xref: /linux/fs/btrfs/transaction.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/writeback.h>
11 #include <linux/pagemap.h>
12 #include <linux/blkdev.h>
13 #include <linux/uuid.h>
14 #include <linux/timekeeping.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "disk-io.h"
18 #include "transaction.h"
19 #include "locking.h"
20 #include "tree-log.h"
21 #include "volumes.h"
22 #include "dev-replace.h"
23 #include "qgroup.h"
24 #include "block-group.h"
25 #include "space-info.h"
26 #include "fs.h"
27 #include "accessors.h"
28 #include "extent-tree.h"
29 #include "root-tree.h"
30 #include "dir-item.h"
31 #include "uuid-tree.h"
32 #include "ioctl.h"
33 #include "relocation.h"
34 #include "scrub.h"
35 
36 static struct kmem_cache *btrfs_trans_handle_cachep;
37 
38 /*
39  * Transaction states and transitions
40  *
41  * No running transaction (fs tree blocks are not modified)
42  * |
43  * | To next stage:
44  * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
45  * V
46  * Transaction N [[TRANS_STATE_RUNNING]]
47  * |
48  * | New trans handles can be attached to transaction N by calling all
49  * | start_transaction() variants.
50  * |
51  * | To next stage:
52  * |  Call btrfs_commit_transaction() on any trans handle attached to
53  * |  transaction N
54  * V
55  * Transaction N [[TRANS_STATE_COMMIT_PREP]]
56  * |
57  * | If there are simultaneous calls to btrfs_commit_transaction() one will win
58  * | the race and the rest will wait for the winner to commit the transaction.
59  * |
60  * | The winner will wait for previous running transaction to completely finish
61  * | if there is one.
62  * |
63  * Transaction N [[TRANS_STATE_COMMIT_START]]
64  * |
65  * | Then one of the following happens:
66  * | - Wait for all other trans handle holders to release.
67  * |   The btrfs_commit_transaction() caller will do the commit work.
68  * | - Wait for current transaction to be committed by others.
69  * |   Other btrfs_commit_transaction() caller will do the commit work.
70  * |
71  * | At this stage, only btrfs_join_transaction*() variants can attach
72  * | to this running transaction.
73  * | All other variants will wait for current one to finish and attach to
74  * | transaction N+1.
75  * |
76  * | To next stage:
77  * |  Caller is chosen to commit transaction N, and all other trans handle
78  * |  haven been released.
79  * V
80  * Transaction N [[TRANS_STATE_COMMIT_DOING]]
81  * |
82  * | The heavy lifting transaction work is started.
83  * | From running delayed refs (modifying extent tree) to creating pending
84  * | snapshots, running qgroups.
85  * | In short, modify supporting trees to reflect modifications of subvolume
86  * | trees.
87  * |
88  * | At this stage, all start_transaction() calls will wait for this
89  * | transaction to finish and attach to transaction N+1.
90  * |
91  * | To next stage:
92  * |  Until all supporting trees are updated.
93  * V
94  * Transaction N [[TRANS_STATE_UNBLOCKED]]
95  * |						    Transaction N+1
96  * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
97  * | need to write them back to disk and update	    |
98  * | super blocks.				    |
99  * |						    |
100  * | At this stage, new transaction is allowed to   |
101  * | start.					    |
102  * | All new start_transaction() calls will be	    |
103  * | attached to transid N+1.			    |
104  * |						    |
105  * | To next stage:				    |
106  * |  Until all tree blocks are super blocks are    |
107  * |  written to block devices			    |
108  * V						    |
109  * Transaction N [[TRANS_STATE_COMPLETED]]	    V
110  *   All tree blocks and super blocks are written.  Transaction N+1
111  *   This transaction is finished and all its	    [[TRANS_STATE_COMMIT_START]]
112  *   data structures will be cleaned up.	    | Life goes on
113  */
114 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
115 	[TRANS_STATE_RUNNING]		= 0U,
116 	[TRANS_STATE_COMMIT_PREP]	= 0U,
117 	[TRANS_STATE_COMMIT_START]	= (__TRANS_START | __TRANS_ATTACH),
118 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_START |
119 					   __TRANS_ATTACH |
120 					   __TRANS_JOIN |
121 					   __TRANS_JOIN_NOSTART),
122 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_START |
123 					   __TRANS_ATTACH |
124 					   __TRANS_JOIN |
125 					   __TRANS_JOIN_NOLOCK |
126 					   __TRANS_JOIN_NOSTART),
127 	[TRANS_STATE_SUPER_COMMITTED]	= (__TRANS_START |
128 					   __TRANS_ATTACH |
129 					   __TRANS_JOIN |
130 					   __TRANS_JOIN_NOLOCK |
131 					   __TRANS_JOIN_NOSTART),
132 	[TRANS_STATE_COMPLETED]		= (__TRANS_START |
133 					   __TRANS_ATTACH |
134 					   __TRANS_JOIN |
135 					   __TRANS_JOIN_NOLOCK |
136 					   __TRANS_JOIN_NOSTART),
137 };
138 
139 void btrfs_put_transaction(struct btrfs_transaction *transaction)
140 {
141 	WARN_ON(refcount_read(&transaction->use_count) == 0);
142 	if (refcount_dec_and_test(&transaction->use_count)) {
143 		BUG_ON(!list_empty(&transaction->list));
144 		WARN_ON(!RB_EMPTY_ROOT(
145 				&transaction->delayed_refs.href_root.rb_root));
146 		WARN_ON(!RB_EMPTY_ROOT(
147 				&transaction->delayed_refs.dirty_extent_root));
148 		if (transaction->delayed_refs.pending_csums)
149 			btrfs_err(transaction->fs_info,
150 				  "pending csums is %llu",
151 				  transaction->delayed_refs.pending_csums);
152 		/*
153 		 * If any block groups are found in ->deleted_bgs then it's
154 		 * because the transaction was aborted and a commit did not
155 		 * happen (things failed before writing the new superblock
156 		 * and calling btrfs_finish_extent_commit()), so we can not
157 		 * discard the physical locations of the block groups.
158 		 */
159 		while (!list_empty(&transaction->deleted_bgs)) {
160 			struct btrfs_block_group *cache;
161 
162 			cache = list_first_entry(&transaction->deleted_bgs,
163 						 struct btrfs_block_group,
164 						 bg_list);
165 			list_del_init(&cache->bg_list);
166 			btrfs_unfreeze_block_group(cache);
167 			btrfs_put_block_group(cache);
168 		}
169 		WARN_ON(!list_empty(&transaction->dev_update_list));
170 		kfree(transaction);
171 	}
172 }
173 
174 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
175 {
176 	struct btrfs_transaction *cur_trans = trans->transaction;
177 	struct btrfs_fs_info *fs_info = trans->fs_info;
178 	struct btrfs_root *root, *tmp;
179 
180 	/*
181 	 * At this point no one can be using this transaction to modify any tree
182 	 * and no one can start another transaction to modify any tree either.
183 	 */
184 	ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
185 
186 	down_write(&fs_info->commit_root_sem);
187 
188 	if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
189 		fs_info->last_reloc_trans = trans->transid;
190 
191 	list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
192 				 dirty_list) {
193 		list_del_init(&root->dirty_list);
194 		free_extent_buffer(root->commit_root);
195 		root->commit_root = btrfs_root_node(root);
196 		extent_io_tree_release(&root->dirty_log_pages);
197 		btrfs_qgroup_clean_swapped_blocks(root);
198 	}
199 
200 	/* We can free old roots now. */
201 	spin_lock(&cur_trans->dropped_roots_lock);
202 	while (!list_empty(&cur_trans->dropped_roots)) {
203 		root = list_first_entry(&cur_trans->dropped_roots,
204 					struct btrfs_root, root_list);
205 		list_del_init(&root->root_list);
206 		spin_unlock(&cur_trans->dropped_roots_lock);
207 		btrfs_free_log(trans, root);
208 		btrfs_drop_and_free_fs_root(fs_info, root);
209 		spin_lock(&cur_trans->dropped_roots_lock);
210 	}
211 	spin_unlock(&cur_trans->dropped_roots_lock);
212 
213 	up_write(&fs_info->commit_root_sem);
214 }
215 
216 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
217 					 unsigned int type)
218 {
219 	if (type & TRANS_EXTWRITERS)
220 		atomic_inc(&trans->num_extwriters);
221 }
222 
223 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
224 					 unsigned int type)
225 {
226 	if (type & TRANS_EXTWRITERS)
227 		atomic_dec(&trans->num_extwriters);
228 }
229 
230 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
231 					  unsigned int type)
232 {
233 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
234 }
235 
236 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
237 {
238 	return atomic_read(&trans->num_extwriters);
239 }
240 
241 /*
242  * To be called after doing the chunk btree updates right after allocating a new
243  * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
244  * chunk after all chunk btree updates and after finishing the second phase of
245  * chunk allocation (btrfs_create_pending_block_groups()) in case some block
246  * group had its chunk item insertion delayed to the second phase.
247  */
248 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
249 {
250 	struct btrfs_fs_info *fs_info = trans->fs_info;
251 
252 	if (!trans->chunk_bytes_reserved)
253 		return;
254 
255 	btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
256 				trans->chunk_bytes_reserved, NULL);
257 	trans->chunk_bytes_reserved = 0;
258 }
259 
260 /*
261  * either allocate a new transaction or hop into the existing one
262  */
263 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
264 				     unsigned int type)
265 {
266 	struct btrfs_transaction *cur_trans;
267 
268 	spin_lock(&fs_info->trans_lock);
269 loop:
270 	/* The file system has been taken offline. No new transactions. */
271 	if (BTRFS_FS_ERROR(fs_info)) {
272 		spin_unlock(&fs_info->trans_lock);
273 		return -EROFS;
274 	}
275 
276 	cur_trans = fs_info->running_transaction;
277 	if (cur_trans) {
278 		if (TRANS_ABORTED(cur_trans)) {
279 			spin_unlock(&fs_info->trans_lock);
280 			return cur_trans->aborted;
281 		}
282 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
283 			spin_unlock(&fs_info->trans_lock);
284 			return -EBUSY;
285 		}
286 		refcount_inc(&cur_trans->use_count);
287 		atomic_inc(&cur_trans->num_writers);
288 		extwriter_counter_inc(cur_trans, type);
289 		spin_unlock(&fs_info->trans_lock);
290 		btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
291 		btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
292 		return 0;
293 	}
294 	spin_unlock(&fs_info->trans_lock);
295 
296 	/*
297 	 * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the
298 	 * current transaction, and commit it. If there is no transaction, just
299 	 * return ENOENT.
300 	 */
301 	if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART)
302 		return -ENOENT;
303 
304 	/*
305 	 * JOIN_NOLOCK only happens during the transaction commit, so
306 	 * it is impossible that ->running_transaction is NULL
307 	 */
308 	BUG_ON(type == TRANS_JOIN_NOLOCK);
309 
310 	cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
311 	if (!cur_trans)
312 		return -ENOMEM;
313 
314 	btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
315 	btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
316 
317 	spin_lock(&fs_info->trans_lock);
318 	if (fs_info->running_transaction) {
319 		/*
320 		 * someone started a transaction after we unlocked.  Make sure
321 		 * to redo the checks above
322 		 */
323 		btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
324 		btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
325 		kfree(cur_trans);
326 		goto loop;
327 	} else if (BTRFS_FS_ERROR(fs_info)) {
328 		spin_unlock(&fs_info->trans_lock);
329 		btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
330 		btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
331 		kfree(cur_trans);
332 		return -EROFS;
333 	}
334 
335 	cur_trans->fs_info = fs_info;
336 	atomic_set(&cur_trans->pending_ordered, 0);
337 	init_waitqueue_head(&cur_trans->pending_wait);
338 	atomic_set(&cur_trans->num_writers, 1);
339 	extwriter_counter_init(cur_trans, type);
340 	init_waitqueue_head(&cur_trans->writer_wait);
341 	init_waitqueue_head(&cur_trans->commit_wait);
342 	cur_trans->state = TRANS_STATE_RUNNING;
343 	/*
344 	 * One for this trans handle, one so it will live on until we
345 	 * commit the transaction.
