xref: /linux/fs/btrfs/transaction.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "inode-map.h"
31 
32 #define BTRFS_ROOT_TRANS_TAG 0
33 
34 static noinline void put_transaction(struct btrfs_transaction *transaction)
35 {
36 	WARN_ON(atomic_read(&transaction->use_count) == 0);
37 	if (atomic_dec_and_test(&transaction->use_count)) {
38 		BUG_ON(!list_empty(&transaction->list));
39 		memset(transaction, 0, sizeof(*transaction));
40 		kmem_cache_free(btrfs_transaction_cachep, transaction);
41 	}
42 }
43 
44 static noinline void switch_commit_root(struct btrfs_root *root)
45 {
46 	free_extent_buffer(root->commit_root);
47 	root->commit_root = btrfs_root_node(root);
48 }
49 
50 /*
51  * either allocate a new transaction or hop into the existing one
52  */
53 static noinline int join_transaction(struct btrfs_root *root, int nofail)
54 {
55 	struct btrfs_transaction *cur_trans;
56 
57 	spin_lock(&root->fs_info->trans_lock);
58 loop:
59 	if (root->fs_info->trans_no_join) {
60 		if (!nofail) {
61 			spin_unlock(&root->fs_info->trans_lock);
62 			return -EBUSY;
63 		}
64 	}
65 
66 	cur_trans = root->fs_info->running_transaction;
67 	if (cur_trans) {
68 		atomic_inc(&cur_trans->use_count);
69 		atomic_inc(&cur_trans->num_writers);
70 		cur_trans->num_joined++;
71 		spin_unlock(&root->fs_info->trans_lock);
72 		return 0;
73 	}
74 	spin_unlock(&root->fs_info->trans_lock);
75 
76 	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
77 	if (!cur_trans)
78 		return -ENOMEM;
79 
80 	spin_lock(&root->fs_info->trans_lock);
81 	if (root->fs_info->running_transaction) {
82 		/*
83 		 * someone started a transaction after we unlocked.  Make sure
84 		 * to redo the trans_no_join checks above
85 		 */
86 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
87 		cur_trans = root->fs_info->running_transaction;
88 		goto loop;
89 	}
90 
91 	atomic_set(&cur_trans->num_writers, 1);
92 	cur_trans->num_joined = 0;
93 	init_waitqueue_head(&cur_trans->writer_wait);
94 	init_waitqueue_head(&cur_trans->commit_wait);
95 	cur_trans->in_commit = 0;
96 	cur_trans->blocked = 0;
97 	/*
98 	 * One for this trans handle, one so it will live on until we
99 	 * commit the transaction.
100 	 */
101 	atomic_set(&cur_trans->use_count, 2);
102 	cur_trans->commit_done = 0;
103 	cur_trans->start_time = get_seconds();
104 
105 	cur_trans->delayed_refs.root = RB_ROOT;
106 	cur_trans->delayed_refs.num_entries = 0;
107 	cur_trans->delayed_refs.num_heads_ready = 0;
108 	cur_trans->delayed_refs.num_heads = 0;
109 	cur_trans->delayed_refs.flushing = 0;
110 	cur_trans->delayed_refs.run_delayed_start = 0;
111 	spin_lock_init(&cur_trans->commit_lock);
112 	spin_lock_init(&cur_trans->delayed_refs.lock);
113 
114 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
115 	list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
116 	extent_io_tree_init(&cur_trans->dirty_pages,
117 			     root->fs_info->btree_inode->i_mapping);
118 	root->fs_info->generation++;
119 	cur_trans->transid = root->fs_info->generation;
120 	root->fs_info->running_transaction = cur_trans;
121 	spin_unlock(&root->fs_info->trans_lock);
122 
123 	return 0;
124 }
125 
126 /*
127  * this does all the record keeping required to make sure that a reference
128  * counted root is properly recorded in a given transaction.  This is required
129  * to make sure the old root from before we joined the transaction is deleted
130  * when the transaction commits
131  */
132 static int record_root_in_trans(struct btrfs_trans_handle *trans,
133 			       struct btrfs_root *root)
134 {
135 	if (root->ref_cows && root->last_trans < trans->transid) {
136 		WARN_ON(root == root->fs_info->extent_root);
137 		WARN_ON(root->commit_root != root->node);
138 
139 		/*
140 		 * see below for in_trans_setup usage rules
141 		 * we have the reloc mutex held now, so there
142 		 * is only one writer in this function
143 		 */
144 		root->in_trans_setup = 1;
145 
146 		/* make sure readers find in_trans_setup before
147 		 * they find our root->last_trans update
148 		 */
149 		smp_wmb();
150 
151 		spin_lock(&root->fs_info->fs_roots_radix_lock);
152 		if (root->last_trans == trans->transid) {
153 			spin_unlock(&root->fs_info->fs_roots_radix_lock);
154 			return 0;
155 		}
156 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
157 			   (unsigned long)root->root_key.objectid,
158 			   BTRFS_ROOT_TRANS_TAG);
159 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
160 		root->last_trans = trans->transid;
161 
162 		/* this is pretty tricky.  We don't want to
163 		 * take the relocation lock in btrfs_record_root_in_trans
164 		 * unless we're really doing the first setup for this root in
165 		 * this transaction.
166 		 *
167 		 * Normally we'd use root->last_trans as a flag to decide
168 		 * if we want to take the expensive mutex.
169 		 *
170 		 * But, we have to set root->last_trans before we
171 		 * init the relocation root, otherwise, we trip over warnings
172 		 * in ctree.c.  The solution used here is to flag ourselves
173 		 * with root->in_trans_setup.  When this is 1, we're still
174 		 * fixing up the reloc trees and everyone must wait.
