1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/slab.h> 8 #include <linux/sched.h> 9 #include <linux/sched/mm.h> 10 #include <linux/writeback.h> 11 #include <linux/pagemap.h> 12 #include <linux/blkdev.h> 13 #include <linux/uuid.h> 14 #include <linux/timekeeping.h> 15 #include "misc.h" 16 #include "ctree.h" 17 #include "disk-io.h" 18 #include "transaction.h" 19 #include "locking.h" 20 #include "tree-log.h" 21 #include "volumes.h" 22 #include "dev-replace.h" 23 #include "qgroup.h" 24 #include "block-group.h" 25 #include "space-info.h" 26 #include "zoned.h" 27 #include "fs.h" 28 #include "accessors.h" 29 #include "extent-tree.h" 30 #include "root-tree.h" 31 #include "defrag.h" 32 #include "dir-item.h" 33 #include "uuid-tree.h" 34 #include "ioctl.h" 35 #include "relocation.h" 36 #include "scrub.h" 37 38 static struct kmem_cache *btrfs_trans_handle_cachep; 39 40 #define BTRFS_ROOT_TRANS_TAG 0 41 42 /* 43 * Transaction states and transitions 44 * 45 * No running transaction (fs tree blocks are not modified) 46 * | 47 * | To next stage: 48 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart(). 49 * V 50 * Transaction N [[TRANS_STATE_RUNNING]] 51 * | 52 * | New trans handles can be attached to transaction N by calling all 53 * | start_transaction() variants. 54 * | 55 * | To next stage: 56 * | Call btrfs_commit_transaction() on any trans handle attached to 57 * | transaction N 58 * V 59 * Transaction N [[TRANS_STATE_COMMIT_PREP]] 60 * | 61 * | If there are simultaneous calls to btrfs_commit_transaction() one will win 62 * | the race and the rest will wait for the winner to commit the transaction. 63 * | 64 * | The winner will wait for previous running transaction to completely finish 65 * | if there is one. 66 * | 67 * Transaction N [[TRANS_STATE_COMMIT_START]] 68 * | 69 * | Then one of the following happens: 70 * | - Wait for all other trans handle holders to release. 71 * | The btrfs_commit_transaction() caller will do the commit work. 72 * | - Wait for current transaction to be committed by others. 73 * | Other btrfs_commit_transaction() caller will do the commit work. 74 * | 75 * | At this stage, only btrfs_join_transaction*() variants can attach 76 * | to this running transaction. 77 * | All other variants will wait for current one to finish and attach to 78 * | transaction N+1. 79 * | 80 * | To next stage: 81 * | Caller is chosen to commit transaction N, and all other trans handle 82 * | haven been released. 83 * V 84 * Transaction N [[TRANS_STATE_COMMIT_DOING]] 85 * | 86 * | The heavy lifting transaction work is started. 87 * | From running delayed refs (modifying extent tree) to creating pending 88 * | snapshots, running qgroups. 89 * | In short, modify supporting trees to reflect modifications of subvolume 90 * | trees. 91 * | 92 * | At this stage, all start_transaction() calls will wait for this 93 * | transaction to finish and attach to transaction N+1. 94 * | 95 * | To next stage: 96 * | Until all supporting trees are updated. 97 * V 98 * Transaction N [[TRANS_STATE_UNBLOCKED]] 99 * | Transaction N+1 100 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]] 101 * | need to write them back to disk and update | 102 * | super blocks. | 103 * | | 104 * | At this stage, new transaction is allowed to | 105 * | start. | 106 * | All new start_transaction() calls will be | 107 * | attached to transid N+1. | 108 * | | 109 * | To next stage: | 110 * | Until all tree blocks are super blocks are | 111 * | written to block devices | 112 * V | 113 * Transaction N [[TRANS_STATE_COMPLETED]] V 114 * All tree blocks and super blocks are written. Transaction N+1 115 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]] 116 * data structures will be cleaned up. | Life goes on 117 */ 118 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 119 [TRANS_STATE_RUNNING] = 0U, 120 [TRANS_STATE_COMMIT_PREP] = 0U, 121 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH), 122 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START | 123 __TRANS_ATTACH | 124 __TRANS_JOIN | 125 __TRANS_JOIN_NOSTART), 126 [TRANS_STATE_UNBLOCKED] = (__TRANS_START | 127 __TRANS_ATTACH | 128 __TRANS_JOIN | 129 __TRANS_JOIN_NOLOCK | 130 __TRANS_JOIN_NOSTART), 131 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START | 132 __TRANS_ATTACH | 133 __TRANS_JOIN | 134 __TRANS_JOIN_NOLOCK | 135 __TRANS_JOIN_NOSTART), 136 [TRANS_STATE_COMPLETED] = (__TRANS_START | 137 __TRANS_ATTACH | 138 __TRANS_JOIN | 139 __TRANS_JOIN_NOLOCK | 140 __TRANS_JOIN_NOSTART), 141 }; 142 143 void btrfs_put_transaction(struct btrfs_transaction *transaction) 144 { 145 WARN_ON(refcount_read(&transaction->use_count) == 0); 146 if (refcount_dec_and_test(&transaction->use_count)) { 147 BUG_ON(!list_empty(&transaction->list)); 148 WARN_ON(!RB_EMPTY_ROOT( 149 &transaction->delayed_refs.href_root.rb_root)); 150 WARN_ON(!RB_EMPTY_ROOT( 151 &transaction->delayed_refs.dirty_extent_root)); 152 if (transaction->delayed_refs.pending_csums) 153 btrfs_err(transaction->fs_info, 154 "pending csums is %llu", 155 transaction->delayed_refs.pending_csums); 156 /* 157 * If any block groups are found in ->deleted_bgs then it's 158 * because the transaction was aborted and a commit did not 159 * happen (things failed before writing the new superblock 160 * and calling btrfs_finish_extent_commit()), so we can not 161 * discard the physical locations of the block groups. 162 */ 163 while (!list_empty(&transaction->deleted_bgs)) { 164 struct btrfs_block_group *cache; 165 166 cache = list_first_entry(&transaction->deleted_bgs, 167 struct btrfs_block_group, 168 bg_list); 169 list_del_init(&cache->bg_list); 170 btrfs_unfreeze_block_group(cache); 171 btrfs_put_block_group(cache); 172 } 173 WARN_ON(!list_empty(&transaction->dev_update_list)); 174 kfree(transaction); 175 } 176 } 177 178 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans) 179 { 180 struct btrfs_transaction *cur_trans = trans->transaction; 181 struct btrfs_fs_info *fs_info = trans->fs_info; 182 struct btrfs_root *root, *tmp; 183 184 /* 185 * At this point no one can be using this transaction to modify any tree 186 * and no one can start another transaction to modify any tree either. 