346 	 */
347 	refcount_set(&cur_trans->use_count, 2);
348 	cur_trans->flags = 0;
349 	cur_trans->start_time = ktime_get_seconds();
350 
351 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
352 
353 	cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
354 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
355 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
356 
357 	/*
358 	 * although the tree mod log is per file system and not per transaction,
359 	 * the log must never go across transaction boundaries.
360 	 */
361 	smp_mb();
362 	if (!list_empty(&fs_info->tree_mod_seq_list))
363 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
364 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
365 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
366 	atomic64_set(&fs_info->tree_mod_seq, 0);
367 
368 	spin_lock_init(&cur_trans->delayed_refs.lock);
369 
370 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
371 	INIT_LIST_HEAD(&cur_trans->dev_update_list);
372 	INIT_LIST_HEAD(&cur_trans->switch_commits);
373 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
374 	INIT_LIST_HEAD(&cur_trans->io_bgs);
375 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
376 	mutex_init(&cur_trans->cache_write_mutex);
377 	spin_lock_init(&cur_trans->dirty_bgs_lock);
378 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
379 	spin_lock_init(&cur_trans->dropped_roots_lock);
380 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
381 	extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
382 			IO_TREE_TRANS_DIRTY_PAGES);
383 	extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
384 			IO_TREE_FS_PINNED_EXTENTS);
385 	btrfs_set_fs_generation(fs_info, fs_info->generation + 1);
386 	cur_trans->transid = fs_info->generation;
387 	fs_info->running_transaction = cur_trans;
388 	cur_trans->aborted = 0;
389 	spin_unlock(&fs_info->trans_lock);
390 
391 	return 0;
392 }
393 
394 /*
395  * This does all the record keeping required to make sure that a shareable root
396  * is properly recorded in a given transaction.  This is required to make sure
397  * the old root from before we joined the transaction is deleted when the
398  * transaction commits.
399  */
400 static int record_root_in_trans(struct btrfs_trans_handle *trans,
401 			       struct btrfs_root *root,
402 			       int force)
403 {
404 	struct btrfs_fs_info *fs_info = root->fs_info;
405 	int ret = 0;
406 
407 	if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
408 	    root->last_trans < trans->transid) || force) {
409 		WARN_ON(!force && root->commit_root != root->node);
410 
411 		/*
412 		 * see below for IN_TRANS_SETUP usage rules
413 		 * we have the reloc mutex held now, so there
414 		 * is only one writer in this function
415 		 */
416 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
417 
418 		/* make sure readers find IN_TRANS_SETUP before
419 		 * they find our root->last_trans update
420 		 */
421 		smp_wmb();
422 
423 		spin_lock(&fs_info->fs_roots_radix_lock);
424 		if (root->last_trans == trans->transid && !force) {
425 			spin_unlock(&fs_info->fs_roots_radix_lock);
426 			return 0;
427 		}
428 		radix_tree_tag_set(&fs_info->fs_roots_radix,
429 				   (unsigned long)root->root_key.objectid,
430 				   BTRFS_ROOT_TRANS_TAG);
431 		spin_unlock(&fs_info->fs_roots_radix_lock);
432 		root->last_trans = trans->transid;
433 
434 		/* this is pretty tricky.  We don't want to
435 		 * take the relocation lock in btrfs_record_root_in_trans
436 		 * unless we're really doing the first setup for this root in
437 		 * this transaction.
438 		 *
439 		 * Normally we'd use root->last_trans as a flag to decide
440 		 * if we want to take the expensive mutex.
441 		 *
442 		 * But, we have to set root->last_trans before we
443 		 * init the relocation root, otherwise, we trip over warnings
444 		 * in ctree.c.  The solution used here is to flag ourselves
445 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
446 		 * fixing up the reloc trees and everyone must wait.
447 		 *
448 		 * When this is zero, they can trust root->last_trans and fly
449 		 * through btrfs_record_root_in_trans without having to take the
450 		 * lock.  smp_wmb() makes sure that all the writes above are
451 		 * done before we pop in the zero below
452 		 */
453 		ret = btrfs_init_reloc_root(trans, root);
454 		smp_mb__before_atomic();
455 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
456 	}
457 	return ret;
458 }
459 
460 
461 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
462 			    struct btrfs_root *root)
463 {
464 	struct btrfs_fs_info *fs_info = root->fs_info;
465 	struct btrfs_transaction *cur_trans = trans->transaction;
466 
467 	/* Add ourselves to the transaction dropped list */
468 	spin_lock(&cur_trans->dropped_roots_lock);
469 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
470 	spin_unlock(&cur_trans->dropped_roots_lock);
471 
472 	/* Make sure we don't try to update the root at commit time */
473 	spin_lock(&fs_info->fs_roots_radix_lock);
474 	radix_tree_tag_clear(&fs_info->fs_roots_radix,
475 			     (unsigned long)root->root_key.objectid,
476 			     BTRFS_ROOT_TRANS_TAG);
477 	spin_unlock(&fs_info->fs_roots_radix_lock);
478 }
479 
480 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
481 			       struct btrfs_root *root)
482 {
483 	struct btrfs_fs_info *fs_info = root->fs_info;
484 	int ret;
485 
486 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
487 		return 0;
488 
489 	/*
490 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
491 	 * and barriers
492 	 */
493 	smp_rmb();
494 	if (root->last_trans == trans->transid &&
495 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
496 		return 0;
497 
498 	mutex_lock(&fs_info->reloc_mutex);
499 	ret = record_root_in_trans(trans, root, 0);
500 	mutex_unlock(&fs_info->reloc_mutex);
501 
502 	return ret;
503 }
504 
505 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
506 {
507 	return (trans->state >= TRANS_STATE_COMMIT_START &&
508 		trans->state < TRANS_STATE_UNBLOCKED &&
509 		!TRANS_ABORTED(trans));
510 }
511 
512 /* wait for commit against the current transaction to become unblocked
513  * when this is done, it is safe to start a new transaction, but the current
514  * transaction might not be fully on disk.
515  */
516 static void wait_current_trans(struct btrfs_fs_info *fs_info)
517 {
518 	struct btrfs_transaction *cur_trans;
519 
520 	spin_lock(&fs_info->trans_lock);
521 	cur_trans = fs_info->running_transaction;
522 	if (cur_trans && is_transaction_blocked(cur_trans)) {
523 		refcount_inc(&cur_trans->use_count);
524 		spin_unlock(&fs_info->trans_lock);
525 
526 		btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
527 		wait_event(fs_info->transaction_wait,
528 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
529 			   TRANS_ABORTED(cur_trans));
530 		btrfs_put_transaction(cur_trans);
531 	} else {
532 		spin_unlock(&fs_info->trans_lock);
533 	}
534 }
535 
536 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
537 {
538 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
539 		return 0;
540 
541 	if (type == TRANS_START)
542 		return 1;
543 
544 	return 0;
545 }
546 
547 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
548 {
549 	struct btrfs_fs_info *fs_info = root->fs_info;
550 
551 	if (!fs_info->reloc_ctl ||
552 	    !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
553 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
554 	    root->reloc_root)
555 		return false;
556 
557 	return true;
558 }
559 
560 static int btrfs_reserve_trans_metadata(struct btrfs_fs_info *fs_info,
561 					enum btrfs_reserve_flush_enum flush,
562 					u64 num_bytes,
563 					u64 *delayed_refs_bytes)
564 {
565 	struct btrfs_space_info *si = fs_info->trans_block_rsv.space_info;
566 	u64 bytes = num_bytes + *delayed_refs_bytes;
567 	int ret;
568 
569 	/*
570 	 * We want to reserve all the bytes we may need all at once, so we only
571 	 * do 1 enospc flushing cycle per transaction start.
572 	 */
573 	ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
574 
575 	/*
576 	 * If we are an emergency flush, which can steal from the global block
577 	 * reserve, then attempt to not reserve space for the delayed refs, as
578 	 * we will consume space for them from the global block reserve.
579 	 */
580 	if (ret && flush == BTRFS_RESERVE_FLUSH_ALL_STEAL) {
581 		bytes -= *delayed_refs_bytes;
582 		*delayed_refs_bytes = 0;
583 		ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
584 	}
585 
586 	return ret;
587 }
588 
589 static struct btrfs_trans_handle *
590 start_transaction(struct btrfs_root *root, unsigned int num_items,
591 		  unsigned int type, enum btrfs_reserve_flush_enum flush,
592 		  bool enforce_qgroups)
593 {
594 	struct btrfs_fs_info *fs_info = root->fs_info;
595 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
596 	struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
597 	struct btrfs_trans_handle *h;
598 	struct btrfs_transaction *cur_trans;
599 	u64 num_bytes = 0;
600 	u64 qgroup_reserved = 0;
601 	u64 delayed_refs_bytes = 0;
602 	bool reloc_reserved = false;
603 	bool do_chunk_alloc = false;
604 	int ret;
605 
606 	if (BTRFS_FS_ERROR(fs_info))
607 		return ERR_PTR(-EROFS);
608 
609 	if (current->journal_info) {
610 		WARN_ON(type & TRANS_EXTWRITERS);
611 		h = current->journal_info;
612 		refcount_inc(&h->use_count);
613 		WARN_ON(refcount_read(&h->use_count) > 2);
614 		h->orig_rsv = h->block_rsv;
615 		h->block_rsv = NULL;
616 		goto got_it;
617 	}
618 
619 	/*
620 	 * Do the reservation before we join the transaction so we can do all
621 	 * the appropriate flushing if need be.
622 	 */
623 	if (num_items && root != fs_info->chunk_root) {
624 		qgroup_reserved = num_items * fs_info->nodesize;
625 		/*
626 		 * Use prealloc for now, as there might be a currently running
627 		 * transaction that could free this reserved space prematurely
628 		 * by committing.
629 		 */
630 		ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserved,
631 							 enforce_qgroups, false);
632 		if (ret)
633 			return ERR_PTR(ret);
634 
635 		num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
636 		/*
637 		 * If we plan to insert/update/delete "num_items" from a btree,
638 		 * we will also generate delayed refs for extent buffers in the
639 		 * respective btree paths, so reserve space for the delayed refs
640 		 * that will be generated by the caller as it modifies btrees.
641 		 * Try to reserve them to avoid excessive use of the global
642 		 * block reserve.
643 		 */
644 		delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info, num_items);
645 
646 		/*
647 		 * Do the reservation for the relocation root creation
648 		 */
649 		if (need_reserve_reloc_root(root)) {
650 			num_bytes += fs_info->nodesize;
651 			reloc_reserved = true;
652 		}
653 
654 		ret = btrfs_reserve_trans_metadata(fs_info, flush, num_bytes,
655 						   &delayed_refs_bytes);
656 		if (ret)
657 			goto reserve_fail;
658 
659 		btrfs_block_rsv_add_bytes(trans_rsv, num_bytes, true);
660 
661 		if (trans_rsv->space_info->force_alloc)
662 			do_chunk_alloc = true;
663 	} else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
664 		   !btrfs_block_rsv_full(delayed_refs_rsv)) {
665 		/*
666 		 * Some people call with btrfs_start_transaction(root, 0)
667 		 * because they can be throttled, but have some other mechanism
668 		 * for reserving space.  We still want these guys to refill the
669 		 * delayed block_rsv so just add 1 items worth of reservation
670 		 * here.