175 		 *
176 		 * When this is zero, they can trust root->last_trans and fly
177 		 * through btrfs_record_root_in_trans without having to take the
178 		 * lock.  smp_wmb() makes sure that all the writes above are
179 		 * done before we pop in the zero below
180 		 */
181 		btrfs_init_reloc_root(trans, root);
182 		smp_wmb();
183 		root->in_trans_setup = 0;
184 	}
185 	return 0;
186 }
187 
188 
189 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
190 			       struct btrfs_root *root)
191 {
192 	if (!root->ref_cows)
193 		return 0;
194 
195 	/*
196 	 * see record_root_in_trans for comments about in_trans_setup usage
197 	 * and barriers
198 	 */
199 	smp_rmb();
200 	if (root->last_trans == trans->transid &&
201 	    !root->in_trans_setup)
202 		return 0;
203 
204 	mutex_lock(&root->fs_info->reloc_mutex);
205 	record_root_in_trans(trans, root);
206 	mutex_unlock(&root->fs_info->reloc_mutex);
207 
208 	return 0;
209 }
210 
211 /* wait for commit against the current transaction to become unblocked
212  * when this is done, it is safe to start a new transaction, but the current
213  * transaction might not be fully on disk.
214  */
215 static void wait_current_trans(struct btrfs_root *root)
216 {
217 	struct btrfs_transaction *cur_trans;
218 
219 	spin_lock(&root->fs_info->trans_lock);
220 	cur_trans = root->fs_info->running_transaction;
221 	if (cur_trans && cur_trans->blocked) {
222 		atomic_inc(&cur_trans->use_count);
223 		spin_unlock(&root->fs_info->trans_lock);
224 
225 		wait_event(root->fs_info->transaction_wait,
226 			   !cur_trans->blocked);
227 		put_transaction(cur_trans);
228 	} else {
229 		spin_unlock(&root->fs_info->trans_lock);
230 	}
231 }
232 
233 enum btrfs_trans_type {
234 	TRANS_START,
235 	TRANS_JOIN,
236 	TRANS_USERSPACE,
237 	TRANS_JOIN_NOLOCK,
238 };
239 
240 static int may_wait_transaction(struct btrfs_root *root, int type)
241 {
242 	if (root->fs_info->log_root_recovering)
243 		return 0;
244 
245 	if (type == TRANS_USERSPACE)
246 		return 1;
247 
248 	if (type == TRANS_START &&
249 	    !atomic_read(&root->fs_info->open_ioctl_trans))
250 		return 1;
251 
252 	return 0;
253 }
254 
255 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
256 						    u64 num_items, int type)
257 {
258 	struct btrfs_trans_handle *h;
259 	struct btrfs_transaction *cur_trans;
260 	u64 num_bytes = 0;
261 	int ret;
262 
263 	if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
264 		return ERR_PTR(-EROFS);
265 
266 	if (current->journal_info) {
267 		WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
268 		h = current->journal_info;
269 		h->use_count++;
270 		h->orig_rsv = h->block_rsv;
271 		h->block_rsv = NULL;
272 		goto got_it;
273 	}
274 
275 	/*
276 	 * Do the reservation before we join the transaction so we can do all
277 	 * the appropriate flushing if need be.
278 	 */
279 	if (num_items > 0 && root != root->fs_info->chunk_root) {
280 		num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
281 		ret = btrfs_block_rsv_add(root,
282 					  &root->fs_info->trans_block_rsv,
283 					  num_bytes);
284 		if (ret)
285 			return ERR_PTR(ret);
286 	}
287 again:
288 	h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
289 	if (!h)
290 		return ERR_PTR(-ENOMEM);
291 
292 	if (may_wait_transaction(root, type))
293 		wait_current_trans(root);
294 
295 	do {
296 		ret = join_transaction(root, type == TRANS_JOIN_NOLOCK);
297 		if (ret == -EBUSY)
298 			wait_current_trans(root);
299 	} while (ret == -EBUSY);
300 
301 	if (ret < 0) {
302 		kmem_cache_free(btrfs_trans_handle_cachep, h);
303 		return ERR_PTR(ret);
304 	}
305 
306 	cur_trans = root->fs_info->running_transaction;
307 
308 	h->transid = cur_trans->transid;
309 	h->transaction = cur_trans;
310 	h->blocks_used = 0;
311 	h->bytes_reserved = 0;
312 	h->delayed_ref_updates = 0;
313 	h->use_count = 1;
314 	h->block_rsv = NULL;
315 	h->orig_rsv = NULL;
316 
317 	smp_mb();
318 	if (cur_trans->blocked && may_wait_transaction(root, type)) {
319 		btrfs_commit_transaction(h, root);
320 		goto again;
321 	}
322 
323 	if (num_bytes) {
324 		h->block_rsv = &root->fs_info->trans_block_rsv;
325 		h->bytes_reserved = num_bytes;
326 	}
327 
328 got_it:
329 	btrfs_record_root_in_trans(h, root);
330 
331 	if (!current->journal_info && type != TRANS_USERSPACE)
332 		current->journal_info = h;
333 	return h;
334 }
335 
336 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
337 						   int num_items)
338 {
339 	return start_transaction(root, num_items, TRANS_START);
340 }