187 */ 188 ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING); 189 190 down_write(&fs_info->commit_root_sem); 191 192 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 193 fs_info->last_reloc_trans = trans->transid; 194 195 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits, 196 dirty_list) { 197 list_del_init(&root->dirty_list); 198 free_extent_buffer(root->commit_root); 199 root->commit_root = btrfs_root_node(root); 200 extent_io_tree_release(&root->dirty_log_pages); 201 btrfs_qgroup_clean_swapped_blocks(root); 202 } 203 204 /* We can free old roots now. */ 205 spin_lock(&cur_trans->dropped_roots_lock); 206 while (!list_empty(&cur_trans->dropped_roots)) { 207 root = list_first_entry(&cur_trans->dropped_roots, 208 struct btrfs_root, root_list); 209 list_del_init(&root->root_list); 210 spin_unlock(&cur_trans->dropped_roots_lock); 211 btrfs_free_log(trans, root); 212 btrfs_drop_and_free_fs_root(fs_info, root); 213 spin_lock(&cur_trans->dropped_roots_lock); 214 } 215 spin_unlock(&cur_trans->dropped_roots_lock); 216 217 up_write(&fs_info->commit_root_sem); 218 } 219 220 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 221 unsigned int type) 222 { 223 if (type & TRANS_EXTWRITERS) 224 atomic_inc(&trans->num_extwriters); 225 } 226 227 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 228 unsigned int type) 229 { 230 if (type & TRANS_EXTWRITERS) 231 atomic_dec(&trans->num_extwriters); 232 } 233 234 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 235 unsigned int type) 236 { 237 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 238 } 239 240 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 241 { 242 return atomic_read(&trans->num_extwriters); 243 } 244 245 /* 246 * To be called after doing the chunk btree updates right after allocating a new 247 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a 248 * chunk after all chunk btree updates and after finishing the second phase of 249 * chunk allocation (btrfs_create_pending_block_groups()) in case some block 250 * group had its chunk item insertion delayed to the second phase. 251 */ 252 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 253 { 254 struct btrfs_fs_info *fs_info = trans->fs_info; 255 256 if (!trans->chunk_bytes_reserved) 257 return; 258 259 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv, 260 trans->chunk_bytes_reserved, NULL); 261 trans->chunk_bytes_reserved = 0; 262 } 263 264 /* 265 * either allocate a new transaction or hop into the existing one 266 */ 267 static noinline int join_transaction(struct btrfs_fs_info *fs_info, 268 unsigned int type) 269 { 270 struct btrfs_transaction *cur_trans; 271 272 spin_lock(&fs_info->trans_lock); 273 loop: 274 /* The file system has been taken offline. No new transactions. */ 275 if (BTRFS_FS_ERROR(fs_info)) { 276 spin_unlock(&fs_info->trans_lock); 277 return -EROFS; 278 } 279 280 cur_trans = fs_info->running_transaction; 281 if (cur_trans) { 282 if (TRANS_ABORTED(cur_trans)) { 283 spin_unlock(&fs_info->trans_lock); 284 return cur_trans->aborted; 285 } 286 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 287 spin_unlock(&fs_info->trans_lock); 288 return -EBUSY; 289 } 290 refcount_inc(&cur_trans->use_count); 291 atomic_inc(&cur_trans->num_writers); 292 extwriter_counter_inc(cur_trans, type); 293 spin_unlock(&fs_info->trans_lock); 294 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers); 295 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters); 296 return 0; 297 } 298 spin_unlock(&fs_info->trans_lock); 299 300 /* 301 * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the 302 * current transaction, and commit it. If there is no transaction, just 303 * return ENOENT. 304 */ 305 if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART) 306 return -ENOENT; 307 308 /* 309 * JOIN_NOLOCK only happens during the transaction commit, so 310 * it is impossible that ->running_transaction is NULL 311 */ 312 BUG_ON(type == TRANS_JOIN_NOLOCK); 313 314 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS); 315 if (!cur_trans) 316 return -ENOMEM; 317 318 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers); 319 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters); 320 321 spin_lock(&fs_info->trans_lock); 322 if (fs_info->running_transaction) { 323 /* 324 * someone started a transaction after we unlocked. Make sure 325 * to redo the checks above 326 */ 327 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters); 328 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 329 kfree(cur_trans); 330 goto loop; 331 } else if (BTRFS_FS_ERROR(fs_info)) { 332 spin_unlock(&fs_info->trans_lock); 333 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters); 334 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 335 kfree(cur_trans); 336 return -EROFS; 337 } 338 339 cur_trans->fs_info = fs_info; 340 atomic_set(&cur_trans->pending_ordered, 0); 341 init_waitqueue_head(&cur_trans->pending_wait); 342 atomic_set(&cur_trans->num_writers, 1); 343 extwriter_counter_init(cur_trans, type); 344 init_waitqueue_head(&cur_trans->writer_wait); 345 init_waitqueue_head(&cur_trans->commit_wait); 346 cur_trans->state = TRANS_STATE_RUNNING; 347 /* 348 * One for this trans handle, one so it will live on until we 349 * commit the transaction. 350 */ 351 refcount_set(&cur_trans->use_count, 2); 352 cur_trans->flags = 0; 353 cur_trans->start_time = ktime_get_seconds(); 354 355 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs)); 356 357 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED; 358 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT; 359 atomic_set(&cur_trans->delayed_refs.num_entries, 0); 360 361 /* 362 * although the tree mod log is per file system and not per transaction, 363 * the log must never go across transaction boundaries. 364 */ 365 smp_mb(); 366 if (!list_empty(&fs_info->tree_mod_seq_list)) 367 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n"); 368 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 369 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n"); 370 atomic64_set(&fs_info->tree_mod_seq, 0); 371 372 spin_lock_init(&cur_trans->delayed_refs.lock); 373 374 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 375 INIT_LIST_HEAD(&cur_trans->dev_update_list); 376 INIT_LIST_HEAD(&cur_trans->switch_commits); 377 INIT_LIST_HEAD(&cur_trans->dirty_bgs); 378 INIT_LIST_HEAD(&cur_trans->io_bgs); 379 INIT_LIST_HEAD(&cur_trans->dropped_roots); 380 mutex_init(&cur_trans->cache_write_mutex); 381 spin_lock_init(&cur_trans->dirty_bgs_lock); 382 INIT_LIST_HEAD(&cur_trans->deleted_bgs); 383 spin_lock_init(&cur_trans->dropped_roots_lock); 384 list_add_tail(&cur_trans->list, &fs_info->trans_list); 385 extent_io_tree_init(fs_info, &cur_trans->dirty_pages, 386 IO_TREE_TRANS_DIRTY_PAGES); 387 extent_io_tree_init(fs_info, &cur_trans->pinned_extents, 388 IO_TREE_FS_PINNED_EXTENTS); 389 btrfs_set_fs_generation(fs_info, fs_info->generation + 1); 390 cur_trans->transid = fs_info->generation; 391 fs_info->running_transaction = cur_trans; 392 cur_trans->aborted = 0; 393 spin_unlock(&fs_info->trans_lock); 394 395 return 0; 396 } 397 398 /* 399 * This does all the record keeping required to make sure that a shareable root 400 * is properly recorded in a given transaction. This is required to make sure 401 * the old root from before we joined the transaction is deleted when the 402 * transaction commits. 