1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/slab.h> 8 #include <linux/sched.h> 9 #include <linux/writeback.h> 10 #include <linux/pagemap.h> 11 #include <linux/blkdev.h> 12 #include <linux/uuid.h> 13 #include "misc.h" 14 #include "ctree.h" 15 #include "disk-io.h" 16 #include "transaction.h" 17 #include "locking.h" 18 #include "tree-log.h" 19 #include "inode-map.h" 20 #include "volumes.h" 21 #include "dev-replace.h" 22 #include "qgroup.h" 23 #include "block-group.h" 24 #include "space-info.h" 25 26 #define BTRFS_ROOT_TRANS_TAG 0 27 28 /* 29 * Transaction states and transitions 30 * 31 * No running transaction (fs tree blocks are not modified) 32 * | 33 * | To next stage: 34 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart(). 35 * V 36 * Transaction N [[TRANS_STATE_RUNNING]] 37 * | 38 * | New trans handles can be attached to transaction N by calling all 39 * | start_transaction() variants. 40 * | 41 * | To next stage: 42 * | Call btrfs_commit_transaction() on any trans handle attached to 43 * | transaction N 44 * V 45 * Transaction N [[TRANS_STATE_COMMIT_START]] 46 * | 47 * | Will wait for previous running transaction to completely finish if there 48 * | is one 49 * | 50 * | Then one of the following happes: 51 * | - Wait for all other trans handle holders to release. 52 * | The btrfs_commit_transaction() caller will do the commit work. 53 * | - Wait for current transaction to be committed by others. 54 * | Other btrfs_commit_transaction() caller will do the commit work. 55 * | 56 * | At this stage, only btrfs_join_transaction*() variants can attach 57 * | to this running transaction. 58 * | All other variants will wait for current one to finish and attach to 59 * | transaction N+1. 60 * | 61 * | To next stage: 62 * | Caller is chosen to commit transaction N, and all other trans handle 63 * | haven been released. 64 * V 65 * Transaction N [[TRANS_STATE_COMMIT_DOING]] 66 * | 67 * | The heavy lifting transaction work is started. 68 * | From running delayed refs (modifying extent tree) to creating pending 69 * | snapshots, running qgroups. 70 * | In short, modify supporting trees to reflect modifications of subvolume 71 * | trees. 72 * | 73 * | At this stage, all start_transaction() calls will wait for this 74 * | transaction to finish and attach to transaction N+1. 75 * | 76 * | To next stage: 77 * | Until all supporting trees are updated. 78 * V 79 * Transaction N [[TRANS_STATE_UNBLOCKED]] 80 * | Transaction N+1 81 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]] 82 * | need to write them back to disk and update | 83 * | super blocks. | 84 * | | 85 * | At this stage, new transaction is allowed to | 86 * | start. | 87 * | All new start_transaction() calls will be | 88 * | attached to transid N+1. | 89 * | | 90 * | To next stage: | 91 * | Until all tree blocks are super blocks are | 92 * | written to block devices | 93 * V | 94 * Transaction N [[TRANS_STATE_COMPLETED]] V 95 * All tree blocks and super blocks are written. Transaction N+1 96 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]] 97 * data structures will be cleaned up. | Life goes on 98 */ 99 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 100 [TRANS_STATE_RUNNING] = 0U, 101 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH), 102 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START | 103 __TRANS_ATTACH | 104 __TRANS_JOIN | 105 __TRANS_JOIN_NOSTART), 106 [TRANS_STATE_UNBLOCKED] = (__TRANS_START | 107 __TRANS_ATTACH | 108 __TRANS_JOIN | 109 __TRANS_JOIN_NOLOCK | 110 __TRANS_JOIN_NOSTART), 111 [TRANS_STATE_COMPLETED] = (__TRANS_START | 112 __TRANS_ATTACH | 113 __TRANS_JOIN | 114 __TRANS_JOIN_NOLOCK | 115 __TRANS_JOIN_NOSTART), 116 }; 117 118 void btrfs_put_transaction(struct btrfs_transaction *transaction) 119 { 120 WARN_ON(refcount_read(&transaction->use_count) == 0); 121 if (refcount_dec_and_test(&transaction->use_count)) { 122 BUG_ON(!list_empty(&transaction->list)); 123 WARN_ON(!RB_EMPTY_ROOT( 124 &transaction->delayed_refs.href_root.rb_root)); 125 WARN_ON(!RB_EMPTY_ROOT( 126 &transaction->delayed_refs.dirty_extent_root)); 127 if (transaction->delayed_refs.pending_csums) 128 btrfs_err(transaction->fs_info, 129 "pending csums is %llu", 130 transaction->delayed_refs.pending_csums); 131 /* 132 * If any block groups are found in ->deleted_bgs then it's 133 * because the transaction was aborted and a commit did not 134 * happen (things failed before writing the new superblock 135 * and calling btrfs_finish_extent_commit()), so we can not 136 * discard the physical locations of the block groups. 137 */ 138 while (!list_empty(&transaction->deleted_bgs)) { 139 struct btrfs_block_group *cache; 140 141 cache = list_first_entry(&transaction->deleted_bgs, 142 struct btrfs_block_group, 143 bg_list); 144 list_del_init(&cache->bg_list); 145 btrfs_unfreeze_block_group(cache); 146 btrfs_put_block_group(cache); 147 } 148 WARN_ON(!list_empty(&transaction->dev_update_list)); 149 kfree(transaction); 150 } 151 } 152 153 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans) 154 { 155 struct btrfs_transaction *cur_trans = trans->transaction; 156 struct btrfs_fs_info *fs_info = trans->fs_info; 157 struct btrfs_root *root, *tmp; 158 159 down_write(&fs_info->commit_root_sem); 160 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits, 161 dirty_list) { 162 list_del_init(&root->dirty_list); 163 free_extent_buffer(root->commit_root); 164 root->commit_root = btrfs_root_node(root); 165 if (is_fstree(root->root_key.objectid)) 166 btrfs_unpin_free_ino(root); 167 extent_io_tree_release(&root->dirty_log_pages); 168 btrfs_qgroup_clean_swapped_blocks(root); 169 } 170 171 /* We can free old roots now. */ 172 spin_lock(&cur_trans->dropped_roots_lock); 173 while (!list_empty(&cur_trans->dropped_roots)) { 174 root = list_first_entry(&cur_trans->dropped_roots, 175 struct btrfs_root, root_list); 176 list_del_init(&root->root_list); 177 spin_unlock(&cur_trans->dropped_roots_lock); 178 btrfs_free_log(trans, root); 179 btrfs_drop_and_free_fs_root(fs_info, root); 180 spin_lock(&cur_trans->dropped_roots_lock); 181 } 182 spin_unlock(&cur_trans->dropped_roots_lock); 183 up_write(&fs_info->commit_root_sem); 184 } 185 186 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 187 unsigned int type) 188 { 189 if (type & TRANS_EXTWRITERS) 190 atomic_inc(&trans->num_extwriters); 191 } 192 193 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 194 unsigned int type) 195 { 196 if (type & TRANS_EXTWRITERS) 197 atomic_dec(&trans->num_extwriters); 198 } 199 200 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 201 unsigned int type) 202 { 203 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 204 } 205 206 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 207 { 208 return atomic_read(&trans->num_extwriters); 209 } 210 211 /* 212 * To be called after all the new block groups attached to the transaction 213 * handle have been created (btrfs_create_pending_block_groups()). 214 */ 215 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 216 { 217 struct btrfs_fs_info *fs_info = trans->fs_info; 218 219 if (!trans->chunk_bytes_reserved) 220 return; 221 222 WARN_ON_ONCE(!list_empty(&trans->new_bgs)); 223 224 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv, 225 trans->chunk_bytes_reserved, NULL); 226 trans->chunk_bytes_reserved = 0; 227 } 228 229 /* 230 * either allocate a new transaction or hop into the existing one 231 */ 232 static noinline int join_transaction(struct btrfs_fs_info *fs_info, 233 unsigned int type) 234 { 235 struct btrfs_transaction *cur_trans; 236 237 spin_lock(&fs_info->trans_lock); 238 loop: 239 /* The file system has been taken offline. No new transactions. */ 240 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 241 spin_unlock(&fs_info->trans_lock); 242 return -EROFS; 243 } 244 245 cur_trans = fs_info->running_transaction; 246 if (cur_trans) { 247 if (TRANS_ABORTED(cur_trans)) { 248 spin_unlock(&fs_info->trans_lock); 249 return cur_trans->aborted; 250 } 251 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 252 spin_unlock(&fs_info->trans_lock); 253 return -EBUSY; 254 } 255 refcount_inc(&cur_trans->use_count); 256 atomic_inc(&cur_trans->num_writers); 257 extwriter_counter_inc(cur_trans, type); 258 spin_unlock(&fs_info->trans_lock); 259 return 0; 260 } 261 spin_unlock(&fs_info->trans_lock); 262 263 /* 264 * If we are ATTACH, we just want to catch the current transaction, 265 * and commit it. If there is no transaction, just return ENOENT. 266 */ 267 if (type == TRANS_ATTACH) 268 return -ENOENT; 269 270 /* 271 * JOIN_NOLOCK only happens during the transaction commit, so 272 * it is impossible that ->running_transaction is NULL 273 */ 274 BUG_ON(type == TRANS_JOIN_NOLOCK); 275 276 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS); 277 if (!cur_trans) 278 return -ENOMEM; 279 280 spin_lock(&fs_info->trans_lock); 281 if (fs_info->running_transaction) { 282 /* 283 * someone started a transaction after we unlocked. Make sure 284 * to redo the checks above 285 */ 286 kfree(cur_trans); 287 goto loop; 288 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 289 spin_unlock(&fs_info->trans_lock); 290 kfree(cur_trans); 291 return -EROFS; 292 } 293 294 cur_trans->fs_info = fs_info; 295 atomic_set(&cur_trans->num_writers, 1); 296 extwriter_counter_init(cur_trans, type); 297 init_waitqueue_head(&cur_trans->writer_wait); 298 init_waitqueue_head(&cur_trans->commit_wait); 299 cur_trans->state = TRANS_STATE_RUNNING; 300 /* 301 * One for this trans handle, one so it will live on until we 302 * commit the transaction. 