671 		 */
672 		ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
673 		if (ret)
674 			goto reserve_fail;
675 	}
676 again:
677 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
678 	if (!h) {
679 		ret = -ENOMEM;
680 		goto alloc_fail;
681 	}
682 
683 	/*
684 	 * If we are JOIN_NOLOCK we're already committing a transaction and
685 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
686 	 * because we're already holding a ref.  We need this because we could
687 	 * have raced in and did an fsync() on a file which can kick a commit
688 	 * and then we deadlock with somebody doing a freeze.
689 	 *
690 	 * If we are ATTACH, it means we just want to catch the current
691 	 * transaction and commit it, so we needn't do sb_start_intwrite().
692 	 */
693 	if (type & __TRANS_FREEZABLE)
694 		sb_start_intwrite(fs_info->sb);
695 
696 	if (may_wait_transaction(fs_info, type))
697 		wait_current_trans(fs_info);
698 
699 	do {
700 		ret = join_transaction(fs_info, type);
701 		if (ret == -EBUSY) {
702 			wait_current_trans(fs_info);
703 			if (unlikely(type == TRANS_ATTACH ||
704 				     type == TRANS_JOIN_NOSTART))
705 				ret = -ENOENT;
706 		}
707 	} while (ret == -EBUSY);
708 
709 	if (ret < 0)
710 		goto join_fail;
711 
712 	cur_trans = fs_info->running_transaction;
713 
714 	h->transid = cur_trans->transid;
715 	h->transaction = cur_trans;
716 	refcount_set(&h->use_count, 1);
717 	h->fs_info = root->fs_info;
718 
719 	h->type = type;
720 	INIT_LIST_HEAD(&h->new_bgs);
721 	btrfs_init_metadata_block_rsv(fs_info, &h->delayed_rsv, BTRFS_BLOCK_RSV_DELOPS);
722 
723 	smp_mb();
724 	if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
725 	    may_wait_transaction(fs_info, type)) {
726 		current->journal_info = h;
727 		btrfs_commit_transaction(h);
728 		goto again;
729 	}
730 
731 	if (num_bytes) {
732 		trace_btrfs_space_reservation(fs_info, "transaction",
733 					      h->transid, num_bytes, 1);
734 		h->block_rsv = trans_rsv;
735 		h->bytes_reserved = num_bytes;
736 		if (delayed_refs_bytes > 0) {
737 			trace_btrfs_space_reservation(fs_info,
738 						      "local_delayed_refs_rsv",
739 						      h->transid,
740 						      delayed_refs_bytes, 1);
741 			h->delayed_refs_bytes_reserved = delayed_refs_bytes;
742 			btrfs_block_rsv_add_bytes(&h->delayed_rsv, delayed_refs_bytes, true);
743 			delayed_refs_bytes = 0;
744 		}
745 		h->reloc_reserved = reloc_reserved;
746 	}
747 
748 	/*
749 	 * Now that we have found a transaction to be a part of, convert the
750 	 * qgroup reservation from prealloc to pertrans. A different transaction
751 	 * can't race in and free our pertrans out from under us.
752 	 */
753 	if (qgroup_reserved)
754 		btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
755 
756 got_it:
757 	if (!current->journal_info)
758 		current->journal_info = h;
759 
760 	/*
761 	 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
762 	 * ALLOC_FORCE the first run through, and then we won't allocate for
763 	 * anybody else who races in later.  We don't care about the return
764 	 * value here.
765 	 */
766 	if (do_chunk_alloc && num_bytes) {
767 		u64 flags = h->block_rsv->space_info->flags;
768 
769 		btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
770 				  CHUNK_ALLOC_NO_FORCE);
771 	}
772 
773 	/*
774 	 * btrfs_record_root_in_trans() needs to alloc new extents, and may
775 	 * call btrfs_join_transaction() while we're also starting a
776 	 * transaction.
777 	 *
778 	 * Thus it need to be called after current->journal_info initialized,
779 	 * or we can deadlock.
780 	 */
781 	ret = btrfs_record_root_in_trans(h, root);
782 	if (ret) {
783 		/*
784 		 * The transaction handle is fully initialized and linked with
785 		 * other structures so it needs to be ended in case of errors,
786 		 * not just freed.
787 		 */
788 		btrfs_end_transaction(h);
789 		return ERR_PTR(ret);
790 	}
791 
792 	return h;
793 
794 join_fail:
795 	if (type & __TRANS_FREEZABLE)
796 		sb_end_intwrite(fs_info->sb);
797 	kmem_cache_free(btrfs_trans_handle_cachep, h);
798 alloc_fail:
799 	if (num_bytes)
800 		btrfs_block_rsv_release(fs_info, trans_rsv, num_bytes, NULL);
801 	if (delayed_refs_bytes)
802 		btrfs_space_info_free_bytes_may_use(fs_info, trans_rsv->space_info,
803 						    delayed_refs_bytes);
804 reserve_fail:
805 	btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
806 	return ERR_PTR(ret);
807 }
808 
809 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
810 						   unsigned int num_items)
811 {
812 	return start_transaction(root, num_items, TRANS_START,
813 				 BTRFS_RESERVE_FLUSH_ALL, true);
814 }
815 
816 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
817 					struct btrfs_root *root,
818 					unsigned int num_items)
819 {
820 	return start_transaction(root, num_items, TRANS_START,
821 				 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
822 }
823 
824 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
825 {
826 	return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
827 				 true);
828 }
829 
830 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
831 {
832 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
833 				 BTRFS_RESERVE_NO_FLUSH, true);
834 }
835 
836 /*
837  * Similar to regular join but it never starts a transaction when none is
838  * running or when there's a running one at a state >= TRANS_STATE_UNBLOCKED.
839  * This is similar to btrfs_attach_transaction() but it allows the join to
840  * happen if the transaction commit already started but it's not yet in the
841  * "doing" phase (the state is < TRANS_STATE_COMMIT_DOING).
842  */
843 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
844 {
845 	return start_transaction(root, 0, TRANS_JOIN_NOSTART,
846 				 BTRFS_RESERVE_NO_FLUSH, true);
847 }
848 
849 /*
850  * Catch the running transaction.
851  *
852  * It is used when we want to commit the current the transaction, but
853  * don't want to start a new one.
854  *
855  * Note: If this function return -ENOENT, it just means there is no
856  * running transaction. But it is possible that the inactive transaction
857  * is still in the memory, not fully on disk. If you hope there is no
858  * inactive transaction in the fs when -ENOENT is returned, you should
859  * invoke
860  *     btrfs_attach_transaction_barrier()
861  */
862 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
863 {
864 	return start_transaction(root, 0, TRANS_ATTACH,
865 				 BTRFS_RESERVE_NO_FLUSH, true);
866 }
867 
868 /*
869  * Catch the running transaction.
870  *
871  * It is similar to the above function, the difference is this one
872  * will wait for all the inactive transactions until they fully
873  * complete.
874  */
875 struct btrfs_trans_handle *
876 btrfs_attach_transaction_barrier(struct btrfs_root *root)
877 {
878 	struct btrfs_trans_handle *trans;
879 
880 	trans = start_transaction(root, 0, TRANS_ATTACH,
881 				  BTRFS_RESERVE_NO_FLUSH, true);
882 	if (trans == ERR_PTR(-ENOENT)) {
883 		int ret;
884 
885 		ret = btrfs_wait_for_commit(root->fs_info, 0);
886 		if (ret)
887 			return ERR_PTR(ret);
888 	}
889 
890 	return trans;
891 }
892 
893 /* Wait for a transaction commit to reach at least the given state. */
894 static noinline void wait_for_commit(struct btrfs_transaction *commit,
895 				     const enum btrfs_trans_state min_state)
896 {
897 	struct btrfs_fs_info *fs_info = commit->fs_info;
898 	u64 transid = commit->transid;
899 	bool put = false;
900 
901 	/*
902 	 * At the moment this function is called with min_state either being
903 	 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
904 	 */
905 	if (min_state == TRANS_STATE_COMPLETED)
906 		btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
907 	else
908 		btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
909 
910 	while (1) {
911 		wait_event(commit->commit_wait, commit->state >= min_state);
912 		if (put)
913 			btrfs_put_transaction(commit);
914 
915 		if (min_state < TRANS_STATE_COMPLETED)
916 			break;
917 
918 		/*
919 		 * A transaction isn't really completed until all of the
920 		 * previous transactions are completed, but with fsync we can
921 		 * end up with SUPER_COMMITTED transactions before a COMPLETED
922 		 * transaction. Wait for those.