341 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
342 {
343 	return start_transaction(root, 0, TRANS_JOIN);
344 }
345 
346 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
347 {
348 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
349 }
350 
351 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
352 {
353 	return start_transaction(root, 0, TRANS_USERSPACE);
354 }
355 
356 /* wait for a transaction commit to be fully complete */
357 static noinline void wait_for_commit(struct btrfs_root *root,
358 				    struct btrfs_transaction *commit)
359 {
360 	wait_event(commit->commit_wait, commit->commit_done);
361 }
362 
363 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
364 {
365 	struct btrfs_transaction *cur_trans = NULL, *t;
366 	int ret;
367 
368 	ret = 0;
369 	if (transid) {
370 		if (transid <= root->fs_info->last_trans_committed)
371 			goto out;
372 
373 		/* find specified transaction */
374 		spin_lock(&root->fs_info->trans_lock);
375 		list_for_each_entry(t, &root->fs_info->trans_list, list) {
376 			if (t->transid == transid) {
377 				cur_trans = t;
378 				atomic_inc(&cur_trans->use_count);
379 				break;
380 			}
381 			if (t->transid > transid)
382 				break;
383 		}
384 		spin_unlock(&root->fs_info->trans_lock);
385 		ret = -EINVAL;
386 		if (!cur_trans)
387 			goto out;  /* bad transid */
388 	} else {
389 		/* find newest transaction that is committing | committed */
390 		spin_lock(&root->fs_info->trans_lock);
391 		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
392 					    list) {
393 			if (t->in_commit) {
394 				if (t->commit_done)
395 					break;
396 				cur_trans = t;
397 				atomic_inc(&cur_trans->use_count);
398 				break;
399 			}
400 		}
401 		spin_unlock(&root->fs_info->trans_lock);
402 		if (!cur_trans)
403 			goto out;  /* nothing committing|committed */
404 	}
405 
406 	wait_for_commit(root, cur_trans);
407 
408 	put_transaction(cur_trans);
409 	ret = 0;
410 out:
411 	return ret;
412 }
413 
414 void btrfs_throttle(struct btrfs_root *root)
415 {
416 	if (!atomic_read(&root->fs_info->open_ioctl_trans))
417 		wait_current_trans(root);
418 }
419 
420 static int should_end_transaction(struct btrfs_trans_handle *trans,
421 				  struct btrfs_root *root)
422 {
423 	int ret;
424 
425 	ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
426 	return ret ? 1 : 0;
427 }
428 
429 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
430 				 struct btrfs_root *root)
431 {
432 	struct btrfs_transaction *cur_trans = trans->transaction;
433 	struct btrfs_block_rsv *rsv = trans->block_rsv;
434 	int updates;
435 
436 	smp_mb();
437 	if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
438 		return 1;
439 
440 	/*
441 	 * We need to do this in case we're deleting csums so the global block
442 	 * rsv get's used instead of the csum block rsv.
443 	 */
444 	trans->block_rsv = NULL;
445 
446 	updates = trans->delayed_ref_updates;
447 	trans->delayed_ref_updates = 0;
448 	if (updates)
449 		btrfs_run_delayed_refs(trans, root, updates);
450 
451 	trans->block_rsv = rsv;
452 
453 	return should_end_transaction(trans, root);
454 }
455 
456 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
457 			  struct btrfs_root *root, int throttle, int lock)
458 {
459 	struct btrfs_transaction *cur_trans = trans->transaction;
460 	struct btrfs_fs_info *info = root->fs_info;
461 	int count = 0;
462 
463 	if (--trans->use_count) {
464 		trans->block_rsv = trans->orig_rsv;
465 		return 0;
466 	}
467 
468 	btrfs_trans_release_metadata(trans, root);
469 	trans->block_rsv = NULL;
470 	while (count < 4) {
471 		unsigned long cur = trans->delayed_ref_updates;
472 		trans->delayed_ref_updates = 0;
473 		if (cur &&
474 		    trans->transaction->delayed_refs.num_heads_ready > 64) {
475 			trans->delayed_ref_updates = 0;
476 
477 			/*
478 			 * do a full flush if the transaction is trying
479 			 * to close
480 			 */
481 			if (trans->transaction->delayed_refs.flushing)
482 				cur = 0;
483 			btrfs_run_delayed_refs(trans, root, cur);
484 		} else {
485 			break;
486 		}
487 		count++;
488 	}
489 
490 	if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
491 	    should_end_transaction(trans, root)) {
492 		trans->transaction->blocked = 1;
493 		smp_wmb();
494 	}
495 
496 	if (lock && cur_trans->blocked && !cur_trans->in_commit) {
497 		if (throttle) {
498 			/*
499 			 * We may race with somebody else here so end up having
500 			 * to call end_transaction on ourselves again, so inc
501 			 * our use_count.