303 */ 304 refcount_set(&cur_trans->use_count, 2); 305 cur_trans->flags = 0; 306 cur_trans->start_time = ktime_get_seconds(); 307 308 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs)); 309 310 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED; 311 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT; 312 atomic_set(&cur_trans->delayed_refs.num_entries, 0); 313 314 /* 315 * although the tree mod log is per file system and not per transaction, 316 * the log must never go across transaction boundaries. 317 */ 318 smp_mb(); 319 if (!list_empty(&fs_info->tree_mod_seq_list)) 320 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n"); 321 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 322 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n"); 323 atomic64_set(&fs_info->tree_mod_seq, 0); 324 325 spin_lock_init(&cur_trans->delayed_refs.lock); 326 327 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 328 INIT_LIST_HEAD(&cur_trans->dev_update_list); 329 INIT_LIST_HEAD(&cur_trans->switch_commits); 330 INIT_LIST_HEAD(&cur_trans->dirty_bgs); 331 INIT_LIST_HEAD(&cur_trans->io_bgs); 332 INIT_LIST_HEAD(&cur_trans->dropped_roots); 333 mutex_init(&cur_trans->cache_write_mutex); 334 spin_lock_init(&cur_trans->dirty_bgs_lock); 335 INIT_LIST_HEAD(&cur_trans->deleted_bgs); 336 spin_lock_init(&cur_trans->dropped_roots_lock); 337 list_add_tail(&cur_trans->list, &fs_info->trans_list); 338 extent_io_tree_init(fs_info, &cur_trans->dirty_pages, 339 IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode); 340 extent_io_tree_init(fs_info, &cur_trans->pinned_extents, 341 IO_TREE_FS_PINNED_EXTENTS, NULL); 342 fs_info->generation++; 343 cur_trans->transid = fs_info->generation; 344 fs_info->running_transaction = cur_trans; 345 cur_trans->aborted = 0; 346 spin_unlock(&fs_info->trans_lock); 347 348 return 0; 349 } 350 351 /* 352 * This does all the record keeping required to make sure that a shareable root 353 * is properly recorded in a given transaction. This is required to make sure 354 * the old root from before we joined the transaction is deleted when the 355 * transaction commits. 356 */ 357 static int record_root_in_trans(struct btrfs_trans_handle *trans, 358 struct btrfs_root *root, 359 int force) 360 { 361 struct btrfs_fs_info *fs_info = root->fs_info; 362 363 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 364 root->last_trans < trans->transid) || force) { 365 WARN_ON(root == fs_info->extent_root); 366 WARN_ON(!force && root->commit_root != root->node); 367 368 /* 369 * see below for IN_TRANS_SETUP usage rules 370 * we have the reloc mutex held now, so there 371 * is only one writer in this function 372 */ 373 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 374 375 /* make sure readers find IN_TRANS_SETUP before 376 * they find our root->last_trans update 377 */ 378 smp_wmb(); 379 380 spin_lock(&fs_info->fs_roots_radix_lock); 381 if (root->last_trans == trans->transid && !force) { 382 spin_unlock(&fs_info->fs_roots_radix_lock); 383 return 0; 384 } 385 radix_tree_tag_set(&fs_info->fs_roots_radix, 386 (unsigned long)root->root_key.objectid, 387 BTRFS_ROOT_TRANS_TAG); 388 spin_unlock(&fs_info->fs_roots_radix_lock); 389 root->last_trans = trans->transid; 390 391 /* this is pretty tricky. We don't want to 392 * take the relocation lock in btrfs_record_root_in_trans 393 * unless we're really doing the first setup for this root in 394 * this transaction. 395 * 396 * Normally we'd use root->last_trans as a flag to decide 397 * if we want to take the expensive mutex. 398 * 399 * But, we have to set root->last_trans before we 400 * init the relocation root, otherwise, we trip over warnings 401 * in ctree.c. The solution used here is to flag ourselves 402 * with root IN_TRANS_SETUP. When this is 1, we're still 403 * fixing up the reloc trees and everyone must wait. 404 * 405 * When this is zero, they can trust root->last_trans and fly 406 * through btrfs_record_root_in_trans without having to take the 407 * lock. smp_wmb() makes sure that all the writes above are 408 * done before we pop in the zero below 409 */ 410 btrfs_init_reloc_root(trans, root); 411 smp_mb__before_atomic(); 412 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 413 } 414 return 0; 415 } 416 417 418 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans, 419 struct btrfs_root *root) 420 { 421 struct btrfs_fs_info *fs_info = root->fs_info; 422 struct btrfs_transaction *cur_trans = trans->transaction; 423 424 /* Add ourselves to the transaction dropped list */ 425 spin_lock(&cur_trans->dropped_roots_lock); 426 list_add_tail(&root->root_list, &cur_trans->dropped_roots); 427 spin_unlock(&cur_trans->dropped_roots_lock); 428 429 /* Make sure we don't try to update the root at commit time */ 430 spin_lock(&fs_info->fs_roots_radix_lock); 431 radix_tree_tag_clear(&fs_info->fs_roots_radix, 432 (unsigned long)root->root_key.objectid, 433 BTRFS_ROOT_TRANS_TAG); 434 spin_unlock(&fs_info->fs_roots_radix_lock); 435 } 436 437 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 438 struct btrfs_root *root) 439 { 440 struct btrfs_fs_info *fs_info = root->fs_info; 441 442 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 443 return 0; 444 445 /* 446 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 447 * and barriers 448 */ 449 smp_rmb(); 450 if (root->last_trans == trans->transid && 451 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 452 return 0; 453 454 mutex_lock(&fs_info->reloc_mutex); 455 record_root_in_trans(trans, root, 0); 456 mutex_unlock(&fs_info->reloc_mutex); 457 458 return 0; 459 } 460 461 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 462 { 463 return (trans->state >= TRANS_STATE_COMMIT_START && 464 trans->state < TRANS_STATE_UNBLOCKED && 465 !TRANS_ABORTED(trans)); 466 } 467 468 /* wait for commit against the current transaction to become unblocked 469 * when this is done, it is safe to start a new transaction, but the current 470 * transaction might not be fully on disk. 471 */ 472 static void wait_current_trans(struct btrfs_fs_info *fs_info) 473 { 474 struct btrfs_transaction *cur_trans; 475 476 spin_lock(&fs_info->trans_lock); 477 cur_trans = fs_info->running_transaction; 478 if (cur_trans && is_transaction_blocked(cur_trans)) { 479 refcount_inc(&cur_trans->use_count); 480 spin_unlock(&fs_info->trans_lock); 481 482 wait_event(fs_info->transaction_wait, 483 cur_trans->state >= TRANS_STATE_UNBLOCKED || 484 TRANS_ABORTED(cur_trans)); 485 btrfs_put_transaction(cur_trans); 486 } else { 487 spin_unlock(&fs_info->trans_lock); 488 } 489 } 490 491 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type) 492 { 493 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 494 return 0; 495 496 if (type == TRANS_START) 497 return 1; 498 499 return 0; 500 } 501 502 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 503 { 504 struct btrfs_fs_info *fs_info = root->fs_info; 505 506 if (!fs_info->reloc_ctl || 507 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) || 508 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 509 root->reloc_root) 510 return false; 511 512 return true; 513 } 514 515 static struct btrfs_trans_handle * 516 start_transaction(struct btrfs_root *root, unsigned int num_items, 517 unsigned int type, enum btrfs_reserve_flush_enum flush, 518 bool enforce_qgroups) 519 { 520 struct btrfs_fs_info *fs_info = root->fs_info; 521 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 522 struct btrfs_trans_handle *h; 523 struct btrfs_transaction *cur_trans; 524 u64 num_bytes = 0; 525 u64 qgroup_reserved = 0; 526 bool reloc_reserved = false; 527 bool do_chunk_alloc = false; 528 int ret; 529 530 /* Send isn't supposed to start transactions. */ 531 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB); 532 533 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 534 return ERR_PTR(-EROFS); 535 536 if (current->journal_info) { 537 WARN_ON(type & TRANS_EXTWRITERS); 538 h = current->journal_info; 539 refcount_inc(&h->use_count); 540 WARN_ON(refcount_read(&h->use_count) > 2); 541 h->orig_rsv = h->block_rsv; 542 h->block_rsv = NULL; 543 goto got_it; 544 } 545 546 /* 547 * Do the reservation before we join the transaction so we can do all 548 * the appropriate flushing if need be. 549 */ 550 if (num_items && root != fs_info->chunk_root) { 551 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv; 552 u64 delayed_refs_bytes = 0; 553 554 qgroup_reserved = num_items * fs_info->nodesize; 555 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved, 556 enforce_qgroups); 557 if (ret) 558 return ERR_PTR(ret); 559 560 /* 561 * We want to reserve all the bytes we may need all at once, so 562 * we only do 1 enospc flushing cycle per transaction start. We 563 * accomplish this by simply assuming we'll do 2 x num_items 564 * worth of delayed refs updates in this trans handle, and 565 * refill that amount for whatever is missing in the reserve. 