_it; 493 } 494 495 /* 496 * Do the reservation before we join the transaction so we can do all 497 * the appropriate flushing if need be. 498 */ 499 if (num_items > 0 && root != root->fs_info->chunk_root) { 500 qgroup_reserved = num_items * root->nodesize; 501 ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved); 502 if (ret) 503 return ERR_PTR(ret); 504 505 num_bytes = btrfs_calc_trans_metadata_size(root, num_items); 506 /* 507 * Do the reservation for the relocation root creation 508 */ 509 if (need_reserve_reloc_root(root)) { 510 num_bytes += root->nodesize; 511 reloc_reserved = true; 512 } 513 514 ret = btrfs_block_rsv_add(root, 515 &root->fs_info->trans_block_rsv, 516 num_bytes, flush); 517 if (ret) 518 goto reserve_fail; 519 } 520 again: 521 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS); 522 if (!h) { 523 ret = -ENOMEM; 524 goto alloc_fail; 525 } 526 527 /* 528 * If we are JOIN_NOLOCK we're already committing a transaction and 529 * waiting on this guy, so we don't need to do the sb_start_intwrite 530 * because we're already holding a ref. We need this because we could 531 * have raced in and did an fsync() on a file which can kick a commit 532 * and then we deadlock with somebody doing a freeze. 533 * 534 * If we are ATTACH, it means we just want to catch the current 535 * transaction and commit it, so we needn't do sb_start_intwrite(). 536 */ 537 if (type & __TRANS_FREEZABLE) 538 sb_start_intwrite(root->fs_info->sb); 539 540 if (may_wait_transaction(root, type)) 541 wait_current_trans(root); 542 543 do { 544 ret = join_transaction(root, type); 545 if (ret == -EBUSY) { 546 wait_current_trans(root); 547 if (unlikely(type == TRANS_ATTACH)) 548 ret = -ENOENT; 549 } 550 } while (ret == -EBUSY); 551 552 if (ret < 0) 553 goto join_fail; 554 555 cur_trans = root->fs_info->running_transaction; 556 557 h->transid = cur_trans->transid; 558 h->transaction = cur_trans; 559 h->root = root; 560 h->use_count = 1; 561 h->fs_info = root->fs_info; 562 563 h->type = type; 564 h->can_flush_pending_bgs = true; 565 INIT_LIST_HEAD(&h->qgroup_ref_list); 566 INIT_LIST_HEAD(&h->new_bgs); 567 568 smp_mb(); 569 if (cur_trans->state >= TRANS_STATE_BLOCKED && 570 may_wait_transaction(root, type)) { 571 current->journal_info = h; 572 btrfs_commit_transaction(h, root); 573 goto again; 574 } 575 576 if (num_bytes) { 577 trace_btrfs_space_reservation(root->fs_info, "transaction", 578 h->transid, num_bytes, 1); 579 h->block_rsv = &root->fs_info->trans_block_rsv; 580 h->bytes_reserved = num_bytes; 581 h->reloc_reserved = reloc_reserved; 582 } 583 584 got_it: 585 btrfs_record_root_in_trans(h, root); 586 587 if (!current->journal_info && type != TRANS_USERSPACE) 588 current->journal_info = h; 589 return h; 590 591 join_fail: 592 if (type & __TRANS_FREEZABLE) 593 sb_end_intwrite(root->fs_info->sb); 594 kmem_cache_free(btrfs_trans_handle_cachep, h); 595 alloc_fail: 596 if (num_bytes) 597 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv, 598 num_bytes); 599 reserve_fail: 600 btrfs_qgroup_free_meta(root, qgroup_reserved); 601 return ERR_PTR(ret); 602 } 603 604 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 605 unsigned int num_items) 606 { 607 return start_transaction(root, num_items, TRANS_START, 608 BTRFS_RESERVE_FLUSH_ALL); 609 } 610 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv( 611 struct btrfs_root *root, 612 unsigned int num_items, 613 int min_factor) 614 { 615 struct btrfs_trans_handle *trans; 616 u64 num_bytes; 617 int ret; 618 619 trans = btrfs_start_transaction(root, num_items); 620 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 621 return trans; 622 623 trans = btrfs_start_transaction(root, 0); 624 if (IS_ERR(trans)) 625 return trans; 626 627 num_bytes = btrfs_calc_trans_metadata_size(root, num_items); 628 ret = btrfs_cond_migrate_bytes(root->fs_info, 629 &root->fs_info->trans_block_rsv, 630 num_bytes, 631 min_factor); 632 if (ret) { 633 btrfs_end_transaction(trans, root); 634 return ERR_PTR(ret); 635 } 636 637 trans->block_rsv = &root->fs_info->trans_block_rsv; 638 trans->bytes_reserved = num_bytes; 639 trace_btrfs_space_reservation(root->fs_info, "transaction", 640 trans->transid, num_bytes, 1); 641 642 return trans; 643 } 644 645 struct btrfs_trans_handle *btrfs_start_transaction_lflush( 646 struct btrfs_root *root, 647 unsigned int num_items) 648 { 649 return start_transaction(root, num_items, TRANS_START, 650 BTRFS_RESERVE_FLUSH_LIMIT); 651 } 652 653 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 654 { 655 return start_transaction(root, 0, TRANS_JOIN, 656 BTRFS_RESERVE_NO_FLUSH); 657 } 658 659 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root) 660 { 661 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 662 BTRFS_RESERVE_NO_FLUSH); 663 } 664 665 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root) 666 { 667 return start_transaction(root, 0, TRANS_USERSPACE, 668 BTRFS_RESERVE_NO_FLUSH); 669 } 670 671 /* 672 * btrfs_attach_transaction() - catch the running transaction 673 * 674 * It is used when we want to commit the current the transaction, but 675 * don't want to start a new one. 676 * 677 * Note: If this function return -ENOENT, it just means there is no 678 * running transaction. But it is possible that the inactive transaction 679 * is still in the memory, not fully on disk. If you hope there is no 680 * inactive transaction in the fs when -ENOENT is returned, you should 681 * invoke 682 * btrfs_attach_transaction_barrier() 683 */ 684 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 685 { 686 return start_transaction(root, 0, TRANS_ATTACH, 687 BTRFS_RESERVE_NO_FLUSH); 688 } 689 690 /* 691 * btrfs_attach_transaction_barrier() - catch the running transaction 692 * 693 * It is similar to the above function, the differentia is this one 694 * will wait for all the inactive transactions until they fully 695 * complete. 696 */ 697 struct btrfs_trans_handle * 698 btrfs_attach_transaction_barrier(struct btrfs_root *root) 699 { 700 struct btrfs_trans_handle *trans; 701 702 trans = start_transaction(root, 0, TRANS_ATTACH, 703 BTRFS_RESERVE_NO_FLUSH); 704 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT) 705 btrfs_wait_for_commit(root, 0); 706 707 return trans; 708 } 709 710 /* wait for a transaction commit to be fully complete */ 711 static noinline void wait_for_commit(struct btrfs_root *root, 712 struct btrfs_transaction *commit) 713 { 714 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED); 715 } 716 717 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid) 718 { 719 struct btrfs_transaction *cur_trans = NULL, *t; 720 int ret = 0; 721 722 if (transid) { 723 if (transid <= root->fs_info->last_trans_committed) 724 goto out; 725 726 /* find specified transaction */ 727 spin_lock(&root->fs_info->trans_lock); 728 list_for_each_entry(t, &root->fs_info->trans_list, list) { 729 if (t->transid == transid) { 730 cur_trans = t; 731 atomic_inc(&cur_trans->use_count); 732 ret = 0; 733 break; 734 } 735 if (t->transid > transid) { 736 ret = 0; 737 break; 738 } 739 } 740 spin_unlock(&root->fs_info->trans_lock); 741 742 /* 743 * The specified transaction