502 			 */
503 			trans->use_count++;
504 			return btrfs_commit_transaction(trans, root);
505 		} else {
506 			wake_up_process(info->transaction_kthread);
507 		}
508 	}
509 
510 	WARN_ON(cur_trans != info->running_transaction);
511 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
512 	atomic_dec(&cur_trans->num_writers);
513 
514 	smp_mb();
515 	if (waitqueue_active(&cur_trans->writer_wait))
516 		wake_up(&cur_trans->writer_wait);
517 	put_transaction(cur_trans);
518 
519 	if (current->journal_info == trans)
520 		current->journal_info = NULL;
521 	memset(trans, 0, sizeof(*trans));
522 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
523 
524 	if (throttle)
525 		btrfs_run_delayed_iputs(root);
526 
527 	return 0;
528 }
529 
530 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
531 			  struct btrfs_root *root)
532 {
533 	int ret;
534 
535 	ret = __btrfs_end_transaction(trans, root, 0, 1);
536 	if (ret)
537 		return ret;
538 	return 0;
539 }
540 
541 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
542 				   struct btrfs_root *root)
543 {
544 	int ret;
545 
546 	ret = __btrfs_end_transaction(trans, root, 1, 1);
547 	if (ret)
548 		return ret;
549 	return 0;
550 }
551 
552 int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
553 				 struct btrfs_root *root)
554 {
555 	int ret;
556 
557 	ret = __btrfs_end_transaction(trans, root, 0, 0);
558 	if (ret)
559 		return ret;
560 	return 0;
561 }
562 
563 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
564 				struct btrfs_root *root)
565 {
566 	return __btrfs_end_transaction(trans, root, 1, 1);
567 }
568 
569 /*
570  * when btree blocks are allocated, they have some corresponding bits set for
571  * them in one of two extent_io trees.  This is used to make sure all of
572  * those extents are sent to disk but does not wait on them
573  */
574 int btrfs_write_marked_extents(struct btrfs_root *root,
575 			       struct extent_io_tree *dirty_pages, int mark)
576 {
577 	int err = 0;
578 	int werr = 0;
579 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
580 	u64 start = 0;
581 	u64 end;
582 
583 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
584 				      mark)) {
585 		convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, mark,
586 				   GFP_NOFS);
587 		err = filemap_fdatawrite_range(mapping, start, end);
588 		if (err)
589 			werr = err;
590 		cond_resched();
591 		start = end + 1;
592 	}
593 	if (err)
594 		werr = err;
595 	return werr;
596 }
597 
598 /*
599  * when btree blocks are allocated, they have some corresponding bits set for
600  * them in one of two extent_io trees.  This is used to make sure all of
601  * those extents are on disk for transaction or log commit.  We wait
602  * on all the pages and clear them from the dirty pages state tree
603  */
604 int btrfs_wait_marked_extents(struct btrfs_root *root,
605 			      struct extent_io_tree *dirty_pages, int mark)
606 {
607 	int err = 0;
608 	int werr = 0;
609 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
610 	u64 start = 0;
611 	u64 end;
612 
613 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
614 				      EXTENT_NEED_WAIT)) {
615 		clear_extent_bits(dirty_pages, start, end, EXTENT_NEED_WAIT, GFP_NOFS);
616 		err = filemap_fdatawait_range(mapping, start, end);
617 		if (err)
618 			werr = err;
619 		cond_resched();
620 		start = end + 1;
621 	}
622 	if (err)
623 		werr = err;
624 	return werr;
625 }
626 
627 /*
628  * when btree blocks are allocated, they have some corresponding bits set for
629  * them in one of two extent_io trees.  This is used to make sure all of
630  * those extents are on disk for transaction or log commit
631  */
632 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
633 				struct extent_io_tree *dirty_pages, int mark)
634 {
635 	int ret;
636 	int ret2;
637 
638 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
639 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
640 
641 	if (ret)
642 		return ret;
643 	if (ret2)
644 		return ret2;
645 	return 0;
646 }
647 
648 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
649 				     struct btrfs_root *root)
650 {
651 	if (!trans || !trans->transaction) {
652 		struct inode *btree_inode;
653 		btree_inode = root->fs_info->btree_inode;
654 		return filemap_write_and_wait(btree_inode->i_mapping);
655 	}
656 	return btrfs_write_and_wait_marked_extents(root,
657 					   &trans->transaction->dirty_pages,
658 					   EXTENT_DIRTY);
659 }
660 
661 /*
662  * this is used to update the root pointer in the tree of tree roots.
663  *
664  * But, in the case of the extent allocation tree, updating the root
665  * pointer may allocate blocks which may change the root of the extent
666  * allocation tree.
667  *
668  * So, this loops and repeats and makes sure the cowonly root didn't
669  * change while the root pointer was being updated in the metadata.
670  */
671 static int update_cowonly_root(struct btrfs_trans_handle *trans,
672 			       struct btrfs_root *root)
673 {
674 	int ret;
675 	u64 old_root_bytenr;
676 	u64 old_root_used;
677 	struct btrfs_root *tree_root = root->fs_info->tree_root;
678 
679 	old_root_used = btrfs_root_used(&root->root_item);
680 	btrfs_write_dirty_block_groups(trans, root);
681 
682 	while (1) {
683 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
684 		if (old_root_bytenr == root->node->start &&
685 		    old_root_used == btrfs_root_used(&root->root_item))
686 			break;
687 
688 		btrfs_set_root_node(&root->root_item, root->node);