403 */ 404 static int record_root_in_trans(struct btrfs_trans_handle *trans, 405 struct btrfs_root *root, 406 int force) 407 { 408 struct btrfs_fs_info *fs_info = root->fs_info; 409 int ret = 0; 410 411 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 412 root->last_trans < trans->transid) || force) { 413 WARN_ON(!force && root->commit_root != root->node); 414 415 /* 416 * see below for IN_TRANS_SETUP usage rules 417 * we have the reloc mutex held now, so there 418 * is only one writer in this function 419 */ 420 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 421 422 /* make sure readers find IN_TRANS_SETUP before 423 * they find our root->last_trans update 424 */ 425 smp_wmb(); 426 427 spin_lock(&fs_info->fs_roots_radix_lock); 428 if (root->last_trans == trans->transid && !force) { 429 spin_unlock(&fs_info->fs_roots_radix_lock); 430 return 0; 431 } 432 radix_tree_tag_set(&fs_info->fs_roots_radix, 433 (unsigned long)root->root_key.objectid, 434 BTRFS_ROOT_TRANS_TAG); 435 spin_unlock(&fs_info->fs_roots_radix_lock); 436 root->last_trans = trans->transid; 437 438 /* this is pretty tricky. We don't want to 439 * take the relocation lock in btrfs_record_root_in_trans 440 * unless we're really doing the first setup for this root in 441 * this transaction. 442 * 443 * Normally we'd use root->last_trans as a flag to decide 444 * if we want to take the expensive mutex. 445 * 446 * But, we have to set root->last_trans before we 447 * init the relocation root, otherwise, we trip over warnings 448 * in ctree.c. The solution used here is to flag ourselves 449 * with root IN_TRANS_SETUP. When this is 1, we're still 450 * fixing up the reloc trees and everyone must wait. 451 * 452 * When this is zero, they can trust root->last_trans and fly 453 * through btrfs_record_root_in_trans without having to take the 454 * lock. smp_wmb() makes sure that all the writes above are 455 * done before we pop in the zero below 456 */ 457 ret = btrfs_init_reloc_root(trans, root); 458 smp_mb__before_atomic(); 459 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 460 } 461 return ret; 462 } 463 464 465 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans, 466 struct btrfs_root *root) 467 { 468 struct btrfs_fs_info *fs_info = root->fs_info; 469 struct btrfs_transaction *cur_trans = trans->transaction; 470 471 /* Add ourselves to the transaction dropped list */ 472 spin_lock(&cur_trans->dropped_roots_lock); 473 list_add_tail(&root->root_list, &cur_trans->dropped_roots); 474 spin_unlock(&cur_trans->dropped_roots_lock); 475 476 /* Make sure we don't try to update the root at commit time */ 477 spin_lock(&fs_info->fs_roots_radix_lock); 478 radix_tree_tag_clear(&fs_info->fs_roots_radix, 479 (unsigned long)root->root_key.objectid, 480 BTRFS_ROOT_TRANS_TAG); 481 spin_unlock(&fs_info->fs_roots_radix_lock); 482 } 483 484 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 485 struct btrfs_root *root) 486 { 487 struct btrfs_fs_info *fs_info = root->fs_info; 488 int ret; 489 490 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 491 return 0; 492 493 /* 494 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 495 * and barriers 496 */ 497 smp_rmb(); 498 if (root->last_trans == trans->transid && 499 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 500 return 0; 501 502 mutex_lock(&fs_info->reloc_mutex); 503 ret = record_root_in_trans(trans, root, 0); 504 mutex_unlock(&fs_info->reloc_mutex); 505 506 return ret; 507 } 508 509 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 510 { 511 return (trans->state >= TRANS_STATE_COMMIT_START && 512 trans->state < TRANS_STATE_UNBLOCKED && 513 !TRANS_ABORTED(trans)); 514 } 515 516 /* wait for commit against the current transaction to become unblocked 517 * when this is done, it is safe to start a new transaction, but the current 518 * transaction might not be fully on disk. 519 */ 520 static void wait_current_trans(struct btrfs_fs_info *fs_info) 521 { 522 struct btrfs_transaction *cur_trans; 523 524 spin_lock(&fs_info->trans_lock); 525 cur_trans = fs_info->running_transaction; 526 if (cur_trans && is_transaction_blocked(cur_trans)) { 527 refcount_inc(&cur_trans->use_count); 528 spin_unlock(&fs_info->trans_lock); 529 530 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 531 wait_event(fs_info->transaction_wait, 532 cur_trans->state >= TRANS_STATE_UNBLOCKED || 533 TRANS_ABORTED(cur_trans)); 534 btrfs_put_transaction(cur_trans); 535 } else { 536 spin_unlock(&fs_info->trans_lock); 537 } 538 } 539 540 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type) 541 { 542 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 543 return 0; 544 545 if (type == TRANS_START) 546 return 1; 547 548 return 0; 549 } 550 551 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 552 { 553 struct btrfs_fs_info *fs_info = root->fs_info; 554 555 if (!fs_info->reloc_ctl || 556 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) || 557 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 558 root->reloc_root) 559 return false; 560 561 return true; 562 } 563 564 static int btrfs_reserve_trans_metadata(struct btrfs_fs_info *fs_info, 565 enum btrfs_reserve_flush_enum flush, 566 u64 num_bytes, 567 u64 *delayed_refs_bytes) 568 { 569 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 570 struct btrfs_space_info *si = fs_info->trans_block_rsv.space_info; 571 u64 extra_delayed_refs_bytes = 0; 572 u64 bytes; 573 int ret; 574 575 /* 576 * If there's a gap between the size of the delayed refs reserve and 577 * its reserved space, than some tasks have added delayed refs or bumped 578 * its size otherwise (due to block group creation or removal, or block 579 * group item update). Also try to allocate that gap in order to prevent 580 * using (and possibly abusing) the global reserve when committing the 581 * transaction. 