xref: /linux/fs/btrfs/transaction.c (revision f3a8b6645dc2e60d11f20c1c23afd964ff4e55ae)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35 
36 #define BTRFS_ROOT_TRANS_TAG 0
37 
38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 	[TRANS_STATE_RUNNING]		= 0U,
40 	[TRANS_STATE_BLOCKED]		= (__TRANS_USERSPACE |
41 					   __TRANS_START),
42 	[TRANS_STATE_COMMIT_START]	= (__TRANS_USERSPACE |
43 					   __TRANS_START |
44 					   __TRANS_ATTACH),
45 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_USERSPACE |
46 					   __TRANS_START |
47 					   __TRANS_ATTACH |
48 					   __TRANS_JOIN),
49 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_USERSPACE |
50 					   __TRANS_START |
51 					   __TRANS_ATTACH |
52 					   __TRANS_JOIN |
53 					   __TRANS_JOIN_NOLOCK),
54 	[TRANS_STATE_COMPLETED]		= (__TRANS_USERSPACE |
55 					   __TRANS_START |
56 					   __TRANS_ATTACH |
57 					   __TRANS_JOIN |
58 					   __TRANS_JOIN_NOLOCK),
59 };
60 
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63 	WARN_ON(atomic_read(&transaction->use_count) == 0);
64 	if (atomic_dec_and_test(&transaction->use_count)) {
65 		BUG_ON(!list_empty(&transaction->list));
66 		WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 		if (transaction->delayed_refs.pending_csums)
68 			btrfs_err(transaction->fs_info,
69 				  "pending csums is %llu",
70 				  transaction->delayed_refs.pending_csums);
71 		while (!list_empty(&transaction->pending_chunks)) {
72 			struct extent_map *em;
73 
74 			em = list_first_entry(&transaction->pending_chunks,
75 					      struct extent_map, list);
76 			list_del_init(&em->list);
77 			free_extent_map(em);
78 		}
79 		/*
80 		 * If any block groups are found in ->deleted_bgs then it's
81 		 * because the transaction was aborted and a commit did not
82 		 * happen (things failed before writing the new superblock
83 		 * and calling btrfs_finish_extent_commit()), so we can not
84 		 * discard the physical locations of the block groups.
85 		 */
86 		while (!list_empty(&transaction->deleted_bgs)) {
87 			struct btrfs_block_group_cache *cache;
88 
89 			cache = list_first_entry(&transaction->deleted_bgs,
90 						 struct btrfs_block_group_cache,
91 						 bg_list);
92 			list_del_init(&cache->bg_list);
93 			btrfs_put_block_group_trimming(cache);
94 			btrfs_put_block_group(cache);
95 		}
96 		kmem_cache_free(btrfs_transaction_cachep, transaction);
97 	}
98 }
99 
100 static void clear_btree_io_tree(struct extent_io_tree *tree)
101 {
102 	spin_lock(&tree->lock);
103 	/*
104 	 * Do a single barrier for the waitqueue_active check here, the state
105 	 * of the waitqueue should not change once clear_btree_io_tree is
106 	 * called.
107 	 */
108 	smp_mb();
109 	while (!RB_EMPTY_ROOT(&tree->state)) {
110 		struct rb_node *node;
111 		struct extent_state *state;
112 
113 		node = rb_first(&tree->state);
114 		state = rb_entry(node, struct extent_state, rb_node);
115 		rb_erase(&state->rb_node, &tree->state);
116 		RB_CLEAR_NODE(&state->rb_node);
117 		/*
118 		 * btree io trees aren't supposed to have tasks waiting for
119 		 * changes in the flags of extent states ever.
120 		 */
121 		ASSERT(!waitqueue_active(&state->wq));
122 		free_extent_state(state);
123 
124 		cond_resched_lock(&tree->lock);
125 	}
126 	spin_unlock(&tree->lock);
127 }
128 
129 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
130 					 struct btrfs_fs_info *fs_info)
131 {
132 	struct btrfs_root *root, *tmp;
133 
134 	down_write(&fs_info->commit_root_sem);
135 	list_for_each_entry_safe(root, tmp, &trans->switch_commits,
136 				 dirty_list) {
137 		list_del_init(&root->dirty_list);
138 		free_extent_buffer(root->commit_root);
139 		root->commit_root = btrfs_root_node(root);
140 		if (is_fstree(root->objectid))
141 			btrfs_unpin_free_ino(root);
142 		clear_btree_io_tree(&root->dirty_log_pages);
143 	}
144 
145 	/* We can free old roots now. */
146 	spin_lock(&trans->dropped_roots_lock);
147 	while (!list_empty(&trans->dropped_roots)) {
148 		root = list_first_entry(&trans->dropped_roots,
149 					struct btrfs_root, root_list);
150 		list_del_init(&root->root_list);
151 		spin_unlock(&trans->dropped_roots_lock);
152 		btrfs_drop_and_free_fs_root(fs_info, root);
153 		spin_lock(&trans->dropped_roots_lock);
154 	}
155 	spin_unlock(&trans->dropped_roots_lock);
156 	up_write(&fs_info->commit_root_sem);
157 }
158 
159 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
160 					 unsigned int type)
161 {
162 	if (type & TRANS_EXTWRITERS)
163 		atomic_inc(&trans->num_extwriters);
164 }
165 
166 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
167 					 unsigned int type)
168 {
169 	if (type & TRANS_EXTWRITERS)
170 		atomic_dec(&trans->num_extwriters);
171 }
172 
173 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
174 					  unsigned int type)
175 {
176 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
177 }
178 
179 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
180 {
181 	return atomic_read(&trans->num_extwriters);
182 }
183 
184 /*
185  * either allocate a new transaction or hop into the existing one
186  */
187 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
188 {
189 	struct btrfs_transaction *cur_trans;
190 	struct btrfs_fs_info *fs_info = root->fs_info;
191 
192 	spin_lock(&fs_info->trans_lock);
193 loop:
194 	/* The file system has been taken offline. No new transactions. */
195 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
196 		spin_unlock(&fs_info->trans_lock);
197 		return -EROFS;
198 	}
199 
200 	cur_trans = fs_info->running_transaction;
201 	if (cur_trans) {
202 		if (cur_trans->aborted) {
203 			spin_unlock(&fs_info->trans_lock);
204 			return cur_trans->aborted;
205 		}
206 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
207 			spin_unlock(&fs_info->trans_lock);
208 			return -EBUSY;
209 		}
210 		atomic_inc(&cur_trans->use_count);
211 		atomic_inc(&cur_trans->num_writers);
212 		extwriter_counter_inc(cur_trans, type);
213 		spin_unlock(&fs_info->trans_lock);
214 		return 0;
215 	}
216 	spin_unlock(&fs_info->trans_lock);
217 
218 	/*
219 	 * If we are ATTACH, we just want to catch the current transaction,
220 	 * and commit it. If there is no transaction, just return ENOENT.
221 	 */
222 	if (type == TRANS_ATTACH)
223 		return -ENOENT;
224 
225 	/*
226 	 * JOIN_NOLOCK only happens during the transaction commit, so
227 	 * it is impossible that ->running_transaction is NULL
228 	 */
229 	BUG_ON(type == TRANS_JOIN_NOLOCK);
230 
231 	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
232 	if (!cur_trans)
233 		return -ENOMEM;
234 
235 	spin_lock(&fs_info->trans_lock);
236 	if (fs_info->running_transaction) {
237 		/*
238 		 * someone started a transaction after we unlocked.  Make sure
239 		 * to redo the checks above
240 		 */
241 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
242 		goto loop;
243 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
244 		spin_unlock(&fs_info->trans_lock);
245 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
246 		return -EROFS;
247 	}
248 
249 	cur_trans->fs_info = fs_info;
250 	atomic_set(&cur_trans->num_writers, 1);
251 	extwriter_counter_init(cur_trans, type);
252 	init_waitqueue_head(&cur_trans->writer_wait);
253 	init_waitqueue_head(&cur_trans->commit_wait);
254 	init_waitqueue_head(&cur_trans->pending_wait);
255 	cur_trans->state = TRANS_STATE_RUNNING;
256 	/*
257 	 * One for this trans handle, one so it will live on until we
258 	 * commit the transaction.
259 	 */
260 	atomic_set(&cur_trans->use_count, 2);
261 	atomic_set(&cur_trans->pending_ordered, 0);
262 	cur_trans->flags = 0;
263 	cur_trans->start_time = get_seconds();
264 
265 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
266 
267 	cur_trans->delayed_refs.href_root = RB_ROOT;
268 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
269 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
270 
271 	/*
272 	 * although the tree mod log is per file system and not per transaction,
273 	 * the log must never go across transaction boundaries.
274 	 */
275 	smp_mb();
276 	if (!list_empty(&fs_info->tree_mod_seq_list))
277 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
278 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
279 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
280 	atomic64_set(&fs_info->tree_mod_seq, 0);
281 
282 	spin_lock_init(&cur_trans->delayed_refs.lock);
283 
284 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
285 	INIT_LIST_HEAD(&cur_trans->pending_chunks);
286 	INIT_LIST_HEAD(&cur_trans->switch_commits);
287 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
288 	INIT_LIST_HEAD(&cur_trans->io_bgs);
289 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
290 	mutex_init(&cur_trans->cache_write_mutex);
291 	cur_trans->num_dirty_bgs = 0;
292 	spin_lock_init(&cur_trans->dirty_bgs_lock);
293 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
294 	spin_lock_init(&cur_trans->dropped_roots_lock);
295 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
296 	extent_io_tree_init(&cur_trans->dirty_pages,
297 			     fs_info->btree_inode->i_mapping);
298 	fs_info->generation++;
299 	cur_trans->transid = fs_info->generation;
300 	fs_info->running_transaction = cur_trans;
301 	cur_trans->aborted = 0;
302 	spin_unlock(&fs_info->trans_lock);
303 
304 	return 0;
305 }
306 
307 /*
308  * this does all the record keeping required to make sure that a reference
309  * counted root is properly recorded in a given transaction.  This is required
310  * to make sure the old root from before we joined the transaction is deleted
311  * when the transaction commits
312  */
313 static int record_root_in_trans(struct btrfs_trans_handle *trans,
314 			       struct btrfs_root *root,
315 			       int force)
316 {
317 	if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
318 	    root->last_trans < trans->transid) || force) {
319 		WARN_ON(root == root->fs_info->extent_root);
320 		WARN_ON(root->commit_root != root->node);
321 
322 		/*
323 		 * see below for IN_TRANS_SETUP usage rules
324 		 * we have the reloc mutex held now, so there
325 		 * is only one writer in this function
326 		 */
327 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
328 
329 		/* make sure readers find IN_TRANS_SETUP before
330 		 * they find our root->last_trans update
331 		 */
332 		smp_wmb();
333 
334 		spin_lock(&root->fs_info->fs_roots_radix_lock);
335 		if (root->last_trans == trans->transid && !force) {
336 			spin_unlock(&root->fs_info->fs_roots_radix_lock);
337 			return 0;
338 		}
339 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
340 			   (unsigned long)root->root_key.objectid,
341 			   BTRFS_ROOT_TRANS_TAG);
342 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
343 		root->last_trans = trans->transid;
344 
345 		/* this is pretty tricky.  We don't want to
346 		 * take the relocation lock in btrfs_record_root_in_trans
347 		 * unless we're really doing the first setup for this root in
348 		 * this transaction.