doesn't exist, or we 744 * raced with btrfs_commit_transaction 745 */ 746 if (!cur_trans) { 747 if (transid > root->fs_info->last_trans_committed) 748 ret = -EINVAL; 749 goto out; 750 } 751 } else { 752 /* find newest transaction that is committing | committed */ 753 spin_lock(&root->fs_info->trans_lock); 754 list_for_each_entry_reverse(t, &root->fs_info->trans_list, 755 list) { 756 if (t->state >= TRANS_STATE_COMMIT_START) { 757 if (t->state == TRANS_STATE_COMPLETED) 758 break; 759 cur_trans = t; 760 atomic_inc(&cur_trans->use_count); 761 break; 762 } 763 } 764 spin_unlock(&root->fs_info->trans_lock); 765 if (!cur_trans) 766 goto out; /* nothing committing|committed */ 767 } 768 769 wait_for_commit(root, cur_trans); 770 btrfs_put_transaction(cur_trans); 771 out: 772 return ret; 773 } 774 775 void btrfs_throttle(struct btrfs_root *root) 776 { 777 if (!atomic_read(&root->fs_info->open_ioctl_trans)) 778 wait_current_trans(root); 779 } 780 781 static int should_end_transaction(struct btrfs_trans_handle *trans, 782 struct btrfs_root *root) 783 { 784 if (root->fs_info->global_block_rsv.space_info->full && 785 btrfs_check_space_for_delayed_refs(trans, root)) 786 return 1; 787 788 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5); 789 } 790 791 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans, 792 struct btrfs_root *root) 793 { 794 struct btrfs_transaction *cur_trans = trans->transaction; 795 int updates; 796 int err; 797 798 smp_mb(); 799 if (cur_trans->state >= TRANS_STATE_BLOCKED || 800 cur_trans->delayed_refs.flushing) 801 return 1; 802 803 updates = trans->delayed_ref_updates; 804 trans->delayed_ref_updates = 0; 805 if (updates) { 806 err = btrfs_run_delayed_refs(trans, root, updates * 2); 807 if (err) /* Error code will also eval true */ 808 return err; 809 } 810 811 return should_end_transaction(trans, root); 812 } 813 814 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 815 struct btrfs_root *root, int throttle) 816 { 817 struct btrfs_transaction *cur_trans = trans->transaction; 818 struct btrfs_fs_info *info = root->fs_info; 819 u64 transid = trans->transid; 820 unsigned long cur = trans->delayed_ref_updates; 821 int lock = (trans->type != TRANS_JOIN_NOLOCK); 822 int err = 0; 823 int must_run_delayed_refs = 0; 824 825 if (trans->use_count > 1) { 826 trans->use_count--; 827 trans->block_rsv = trans->orig_rsv; 828 return 0; 829 } 830 831 btrfs_trans_release_metadata(trans, root); 832 trans->block_rsv = NULL; 833 834 if (!list_empty(&trans->new_bgs)) 835 btrfs_create_pending_block_groups(trans, root); 836 837 trans->delayed_ref_updates = 0; 838 if (!trans->sync) { 839 must_run_delayed_refs = 840 btrfs_should_throttle_delayed_refs(trans, root); 841 cur = max_t(unsigned long, cur, 32); 842 843 /* 844 * don't make the caller wait if they are from a NOLOCK 845 * or ATTACH transaction, it will deadlock with commit 846 */ 847 if (must_run_delayed_refs == 1 && 848 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH))) 849 must_run_delayed_refs = 2; 850 } 851 852 btrfs_trans_release_metadata(trans, root); 853 trans->block_rsv = NULL; 854 855 if (!list_empty(&trans->new_bgs)) 856 btrfs_create_pending_block_groups(trans, root); 857 858 btrfs_trans_release_chunk_metadata(trans); 859 860 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) && 861 should_end_transaction(trans, root) && 862 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) { 863 spin_lock(&info->trans_lock); 864 if (cur_trans->state == TRANS_STATE_RUNNING) 865 cur_trans->state = TRANS_STATE_BLOCKED; 866 spin_unlock(&info->trans_lock); 867 } 868 869 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) { 870 if (throttle) 871 return btrfs_commit_transaction(trans, root); 872 else 873 wake_up_process(info->transaction_kthread); 874 } 875 876 if (trans->type & __TRANS_FREEZABLE) 877 sb_end_intwrite(root->fs_info->sb); 878 879 WARN_ON(cur_trans != info->running_transaction); 880 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 881 atomic_dec(&cur_trans->num_writers); 882 extwriter_counter_dec(cur_trans, trans->type); 883 884 /* 885 * Make sure counter is updated before we wake up waiters. 886 */ 887 smp_mb(); 888 if (waitqueue_active(&cur_trans->writer_wait)) 889 wake_up(&cur_trans->writer_wait); 890 btrfs_put_transaction(cur_trans); 891 892 if (current->journal_info == trans) 893 current->journal_info = NULL; 894 895 if (throttle) 896 btrfs_run_delayed_iputs(root); 897 898 if (trans->aborted || 899 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) { 900 wake_up_process(info->transaction_kthread); 901 err = -EIO; 902 } 903 assert_qgroups_uptodate(trans); 904 905 kmem_cache_free(btrfs_trans_handle_cachep, trans); 906 if (must_run_delayed_refs) { 907 btrfs_async_run_delayed_refs(root, cur, transid, 908 must_run_delayed_refs == 1); 909 } 910 return err; 911 } 912 913 int btrfs_end_transaction(struct btrfs_trans_handle *trans, 914 struct btrfs_root *root) 915 { 916 return __btrfs_end_transaction(trans, root, 0); 917 } 918 919 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans, 920 struct btrfs_root *root) 921 { 922 return __btrfs_end_transaction(trans, root, 1); 923 } 924 925 /* 926 * when btree blocks are allocated, they have some corresponding bits set for 927 * them in one of two extent_io trees. This is used to make sure all of 928 * those extents are sent to disk but does not wait on them 929 */ 930 int btrfs_write_marked_extents(struct btrfs_root *root, 931 struct extent_io_tree *dirty_pages, int mark) 932 { 933 int err = 0; 934 int werr = 0; 935 struct address_space *mapping = root->fs_info->btree_inode->i_mapping; 936 struct extent_state *cached_state = NULL; 937 u64 start = 0; 938 u64 end; 939 940 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 941 mark, &cached_state)) { 942 bool wait_writeback = false; 943 944 err = convert_extent_bit(dirty_pages, start, end, 945 EXTENT_NEED_WAIT, 946 mark, &cached_state); 947 /* 948 * convert_extent_bit can return -ENOMEM, which is most of the 949 * time a temporary error. So when it happens, ignore the error 950 * and wait for writeback of this range to finish - because we 951 * failed to set the bit EXTENT_NEED_WAIT for the range, a call 952 * to btrfs_wait_marked_extents() would not know that writeback 953 * for this range started and therefore wouldn't wait for it to 954 * finish - we don't want to commit a superblock that points to 955 * btree nodes/leafs for which writeback hasn't finished yet 956 * (and without errors). 957 * We cleanup any entries left in the io tree when committing 958 * the transaction (through clear_btree_io_tree()). 