566 */ 567 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items); 568 if (flush == BTRFS_RESERVE_FLUSH_ALL && 569 delayed_refs_rsv->full == 0) { 570 delayed_refs_bytes = num_bytes; 571 num_bytes <<= 1; 572 } 573 574 /* 575 * Do the reservation for the relocation root creation 576 */ 577 if (need_reserve_reloc_root(root)) { 578 num_bytes += fs_info->nodesize; 579 reloc_reserved = true; 580 } 581 582 ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush); 583 if (ret) 584 goto reserve_fail; 585 if (delayed_refs_bytes) { 586 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv, 587 delayed_refs_bytes); 588 num_bytes -= delayed_refs_bytes; 589 } 590 591 if (rsv->space_info->force_alloc) 592 do_chunk_alloc = true; 593 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL && 594 !delayed_refs_rsv->full) { 595 /* 596 * Some people call with btrfs_start_transaction(root, 0) 597 * because they can be throttled, but have some other mechanism 598 * for reserving space. We still want these guys to refill the 599 * delayed block_rsv so just add 1 items worth of reservation 600 * here. 601 */ 602 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush); 603 if (ret) 604 goto reserve_fail; 605 } 606 again: 607 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS); 608 if (!h) { 609 ret = -ENOMEM; 610 goto alloc_fail; 611 } 612 613 /* 614 * If we are JOIN_NOLOCK we're already committing a transaction and 615 * waiting on this guy, so we don't need to do the sb_start_intwrite 616 * because we're already holding a ref. We need this because we could 617 * have raced in and did an fsync() on a file which can kick a commit 618 * and then we deadlock with somebody doing a freeze. 619 * 620 * If we are ATTACH, it means we just want to catch the current 621 * transaction and commit it, so we needn't do sb_start_intwrite(). 622 */ 623 if (type & __TRANS_FREEZABLE) 624 sb_start_intwrite(fs_info->sb); 625 626 if (may_wait_transaction(fs_info, type)) 627 wait_current_trans(fs_info); 628 629 do { 630 ret = join_transaction(fs_info, type); 631 if (ret == -EBUSY) { 632 wait_current_trans(fs_info); 633 if (unlikely(type == TRANS_ATTACH || 634 type == TRANS_JOIN_NOSTART)) 635 ret = -ENOENT; 636 } 637 } while (ret == -EBUSY); 638 639 if (ret < 0) 640 goto join_fail; 641 642 cur_trans = fs_info->running_transaction; 643 644 h->transid = cur_trans->transid; 645 h->transaction = cur_trans; 646 h->root = root; 647 refcount_set(&h->use_count, 1); 648 h->fs_info = root->fs_info; 649 650 h->type = type; 651 h->can_flush_pending_bgs = true; 652 INIT_LIST_HEAD(&h->new_bgs); 653 654 smp_mb(); 655 if (cur_trans->state >= TRANS_STATE_COMMIT_START && 656 may_wait_transaction(fs_info, type)) { 657 current->journal_info = h; 658 btrfs_commit_transaction(h); 659 goto again; 660 } 661 662 if (num_bytes) { 663 trace_btrfs_space_reservation(fs_info, "transaction", 664 h->transid, num_bytes, 1); 665 h->block_rsv = &fs_info->trans_block_rsv; 666 h->bytes_reserved = num_bytes; 667 h->reloc_reserved = reloc_reserved; 668 } 669 670 got_it: 671 if (!current->journal_info) 672 current->journal_info = h; 673 674 /* 675 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to 676 * ALLOC_FORCE the first run through, and then we won't allocate for 677 * anybody else who races in later. We don't care about the return 678 * value here. 679 */ 680 if (do_chunk_alloc && num_bytes) { 681 u64 flags = h->block_rsv->space_info->flags; 682 683 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags), 684 CHUNK_ALLOC_NO_FORCE); 685 } 686 687 /* 688 * btrfs_record_root_in_trans() needs to alloc new extents, and may 689 * call btrfs_join_transaction() while we're also starting a 690 * transaction. 691 * 692 * Thus it need to be called after current->journal_info initialized, 693 * or we can deadlock. 694 */ 695 btrfs_record_root_in_trans(h, root); 696 697 return h; 698 699 join_fail: 700 if (type & __TRANS_FREEZABLE) 701 sb_end_intwrite(fs_info->sb); 702 kmem_cache_free(btrfs_trans_handle_cachep, h); 703 alloc_fail: 704 if (num_bytes) 705 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv, 706 num_bytes, NULL); 707 reserve_fail: 708 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved); 709 return ERR_PTR(ret); 710 } 711 712 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 713 unsigned int num_items) 714 { 715 return start_transaction(root, num_items, TRANS_START, 716 BTRFS_RESERVE_FLUSH_ALL, true); 717 } 718 719 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv( 720 struct btrfs_root *root, 721 unsigned int num_items) 722 { 723 return start_transaction(root, num_items, TRANS_START, 724 BTRFS_RESERVE_FLUSH_ALL_STEAL, false); 725 } 726 727 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 728 { 729 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH, 730 true); 731 } 732 733 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root) 734 { 735 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 736 BTRFS_RESERVE_NO_FLUSH, true); 737 } 738 739 /* 740 * Similar to regular join but it never starts a transaction when none is 741 * running or after waiting for the current one to finish. 742 */ 743 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root) 744 { 745 return start_transaction(root, 0, TRANS_JOIN_NOSTART, 746 BTRFS_RESERVE_NO_FLUSH, true); 747 } 748 749 /* 750 * btrfs_attach_transaction() - catch the running transaction 751 * 752 * It is used when we want to commit the current the transaction, but 753 * don't want to start a new one. 754 * 755 * Note: If this function return -ENOENT, it just means there is no 756 * running transaction. But it is possible that the inactive transaction 757 * is still in the memory, not fully on disk. If you hope there is no 758 * inactive transaction in the fs when -ENOENT is returned, you should 759 * invoke 760 * btrfs_attach_transaction_barrier() 761 */ 762 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 763 { 764 return start_transaction(root, 0, TRANS_ATTACH, 765 BTRFS_RESERVE_NO_FLUSH, true); 766 } 767 768 /* 769 * btrfs_attach_transaction_barrier() - catch the running transaction 770 * 771 * It is similar to the above function, the difference is this one 772 * will wait for all the inactive transactions until they fully 773 * complete. 774 */ 775 struct btrfs_trans_handle * 776 btrfs_attach_transaction_barrier(struct btrfs_root *root) 777 { 778 struct btrfs_trans_handle *trans; 779 780 trans = start_transaction(root, 0, TRANS_ATTACH, 781 BTRFS_RESERVE_NO_FLUSH, true); 782 if (trans == ERR_PTR(-ENOENT)) 783 btrfs_wait_for_commit(root->fs_info, 0); 784 785 return trans; 786 } 787 788 /* wait for a transaction commit to be fully complete */ 789 static noinline void wait_for_commit(struct btrfs_transaction *commit) 790 { 791 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED); 792 } 793 794 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid) 795 { 796 struct btrfs_transaction *cur_trans = NULL, *t; 797 int ret = 0; 798 799 if (transid) { 800 if (transid <= fs_info->last_trans_committed) 801 goto out; 802 803 /* find specified transaction */ 804 spin_lock(&fs_info->trans_lock); 805 list_for_each_entry(t, &fs_info->trans_list, list) { 806 if (t->transid == transid) { 807 cur_trans = t; 808 refcount_inc(&cur_trans->use_count); 809 ret = 0; 810 break; 811 } 812 if (t->transid > transid) { 813 ret = 0; 814 break; 815 } 816 } 817 spin_unlock(&fs_info->trans_lock); 818 819 /* 820 * The specified transaction doesn't exist, or we 821 * raced with btrfs_commit_transaction 822 */ 823 if (!cur_trans) { 824 if (transid > fs_info->last_trans_committed) 825 ret = -EINVAL; 826 goto out; 827 } 828 } else { 829 /* find newest transaction that is committing | committed */ 830 spin_lock(&fs_info->trans_lock); 831 list_for_each_entry_reverse(t, &fs_info->trans_list, 832 list) { 833 if (t->state >= TRANS_STATE_COMMIT_START) { 834 if (t->state == TRANS_STATE_COMPLETED) 835 break; 836 cur_trans = t; 837 refcount_inc(&cur_trans->use_count); 838 break; 839 } 840 } 841 spin_unlock(&fs_info->trans_lock); 842 if (!cur_trans) 843 goto out; /* nothing committing|committed */ 844 } 845 846 wait_for_commit(cur_trans); 847 btrfs_put_transaction(cur_trans); 848 out: 849 return ret; 850 } 851 852 void btrfs_throttle(struct btrfs_fs_info *fs_info) 853 { 854 wait_current_trans(fs_info); 855 } 856 857 static int should_end_transaction(struct btrfs_trans_handle *trans) 858 { 859 struct btrfs_fs_info *fs_info = trans->fs_info; 860 861 if (btrfs_check_space_for_delayed_refs(fs_info)) 862 return 1; 863 864 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5); 865 } 866 867 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans) 868 { 869 struct btrfs_transaction *cur_trans = trans->transaction; 870 871 smp_mb(); 872 if (cur_trans->state >= TRANS_STATE_COMMIT_START || 873 cur_trans->delayed_refs.flushing) 874 return 1; 875 876 return should_end_transaction(trans); 877 } 878 879 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans) 880 881 { 882 struct btrfs_fs_info *fs_info = trans->fs_info; 883 884 if (!trans->block_rsv) { 885 ASSERT(!trans->bytes_reserved); 886 return; 887 } 888 889 if (!trans->bytes_reserved) 890 return; 891 892 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv); 893 trace_btrfs_space_reservation(fs_info, "transaction", 894 trans->transid, trans->bytes_reserved, 0); 895 btrfs_block_rsv_release(fs_info, trans->block_rsv, 896 trans->bytes_reserved, NULL); 897 trans->bytes_reserved = 0; 898 } 899 900 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 901 int throttle) 902 { 903 struct btrfs_fs_info *info = trans->fs_info; 904 struct btrfs_transaction *cur_trans = trans->transaction; 905 int err = 0; 906 907 if (refcount_read(&trans->use_count) > 1) { 908 refcount_dec(&trans->use_count); 909 trans->block_rsv = trans->orig_rsv; 910 return 0; 911 } 912 913 btrfs_trans_release_metadata(trans); 914 trans->block_rsv = NULL; 915 916 btrfs_create_pending_block_groups(trans); 917 918 btrfs_trans_release_chunk_metadata(trans); 919 920 if (trans->type & __TRANS_FREEZABLE) 921 sb_end_intwrite(info->sb); 922 923 WARN_ON(cur_trans != info->running_transaction); 924 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 