349 		 *
350 		 * Normally we'd use root->last_trans as a flag to decide
351 		 * if we want to take the expensive mutex.
352 		 *
353 		 * But, we have to set root->last_trans before we
354 		 * init the relocation root, otherwise, we trip over warnings
355 		 * in ctree.c.  The solution used here is to flag ourselves
356 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
357 		 * fixing up the reloc trees and everyone must wait.
358 		 *
359 		 * When this is zero, they can trust root->last_trans and fly
360 		 * through btrfs_record_root_in_trans without having to take the
361 		 * lock.  smp_wmb() makes sure that all the writes above are
362 		 * done before we pop in the zero below
363 		 */
364 		btrfs_init_reloc_root(trans, root);
365 		smp_mb__before_atomic();
366 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
367 	}
368 	return 0;
369 }
370 
371 
372 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
373 			    struct btrfs_root *root)
374 {
375 	struct btrfs_transaction *cur_trans = trans->transaction;
376 
377 	/* Add ourselves to the transaction dropped list */
378 	spin_lock(&cur_trans->dropped_roots_lock);
379 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
380 	spin_unlock(&cur_trans->dropped_roots_lock);
381 
382 	/* Make sure we don't try to update the root at commit time */
383 	spin_lock(&root->fs_info->fs_roots_radix_lock);
384 	radix_tree_tag_clear(&root->fs_info->fs_roots_radix,
385 			     (unsigned long)root->root_key.objectid,
386 			     BTRFS_ROOT_TRANS_TAG);
387 	spin_unlock(&root->fs_info->fs_roots_radix_lock);
388 }
389 
390 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
391 			       struct btrfs_root *root)
392 {
393 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
394 		return 0;
395 
396 	/*
397 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
398 	 * and barriers
399 	 */
400 	smp_rmb();
401 	if (root->last_trans == trans->transid &&
402 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
403 		return 0;
404 
405 	mutex_lock(&root->fs_info->reloc_mutex);
406 	record_root_in_trans(trans, root, 0);
407 	mutex_unlock(&root->fs_info->reloc_mutex);
408 
409 	return 0;
410 }
411 
412 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
413 {
414 	return (trans->state >= TRANS_STATE_BLOCKED &&
415 		trans->state < TRANS_STATE_UNBLOCKED &&
416 		!trans->aborted);
417 }
418 
419 /* wait for commit against the current transaction to become unblocked
420  * when this is done, it is safe to start a new transaction, but the current
421  * transaction might not be fully on disk.
422  */
423 static void wait_current_trans(struct btrfs_root *root)
424 {
425 	struct btrfs_transaction *cur_trans;
426 
427 	spin_lock(&root->fs_info->trans_lock);
428 	cur_trans = root->fs_info->running_transaction;
429 	if (cur_trans && is_transaction_blocked(cur_trans)) {
430 		atomic_inc(&cur_trans->use_count);
431 		spin_unlock(&root->fs_info->trans_lock);
432 
433 		wait_event(root->fs_info->transaction_wait,
434 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
435 			   cur_trans->aborted);
436 		btrfs_put_transaction(cur_trans);
437 	} else {
438 		spin_unlock(&root->fs_info->trans_lock);
439 	}
440 }
441 
442 static int may_wait_transaction(struct btrfs_root *root, int type)
443 {
444 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags))
445 		return 0;
446 
447 	if (type == TRANS_USERSPACE)
448 		return 1;
449 
450 	if (type == TRANS_START &&
451 	    !atomic_read(&root->fs_info->open_ioctl_trans))
452 		return 1;
453 
454 	return 0;
455 }
456 
457 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
458 {
459 	if (!root->fs_info->reloc_ctl ||
460 	    !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
461 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
462 	    root->reloc_root)
463 		return false;
464 
465 	return true;
466 }
467 
468 static struct btrfs_trans_handle *
469 start_transaction(struct btrfs_root *root, unsigned int num_items,
470 		  unsigned int type, enum btrfs_reserve_flush_enum flush)
471 {
472 	struct btrfs_trans_handle *h;
473 	struct btrfs_transaction *cur_trans;
474 	u64 num_bytes = 0;
475 	u64 qgroup_reserved = 0;
476 	bool reloc_reserved = false;
477 	int ret;
478 
479 	/* Send isn't supposed to start transactions. */
480 	ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
481 
482 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
483 		return ERR_PTR(-EROFS);
484 
485 	if (current->journal_info) {
486 		WARN_ON(type & TRANS_EXTWRITERS);
487 		h = current->journal_info;
488 		h->use_count++;
489 		WARN_ON(h->use_count > 2);
490 		h->orig_rsv = h->block_rsv;
491 		h->block_rsv = NULL;
492 		goto got_it;
493 	}
494 
495 	/*
496 	 * Do the reservation before we join the transaction so we can do all
497 	 * the appropriate flushing if need be.
498 	 */
499 	if (num_items > 0 && root != root->fs_info->chunk_root) {
500 		qgroup_reserved = num_items * root->nodesize;
501 		ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved);
502 		if (ret)
503 			return ERR_PTR(ret);
504 
505 		num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
506 		/*
507 		 * Do the reservation for the relocation root creation
508 		 */
509 		if (need_reserve_reloc_root(root)) {
510 			num_bytes += root->nodesize;
511 			reloc_reserved = true;
512 		}
513 
514 		ret = btrfs_block_rsv_add(root,
515 					  &root->fs_info->trans_block_rsv,
516 					  num_bytes, flush);
517 		if (ret)
518 			goto reserve_fail;
519 	}
520 again:
521 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
522 	if (!h) {
523 		ret = -ENOMEM;
524 		goto alloc_fail;
525 	}
526 
527 	/*
528 	 * If we are JOIN_NOLOCK we're already committing a transaction and
529 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
530 	 * because we're already holding a ref.  We need this because we could
531 	 * have raced in and did an fsync() on a file which can kick a commit
532 	 * and then we deadlock with somebody doing a freeze.
533 	 *
534 	 * If we are ATTACH, it means we just want to catch the current
535 	 * transaction and commit it, so we needn't do sb_start_intwrite().
536 	 */
537 	if (type & __TRANS_FREEZABLE)
538 		sb_start_intwrite(root->fs_info->sb);
539 
540 	if (may_wait_transaction(root, type))
541 		wait_current_trans(root);
542 
543 	do {
544 		ret = join_transaction(root, type);
545 		if (ret == -EBUSY) {
546 			wait_current_trans(root);
547 			if (unlikely(type == TRANS_ATTACH))
548 				ret = -ENOENT;
549 		}
550 	} while (ret == -EBUSY);
551 
552 	if (ret < 0)
553 		goto join_fail;
554 
555 	cur_trans = root->fs_info->running_transaction;
556 
557 	h->transid = cur_trans->transid;
558 	h->transaction = cur_trans;
559 	h->root = root;
560 	h->use_count = 1;
561 	h->fs_info = root->fs_info;
562 
563 	h->type = type;
564 	h->can_flush_pending_bgs = true;
565 	INIT_LIST_HEAD(&h->qgroup_ref_list);
566 	INIT_LIST_HEAD(&h->new_bgs);
567 
568 	smp_mb();
569 	if (cur_trans->state >= TRANS_STATE_BLOCKED &&
570 	    may_wait_transaction(root, type)) {
571 		current->journal_info = h;
572 		btrfs_commit_transaction(h, root);
573 		goto again;
574 	}
575 
576 	if (num_bytes) {
577 		trace_btrfs_space_reservation(root->fs_info, "transaction",
578 					      h->transid, num_bytes, 1);
579 		h->block_rsv = &root->fs_info->trans_block_rsv;
580 		h->bytes_reserved = num_bytes;
581 		h->reloc_reserved = reloc_reserved;
582 	}
583 
584 got_it:
585 	btrfs_record_root_in_trans(h, root);
586 
587 	if (!current->journal_info && type != TRANS_USERSPACE)
588 		current->journal_info = h;
589 	return h;
590 
591 join_fail:
592 	if (type & __TRANS_FREEZABLE)
593 		sb_end_intwrite(root->fs_info->sb);
594 	kmem_cache_free(btrfs_trans_handle_cachep, h);
595 alloc_fail:
596 	if (num_bytes)
597 		btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
598 					num_bytes);
599 reserve_fail:
600 	btrfs_qgroup_free_meta(root, qgroup_reserved);
601 	return ERR_PTR(ret);
602 }
603 
604 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
605 						   unsigned int num_items)
606 {
607 	return start_transaction(root, num_items, TRANS_START,
608 				 BTRFS_RESERVE_FLUSH_ALL);
609 }
610 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
611 					struct btrfs_root *root,
612 					unsigned int num_items,
613 					int min_factor)
614 {
615 	struct btrfs_trans_handle *trans;
616 	u64 num_bytes;
617 	int ret;
618 
619 	trans = btrfs_start_transaction(root, num_items);
620 	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
621 		return trans;
622 
623 	trans = btrfs_start_transaction(root, 0);
624 	if (IS_ERR(trans))
625 		return trans;
626 
627 	num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
628 	ret = btrfs_cond_migrate_bytes(root->fs_info,
629 				       &root->fs_info->trans_block_rsv,
630 				       num_bytes,
631 				       min_factor);
632 	if (ret) {
633 		btrfs_end_transaction(trans, root);
634 		return ERR_PTR(ret);
635 	}
636 
637 	trans->block_rsv = &root->fs_info->trans_block_rsv;
638 	trans->bytes_reserved = num_bytes;
639 	trace_btrfs_space_reservation(root->fs_info, "transaction",
640 				      trans->transid, num_bytes, 1);
641 
642 	return trans;
643 }
644 
645 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
646 					struct btrfs_root *root,
647 					unsigned int num_items)
648 {
649 	return start_transaction(root, num_items, TRANS_START,
650 				 BTRFS_RESERVE_FLUSH_LIMIT);
651 }
652 
653 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
654 {
655 	return start_transaction(root, 0, TRANS_JOIN,
656 				 BTRFS_RESERVE_NO_FLUSH);
657 }
658 
659 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
660 {
661 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
662 				 BTRFS_RESERVE_NO_FLUSH);
663 }
664 
665 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
666 {
667 	return start_transaction(root, 0, TRANS_USERSPACE,
668 				 BTRFS_RESERVE_NO_FLUSH);
669 }
670 
671 /*
672  * btrfs_attach_transaction() - catch the running transaction
673  *
674  * It is used when we want to commit the current the transaction, but
675  * don't want to start a new one.