689 		ret = btrfs_update_root(trans, tree_root,
690 					&root->root_key,
691 					&root->root_item);
692 		BUG_ON(ret);
693 
694 		old_root_used = btrfs_root_used(&root->root_item);
695 		ret = btrfs_write_dirty_block_groups(trans, root);
696 		BUG_ON(ret);
697 	}
698 
699 	if (root != root->fs_info->extent_root)
700 		switch_commit_root(root);
701 
702 	return 0;
703 }
704 
705 /*
706  * update all the cowonly tree roots on disk
707  */
708 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
709 					 struct btrfs_root *root)
710 {
711 	struct btrfs_fs_info *fs_info = root->fs_info;
712 	struct list_head *next;
713 	struct extent_buffer *eb;
714 	int ret;
715 
716 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
717 	BUG_ON(ret);
718 
719 	eb = btrfs_lock_root_node(fs_info->tree_root);
720 	btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
721 	btrfs_tree_unlock(eb);
722 	free_extent_buffer(eb);
723 
724 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
725 	BUG_ON(ret);
726 
727 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
728 		next = fs_info->dirty_cowonly_roots.next;
729 		list_del_init(next);
730 		root = list_entry(next, struct btrfs_root, dirty_list);
731 
732 		update_cowonly_root(trans, root);
733 	}
734 
735 	down_write(&fs_info->extent_commit_sem);
736 	switch_commit_root(fs_info->extent_root);
737 	up_write(&fs_info->extent_commit_sem);
738 
739 	return 0;
740 }
741 
742 /*
743  * dead roots are old snapshots that need to be deleted.  This allocates
744  * a dirty root struct and adds it into the list of dead roots that need to
745  * be deleted
746  */
747 int btrfs_add_dead_root(struct btrfs_root *root)
748 {
749 	spin_lock(&root->fs_info->trans_lock);
750 	list_add(&root->root_list, &root->fs_info->dead_roots);
751 	spin_unlock(&root->fs_info->trans_lock);
752 	return 0;
753 }
754 
755 /*
756  * update all the cowonly tree roots on disk
757  */
758 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
759 				    struct btrfs_root *root)
760 {
761 	struct btrfs_root *gang[8];
762 	struct btrfs_fs_info *fs_info = root->fs_info;
763 	int i;
764 	int ret;
765 	int err = 0;
766 
767 	spin_lock(&fs_info->fs_roots_radix_lock);
768 	while (1) {
769 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
770 						 (void **)gang, 0,
771 						 ARRAY_SIZE(gang),
772 						 BTRFS_ROOT_TRANS_TAG);
773 		if (ret == 0)
774 			break;
775 		for (i = 0; i < ret; i++) {
776 			root = gang[i];
777 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
778 					(unsigned long)root->root_key.objectid,
779 					BTRFS_ROOT_TRANS_TAG);
780 			spin_unlock(&fs_info->fs_roots_radix_lock);
781 
782 			btrfs_free_log(trans, root);
783 			btrfs_update_reloc_root(trans, root);
784 			btrfs_orphan_commit_root(trans, root);
785 
786 			btrfs_save_ino_cache(root, trans);
787 
788 			if (root->commit_root != root->node) {
789 				mutex_lock(&root->fs_commit_mutex);
790 				switch_commit_root(root);
791 				btrfs_unpin_free_ino(root);
792 				mutex_unlock(&root->fs_commit_mutex);
793 
794 				btrfs_set_root_node(&root->root_item,
795 						    root->node);
796 			}
797 
798 			err = btrfs_update_root(trans, fs_info->tree_root,
799 						&root->root_key,
800 						&root->root_item);
801 			spin_lock(&fs_info->fs_roots_radix_lock);
802 			if (err)
803 				break;
804 		}
805 	}
806 	spin_unlock(&fs_info->fs_roots_radix_lock);
807 	return err;
808 }
809 
810 /*
811  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
812  * otherwise every leaf in the btree is read and defragged.
813  */
814 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
815 {
816 	struct btrfs_fs_info *info = root->fs_info;
817 	struct btrfs_trans_handle *trans;
818 	int ret;
819 	unsigned long nr;
820 
821 	if (xchg(&root->defrag_running, 1))
822 		return 0;
823 
824 	while (1) {
825 		trans = btrfs_start_transaction(root, 0);
826 		if (IS_ERR(trans))
827 			return PTR_ERR(trans);
828 
829 		ret = btrfs_defrag_leaves(trans, root, cacheonly);
830 
831 		nr = trans->blocks_used;
832 		btrfs_end_transaction(trans, root);
833 		btrfs_btree_balance_dirty(info->tree_root, nr);
834 		cond_resched();
835 
836 		if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
837 			break;
838 	}
839 	root->defrag_running = 0;
840 	return ret;
841 }
842 
843 /*
844  * new snapshots need to be created at a very specific time in the
845  * transaction commit.  This does the actual creation
846  */
847 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
848 				   struct btrfs_fs_info *fs_info,
849 				   struct btrfs_pending_snapshot *pending)
850 {
851 	struct btrfs_key key;
852 	struct btrfs_root_item *new_root_item;
853 	struct btrfs_root *tree_root = fs_info->tree_root;
854 	struct btrfs_root *root = pending->root;
855 	struct btrfs_root *parent_root;
856 	struct btrfs_block_rsv *rsv;
857 	struct inode *parent_inode;
858 	struct dentry *parent;
859 	struct dentry *dentry;
860 	struct extent_buffer *tmp;
861 	struct extent_buffer *old;
862 	int ret;
863 	u64 to_reserve = 0;
864 	u64 index = 0;
865 	u64 objectid;
866 	u64 root_flags;
867 
868 	rsv = trans->block_rsv;
869 
870 	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
871 	if (!new_root_item) {
872 		pending->error = -ENOMEM;
873 		goto fail;
874 	}
875 
876 	ret = btrfs_find_free_objectid(tree_root, &objectid);
877 	if (ret) {
878 		pending->error = ret;
879 		goto fail;
880 	}
881 
882 	btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
883 