582 */ 583 if (flush == BTRFS_RESERVE_FLUSH_ALL && 584 !btrfs_block_rsv_full(delayed_refs_rsv)) { 585 spin_lock(&delayed_refs_rsv->lock); 586 if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) 587 extra_delayed_refs_bytes = delayed_refs_rsv->size - 588 delayed_refs_rsv->reserved; 589 spin_unlock(&delayed_refs_rsv->lock); 590 } 591 592 bytes = num_bytes + *delayed_refs_bytes + extra_delayed_refs_bytes; 593 594 /* 595 * We want to reserve all the bytes we may need all at once, so we only 596 * do 1 enospc flushing cycle per transaction start. 597 */ 598 ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush); 599 if (ret == 0) { 600 if (extra_delayed_refs_bytes > 0) 601 btrfs_migrate_to_delayed_refs_rsv(fs_info, 602 extra_delayed_refs_bytes); 603 return 0; 604 } 605 606 if (extra_delayed_refs_bytes > 0) { 607 bytes -= extra_delayed_refs_bytes; 608 ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush); 609 if (ret == 0) 610 return 0; 611 } 612 613 /* 614 * If we are an emergency flush, which can steal from the global block 615 * reserve, then attempt to not reserve space for the delayed refs, as 616 * we will consume space for them from the global block reserve. 617 */ 618 if (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL) { 619 bytes -= *delayed_refs_bytes; 620 *delayed_refs_bytes = 0; 621 ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush); 622 } 623 624 return ret; 625 } 626 627 static struct btrfs_trans_handle * 628 start_transaction(struct btrfs_root *root, unsigned int num_items, 629 unsigned int type, enum btrfs_reserve_flush_enum flush, 630 bool enforce_qgroups) 631 { 632 struct btrfs_fs_info *fs_info = root->fs_info; 633 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 634 struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv; 635 struct btrfs_trans_handle *h; 636 struct btrfs_transaction *cur_trans; 637 u64 num_bytes = 0; 638 u64 qgroup_reserved = 0; 639 u64 delayed_refs_bytes = 0; 640 bool reloc_reserved = false; 641 bool do_chunk_alloc = false; 642 int ret; 643 644 if (BTRFS_FS_ERROR(fs_info)) 645 return ERR_PTR(-EROFS); 646 647 if (current->journal_info) { 648 WARN_ON(type & TRANS_EXTWRITERS); 649 h = current->journal_info; 650 refcount_inc(&h->use_count); 651 WARN_ON(refcount_read(&h->use_count) > 2); 652 h->orig_rsv = h->block_rsv; 653 h->block_rsv = NULL; 654 goto got_it; 655 } 656 657 /* 658 * Do the reservation before we join the transaction so we can do all 659 * the appropriate flushing if need be. 660 */ 661 if (num_items && root != fs_info->chunk_root) { 662 qgroup_reserved = num_items * fs_info->nodesize; 663 /* 664 * Use prealloc for now, as there might be a currently running 665 * transaction that could free this reserved space prematurely 666 * by committing. 667 */ 668 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserved, 669 enforce_qgroups, false); 670 if (ret) 671 return ERR_PTR(ret); 672 673 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items); 674 /* 675 * If we plan to insert/update/delete "num_items" from a btree, 676 * we will also generate delayed refs for extent buffers in the 677 * respective btree paths, so reserve space for the delayed refs 678 * that will be generated by the caller as it modifies btrees. 679 * Try to reserve them to avoid excessive use of the global 680 * block reserve. 681 */ 682 delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info, num_items); 683 684 /* 685 * Do the reservation for the relocation root creation 686 */ 687 if (need_reserve_reloc_root(root)) { 688 num_bytes += fs_info->nodesize; 689 reloc_reserved = true; 690 } 691 692 ret = btrfs_reserve_trans_metadata(fs_info, flush, num_bytes, 693 &delayed_refs_bytes); 694 if (ret) 695 goto reserve_fail; 696 697 btrfs_block_rsv_add_bytes(trans_rsv, num_bytes, true); 698 699 if (trans_rsv->space_info->force_alloc) 700 do_chunk_alloc = true; 701 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL && 702 !btrfs_block_rsv_full(delayed_refs_rsv)) { 703 /* 704 * Some people call with btrfs_start_transaction(root, 0) 705 * because they can be throttled, but have some other mechanism 706 * for reserving space. We still want these guys to refill the 707 * delayed block_rsv so just add 1 items worth of reservation 708 * here. 709 */ 710 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush); 711 if (ret) 712 goto reserve_fail; 713 } 714 again: 715 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS); 716 if (!h) { 717 ret = -ENOMEM; 718 goto alloc_fail; 719 } 720 721 /* 722 * If we are JOIN_NOLOCK we're already committing a transaction and 723 * waiting on this guy, so we don't need to do the sb_start_intwrite 724 * because we're already holding a ref. We need this because we could 725 * have raced in and did an fsync() on a file which can kick a commit 726 * and then we deadlock with somebody doing a freeze. 727 * 728 * If we are ATTACH, it means we just want to catch the current 729 * transaction and commit it, so we needn't do sb_start_intwrite(). 730 */ 731 if (type & __TRANS_FREEZABLE) 732 sb_start_intwrite(fs_info->sb); 733 734 if (may_wait_transaction(fs_info, type)) 735 wait_current_trans(fs_info); 736 737 do { 738 ret = join_transaction(fs_info, type); 739 if (ret == -EBUSY) { 740 wait_current_trans(fs_info); 741 if (unlikely(type == TRANS_ATTACH || 742 type == TRANS_JOIN_NOSTART)) 743 ret = -ENOENT; 744 } 745 } while (ret == -EBUSY); 746 747 if (ret < 0) 748 goto join_fail; 749 750 cur_trans = fs_info->running_transaction; 751 752 h->transid = cur_trans->transid; 753 h->transaction = cur_trans; 754 refcount_set(&h->use_count, 1); 755 h->fs_info = root->fs_info; 756 757 h->type = type; 758 INIT_LIST_HEAD(&h->new_bgs); 759 btrfs_init_metadata_block_rsv(fs_info, &h->delayed_rsv, BTRFS_BLOCK_RSV_DELOPS); 760 761 smp_mb(); 762 if (cur_trans->state >= TRANS_STATE_COMMIT_START && 763 may_wait_transaction(fs_info, type)) { 764 current->journal_info = h; 765 btrfs_commit_transaction(h); 766 goto again; 767 } 768 769 if (num_bytes) { 770 trace_btrfs_space_reservation(fs_info, "transaction", 771 h->transid, num_bytes, 1); 772 h->block_rsv = trans_rsv; 773 h->bytes_reserved = num_bytes; 774 if (delayed_refs_bytes > 0) { 775 trace_btrfs_space_reservation(fs_info, 776 "local_delayed_refs_rsv", 777 h->transid, 778 delayed_refs_bytes, 1); 779 h->delayed_refs_bytes_reserved = delayed_refs_bytes; 780 btrfs_block_rsv_add_bytes(&h->delayed_rsv, delayed_refs_bytes, true); 781 delayed_refs_bytes = 0; 782 } 783 h->reloc_reserved = reloc_reserved; 784 } 785 786 /* 787 * Now that we have found a transaction to be a part of, convert the 788 * qgroup reservation from prealloc to pertrans. A different transaction 789 * can't race in and free our pertrans out from under us. 790 */ 791 if (qgroup_reserved) 792 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 793 794 got_it: 795 if (!current->journal_info) 796 current->journal_info = h; 797 798 /* 799 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to 800 * ALLOC_FORCE the first run through, and then we won't allocate for 801 * anybody else who races in later. We don't care about the return 802 * value here. 803 */ 804 if (do_chunk_alloc && num_bytes) { 805 u64 flags = h->block_rsv->space_info->flags; 806 807 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags), 808 CHUNK_ALLOC_NO_FORCE); 809 } 810 811 /* 812 * btrfs_record_root_in_trans() needs to alloc new extents, and may 813 * call btrfs_join_transaction() while we're also starting a 814 * transaction. 