923 		 */
924 
925 		spin_lock(&fs_info->trans_lock);
926 		commit = list_first_entry_or_null(&fs_info->trans_list,
927 						  struct btrfs_transaction,
928 						  list);
929 		if (!commit || commit->transid > transid) {
930 			spin_unlock(&fs_info->trans_lock);
931 			break;
932 		}
933 		refcount_inc(&commit->use_count);
934 		put = true;
935 		spin_unlock(&fs_info->trans_lock);
936 	}
937 }
938 
939 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
940 {
941 	struct btrfs_transaction *cur_trans = NULL, *t;
942 	int ret = 0;
943 
944 	if (transid) {
945 		if (transid <= btrfs_get_last_trans_committed(fs_info))
946 			goto out;
947 
948 		/* find specified transaction */
949 		spin_lock(&fs_info->trans_lock);
950 		list_for_each_entry(t, &fs_info->trans_list, list) {
951 			if (t->transid == transid) {
952 				cur_trans = t;
953 				refcount_inc(&cur_trans->use_count);
954 				ret = 0;
955 				break;
956 			}
957 			if (t->transid > transid) {
958 				ret = 0;
959 				break;
960 			}
961 		}
962 		spin_unlock(&fs_info->trans_lock);
963 
964 		/*
965 		 * The specified transaction doesn't exist, or we
966 		 * raced with btrfs_commit_transaction
967 		 */
968 		if (!cur_trans) {
969 			if (transid > btrfs_get_last_trans_committed(fs_info))
970 				ret = -EINVAL;
971 			goto out;
972 		}
973 	} else {
974 		/* find newest transaction that is committing | committed */
975 		spin_lock(&fs_info->trans_lock);
976 		list_for_each_entry_reverse(t, &fs_info->trans_list,
977 					    list) {
978 			if (t->state >= TRANS_STATE_COMMIT_START) {
979 				if (t->state == TRANS_STATE_COMPLETED)
980 					break;
981 				cur_trans = t;
982 				refcount_inc(&cur_trans->use_count);
983 				break;
984 			}
985 		}
986 		spin_unlock(&fs_info->trans_lock);
987 		if (!cur_trans)
988 			goto out;  /* nothing committing|committed */
989 	}
990 
991 	wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
992 	ret = cur_trans->aborted;
993 	btrfs_put_transaction(cur_trans);
994 out:
995 	return ret;
996 }
997 
998 void btrfs_throttle(struct btrfs_fs_info *fs_info)
999 {
1000 	wait_current_trans(fs_info);
1001 }
1002 
1003 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
1004 {
1005 	struct btrfs_transaction *cur_trans = trans->transaction;
1006 
1007 	if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
1008 	    test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
1009 		return true;
1010 
1011 	if (btrfs_check_space_for_delayed_refs(trans->fs_info))
1012 		return true;
1013 
1014 	return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50);
1015 }
1016 
1017 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
1018 
1019 {
1020 	struct btrfs_fs_info *fs_info = trans->fs_info;
1021 
1022 	if (!trans->block_rsv) {
1023 		ASSERT(!trans->bytes_reserved);
1024 		ASSERT(!trans->delayed_refs_bytes_reserved);
1025 		return;
1026 	}
1027 
1028 	if (!trans->bytes_reserved) {
1029 		ASSERT(!trans->delayed_refs_bytes_reserved);
1030 		return;
1031 	}
1032 
1033 	ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
1034 	trace_btrfs_space_reservation(fs_info, "transaction",
1035 				      trans->transid, trans->bytes_reserved, 0);
1036 	btrfs_block_rsv_release(fs_info, trans->block_rsv,
1037 				trans->bytes_reserved, NULL);
1038 	trans->bytes_reserved = 0;
1039 
1040 	if (!trans->delayed_refs_bytes_reserved)
1041 		return;
1042 
1043 	trace_btrfs_space_reservation(fs_info, "local_delayed_refs_rsv",
1044 				      trans->transid,
1045 				      trans->delayed_refs_bytes_reserved, 0);
1046 	btrfs_block_rsv_release(fs_info, &trans->delayed_rsv,
1047 				trans->delayed_refs_bytes_reserved, NULL);
1048 	trans->delayed_refs_bytes_reserved = 0;
1049 }
1050 
1051 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
1052 				   int throttle)
1053 {
1054 	struct btrfs_fs_info *info = trans->fs_info;
1055 	struct btrfs_transaction *cur_trans = trans->transaction;
1056 	int err = 0;
1057 
1058 	if (refcount_read(&trans->use_count) > 1) {
1059 		refcount_dec(&trans->use_count);
1060 		trans->block_rsv = trans->orig_rsv;
1061 		return 0;
1062 	}
1063 
1064 	btrfs_trans_release_metadata(trans);
1065 	trans->block_rsv = NULL;
1066 
1067 	btrfs_create_pending_block_groups(trans);
1068 
1069 	btrfs_trans_release_chunk_metadata(trans);
1070 
1071 	if (trans->type & __TRANS_FREEZABLE)
1072 		sb_end_intwrite(info->sb);
1073 
1074 	WARN_ON(cur_trans != info->running_transaction);
1075 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1076 	atomic_dec(&cur_trans->num_writers);
1077 	extwriter_counter_dec(cur_trans, trans->type);
1078 
1079 	cond_wake_up(&cur_trans->writer_wait);
1080 
1081 	btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
1082 	btrfs_lockdep_release(info, btrfs_trans_num_writers);
1083 
1084 	btrfs_put_transaction(cur_trans);
1085 
1086 	if (current->journal_info == trans)
1087 		current->journal_info = NULL;
1088 
1089 	if (throttle)
1090 		btrfs_run_delayed_iputs(info);
1091 
1092 	if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1093 		wake_up_process(info->transaction_kthread);
1094 		if (TRANS_ABORTED(trans))
1095 			err = trans->aborted;
1096 		else
1097 			err = -EROFS;
1098 	}
1099 
1100 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1101 	return err;
1102 }
1103 
1104 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1105 {
1106 	return __btrfs_end_transaction(trans, 0);
1107 }
1108 
1109 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1110 {
1111 	return __btrfs_end_transaction(trans, 1);
1112 }
1113 
1114 /*
1115  * when btree blocks are allocated, they have some corresponding bits set for
1116  * them in one of two extent_io trees.  This is used to make sure all of
1117  * those extents are sent to disk but does not wait on them
1118  */
1119 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1120 			       struct extent_io_tree *dirty_pages, int mark)
1121 {
1122 	int err = 0;
1123 	int werr = 0;
1124 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1125 	struct extent_state *cached_state = NULL;
1126 	u64 start = 0;
1127 	u64 end;
1128 
1129 	while (find_first_extent_bit(dirty_pages, start, &start, &end,
1130 				     mark, &cached_state)) {
1131 		bool wait_writeback = false;
1132 
1133 		err = convert_extent_bit(dirty_pages, start, end,
1134 					 EXTENT_NEED_WAIT,
1135 					 mark, &cached_state);
1136 		/*
1137 		 * convert_extent_bit can return -ENOMEM, which is most of the
1138 		 * time a temporary error. So when it happens, ignore the error
1139 		 * and wait for writeback of this range to finish - because we
1140 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1141 		 * to __btrfs_wait_marked_extents() would not know that
1142 		 * writeback for this range started and therefore wouldn't
1143 		 * wait for it to finish - we don't want to commit a
1144 		 * superblock that points to btree nodes/leafs for which
1145 		 * writeback hasn't finished yet (and without errors).
1146 		 * We cleanup any entries left in the io tree when committing
1147 		 * the transaction (through extent_io_tree_release()).
1148 		 */
1149 		if (err == -ENOMEM) {
1150 			err = 0;
1151 			wait_writeback = true;
1152 		}
1153 		if (!err)
1154 			err = filemap_fdatawrite_range(mapping, start, end);
1155 		if (err)
1156 			werr = err;
1157 		else if (wait_writeback)
1158 			werr = filemap_fdatawait_range(mapping, start, end);
1159 		free_extent_state(cached_state);
1160 		cached_state = NULL;
1161 		cond_resched();
1162 		start = end + 1;
1163 	}
1164 	return werr;
1165 }
1166 
1167 /*
1168  * when btree blocks are allocated, they have some corresponding bits set for
1169  * them in one of two extent_io trees.  This is used to make sure all of
1170  * those extents are on disk for transaction or log commit.  We wait
1171  * on all the pages and clear them from the dirty pages state tree
1172  */
1173 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1174 				       struct extent_io_tree *dirty_pages)
1175 {
1176 	int err = 0;
1177 	int werr = 0;
1178 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1179 	struct extent_state *cached_state = NULL;
1180 	u64 start = 0;
1181 	u64 end;
1182 
1183 	while (find_first_extent_bit(dirty_pages, start, &start, &end,
1184 				     EXTENT_NEED_WAIT, &cached_state)) {
1185 		/*
1186 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
1187 		 * When committing the transaction, we'll remove any entries
1188 		 * left in the io tree. For a log commit, we don't remove them
1189 		 * after committing the log because the tree can be accessed
1190 		 * concurrently - we do it only at transaction commit time when
1191 		 * it's safe to do it (through extent_io_tree_release()).
1192 		 */
1193 		err = clear_extent_bit(dirty_pages, start, end,
1194 				       EXTENT_NEED_WAIT, &cached_state);
1195 		if (err == -ENOMEM)
1196 			err = 0;
1197 		if (!err)
1198 			err = filemap_fdatawait_range(mapping, start, end);
1199 		if (err)
1200 			werr = err;
1201 		free_extent_state(cached_state);
1202 		cached_state = NULL;
1203 		cond_resched();
1204 		start = end + 1;
1205 	}
1206 	if (err)
1207 		werr = err;
1208 	return werr;
1209 }
1210 
1211 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1212 		       struct extent_io_tree *dirty_pages)
1213 {
1214 	bool errors = false;
1215 	int err;
1216 
1217 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1218 	if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1219 		errors = true;
1220 
1221 	if (errors && !err)
1222 		err = -EIO;
1223 	return err;
1224 }
1225 
1226 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1227 {
1228 	struct btrfs_fs_info *fs_info = log_root->fs_info;
1229 	struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1230 	bool errors = false;
1231 	int err;
1232 
1233 	ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1234 
1235 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1236 	if ((mark & EXTENT_DIRTY) &&
1237 	    test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1238 		errors = true;
1239 
1240 	if ((mark & EXTENT_NEW) &&
1241 	    test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1242 		errors = true;
1243 
1244 	if (errors && !err)
1245 		err = -EIO;
1246 	return err;
1247 }
1248 
1249 /*
1250  * When btree blocks are allocated the corresponding extents are marked dirty.
1251  * This function ensures such extents are persisted on disk for transaction or
1252  * log commit.
1253  *
1254  * @trans: transaction whose dirty pages we'd like to write
1255  */
1256 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1257 {
1258 	int ret;
1259 	int ret2;
1260 	struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1261 	struct btrfs_fs_info *fs_info = trans->fs_info;
1262 	struct blk_plug plug;
1263 
1264 	blk_start_plug(&plug);
1265 	ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1266 	blk_finish_plug(&plug);
1267 	ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1268 
1269 	extent_io_tree_release(&trans->transaction->dirty_pages);
1270 
1271 	if (ret)
1272 		return ret;
1273 	else if (ret2)
1274 		return ret2;
1275 	else
1276 		return 0;
1277 }
1278 
1279 /*
1280  * this is used to update the root pointer in the tree of tree roots.
1281  *
1282  * But, in the case of the extent allocation tree, updating the root
1283  * pointer may allocate blocks which may change the root of the extent
1284  * allocation tree.
1285  *
1286  * So, this loops and repeats and makes sure the cowonly root didn't
1287  * change while the root pointer was being updated in the metadata.
1288  */
1289 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1290 			       struct btrfs_root *root)
1291 {
1292 	int ret;
1293 	u64 old_root_bytenr;
1294 	u64 old_root_used;
1295 	struct btrfs_fs_info *fs_info = root->fs_info;
1296 	struct btrfs_root *tree_root = fs_info->tree_root;
1297 
1298 	old_root_used = btrfs_root_used(&root->root_item);
1299 
1300 	while (1) {
1301 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1302 		if (old_root_bytenr == root->node->start &&
1303 		    old_root_used == btrfs_root_used(&root->root_item))
1304 			break;
1305 
1306 		btrfs_set_root_node(&root->root_item, root->node);
1307 		ret = btrfs_update_root(trans, tree_root,
1308 					&root->root_key,
1309 					&root->root_item);
1310 		if (ret)
1311 			return ret;
1312 
1313 		old_root_used = btrfs_root_used(&root->root_item);
1314 	}
1315 
1316 	return 0;
1317 }
1318 
1319 /*
1320  * update all the cowonly tree roots on disk
1321  *
1322  * The error handling in this function may not be obvious. Any of the
1323  * failures will cause the file system to go offline. We still need
1324  * to clean up the delayed refs.
1325  */
1326 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1327 {
1328 	struct btrfs_fs_info *fs_info = trans->fs_info;
1329 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1330 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1331 	struct list_head *next;
1332 	struct extent_buffer *eb;
1333 	int ret;
1334 
1335 	/*
1336 	 * At this point no one can be using this transaction to modify any tree
1337 	 * and no one can start another transaction to modify any tree either.
1338 	 */
1339 	ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1340 
1341 	eb = btrfs_lock_root_node(fs_info->tree_root);
1342 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1343 			      0, &eb, BTRFS_NESTING_COW);
1344 	btrfs_tree_unlock(eb);
1345 	free_extent_buffer(eb);
1346 
1347 	if (ret)
1348 		return ret;
1349 
1350 	ret = btrfs_run_dev_stats(trans);
1351 	if (ret)
1352 		return ret;
1353 	ret = btrfs_run_dev_replace(trans);
1354 	if (ret)
1355 		return ret;
1356 	ret = btrfs_run_qgroups(trans);
1357 	if (ret)
1358 		return ret;
1359 
1360 	ret = btrfs_setup_space_cache(trans);
1361 	if (ret)
1362 		return ret;
1363 
1364 again:
1365 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1366 		struct btrfs_root *root;
1367 		next = fs_info->dirty_cowonly_roots.next;
1368 		list_del_init(next);
1369 		root = list_entry(next, struct btrfs_root, dirty_list);
1370 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1371 
1372 		list_add_tail(&root->dirty_list,
1373 			      &trans->transaction->switch_commits);
1374 		ret = update_cowonly_root(trans, root);
1375 		if (ret)
1376 			return ret;
1377 	}
1378 
1379 	/* Now flush any delayed refs generated by updating all of the roots */
1380 	ret = btrfs_run_delayed_refs(trans, U64_MAX);
1381 	if (ret)
1382 		return ret;
1383 
1384 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1385 		ret = btrfs_write_dirty_block_groups(trans);
1386 		if (ret)
1387 			return ret;
1388 
1389 		/*
1390 		 * We're writing the dirty block groups, which could generate
1391 		 * delayed refs, which could generate more dirty block groups,
1392 		 * so we want to keep this flushing in this loop to make sure
1393 		 * everything gets run.