925 atomic_dec(&cur_trans->num_writers); 926 extwriter_counter_dec(cur_trans, trans->type); 927 928 cond_wake_up(&cur_trans->writer_wait); 929 btrfs_put_transaction(cur_trans); 930 931 if (current->journal_info == trans) 932 current->journal_info = NULL; 933 934 if (throttle) 935 btrfs_run_delayed_iputs(info); 936 937 if (TRANS_ABORTED(trans) || 938 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) { 939 wake_up_process(info->transaction_kthread); 940 if (TRANS_ABORTED(trans)) 941 err = trans->aborted; 942 else 943 err = -EROFS; 944 } 945 946 kmem_cache_free(btrfs_trans_handle_cachep, trans); 947 return err; 948 } 949 950 int btrfs_end_transaction(struct btrfs_trans_handle *trans) 951 { 952 return __btrfs_end_transaction(trans, 0); 953 } 954 955 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans) 956 { 957 return __btrfs_end_transaction(trans, 1); 958 } 959 960 /* 961 * when btree blocks are allocated, they have some corresponding bits set for 962 * them in one of two extent_io trees. This is used to make sure all of 963 * those extents are sent to disk but does not wait on them 964 */ 965 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info, 966 struct extent_io_tree *dirty_pages, int mark) 967 { 968 int err = 0; 969 int werr = 0; 970 struct address_space *mapping = fs_info->btree_inode->i_mapping; 971 struct extent_state *cached_state = NULL; 972 u64 start = 0; 973 u64 end; 974 975 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers); 976 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 977 mark, &cached_state)) { 978 bool wait_writeback = false; 979 980 err = convert_extent_bit(dirty_pages, start, end, 981 EXTENT_NEED_WAIT, 982 mark, &cached_state); 983 /* 984 * convert_extent_bit can return -ENOMEM, which is most of the 985 * time a temporary error. So when it happens, ignore the error 986 * and wait for writeback of this range to finish - because we 987 * failed to set the bit EXTENT_NEED_WAIT for the range, a call 988 * to __btrfs_wait_marked_extents() would not know that 989 * writeback for this range started and therefore wouldn't 990 * wait for it to finish - we don't want to commit a 991 * superblock that points to btree nodes/leafs for which 992 * writeback hasn't finished yet (and without errors). 993 * We cleanup any entries left in the io tree when committing 994 * the transaction (through extent_io_tree_release()). 995 */ 996 if (err == -ENOMEM) { 997 err = 0; 998 wait_writeback = true; 999 } 1000 if (!err) 1001 err = filemap_fdatawrite_range(mapping, start, end); 1002 if (err) 1003 werr = err; 1004 else if (wait_writeback) 1005 werr = filemap_fdatawait_range(mapping, start, end); 1006 free_extent_state(cached_state); 1007 cached_state = NULL; 1008 cond_resched(); 1009 start = end + 1; 1010 } 1011 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers); 1012 return werr; 1013 } 1014 1015 /* 1016 * when btree blocks are allocated, they have some corresponding bits set for 1017 * them in one of two extent_io trees. This is used to make sure all of 1018 * those extents are on disk for transaction or log commit. We wait 1019 * on all the pages and clear them from the dirty pages state tree 1020 */ 1021 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info, 1022 struct extent_io_tree *dirty_pages) 1023 { 1024 int err = 0; 1025 int werr = 0; 1026 struct address_space *mapping = fs_info->btree_inode->i_mapping; 1027 struct extent_state *cached_state = NULL; 1028 u64 start = 0; 1029 u64 end; 1030 1031 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 1032 EXTENT_NEED_WAIT, &cached_state)) { 1033 /* 1034 * Ignore -ENOMEM errors returned by clear_extent_bit(). 1035 * When committing the transaction, we'll remove any entries 1036 * left in the io tree. For a log commit, we don't remove them 1037 * after committing the log because the tree can be accessed 1038 * concurrently - we do it only at transaction commit time when 1039 * it's safe to do it (through extent_io_tree_release()). 1040 */ 1041 err = clear_extent_bit(dirty_pages, start, end, 1042 EXTENT_NEED_WAIT, 0, 0, &cached_state); 1043 if (err == -ENOMEM) 1044 err = 0; 1045 if (!err) 1046 err = filemap_fdatawait_range(mapping, start, end); 1047 if (err) 1048 werr = err; 1049 free_extent_state(cached_state); 1050 cached_state = NULL; 1051 cond_resched(); 1052 start = end + 1; 1053 } 1054 if (err) 1055 werr = err; 1056 return werr; 1057 } 1058 1059 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info, 1060 struct extent_io_tree *dirty_pages) 1061 { 1062 bool errors = false; 1063 int err; 1064 1065 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1066 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags)) 1067 errors = true; 1068 1069 if (errors && !err) 1070 err = -EIO; 1071 return err; 1072 } 1073 1074 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark) 1075 { 1076 struct btrfs_fs_info *fs_info = log_root->fs_info; 1077 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages; 1078 bool errors = false; 1079 int err; 1080 1081 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 1082 1083 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1084 if ((mark & EXTENT_DIRTY) && 1085 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags)) 1086 errors = true; 1087 1088 if ((mark & EXTENT_NEW) && 1089 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags)) 1090 errors = true; 1091 1092 if (errors && !err) 1093 err = -EIO; 1094 return err; 1095 } 1096 1097 /* 1098 * When btree blocks are allocated the corresponding extents are marked dirty. 1099 * This function ensures such extents are persisted on disk for transaction or 1100 * log commit. 1101 * 1102 * @trans: transaction whose dirty pages we'd like to write 1103 */ 1104 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans) 1105 { 1106 int ret; 1107 int ret2; 1108 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages; 1109 struct btrfs_fs_info *fs_info = trans->fs_info; 1110 struct blk_plug plug; 1111 1112 blk_start_plug(&plug); 1113 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY); 1114 blk_finish_plug(&plug); 1115 ret2 = btrfs_wait_extents(fs_info, dirty_pages); 1116 1117 extent_io_tree_release(&trans->transaction->dirty_pages); 1118 1119 if (ret) 1120 return ret; 1121 else if (ret2) 1122 return ret2; 1123 else 1124 return 0; 1125 } 1126 1127 /* 1128 * this is used to update the root pointer in the tree of tree roots. 1129 * 1130 * But, in the case of the extent allocation tree, updating the root 1131 * pointer may allocate blocks which may change the root of the extent 1132 * allocation tree. 1133 * 1134 * So, this loops and repeats and makes sure the cowonly root didn't 1135 * change while the root pointer was being updated in the metadata. 1136 */ 1137 static int update_cowonly_root(struct btrfs_trans_handle *trans, 1138 struct btrfs_root *root) 1139 { 1140 int ret; 1141 u64 old_root_bytenr; 1142 u64 old_root_used; 1143 struct btrfs_fs_info *fs_info = root->fs_info; 1144 struct btrfs_root *tree_root = fs_info->tree_root; 1145 1146 old_root_used = btrfs_root_used(&root->root_item); 1147 1148 while (1) { 1149 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 1150 if (old_root_bytenr == root->node->start && 1151 old_root_used == btrfs_root_used(&root->root_item)) 1152 break; 1153 1154 btrfs_set_root_node(&root->root_item, root->node); 1155 ret = btrfs_update_root(trans, tree_root, 1156 &root->root_key, 1157 &root->root_item); 1158 if (ret) 1159 return ret; 1160 1161 old_root_used = btrfs_root_used(&root->root_item); 1162 } 1163 1164 return 0; 1165 } 1166 1167 /* 1168 * update all the cowonly tree roots on disk 1169 * 1170 * The error handling in this function may not be obvious. Any of the 1171 * failures will cause the file system to go offline. We still need 1172 * to clean up the delayed refs. 1173 */ 1174 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans) 1175 { 1176 struct btrfs_fs_info *fs_info = trans->fs_info; 1177 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; 1178 struct list_head *io_bgs = &trans->transaction->io_bgs; 1179 struct list_head *next; 1180 struct extent_buffer *eb; 1181 int ret; 1182 1183 eb = btrfs_lock_root_node(fs_info->tree_root); 1184 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 1185 0, &eb); 1186 btrfs_tree_unlock(eb); 1187 free_extent_buffer(eb); 1188 1189 if (ret) 1190 return ret; 1191 1192 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1193 if (ret) 1194 return ret; 1195 1196 ret = btrfs_run_dev_stats(trans); 1197 if (ret) 1198 return ret; 1199 ret = btrfs_run_dev_replace(trans); 1200 if (ret) 1201 return ret; 1202 ret = btrfs_run_qgroups(trans); 1203 if (ret) 1204 return ret; 1205 1206 ret = btrfs_setup_space_cache(trans); 1207 if (ret) 1208 return ret; 1209 1210 /* run_qgroups might have added some more refs */ 1211 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1212 if (ret) 1213 return ret; 1214 again: 1215 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1216 struct btrfs_root *root; 1217 next = fs_info->dirty_cowonly_roots.next; 1218 list_del_init(next); 1219 root = list_entry(next, struct btrfs_root, dirty_list); 1220 clear_bit(BTRFS_ROOT_DIRTY, &root->state); 1221 1222 if (root != fs_info->extent_root) 1223 list_add_tail(&root->dirty_list, 1224 &trans->transaction->switch_commits); 1225 ret = update_cowonly_root(trans, root); 1226 if (ret) 1227 return ret; 1228 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1229 if (ret) 1230 return ret; 1231 } 1232 1233 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { 1234 ret = btrfs_write_dirty_block_groups(trans); 1235 if (ret) 1236 return ret; 1237 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1238 if (ret) 1239 return ret; 1240 } 1241 1242 if (!list_empty(&fs_info->dirty_cowonly_roots)) 1243 goto again; 1244 1245 list_add_tail(&fs_info->extent_root->dirty_list, 1246 &trans->transaction->switch_commits); 1247 1248 /* Update dev-replace pointer once everything is committed */ 1249 fs_info->dev_replace.committed_cursor_left = 1250 fs_info->dev_replace.cursor_left_last_write_of_item; 1251 1252 return 0; 1253 } 1254 1255 /* 1256 * dead roots are old snapshots that need to be deleted. This allocates 1257 * a dirty root struct and adds it into the list of dead roots that need to 1258 * be deleted 1259 */ 1260 void btrfs_add_dead_root(struct btrfs_root *root) 1261 { 1262 struct btrfs_fs_info *fs_info = root->fs_info; 1263 1264 spin_lock(&fs_info->trans_lock); 1265 if (list_empty(&root->root_list)) { 1266 btrfs_grab_root(root); 1267 list_add_tail(&root->root_list, &fs_info->dead_roots); 1268 } 1269 spin_unlock(&fs_info->trans_lock); 1270 } 1271 1272 /* 1273 * update all the cowonly tree roots on disk 1274 */ 1275 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans) 1276 { 1277 struct btrfs_fs_info *fs_info = trans->fs_info; 1278 struct btrfs_root *gang[8]; 1279 int i; 1280 int ret; 1281 int err = 0; 1282 1283 spin_lock(&fs_info->fs_roots_radix_lock); 1284 while (1) { 1285 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1286 (void **)gang, 0, 1287 ARRAY_SIZE(gang), 1288 BTRFS_ROOT_TRANS_TAG); 1289 if (ret == 0) 1290 break; 1291 for (i = 0; i < ret; i++) { 1292 struct btrfs_root *root = gang[i]; 1293 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1294 (unsigned long)root->root_key.objectid, 1295 BTRFS_ROOT_TRANS_TAG); 1296 spin_unlock(&fs_info->fs_roots_radix_lock); 1297 1298 btrfs_free_log(trans, root); 1299 btrfs_update_reloc_root(trans, root); 1300 1301 btrfs_save_ino_cache(root, trans); 1302 1303 /* see comments in should_cow_block() */ 1304 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1305 smp_mb__after_atomic(); 1306 1307 if (root->commit_root != root->node) { 1308 list_add_tail(&root->dirty_list, 1309 &trans->transaction->switch_commits); 1310 btrfs_set_root_node(&root->root_item, 1311 root->node); 1312 } 1313 1314 err = btrfs_update_root(trans, fs_info->tree_root, 1315 &root->root_key, 1316 &root->root_item); 1317 spin_lock(&fs_info->fs_roots_radix_lock); 1318 if (err) 1319 break; 1320 btrfs_qgroup_free_meta_all_pertrans(root); 1321 } 1322 } 1323 spin_unlock(&fs_info->fs_roots_radix_lock); 1324 return err; 1325 } 1326 1327 /* 1328 * defrag a given btree. 1329 * Every leaf in the btree is read and defragged. 1330 */ 1331 int btrfs_defrag_root(struct btrfs_root *root) 1332 { 1333 struct btrfs_fs_info *info = root->fs_info; 1334 struct btrfs_trans_handle *trans; 1335 int ret; 1336 1337 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) 1338 return 0; 1339 1340 while (1) { 1341 trans = btrfs_start_transaction(root, 0); 1342 if (IS_ERR(trans)) 1343 return PTR_ERR(trans); 1344 1345 ret = btrfs_defrag_leaves(trans, root); 1346 1347 btrfs_end_transaction(trans); 1348 btrfs_btree_balance_dirty(info); 1349 cond_resched(); 1350 1351 if (btrfs_fs_closing(info) || ret != -EAGAIN) 1352 break; 1353 1354 if (btrfs_defrag_cancelled(info)) { 1355 btrfs_debug(info, "defrag_root cancelled"); 1356 ret = -EAGAIN; 1357 break; 1358 } 1359 } 1360 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); 1361 return ret; 1362 } 1363 1364 /* 1365 * Do all special snapshot related qgroup dirty hack. 1366 * 1367 * Will do all needed qgroup inherit and dirty hack like switch commit 1368 * roots inside one transaction and write all btree into disk, to make 1369 * qgroup works. 1370 */ 1371 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans, 1372 struct btrfs_root *src, 1373 struct btrfs_root *parent, 1374 struct btrfs_qgroup_inherit *inherit, 1375 u64 dst_objectid) 1376 { 1377 struct btrfs_fs_info *fs_info = src->fs_info; 1378 int ret; 1379 1380 /* 1381 * Save some performance in the case that qgroups are not 1382 * enabled. If this check races with the ioctl, rescan will 1383 * kick in anyway. 1384 */ 1385 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) 1386 return 0; 1387 1388 /* 1389 * Ensure dirty @src will be committed. Or, after coming 1390 * commit_fs_roots() and switch_commit_roots(), any dirty but not 1391 * recorded root will never be updated again, causing an outdated root 1392 * item. 1393 */ 1394 record_root_in_trans(trans, src, 1); 1395 1396 /* 1397 * We are going to commit transaction, see btrfs_commit_transaction() 1398 * comment for reason locking tree_log_mutex 1399 */ 1400 mutex_lock(&fs_info->tree_log_mutex); 1401 1402 ret = commit_fs_roots(trans); 1403 if (ret) 1404 goto out; 1405 ret = btrfs_qgroup_account_extents(trans); 1406 if (ret < 0) 1407 goto out; 1408 1409 /* Now qgroup are all updated, we can inherit it to new qgroups */ 1410 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid, 1411 inherit); 1412 if (ret < 0) 1413 goto out; 1414 1415 /* 1416 * Now we do a simplified commit transaction, which will: 1417 * 1) commit all subvolume and extent tree 1418 * To ensure all subvolume and extent tree have a valid 1419 * commit_root to accounting later insert_dir_item() 1420 * 2) write all btree blocks onto disk 1421 * This is to make sure later btree modification will be cowed 1422 * Or commit_root can be populated and cause wrong qgroup numbers 1423 * In this simplified commit, we don't really care about other trees 1424 * like chunk and root tree, as they won't affect qgroup. 1425 * And we don't write super to avoid half committed status. 1426 */ 1427 ret = commit_cowonly_roots(trans); 1428 if (ret) 1429 goto out; 1430 switch_commit_roots(trans); 1431 ret = btrfs_write_and_wait_transaction(trans); 1432 if (ret) 1433 btrfs_handle_fs_error(fs_info, ret, 1434 "Error while writing out transaction for qgroup"); 1435 1436 out: 1437 mutex_unlock(&fs_info->tree_log_mutex); 1438 1439 /* 1440 * Force parent root to be updated, as we recorded it before so its 1441 * last_trans == cur_transid. 1442 * Or it won't be committed again onto disk after later 1443 * insert_dir_item() 1444 */ 1445 if (!ret) 1446 record_root_in_trans(trans, parent, 1); 1447 return ret; 1448 } 1449 1450 /* 1451 * new snapshots need to be created at a very specific time in the 1452 * transaction commit. This does the actual creation. 1453 * 1454 * Note: 1455 * If the error which may affect the commitment of the current transaction 1456 * happens, we should return the error number. If the error which just affect 1457 * the creation of the pending snapshots, just return 0. 1458 */ 1459 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1460 struct btrfs_pending_snapshot *pending) 1461 { 1462 1463 struct btrfs_fs_info *fs_info = trans->fs_info; 1464 struct btrfs_key key; 1465 struct btrfs_root_item *new_root_item; 1466 struct btrfs_root *tree_root = fs_info->tree_root; 1467 struct btrfs_root *root = pending->root; 1468 struct btrfs_root *parent_root; 1469 struct btrfs_block_rsv *rsv; 1470 struct inode *parent_inode; 1471 struct btrfs_path *path; 1472 struct btrfs_dir_item *dir_item; 1473 struct dentry *dentry; 1474 struct extent_buffer *tmp; 1475 struct extent_buffer *old; 1476 struct timespec64 cur_time; 1477 int ret = 0; 1478 u64 to_reserve = 0; 1479 u64 index = 0; 1480 u64 objectid; 1481 u64 root_flags; 1482 1483 ASSERT(pending->path); 1484 path = pending->path; 1485 1486 ASSERT(pending->root_item); 1487 new_root_item = pending->root_item; 1488 1489 pending->error = btrfs_find_free_objectid(tree_root, &objectid); 1490 if (pending->error) 1491 goto no_free_objectid; 1492 1493 /* 1494 * Make qgroup to skip current new snapshot's qgroupid, as it is 1495 * accounted by later btrfs_qgroup_inherit(). 1496 */ 1497 btrfs_set_skip_qgroup(trans, objectid); 1498 1499 btrfs_reloc_pre_snapshot(pending, &to_reserve); 1500 1501 if (to_reserve > 0) { 1502 pending->error = btrfs_block_rsv_add(root, 1503 &pending->block_rsv, 1504 to_reserve, 1505 BTRFS_RESERVE_NO_FLUSH); 1506 if (pending->error) 1507 goto clear_skip_qgroup; 1508 } 1509 1510 key.objectid = objectid; 1511 key.offset = (u64)-1; 1512 key.type = BTRFS_ROOT_ITEM_KEY; 1513 1514 rsv = trans->block_rsv; 1515 trans->block_rsv = &pending->block_rsv; 1516 trans->bytes_reserved = trans->block_rsv->reserved; 1517 trace_btrfs_space_reservation(fs_info, "transaction", 1518 trans->transid, 1519 trans->bytes_reserved, 1); 1520 dentry = pending->dentry; 1521 parent_inode = pending->dir; 1522 parent_root = BTRFS_I(parent_inode)->root; 1523 record_root_in_trans(trans, parent_root, 0); 1524 1525 cur_time = current_time(parent_inode); 1526 1527 /* 1528 * insert the directory item 1529 */ 1530 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index); 1531 BUG_ON(ret); /* -ENOMEM */ 1532 1533 /* check if there is a file/dir which has the same name. */ 1534 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1535 btrfs_ino(BTRFS_I(parent_inode)), 1536 dentry->d_name.name, 1537 dentry->d_name.len, 0); 1538 if (dir_item != NULL && !IS_ERR(dir_item)) { 1539 pending->error = -EEXIST; 1540 goto dir_item_existed; 1541 } else if (IS_ERR(dir_item)) { 1542 ret = PTR_ERR(dir_item); 1543 btrfs_abort_transaction(trans, ret); 1544 goto fail; 1545 } 1546 btrfs_release_path(path); 1547 1548 /* 1549 * pull in the delayed directory update 1550 * and the delayed inode item 1551 * otherwise we corrupt