884 	if (to_reserve > 0) {
885 		ret = btrfs_block_rsv_add_noflush(root, &pending->block_rsv,
886 						  to_reserve);
887 		if (ret) {
888 			pending->error = ret;
889 			goto fail;
890 		}
891 	}
892 
893 	key.objectid = objectid;
894 	key.offset = (u64)-1;
895 	key.type = BTRFS_ROOT_ITEM_KEY;
896 
897 	trans->block_rsv = &pending->block_rsv;
898 
899 	dentry = pending->dentry;
900 	parent = dget_parent(dentry);
901 	parent_inode = parent->d_inode;
902 	parent_root = BTRFS_I(parent_inode)->root;
903 	record_root_in_trans(trans, parent_root);
904 
905 	/*
906 	 * insert the directory item
907 	 */
908 	ret = btrfs_set_inode_index(parent_inode, &index);
909 	BUG_ON(ret);
910 	ret = btrfs_insert_dir_item(trans, parent_root,
911 				dentry->d_name.name, dentry->d_name.len,
912 				parent_inode, &key,
913 				BTRFS_FT_DIR, index);
914 	BUG_ON(ret);
915 
916 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
917 					 dentry->d_name.len * 2);
918 	ret = btrfs_update_inode(trans, parent_root, parent_inode);
919 	BUG_ON(ret);
920 
921 	/*
922 	 * pull in the delayed directory update
923 	 * and the delayed inode item
924 	 * otherwise we corrupt the FS during
925 	 * snapshot
926 	 */
927 	ret = btrfs_run_delayed_items(trans, root);
928 	BUG_ON(ret);
929 
930 	record_root_in_trans(trans, root);
931 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
932 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
933 	btrfs_check_and_init_root_item(new_root_item);
934 
935 	root_flags = btrfs_root_flags(new_root_item);
936 	if (pending->readonly)
937 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
938 	else
939 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
940 	btrfs_set_root_flags(new_root_item, root_flags);
941 
942 	old = btrfs_lock_root_node(root);
943 	btrfs_cow_block(trans, root, old, NULL, 0, &old);
944 	btrfs_set_lock_blocking(old);
945 
946 	btrfs_copy_root(trans, root, old, &tmp, objectid);
947 	btrfs_tree_unlock(old);
948 	free_extent_buffer(old);
949 
950 	btrfs_set_root_node(new_root_item, tmp);
951 	/* record when the snapshot was created in key.offset */
952 	key.offset = trans->transid;
953 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
954 	btrfs_tree_unlock(tmp);
955 	free_extent_buffer(tmp);
956 	BUG_ON(ret);
957 
958 	/*
959 	 * insert root back/forward references
960 	 */
961 	ret = btrfs_add_root_ref(trans, tree_root, objectid,
962 				 parent_root->root_key.objectid,
963 				 btrfs_ino(parent_inode), index,
964 				 dentry->d_name.name, dentry->d_name.len);
965 	BUG_ON(ret);
966 	dput(parent);
967 
968 	key.offset = (u64)-1;
969 	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
970 	BUG_ON(IS_ERR(pending->snap));
971 
972 	btrfs_reloc_post_snapshot(trans, pending);
973 fail:
974 	kfree(new_root_item);
975 	trans->block_rsv = rsv;
976 	btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
977 	return 0;
978 }
979 
980 /*
981  * create all the snapshots we've scheduled for creation
982  */
983 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
984 					     struct btrfs_fs_info *fs_info)
985 {
986 	struct btrfs_pending_snapshot *pending;
987 	struct list_head *head = &trans->transaction->pending_snapshots;
988 	int ret;
989 
990 	list_for_each_entry(pending, head, list) {
991 		ret = create_pending_snapshot(trans, fs_info, pending);
992 		BUG_ON(ret);
993 	}
994 	return 0;
995 }
996 
997 static void update_super_roots(struct btrfs_root *root)
998 {
999 	struct btrfs_root_item *root_item;
1000 	struct btrfs_super_block *super;
1001 
1002 	super = root->fs_info->super_copy;
1003 
1004 	root_item = &root->fs_info->chunk_root->root_item;
1005 	super->chunk_root = root_item->bytenr;
1006 	super->chunk_root_generation = root_item->generation;
1007 	super->chunk_root_level = root_item->level;
1008 
1009 	root_item = &root->fs_info->tree_root->root_item;
1010 	super->root = root_item->bytenr;
1011 	super->generation = root_item->generation;
1012 	super->root_level = root_item->level;
1013 	if (btrfs_test_opt(root, SPACE_CACHE))
1014 		super->cache_generation = root_item->generation;
1015 }
1016 
1017 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1018 {
1019 	int ret = 0;
1020 	spin_lock(&info->trans_lock);
1021 	if (info->running_transaction)
1022 		ret = info->running_transaction->in_commit;
1023 	spin_unlock(&info->trans_lock);
1024 	return ret;
1025 }
1026 
1027 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1028 {
1029 	int ret = 0;
1030 	spin_lock(&info->trans_lock);
1031 	if (info->running_transaction)
1032 		ret = info->running_transaction->blocked;
1033 	spin_unlock(&info->trans_lock);
1034 	return ret;
1035 }
1036 
1037 /*
1038  * wait for the current transaction commit to start and block subsequent
1039  * transaction joins
1040  */
1041 static void wait_current_trans_commit_start(struct btrfs_root *root,
1042 					    struct btrfs_transaction *trans)
1043 {
1044 	wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1045 }
1046 
1047 /*
1048  * wait for the current transaction to start and then become unblocked.
1049  * caller holds ref.
1050  */
1051 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1052 					 struct btrfs_transaction *trans)
1053 {
1054 	wait_event(root->fs_info->transaction_wait,
1055 		   trans->commit_done || (trans->in_commit && !trans->blocked));
1056 }
1057 
1058 /*
1059  * commit transactions asynchronously. once btrfs_commit_transaction_async
1060  * returns, any subsequent transaction will not be allowed to join.