959 */ 960 if (err == -ENOMEM) { 961 err = 0; 962 wait_writeback = true; 963 } 964 if (!err) 965 err = filemap_fdatawrite_range(mapping, start, end); 966 if (err) 967 werr = err; 968 else if (wait_writeback) 969 werr = filemap_fdatawait_range(mapping, start, end); 970 free_extent_state(cached_state); 971 cached_state = NULL; 972 cond_resched(); 973 start = end + 1; 974 } 975 return werr; 976 } 977 978 /* 979 * when btree blocks are allocated, they have some corresponding bits set for 980 * them in one of two extent_io trees. This is used to make sure all of 981 * those extents are on disk for transaction or log commit. We wait 982 * on all the pages and clear them from the dirty pages state tree 983 */ 984 int btrfs_wait_marked_extents(struct btrfs_root *root, 985 struct extent_io_tree *dirty_pages, int mark) 986 { 987 int err = 0; 988 int werr = 0; 989 struct address_space *mapping = root->fs_info->btree_inode->i_mapping; 990 struct extent_state *cached_state = NULL; 991 u64 start = 0; 992 u64 end; 993 bool errors = false; 994 995 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 996 EXTENT_NEED_WAIT, &cached_state)) { 997 /* 998 * Ignore -ENOMEM errors returned by clear_extent_bit(). 999 * When committing the transaction, we'll remove any entries 1000 * left in the io tree. For a log commit, we don't remove them 1001 * after committing the log because the tree can be accessed 1002 * concurrently - we do it only at transaction commit time when 1003 * it's safe to do it (through clear_btree_io_tree()). 1004 */ 1005 err = clear_extent_bit(dirty_pages, start, end, 1006 EXTENT_NEED_WAIT, 1007 0, 0, &cached_state, GFP_NOFS); 1008 if (err == -ENOMEM) 1009 err = 0; 1010 if (!err) 1011 err = filemap_fdatawait_range(mapping, start, end); 1012 if (err) 1013 werr = err; 1014 free_extent_state(cached_state); 1015 cached_state = NULL; 1016 cond_resched(); 1017 start = end + 1; 1018 } 1019 if (err) 1020 werr = err; 1021 1022 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 1023 if ((mark & EXTENT_DIRTY) && 1024 test_and_clear_bit(BTRFS_FS_LOG1_ERR, 1025 &root->fs_info->flags)) 1026 errors = true; 1027 1028 if ((mark & EXTENT_NEW) && 1029 test_and_clear_bit(BTRFS_FS_LOG2_ERR, 1030 &root->fs_info->flags)) 1031 errors = true; 1032 } else { 1033 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, 1034 &root->fs_info->flags)) 1035 errors = true; 1036 } 1037 1038 if (errors && !werr) 1039 werr = -EIO; 1040 1041 return werr; 1042 } 1043 1044 /* 1045 * when btree blocks are allocated, they have some corresponding bits set for 1046 * them in one of two extent_io trees. This is used to make sure all of 1047 * those extents are on disk for transaction or log commit 1048 */ 1049 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root, 1050 struct extent_io_tree *dirty_pages, int mark) 1051 { 1052 int ret; 1053 int ret2; 1054 struct blk_plug plug; 1055 1056 blk_start_plug(&plug); 1057 ret = btrfs_write_marked_extents(root, dirty_pages, mark); 1058 blk_finish_plug(&plug); 1059 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark); 1060 1061 if (ret) 1062 return ret; 1063 if (ret2) 1064 return ret2; 1065 return 0; 1066 } 1067 1068 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans, 1069 struct btrfs_root *root) 1070 { 1071 int ret; 1072 1073 ret = btrfs_write_and_wait_marked_extents(root, 1074 &trans->transaction->dirty_pages, 1075 EXTENT_DIRTY); 1076 clear_btree_io_tree(&trans->transaction->dirty_pages); 1077 1078 return ret; 1079 } 1080 1081 /* 1082 * this is used to update the root pointer in the tree of tree roots. 1083 * 1084 * But, in the case of the extent allocation tree, updating the root 1085 * pointer may allocate blocks which may change the root of the extent 1086 * allocation tree. 1087 * 1088 * So, this loops and repeats and makes sure the cowonly root didn't 1089 * change while the root pointer was being updated in the metadata. 1090 */ 1091 static int update_cowonly_root(struct btrfs_trans_handle *trans, 1092 struct btrfs_root *root) 1093 { 1094 int ret; 1095 u64 old_root_bytenr; 1096 u64 old_root_used; 1097 struct btrfs_root *tree_root = root->fs_info->tree_root; 1098 1099 old_root_used = btrfs_root_used(&root->root_item); 1100 1101 while (1) { 1102 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 1103 if (old_root_bytenr == root->node->start && 1104 old_root_used == btrfs_root_used(&root->root_item)) 1105 break; 1106 1107 btrfs_set_root_node(&root->root_item, root->node); 1108 ret = btrfs_update_root(trans, tree_root, 1109 &root->root_key, 1110 &root->root_item); 1111 if (ret) 1112 return ret; 1113 1114 old_root_used = btrfs_root_used(&root->root_item); 1115 } 1116 1117 return 0; 1118 } 1119 1120 /* 1121 * update all the cowonly tree roots on disk 1122 * 1123 * The error handling in this function may not be obvious. Any of the 1124 * failures will cause the file system to go offline. We still need 1125 * to clean up the delayed refs. 1126 */ 1127 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans, 1128 struct btrfs_root *root) 1129 { 1130 struct btrfs_fs_info *fs_info = root->fs_info; 1131 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; 1132 struct list_head *io_bgs = &trans->transaction->io_bgs; 1133 struct list_head *next; 1134 struct extent_buffer *eb; 1135 int ret; 1136 1137 eb = btrfs_lock_root_node(fs_info->tree_root); 1138 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 1139 0, &eb); 1140 btrfs_tree_unlock(eb); 1141 free_extent_buffer(eb); 1142 1143 if (ret) 1144 return ret; 1145 1146 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1147 if (ret) 1148 return ret; 1149 1150 ret = btrfs_run_dev_stats(trans, root->fs_info); 1151 if (ret) 1152 return ret; 1153 ret = btrfs_run_dev_replace(trans, root->fs_info); 1154 if (ret) 1155 return ret; 1156 ret = btrfs_run_qgroups(trans, root->fs_info); 1157 if (ret) 1158 return ret; 1159 1160 ret = btrfs_setup_space_cache(trans, root); 1161 if (ret) 1162 return ret; 1163 1164 /* run_qgroups might have added some more refs */ 1165 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1166 if (ret) 1167 return ret; 1168 again: 1169 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1170 next = fs_info->dirty_cowonly_roots.next; 1171 list_del_init(next); 1172 root = list_entry(next, struct btrfs_root, dirty_list); 1173 clear_bit(BTRFS_ROOT_DIRTY, &root->state); 1174 1175 if (root != fs_info->extent_root) 1176 list_add_tail(&root->dirty_list, 1177 &trans->transaction->switch_commits); 1178 ret = update_cowonly_root(trans, root); 1179 if (ret) 1180 return ret; 1181 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1182 if (ret) 1183 return ret; 1184 } 1185 1186 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { 1187 ret = btrfs_write_dirty_block_groups(trans, root); 1188 if (ret) 1189 return ret; 1190 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1191 if (ret) 1192 return ret; 1193 } 1194 1195 if (!list_empty(&fs_info->dirty_cowonly_roots)) 1196 goto again; 1197 1198 list_add_tail(&fs_info->extent_root->dirty_list, 1199 &trans->transaction->switch_commits); 1200 btrfs_after_dev_replace_commit(fs_info); 1201 1202 return 0; 1203 } 1204 1205 /* 1206 * dead roots are old snapshots that need to be deleted. This allocates 1207 * a dirty root struct and adds it into the list of dead roots that need to 1208 * be deleted 1209 */ 1210 void btrfs_add_dead_root(struct btrfs_root *root) 1211 { 1212 spin_lock(&root->fs_info->trans_lock); 1213 if (list_empty(&root->root_list)) 1214 list_add_tail(&root->root_list, &root->fs_info->dead_roots); 1215 spin_unlock(&root->fs_info->trans_lock); 1216 } 1217 1218 /* 1219 * update all the cowonly tree roots