815 * 816 * Thus it need to be called after current->journal_info initialized, 817 * or we can deadlock. 818 */ 819 ret = btrfs_record_root_in_trans(h, root); 820 if (ret) { 821 /* 822 * The transaction handle is fully initialized and linked with 823 * other structures so it needs to be ended in case of errors, 824 * not just freed. 825 */ 826 btrfs_end_transaction(h); 827 return ERR_PTR(ret); 828 } 829 830 return h; 831 832 join_fail: 833 if (type & __TRANS_FREEZABLE) 834 sb_end_intwrite(fs_info->sb); 835 kmem_cache_free(btrfs_trans_handle_cachep, h); 836 alloc_fail: 837 if (num_bytes) 838 btrfs_block_rsv_release(fs_info, trans_rsv, num_bytes, NULL); 839 if (delayed_refs_bytes) 840 btrfs_space_info_free_bytes_may_use(fs_info, trans_rsv->space_info, 841 delayed_refs_bytes); 842 reserve_fail: 843 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 844 return ERR_PTR(ret); 845 } 846 847 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 848 unsigned int num_items) 849 { 850 return start_transaction(root, num_items, TRANS_START, 851 BTRFS_RESERVE_FLUSH_ALL, true); 852 } 853 854 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv( 855 struct btrfs_root *root, 856 unsigned int num_items) 857 { 858 return start_transaction(root, num_items, TRANS_START, 859 BTRFS_RESERVE_FLUSH_ALL_STEAL, false); 860 } 861 862 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 863 { 864 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH, 865 true); 866 } 867 868 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root) 869 { 870 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 871 BTRFS_RESERVE_NO_FLUSH, true); 872 } 873 874 /* 875 * Similar to regular join but it never starts a transaction when none is 876 * running or when there's a running one at a state >= TRANS_STATE_UNBLOCKED. 877 * This is similar to btrfs_attach_transaction() but it allows the join to 878 * happen if the transaction commit already started but it's not yet in the 879 * "doing" phase (the state is < TRANS_STATE_COMMIT_DOING). 880 */ 881 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root) 882 { 883 return start_transaction(root, 0, TRANS_JOIN_NOSTART, 884 BTRFS_RESERVE_NO_FLUSH, true); 885 } 886 887 /* 888 * Catch the running transaction. 889 * 890 * It is used when we want to commit the current the transaction, but 891 * don't want to start a new one. 892 * 893 * Note: If this function return -ENOENT, it just means there is no 894 * running transaction. But it is possible that the inactive transaction 895 * is still in the memory, not fully on disk. If you hope there is no 896 * inactive transaction in the fs when -ENOENT is returned, you should 897 * invoke 898 * btrfs_attach_transaction_barrier() 899 */ 900 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 901 { 902 return start_transaction(root, 0, TRANS_ATTACH, 903 BTRFS_RESERVE_NO_FLUSH, true); 904 } 905 906 /* 907 * Catch the running transaction. 908 * 909 * It is similar to the above function, the difference is this one 910 * will wait for all the inactive transactions until they fully 911 * complete. 912 */ 913 struct btrfs_trans_handle * 914 btrfs_attach_transaction_barrier(struct btrfs_root *root) 915 { 916 struct btrfs_trans_handle *trans; 917 918 trans = start_transaction(root, 0, TRANS_ATTACH, 919 BTRFS_RESERVE_NO_FLUSH, true); 920 if (trans == ERR_PTR(-ENOENT)) { 921 int ret; 922 923 ret = btrfs_wait_for_commit(root->fs_info, 0); 924 if (ret) 925 return ERR_PTR(ret); 926 } 927 928 return trans; 929 } 930 931 /* Wait for a transaction commit to reach at least the given state. */ 932 static noinline void wait_for_commit(struct btrfs_transaction *commit, 933 const enum btrfs_trans_state min_state) 934 { 935 struct btrfs_fs_info *fs_info = commit->fs_info; 936 u64 transid = commit->transid; 937 bool put = false; 938 939 /* 940 * At the moment this function is called with min_state either being 941 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED. 942 */ 943 if (min_state == TRANS_STATE_COMPLETED) 944 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED); 945 else 946 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 947 948 while (1) { 949 wait_event(commit->commit_wait, commit->state >= min_state); 950 if (put) 951 btrfs_put_transaction(commit); 952 953 if (min_state < TRANS_STATE_COMPLETED) 954 break; 955 956 /* 957 * A transaction isn't really completed until all of the 958 * previous transactions are completed, but with fsync we can 959 * end up with SUPER_COMMITTED transactions before a COMPLETED 960 * transaction. Wait for those. 961 */ 962 963 spin_lock(&fs_info->trans_lock); 964 commit = list_first_entry_or_null(&fs_info->trans_list, 965 struct btrfs_transaction, 966 list); 967 if (!commit || commit->transid > transid) { 968 spin_unlock(&fs_info->trans_lock); 969 break; 970 } 971 refcount_inc(&commit->use_count); 972 put = true; 973 spin_unlock(&fs_info->trans_lock); 974 } 975 } 976 977 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid) 978 { 979 struct btrfs_transaction *cur_trans = NULL, *t; 980 int ret = 0; 981 982 if (transid) { 983 if (transid <= btrfs_get_last_trans_committed(fs_info)) 984 goto out; 985 986 /* find specified transaction */ 987 spin_lock(&fs_info->trans_lock); 988 list_for_each_entry(t, &fs_info->trans_list, list) { 989 if (t->transid == transid) { 990 cur_trans = t; 991 refcount_inc(&cur_trans->use_count); 992 ret = 0; 993 break; 994 } 995 if (t->transid > transid) { 996 ret = 0; 997 break; 998 } 999 } 1000 spin_unlock(&fs_info->trans_lock); 1001 1002 /* 1003 * The specified transaction doesn't exist, or we 1004 * raced with btrfs_commit_transaction 1005 */ 1006 if (!cur_trans) { 1007 if (transid > btrfs_get_last_trans_committed(fs_info)) 1008 ret = -EINVAL; 1009 goto out; 1010 } 1011 } else { 1012 /* find newest transaction that is committing | committed */ 1013 spin_lock(&fs_info->trans_lock); 1014 list_for_each_entry_reverse(t, &fs_info->trans_list, 1015 list) { 1016 if (t->state >= TRANS_STATE_COMMIT_START) { 1017 if (t->state == TRANS_STATE_COMPLETED) 1018 break; 1019 cur_trans = t; 1020 refcount_inc(&cur_trans->use_count); 1021 break; 1022 } 1023 } 1024 spin_unlock(&fs_info->trans_lock); 1025 if (!cur_trans) 1026 goto out; /* nothing committing|committed */ 1027 } 1028 1029 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED); 1030 ret = cur_trans->aborted; 1031 btrfs_put_transaction(cur_trans); 1032 out: 1033 return ret; 1034 } 1035 1036 void btrfs_throttle(struct btrfs_fs_info *fs_info) 1037 { 1038 wait_current_trans(fs_info); 1039 } 1040 1041 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans) 1042 { 1043 struct btrfs_transaction *cur_trans = trans->transaction; 1044 1045 if (cur_trans->state >= TRANS_STATE_COMMIT_START || 1046 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags)) 1047 return true; 1048 1049 if (btrfs_check_space_for_delayed_refs(trans->fs_info)) 1050 return true; 1051 1052 return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50); 1053 } 1054 1055 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans) 1056 1057 { 1058 struct btrfs_fs_info *fs_info = trans->fs_info; 1059 1060 if (!trans->block_rsv) { 1061 ASSERT(!trans->bytes_reserved); 1062 ASSERT(!trans->delayed_refs_bytes_reserved); 1063 return; 1064 } 1065 1066 if (!trans->bytes_reserved) { 1067 ASSERT(!trans->delayed_refs_bytes_reserved); 1068 return; 1069 } 1070 1071 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv); 1072 trace_btrfs_space_reservation(fs_info, "transaction", 1073 trans->transid, trans->bytes_reserved, 0); 1074 btrfs_block_rsv_release(fs_info, trans->block_rsv, 1075 trans->bytes_reserved, NULL); 1076 trans->bytes_reserved = 0; 1077 1078 if (!trans->delayed_refs_bytes_reserved) 1079 return; 1080 1081 trace_btrfs_space_reservation(fs_info, "local_delayed_refs_rsv", 1082 trans->transid, 1083 trans->delayed_refs_bytes_reserved, 0); 1084 btrfs_block_rsv_release(fs_info, &trans->delayed_rsv, 1085 trans->delayed_refs_bytes_reserved, NULL); 1086 trans->delayed_refs_bytes_reserved = 0; 1087 } 1088 1089 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 1090 int throttle) 1091 { 1092 struct btrfs_fs_info *info = trans->fs_info; 1093 struct btrfs_transaction *cur_trans = trans->transaction; 1094 int err = 0; 1095 1096 if (refcount_read(&trans->use_count) > 1) { 1097 refcount_dec(&trans->use_count); 1098 trans->block_rsv = trans->orig_rsv; 1099 return 0; 1100 } 1101 1102 btrfs_trans_release_metadata(trans); 1103 trans->block_rsv = NULL; 1104 1105 btrfs_create_pending_block_groups(trans); 1106 1107 btrfs_trans_release_chunk_metadata(trans); 1108 1109 if (trans->type & __TRANS_FREEZABLE) 1110 sb_end_intwrite(info->sb); 1111 1112 WARN_ON(cur_trans != info->running_transaction); 1113 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 1114 atomic_dec(&cur_trans->num_writers); 1115 extwriter_counter_dec(cur_trans, trans->type); 1116 1117 cond_wake_up(&cur_trans->writer_wait); 1118 1119 btrfs_lockdep_release(info, btrfs_trans_num_extwriters); 1120 btrfs_lockdep_release(info, btrfs_trans_num_writers); 1121 1122 btrfs_put_transaction(cur_trans); 1123 1124 if (current->journal_info == trans) 1125 current->journal_info = NULL; 1126 1127 if (throttle) 1128 btrfs_run_delayed_iputs(info); 1129 1130 if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) { 1131 wake_up_process(info->transaction_kthread); 1132 if (TRANS_ABORTED(trans)) 1133 err = trans->aborted; 1134 else 1135 err = -EROFS; 1136 } 1137 1138 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1139 return err; 1140 } 1141 1142 int btrfs_end_transaction(struct btrfs_trans_handle *trans) 1143 { 1144 return __btrfs_end_transaction(trans, 0); 1145 } 1146 1147 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans) 1148 { 1149 return __btrfs_end_transaction(trans, 1); 1150 } 1151 1152 /* 1153 * when btree blocks are allocated, they have some corresponding bits set for 1154 * them in one of two extent_io trees. This is used to make sure all of 1155 * those extents are sent to disk but does not wait on them 1156 */ 1157 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info, 1158 struct extent_io_tree *dirty_pages, int mark) 1159 { 1160 int err = 0; 1161 int werr = 0; 1162 struct address_space *mapping = fs_info->btree_inode->i_mapping; 1163 struct extent_state *cached_state = NULL; 1164 u64 start = 0; 1165 u64 end; 1166 1167 while (find_first_extent_bit(dirty_pages, start, &start, &end, 1168 mark, &cached_state)) { 1169 bool wait_writeback = false; 1170 1171 err = convert_extent_bit(dirty_pages, start, end, 1172 EXTENT_NEED_WAIT, 1173 mark, &cached_state); 1174 /* 1175 * convert_extent_bit can return -ENOMEM, which is most of the 1176 * time a temporary error. So when it happens, ignore the error 1177 * and wait for writeback of this range to finish - because we 1178 * failed to set the bit EXTENT_NEED_WAIT for the range, a call 1179 * to __btrfs_wait_marked_extents() would not know that 1180 * writeback for this range started and therefore wouldn't 1181 * wait for it to finish - we don't want to commit a 1182 * superblock that points to btree nodes/leafs for which 1183 * writeback hasn't finished yet (and without errors). 1184 * We cleanup any entries left in the io tree when committing 1185 * the transaction (through extent_io_tree_release()). 1186 */ 1187 if (err == -ENOMEM) { 1188 err = 0; 1189 wait_writeback = true; 1190 } 1191 if (!err) 1192 err = filemap_fdatawrite_range(mapping, start, end); 1193 if (err) 1194 werr = err; 1195 else if (wait_writeback) 1196 werr = filemap_fdatawait_range(mapping, start, end); 1197 free_extent_state(cached_state); 1198 cached_state = NULL; 1199 cond_resched(); 1200 start = end + 1; 1201 } 1202 return werr; 1203 } 1204 1205 /* 1206 * when btree blocks are allocated, they have some corresponding bits set for 1207 * them in one of two extent_io trees. This is used to make sure all of 1208 * those extents are on disk for transaction or log commit. We wait 1209 * on all the pages and clear them from the dirty pages state tree 1210 */ 1211 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info, 1212 struct extent_io_tree *dirty_pages) 1213 { 1214 int err = 0; 1215 int werr = 0; 1216 struct address_space *mapping = fs_info->btree_inode->i_mapping; 1217 struct extent_state *cached_state = NULL; 1218 u64 start = 0; 1219 u64 end; 1220 1221 while (find_first_extent_bit(dirty_pages, start, &start, &end, 1222 EXTENT_NEED_WAIT, &cached_state)) { 1223 /* 1224 * Ignore -ENOMEM errors returned by clear_extent_bit(). 