1061  */
1062 struct btrfs_async_commit {
1063 	struct btrfs_trans_handle *newtrans;
1064 	struct btrfs_root *root;
1065 	struct delayed_work work;
1066 };
1067 
1068 static void do_async_commit(struct work_struct *work)
1069 {
1070 	struct btrfs_async_commit *ac =
1071 		container_of(work, struct btrfs_async_commit, work.work);
1072 
1073 	btrfs_commit_transaction(ac->newtrans, ac->root);
1074 	kfree(ac);
1075 }
1076 
1077 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1078 				   struct btrfs_root *root,
1079 				   int wait_for_unblock)
1080 {
1081 	struct btrfs_async_commit *ac;
1082 	struct btrfs_transaction *cur_trans;
1083 
1084 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1085 	if (!ac)
1086 		return -ENOMEM;
1087 
1088 	INIT_DELAYED_WORK(&ac->work, do_async_commit);
1089 	ac->root = root;
1090 	ac->newtrans = btrfs_join_transaction(root);
1091 	if (IS_ERR(ac->newtrans)) {
1092 		int err = PTR_ERR(ac->newtrans);
1093 		kfree(ac);
1094 		return err;
1095 	}
1096 
1097 	/* take transaction reference */
1098 	cur_trans = trans->transaction;
1099 	atomic_inc(&cur_trans->use_count);
1100 
1101 	btrfs_end_transaction(trans, root);
1102 	schedule_delayed_work(&ac->work, 0);
1103 
1104 	/* wait for transaction to start and unblock */
1105 	if (wait_for_unblock)
1106 		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1107 	else
1108 		wait_current_trans_commit_start(root, cur_trans);
1109 
1110 	if (current->journal_info == trans)
1111 		current->journal_info = NULL;
1112 
1113 	put_transaction(cur_trans);
1114 	return 0;
1115 }
1116 
1117 /*
1118  * btrfs_transaction state sequence:
1119  *    in_commit = 0, blocked = 0  (initial)
1120  *    in_commit = 1, blocked = 1
1121  *    blocked = 0
1122  *    commit_done = 1
1123  */
1124 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1125 			     struct btrfs_root *root)
1126 {
1127 	unsigned long joined = 0;
1128 	struct btrfs_transaction *cur_trans;
1129 	struct btrfs_transaction *prev_trans = NULL;
1130 	DEFINE_WAIT(wait);
1131 	int ret;
1132 	int should_grow = 0;
1133 	unsigned long now = get_seconds();
1134 	int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1135 
1136 	btrfs_run_ordered_operations(root, 0);
1137 
1138 	btrfs_trans_release_metadata(trans, root);
1139 	trans->block_rsv = NULL;
1140 
1141 	/* make a pass through all the delayed refs we have so far
1142 	 * any runnings procs may add more while we are here
1143 	 */
1144 	ret = btrfs_run_delayed_refs(trans, root, 0);
1145 	BUG_ON(ret);
1146 
1147 	cur_trans = trans->transaction;
1148 	/*
1149 	 * set the flushing flag so procs in this transaction have to
1150 	 * start sending their work down.
1151 	 */
1152 	cur_trans->delayed_refs.flushing = 1;
1153 
1154 	ret = btrfs_run_delayed_refs(trans, root, 0);
1155 	BUG_ON(ret);
1156 
1157 	spin_lock(&cur_trans->commit_lock);
1158 	if (cur_trans->in_commit) {
1159 		spin_unlock(&cur_trans->commit_lock);
1160 		atomic_inc(&cur_trans->use_count);
1161 		btrfs_end_transaction(trans, root);
1162 
1163 		wait_for_commit(root, cur_trans);
1164 
1165 		put_transaction(cur_trans);
1166 
1167 		return 0;
1168 	}
1169 
1170 	trans->transaction->in_commit = 1;
1171 	trans->transaction->blocked = 1;
1172 	spin_unlock(&cur_trans->commit_lock);
1173 	wake_up(&root->fs_info->transaction_blocked_wait);
1174 
1175 	spin_lock(&root->fs_info->trans_lock);
1176 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
1177 		prev_trans = list_entry(cur_trans->list.prev,
1178 					struct btrfs_transaction, list);
1179 		if (!prev_trans->commit_done) {
1180 			atomic_inc(&prev_trans->use_count);
1181 			spin_unlock(&root->fs_info->trans_lock);
1182 
1183 			wait_for_commit(root, prev_trans);
1184 
1185 			put_transaction(prev_trans);
1186 		} else {
1187 			spin_unlock(&root->fs_info->trans_lock);
1188 		}
1189 	} else {
1190 		spin_unlock(&root->fs_info->trans_lock);
1191 	}
1192 
1193 	if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
1194 		should_grow = 1;
1195 
1196 	do {
1197 		int snap_pending = 0;
1198 
1199 		joined = cur_trans->num_joined;
1200 		if (!list_empty(&trans->transaction->pending_snapshots))
1201 			snap_pending = 1;
1202 
1203 		WARN_ON(cur_trans != trans->transaction);
1204 
1205 		if (flush_on_commit || snap_pending) {
1206 			btrfs_start_delalloc_inodes(root, 1);
1207 			ret = btrfs_wait_ordered_extents(root, 0, 1);
1208 			BUG_ON(ret);
1209 		}
1210 
1211 		ret = btrfs_run_delayed_items(trans, root);
1212 		BUG_ON(ret);
1213 
1214 		/*
1215 		 * rename don't use btrfs_join_transaction, so, once we
1216 		 * set the transaction to blocked above, we aren't going
1217 		 * to get any new ordered operations.  We can safely run
1218 		 * it here and no for sure that nothing new will be added
1219 		 * to the list
1220 		 */
1221 		btrfs_run_ordered_operations(root, 1);
1222 
1223 		prepare_to_wait(&cur_trans->writer_wait, &wait,
1224 				TASK_UNINTERRUPTIBLE);
1225 
1226 		if (atomic_read(&cur_trans->num_writers) > 1)
1227 			schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1228 		else if (should_grow)
1229 			schedule_timeout(1);
1230 
1231 		finish_wait(&cur_trans->writer_wait, &wait);
1232 	} while (atomic_read(&cur_trans->num_writers) > 1 ||
1233 		 (should_grow && cur_trans->num_joined != joined));
1234 
1235 	/*
1236 	 * Ok now we need to make sure to block out any other joins while we
1237 	 * commit the transaction.  We could have started a join before setting
1238 	 * no_join so make sure to wait for num_writers to == 1 again.