on disk 1220 */ 1221 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans, 1222 struct btrfs_root *root) 1223 { 1224 struct btrfs_root *gang[8]; 1225 struct btrfs_fs_info *fs_info = root->fs_info; 1226 int i; 1227 int ret; 1228 int err = 0; 1229 1230 spin_lock(&fs_info->fs_roots_radix_lock); 1231 while (1) { 1232 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1233 (void **)gang, 0, 1234 ARRAY_SIZE(gang), 1235 BTRFS_ROOT_TRANS_TAG); 1236 if (ret == 0) 1237 break; 1238 for (i = 0; i < ret; i++) { 1239 root = gang[i]; 1240 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1241 (unsigned long)root->root_key.objectid, 1242 BTRFS_ROOT_TRANS_TAG); 1243 spin_unlock(&fs_info->fs_roots_radix_lock); 1244 1245 btrfs_free_log(trans, root); 1246 btrfs_update_reloc_root(trans, root); 1247 btrfs_orphan_commit_root(trans, root); 1248 1249 btrfs_save_ino_cache(root, trans); 1250 1251 /* see comments in should_cow_block() */ 1252 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1253 smp_mb__after_atomic(); 1254 1255 if (root->commit_root != root->node) { 1256 list_add_tail(&root->dirty_list, 1257 &trans->transaction->switch_commits); 1258 btrfs_set_root_node(&root->root_item, 1259 root->node); 1260 } 1261 1262 err = btrfs_update_root(trans, fs_info->tree_root, 1263 &root->root_key, 1264 &root->root_item); 1265 spin_lock(&fs_info->fs_roots_radix_lock); 1266 if (err) 1267 break; 1268 btrfs_qgroup_free_meta_all(root); 1269 } 1270 } 1271 spin_unlock(&fs_info->fs_roots_radix_lock); 1272 return err; 1273 } 1274 1275 /* 1276 * defrag a given btree. 1277 * Every leaf in the btree is read and defragged. 1278 */ 1279 int btrfs_defrag_root(struct btrfs_root *root) 1280 { 1281 struct btrfs_fs_info *info = root->fs_info; 1282 struct btrfs_trans_handle *trans; 1283 int ret; 1284 1285 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) 1286 return 0; 1287 1288 while (1) { 1289 trans = btrfs_start_transaction(root, 0); 1290 if (IS_ERR(trans)) 1291 return PTR_ERR(trans); 1292 1293 ret = btrfs_defrag_leaves(trans, root); 1294 1295 btrfs_end_transaction(trans, root); 1296 btrfs_btree_balance_dirty(info->tree_root); 1297 cond_resched(); 1298 1299 if (btrfs_fs_closing(info) || ret != -EAGAIN) 1300 break; 1301 1302 if (btrfs_defrag_cancelled(info)) { 1303 btrfs_debug(info, "defrag_root cancelled"); 1304 ret = -EAGAIN; 1305 break; 1306 } 1307 } 1308 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); 1309 return ret; 1310 } 1311 1312 /* 1313 * Do all special snapshot related qgroup dirty hack. 1314 * 1315 * Will do all needed qgroup inherit and dirty hack like switch commit 1316 * roots inside one transaction and write all btree into disk, to make 1317 * qgroup works. 1318 */ 1319 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans, 1320 struct btrfs_root *src, 1321 struct btrfs_root *parent, 1322 struct btrfs_qgroup_inherit *inherit, 1323 u64 dst_objectid) 1324 { 1325 struct btrfs_fs_info *fs_info = src->fs_info; 1326 int ret; 1327 1328 /* 1329 * Save some performance in the case that qgroups are not 1330 * enabled. If this check races with the ioctl, rescan will 1331 * kick in anyway. 1332 */ 1333 mutex_lock(&fs_info->qgroup_ioctl_lock); 1334 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) { 1335 mutex_unlock(&fs_info->qgroup_ioctl_lock); 1336 return 0; 1337 } 1338 mutex_unlock(&fs_info->qgroup_ioctl_lock); 1339 1340 /* 1341 * We are going to commit transaction, see btrfs_commit_transaction() 1342 * comment for reason locking tree_log_mutex 1343 */ 1344 mutex_lock(&fs_info->tree_log_mutex); 1345 1346 ret = commit_fs_roots(trans, src); 1347 if (ret) 1348 goto out; 1349 ret = btrfs_qgroup_prepare_account_extents(trans, fs_info); 1350 if (ret < 0) 1351 goto out; 1352 ret = btrfs_qgroup_account_extents(trans, fs_info); 1353 if (ret < 0) 1354 goto out; 1355 1356 /* Now qgroup are all updated, we can inherit it to new qgroups */ 1357 ret = btrfs_qgroup_inherit(trans, fs_info, 1358 src->root_key.objectid, dst_objectid, 1359 inherit); 1360 if (ret < 0) 1361 goto out; 1362 1363 /* 1364 * Now we do a simplified commit transaction, which will: 1365 * 1) commit all subvolume and extent tree 1366 * To ensure all subvolume and extent tree have a valid 1367 * commit_root to accounting later insert_dir_item() 1368 * 2) write all btree blocks onto disk 1369 * This is to make sure later btree modification will be cowed 1370 * Or commit_root can be populated and cause wrong qgroup numbers 1371 * In this simplified commit, we don't really care about other trees 1372 * like chunk and root tree, as they won't affect qgroup. 1373 * And we don't write super to avoid half committed status. 1374 */ 1375 ret = commit_cowonly_roots(trans, src); 1376 if (ret) 1377 goto out; 1378 switch_commit_roots(trans->transaction, fs_info); 1379 ret = btrfs_write_and_wait_transaction(trans, src); 1380 if (ret) 1381 btrfs_handle_fs_error(fs_info, ret, 1382 "Error while writing out transaction for qgroup"); 1383 1384 out: 1385 mutex_unlock(&fs_info->tree_log_mutex); 1386 1387 /* 1388 * Force parent root to be updated, as we recorded it before so its 1389 * last_trans == cur_transid. 1390 * Or it won't be committed again onto disk after later 1391 * insert_dir_item() 1392 */ 1393 if (!ret) 1394 record_root_in_trans(trans, parent, 1); 1395 return ret; 1396 } 1397 1398 /* 1399 * new snapshots need to be created at a very specific time in the 1400 * transaction commit. This does the actual creation. 1401 * 1402 * Note: 1403 * If the error which may affect the commitment of the current transaction 1404 * happens, we should return the error number. If the error which just affect 1405 * the creation of the pending snapshots, just return 0. 1406 */ 1407 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1408 struct btrfs_fs_info *fs_info, 1409 struct btrfs_pending_snapshot *pending) 1410 { 1411 struct btrfs_key key; 1412 struct btrfs_root_item *new_root_item; 1413 struct btrfs_root *tree_root = fs_info->tree_root; 1414 struct btrfs_root *root = pending->root; 1415 struct btrfs_root *parent_root; 1416 struct btrfs_block_rsv *rsv; 1417 struct inode *parent_inode; 1418 struct btrfs_path *path; 1419 struct btrfs_dir_item *dir_item; 1420 struct dentry *dentry; 1421 struct extent_buffer *tmp; 1422 struct extent_buffer *old; 1423 struct timespec cur_time; 1424 int ret = 0; 1425 u64 to_reserve = 0; 1426 u64 index = 0; 1427 u64 objectid; 1428 u64 root_flags; 1429 uuid_le new_uuid; 1430 1431 ASSERT(pending->path); 1432 path = pending->path; 1433 1434 ASSERT(pending->root_item); 1435 new_root_item = pending->root_item; 1436 1437 pending->error = btrfs_find_free_objectid(tree_root, &objectid); 1438 if (pending->error) 1439 goto no_free_objectid; 1440 1441 /* 1442 * Make qgroup to skip current new snapshot's qgroupid, as it is 1443 * accounted by later btrfs_qgroup_inherit(). 