the FS during 1552 * snapshot 1553 */ 1554 ret = btrfs_run_delayed_items(trans); 1555 if (ret) { /* Transaction aborted */ 1556 btrfs_abort_transaction(trans, ret); 1557 goto fail; 1558 } 1559 1560 record_root_in_trans(trans, root, 0); 1561 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1562 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1563 btrfs_check_and_init_root_item(new_root_item); 1564 1565 root_flags = btrfs_root_flags(new_root_item); 1566 if (pending->readonly) 1567 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1568 else 1569 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1570 btrfs_set_root_flags(new_root_item, root_flags); 1571 1572 btrfs_set_root_generation_v2(new_root_item, 1573 trans->transid); 1574 generate_random_guid(new_root_item->uuid); 1575 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1576 BTRFS_UUID_SIZE); 1577 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1578 memset(new_root_item->received_uuid, 0, 1579 sizeof(new_root_item->received_uuid)); 1580 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1581 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1582 btrfs_set_root_stransid(new_root_item, 0); 1583 btrfs_set_root_rtransid(new_root_item, 0); 1584 } 1585 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1586 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1587 btrfs_set_root_otransid(new_root_item, trans->transid); 1588 1589 old = btrfs_lock_root_node(root); 1590 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old); 1591 if (ret) { 1592 btrfs_tree_unlock(old); 1593 free_extent_buffer(old); 1594 btrfs_abort_transaction(trans, ret); 1595 goto fail; 1596 } 1597 1598 btrfs_set_lock_blocking_write(old); 1599 1600 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1601 /* clean up in any case */ 1602 btrfs_tree_unlock(old); 1603 free_extent_buffer(old); 1604 if (ret) { 1605 btrfs_abort_transaction(trans, ret); 1606 goto fail; 1607 } 1608 /* see comments in should_cow_block() */ 1609 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1610 smp_wmb(); 1611 1612 btrfs_set_root_node(new_root_item, tmp); 1613 /* record when the snapshot was created in key.offset */ 1614 key.offset = trans->transid; 1615 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1616 btrfs_tree_unlock(tmp); 1617 free_extent_buffer(tmp); 1618 if (ret) { 1619 btrfs_abort_transaction(trans, ret); 1620 goto fail; 1621 } 1622 1623 /* 1624 * insert root back/forward references 1625 */ 1626 ret = btrfs_add_root_ref(trans, objectid, 1627 parent_root->root_key.objectid, 1628 btrfs_ino(BTRFS_I(parent_inode)), index, 1629 dentry->d_name.name, dentry->d_name.len); 1630 if (ret) { 1631 btrfs_abort_transaction(trans, ret); 1632 goto fail; 1633 } 1634 1635 key.offset = (u64)-1; 1636 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev); 1637 if (IS_ERR(pending->snap)) { 1638 ret = PTR_ERR(pending->snap); 1639 pending->snap = NULL; 1640 btrfs_abort_transaction(trans, ret); 1641 goto fail; 1642 } 1643 1644 ret = btrfs_reloc_post_snapshot(trans, pending); 1645 if (ret) { 1646 btrfs_abort_transaction(trans, ret); 1647 goto fail; 1648 } 1649 1650 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1651 if (ret) { 1652 btrfs_abort_transaction(trans, ret); 1653 goto fail; 1654 } 1655 1656 /* 1657 * Do special qgroup accounting for snapshot, as we do some qgroup 1658 * snapshot hack to do fast snapshot. 1659 * To co-operate with that hack, we do hack again. 1660 * Or snapshot will be greatly slowed down by a subtree qgroup rescan 1661 */ 1662 ret = qgroup_account_snapshot(trans, root, parent_root, 1663 pending->inherit, objectid); 1664 if (ret < 0) 1665 goto fail; 1666 1667 ret = btrfs_insert_dir_item(trans, dentry->d_name.name, 1668 dentry->d_name.len, BTRFS_I(parent_inode), 1669 &key, BTRFS_FT_DIR, index); 1670 /* We have check then name at the beginning, so it is impossible. */ 1671 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1672 if (ret) { 1673 btrfs_abort_transaction(trans, ret); 1674 goto fail; 1675 } 1676 1677 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size + 1678 dentry->d_name.len * 2); 1679 parent_inode->i_mtime = parent_inode->i_ctime = 1680 current_time(parent_inode); 1681 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode); 1682 if (ret) { 1683 btrfs_abort_transaction(trans, ret); 1684 goto fail; 1685 } 1686 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid, 1687 BTRFS_UUID_KEY_SUBVOL, 1688 objectid); 1689 if (ret) { 1690 btrfs_abort_transaction(trans, ret); 1691 goto fail; 1692 } 1693 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1694 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid, 1695 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1696 objectid); 1697 if (ret && ret != -EEXIST) { 1698 btrfs_abort_transaction(trans, ret); 1699 goto fail; 1700 } 1701 } 1702 1703 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1704 if (ret) { 1705 btrfs_abort_transaction(trans, ret); 1706 goto fail; 1707 } 1708 1709 fail: 1710 pending->error = ret; 1711 dir_item_existed: 1712 trans->block_rsv = rsv; 1713 trans->bytes_reserved = 0; 1714 clear_skip_qgroup: 1715 btrfs_clear_skip_qgroup(trans); 1716 no_free_objectid: 1717 kfree(new_root_item); 1718 pending->root_item = NULL; 1719 btrfs_free_path(path); 1720 pending->path = NULL; 1721 1722 return ret; 1723 } 1724 1725 /* 1726 * create all the snapshots we've scheduled for creation 1727 */ 1728 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans) 1729 { 1730 struct btrfs_pending_snapshot *pending, *next; 1731 struct list_head *head = &trans->transaction->pending_snapshots; 1732 int ret = 0; 1733 1734 list_for_each_entry_safe(pending, next, head, list) { 1735 list_del(&pending->list); 1736 ret = create_pending_snapshot(trans, pending); 1737 if (ret) 1738 break; 1739 } 1740 return ret; 1741 } 1742 1743 static void update_super_roots(struct btrfs_fs_info *fs_info) 1744 { 1745 struct btrfs_root_item *root_item; 1746 struct btrfs_super_block *super; 1747 1748 super = fs_info->super_copy; 1749 1750 root_item = &fs_info->chunk_root->root_item; 1751 super->chunk_root = root_item->bytenr; 1752 super->chunk_root_generation = root_item->generation; 1753 super->chunk_root_level = root_item->level; 1754 1755 root_item = &fs_info->tree_root->root_item; 1756 super->root = root_item->bytenr; 1757 super->generation = root_item->generation; 1758 super->root_level = root_item->level; 1759 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 1760 super->cache_generation = root_item->generation; 1761 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags)) 1762 super->uuid_tree_generation = root_item->generation; 1763 } 1764 1765 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1766 { 1767 struct btrfs_transaction *trans; 1768 int ret = 0; 1769 1770 spin_lock(&info->trans_lock); 1771 trans = info->running_transaction; 1772 if (trans) 1773 ret = (trans->state >= TRANS_STATE_COMMIT_START); 1774 spin_unlock(&info->trans_lock); 1775 return ret; 1776 } 1777 1778 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1779 { 1780 struct btrfs_transaction *trans; 1781 int ret = 0; 1782 1783 spin_lock(&info->trans_lock); 1784 trans = info->running_transaction; 1785 if (trans) 1786 ret = is_transaction_blocked(trans); 1787 spin_unlock(&info->trans_lock); 1788 return ret; 1789 } 1790 1791 /* 1792 * wait for the current transaction commit to start and block subsequent 1793 * transaction joins 1794 */ 1795 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info, 1796 struct btrfs_transaction *trans) 1797 { 1798 wait_event(fs_info->transaction_blocked_wait, 1799 trans->state >= TRANS_STATE_COMMIT_START || 1800 TRANS_ABORTED(trans)); 1801 } 1802 1803 /* 1804 * wait for the current transaction to start and then become unblocked. 1805 * caller holds ref. 1806 */ 1807 static void wait_current_trans_commit_start_and_unblock( 1808 struct btrfs_fs_info *fs_info, 1809 struct btrfs_transaction *trans) 1810 { 1811 wait_event(fs_info->transaction_wait, 1812 trans->state >= TRANS_STATE_UNBLOCKED || 1813 TRANS_ABORTED(trans)); 1814 } 1815 1816 /* 1817 * commit transactions asynchronously. once btrfs_commit_transaction_async 1818 * returns, any subsequent transaction will not be allowed to join. 1819 */ 1820 struct btrfs_async_commit { 1821 struct btrfs_trans_handle *newtrans; 1822 struct work_struct work; 1823 }; 1824 1825 static void do_async_commit(struct work_struct *work) 1826 { 1827 struct btrfs_async_commit *ac = 1828 container_of(work, struct btrfs_async_commit, work); 1829 1830 /* 1831 * We've got freeze protection passed with the transaction. 