1239 	 */
1240 	spin_lock(&root->fs_info->trans_lock);
1241 	root->fs_info->trans_no_join = 1;
1242 	spin_unlock(&root->fs_info->trans_lock);
1243 	wait_event(cur_trans->writer_wait,
1244 		   atomic_read(&cur_trans->num_writers) == 1);
1245 
1246 	/*
1247 	 * the reloc mutex makes sure that we stop
1248 	 * the balancing code from coming in and moving
1249 	 * extents around in the middle of the commit
1250 	 */
1251 	mutex_lock(&root->fs_info->reloc_mutex);
1252 
1253 	ret = btrfs_run_delayed_items(trans, root);
1254 	BUG_ON(ret);
1255 
1256 	ret = create_pending_snapshots(trans, root->fs_info);
1257 	BUG_ON(ret);
1258 
1259 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1260 	BUG_ON(ret);
1261 
1262 	/*
1263 	 * make sure none of the code above managed to slip in a
1264 	 * delayed item
1265 	 */
1266 	btrfs_assert_delayed_root_empty(root);
1267 
1268 	WARN_ON(cur_trans != trans->transaction);
1269 
1270 	btrfs_scrub_pause(root);
1271 	/* btrfs_commit_tree_roots is responsible for getting the
1272 	 * various roots consistent with each other.  Every pointer
1273 	 * in the tree of tree roots has to point to the most up to date
1274 	 * root for every subvolume and other tree.  So, we have to keep
1275 	 * the tree logging code from jumping in and changing any
1276 	 * of the trees.
1277 	 *
1278 	 * At this point in the commit, there can't be any tree-log
1279 	 * writers, but a little lower down we drop the trans mutex
1280 	 * and let new people in.  By holding the tree_log_mutex
1281 	 * from now until after the super is written, we avoid races
1282 	 * with the tree-log code.
1283 	 */
1284 	mutex_lock(&root->fs_info->tree_log_mutex);
1285 
1286 	ret = commit_fs_roots(trans, root);
1287 	BUG_ON(ret);
1288 
1289 	/* commit_fs_roots gets rid of all the tree log roots, it is now
1290 	 * safe to free the root of tree log roots
1291 	 */
1292 	btrfs_free_log_root_tree(trans, root->fs_info);
1293 
1294 	ret = commit_cowonly_roots(trans, root);
1295 	BUG_ON(ret);
1296 
1297 	btrfs_prepare_extent_commit(trans, root);
1298 
1299 	cur_trans = root->fs_info->running_transaction;
1300 
1301 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1302 			    root->fs_info->tree_root->node);
1303 	switch_commit_root(root->fs_info->tree_root);
1304 
1305 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1306 			    root->fs_info->chunk_root->node);
1307 	switch_commit_root(root->fs_info->chunk_root);
1308 
1309 	update_super_roots(root);
1310 
1311 	if (!root->fs_info->log_root_recovering) {
1312 		btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1313 		btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1314 	}
1315 
1316 	memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1317 	       sizeof(*root->fs_info->super_copy));
1318 
1319 	trans->transaction->blocked = 0;
1320 	spin_lock(&root->fs_info->trans_lock);
1321 	root->fs_info->running_transaction = NULL;
1322 	root->fs_info->trans_no_join = 0;
1323 	spin_unlock(&root->fs_info->trans_lock);
1324 	mutex_unlock(&root->fs_info->reloc_mutex);
1325 
1326 	wake_up(&root->fs_info->transaction_wait);
1327 
1328 	ret = btrfs_write_and_wait_transaction(trans, root);
1329 	BUG_ON(ret);
1330 	write_ctree_super(trans, root, 0);
1331 
1332 	/*
1333 	 * the super is written, we can safely allow the tree-loggers
1334 	 * to go about their business
1335 	 */
1336 	mutex_unlock(&root->fs_info->tree_log_mutex);
1337 
1338 	btrfs_finish_extent_commit(trans, root);
1339 
1340 	cur_trans->commit_done = 1;
1341 
1342 	root->fs_info->last_trans_committed = cur_trans->transid;
1343 
1344 	wake_up(&cur_trans->commit_wait);
1345 
1346 	spin_lock(&root->fs_info->trans_lock);
1347 	list_del_init(&cur_trans->list);
1348 	spin_unlock(&root->fs_info->trans_lock);
1349 
1350 	put_transaction(cur_trans);
1351 	put_transaction(cur_trans);
1352 
1353 	trace_btrfs_transaction_commit(root);
1354 
1355 	btrfs_scrub_continue(root);
1356 
1357 	if (current->journal_info == trans)
1358 		current->journal_info = NULL;
1359 
1360 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1361 
1362 	if (current != root->fs_info->transaction_kthread)
1363 		btrfs_run_delayed_iputs(root);
1364 
1365 	return ret;
1366 }
1367 
1368 /*
1369  * interface function to delete all the snapshots we have scheduled for deletion
1370  */
1371 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1372 {
1373 	LIST_HEAD(list);
1374 	struct btrfs_fs_info *fs_info = root->fs_info;
1375 
1376 	spin_lock(&fs_info->trans_lock);
1377 	list_splice_init(&fs_info->dead_roots, &list);
1378 	spin_unlock(&fs_info->trans_lock);
1379 
1380 	while (!list_empty(&list)) {
1381 		root = list_entry(list.next, struct btrfs_root, root_list);
1382 		list_del(&root->root_list);
1383 
1384 		btrfs_kill_all_delayed_nodes(root);
1385 
1386 		if (btrfs_header_backref_rev(root->node) <
1387 		    BTRFS_MIXED_BACKREF_REV)
1388 			btrfs_drop_snapshot(root, NULL, 0);
1389 		else
1390 			btrfs_drop_snapshot(root, NULL, 1);
1391 	}
1392 	return 0;
1393 }
1394