676  *
677  * Note: If this function return -ENOENT, it just means there is no
678  * running transaction. But it is possible that the inactive transaction
679  * is still in the memory, not fully on disk. If you hope there is no
680  * inactive transaction in the fs when -ENOENT is returned, you should
681  * invoke
682  *     btrfs_attach_transaction_barrier()
683  */
684 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
685 {
686 	return start_transaction(root, 0, TRANS_ATTACH,
687 				 BTRFS_RESERVE_NO_FLUSH);
688 }
689 
690 /*
691  * btrfs_attach_transaction_barrier() - catch the running transaction
692  *
693  * It is similar to the above function, the differentia is this one
694  * will wait for all the inactive transactions until they fully
695  * complete.
696  */
697 struct btrfs_trans_handle *
698 btrfs_attach_transaction_barrier(struct btrfs_root *root)
699 {
700 	struct btrfs_trans_handle *trans;
701 
702 	trans = start_transaction(root, 0, TRANS_ATTACH,
703 				  BTRFS_RESERVE_NO_FLUSH);
704 	if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
705 		btrfs_wait_for_commit(root, 0);
706 
707 	return trans;
708 }
709 
710 /* wait for a transaction commit to be fully complete */
711 static noinline void wait_for_commit(struct btrfs_root *root,
712 				    struct btrfs_transaction *commit)
713 {
714 	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
715 }
716 
717 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
718 {
719 	struct btrfs_transaction *cur_trans = NULL, *t;
720 	int ret = 0;
721 
722 	if (transid) {
723 		if (transid <= root->fs_info->last_trans_committed)
724 			goto out;
725 
726 		/* find specified transaction */
727 		spin_lock(&root->fs_info->trans_lock);
728 		list_for_each_entry(t, &root->fs_info->trans_list, list) {
729 			if (t->transid == transid) {
730 				cur_trans = t;
731 				atomic_inc(&cur_trans->use_count);
732 				ret = 0;
733 				break;
734 			}
735 			if (t->transid > transid) {
736 				ret = 0;
737 				break;
738 			}
739 		}
740 		spin_unlock(&root->fs_info->trans_lock);
741 
742 		/*
743 		 * The specified transaction doesn't exist, or we
744 		 * raced with btrfs_commit_transaction
745 		 */
746 		if (!cur_trans) {
747 			if (transid > root->fs_info->last_trans_committed)
748 				ret = -EINVAL;
749 			goto out;
750 		}
751 	} else {
752 		/* find newest transaction that is committing | committed */
753 		spin_lock(&root->fs_info->trans_lock);
754 		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
755 					    list) {
756 			if (t->state >= TRANS_STATE_COMMIT_START) {
757 				if (t->state == TRANS_STATE_COMPLETED)
758 					break;
759 				cur_trans = t;
760 				atomic_inc(&cur_trans->use_count);
761 				break;
762 			}
763 		}
764 		spin_unlock(&root->fs_info->trans_lock);
765 		if (!cur_trans)
766 			goto out;  /* nothing committing|committed */
767 	}
768 
769 	wait_for_commit(root, cur_trans);
770 	btrfs_put_transaction(cur_trans);
771 out:
772 	return ret;
773 }
774 
775 void btrfs_throttle(struct btrfs_root *root)
776 {
777 	if (!atomic_read(&root->fs_info->open_ioctl_trans))
778 		wait_current_trans(root);
779 }
780 
781 static int should_end_transaction(struct btrfs_trans_handle *trans,
782 				  struct btrfs_root *root)
783 {
784 	if (root->fs_info->global_block_rsv.space_info->full &&
785 	    btrfs_check_space_for_delayed_refs(trans, root))
786 		return 1;
787 
788 	return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
789 }
790 
791 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
792 				 struct btrfs_root *root)
793 {
794 	struct btrfs_transaction *cur_trans = trans->transaction;
795 	int updates;
796 	int err;
797 
798 	smp_mb();
799 	if (cur_trans->state >= TRANS_STATE_BLOCKED ||
800 	    cur_trans->delayed_refs.flushing)
801 		return 1;
802 
803 	updates = trans->delayed_ref_updates;
804 	trans->delayed_ref_updates = 0;
805 	if (updates) {
806 		err = btrfs_run_delayed_refs(trans, root, updates * 2);
807 		if (err) /* Error code will also eval true */
808 			return err;
809 	}
810 
811 	return should_end_transaction(trans, root);
812 }
813 
814 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
815 			  struct btrfs_root *root, int throttle)
816 {
817 	struct btrfs_transaction *cur_trans = trans->transaction;
818 	struct btrfs_fs_info *info = root->fs_info;
819 	u64 transid = trans->transid;
820 	unsigned long cur = trans->delayed_ref_updates;
821 	int lock = (trans->type != TRANS_JOIN_NOLOCK);
822 	int err = 0;
823 	int must_run_delayed_refs = 0;
824 
825 	if (trans->use_count > 1) {
826 		trans->use_count--;
827 		trans->block_rsv = trans->orig_rsv;
828 		return 0;
829 	}
830 
831 	btrfs_trans_release_metadata(trans, root);
832 	trans->block_rsv = NULL;
833 
834 	if (!list_empty(&trans->new_bgs))
835 		btrfs_create_pending_block_groups(trans, root);
836 
837 	trans->delayed_ref_updates = 0;
838 	if (!trans->sync) {
839 		must_run_delayed_refs =
840 			btrfs_should_throttle_delayed_refs(trans, root);
841 		cur = max_t(unsigned long, cur, 32);
842 
843 		/*
844 		 * don't make the caller wait if they are from a NOLOCK
845 		 * or ATTACH transaction, it will deadlock with commit
846 		 */
847 		if (must_run_delayed_refs == 1 &&
848 		    (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
849 			must_run_delayed_refs = 2;
850 	}
851 
852 	btrfs_trans_release_metadata(trans, root);
853 	trans->block_rsv = NULL;
854 
855 	if (!list_empty(&trans->new_bgs))
856 		btrfs_create_pending_block_groups(trans, root);
857 
858 	btrfs_trans_release_chunk_metadata(trans);
859 
860 	if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
861 	    should_end_transaction(trans, root) &&
862 	    ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
863 		spin_lock(&info->trans_lock);
864 		if (cur_trans->state == TRANS_STATE_RUNNING)
865 			cur_trans->state = TRANS_STATE_BLOCKED;
866 		spin_unlock(&info->trans_lock);
867 	}
868 
869 	if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
870 		if (throttle)
871 			return btrfs_commit_transaction(trans, root);
872 		else
873 			wake_up_process(info->transaction_kthread);
874 	}
875 
876 	if (trans->type & __TRANS_FREEZABLE)
877 		sb_end_intwrite(root->fs_info->sb);
878 
879 	WARN_ON(cur_trans != info->running_transaction);
880 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
881 	atomic_dec(&cur_trans->num_writers);
882 	extwriter_counter_dec(cur_trans, trans->type);
883 
884 	/*
885 	 * Make sure counter is updated before we wake up waiters.
886 	 */
887 	smp_mb();
888 	if (waitqueue_active(&cur_trans->writer_wait))
889 		wake_up(&cur_trans->writer_wait);
890 	btrfs_put_transaction(cur_trans);
891 
892 	if (current->journal_info == trans)
893 		current->journal_info = NULL;
894 
895 	if (throttle)
896 		btrfs_run_delayed_iputs(root);
897 
898 	if (trans->aborted ||
899 	    test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
900 		wake_up_process(info->transaction_kthread);
901 		err = -EIO;
902 	}
903 	assert_qgroups_uptodate(trans);
904 
905 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
906 	if (must_run_delayed_refs) {
907 		btrfs_async_run_delayed_refs(root, cur, transid,
908 					     must_run_delayed_refs == 1);
909 	}
910 	return err;
911 }
912 
913 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
914 			  struct btrfs_root *root)
915 {
916 	return __btrfs_end_transaction(trans, root, 0);
917 }
918 
919 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
920 				   struct btrfs_root *root)
921 {
922 	return __btrfs_end_transaction(trans, root, 1);
923 }
924 
925 /*
926  * when btree blocks are allocated, they have some corresponding bits set for
927  * them in one of two extent_io trees.  This is used to make sure all of
928  * those extents are sent to disk but does not wait on them
929  */
930 int btrfs_write_marked_extents(struct btrfs_root *root,
931 			       struct extent_io_tree *dirty_pages, int mark)
932 {
933 	int err = 0;
934 	int werr = 0;
935 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
936 	struct extent_state *cached_state = NULL;
937 	u64 start = 0;
938 	u64 end;
939 
940 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
941 				      mark, &cached_state)) {
942 		bool wait_writeback = false;
943 
944 		err = convert_extent_bit(dirty_pages, start, end,
945 					 EXTENT_NEED_WAIT,
946 					 mark, &cached_state);
947 		/*
948 		 * convert_extent_bit can return -ENOMEM, which is most of the
949 		 * time a temporary error. So when it happens, ignore the error
950 		 * and wait for writeback of this range to finish - because we
951 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
952 		 * to btrfs_wait_marked_extents() would not know that writeback
953 		 * for this range started and therefore wouldn't wait for it to
954 		 * finish - we don't want to commit a superblock that points to
955 		 * btree nodes/leafs for which writeback hasn't finished yet
956 		 * (and without errors).