1832 * Tell lockdep about it. 1833 */ 1834 if (ac->newtrans->type & __TRANS_FREEZABLE) 1835 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS); 1836 1837 current->journal_info = ac->newtrans; 1838 1839 btrfs_commit_transaction(ac->newtrans); 1840 kfree(ac); 1841 } 1842 1843 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, 1844 int wait_for_unblock) 1845 { 1846 struct btrfs_fs_info *fs_info = trans->fs_info; 1847 struct btrfs_async_commit *ac; 1848 struct btrfs_transaction *cur_trans; 1849 1850 ac = kmalloc(sizeof(*ac), GFP_NOFS); 1851 if (!ac) 1852 return -ENOMEM; 1853 1854 INIT_WORK(&ac->work, do_async_commit); 1855 ac->newtrans = btrfs_join_transaction(trans->root); 1856 if (IS_ERR(ac->newtrans)) { 1857 int err = PTR_ERR(ac->newtrans); 1858 kfree(ac); 1859 return err; 1860 } 1861 1862 /* take transaction reference */ 1863 cur_trans = trans->transaction; 1864 refcount_inc(&cur_trans->use_count); 1865 1866 btrfs_end_transaction(trans); 1867 1868 /* 1869 * Tell lockdep we've released the freeze rwsem, since the 1870 * async commit thread will be the one to unlock it. 1871 */ 1872 if (ac->newtrans->type & __TRANS_FREEZABLE) 1873 __sb_writers_release(fs_info->sb, SB_FREEZE_FS); 1874 1875 schedule_work(&ac->work); 1876 1877 /* wait for transaction to start and unblock */ 1878 if (wait_for_unblock) 1879 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans); 1880 else 1881 wait_current_trans_commit_start(fs_info, cur_trans); 1882 1883 if (current->journal_info == trans) 1884 current->journal_info = NULL; 1885 1886 btrfs_put_transaction(cur_trans); 1887 return 0; 1888 } 1889 1890 1891 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err) 1892 { 1893 struct btrfs_fs_info *fs_info = trans->fs_info; 1894 struct btrfs_transaction *cur_trans = trans->transaction; 1895 1896 WARN_ON(refcount_read(&trans->use_count) > 1); 1897 1898 btrfs_abort_transaction(trans, err); 1899 1900 spin_lock(&fs_info->trans_lock); 1901 1902 /* 1903 * If the transaction is removed from the list, it means this 1904 * transaction has been committed successfully, so it is impossible 1905 * to call the cleanup function. 1906 */ 1907 BUG_ON(list_empty(&cur_trans->list)); 1908 1909 list_del_init(&cur_trans->list); 1910 if (cur_trans == fs_info->running_transaction) { 1911 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1912 spin_unlock(&fs_info->trans_lock); 1913 wait_event(cur_trans->writer_wait, 1914 atomic_read(&cur_trans->num_writers) == 1); 1915 1916 spin_lock(&fs_info->trans_lock); 1917 } 1918 spin_unlock(&fs_info->trans_lock); 1919 1920 btrfs_cleanup_one_transaction(trans->transaction, fs_info); 1921 1922 spin_lock(&fs_info->trans_lock); 1923 if (cur_trans == fs_info->running_transaction) 1924 fs_info->running_transaction = NULL; 1925 spin_unlock(&fs_info->trans_lock); 1926 1927 if (trans->type & __TRANS_FREEZABLE) 1928 sb_end_intwrite(fs_info->sb); 1929 btrfs_put_transaction(cur_trans); 1930 btrfs_put_transaction(cur_trans); 1931 1932 trace_btrfs_transaction_commit(trans->root); 1933 1934 if (current->journal_info == trans) 1935 current->journal_info = NULL; 1936 btrfs_scrub_cancel(fs_info); 1937 1938 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1939 } 1940 1941 /* 1942 * Release reserved delayed ref space of all pending block groups of the 1943 * transaction and remove them from the list 1944 */ 1945 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans) 1946 { 1947 struct btrfs_fs_info *fs_info = trans->fs_info; 1948 struct btrfs_block_group *block_group, *tmp; 1949 1950 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 1951 btrfs_delayed_refs_rsv_release(fs_info, 1); 1952 list_del_init(&block_group->bg_list); 1953 } 1954 } 1955 1956 static inline int btrfs_start_delalloc_flush(struct btrfs_trans_handle *trans) 1957 { 1958 struct btrfs_fs_info *fs_info = trans->fs_info; 1959 1960 /* 1961 * We use writeback_inodes_sb here because if we used 1962 * btrfs_start_delalloc_roots we would deadlock with fs freeze. 1963 * Currently are holding the fs freeze lock, if we do an async flush 1964 * we'll do btrfs_join_transaction() and deadlock because we need to 1965 * wait for the fs freeze lock. Using the direct flushing we benefit 1966 * from already being in a transaction and our join_transaction doesn't 1967 * have to re-take the fs freeze lock. 1968 */ 1969 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) { 1970 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC); 1971 } else { 1972 struct btrfs_pending_snapshot *pending; 1973 struct list_head *head = &trans->transaction->pending_snapshots; 1974 1975 /* 1976 * Flush dellaloc for any root that is going to be snapshotted. 1977 * This is done to avoid a corrupted version of files, in the 1978 * snapshots, that had both buffered and direct IO writes (even 1979 * if they were done sequentially) due to an unordered update of 1980 * the inode's size on disk. 1981 */ 1982 list_for_each_entry(pending, head, list) { 1983 int ret; 1984 1985 ret = btrfs_start_delalloc_snapshot(pending->root); 1986 if (ret) 1987 return ret; 1988 } 1989 } 1990 return 0; 1991 } 1992 1993 static inline void btrfs_wait_delalloc_flush(struct btrfs_trans_handle *trans) 1994 { 1995 struct btrfs_fs_info *fs_info = trans->fs_info; 1996 1997 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) { 1998 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 1999 } else { 2000 struct btrfs_pending_snapshot *pending; 2001 struct list_head *head = &trans->transaction->pending_snapshots; 2002 2003 /* 2004 * Wait for any dellaloc that we started previously for the roots 2005 * that are going to be snapshotted. This is to avoid a corrupted 2006 * version of files in the snapshots that had both buffered and 2007 * direct IO writes (even if they were done sequentially). 2008 */ 2009 list_for_each_entry(pending, head, list) 2010 btrfs_wait_ordered_extents(pending->root, 2011 U64_MAX, 0, U64_MAX); 2012 } 2013 } 2014 2015 int btrfs_commit_transaction(struct btrfs_trans_handle *trans) 2016 { 2017 struct btrfs_fs_info *fs_info = trans->fs_info; 2018 struct btrfs_transaction *cur_trans = trans->transaction; 2019 struct btrfs_transaction *prev_trans = NULL; 2020 int ret; 2021 2022 ASSERT(refcount_read(&trans->use_count) == 1); 2023 2024 /* 2025 * Some places just start a transaction to commit it. We need to make 2026 * sure that if this commit fails that the abort code actually marks the 2027 * transaction as failed, so set trans->dirty to make the abort code do 2028 * the right thing. 2029 */ 2030 trans->dirty = true; 2031 2032 /* Stop the commit early if ->aborted is set */ 2033 if (TRANS_ABORTED(cur_trans)) { 2034 ret = cur_trans->aborted; 2035 btrfs_end_transaction(trans); 2036 return ret; 2037 } 2038 2039 btrfs_trans_release_metadata(trans); 2040 trans->block_rsv = NULL; 2041 2042 /* make a pass through all the delayed refs we have so far 2043 * any runnings procs may add more while we are here 2044 */ 2045 ret = btrfs_run_delayed_refs(trans, 0); 2046 if (ret) { 2047 btrfs_end_transaction(trans); 2048 return ret; 2049 } 2050 2051 cur_trans = trans->transaction; 2052 2053 /* 2054 * set the flushing flag so procs in this transaction have to 2055 * start sending their work down. 2056 */ 2057 cur_trans->delayed_refs.flushing = 1; 2058 smp_wmb(); 2059 2060 btrfs_create_pending_block_groups(trans); 2061 2062 ret = btrfs_run_delayed_refs(trans, 0); 2063 if (ret) { 2064 btrfs_end_transaction(trans); 2065 return ret; 2066 } 2067 2068 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) { 2069 int run_it = 0; 2070 2071 /* this mutex is also taken before trying to set 2072 * block groups readonly. We need to make sure 2073 * that nobody has set a block group readonly 2074 * after a extents from that block group have been 2075 * allocated for cache files. btrfs_set_block_group_ro 2076 * will wait for the transaction to commit if it 2077 * finds BTRFS_TRANS_DIRTY_BG_RUN set. 2078 * 2079 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure 2080 * only one process starts all the block group IO. It wouldn't 2081 * hurt to have more than one go through, but there's no 2082 * real advantage to it either. 2083 */ 2084 mutex_lock(&fs_info->ro_block_group_mutex); 2085 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN, 2086 &cur_trans->flags)) 2087 run_it = 1; 2088 mutex_unlock(&fs_info->ro_block_group_mutex); 2089 2090 if (run_it) { 2091 ret = btrfs_start_dirty_block_groups(trans); 2092 if (ret) { 2093 btrfs_end_transaction(trans); 2094 return ret; 2095 } 2096 } 2097 } 2098 2099 spin_lock(&fs_info->trans_lock); 2100 if (cur_trans->state >= TRANS_STATE_COMMIT_START) { 2101 spin_unlock(&fs_info->trans_lock); 2102 refcount_inc(&cur_trans->use_count); 2103 ret = btrfs_end_transaction(trans); 2104 2105 wait_for_commit(cur_trans); 2106 2107 if (TRANS_ABORTED(cur_trans)) 2108 ret = cur_trans->aborted; 2109 2110 btrfs_put_transaction(cur_trans); 2111 2112 return ret; 2113 } 2114 2115 cur_trans->state = TRANS_STATE_COMMIT_START; 2116 wake_up(&fs_info->transaction_blocked_wait); 2117 2118 if (cur_trans->list.prev != &fs_info->trans_list) { 2119 prev_trans = list_entry(cur_trans->list.prev, 2120 struct btrfs_transaction, list); 2121 if (prev_trans->state != TRANS_STATE_COMPLETED) { 2122 refcount_inc(&prev_trans->use_count); 2123 spin_unlock(&fs_info->trans_lock); 2124 2125 wait_for_commit(prev_trans); 2126 ret = READ_ONCE(prev_trans->aborted); 2127 2128 btrfs_put_transaction(prev_trans); 2129 if (ret) 2130 goto cleanup_transaction; 2131 } else { 2132 spin_unlock(&fs_info->trans_lock); 2133 } 2134 } else { 2135 spin_unlock(&fs_info->trans_lock); 2136 /* 2137 * The previous transaction was aborted and was already removed 2138 * from the list of transactions at fs_info->trans_list. So we 2139 * abort to prevent writing a new superblock that reflects a 2140 * corrupt state (pointing to trees with unwritten nodes/leafs). 