1444 */ 1445 btrfs_set_skip_qgroup(trans, objectid); 1446 1447 btrfs_reloc_pre_snapshot(pending, &to_reserve); 1448 1449 if (to_reserve > 0) { 1450 pending->error = btrfs_block_rsv_add(root, 1451 &pending->block_rsv, 1452 to_reserve, 1453 BTRFS_RESERVE_NO_FLUSH); 1454 if (pending->error) 1455 goto clear_skip_qgroup; 1456 } 1457 1458 key.objectid = objectid; 1459 key.offset = (u64)-1; 1460 key.type = BTRFS_ROOT_ITEM_KEY; 1461 1462 rsv = trans->block_rsv; 1463 trans->block_rsv = &pending->block_rsv; 1464 trans->bytes_reserved = trans->block_rsv->reserved; 1465 trace_btrfs_space_reservation(root->fs_info, "transaction", 1466 trans->transid, 1467 trans->bytes_reserved, 1); 1468 dentry = pending->dentry; 1469 parent_inode = pending->dir; 1470 parent_root = BTRFS_I(parent_inode)->root; 1471 record_root_in_trans(trans, parent_root, 0); 1472 1473 cur_time = current_time(parent_inode); 1474 1475 /* 1476 * insert the directory item 1477 */ 1478 ret = btrfs_set_inode_index(parent_inode, &index); 1479 BUG_ON(ret); /* -ENOMEM */ 1480 1481 /* check if there is a file/dir which has the same name. */ 1482 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1483 btrfs_ino(parent_inode), 1484 dentry->d_name.name, 1485 dentry->d_name.len, 0); 1486 if (dir_item != NULL && !IS_ERR(dir_item)) { 1487 pending->error = -EEXIST; 1488 goto dir_item_existed; 1489 } else if (IS_ERR(dir_item)) { 1490 ret = PTR_ERR(dir_item); 1491 btrfs_abort_transaction(trans, ret); 1492 goto fail; 1493 } 1494 btrfs_release_path(path); 1495 1496 /* 1497 * pull in the delayed directory update 1498 * and the delayed inode item 1499 * otherwise we corrupt the FS during 1500 * snapshot 1501 */ 1502 ret = btrfs_run_delayed_items(trans, root); 1503 if (ret) { /* Transaction aborted */ 1504 btrfs_abort_transaction(trans, ret); 1505 goto fail; 1506 } 1507 1508 record_root_in_trans(trans, root, 0); 1509 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1510 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1511 btrfs_check_and_init_root_item(new_root_item); 1512 1513 root_flags = btrfs_root_flags(new_root_item); 1514 if (pending->readonly) 1515 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1516 else 1517 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1518 btrfs_set_root_flags(new_root_item, root_flags); 1519 1520 btrfs_set_root_generation_v2(new_root_item, 1521 trans->transid); 1522 uuid_le_gen(&new_uuid); 1523 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 1524 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1525 BTRFS_UUID_SIZE); 1526 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1527 memset(new_root_item->received_uuid, 0, 1528 sizeof(new_root_item->received_uuid)); 1529 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1530 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1531 btrfs_set_root_stransid(new_root_item, 0); 1532 btrfs_set_root_rtransid(new_root_item, 0); 1533 } 1534 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1535 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1536 btrfs_set_root_otransid(new_root_item, trans->transid); 1537 1538 old = btrfs_lock_root_node(root); 1539 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old); 1540 if (ret) { 1541 btrfs_tree_unlock(old); 1542 free_extent_buffer(old); 1543 btrfs_abort_transaction(trans, ret); 1544 goto fail; 1545 } 1546 1547 btrfs_set_lock_blocking(old); 1548 1549 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1550 /* clean up in any case */ 1551 btrfs_tree_unlock(old); 1552 free_extent_buffer(old); 1553 if (ret) { 1554 btrfs_abort_transaction(trans, ret); 1555 goto fail; 1556 } 1557 /* see comments in should_cow_block() */ 1558 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1559 smp_wmb(); 1560 1561 btrfs_set_root_node(new_root_item, tmp); 1562 /* record when the snapshot was created in key.offset */ 1563 key.offset = trans->transid; 1564 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1565 btrfs_tree_unlock(tmp); 1566 free_extent_buffer(tmp); 1567 if (ret) { 1568 btrfs_abort_transaction(trans, ret); 1569 goto fail; 1570 } 1571 1572 /* 1573 * insert root back/forward references 1574 */ 1575 ret = btrfs_add_root_ref(trans, tree_root, objectid, 1576 parent_root->root_key.objectid, 1577 btrfs_ino(parent_inode), index, 1578 dentry->d_name.name, dentry->d_name.len); 1579 if (ret) { 1580 btrfs_abort_transaction(trans, ret); 1581 goto fail; 1582 } 1583 1584 key.offset = (u64)-1; 1585 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key); 1586 if (IS_ERR(pending->snap)) { 1587 ret = PTR_ERR(pending->snap); 1588 btrfs_abort_transaction(trans, ret); 1589 goto fail; 1590 } 1591 1592 ret = btrfs_reloc_post_snapshot(trans, pending); 1593 if (ret) { 1594 btrfs_abort_transaction(trans, ret); 1595 goto fail; 1596 } 1597 1598 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1599 if (ret) { 1600 btrfs_abort_transaction(trans, ret); 1601 goto fail; 1602 } 1603 1604 /* 1605 * Do special qgroup accounting for snapshot, as we do some qgroup 1606 * snapshot hack to do fast snapshot. 1607 * To co-operate with that hack, we do hack again. 1608 * Or snapshot will be greatly slowed down by a subtree qgroup rescan 1609 */ 1610 ret = qgroup_account_snapshot(trans, root, parent_root, 1611 pending->inherit, objectid); 1612 if (ret < 0) 1613 goto fail; 1614 1615 ret = btrfs_insert_dir_item(trans, parent_root, 1616 dentry->d_name.name, dentry->d_name.len, 1617 parent_inode, &key, 1618 BTRFS_FT_DIR, index); 1619 /* We have check then name at the beginning, so it is impossible. */ 1620 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1621 if (ret) { 1622 btrfs_abort_transaction(trans, ret); 1623 goto fail; 1624 } 1625 1626 btrfs_i_size_write(parent_inode, parent_inode->i_size + 1627 dentry->d_name.len * 2); 1628 parent_inode->i_mtime = parent_inode->i_ctime = 1629 current_time(parent_inode); 1630 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode); 1631 if (ret) { 1632 btrfs_abort_transaction(trans, ret); 1633 goto fail; 1634 } 1635 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b, 1636 BTRFS_UUID_KEY_SUBVOL, objectid); 1637 if (ret) { 1638 btrfs_abort_transaction(trans, ret); 1639 goto fail; 1640 } 1641 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1642 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, 1643 new_root_item->received_uuid, 1644 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1645 objectid); 1646 if (ret && ret != -EEXIST) { 1647 btrfs_abort_transaction(trans, ret); 1648 goto fail; 1649 } 1650 } 1651 1652 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1653 if (ret) { 1654 btrfs_abort_transaction(trans, ret); 1655 goto fail; 1656 } 1657 1658 fail: 1659 pending->error = ret; 1660 dir_item_existed: 1661 trans->block_rsv = rsv; 1662 trans->bytes_reserved = 0; 1663 clear_skip_qgroup: 1664 btrfs_clear_skip_qgroup(trans); 1665 no_free_objectid: 1666 kfree(new_root_item); 1667 pending->root_item = NULL; 1668 btrfs_free_path(path); 1669 pending->path = NULL; 1670 1671 return ret; 1672 } 1673 1674 /* 1675 * create all the snapshots we've scheduled for creation 1676 */ 1677 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans, 1678 struct btrfs_fs_info *fs_info) 1679 { 1680 struct btrfs_pending_snapshot *pending, *next; 1681 struct list_head *head = &trans->transaction->pending_snapshots; 1682 int ret = 0; 1683 1684 list_for_each_entry_safe(pending, next, head, list) { 1685 list_del(&pending->list); 