1225 * When committing the transaction, we'll remove any entries 1226 * left in the io tree. For a log commit, we don't remove them 1227 * after committing the log because the tree can be accessed 1228 * concurrently - we do it only at transaction commit time when 1229 * it's safe to do it (through extent_io_tree_release()). 1230 */ 1231 err = clear_extent_bit(dirty_pages, start, end, 1232 EXTENT_NEED_WAIT, &cached_state); 1233 if (err == -ENOMEM) 1234 err = 0; 1235 if (!err) 1236 err = filemap_fdatawait_range(mapping, start, end); 1237 if (err) 1238 werr = err; 1239 free_extent_state(cached_state); 1240 cached_state = NULL; 1241 cond_resched(); 1242 start = end + 1; 1243 } 1244 if (err) 1245 werr = err; 1246 return werr; 1247 } 1248 1249 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info, 1250 struct extent_io_tree *dirty_pages) 1251 { 1252 bool errors = false; 1253 int err; 1254 1255 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1256 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags)) 1257 errors = true; 1258 1259 if (errors && !err) 1260 err = -EIO; 1261 return err; 1262 } 1263 1264 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark) 1265 { 1266 struct btrfs_fs_info *fs_info = log_root->fs_info; 1267 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages; 1268 bool errors = false; 1269 int err; 1270 1271 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 1272 1273 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1274 if ((mark & EXTENT_DIRTY) && 1275 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags)) 1276 errors = true; 1277 1278 if ((mark & EXTENT_NEW) && 1279 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags)) 1280 errors = true; 1281 1282 if (errors && !err) 1283 err = -EIO; 1284 return err; 1285 } 1286 1287 /* 1288 * When btree blocks are allocated the corresponding extents are marked dirty. 1289 * This function ensures such extents are persisted on disk for transaction or 1290 * log commit. 1291 * 1292 * @trans: transaction whose dirty pages we'd like to write 1293 */ 1294 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans) 1295 { 1296 int ret; 1297 int ret2; 1298 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages; 1299 struct btrfs_fs_info *fs_info = trans->fs_info; 1300 struct blk_plug plug; 1301 1302 blk_start_plug(&plug); 1303 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY); 1304 blk_finish_plug(&plug); 1305 ret2 = btrfs_wait_extents(fs_info, dirty_pages); 1306 1307 extent_io_tree_release(&trans->transaction->dirty_pages); 1308 1309 if (ret) 1310 return ret; 1311 else if (ret2) 1312 return ret2; 1313 else 1314 return 0; 1315 } 1316 1317 /* 1318 * this is used to update the root pointer in the tree of tree roots. 1319 * 1320 * But, in the case of the extent allocation tree, updating the root 1321 * pointer may allocate blocks which may change the root of the extent 1322 * allocation tree. 1323 * 1324 * So, this loops and repeats and makes sure the cowonly root didn't 1325 * change while the root pointer was being updated in the metadata. 1326 */ 1327 static int update_cowonly_root(struct btrfs_trans_handle *trans, 1328 struct btrfs_root *root) 1329 { 1330 int ret; 1331 u64 old_root_bytenr; 1332 u64 old_root_used; 1333 struct btrfs_fs_info *fs_info = root->fs_info; 1334 struct btrfs_root *tree_root = fs_info->tree_root; 1335 1336 old_root_used = btrfs_root_used(&root->root_item); 1337 1338 while (1) { 1339 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 1340 if (old_root_bytenr == root->node->start && 1341 old_root_used == btrfs_root_used(&root->root_item)) 1342 break; 1343 1344 btrfs_set_root_node(&root->root_item, root->node); 1345 ret = btrfs_update_root(trans, tree_root, 1346 &root->root_key, 1347 &root->root_item); 1348 if (ret) 1349 return ret; 1350 1351 old_root_used = btrfs_root_used(&root->root_item); 1352 } 1353 1354 return 0; 1355 } 1356 1357 /* 1358 * update all the cowonly tree roots on disk 1359 * 1360 * The error handling in this function may not be obvious. Any of the 1361 * failures will cause the file system to go offline. We still need 1362 * to clean up the delayed refs. 1363 */ 1364 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans) 1365 { 1366 struct btrfs_fs_info *fs_info = trans->fs_info; 1367 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; 1368 struct list_head *io_bgs = &trans->transaction->io_bgs; 1369 struct list_head *next; 1370 struct extent_buffer *eb; 1371 int ret; 1372 1373 /* 1374 * At this point no one can be using this transaction to modify any tree 1375 * and no one can start another transaction to modify any tree either. 1376 */ 1377 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING); 1378 1379 eb = btrfs_lock_root_node(fs_info->tree_root); 1380 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 1381 0, &eb, BTRFS_NESTING_COW); 1382 btrfs_tree_unlock(eb); 1383 free_extent_buffer(eb); 1384 1385 if (ret) 1386 return ret; 1387 1388 ret = btrfs_run_dev_stats(trans); 1389 if (ret) 1390 return ret; 1391 ret = btrfs_run_dev_replace(trans); 1392 if (ret) 1393 return ret; 1394 ret = btrfs_run_qgroups(trans); 1395 if (ret) 1396 return ret; 1397 1398 ret = btrfs_setup_space_cache(trans); 1399 if (ret) 1400 return ret; 1401 1402 again: 1403 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1404 struct btrfs_root *root; 1405 next = fs_info->dirty_cowonly_roots.next; 1406 list_del_init(next); 1407 root = list_entry(next, struct btrfs_root, dirty_list); 1408 clear_bit(BTRFS_ROOT_DIRTY, &root->state); 1409 1410 list_add_tail(&root->dirty_list, 1411 &trans->transaction->switch_commits); 1412 ret = update_cowonly_root(trans, root); 1413 if (ret) 1414 return ret; 1415 } 1416 1417 /* Now flush any delayed refs generated by updating all of the roots */ 1418 ret = btrfs_run_delayed_refs(trans, U64_MAX); 1419 if (ret) 1420 return ret; 1421 1422 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { 1423 ret = btrfs_write_dirty_block_groups(trans); 1424 if (ret) 1425 return ret; 1426 1427 /* 1428 * We're writing the dirty block groups, which could generate 1429 * delayed refs, which could generate more dirty block groups, 1430 * so we want to keep this flushing in this loop to make sure 1431 * everything gets run. 1432 */ 1433 ret = btrfs_run_delayed_refs(trans, U64_MAX); 1434 if (ret) 1435 return ret; 1436 } 1437 1438 if (!list_empty(&fs_info->dirty_cowonly_roots)) 1439 goto again; 1440 1441 /* Update dev-replace pointer once everything is committed */ 1442 fs_info->dev_replace.committed_cursor_left = 1443 fs_info->dev_replace.cursor_left_last_write_of_item; 1444 1445 return 0; 1446 } 1447 1448 /* 1449 * If we had a pending drop we need to see if there are any others left in our 1450 * dead roots list, and if not clear our bit and wake any waiters. 