957 		 * We cleanup any entries left in the io tree when committing
958 		 * the transaction (through clear_btree_io_tree()).
959 		 */
960 		if (err == -ENOMEM) {
961 			err = 0;
962 			wait_writeback = true;
963 		}
964 		if (!err)
965 			err = filemap_fdatawrite_range(mapping, start, end);
966 		if (err)
967 			werr = err;
968 		else if (wait_writeback)
969 			werr = filemap_fdatawait_range(mapping, start, end);
970 		free_extent_state(cached_state);
971 		cached_state = NULL;
972 		cond_resched();
973 		start = end + 1;
974 	}
975 	return werr;
976 }
977 
978 /*
979  * when btree blocks are allocated, they have some corresponding bits set for
980  * them in one of two extent_io trees.  This is used to make sure all of
981  * those extents are on disk for transaction or log commit.  We wait
982  * on all the pages and clear them from the dirty pages state tree
983  */
984 int btrfs_wait_marked_extents(struct btrfs_root *root,
985 			      struct extent_io_tree *dirty_pages, int mark)
986 {
987 	int err = 0;
988 	int werr = 0;
989 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
990 	struct extent_state *cached_state = NULL;
991 	u64 start = 0;
992 	u64 end;
993 	bool errors = false;
994 
995 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
996 				      EXTENT_NEED_WAIT, &cached_state)) {
997 		/*
998 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
999 		 * When committing the transaction, we'll remove any entries
1000 		 * left in the io tree. For a log commit, we don't remove them
1001 		 * after committing the log because the tree can be accessed
1002 		 * concurrently - we do it only at transaction commit time when
1003 		 * it's safe to do it (through clear_btree_io_tree()).
1004 		 */
1005 		err = clear_extent_bit(dirty_pages, start, end,
1006 				       EXTENT_NEED_WAIT,
1007 				       0, 0, &cached_state, GFP_NOFS);
1008 		if (err == -ENOMEM)
1009 			err = 0;
1010 		if (!err)
1011 			err = filemap_fdatawait_range(mapping, start, end);
1012 		if (err)
1013 			werr = err;
1014 		free_extent_state(cached_state);
1015 		cached_state = NULL;
1016 		cond_resched();
1017 		start = end + 1;
1018 	}
1019 	if (err)
1020 		werr = err;
1021 
1022 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1023 		if ((mark & EXTENT_DIRTY) &&
1024 		    test_and_clear_bit(BTRFS_FS_LOG1_ERR,
1025 				       &root->fs_info->flags))
1026 			errors = true;
1027 
1028 		if ((mark & EXTENT_NEW) &&
1029 		    test_and_clear_bit(BTRFS_FS_LOG2_ERR,
1030 				       &root->fs_info->flags))
1031 			errors = true;
1032 	} else {
1033 		if (test_and_clear_bit(BTRFS_FS_BTREE_ERR,
1034 				       &root->fs_info->flags))
1035 			errors = true;
1036 	}
1037 
1038 	if (errors && !werr)
1039 		werr = -EIO;
1040 
1041 	return werr;
1042 }
1043 
1044 /*
1045  * when btree blocks are allocated, they have some corresponding bits set for
1046  * them in one of two extent_io trees.  This is used to make sure all of
1047  * those extents are on disk for transaction or log commit
1048  */
1049 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
1050 				struct extent_io_tree *dirty_pages, int mark)
1051 {
1052 	int ret;
1053 	int ret2;
1054 	struct blk_plug plug;
1055 
1056 	blk_start_plug(&plug);
1057 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
1058 	blk_finish_plug(&plug);
1059 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
1060 
1061 	if (ret)
1062 		return ret;
1063 	if (ret2)
1064 		return ret2;
1065 	return 0;
1066 }
1067 
1068 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1069 				     struct btrfs_root *root)
1070 {
1071 	int ret;
1072 
1073 	ret = btrfs_write_and_wait_marked_extents(root,
1074 					   &trans->transaction->dirty_pages,
1075 					   EXTENT_DIRTY);
1076 	clear_btree_io_tree(&trans->transaction->dirty_pages);
1077 
1078 	return ret;
1079 }
1080 
1081 /*
1082  * this is used to update the root pointer in the tree of tree roots.
1083  *
1084  * But, in the case of the extent allocation tree, updating the root
1085  * pointer may allocate blocks which may change the root of the extent
1086  * allocation tree.
1087  *
1088  * So, this loops and repeats and makes sure the cowonly root didn't
1089  * change while the root pointer was being updated in the metadata.
1090  */
1091 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1092 			       struct btrfs_root *root)
1093 {
1094 	int ret;
1095 	u64 old_root_bytenr;
1096 	u64 old_root_used;
1097 	struct btrfs_root *tree_root = root->fs_info->tree_root;
1098 
1099 	old_root_used = btrfs_root_used(&root->root_item);
1100 
1101 	while (1) {
1102 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1103 		if (old_root_bytenr == root->node->start &&
1104 		    old_root_used == btrfs_root_used(&root->root_item))
1105 			break;
1106 
1107 		btrfs_set_root_node(&root->root_item, root->node);
1108 		ret = btrfs_update_root(trans, tree_root,
1109 					&root->root_key,
1110 					&root->root_item);
1111 		if (ret)
1112 			return ret;
1113 
1114 		old_root_used = btrfs_root_used(&root->root_item);
1115 	}
1116 
1117 	return 0;
1118 }
1119 
1120 /*
1121  * update all the cowonly tree roots on disk
1122  *
1123  * The error handling in this function may not be obvious. Any of the
1124  * failures will cause the file system to go offline. We still need
1125  * to clean up the delayed refs.
1126  */
1127 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1128 					 struct btrfs_root *root)
1129 {
1130 	struct btrfs_fs_info *fs_info = root->fs_info;
1131 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1132 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1133 	struct list_head *next;
1134 	struct extent_buffer *eb;
1135 	int ret;
1136 
1137 	eb = btrfs_lock_root_node(fs_info->tree_root);
1138 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1139 			      0, &eb);
1140 	btrfs_tree_unlock(eb);
1141 	free_extent_buffer(eb);
1142 
1143 	if (ret)
1144 		return ret;
1145 
1146 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1147 	if (ret)
1148 		return ret;
1149 
1150 	ret = btrfs_run_dev_stats(trans, root->fs_info);
1151 	if (ret)
1152 		return ret;
1153 	ret = btrfs_run_dev_replace(trans, root->fs_info);
1154 	if (ret)
1155 		return ret;
1156 	ret = btrfs_run_qgroups(trans, root->fs_info);
1157 	if (ret)
1158 		return ret;
1159 
1160 	ret = btrfs_setup_space_cache(trans, root);
1161 	if (ret)
1162 		return ret;
1163 
1164 	/* run_qgroups might have added some more refs */
1165 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1166 	if (ret)
1167 		return ret;
1168 again:
1169 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1170 		next = fs_info->dirty_cowonly_roots.next;
1171 		list_del_init(next);
1172 		root = list_entry(next, struct btrfs_root, dirty_list);
1173 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1174 
1175 		if (root != fs_info->extent_root)
1176 			list_add_tail(&root->dirty_list,
1177 				      &trans->transaction->switch_commits);
1178 		ret = update_cowonly_root(trans, root);
1179 		if (ret)
1180 			return ret;
1181 		ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1182 		if (ret)
1183 			return ret;
1184 	}
1185 
1186 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1187 		ret = btrfs_write_dirty_block_groups(trans, root);
1188 		if (ret)
1189 			return ret;
1190 		ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1191 		if (ret)
1192 			return ret;
1193 	}
1194 
1195 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1196 		goto again;
1197 
1198 	list_add_tail(&fs_info->extent_root->dirty_list,
1199 		      &trans->transaction->switch_commits);
1200 	btrfs_after_dev_replace_commit(fs_info);
1201 
1202 	return 0;
1203 }
1204 
1205 /*
1206  * dead roots are old snapshots that need to be deleted.  This allocates
1207  * a dirty root struct and adds it into the list of dead roots that need to
1208  * be deleted
1209  */
1210 void btrfs_add_dead_root(struct btrfs_root *root)
1211 {
1212 	spin_lock(&root->fs_info->trans_lock);
1213 	if (list_empty(&root->root_list))
1214 		list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1215 	spin_unlock(&root->fs_info->trans_lock);
1216 }
1217 
1218 /*
1219  * update all the cowonly tree roots on disk
1220  */
1221 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1222 				    struct btrfs_root *root)
1223 {
1224 	struct btrfs_root *gang[8];
1225 	struct btrfs_fs_info *fs_info = root->fs_info;
1226 	int i;
1227 	int ret;
1228 	int err = 0;
1229 
1230 	spin_lock(&fs_info->fs_roots_radix_lock);
1231 	while (1) {
1232 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1233 						 (void **)gang, 0,
1234 						 ARRAY_SIZE(gang),
1235 						 BTRFS_ROOT_TRANS_TAG);
1236 		if (ret == 0)
1237 			break;
1238 		for (i = 0; i < ret; i++) {
1239 			root = gang[i];
1240 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1241 					(unsigned long)root->root_key.objectid,
1242 					BTRFS_ROOT_TRANS_TAG);
1243 			spin_unlock(&fs_info->fs_roots_radix_lock);
1244 
1245 			btrfs_free_log(trans, root);
1246 			btrfs_update_reloc_root(trans, root);
1247 			btrfs_orphan_commit_root(trans, root);
1248 
1249 			btrfs_save_ino_cache(root, trans);
1250 
1251 			/* see comments in should_cow_block() */
1252 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1253 			smp_mb__after_atomic();
1254 
1255 			if (root->commit_root != root->node) {
1256 				list_add_tail(&root->dirty_list,
1257 					&trans->transaction->switch_commits);
1258 				btrfs_set_root_node(&root->root_item,
1259 						    root->node);
1260 			}
1261 
1262 			err = btrfs_update_root(trans, fs_info->tree_root,
1263 						&root->root_key,
1264 						&root->root_item);
1265 			spin_lock(&fs_info->fs_roots_radix_lock);
1266 			if (err)
1267 				break;
1268 			btrfs_qgroup_free_meta_all(root);
1269 		}
1270 	}
1271 	spin_unlock(&fs_info->fs_roots_radix_lock);
1272 	return err;
1273 }
1274 
1275 /*
1276  * defrag a given btree.