1686 ret = create_pending_snapshot(trans, fs_info, pending); 1687 if (ret) 1688 break; 1689 } 1690 return ret; 1691 } 1692 1693 static void update_super_roots(struct btrfs_root *root) 1694 { 1695 struct btrfs_root_item *root_item; 1696 struct btrfs_super_block *super; 1697 1698 super = root->fs_info->super_copy; 1699 1700 root_item = &root->fs_info->chunk_root->root_item; 1701 super->chunk_root = root_item->bytenr; 1702 super->chunk_root_generation = root_item->generation; 1703 super->chunk_root_level = root_item->level; 1704 1705 root_item = &root->fs_info->tree_root->root_item; 1706 super->root = root_item->bytenr; 1707 super->generation = root_item->generation; 1708 super->root_level = root_item->level; 1709 if (btrfs_test_opt(root->fs_info, SPACE_CACHE)) 1710 super->cache_generation = root_item->generation; 1711 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &root->fs_info->flags)) 1712 super->uuid_tree_generation = root_item->generation; 1713 } 1714 1715 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1716 { 1717 struct btrfs_transaction *trans; 1718 int ret = 0; 1719 1720 spin_lock(&info->trans_lock); 1721 trans = info->running_transaction; 1722 if (trans) 1723 ret = (trans->state >= TRANS_STATE_COMMIT_START); 1724 spin_unlock(&info->trans_lock); 1725 return ret; 1726 } 1727 1728 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1729 { 1730 struct btrfs_transaction *trans; 1731 int ret = 0; 1732 1733 spin_lock(&info->trans_lock); 1734 trans = info->running_transaction; 1735 if (trans) 1736 ret = is_transaction_blocked(trans); 1737 spin_unlock(&info->trans_lock); 1738 return ret; 1739 } 1740 1741 /* 1742 * wait for the current transaction commit to start and block subsequent 1743 * transaction joins 1744 */ 1745 static void wait_current_trans_commit_start(struct btrfs_root *root, 1746 struct btrfs_transaction *trans) 1747 { 1748 wait_event(root->fs_info->transaction_blocked_wait, 1749 trans->state >= TRANS_STATE_COMMIT_START || 1750 trans->aborted); 1751 } 1752 1753 /* 1754 * wait for the current transaction to start and then become unblocked. 1755 * caller holds ref. 1756 */ 1757 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root, 1758 struct btrfs_transaction *trans) 1759 { 1760 wait_event(root->fs_info->transaction_wait, 1761 trans->state >= TRANS_STATE_UNBLOCKED || 1762 trans->aborted); 1763 } 1764 1765 /* 1766 * commit transactions asynchronously. once btrfs_commit_transaction_async 1767 * returns, any subsequent transaction will not be allowed to join. 1768 */ 1769 struct btrfs_async_commit { 1770 struct btrfs_trans_handle *newtrans; 1771 struct btrfs_root *root; 1772 struct work_struct work; 1773 }; 1774 1775 static void do_async_commit(struct work_struct *work) 1776 { 1777 struct btrfs_async_commit *ac = 1778 container_of(work, struct btrfs_async_commit, work); 1779 1780 /* 1781 * We've got freeze protection passed with the transaction. 1782 * Tell lockdep about it. 1783 */ 1784 if (ac->newtrans->type & __TRANS_FREEZABLE) 1785 __sb_writers_acquired(ac->root->fs_info->sb, SB_FREEZE_FS); 1786 1787 current->journal_info = ac->newtrans; 1788 1789 btrfs_commit_transaction(ac->newtrans, ac->root); 1790 kfree(ac); 1791 } 1792 1793 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, 1794 struct btrfs_root *root, 1795 int wait_for_unblock) 1796 { 1797 struct btrfs_async_commit *ac; 1798 struct btrfs_transaction *cur_trans; 1799 1800 ac = kmalloc(sizeof(*ac), GFP_NOFS); 1801 if (!ac) 1802 return -ENOMEM; 1803 1804 INIT_WORK(&ac->work, do_async_commit); 1805 ac->root = root; 1806 ac->newtrans = btrfs_join_transaction(root); 1807 if (IS_ERR(ac->newtrans)) { 1808 int err = PTR_ERR(ac->newtrans); 1809 kfree(ac); 1810 return err; 1811 } 1812 1813 /* take transaction reference */ 1814 cur_trans = trans->transaction; 1815 atomic_inc(&cur_trans->use_count); 1816 1817 btrfs_end_transaction(trans, root); 1818 1819 /* 1820 * Tell lockdep we've released the freeze rwsem, since the 1821 * async commit thread will be the one to unlock it. 1822 */ 1823 if (ac->newtrans->type & __TRANS_FREEZABLE) 1824 __sb_writers_release(root->fs_info->sb, SB_FREEZE_FS); 1825 1826 schedule_work(&ac->work); 1827 1828 /* wait for transaction to start and unblock */ 1829 if (wait_for_unblock) 1830 wait_current_trans_commit_start_and_unblock(root, cur_trans); 1831 else 1832 wait_current_trans_commit_start(root, cur_trans); 1833 1834 if (current->journal_info == trans) 1835 current->journal_info = NULL; 1836 1837 btrfs_put_transaction(cur_trans); 1838 return 0; 1839 } 1840 1841 1842 static void cleanup_transaction(struct btrfs_trans_handle *trans, 1843 struct btrfs_root *root, int err) 1844 { 1845 struct btrfs_transaction *cur_trans = trans->transaction; 1846 DEFINE_WAIT(wait); 1847 1848 WARN_ON(trans->use_count > 1); 1849 1850 btrfs_abort_transaction(trans, err); 1851 1852 spin_lock(&root->fs_info->trans_lock); 1853 1854 /* 1855 * If the transaction is removed from the list, it means this 1856 * transaction has been committed successfully, so it is impossible 1857 * to call the cleanup function. 1858 */ 1859 BUG_ON(list_empty(&cur_trans->list)); 1860 1861 list_del_init(&cur_trans->list); 1862 if (cur_trans == root->fs_info->running_transaction) { 1863 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1864 spin_unlock(&root->fs_info->trans_lock); 1865 wait_event(cur_trans->writer_wait, 1866 atomic_read(&cur_trans->num_writers) == 1); 1867 1868 spin_lock(&root->fs_info->trans_lock); 1869 } 1870 spin_unlock(&root->fs_info->trans_lock); 1871 1872 btrfs_cleanup_one_transaction(trans->transaction, root); 1873 1874 spin_lock(&root->fs_info->trans_lock); 1875 if (cur_trans == root->fs_info->running_transaction) 1876 root->fs_info->running_transaction = NULL; 1877 spin_unlock(&root->fs_info->trans_lock); 1878 1879 if (trans->type & __TRANS_FREEZABLE) 1880 sb_end_intwrite(root->fs_info->sb); 1881 btrfs_put_transaction(cur_trans); 1882 btrfs_put_transaction(cur_trans); 1883 1884 trace_btrfs_transaction_commit(root); 1885 1886 if (current->journal_info == trans) 1887 current->journal_info = NULL; 1888 btrfs_scrub_cancel(root->fs_info); 1889 1890 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1891 } 1892 1893 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info) 1894 { 1895 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 1896 return btrfs_start_delalloc_roots(fs_info, 1, -1); 1897 return 0; 1898 } 1899 1900 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info) 1901 { 1902 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 1903 btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1); 1904 } 1905 1906 static inline void 1907 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans) 1908 { 1909 wait_event(cur_trans->pending_wait, 1910 atomic_read(&cur_trans->pending_ordered) == 0); 1911 } 1912 1913 int btrfs_commit_transaction(struct btrfs_trans_handle *trans, 1914 struct btrfs_root *root) 1915 { 1916 struct btrfs_transaction *cur_trans = trans->transaction; 1917 struct btrfs_transaction *prev_trans = NULL; 1918 int ret; 1919 1920 /* Stop the commit early if ->aborted is set */ 1921 