1394 		 */
1395 		ret = btrfs_run_delayed_refs(trans, U64_MAX);
1396 		if (ret)
1397 			return ret;
1398 	}
1399 
1400 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1401 		goto again;
1402 
1403 	/* Update dev-replace pointer once everything is committed */
1404 	fs_info->dev_replace.committed_cursor_left =
1405 		fs_info->dev_replace.cursor_left_last_write_of_item;
1406 
1407 	return 0;
1408 }
1409 
1410 /*
1411  * If we had a pending drop we need to see if there are any others left in our
1412  * dead roots list, and if not clear our bit and wake any waiters.
1413  */
1414 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1415 {
1416 	/*
1417 	 * We put the drop in progress roots at the front of the list, so if the
1418 	 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1419 	 * up.
1420 	 */
1421 	spin_lock(&fs_info->trans_lock);
1422 	if (!list_empty(&fs_info->dead_roots)) {
1423 		struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1424 							   struct btrfs_root,
1425 							   root_list);
1426 		if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1427 			spin_unlock(&fs_info->trans_lock);
1428 			return;
1429 		}
1430 	}
1431 	spin_unlock(&fs_info->trans_lock);
1432 
1433 	btrfs_wake_unfinished_drop(fs_info);
1434 }
1435 
1436 /*
1437  * dead roots are old snapshots that need to be deleted.  This allocates
1438  * a dirty root struct and adds it into the list of dead roots that need to
1439  * be deleted
1440  */
1441 void btrfs_add_dead_root(struct btrfs_root *root)
1442 {
1443 	struct btrfs_fs_info *fs_info = root->fs_info;
1444 
1445 	spin_lock(&fs_info->trans_lock);
1446 	if (list_empty(&root->root_list)) {
1447 		btrfs_grab_root(root);
1448 
1449 		/* We want to process the partially complete drops first. */
1450 		if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1451 			list_add(&root->root_list, &fs_info->dead_roots);
1452 		else
1453 			list_add_tail(&root->root_list, &fs_info->dead_roots);
1454 	}
1455 	spin_unlock(&fs_info->trans_lock);
1456 }
1457 
1458 /*
1459  * Update each subvolume root and its relocation root, if it exists, in the tree
1460  * of tree roots. Also free log roots if they exist.
1461  */
1462 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1463 {
1464 	struct btrfs_fs_info *fs_info = trans->fs_info;
1465 	struct btrfs_root *gang[8];
1466 	int i;
1467 	int ret;
1468 
1469 	/*
1470 	 * At this point no one can be using this transaction to modify any tree
1471 	 * and no one can start another transaction to modify any tree either.
1472 	 */
1473 	ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1474 
1475 	spin_lock(&fs_info->fs_roots_radix_lock);
1476 	while (1) {
1477 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1478 						 (void **)gang, 0,
1479 						 ARRAY_SIZE(gang),
1480 						 BTRFS_ROOT_TRANS_TAG);
1481 		if (ret == 0)
1482 			break;
1483 		for (i = 0; i < ret; i++) {
1484 			struct btrfs_root *root = gang[i];
1485 			int ret2;
1486 
1487 			/*
1488 			 * At this point we can neither have tasks logging inodes
1489 			 * from a root nor trying to commit a log tree.
1490 			 */
1491 			ASSERT(atomic_read(&root->log_writers) == 0);
1492 			ASSERT(atomic_read(&root->log_commit[0]) == 0);
1493 			ASSERT(atomic_read(&root->log_commit[1]) == 0);
1494 
1495 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1496 					(unsigned long)root->root_key.objectid,
1497 					BTRFS_ROOT_TRANS_TAG);
1498 			spin_unlock(&fs_info->fs_roots_radix_lock);
1499 
1500 			btrfs_free_log(trans, root);
1501 			ret2 = btrfs_update_reloc_root(trans, root);
1502 			if (ret2)
1503 				return ret2;
1504 
1505 			/* see comments in should_cow_block() */
1506 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1507 			smp_mb__after_atomic();
1508 
1509 			if (root->commit_root != root->node) {
1510 				list_add_tail(&root->dirty_list,
1511 					&trans->transaction->switch_commits);
1512 				btrfs_set_root_node(&root->root_item,
1513 						    root->node);
1514 			}
1515 
1516 			ret2 = btrfs_update_root(trans, fs_info->tree_root,
1517 						&root->root_key,
1518 						&root->root_item);
1519 			if (ret2)
1520 				return ret2;
1521 			spin_lock(&fs_info->fs_roots_radix_lock);
1522 			btrfs_qgroup_free_meta_all_pertrans(root);
1523 		}
1524 	}
1525 	spin_unlock(&fs_info->fs_roots_radix_lock);
1526 	return 0;
1527 }
1528 
1529 /*
1530  * Do all special snapshot related qgroup dirty hack.
1531  *
1532  * Will do all needed qgroup inherit and dirty hack like switch commit
1533  * roots inside one transaction and write all btree into disk, to make
1534  * qgroup works.
1535  */
1536 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1537 				   struct btrfs_root *src,
1538 				   struct btrfs_root *parent,
1539 				   struct btrfs_qgroup_inherit *inherit,
1540 				   u64 dst_objectid)
1541 {
1542 	struct btrfs_fs_info *fs_info = src->fs_info;
1543 	int ret;
1544 
1545 	/*
1546 	 * Save some performance in the case that qgroups are not enabled. If
1547 	 * this check races with the ioctl, rescan will kick in anyway.
1548 	 */
1549 	if (!btrfs_qgroup_full_accounting(fs_info))
1550 		return 0;
1551 
1552 	/*
1553 	 * Ensure dirty @src will be committed.  Or, after coming
1554 	 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1555 	 * recorded root will never be updated again, causing an outdated root
1556 	 * item.
1557 	 */
1558 	ret = record_root_in_trans(trans, src, 1);
1559 	if (ret)
1560 		return ret;
1561 
1562 	/*
1563 	 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1564 	 * src root, so we must run the delayed refs here.
1565 	 *
1566 	 * However this isn't particularly fool proof, because there's no
1567 	 * synchronization keeping us from changing the tree after this point
1568 	 * before we do the qgroup_inherit, or even from making changes while
1569 	 * we're doing the qgroup_inherit.  But that's a problem for the future,
1570 	 * for now flush the delayed refs to narrow the race window where the
1571 	 * qgroup counters could end up wrong.
1572 	 */
1573 	ret = btrfs_run_delayed_refs(trans, U64_MAX);
1574 	if (ret) {
1575 		btrfs_abort_transaction(trans, ret);
1576 		return ret;
1577 	}
1578 
1579 	ret = commit_fs_roots(trans);
1580 	if (ret)
1581 		goto out;
1582 	ret = btrfs_qgroup_account_extents(trans);
1583 	if (ret < 0)
1584 		goto out;
1585 
1586 	/* Now qgroup are all updated, we can inherit it to new qgroups */
1587 	ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1588 				   parent->root_key.objectid, inherit);
1589 	if (ret < 0)
1590 		goto out;
1591 
1592 	/*
1593 	 * Now we do a simplified commit transaction, which will:
1594 	 * 1) commit all subvolume and extent tree
1595 	 *    To ensure all subvolume and extent tree have a valid
1596 	 *    commit_root to accounting later insert_dir_item()
1597 	 * 2) write all btree blocks onto disk
1598 	 *    This is to make sure later btree modification will be cowed
1599 	 *    Or commit_root can be populated and cause wrong qgroup numbers
1600 	 * In this simplified commit, we don't really care about other trees
1601 	 * like chunk and root tree, as they won't affect qgroup.
1602 	 * And we don't write super to avoid half committed status.
1603 	 */
1604 	ret = commit_cowonly_roots(trans);
1605 	if (ret)
1606 		goto out;
1607 	switch_commit_roots(trans);
1608 	ret = btrfs_write_and_wait_transaction(trans);
1609 	if (ret)
1610 		btrfs_handle_fs_error(fs_info, ret,
1611 			"Error while writing out transaction for qgroup");
1612 
1613 out:
1614 	/*
1615 	 * Force parent root to be updated, as we recorded it before so its
1616 	 * last_trans == cur_transid.
1617 	 * Or it won't be committed again onto disk after later
1618 	 * insert_dir_item()
1619 	 */
1620 	if (!ret)
1621 		ret = record_root_in_trans(trans, parent, 1);
1622 	return ret;
1623 }
1624 
1625 /*
1626  * new snapshots need to be created at a very specific time in the
1627  * transaction commit.  This does the actual creation.
1628  *
1629  * Note:
1630  * If the error which may affect the commitment of the current transaction
1631  * happens, we should return the error number. If the error which just affect
1632  * the creation of the pending snapshots, just return 0.
1633  */
1634 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1635 				   struct btrfs_pending_snapshot *pending)
1636 {
1637 
1638 	struct btrfs_fs_info *fs_info = trans->fs_info;
1639 	struct btrfs_key key;
1640 	struct btrfs_root_item *new_root_item;
1641 	struct btrfs_root *tree_root = fs_info->tree_root;
1642 	struct btrfs_root *root = pending->root;
1643 	struct btrfs_root *parent_root;
1644 	struct btrfs_block_rsv *rsv;
1645 	struct inode *parent_inode = pending->dir;
1646 	struct btrfs_path *path;
1647 	struct btrfs_dir_item *dir_item;
1648 	struct extent_buffer *tmp;
1649 	struct extent_buffer *old;
1650 	struct timespec64 cur_time;
1651 	int ret = 0;
1652 	u64 to_reserve = 0;
1653 	u64 index = 0;
1654 	u64 objectid;
1655 	u64 root_flags;
1656 	unsigned int nofs_flags;
1657 	struct fscrypt_name fname;
1658 
1659 	ASSERT(pending->path);
1660 	path = pending->path;
1661 
1662 	ASSERT(pending->root_item);
1663 	new_root_item = pending->root_item;
1664 
1665 	/*
1666 	 * We're inside a transaction and must make sure that any potential
1667 	 * allocations with GFP_KERNEL in fscrypt won't recurse back to
1668 	 * filesystem.
1669 	 */
1670 	nofs_flags = memalloc_nofs_save();
1671 	pending->error = fscrypt_setup_filename(parent_inode,
1672 						&pending->dentry->d_name, 0,
1673 						&fname);
1674 	memalloc_nofs_restore(nofs_flags);
1675 	if (pending->error)
1676 		goto free_pending;
1677 
1678 	pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1679 	if (pending->error)
1680 		goto free_fname;
1681 
1682 	/*
1683 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1684 	 * accounted by later btrfs_qgroup_inherit().