1277  * Every leaf in the btree is read and defragged.
1278  */
1279 int btrfs_defrag_root(struct btrfs_root *root)
1280 {
1281 	struct btrfs_fs_info *info = root->fs_info;
1282 	struct btrfs_trans_handle *trans;
1283 	int ret;
1284 
1285 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1286 		return 0;
1287 
1288 	while (1) {
1289 		trans = btrfs_start_transaction(root, 0);
1290 		if (IS_ERR(trans))
1291 			return PTR_ERR(trans);
1292 
1293 		ret = btrfs_defrag_leaves(trans, root);
1294 
1295 		btrfs_end_transaction(trans, root);
1296 		btrfs_btree_balance_dirty(info->tree_root);
1297 		cond_resched();
1298 
1299 		if (btrfs_fs_closing(info) || ret != -EAGAIN)
1300 			break;
1301 
1302 		if (btrfs_defrag_cancelled(info)) {
1303 			btrfs_debug(info, "defrag_root cancelled");
1304 			ret = -EAGAIN;
1305 			break;
1306 		}
1307 	}
1308 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1309 	return ret;
1310 }
1311 
1312 /*
1313  * Do all special snapshot related qgroup dirty hack.
1314  *
1315  * Will do all needed qgroup inherit and dirty hack like switch commit
1316  * roots inside one transaction and write all btree into disk, to make
1317  * qgroup works.
1318  */
1319 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1320 				   struct btrfs_root *src,
1321 				   struct btrfs_root *parent,
1322 				   struct btrfs_qgroup_inherit *inherit,
1323 				   u64 dst_objectid)
1324 {
1325 	struct btrfs_fs_info *fs_info = src->fs_info;
1326 	int ret;
1327 
1328 	/*
1329 	 * Save some performance in the case that qgroups are not
1330 	 * enabled. If this check races with the ioctl, rescan will
1331 	 * kick in anyway.
1332 	 */
1333 	mutex_lock(&fs_info->qgroup_ioctl_lock);
1334 	if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
1335 		mutex_unlock(&fs_info->qgroup_ioctl_lock);
1336 		return 0;
1337 	}
1338 	mutex_unlock(&fs_info->qgroup_ioctl_lock);
1339 
1340 	/*
1341 	 * We are going to commit transaction, see btrfs_commit_transaction()
1342 	 * comment for reason locking tree_log_mutex
1343 	 */
1344 	mutex_lock(&fs_info->tree_log_mutex);
1345 
1346 	ret = commit_fs_roots(trans, src);
1347 	if (ret)
1348 		goto out;
1349 	ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
1350 	if (ret < 0)
1351 		goto out;
1352 	ret = btrfs_qgroup_account_extents(trans, fs_info);
1353 	if (ret < 0)
1354 		goto out;
1355 
1356 	/* Now qgroup are all updated, we can inherit it to new qgroups */
1357 	ret = btrfs_qgroup_inherit(trans, fs_info,
1358 				   src->root_key.objectid, dst_objectid,
1359 				   inherit);
1360 	if (ret < 0)
1361 		goto out;
1362 
1363 	/*
1364 	 * Now we do a simplified commit transaction, which will:
1365 	 * 1) commit all subvolume and extent tree
1366 	 *    To ensure all subvolume and extent tree have a valid
1367 	 *    commit_root to accounting later insert_dir_item()
1368 	 * 2) write all btree blocks onto disk
1369 	 *    This is to make sure later btree modification will be cowed
1370 	 *    Or commit_root can be populated and cause wrong qgroup numbers
1371 	 * In this simplified commit, we don't really care about other trees
1372 	 * like chunk and root tree, as they won't affect qgroup.
1373 	 * And we don't write super to avoid half committed status.
1374 	 */
1375 	ret = commit_cowonly_roots(trans, src);
1376 	if (ret)
1377 		goto out;
1378 	switch_commit_roots(trans->transaction, fs_info);
1379 	ret = btrfs_write_and_wait_transaction(trans, src);
1380 	if (ret)
1381 		btrfs_handle_fs_error(fs_info, ret,
1382 			"Error while writing out transaction for qgroup");
1383 
1384 out:
1385 	mutex_unlock(&fs_info->tree_log_mutex);
1386 
1387 	/*
1388 	 * Force parent root to be updated, as we recorded it before so its
1389 	 * last_trans == cur_transid.
1390 	 * Or it won't be committed again onto disk after later
1391 	 * insert_dir_item()
1392 	 */
1393 	if (!ret)
1394 		record_root_in_trans(trans, parent, 1);
1395 	return ret;
1396 }
1397 
1398 /*
1399  * new snapshots need to be created at a very specific time in the
1400  * transaction commit.  This does the actual creation.
1401  *
1402  * Note:
1403  * If the error which may affect the commitment of the current transaction
1404  * happens, we should return the error number. If the error which just affect
1405  * the creation of the pending snapshots, just return 0.
1406  */
1407 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1408 				   struct btrfs_fs_info *fs_info,
1409 				   struct btrfs_pending_snapshot *pending)
1410 {
1411 	struct btrfs_key key;
1412 	struct btrfs_root_item *new_root_item;
1413 	struct btrfs_root *tree_root = fs_info->tree_root;
1414 	struct btrfs_root *root = pending->root;
1415 	struct btrfs_root *parent_root;
1416 	struct btrfs_block_rsv *rsv;
1417 	struct inode *parent_inode;
1418 	struct btrfs_path *path;
1419 	struct btrfs_dir_item *dir_item;
1420 	struct dentry *dentry;
1421 	struct extent_buffer *tmp;
1422 	struct extent_buffer *old;
1423 	struct timespec cur_time;
1424 	int ret = 0;
1425 	u64 to_reserve = 0;
1426 	u64 index = 0;
1427 	u64 objectid;
1428 	u64 root_flags;
1429 	uuid_le new_uuid;
1430 
1431 	ASSERT(pending->path);
1432 	path = pending->path;
1433 
1434 	ASSERT(pending->root_item);
1435 	new_root_item = pending->root_item;
1436 
1437 	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1438 	if (pending->error)
1439 		goto no_free_objectid;
1440 
1441 	/*
1442 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1443 	 * accounted by later btrfs_qgroup_inherit().