2141 */ 2142 if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) { 2143 ret = -EROFS; 2144 goto cleanup_transaction; 2145 } 2146 } 2147 2148 extwriter_counter_dec(cur_trans, trans->type); 2149 2150 ret = btrfs_start_delalloc_flush(trans); 2151 if (ret) 2152 goto cleanup_transaction; 2153 2154 ret = btrfs_run_delayed_items(trans); 2155 if (ret) 2156 goto cleanup_transaction; 2157 2158 wait_event(cur_trans->writer_wait, 2159 extwriter_counter_read(cur_trans) == 0); 2160 2161 /* some pending stuffs might be added after the previous flush. */ 2162 ret = btrfs_run_delayed_items(trans); 2163 if (ret) 2164 goto cleanup_transaction; 2165 2166 btrfs_wait_delalloc_flush(trans); 2167 2168 btrfs_scrub_pause(fs_info); 2169 /* 2170 * Ok now we need to make sure to block out any other joins while we 2171 * commit the transaction. We could have started a join before setting 2172 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 2173 */ 2174 spin_lock(&fs_info->trans_lock); 2175 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2176 spin_unlock(&fs_info->trans_lock); 2177 wait_event(cur_trans->writer_wait, 2178 atomic_read(&cur_trans->num_writers) == 1); 2179 2180 if (TRANS_ABORTED(cur_trans)) { 2181 ret = cur_trans->aborted; 2182 goto scrub_continue; 2183 } 2184 /* 2185 * the reloc mutex makes sure that we stop 2186 * the balancing code from coming in and moving 2187 * extents around in the middle of the commit 2188 */ 2189 mutex_lock(&fs_info->reloc_mutex); 2190 2191 /* 2192 * We needn't worry about the delayed items because we will 2193 * deal with them in create_pending_snapshot(), which is the 2194 * core function of the snapshot creation. 2195 */ 2196 ret = create_pending_snapshots(trans); 2197 if (ret) 2198 goto unlock_reloc; 2199 2200 /* 2201 * We insert the dir indexes of the snapshots and update the inode 2202 * of the snapshots' parents after the snapshot creation, so there 2203 * are some delayed items which are not dealt with. Now deal with 2204 * them. 2205 * 2206 * We needn't worry that this operation will corrupt the snapshots, 2207 * because all the tree which are snapshoted will be forced to COW 2208 * the nodes and leaves. 2209 */ 2210 ret = btrfs_run_delayed_items(trans); 2211 if (ret) 2212 goto unlock_reloc; 2213 2214 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 2215 if (ret) 2216 goto unlock_reloc; 2217 2218 /* 2219 * make sure none of the code above managed to slip in a 2220 * delayed item 2221 */ 2222 btrfs_assert_delayed_root_empty(fs_info); 2223 2224 WARN_ON(cur_trans != trans->transaction); 2225 2226 /* btrfs_commit_tree_roots is responsible for getting the 2227 * various roots consistent with each other. Every pointer 2228 * in the tree of tree roots has to point to the most up to date 2229 * root for every subvolume and other tree. So, we have to keep 2230 * the tree logging code from jumping in and changing any 2231 * of the trees. 2232 * 2233 * At this point in the commit, there can't be any tree-log 2234 * writers, but a little lower down we drop the trans mutex 2235 * and let new people in. By holding the tree_log_mutex 2236 * from now until after the super is written, we avoid races 2237 * with the tree-log code. 2238 */ 2239 mutex_lock(&fs_info->tree_log_mutex); 2240 2241 ret = commit_fs_roots(trans); 2242 if (ret) 2243 goto unlock_tree_log; 2244 2245 /* 2246 * Since the transaction is done, we can apply the pending changes 2247 * before the next transaction. 2248 */ 2249 btrfs_apply_pending_changes(fs_info); 2250 2251 /* commit_fs_roots gets rid of all the tree log roots, it is now 2252 * safe to free the root of tree log roots 2253 */ 2254 btrfs_free_log_root_tree(trans, fs_info); 2255 2256 /* 2257 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates 2258 * new delayed refs. Must handle them or qgroup can be wrong. 2259 */ 2260 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 2261 if (ret) 2262 goto unlock_tree_log; 2263 2264 /* 2265 * Since fs roots are all committed, we can get a quite accurate 2266 * new_roots. So let's do quota accounting. 2267 */ 2268 ret = btrfs_qgroup_account_extents(trans); 2269 if (ret < 0) 2270 goto unlock_tree_log; 2271 2272 ret = commit_cowonly_roots(trans); 2273 if (ret) 2274 goto unlock_tree_log; 2275 2276 /* 2277 * The tasks which save the space cache and inode cache may also 2278 * update ->aborted, check it. 2279 */ 2280 if (TRANS_ABORTED(cur_trans)) { 2281 ret = cur_trans->aborted; 2282 goto unlock_tree_log; 2283 } 2284 2285 btrfs_prepare_extent_commit(fs_info); 2286 2287 cur_trans = fs_info->running_transaction; 2288 2289 btrfs_set_root_node(&fs_info->tree_root->root_item, 2290 fs_info->tree_root->node); 2291 list_add_tail(&fs_info->tree_root->dirty_list, 2292 &cur_trans->switch_commits); 2293 2294 btrfs_set_root_node(&fs_info->chunk_root->root_item, 2295 fs_info->chunk_root->node); 2296 list_add_tail(&fs_info->chunk_root->dirty_list, 2297 &cur_trans->switch_commits); 2298 2299 switch_commit_roots(trans); 2300 2301 ASSERT(list_empty(&cur_trans->dirty_bgs)); 2302 ASSERT(list_empty(&cur_trans->io_bgs)); 2303 update_super_roots(fs_info); 2304 2305 btrfs_set_super_log_root(fs_info->super_copy, 0); 2306 btrfs_set_super_log_root_level(fs_info->super_copy, 0); 2307 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2308 sizeof(*fs_info->super_copy)); 2309 2310 btrfs_commit_device_sizes(cur_trans); 2311 2312 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 2313 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 2314 2315 btrfs_trans_release_chunk_metadata(trans); 2316 2317 spin_lock(&fs_info->trans_lock); 2318 cur_trans->state = TRANS_STATE_UNBLOCKED; 2319 fs_info->running_transaction = NULL; 2320 spin_unlock(&fs_info->trans_lock); 2321 mutex_unlock(&fs_info->reloc_mutex); 2322 2323 wake_up(&fs_info->transaction_wait); 2324 2325 ret = btrfs_write_and_wait_transaction(trans); 2326 if (ret) { 2327 btrfs_handle_fs_error(fs_info, ret, 2328 "Error while writing out transaction"); 2329 /* 2330 * reloc_mutex has been unlocked, tree_log_mutex is still held 2331 * but we can't jump to unlock_tree_log causing double unlock 2332 */ 2333 mutex_unlock(&fs_info->tree_log_mutex); 2334 goto scrub_continue; 2335 } 2336 2337 ret = write_all_supers(fs_info, 0); 2338 /* 2339 * the super is written, we can safely allow the tree-loggers 2340 * to go about their business 2341 */ 2342 mutex_unlock(&fs_info->tree_log_mutex); 2343 if (ret) 2344 goto scrub_continue; 2345 2346 btrfs_finish_extent_commit(trans); 2347 2348 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags)) 2349 btrfs_clear_space_info_full(fs_info); 2350 2351 fs_info->last_trans_committed = cur_trans->transid; 2352 /* 2353 * We needn't acquire the lock here because there is no other task 2354 * which can change it. 2355 */ 2356 cur_trans->state = TRANS_STATE_COMPLETED; 2357 wake_up(&cur_trans->commit_wait); 2358 2359 spin_lock(&fs_info->trans_lock); 2360 list_del_init(&cur_trans->list); 2361 spin_unlock(&fs_info->trans_lock); 2362 2363 btrfs_put_transaction(cur_trans); 2364 btrfs_put_transaction(cur_trans); 2365 2366 if (trans->type & __TRANS_FREEZABLE) 2367 sb_end_intwrite(fs_info->sb); 2368 2369 trace_btrfs_transaction_commit(trans->root); 2370 2371 btrfs_scrub_continue(fs_info); 2372 2373 if (current->journal_info == trans) 2374 current->journal_info = NULL; 2375 2376 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2377 2378 return ret; 2379 2380 unlock_tree_log: 2381 mutex_unlock(&fs_info->tree_log_mutex); 2382 unlock_reloc: 2383 mutex_unlock(&fs_info->reloc_mutex); 2384 scrub_continue: 2385 btrfs_scrub_continue(fs_info); 2386 cleanup_transaction: 2387 btrfs_trans_release_metadata(trans); 2388 btrfs_cleanup_pending_block_groups(trans); 2389 btrfs_trans_release_chunk_metadata(trans); 2390 trans->block_rsv = NULL; 2391 btrfs_warn(fs_info, "Skipping commit of aborted transaction."); 2392 if (current->journal_info == trans) 2393 current->journal_info = NULL; 2394 cleanup_transaction(trans, ret); 2395 2396 return ret; 2397 } 2398 2399 /* 2400 * return < 0 if error 2401 * 0 if there are no more dead_roots at the time of call 2402 * 1 there are more to be processed, call me again 2403 * 2404 * The return value indicates there are certainly more snapshots to delete, but 2405 * if there comes a new one during processing, it may return 0. We don't mind, 2406 * because btrfs_commit_super will poke cleaner thread and it will process it a 2407 * few seconds later. 2408 */ 2409 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root) 2410 { 2411 int ret; 2412 struct btrfs_fs_info *fs_info = root->fs_info; 2413 2414 spin_lock(&fs_info->trans_lock); 2415 if (list_empty(&fs_info->dead_roots)) { 2416 spin_unlock(&fs_info->trans_lock); 2417 return 0; 2418 } 2419 root = list_first_entry(&fs_info->dead_roots, 2420 struct btrfs_root, root_list); 2421 list_del_init(&root->root_list); 2422 spin_unlock(&fs_info->trans_lock); 2423 2424 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid); 2425 2426 btrfs_kill_all_delayed_nodes(root); 2427 if (root->ino_cache_inode) { 2428 iput(root->ino_cache_inode); 2429 root->ino_cache_inode = NULL; 2430 } 2431 2432 if (btrfs_header_backref_rev(root->node) < 2433 BTRFS_MIXED_BACKREF_REV) 2434 ret = btrfs_drop_snapshot(root, 0, 0); 2435 else 2436 ret = btrfs_drop_snapshot(root, 1, 0); 2437 2438 btrfs_put_root(root); 2439 return (ret < 0) ? 0 : 1; 2440 } 2441 2442 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info) 2443 { 2444 unsigned long prev; 2445 unsigned long bit; 2446 2447 prev = xchg(&fs_info->pending_changes, 0); 2448 if (!prev) 2449 return; 2450 2451 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE; 2452 if (prev & bit) 2453 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2454 prev &= ~bit; 2455 2456 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE; 2457 if (prev & bit) 2458 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2459 prev &= ~bit; 2460 2461 bit = 1 << BTRFS_PENDING_COMMIT; 2462 if (prev & bit) 2463 btrfs_debug(fs_info, "pending commit done"); 2464 prev &= ~bit; 2465 2466 if (prev) 2467 btrfs_warn(fs_info, 2468 "unknown pending changes left 0x%lx, ignoring", prev); 2469 } 2470