1685 	 */
1686 	btrfs_set_skip_qgroup(trans, objectid);
1687 
1688 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1689 
1690 	if (to_reserve > 0) {
1691 		pending->error = btrfs_block_rsv_add(fs_info,
1692 						     &pending->block_rsv,
1693 						     to_reserve,
1694 						     BTRFS_RESERVE_NO_FLUSH);
1695 		if (pending->error)
1696 			goto clear_skip_qgroup;
1697 	}
1698 
1699 	key.objectid = objectid;
1700 	key.offset = (u64)-1;
1701 	key.type = BTRFS_ROOT_ITEM_KEY;
1702 
1703 	rsv = trans->block_rsv;
1704 	trans->block_rsv = &pending->block_rsv;
1705 	trans->bytes_reserved = trans->block_rsv->reserved;
1706 	trace_btrfs_space_reservation(fs_info, "transaction",
1707 				      trans->transid,
1708 				      trans->bytes_reserved, 1);
1709 	parent_root = BTRFS_I(parent_inode)->root;
1710 	ret = record_root_in_trans(trans, parent_root, 0);
1711 	if (ret)
1712 		goto fail;
1713 	cur_time = current_time(parent_inode);
1714 
1715 	/*
1716 	 * insert the directory item
1717 	 */
1718 	ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1719 	if (ret) {
1720 		btrfs_abort_transaction(trans, ret);
1721 		goto fail;
1722 	}
1723 
1724 	/* check if there is a file/dir which has the same name. */
1725 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1726 					 btrfs_ino(BTRFS_I(parent_inode)),
1727 					 &fname.disk_name, 0);
1728 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1729 		pending->error = -EEXIST;
1730 		goto dir_item_existed;
1731 	} else if (IS_ERR(dir_item)) {
1732 		ret = PTR_ERR(dir_item);
1733 		btrfs_abort_transaction(trans, ret);
1734 		goto fail;
1735 	}
1736 	btrfs_release_path(path);
1737 
1738 	ret = btrfs_create_qgroup(trans, objectid);
1739 	if (ret && ret != -EEXIST) {
1740 		btrfs_abort_transaction(trans, ret);
1741 		goto fail;
1742 	}
1743 
1744 	/*
1745 	 * pull in the delayed directory update
1746 	 * and the delayed inode item
1747 	 * otherwise we corrupt the FS during
1748 	 * snapshot
1749 	 */
1750 	ret = btrfs_run_delayed_items(trans);
1751 	if (ret) {	/* Transaction aborted */
1752 		btrfs_abort_transaction(trans, ret);
1753 		goto fail;
1754 	}
1755 
1756 	ret = record_root_in_trans(trans, root, 0);
1757 	if (ret) {
1758 		btrfs_abort_transaction(trans, ret);
1759 		goto fail;
1760 	}
1761 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1762 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1763 	btrfs_check_and_init_root_item(new_root_item);
1764 
1765 	root_flags = btrfs_root_flags(new_root_item);
1766 	if (pending->readonly)
1767 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1768 	else
1769 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1770 	btrfs_set_root_flags(new_root_item, root_flags);
1771 
1772 	btrfs_set_root_generation_v2(new_root_item,
1773 			trans->transid);
1774 	generate_random_guid(new_root_item->uuid);
1775 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1776 			BTRFS_UUID_SIZE);
1777 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1778 		memset(new_root_item->received_uuid, 0,
1779 		       sizeof(new_root_item->received_uuid));
1780 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1781 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1782 		btrfs_set_root_stransid(new_root_item, 0);
1783 		btrfs_set_root_rtransid(new_root_item, 0);
1784 	}
1785 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1786 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1787 	btrfs_set_root_otransid(new_root_item, trans->transid);
1788 
1789 	old = btrfs_lock_root_node(root);
1790 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1791 			      BTRFS_NESTING_COW);
1792 	if (ret) {
1793 		btrfs_tree_unlock(old);
1794 		free_extent_buffer(old);
1795 		btrfs_abort_transaction(trans, ret);
1796 		goto fail;
1797 	}
1798 
1799 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1800 	/* clean up in any case */
1801 	btrfs_tree_unlock(old);
1802 	free_extent_buffer(old);
1803 	if (ret) {
1804 		btrfs_abort_transaction(trans, ret);
1805 		goto fail;
1806 	}
1807 	/* see comments in should_cow_block() */
1808 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1809 	smp_wmb();
1810 
1811 	btrfs_set_root_node(new_root_item, tmp);
1812 	/* record when the snapshot was created in key.offset */
1813 	key.offset = trans->transid;
1814 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1815 	btrfs_tree_unlock(tmp);
1816 	free_extent_buffer(tmp);
1817 	if (ret) {
1818 		btrfs_abort_transaction(trans, ret);
1819 		goto fail;
1820 	}
1821 
1822 	/*
1823 	 * insert root back/forward references
1824 	 */
1825 	ret = btrfs_add_root_ref(trans, objectid,
1826 				 parent_root->root_key.objectid,
1827 				 btrfs_ino(BTRFS_I(parent_inode)), index,
1828 				 &fname.disk_name);
1829 	if (ret) {
1830 		btrfs_abort_transaction(trans, ret);
1831 		goto fail;
1832 	}
1833 
1834 	key.offset = (u64)-1;
1835 	pending->snap = btrfs_get_new_fs_root(fs_info, objectid, &pending->anon_dev);
1836 	if (IS_ERR(pending->snap)) {
1837 		ret = PTR_ERR(pending->snap);
1838 		pending->snap = NULL;
1839 		btrfs_abort_transaction(trans, ret);
1840 		goto fail;
1841 	}
1842 
1843 	ret = btrfs_reloc_post_snapshot(trans, pending);
1844 	if (ret) {
1845 		btrfs_abort_transaction(trans, ret);
1846 		goto fail;
1847 	}
1848 
1849 	/*
1850 	 * Do special qgroup accounting for snapshot, as we do some qgroup
1851 	 * snapshot hack to do fast snapshot.
1852 	 * To co-operate with that hack, we do hack again.
1853 	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1854 	 */
1855 	if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_FULL)
1856 		ret = qgroup_account_snapshot(trans, root, parent_root,
1857 					      pending->inherit, objectid);
1858 	else if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE)
1859 		ret = btrfs_qgroup_inherit(trans, root->root_key.objectid, objectid,
1860 					   parent_root->root_key.objectid, pending->inherit);
1861 	if (ret < 0)
1862 		goto fail;
1863 
1864 	ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1865 				    BTRFS_I(parent_inode), &key, BTRFS_FT_DIR,
1866 				    index);
1867 	/* We have check then name at the beginning, so it is impossible. */
1868 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1869 	if (ret) {
1870 		btrfs_abort_transaction(trans, ret);
1871 		goto fail;
1872 	}
1873 
1874 	btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1875 						  fname.disk_name.len * 2);
1876 	inode_set_mtime_to_ts(parent_inode,
1877 			      inode_set_ctime_current(parent_inode));
1878 	ret = btrfs_update_inode_fallback(trans, BTRFS_I(parent_inode));
1879 	if (ret) {
1880 		btrfs_abort_transaction(trans, ret);
1881 		goto fail;
1882 	}
1883 	ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1884 				  BTRFS_UUID_KEY_SUBVOL,
1885 				  objectid);
1886 	if (ret) {
1887 		btrfs_abort_transaction(trans, ret);
1888 		goto fail;
1889 	}
1890 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1891 		ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1892 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1893 					  objectid);
1894 		if (ret && ret != -EEXIST) {
1895 			btrfs_abort_transaction(trans, ret);
1896 			goto fail;
1897 		}
1898 	}
1899 
1900 fail:
1901 	pending->error = ret;
1902 dir_item_existed:
1903 	trans->block_rsv = rsv;
1904 	trans->bytes_reserved = 0;
1905 clear_skip_qgroup:
1906 	btrfs_clear_skip_qgroup(trans);
1907 free_fname:
1908 	fscrypt_free_filename(&fname);
1909 free_pending:
1910 	kfree(new_root_item);
1911 	pending->root_item = NULL;
1912 	btrfs_free_path(path);
1913 	pending->path = NULL;
1914 
1915 	return ret;
1916 }
1917 
1918 /*
1919  * create all the snapshots we've scheduled for creation
1920  */
1921 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1922 {
1923 	struct btrfs_pending_snapshot *pending, *next;
1924 	struct list_head *head = &trans->transaction->pending_snapshots;
1925 	int ret = 0;
1926 
1927 	list_for_each_entry_safe(pending, next, head, list) {
1928 		list_del(&pending->list);
1929 		ret = create_pending_snapshot(trans, pending);
1930 		if (ret)
1931 			break;
1932 	}
1933 	return ret;
1934 }
1935 
1936 static void update_super_roots(struct btrfs_fs_info *fs_info)
1937 {
1938 	struct btrfs_root_item *root_item;
1939 	struct btrfs_super_block *super;
1940 
1941 	super = fs_info->super_copy;
1942 
1943 	root_item = &fs_info->chunk_root->root_item;
1944 	super->chunk_root = root_item->bytenr;
1945 	super->chunk_root_generation = root_item->generation;
1946 	super->chunk_root_level = root_item->level;
1947 
1948 	root_item = &fs_info->tree_root->root_item;
1949 	super->root = root_item->bytenr;
1950 	super->generation = root_item->generation;
1951 	super->root_level = root_item->level;
1952 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
1953 		super->cache_generation = root_item->generation;
1954 	else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1955 		super->cache_generation = 0;
1956 	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1957 		super->uuid_tree_generation = root_item->generation;
1958 }
1959 
1960 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1961 {
1962 	struct btrfs_transaction *trans;
1963 	int ret = 0;
1964 
1965 	spin_lock(&info->trans_lock);
1966 	trans = info->running_transaction;
1967 	if (trans)
1968 		ret = is_transaction_blocked(trans);
1969 	spin_unlock(&info->trans_lock);
1970 	return ret;
1971 }
1972 
1973 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1974 {
1975 	struct btrfs_fs_info *fs_info = trans->fs_info;
1976 	struct btrfs_transaction *cur_trans;
1977 
1978 	/* Kick the transaction kthread. */
1979 	set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1980 	wake_up_process(fs_info->transaction_kthread);
1981 
1982 	/* take transaction reference */
1983 	cur_trans = trans->transaction;
1984 	refcount_inc(&cur_trans->use_count);
1985 
1986 	btrfs_end_transaction(trans);
1987 
1988 	/*
1989 	 * Wait for the current transaction commit to start and block
1990 	 * subsequent transaction joins
1991 	 */
1992 	btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
1993 	wait_event(fs_info->transaction_blocked_wait,
1994 		   cur_trans->state >= TRANS_STATE_COMMIT_START ||
1995 		   TRANS_ABORTED(cur_trans));
1996 	btrfs_put_transaction(cur_trans);
1997 }
1998 
1999 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
2000 {
2001 	struct btrfs_fs_info *fs_info = trans->fs_info;
2002 	struct btrfs_transaction *cur_trans = trans->transaction;
2003 
2004 	WARN_ON(refcount_read(&trans->use_count) > 1);
2005 
2006 	btrfs_abort_transaction(trans, err);
2007 
2008 	spin_lock(&fs_info->trans_lock);
2009 
2010 	/*
2011 	 * If the transaction is removed from the list, it means this
2012 	 * transaction has been committed successfully, so it is impossible
2013 	 * to call the cleanup function.
2014 	 */
2015 	BUG_ON(list_empty(&cur_trans->list));
2016 
2017 	if (cur_trans == fs_info->running_transaction) {
2018 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
2019 		spin_unlock(&fs_info->trans_lock);
2020 
2021 		/*
2022 		 * The thread has already released the lockdep map as reader
2023 		 * already in btrfs_commit_transaction().
2024 		 */
2025 		btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2026 		wait_event(cur_trans->writer_wait,
2027 			   atomic_read(&cur_trans->num_writers) == 1);
2028 
2029 		spin_lock(&fs_info->trans_lock);
2030 	}
2031 
2032 	/*
2033 	 * Now that we know no one else is still using the transaction we can
2034 	 * remove the transaction from the list of transactions. This avoids
2035 	 * the transaction kthread from cleaning up the transaction while some
2036 	 * other task is still using it, which could result in a use-after-free
2037 	 * on things like log trees, as it forces the transaction kthread to
2038 	 * wait for this transaction to be cleaned up by us.