1444 	 */
1445 	btrfs_set_skip_qgroup(trans, objectid);
1446 
1447 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1448 
1449 	if (to_reserve > 0) {
1450 		pending->error = btrfs_block_rsv_add(root,
1451 						     &pending->block_rsv,
1452 						     to_reserve,
1453 						     BTRFS_RESERVE_NO_FLUSH);
1454 		if (pending->error)
1455 			goto clear_skip_qgroup;
1456 	}
1457 
1458 	key.objectid = objectid;
1459 	key.offset = (u64)-1;
1460 	key.type = BTRFS_ROOT_ITEM_KEY;
1461 
1462 	rsv = trans->block_rsv;
1463 	trans->block_rsv = &pending->block_rsv;
1464 	trans->bytes_reserved = trans->block_rsv->reserved;
1465 	trace_btrfs_space_reservation(root->fs_info, "transaction",
1466 				      trans->transid,
1467 				      trans->bytes_reserved, 1);
1468 	dentry = pending->dentry;
1469 	parent_inode = pending->dir;
1470 	parent_root = BTRFS_I(parent_inode)->root;
1471 	record_root_in_trans(trans, parent_root, 0);
1472 
1473 	cur_time = current_time(parent_inode);
1474 
1475 	/*
1476 	 * insert the directory item
1477 	 */
1478 	ret = btrfs_set_inode_index(parent_inode, &index);
1479 	BUG_ON(ret); /* -ENOMEM */
1480 
1481 	/* check if there is a file/dir which has the same name. */
1482 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1483 					 btrfs_ino(parent_inode),
1484 					 dentry->d_name.name,
1485 					 dentry->d_name.len, 0);
1486 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1487 		pending->error = -EEXIST;
1488 		goto dir_item_existed;
1489 	} else if (IS_ERR(dir_item)) {
1490 		ret = PTR_ERR(dir_item);
1491 		btrfs_abort_transaction(trans, ret);
1492 		goto fail;
1493 	}
1494 	btrfs_release_path(path);
1495 
1496 	/*
1497 	 * pull in the delayed directory update
1498 	 * and the delayed inode item
1499 	 * otherwise we corrupt the FS during
1500 	 * snapshot
1501 	 */
1502 	ret = btrfs_run_delayed_items(trans, root);
1503 	if (ret) {	/* Transaction aborted */
1504 		btrfs_abort_transaction(trans, ret);
1505 		goto fail;
1506 	}
1507 
1508 	record_root_in_trans(trans, root, 0);
1509 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1510 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1511 	btrfs_check_and_init_root_item(new_root_item);
1512 
1513 	root_flags = btrfs_root_flags(new_root_item);
1514 	if (pending->readonly)
1515 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1516 	else
1517 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1518 	btrfs_set_root_flags(new_root_item, root_flags);
1519 
1520 	btrfs_set_root_generation_v2(new_root_item,
1521 			trans->transid);
1522 	uuid_le_gen(&new_uuid);
1523 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1524 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1525 			BTRFS_UUID_SIZE);
1526 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1527 		memset(new_root_item->received_uuid, 0,
1528 		       sizeof(new_root_item->received_uuid));
1529 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1530 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1531 		btrfs_set_root_stransid(new_root_item, 0);
1532 		btrfs_set_root_rtransid(new_root_item, 0);
1533 	}
1534 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1535 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1536 	btrfs_set_root_otransid(new_root_item, trans->transid);
1537 
1538 	old = btrfs_lock_root_node(root);
1539 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1540 	if (ret) {
1541 		btrfs_tree_unlock(old);
1542 		free_extent_buffer(old);
1543 		btrfs_abort_transaction(trans, ret);
1544 		goto fail;
1545 	}
1546 
1547 	btrfs_set_lock_blocking(old);
1548 
1549 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1550 	/* clean up in any case */
1551 	btrfs_tree_unlock(old);
1552 	free_extent_buffer(old);
1553 	if (ret) {
1554 		btrfs_abort_transaction(trans, ret);
1555 		goto fail;
1556 	}
1557 	/* see comments in should_cow_block() */
1558 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1559 	smp_wmb();
1560 
1561 	btrfs_set_root_node(new_root_item, tmp);
1562 	/* record when the snapshot was created in key.offset */
1563 	key.offset = trans->transid;
1564 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1565 	btrfs_tree_unlock(tmp);
1566 	free_extent_buffer(tmp);
1567 	if (ret) {
1568 		btrfs_abort_transaction(trans, ret);
1569 		goto fail;
1570 	}
1571 
1572 	/*
1573 	 * insert root back/forward references
1574 	 */
1575 	ret = btrfs_add_root_ref(trans, tree_root, objectid,
1576 				 parent_root->root_key.objectid,
1577 				 btrfs_ino(parent_inode), index,
1578 				 dentry->d_name.name, dentry->d_name.len);
1579 	if (ret) {
1580 		btrfs_abort_transaction(trans, ret);
1581 		goto fail;
1582 	}
1583 
1584 	key.offset = (u64)-1;
1585 	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1586 	if (IS_ERR(pending->snap)) {
1587 		ret = PTR_ERR(pending->snap);
1588 		btrfs_abort_transaction(trans, ret);
1589 		goto fail;
1590 	}
1591 
1592 	ret = btrfs_reloc_post_snapshot(trans, pending);
1593 	if (ret) {
1594 		btrfs_abort_transaction(trans, ret);
1595 		goto fail;
1596 	}
1597 
1598 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1599 	if (ret) {
1600 		btrfs_abort_transaction(trans, ret);
1601 		goto fail;
1602 	}
1603 
1604 	/*
1605 	 * Do special qgroup accounting for snapshot, as we do some qgroup
1606 	 * snapshot hack to do fast snapshot.
1607 	 * To co-operate with that hack, we do hack again.
1608 	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1609 	 */
1610 	ret = qgroup_account_snapshot(trans, root, parent_root,
1611 				      pending->inherit, objectid);
1612 	if (ret < 0)
1613 		goto fail;
1614 
1615 	ret = btrfs_insert_dir_item(trans, parent_root,
1616 				    dentry->d_name.name, dentry->d_name.len,
1617 				    parent_inode, &key,
1618 				    BTRFS_FT_DIR, index);
1619 	/* We have check then name at the beginning, so it is impossible. */
1620 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1621 	if (ret) {
1622 		btrfs_abort_transaction(trans, ret);
1623 		goto fail;
1624 	}
1625 
1626 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
1627 					 dentry->d_name.len * 2);
1628 	parent_inode->i_mtime = parent_inode->i_ctime =
1629 		current_time(parent_inode);
1630 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1631 	if (ret) {
1632 		btrfs_abort_transaction(trans, ret);
1633 		goto fail;
1634 	}
1635 	ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1636 				  BTRFS_UUID_KEY_SUBVOL, objectid);
1637 	if (ret) {
1638 		btrfs_abort_transaction(trans, ret);
1639 		goto fail;
1640 	}
1641 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1642 		ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1643 					  new_root_item->received_uuid,
1644 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1645 					  objectid);
1646 		if (ret && ret != -EEXIST) {
1647 			btrfs_abort_transaction(trans, ret);
1648 			goto fail;
1649 		}
1650 	}
1651 
1652 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1653 	if (ret) {
1654 		btrfs_abort_transaction(trans, ret);
1655 		goto fail;
1656 	}
1657 
1658 fail:
1659 	pending->error = ret;
1660 dir_item_existed:
1661 	trans->block_rsv = rsv;
1662 	trans->bytes_reserved = 0;
1663 clear_skip_qgroup:
1664 	btrfs_clear_skip_qgroup(trans);
1665 no_free_objectid:
1666 	kfree(new_root_item);
1667 	pending->root_item = NULL;
1668 	btrfs_free_path(path);
1669 	pending->path = NULL;
1670 
1671 	return ret;
1672 }
1673 
1674 /*
1675  * create all the snapshots we've scheduled for creation
1676  */
1677 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1678 					     struct btrfs_fs_info *fs_info)
1679 {
1680 	struct btrfs_pending_snapshot *pending, *next;
1681 	struct list_head *head = &trans->transaction->pending_snapshots;
1682 	int ret = 0;
1683 
1684 	list_for_each_entry_safe(pending, next, head, list) {
1685 		list_del(&pending->list);
1686 		ret = create_pending_snapshot(trans, fs_info, pending);
1687 		if (ret)
1688 			break;
1689 	}
1690 	return ret;
1691 }
1692 
1693 static void update_super_roots(struct btrfs_root *root)
1694 {
1695 	struct btrfs_root_item *root_item;
1696 	struct btrfs_super_block *super;
1697 
1698 	super = root->fs_info->super_copy;
1699 
1700 	root_item = &root->fs_info->chunk_root->root_item;
1701 	super->chunk_root = root_item->bytenr;
1702 	super->chunk_root_generation = root_item->generation;
1703 	super->chunk_root_level = root_item->level;
1704 
1705 	root_item = &root->fs_info->tree_root->root_item;
1706 	super->root = root_item->bytenr;
1707 	super->generation = root_item->generation;
1708 	super->root_level = root_item->level;
1709 	if (btrfs_test_opt(root->fs_info, SPACE_CACHE))
1710 		super->cache_generation = root_item->generation;
1711 	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &root->fs_info->flags))
1712 		super->uuid_tree_generation = root_item->generation;
1713 }
1714 
1715 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1716 {
1717 	struct btrfs_transaction *trans;
1718 	int ret = 0;
1719 
1720 	spin_lock(&info->trans_lock);
1721 	trans = info->running_transaction;
1722 	if (trans)
1723 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1724 	spin_unlock(&info->trans_lock);
1725 	return ret;
1726 }
1727 
1728 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1729 {
1730 	struct btrfs_transaction *trans;
1731 	int ret = 0;
1732 
1733 	spin_lock(&info->trans_lock);
1734 	trans = info->running_transaction;
1735 	if (trans)
1736 		ret = is_transaction_blocked(trans);
1737 	spin_unlock(&info->trans_lock);
1738 	return ret;
1739 }
1740 
1741 /*
1742  * wait for the current transaction commit to start and block subsequent
1743  * transaction joins
1744  */
1745 static void wait_current_trans_commit_start(struct btrfs_root *root,
1746 					    struct btrfs_transaction *trans)
1747 {
1748 	wait_event(root->fs_info->transaction_blocked_wait,
1749 		   trans->state >= TRANS_STATE_COMMIT_START ||
1750 		   trans->aborted);
1751 }
1752 
1753 /*
1754  * wait for the current transaction to start and then become unblocked.
1755  * caller holds ref.
1756  */
1757 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1758 					 struct btrfs_transaction *trans)
1759 {
1760 	wait_event(root->fs_info->transaction_wait,
1761 		   trans->state >= TRANS_STATE_UNBLOCKED ||
1762 		   trans->aborted);
1763 }
1764 
1765 /*
1766  * commit transactions asynchronously. once btrfs_commit_transaction_async
1767  * returns, any subsequent transaction will not be allowed to join.
1768  */
1769 struct btrfs_async_commit {
1770 	struct btrfs_trans_handle *newtrans;
1771 	struct btrfs_root *root;
1772 	struct work_struct work;
1773 };
1774 
1775 static void do_async_commit(struct work_struct *work)
1776 {
1777 	struct btrfs_async_commit *ac =
1778 		container_of(work, struct btrfs_async_commit, work);
1779 
1780 	/*
1781 	 * We've got freeze protection passed with the transaction.
1782 	 * Tell lockdep about it.
1783 	 */
1784 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1785 		__sb_writers_acquired(ac->root->fs_info->sb, SB_FREEZE_FS);
1786 
1787 	current->journal_info = ac->newtrans;
1788 
1789 	btrfs_commit_transaction(ac->newtrans, ac->root);
1790 	kfree(ac);
1791 }
1792 
1793 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1794 				   struct btrfs_root *root,
1795 				   int wait_for_unblock)
1796 {
1797 	struct btrfs_async_commit *ac;
1798 	struct btrfs_transaction *cur_trans;
1799 
1800 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1801 	if (!ac)
1802 		return -ENOMEM;
1803 
1804 	INIT_WORK(&ac->work, do_async_commit);
1805 	ac->root = root;
1806 	ac->newtrans = btrfs_join_transaction(root);
1807 	if (IS_ERR(ac->newtrans)) {
1808 		int err = PTR_ERR(ac->newtrans);
1809 		kfree(ac);
1810 		return err;
1811 	}
1812 
1813 	/* take transaction reference */
1814 	cur_trans = trans->transaction;
1815 	atomic_inc(&cur_trans->use_count);
1816 
1817 	btrfs_end_transaction(trans, root);
1818 
1819 	/*
1820 	 * Tell lockdep we've released the freeze rwsem, since the
1821 	 * async commit thread will be the one to unlock it.