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 1922 ret = cur_trans->aborted; 1923 btrfs_end_transaction(trans, root); 1924 return ret; 1925 } 1926 1927 /* make a pass through all the delayed refs we have so far 1928 * any runnings procs may add more while we are here 1929 */ 1930 ret = btrfs_run_delayed_refs(trans, root, 0); 1931 if (ret) { 1932 btrfs_end_transaction(trans, root); 1933 return ret; 1934 } 1935 1936 btrfs_trans_release_metadata(trans, root); 1937 trans->block_rsv = NULL; 1938 1939 cur_trans = trans->transaction; 1940 1941 /* 1942 * set the flushing flag so procs in this transaction have to 1943 * start sending their work down. 1944 */ 1945 cur_trans->delayed_refs.flushing = 1; 1946 smp_wmb(); 1947 1948 if (!list_empty(&trans->new_bgs)) 1949 btrfs_create_pending_block_groups(trans, root); 1950 1951 ret = btrfs_run_delayed_refs(trans, root, 0); 1952 if (ret) { 1953 btrfs_end_transaction(trans, root); 1954 return ret; 1955 } 1956 1957 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) { 1958 int run_it = 0; 1959 1960 /* this mutex is also taken before trying to set 1961 * block groups readonly. We need to make sure 1962 * that nobody has set a block group readonly 1963 * after a extents from that block group have been 1964 * allocated for cache files. btrfs_set_block_group_ro 1965 * will wait for the transaction to commit if it 1966 * finds BTRFS_TRANS_DIRTY_BG_RUN set. 1967 * 1968 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure 1969 * only one process starts all the block group IO. It wouldn't 1970 * hurt to have more than one go through, but there's no 1971 * real advantage to it either. 1972 */ 1973 mutex_lock(&root->fs_info->ro_block_group_mutex); 1974 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN, 1975 &cur_trans->flags)) 1976 run_it = 1; 1977 mutex_unlock(&root->fs_info->ro_block_group_mutex); 1978 1979 if (run_it) 1980 ret = btrfs_start_dirty_block_groups(trans, root); 1981 } 1982 if (ret) { 1983 btrfs_end_transaction(trans, root); 1984 return ret; 1985 } 1986 1987 spin_lock(&root->fs_info->trans_lock); 1988 if (cur_trans->state >= TRANS_STATE_COMMIT_START) { 1989 spin_unlock(&root->fs_info->trans_lock); 1990 atomic_inc(&cur_trans->use_count); 1991 ret = btrfs_end_transaction(trans, root); 1992 1993 wait_for_commit(root, cur_trans); 1994 1995 if (unlikely(cur_trans->aborted)) 1996 ret = cur_trans->aborted; 1997 1998 btrfs_put_transaction(cur_trans); 1999 2000 return ret; 2001 } 2002 2003 cur_trans->state = TRANS_STATE_COMMIT_START; 2004 wake_up(&root->fs_info->transaction_blocked_wait); 2005 2006 if (cur_trans->list.prev != &root->fs_info->trans_list) { 2007 prev_trans = list_entry(cur_trans->list.prev, 2008 struct btrfs_transaction, list); 2009 if (prev_trans->state != TRANS_STATE_COMPLETED) { 2010 atomic_inc(&prev_trans->use_count); 2011 spin_unlock(&root->fs_info->trans_lock); 2012 2013 wait_for_commit(root, prev_trans); 2014 ret = prev_trans->aborted; 2015 2016 btrfs_put_transaction(prev_trans); 2017 if (ret) 2018 goto cleanup_transaction; 2019 } else { 2020 spin_unlock(&root->fs_info->trans_lock); 2021 } 2022 } else { 2023 spin_unlock(&root->fs_info->trans_lock); 2024 } 2025 2026 extwriter_counter_dec(cur_trans, trans->type); 2027 2028 ret = btrfs_start_delalloc_flush(root->fs_info); 2029 if (ret) 2030 goto cleanup_transaction; 2031 2032 ret = btrfs_run_delayed_items(trans, root); 2033 if (ret) 2034 goto cleanup_transaction; 2035 2036 wait_event(cur_trans->writer_wait, 2037 extwriter_counter_read(cur_trans) == 0); 2038 2039 /* some pending stuffs might be added after the previous flush. */ 2040 ret = btrfs_run_delayed_items(trans, root); 2041 if (ret) 2042 goto cleanup_transaction; 2043 2044 btrfs_wait_delalloc_flush(root->fs_info); 2045 2046 btrfs_wait_pending_ordered(cur_trans); 2047 2048 btrfs_scrub_pause(root); 2049 /* 2050 * Ok now we need to make sure to block out any other joins while we 2051 * commit the transaction. We could have started a join before setting 2052 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 2053 */ 2054 spin_lock(&root->fs_info->trans_lock); 2055 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2056 spin_unlock(&root->fs_info->trans_lock); 2057 wait_event(cur_trans->writer_wait, 2058 atomic_read(&cur_trans->num_writers) == 1); 2059 2060 /* ->aborted might be set after the previous check, so check it */ 2061 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 2062 ret = cur_trans->aborted; 2063 goto scrub_continue; 2064 } 2065 /* 2066 * the reloc mutex makes sure that we stop 2067 * the balancing code from coming in and moving 2068 * extents around in the middle of the commit 2069 */ 2070 mutex_lock(&root->fs_info->reloc_mutex); 2071 2072 /* 2073 * We needn't worry about the delayed items because we will 2074 * deal with them in create_pending_snapshot(), which is the 2075 * core function of the snapshot creation. 2076 */ 2077 ret = create_pending_snapshots(trans, root->fs_info); 2078 if (ret) { 2079 mutex_unlock(&root->fs_info->reloc_mutex); 2080 goto scrub_continue; 2081 } 2082 2083 /* 2084 * We insert the dir indexes of the snapshots and update the inode 2085 * of the snapshots' parents after the snapshot creation, so there 2086 * are some delayed items which are not dealt with. Now deal with 2087 * them. 2088 * 2089 * We needn't worry that this operation will corrupt the snapshots, 2090 * because all the tree which are snapshoted will be forced to COW 2091 * the nodes and leaves. 2092 */ 2093 ret = btrfs_run_delayed_items(trans, root); 2094 if (ret) { 2095 mutex_unlock(&root->fs_info->reloc_mutex); 2096 goto scrub_continue; 2097 } 2098 2099 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 2100 if (ret) { 2101 mutex_unlock(&root->fs_info->reloc_mutex); 2102 goto scrub_continue; 2103 } 2104 2105 /* Reocrd old roots for later qgroup accounting */ 2106 ret = btrfs_qgroup_prepare_account_extents(trans, root->fs_info); 2107 if (ret) { 2108 mutex_unlock(&root->fs_info->reloc_mutex); 2109 goto scrub_continue; 2110 } 2111 2112 /* 2113 * make sure none of the code above managed to slip in a 2114 * delayed item 2115 */ 2116 btrfs_assert_delayed_root_empty(root); 2117 2118 WARN_ON(cur_trans != trans->transaction); 2119 2120 /* btrfs_commit_tree_roots is responsible for getting the 2121 * various roots consistent with each other. Every pointer 2122 * in the tree of tree roots has to point to the most up to date 2123 * root for every subvolume and other tree. So, we have to keep 2124 * the tree logging code from jumping in and changing any 2125 * of the trees. 2126 * 2127 * At this point in the commit, there can't be any tree-log 2128 * writers, but a little lower down we drop the trans mutex 2129 * and let new people in. By holding the tree_log_mutex 2130 * from now until after the super is written, we avoid races 2131 * with the tree-log code. 2132 */ 2133 mutex_lock(&root->fs_info->tree_log_mutex); 2134 2135 ret = commit_fs_roots(trans, root); 2136 if (ret) { 2137 mutex_unlock(&root->fs_info->tree_log_mutex); 2138 mutex_unlock(&root->fs_info->reloc_mutex); 2139 goto scrub_continue; 2140 } 2141 2142 /* 2143 * Since the transaction is done, we can apply the pending changes 2144 * before the next transaction. 