2039 	 */
2040 	list_del_init(&cur_trans->list);
2041 
2042 	spin_unlock(&fs_info->trans_lock);
2043 
2044 	btrfs_cleanup_one_transaction(trans->transaction, fs_info);
2045 
2046 	spin_lock(&fs_info->trans_lock);
2047 	if (cur_trans == fs_info->running_transaction)
2048 		fs_info->running_transaction = NULL;
2049 	spin_unlock(&fs_info->trans_lock);
2050 
2051 	if (trans->type & __TRANS_FREEZABLE)
2052 		sb_end_intwrite(fs_info->sb);
2053 	btrfs_put_transaction(cur_trans);
2054 	btrfs_put_transaction(cur_trans);
2055 
2056 	trace_btrfs_transaction_commit(fs_info);
2057 
2058 	if (current->journal_info == trans)
2059 		current->journal_info = NULL;
2060 
2061 	/*
2062 	 * If relocation is running, we can't cancel scrub because that will
2063 	 * result in a deadlock. Before relocating a block group, relocation
2064 	 * pauses scrub, then starts and commits a transaction before unpausing
2065 	 * scrub. If the transaction commit is being done by the relocation
2066 	 * task or triggered by another task and the relocation task is waiting
2067 	 * for the commit, and we end up here due to an error in the commit
2068 	 * path, then calling btrfs_scrub_cancel() will deadlock, as we are
2069 	 * asking for scrub to stop while having it asked to be paused higher
2070 	 * above in relocation code.
2071 	 */
2072 	if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
2073 		btrfs_scrub_cancel(fs_info);
2074 
2075 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2076 }
2077 
2078 /*
2079  * Release reserved delayed ref space of all pending block groups of the
2080  * transaction and remove them from the list
2081  */
2082 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2083 {
2084        struct btrfs_fs_info *fs_info = trans->fs_info;
2085        struct btrfs_block_group *block_group, *tmp;
2086 
2087        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2088                btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info);
2089                list_del_init(&block_group->bg_list);
2090        }
2091 }
2092 
2093 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2094 {
2095 	/*
2096 	 * We use try_to_writeback_inodes_sb() here because if we used
2097 	 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2098 	 * Currently are holding the fs freeze lock, if we do an async flush
2099 	 * we'll do btrfs_join_transaction() and deadlock because we need to
2100 	 * wait for the fs freeze lock.  Using the direct flushing we benefit
2101 	 * from already being in a transaction and our join_transaction doesn't
2102 	 * have to re-take the fs freeze lock.
2103 	 *
2104 	 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2105 	 * if it can read lock sb->s_umount. It will always be able to lock it,
2106 	 * except when the filesystem is being unmounted or being frozen, but in
2107 	 * those cases sync_filesystem() is called, which results in calling
2108 	 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2109 	 * Note that we don't call writeback_inodes_sb() directly, because it
2110 	 * will emit a warning if sb->s_umount is not locked.
2111 	 */
2112 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2113 		try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2114 	return 0;
2115 }
2116 
2117 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2118 {
2119 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2120 		btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2121 }
2122 
2123 /*
2124  * Add a pending snapshot associated with the given transaction handle to the
2125  * respective handle. This must be called after the transaction commit started
2126  * and while holding fs_info->trans_lock.
2127  * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2128  * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2129  * returns an error.
2130  */
2131 static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2132 {
2133 	struct btrfs_transaction *cur_trans = trans->transaction;
2134 
2135 	if (!trans->pending_snapshot)
2136 		return;
2137 
2138 	lockdep_assert_held(&trans->fs_info->trans_lock);
2139 	ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_PREP);
2140 
2141 	list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2142 }
2143 
2144 static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2145 {
2146 	fs_info->commit_stats.commit_count++;
2147 	fs_info->commit_stats.last_commit_dur = interval;
2148 	fs_info->commit_stats.max_commit_dur =
2149 			max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2150 	fs_info->commit_stats.total_commit_dur += interval;
2151 }
2152 
2153 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2154 {
2155 	struct btrfs_fs_info *fs_info = trans->fs_info;
2156 	struct btrfs_transaction *cur_trans = trans->transaction;
2157 	struct btrfs_transaction *prev_trans = NULL;
2158 	int ret;
2159 	ktime_t start_time;
2160 	ktime_t interval;
2161 
2162 	ASSERT(refcount_read(&trans->use_count) == 1);
2163 	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2164 
2165 	clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
2166 
2167 	/* Stop the commit early if ->aborted is set */
2168 	if (TRANS_ABORTED(cur_trans)) {
2169 		ret = cur_trans->aborted;
2170 		goto lockdep_trans_commit_start_release;
2171 	}
2172 
2173 	btrfs_trans_release_metadata(trans);
2174 	trans->block_rsv = NULL;
2175 
2176 	/*
2177 	 * We only want one transaction commit doing the flushing so we do not
2178 	 * waste a bunch of time on lock contention on the extent root node.
2179 	 */
2180 	if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2181 			      &cur_trans->delayed_refs.flags)) {
2182 		/*
2183 		 * Make a pass through all the delayed refs we have so far.
2184 		 * Any running threads may add more while we are here.
2185 		 */
2186 		ret = btrfs_run_delayed_refs(trans, 0);
2187 		if (ret)
2188 			goto lockdep_trans_commit_start_release;
2189 	}
2190 
2191 	btrfs_create_pending_block_groups(trans);
2192 
2193 	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2194 		int run_it = 0;
2195 
2196 		/* this mutex is also taken before trying to set
2197 		 * block groups readonly.  We need to make sure
2198 		 * that nobody has set a block group readonly
2199 		 * after a extents from that block group have been
2200 		 * allocated for cache files.  btrfs_set_block_group_ro
2201 		 * will wait for the transaction to commit if it
2202 		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2203 		 *
2204 		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2205 		 * only one process starts all the block group IO.  It wouldn't
2206 		 * hurt to have more than one go through, but there's no
2207 		 * real advantage to it either.
2208 		 */
2209 		mutex_lock(&fs_info->ro_block_group_mutex);
2210 		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2211 				      &cur_trans->flags))
2212 			run_it = 1;
2213 		mutex_unlock(&fs_info->ro_block_group_mutex);
2214 
2215 		if (run_it) {
2216 			ret = btrfs_start_dirty_block_groups(trans);
2217 			if (ret)
2218 				goto lockdep_trans_commit_start_release;
2219 		}
2220 	}
2221 
2222 	spin_lock(&fs_info->trans_lock);
2223 	if (cur_trans->state >= TRANS_STATE_COMMIT_PREP) {
2224 		enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2225 
2226 		add_pending_snapshot(trans);
2227 
2228 		spin_unlock(&fs_info->trans_lock);
2229 		refcount_inc(&cur_trans->use_count);
2230 
2231 		if (trans->in_fsync)
2232 			want_state = TRANS_STATE_SUPER_COMMITTED;
2233 
2234 		btrfs_trans_state_lockdep_release(fs_info,
2235 						  BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2236 		ret = btrfs_end_transaction(trans);
2237 		wait_for_commit(cur_trans, want_state);
2238 
2239 		if (TRANS_ABORTED(cur_trans))
2240 			ret = cur_trans->aborted;
2241 
2242 		btrfs_put_transaction(cur_trans);
2243 
2244 		return ret;
2245 	}
2246 
2247 	cur_trans->state = TRANS_STATE_COMMIT_PREP;
2248 	wake_up(&fs_info->transaction_blocked_wait);
2249 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2250 
2251 	if (cur_trans->list.prev != &fs_info->trans_list) {
2252 		enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2253 
2254 		if (trans->in_fsync)
2255 			want_state = TRANS_STATE_SUPER_COMMITTED;
2256 
2257 		prev_trans = list_entry(cur_trans->list.prev,
2258 					struct btrfs_transaction, list);
2259 		if (prev_trans->state < want_state) {
2260 			refcount_inc(&prev_trans->use_count);
2261 			spin_unlock(&fs_info->trans_lock);
2262 
2263 			wait_for_commit(prev_trans, want_state);
2264 
2265 			ret = READ_ONCE(prev_trans->aborted);
2266 
2267 			btrfs_put_transaction(prev_trans);
2268 			if (ret)
2269 				goto lockdep_release;
2270 			spin_lock(&fs_info->trans_lock);
2271 		}
2272 	} else {
2273 		/*
2274 		 * The previous transaction was aborted and was already removed
2275 		 * from the list of transactions at fs_info->trans_list. So we
2276 		 * abort to prevent writing a new superblock that reflects a
2277 		 * corrupt state (pointing to trees with unwritten nodes/leafs).
2278 		 */
2279 		if (BTRFS_FS_ERROR(fs_info)) {
2280 			spin_unlock(&fs_info->trans_lock);
2281 			ret = -EROFS;
2282 			goto lockdep_release;
2283 		}
2284 	}
2285 
2286 	cur_trans->state = TRANS_STATE_COMMIT_START;
2287 	wake_up(&fs_info->transaction_blocked_wait);
2288 	spin_unlock(&fs_info->trans_lock);
2289 
2290 	/*
2291 	 * Get the time spent on the work done by the commit thread and not
2292 	 * the time spent waiting on a previous commit
2293 	 */
2294 	start_time = ktime_get_ns();
2295 
2296 	extwriter_counter_dec(cur_trans, trans->type);
2297 
2298 	ret = btrfs_start_delalloc_flush(fs_info);
2299 	if (ret)
2300 		goto lockdep_release;
2301 
2302 	ret = btrfs_run_delayed_items(trans);
2303 	if (ret)
2304 		goto lockdep_release;
2305 
2306 	/*
2307 	 * The thread has started/joined the transaction thus it holds the
2308 	 * lockdep map as a reader. It has to release it before acquiring the
2309 	 * lockdep map as a writer.
2310 	 */
2311 	btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2312 	btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
2313 	wait_event(cur_trans->writer_wait,
2314 		   extwriter_counter_read(cur_trans) == 0);
2315 
2316 	/* some pending stuffs might be added after the previous flush. */
2317 	ret = btrfs_run_delayed_items(trans);
2318 	if (ret) {
2319 		btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2320 		goto cleanup_transaction;
2321 	}
2322 
2323 	btrfs_wait_delalloc_flush(fs_info);
2324 
2325 	/*
2326 	 * Wait for all ordered extents started by a fast fsync that joined this
2327 	 * transaction. Otherwise if this transaction commits before the ordered
2328 	 * extents complete we lose logged data after a power failure.
2329 	 */
2330 	btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
2331 	wait_event(cur_trans->pending_wait,
2332 		   atomic_read(&cur_trans->pending_ordered) == 0);
2333 
2334 	btrfs_scrub_pause(fs_info);
2335 	/*
2336 	 * Ok now we need to make sure to block out any other joins while we
2337 	 * commit the transaction.  We could have started a join before setting
2338 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2339 	 */
2340 	spin_lock(&fs_info->trans_lock);
2341 	add_pending_snapshot(trans);
2342 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2343 	spin_unlock(&fs_info->trans_lock);
2344 
2345 	/*
2346 	 * The thread has started/joined the transaction thus it holds the
2347 	 * lockdep map as a reader. It has to release it before acquiring the
2348 	 * lockdep map as a writer.
2349 	 */
2350 	btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2351 	btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2352 	wait_event(cur_trans->writer_wait,
2353 		   atomic_read(&cur_trans->num_writers) == 1);
2354 
2355 	/*
2356 	 * Make lockdep happy by acquiring the state locks after
2357 	 * btrfs_trans_num_writers is released. If we acquired the state locks
2358 	 * before releasing the btrfs_trans_num_writers lock then lockdep would
2359 	 * complain because we did not follow the reverse order unlocking rule.