1822 	 */
1823 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1824 		__sb_writers_release(root->fs_info->sb, SB_FREEZE_FS);
1825 
1826 	schedule_work(&ac->work);
1827 
1828 	/* wait for transaction to start and unblock */
1829 	if (wait_for_unblock)
1830 		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1831 	else
1832 		wait_current_trans_commit_start(root, cur_trans);
1833 
1834 	if (current->journal_info == trans)
1835 		current->journal_info = NULL;
1836 
1837 	btrfs_put_transaction(cur_trans);
1838 	return 0;
1839 }
1840 
1841 
1842 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1843 				struct btrfs_root *root, int err)
1844 {
1845 	struct btrfs_transaction *cur_trans = trans->transaction;
1846 	DEFINE_WAIT(wait);
1847 
1848 	WARN_ON(trans->use_count > 1);
1849 
1850 	btrfs_abort_transaction(trans, err);
1851 
1852 	spin_lock(&root->fs_info->trans_lock);
1853 
1854 	/*
1855 	 * If the transaction is removed from the list, it means this
1856 	 * transaction has been committed successfully, so it is impossible
1857 	 * to call the cleanup function.
1858 	 */
1859 	BUG_ON(list_empty(&cur_trans->list));
1860 
1861 	list_del_init(&cur_trans->list);
1862 	if (cur_trans == root->fs_info->running_transaction) {
1863 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1864 		spin_unlock(&root->fs_info->trans_lock);
1865 		wait_event(cur_trans->writer_wait,
1866 			   atomic_read(&cur_trans->num_writers) == 1);
1867 
1868 		spin_lock(&root->fs_info->trans_lock);
1869 	}
1870 	spin_unlock(&root->fs_info->trans_lock);
1871 
1872 	btrfs_cleanup_one_transaction(trans->transaction, root);
1873 
1874 	spin_lock(&root->fs_info->trans_lock);
1875 	if (cur_trans == root->fs_info->running_transaction)
1876 		root->fs_info->running_transaction = NULL;
1877 	spin_unlock(&root->fs_info->trans_lock);
1878 
1879 	if (trans->type & __TRANS_FREEZABLE)
1880 		sb_end_intwrite(root->fs_info->sb);
1881 	btrfs_put_transaction(cur_trans);
1882 	btrfs_put_transaction(cur_trans);
1883 
1884 	trace_btrfs_transaction_commit(root);
1885 
1886 	if (current->journal_info == trans)
1887 		current->journal_info = NULL;
1888 	btrfs_scrub_cancel(root->fs_info);
1889 
1890 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1891 }
1892 
1893 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1894 {
1895 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1896 		return btrfs_start_delalloc_roots(fs_info, 1, -1);
1897 	return 0;
1898 }
1899 
1900 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1901 {
1902 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1903 		btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
1904 }
1905 
1906 static inline void
1907 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans)
1908 {
1909 	wait_event(cur_trans->pending_wait,
1910 		   atomic_read(&cur_trans->pending_ordered) == 0);
1911 }
1912 
1913 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1914 			     struct btrfs_root *root)
1915 {
1916 	struct btrfs_transaction *cur_trans = trans->transaction;
1917 	struct btrfs_transaction *prev_trans = NULL;
1918 	int ret;
1919 
1920 	/* Stop the commit early if ->aborted is set */
1921 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1922 		ret = cur_trans->aborted;
1923 		btrfs_end_transaction(trans, root);
1924 		return ret;
1925 	}
1926 
1927 	/* make a pass through all the delayed refs we have so far
1928 	 * any runnings procs may add more while we are here
1929 	 */
1930 	ret = btrfs_run_delayed_refs(trans, root, 0);
1931 	if (ret) {
1932 		btrfs_end_transaction(trans, root);
1933 		return ret;
1934 	}
1935 
1936 	btrfs_trans_release_metadata(trans, root);
1937 	trans->block_rsv = NULL;
1938 
1939 	cur_trans = trans->transaction;
1940 
1941 	/*
1942 	 * set the flushing flag so procs in this transaction have to
1943 	 * start sending their work down.
1944 	 */
1945 	cur_trans->delayed_refs.flushing = 1;
1946 	smp_wmb();
1947 
1948 	if (!list_empty(&trans->new_bgs))
1949 		btrfs_create_pending_block_groups(trans, root);
1950 
1951 	ret = btrfs_run_delayed_refs(trans, root, 0);
1952 	if (ret) {
1953 		btrfs_end_transaction(trans, root);
1954 		return ret;
1955 	}
1956 
1957 	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1958 		int run_it = 0;
1959 
1960 		/* this mutex is also taken before trying to set
1961 		 * block groups readonly.  We need to make sure
1962 		 * that nobody has set a block group readonly
1963 		 * after a extents from that block group have been
1964 		 * allocated for cache files.  btrfs_set_block_group_ro
1965 		 * will wait for the transaction to commit if it
1966 		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1967 		 *
1968 		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1969 		 * only one process starts all the block group IO.  It wouldn't
1970 		 * hurt to have more than one go through, but there's no
1971 		 * real advantage to it either.
1972 		 */
1973 		mutex_lock(&root->fs_info->ro_block_group_mutex);
1974 		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
1975 				      &cur_trans->flags))
1976 			run_it = 1;
1977 		mutex_unlock(&root->fs_info->ro_block_group_mutex);
1978 
1979 		if (run_it)
1980 			ret = btrfs_start_dirty_block_groups(trans, root);
1981 	}
1982 	if (ret) {
1983 		btrfs_end_transaction(trans, root);
1984 		return ret;
1985 	}
1986 
1987 	spin_lock(&root->fs_info->trans_lock);
1988 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1989 		spin_unlock(&root->fs_info->trans_lock);
1990 		atomic_inc(&cur_trans->use_count);
1991 		ret = btrfs_end_transaction(trans, root);
1992 
1993 		wait_for_commit(root, cur_trans);
1994 
1995 		if (unlikely(cur_trans->aborted))
1996 			ret = cur_trans->aborted;
1997 
1998 		btrfs_put_transaction(cur_trans);
1999 
2000 		return ret;
2001 	}
2002 
2003 	cur_trans->state = TRANS_STATE_COMMIT_START;
2004 	wake_up(&root->fs_info->transaction_blocked_wait);
2005 
2006 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
2007 		prev_trans = list_entry(cur_trans->list.prev,
2008 					struct btrfs_transaction, list);
2009 		if (prev_trans->state != TRANS_STATE_COMPLETED) {
2010 			atomic_inc(&prev_trans->use_count);
2011 			spin_unlock(&root->fs_info->trans_lock);
2012 
2013 			wait_for_commit(root, prev_trans);
2014 			ret = prev_trans->aborted;
2015 
2016 			btrfs_put_transaction(prev_trans);
2017 			if (ret)
2018 				goto cleanup_transaction;
2019 		} else {
2020 			spin_unlock(&root->fs_info->trans_lock);
2021 		}
2022 	} else {
2023 		spin_unlock(&root->fs_info->trans_lock);
2024 	}
2025 
2026 	extwriter_counter_dec(cur_trans, trans->type);
2027 
2028 	ret = btrfs_start_delalloc_flush(root->fs_info);
2029 	if (ret)
2030 		goto cleanup_transaction;
2031 
2032 	ret = btrfs_run_delayed_items(trans, root);
2033 	if (ret)
2034 		goto cleanup_transaction;
2035 
2036 	wait_event(cur_trans->writer_wait,
2037 		   extwriter_counter_read(cur_trans) == 0);
2038 
2039 	/* some pending stuffs might be added after the previous flush. */
2040 	ret = btrfs_run_delayed_items(trans, root);
2041 	if (ret)
2042 		goto cleanup_transaction;
2043 
2044 	btrfs_wait_delalloc_flush(root->fs_info);
2045 
2046 	btrfs_wait_pending_ordered(cur_trans);
2047 
2048 	btrfs_scrub_pause(root);
2049 	/*
2050 	 * Ok now we need to make sure to block out any other joins while we
2051 	 * commit the transaction.  We could have started a join before setting
2052 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2053 	 */
2054 	spin_lock(&root->fs_info->trans_lock);
2055 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2056 	spin_unlock(&root->fs_info->trans_lock);
2057 	wait_event(cur_trans->writer_wait,
2058 		   atomic_read(&cur_trans->num_writers) == 1);
2059 
2060 	/* ->aborted might be set after the previous check, so check it */
2061 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2062 		ret = cur_trans->aborted;
2063 		goto scrub_continue;
2064 	}
2065 	/*
2066 	 * the reloc mutex makes sure that we stop
2067 	 * the balancing code from coming in and moving
2068 	 * extents around in the middle of the commit
2069 	 */
2070 	mutex_lock(&root->fs_info->reloc_mutex);
2071 
2072 	/*
2073 	 * We needn't worry about the delayed items because we will
2074 	 * deal with them in create_pending_snapshot(), which is the
2075 	 * core function of the snapshot creation.
2076 	 */
2077 	ret = create_pending_snapshots(trans, root->fs_info);
2078 	if (ret) {
2079 		mutex_unlock(&root->fs_info->reloc_mutex);
2080 		goto scrub_continue;
2081 	}
2082 
2083 	/*
2084 	 * We insert the dir indexes of the snapshots and update the inode
2085 	 * of the snapshots' parents after the snapshot creation, so there
2086 	 * are some delayed items which are not dealt with. Now deal with
2087 	 * them.
2088 	 *
2089 	 * We needn't worry that this operation will corrupt the snapshots,
2090 	 * because all the tree which are snapshoted will be forced to COW
2091 	 * the nodes and leaves.