2145 */ 2146 btrfs_apply_pending_changes(root->fs_info); 2147 2148 /* commit_fs_roots gets rid of all the tree log roots, it is now 2149 * safe to free the root of tree log roots 2150 */ 2151 btrfs_free_log_root_tree(trans, root->fs_info); 2152 2153 /* 2154 * Since fs roots are all committed, we can get a quite accurate 2155 * new_roots. So let's do quota accounting. 2156 */ 2157 ret = btrfs_qgroup_account_extents(trans, root->fs_info); 2158 if (ret < 0) { 2159 mutex_unlock(&root->fs_info->tree_log_mutex); 2160 mutex_unlock(&root->fs_info->reloc_mutex); 2161 goto scrub_continue; 2162 } 2163 2164 ret = commit_cowonly_roots(trans, root); 2165 if (ret) { 2166 mutex_unlock(&root->fs_info->tree_log_mutex); 2167 mutex_unlock(&root->fs_info->reloc_mutex); 2168 goto scrub_continue; 2169 } 2170 2171 /* 2172 * The tasks which save the space cache and inode cache may also 2173 * update ->aborted, check it. 2174 */ 2175 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 2176 ret = cur_trans->aborted; 2177 mutex_unlock(&root->fs_info->tree_log_mutex); 2178 mutex_unlock(&root->fs_info->reloc_mutex); 2179 goto scrub_continue; 2180 } 2181 2182 btrfs_prepare_extent_commit(trans, root); 2183 2184 cur_trans = root->fs_info->running_transaction; 2185 2186 btrfs_set_root_node(&root->fs_info->tree_root->root_item, 2187 root->fs_info->tree_root->node); 2188 list_add_tail(&root->fs_info->tree_root->dirty_list, 2189 &cur_trans->switch_commits); 2190 2191 btrfs_set_root_node(&root->fs_info->chunk_root->root_item, 2192 root->fs_info->chunk_root->node); 2193 list_add_tail(&root->fs_info->chunk_root->dirty_list, 2194 &cur_trans->switch_commits); 2195 2196 switch_commit_roots(cur_trans, root->fs_info); 2197 2198 assert_qgroups_uptodate(trans); 2199 ASSERT(list_empty(&cur_trans->dirty_bgs)); 2200 ASSERT(list_empty(&cur_trans->io_bgs)); 2201 update_super_roots(root); 2202 2203 btrfs_set_super_log_root(root->fs_info->super_copy, 0); 2204 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0); 2205 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy, 2206 sizeof(*root->fs_info->super_copy)); 2207 2208 btrfs_update_commit_device_size(root->fs_info); 2209 btrfs_update_commit_device_bytes_used(root, cur_trans); 2210 2211 clear_bit(BTRFS_FS_LOG1_ERR, &root->fs_info->flags); 2212 clear_bit(BTRFS_FS_LOG2_ERR, &root->fs_info->flags); 2213 2214 btrfs_trans_release_chunk_metadata(trans); 2215 2216 spin_lock(&root->fs_info->trans_lock); 2217 cur_trans->state = TRANS_STATE_UNBLOCKED; 2218 root->fs_info->running_transaction = NULL; 2219 spin_unlock(&root->fs_info->trans_lock); 2220 mutex_unlock(&root->fs_info->reloc_mutex); 2221 2222 wake_up(&root->fs_info->transaction_wait); 2223 2224 ret = btrfs_write_and_wait_transaction(trans, root); 2225 if (ret) { 2226 btrfs_handle_fs_error(root->fs_info, ret, 2227 "Error while writing out transaction"); 2228 mutex_unlock(&root->fs_info->tree_log_mutex); 2229 goto scrub_continue; 2230 } 2231 2232 ret = write_ctree_super(trans, root, 0); 2233 if (ret) { 2234 mutex_unlock(&root->fs_info->tree_log_mutex); 2235 goto scrub_continue; 2236 } 2237 2238 /* 2239 * the super is written, we can safely allow the tree-loggers 2240 * to go about their business 2241 */ 2242 mutex_unlock(&root->fs_info->tree_log_mutex); 2243 2244 btrfs_finish_extent_commit(trans, root); 2245 2246 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags)) 2247 btrfs_clear_space_info_full(root->fs_info); 2248 2249 root->fs_info->last_trans_committed = cur_trans->transid; 2250 /* 2251 * We needn't acquire the lock here because there is no other task 2252 * which can change it. 2253 */ 2254 cur_trans->state = TRANS_STATE_COMPLETED; 2255 wake_up(&cur_trans->commit_wait); 2256 2257 spin_lock(&root->fs_info->trans_lock); 2258 list_del_init(&cur_trans->list); 2259 spin_unlock(&root->fs_info->trans_lock); 2260 2261 btrfs_put_transaction(cur_trans); 2262 btrfs_put_transaction(cur_trans); 2263 2264 if (trans->type & __TRANS_FREEZABLE) 2265 sb_end_intwrite(root->fs_info->sb); 2266 2267 trace_btrfs_transaction_commit(root); 2268 2269 btrfs_scrub_continue(root); 2270 2271 if (current->journal_info == trans) 2272 current->journal_info = NULL; 2273 2274 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2275 2276 /* 2277 * If fs has been frozen, we can not handle delayed iputs, otherwise 2278 * it'll result in deadlock about SB_FREEZE_FS. 2279 */ 2280 if (current != root->fs_info->transaction_kthread && 2281 current != root->fs_info->cleaner_kthread && 2282 !root->fs_info->fs_frozen) 2283 btrfs_run_delayed_iputs(root); 2284 2285 return ret; 2286 2287 scrub_continue: 2288 btrfs_scrub_continue(root); 2289 cleanup_transaction: 2290 btrfs_trans_release_metadata(trans, root); 2291 btrfs_trans_release_chunk_metadata(trans); 2292 trans->block_rsv = NULL; 2293 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction."); 2294 if (current->journal_info == trans) 2295 current->journal_info = NULL; 2296 cleanup_transaction(trans, root, ret); 2297 2298 return ret; 2299 } 2300 2301 /* 2302 * return < 0 if error 2303 * 0 if there are no more dead_roots at the time of call 2304 * 1 there are more to be processed, call me again 2305 * 2306 * The return value indicates there are certainly more snapshots to delete, but 2307 * if there comes a new one during processing, it may return 0. We don't mind, 2308 * because btrfs_commit_super will poke cleaner thread and it will process it a 2309 * few seconds later. 2310 */ 2311 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root) 2312 { 2313 int ret; 2314 struct btrfs_fs_info *fs_info = root->fs_info; 2315 2316 spin_lock(&fs_info->trans_lock); 2317 if (list_empty(&fs_info->dead_roots)) { 2318 spin_unlock(&fs_info->trans_lock); 2319 return 0; 2320 } 2321 root = list_first_entry(&fs_info->dead_roots, 2322 struct btrfs_root, root_list); 2323 list_del_init(&root->root_list); 2324 spin_unlock(&fs_info->trans_lock); 2325 2326 btrfs_debug(fs_info, "cleaner removing %llu", root->objectid); 2327 2328 btrfs_kill_all_delayed_nodes(root); 2329 2330 if (btrfs_header_backref_rev(root->node) < 2331 BTRFS_MIXED_BACKREF_REV) 2332 ret = btrfs_drop_snapshot(root, NULL, 0, 0); 2333 else 2334 ret = btrfs_drop_snapshot(root, NULL, 1, 0); 2335 2336 return (ret < 0) ? 0 : 1; 2337 } 2338 2339 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info) 2340 { 2341 unsigned long prev; 2342 unsigned long bit; 2343 2344 prev = xchg(&fs_info->pending_changes, 0); 2345 if (!prev) 2346 return; 2347 2348 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE; 2349 if (prev & bit) 2350 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2351 prev &= ~bit; 2352 2353 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE; 2354 if (prev & bit) 2355 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2356 prev &= ~bit; 2357 2358 bit = 1 << BTRFS_PENDING_COMMIT; 2359 if (prev & bit) 2360 btrfs_debug(fs_info, "pending commit done"); 2361 prev &= ~bit; 2362 2363 if (prev) 2364 btrfs_warn(fs_info, 2365 "unknown pending changes left 0x%lx, ignoring", prev); 2366 } 2367