2360 	 */
2361 	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2362 	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2363 	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2364 
2365 	/*
2366 	 * We've started the commit, clear the flag in case we were triggered to
2367 	 * do an async commit but somebody else started before the transaction
2368 	 * kthread could do the work.
2369 	 */
2370 	clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2371 
2372 	if (TRANS_ABORTED(cur_trans)) {
2373 		ret = cur_trans->aborted;
2374 		btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2375 		goto scrub_continue;
2376 	}
2377 	/*
2378 	 * the reloc mutex makes sure that we stop
2379 	 * the balancing code from coming in and moving
2380 	 * extents around in the middle of the commit
2381 	 */
2382 	mutex_lock(&fs_info->reloc_mutex);
2383 
2384 	/*
2385 	 * We needn't worry about the delayed items because we will
2386 	 * deal with them in create_pending_snapshot(), which is the
2387 	 * core function of the snapshot creation.
2388 	 */
2389 	ret = create_pending_snapshots(trans);
2390 	if (ret)
2391 		goto unlock_reloc;
2392 
2393 	/*
2394 	 * We insert the dir indexes of the snapshots and update the inode
2395 	 * of the snapshots' parents after the snapshot creation, so there
2396 	 * are some delayed items which are not dealt with. Now deal with
2397 	 * them.
2398 	 *
2399 	 * We needn't worry that this operation will corrupt the snapshots,
2400 	 * because all the tree which are snapshoted will be forced to COW
2401 	 * the nodes and leaves.
2402 	 */
2403 	ret = btrfs_run_delayed_items(trans);
2404 	if (ret)
2405 		goto unlock_reloc;
2406 
2407 	ret = btrfs_run_delayed_refs(trans, U64_MAX);
2408 	if (ret)
2409 		goto unlock_reloc;
2410 
2411 	/*
2412 	 * make sure none of the code above managed to slip in a
2413 	 * delayed item
2414 	 */
2415 	btrfs_assert_delayed_root_empty(fs_info);
2416 
2417 	WARN_ON(cur_trans != trans->transaction);
2418 
2419 	ret = commit_fs_roots(trans);
2420 	if (ret)
2421 		goto unlock_reloc;
2422 
2423 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2424 	 * safe to free the root of tree log roots
2425 	 */
2426 	btrfs_free_log_root_tree(trans, fs_info);
2427 
2428 	/*
2429 	 * Since fs roots are all committed, we can get a quite accurate
2430 	 * new_roots. So let's do quota accounting.
2431 	 */
2432 	ret = btrfs_qgroup_account_extents(trans);
2433 	if (ret < 0)
2434 		goto unlock_reloc;
2435 
2436 	ret = commit_cowonly_roots(trans);
2437 	if (ret)
2438 		goto unlock_reloc;
2439 
2440 	/*
2441 	 * The tasks which save the space cache and inode cache may also
2442 	 * update ->aborted, check it.
2443 	 */
2444 	if (TRANS_ABORTED(cur_trans)) {
2445 		ret = cur_trans->aborted;
2446 		goto unlock_reloc;
2447 	}
2448 
2449 	cur_trans = fs_info->running_transaction;
2450 
2451 	btrfs_set_root_node(&fs_info->tree_root->root_item,
2452 			    fs_info->tree_root->node);
2453 	list_add_tail(&fs_info->tree_root->dirty_list,
2454 		      &cur_trans->switch_commits);
2455 
2456 	btrfs_set_root_node(&fs_info->chunk_root->root_item,
2457 			    fs_info->chunk_root->node);
2458 	list_add_tail(&fs_info->chunk_root->dirty_list,
2459 		      &cur_trans->switch_commits);
2460 
2461 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2462 		btrfs_set_root_node(&fs_info->block_group_root->root_item,
2463 				    fs_info->block_group_root->node);
2464 		list_add_tail(&fs_info->block_group_root->dirty_list,
2465 			      &cur_trans->switch_commits);
2466 	}
2467 
2468 	switch_commit_roots(trans);
2469 
2470 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2471 	ASSERT(list_empty(&cur_trans->io_bgs));
2472 	update_super_roots(fs_info);
2473 
2474 	btrfs_set_super_log_root(fs_info->super_copy, 0);
2475 	btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2476 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2477 	       sizeof(*fs_info->super_copy));
2478 
2479 	btrfs_commit_device_sizes(cur_trans);
2480 
2481 	clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2482 	clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2483 
2484 	btrfs_trans_release_chunk_metadata(trans);
2485 
2486 	/*
2487 	 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2488 	 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2489 	 * make sure that before we commit our superblock, no other task can
2490 	 * start a new transaction and commit a log tree before we commit our
2491 	 * superblock. Anyone trying to commit a log tree locks this mutex before
2492 	 * writing its superblock.
2493 	 */
2494 	mutex_lock(&fs_info->tree_log_mutex);
2495 
2496 	spin_lock(&fs_info->trans_lock);
2497 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2498 	fs_info->running_transaction = NULL;
2499 	spin_unlock(&fs_info->trans_lock);
2500 	mutex_unlock(&fs_info->reloc_mutex);
2501 
2502 	wake_up(&fs_info->transaction_wait);
2503 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2504 
2505 	/* If we have features changed, wake up the cleaner to update sysfs. */
2506 	if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) &&
2507 	    fs_info->cleaner_kthread)
2508 		wake_up_process(fs_info->cleaner_kthread);
2509 
2510 	ret = btrfs_write_and_wait_transaction(trans);
2511 	if (ret) {
2512 		btrfs_handle_fs_error(fs_info, ret,
2513 				      "Error while writing out transaction");
2514 		mutex_unlock(&fs_info->tree_log_mutex);
2515 		goto scrub_continue;
2516 	}
2517 
2518 	ret = write_all_supers(fs_info, 0);
2519 	/*
2520 	 * the super is written, we can safely allow the tree-loggers
2521 	 * to go about their business
2522 	 */
2523 	mutex_unlock(&fs_info->tree_log_mutex);
2524 	if (ret)
2525 		goto scrub_continue;
2526 
2527 	/*
2528 	 * We needn't acquire the lock here because there is no other task
2529 	 * which can change it.
2530 	 */
2531 	cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2532 	wake_up(&cur_trans->commit_wait);
2533 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2534 
2535 	btrfs_finish_extent_commit(trans);
2536 
2537 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2538 		btrfs_clear_space_info_full(fs_info);
2539 
2540 	btrfs_set_last_trans_committed(fs_info, cur_trans->transid);
2541 	/*
2542 	 * We needn't acquire the lock here because there is no other task
2543 	 * which can change it.
2544 	 */
2545 	cur_trans->state = TRANS_STATE_COMPLETED;
2546 	wake_up(&cur_trans->commit_wait);
2547 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2548 
2549 	spin_lock(&fs_info->trans_lock);
2550 	list_del_init(&cur_trans->list);
2551 	spin_unlock(&fs_info->trans_lock);
2552 
2553 	btrfs_put_transaction(cur_trans);
2554 	btrfs_put_transaction(cur_trans);
2555 
2556 	if (trans->type & __TRANS_FREEZABLE)
2557 		sb_end_intwrite(fs_info->sb);
2558 
2559 	trace_btrfs_transaction_commit(fs_info);
2560 
2561 	interval = ktime_get_ns() - start_time;
2562 
2563 	btrfs_scrub_continue(fs_info);
2564 
2565 	if (current->journal_info == trans)
2566 		current->journal_info = NULL;
2567 
2568 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2569 
2570 	update_commit_stats(fs_info, interval);
2571 
2572 	return ret;
2573 
2574 unlock_reloc:
2575 	mutex_unlock(&fs_info->reloc_mutex);
2576 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2577 scrub_continue:
2578 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2579 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2580 	btrfs_scrub_continue(fs_info);
2581 cleanup_transaction:
2582 	btrfs_trans_release_metadata(trans);
2583 	btrfs_cleanup_pending_block_groups(trans);
2584 	btrfs_trans_release_chunk_metadata(trans);
2585 	trans->block_rsv = NULL;
2586 	btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2587 	if (current->journal_info == trans)
2588 		current->journal_info = NULL;
2589 	cleanup_transaction(trans, ret);
2590 
2591 	return ret;
2592 
2593 lockdep_release:
2594 	btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2595 	btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2596 	goto cleanup_transaction;
2597 
2598 lockdep_trans_commit_start_release:
2599 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2600 	btrfs_end_transaction(trans);
2601 	return ret;
2602 }
2603 
2604 /*
2605  * return < 0 if error
2606  * 0 if there are no more dead_roots at the time of call
2607  * 1 there are more to be processed, call me again
2608  *
2609  * The return value indicates there are certainly more snapshots to delete, but
2610  * if there comes a new one during processing, it may return 0. We don't mind,
2611  * because btrfs_commit_super will poke cleaner thread and it will process it a
2612  * few seconds later.
2613  */
2614 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2615 {
2616 	struct btrfs_root *root;
2617 	int ret;
2618 
2619 	spin_lock(&fs_info->trans_lock);
2620 	if (list_empty(&fs_info->dead_roots)) {
2621 		spin_unlock(&fs_info->trans_lock);
2622 		return 0;
2623 	}
2624 	root = list_first_entry(&fs_info->dead_roots,
2625 			struct btrfs_root, root_list);
2626 	list_del_init(&root->root_list);
2627 	spin_unlock(&fs_info->trans_lock);
2628 
2629 	btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2630 
2631 	btrfs_kill_all_delayed_nodes(root);
2632 
2633 	if (btrfs_header_backref_rev(root->node) <
2634 			BTRFS_MIXED_BACKREF_REV)
2635 		ret = btrfs_drop_snapshot(root, 0, 0);
2636 	else
2637 		ret = btrfs_drop_snapshot(root, 1, 0);
2638 
2639 	btrfs_put_root(root);
2640 	return (ret < 0) ? 0 : 1;
2641 }
2642 
2643 /*
2644  * We only mark the transaction aborted and then set the file system read-only.
2645  * This will prevent new transactions from starting or trying to join this
2646  * one.
2647  *
2648  * This means that error recovery at the call site is limited to freeing
2649  * any local memory allocations and passing the error code up without
2650  * further cleanup. The transaction should complete as it normally would
2651  * in the call path but will return -EIO.
2652  *
2653  * We'll complete the cleanup in btrfs_end_transaction and
2654  * btrfs_commit_transaction.
2655  */
2656 void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
2657 				      const char *function,
2658 				      unsigned int line, int error, bool first_hit)
2659 {
2660 	struct btrfs_fs_info *fs_info = trans->fs_info;
2661 
2662 	WRITE_ONCE(trans->aborted, error);
2663 	WRITE_ONCE(trans->transaction->aborted, error);
2664 	if (first_hit && error == -ENOSPC)
2665 		btrfs_dump_space_info_for_trans_abort(fs_info);
2666 	/* Wake up anybody who may be waiting on this transaction */
2667 	wake_up(&fs_info->transaction_wait);
2668 	wake_up(&fs_info->transaction_blocked_wait);
2669 	__btrfs_handle_fs_error(fs_info, function, line, error, NULL);
2670 }
2671 
2672 int __init btrfs_transaction_init(void)
2673 {
2674 	btrfs_trans_handle_cachep = KMEM_CACHE(btrfs_trans_handle, SLAB_TEMPORARY);
2675 	if (!btrfs_trans_handle_cachep)
2676 		return -ENOMEM;
2677 	return 0;
2678 }
2679 
2680 void __cold btrfs_transaction_exit(void)
2681 {
2682 	kmem_cache_destroy(btrfs_trans_handle_cachep);
2683 }
2684