2092 	 */
2093 	ret = btrfs_run_delayed_items(trans, root);
2094 	if (ret) {
2095 		mutex_unlock(&root->fs_info->reloc_mutex);
2096 		goto scrub_continue;
2097 	}
2098 
2099 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
2100 	if (ret) {
2101 		mutex_unlock(&root->fs_info->reloc_mutex);
2102 		goto scrub_continue;
2103 	}
2104 
2105 	/* Reocrd old roots for later qgroup accounting */
2106 	ret = btrfs_qgroup_prepare_account_extents(trans, root->fs_info);
2107 	if (ret) {
2108 		mutex_unlock(&root->fs_info->reloc_mutex);
2109 		goto scrub_continue;
2110 	}
2111 
2112 	/*
2113 	 * make sure none of the code above managed to slip in a
2114 	 * delayed item
2115 	 */
2116 	btrfs_assert_delayed_root_empty(root);
2117 
2118 	WARN_ON(cur_trans != trans->transaction);
2119 
2120 	/* btrfs_commit_tree_roots is responsible for getting the
2121 	 * various roots consistent with each other.  Every pointer
2122 	 * in the tree of tree roots has to point to the most up to date
2123 	 * root for every subvolume and other tree.  So, we have to keep
2124 	 * the tree logging code from jumping in and changing any
2125 	 * of the trees.
2126 	 *
2127 	 * At this point in the commit, there can't be any tree-log
2128 	 * writers, but a little lower down we drop the trans mutex
2129 	 * and let new people in.  By holding the tree_log_mutex
2130 	 * from now until after the super is written, we avoid races
2131 	 * with the tree-log code.
2132 	 */
2133 	mutex_lock(&root->fs_info->tree_log_mutex);
2134 
2135 	ret = commit_fs_roots(trans, root);
2136 	if (ret) {
2137 		mutex_unlock(&root->fs_info->tree_log_mutex);
2138 		mutex_unlock(&root->fs_info->reloc_mutex);
2139 		goto scrub_continue;
2140 	}
2141 
2142 	/*
2143 	 * Since the transaction is done, we can apply the pending changes
2144 	 * before the next transaction.
2145 	 */
2146 	btrfs_apply_pending_changes(root->fs_info);
2147 
2148 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2149 	 * safe to free the root of tree log roots
2150 	 */
2151 	btrfs_free_log_root_tree(trans, root->fs_info);
2152 
2153 	/*
2154 	 * Since fs roots are all committed, we can get a quite accurate
2155 	 * new_roots. So let's do quota accounting.
2156 	 */
2157 	ret = btrfs_qgroup_account_extents(trans, root->fs_info);
2158 	if (ret < 0) {
2159 		mutex_unlock(&root->fs_info->tree_log_mutex);
2160 		mutex_unlock(&root->fs_info->reloc_mutex);
2161 		goto scrub_continue;
2162 	}
2163 
2164 	ret = commit_cowonly_roots(trans, root);
2165 	if (ret) {
2166 		mutex_unlock(&root->fs_info->tree_log_mutex);
2167 		mutex_unlock(&root->fs_info->reloc_mutex);
2168 		goto scrub_continue;
2169 	}
2170 
2171 	/*
2172 	 * The tasks which save the space cache and inode cache may also
2173 	 * update ->aborted, check it.
2174 	 */
2175 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2176 		ret = cur_trans->aborted;
2177 		mutex_unlock(&root->fs_info->tree_log_mutex);
2178 		mutex_unlock(&root->fs_info->reloc_mutex);
2179 		goto scrub_continue;
2180 	}
2181 
2182 	btrfs_prepare_extent_commit(trans, root);
2183 
2184 	cur_trans = root->fs_info->running_transaction;
2185 
2186 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
2187 			    root->fs_info->tree_root->node);
2188 	list_add_tail(&root->fs_info->tree_root->dirty_list,
2189 		      &cur_trans->switch_commits);
2190 
2191 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
2192 			    root->fs_info->chunk_root->node);
2193 	list_add_tail(&root->fs_info->chunk_root->dirty_list,
2194 		      &cur_trans->switch_commits);
2195 
2196 	switch_commit_roots(cur_trans, root->fs_info);
2197 
2198 	assert_qgroups_uptodate(trans);
2199 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2200 	ASSERT(list_empty(&cur_trans->io_bgs));
2201 	update_super_roots(root);
2202 
2203 	btrfs_set_super_log_root(root->fs_info->super_copy, 0);
2204 	btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
2205 	memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
2206 	       sizeof(*root->fs_info->super_copy));
2207 
2208 	btrfs_update_commit_device_size(root->fs_info);
2209 	btrfs_update_commit_device_bytes_used(root, cur_trans);
2210 
2211 	clear_bit(BTRFS_FS_LOG1_ERR, &root->fs_info->flags);
2212 	clear_bit(BTRFS_FS_LOG2_ERR, &root->fs_info->flags);
2213 
2214 	btrfs_trans_release_chunk_metadata(trans);
2215 
2216 	spin_lock(&root->fs_info->trans_lock);
2217 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2218 	root->fs_info->running_transaction = NULL;
2219 	spin_unlock(&root->fs_info->trans_lock);
2220 	mutex_unlock(&root->fs_info->reloc_mutex);
2221 
2222 	wake_up(&root->fs_info->transaction_wait);
2223 
2224 	ret = btrfs_write_and_wait_transaction(trans, root);
2225 	if (ret) {
2226 		btrfs_handle_fs_error(root->fs_info, ret,
2227 			    "Error while writing out transaction");
2228 		mutex_unlock(&root->fs_info->tree_log_mutex);
2229 		goto scrub_continue;
2230 	}
2231 
2232 	ret = write_ctree_super(trans, root, 0);
2233 	if (ret) {
2234 		mutex_unlock(&root->fs_info->tree_log_mutex);
2235 		goto scrub_continue;
2236 	}
2237 
2238 	/*
2239 	 * the super is written, we can safely allow the tree-loggers
2240 	 * to go about their business
2241 	 */
2242 	mutex_unlock(&root->fs_info->tree_log_mutex);
2243 
2244 	btrfs_finish_extent_commit(trans, root);
2245 
2246 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2247 		btrfs_clear_space_info_full(root->fs_info);
2248 
2249 	root->fs_info->last_trans_committed = cur_trans->transid;
2250 	/*
2251 	 * We needn't acquire the lock here because there is no other task
2252 	 * which can change it.
2253 	 */
2254 	cur_trans->state = TRANS_STATE_COMPLETED;
2255 	wake_up(&cur_trans->commit_wait);
2256 
2257 	spin_lock(&root->fs_info->trans_lock);
2258 	list_del_init(&cur_trans->list);
2259 	spin_unlock(&root->fs_info->trans_lock);
2260 
2261 	btrfs_put_transaction(cur_trans);
2262 	btrfs_put_transaction(cur_trans);
2263 
2264 	if (trans->type & __TRANS_FREEZABLE)
2265 		sb_end_intwrite(root->fs_info->sb);
2266 
2267 	trace_btrfs_transaction_commit(root);
2268 
2269 	btrfs_scrub_continue(root);
2270 
2271 	if (current->journal_info == trans)
2272 		current->journal_info = NULL;
2273 
2274 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2275 
2276 	/*
2277 	 * If fs has been frozen, we can not handle delayed iputs, otherwise
2278 	 * it'll result in deadlock about SB_FREEZE_FS.
2279 	 */
2280 	if (current != root->fs_info->transaction_kthread &&
2281 	    current != root->fs_info->cleaner_kthread &&
2282 	    !root->fs_info->fs_frozen)
2283 		btrfs_run_delayed_iputs(root);
2284 
2285 	return ret;
2286 
2287 scrub_continue:
2288 	btrfs_scrub_continue(root);
2289 cleanup_transaction:
2290 	btrfs_trans_release_metadata(trans, root);
2291 	btrfs_trans_release_chunk_metadata(trans);
2292 	trans->block_rsv = NULL;
2293 	btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2294 	if (current->journal_info == trans)
2295 		current->journal_info = NULL;
2296 	cleanup_transaction(trans, root, ret);
2297 
2298 	return ret;
2299 }
2300 
2301 /*
2302  * return < 0 if error
2303  * 0 if there are no more dead_roots at the time of call
2304  * 1 there are more to be processed, call me again
2305  *
2306  * The return value indicates there are certainly more snapshots to delete, but
2307  * if there comes a new one during processing, it may return 0. We don't mind,
2308  * because btrfs_commit_super will poke cleaner thread and it will process it a
2309  * few seconds later.
2310  */
2311 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2312 {
2313 	int ret;
2314 	struct btrfs_fs_info *fs_info = root->fs_info;
2315 
2316 	spin_lock(&fs_info->trans_lock);
2317 	if (list_empty(&fs_info->dead_roots)) {
2318 		spin_unlock(&fs_info->trans_lock);
2319 		return 0;
2320 	}
2321 	root = list_first_entry(&fs_info->dead_roots,
2322 			struct btrfs_root, root_list);
2323 	list_del_init(&root->root_list);
2324 	spin_unlock(&fs_info->trans_lock);
2325 
2326 	btrfs_debug(fs_info, "cleaner removing %llu", root->objectid);
2327 
2328 	btrfs_kill_all_delayed_nodes(root);
2329 
2330 	if (btrfs_header_backref_rev(root->node) <
2331 			BTRFS_MIXED_BACKREF_REV)
2332 		ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2333 	else
2334 		ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2335 
2336 	return (ret < 0) ? 0 : 1;
2337 }
2338 
2339 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2340 {
2341 	unsigned long prev;
2342 	unsigned long bit;
2343 
2344 	prev = xchg(&fs_info->pending_changes, 0);
2345 	if (!prev)
2346 		return;
2347 
2348 	bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2349 	if (prev & bit)
2350 		btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2351 	prev &= ~bit;
2352 
2353 	bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2354 	if (prev & bit)
2355 		btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2356 	prev &= ~bit;
2357 
2358 	bit = 1 << BTRFS_PENDING_COMMIT;
2359 	if (prev & bit)
2360 		btrfs_debug(fs_info, "pending commit done");
2361 	prev &= ~bit;
2362 
2363 	if (prev)
2364 		btrfs_warn(fs_info,
2365 			"unknown pending changes left 0x%lx, ignoring", prev);
2366 }
2367