1451 */ 1452 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info) 1453 { 1454 /* 1455 * We put the drop in progress roots at the front of the list, so if the 1456 * first entry doesn't have UNFINISHED_DROP set we can wake everybody 1457 * up. 1458 */ 1459 spin_lock(&fs_info->trans_lock); 1460 if (!list_empty(&fs_info->dead_roots)) { 1461 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots, 1462 struct btrfs_root, 1463 root_list); 1464 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) { 1465 spin_unlock(&fs_info->trans_lock); 1466 return; 1467 } 1468 } 1469 spin_unlock(&fs_info->trans_lock); 1470 1471 btrfs_wake_unfinished_drop(fs_info); 1472 } 1473 1474 /* 1475 * dead roots are old snapshots that need to be deleted. This allocates 1476 * a dirty root struct and adds it into the list of dead roots that need to 1477 * be deleted 1478 */ 1479 void btrfs_add_dead_root(struct btrfs_root *root) 1480 { 1481 struct btrfs_fs_info *fs_info = root->fs_info; 1482 1483 spin_lock(&fs_info->trans_lock); 1484 if (list_empty(&root->root_list)) { 1485 btrfs_grab_root(root); 1486 1487 /* We want to process the partially complete drops first. */ 1488 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) 1489 list_add(&root->root_list, &fs_info->dead_roots); 1490 else 1491 list_add_tail(&root->root_list, &fs_info->dead_roots); 1492 } 1493 spin_unlock(&fs_info->trans_lock); 1494 } 1495 1496 /* 1497 * Update each subvolume root and its relocation root, if it exists, in the tree 1498 * of tree roots. Also free log roots if they exist. 1499 */ 1500 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans) 1501 { 1502 struct btrfs_fs_info *fs_info = trans->fs_info; 1503 struct btrfs_root *gang[8]; 1504 int i; 1505 int ret; 1506 1507 /* 1508 * At this point no one can be using this transaction to modify any tree 1509 * and no one can start another transaction to modify any tree either. 1510 */ 1511 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING); 1512 1513 spin_lock(&fs_info->fs_roots_radix_lock); 1514 while (1) { 1515 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1516 (void **)gang, 0, 1517 ARRAY_SIZE(gang), 1518 BTRFS_ROOT_TRANS_TAG); 1519 if (ret == 0) 1520 break; 1521 for (i = 0; i < ret; i++) { 1522 struct btrfs_root *root = gang[i]; 1523 int ret2; 1524 1525 /* 1526 * At this point we can neither have tasks logging inodes 1527 * from a root nor trying to commit a log tree. 1528 */ 1529 ASSERT(atomic_read(&root->log_writers) == 0); 1530 ASSERT(atomic_read(&root->log_commit[0]) == 0); 1531 ASSERT(atomic_read(&root->log_commit[1]) == 0); 1532 1533 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1534 (unsigned long)root->root_key.objectid, 1535 BTRFS_ROOT_TRANS_TAG); 1536 spin_unlock(&fs_info->fs_roots_radix_lock); 1537 1538 btrfs_free_log(trans, root); 1539 ret2 = btrfs_update_reloc_root(trans, root); 1540 if (ret2) 1541 return ret2; 1542 1543 /* see comments in should_cow_block() */ 1544 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1545 smp_mb__after_atomic(); 1546 1547 if (root->commit_root != root->node) { 1548 list_add_tail(&root->dirty_list, 1549 &trans->transaction->switch_commits); 1550 btrfs_set_root_node(&root->root_item, 1551 root->node); 1552 } 1553 1554 ret2 = btrfs_update_root(trans, fs_info->tree_root, 1555 &root->root_key, 1556 &root->root_item); 1557 if (ret2) 1558 return ret2; 1559 spin_lock(&fs_info->fs_roots_radix_lock); 1560 btrfs_qgroup_free_meta_all_pertrans(root); 1561 } 1562 } 1563 spin_unlock(&fs_info->fs_roots_radix_lock); 1564 return 0; 1565 } 1566 1567 /* 1568 * Do all special snapshot related qgroup dirty hack. 1569 * 1570 * Will do all needed qgroup inherit and dirty hack like switch commit 1571 * roots inside one transaction and write all btree into disk, to make 1572 * qgroup works. 1573 */ 1574 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans, 1575 struct btrfs_root *src, 1576 struct btrfs_root *parent, 1577 struct btrfs_qgroup_inherit *inherit, 1578 u64 dst_objectid) 1579 { 1580 struct btrfs_fs_info *fs_info = src->fs_info; 1581 int ret; 1582 1583 /* 1584 * Save some performance in the case that qgroups are not enabled. If 1585 * this check races with the ioctl, rescan will kick in anyway. 1586 */ 1587 if (!btrfs_qgroup_full_accounting(fs_info)) 1588 return 0; 1589 1590 /* 1591 * Ensure dirty @src will be committed. Or, after coming 1592 * commit_fs_roots() and switch_commit_roots(), any dirty but not 1593 * recorded root will never be updated again, causing an outdated root 1594 * item. 1595 */ 1596 ret = record_root_in_trans(trans, src, 1); 1597 if (ret) 1598 return ret; 1599 1600 /* 1601 * btrfs_qgroup_inherit relies on a consistent view of the usage for the 1602 * src root, so we must run the delayed refs here. 1603 * 1604 * However this isn't particularly fool proof, because there's no 1605 * synchronization keeping us from changing the tree after this point 1606 * before we do the qgroup_inherit, or even from making changes while 1607 * we're doing the qgroup_inherit. But that's a problem for the future, 1608 * for now flush the delayed refs to narrow the race window where the 1609 * qgroup counters could end up wrong. 1610 */ 1611 ret = btrfs_run_delayed_refs(trans, U64_MAX); 1612 if (ret) { 1613 btrfs_abort_transaction(trans, ret); 1614 return ret; 1615 } 1616 1617 ret = commit_fs_roots(trans); 1618 if (ret) 1619 goto out; 1620 ret = btrfs_qgroup_account_extents(trans); 1621 if (ret < 0) 1622 goto out; 1623 1624 /* Now qgroup are all updated, we can inherit it to new qgroups */ 1625 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid, 1626 parent->root_key.objectid, inherit); 1627 if (ret < 0) 1628 goto out; 1629 1630 /* 1631 * Now we do a simplified commit transaction, which will: 1632 * 1) commit all subvolume and extent tree 1633 * To ensure all subvolume and extent tree have a valid 1634 * commit_root to accounting later insert_dir_item() 1635 * 2) write all btree blocks onto disk 1636 * This is to make sure later btree modification will be cowed 1637 * Or commit_root can be populated and cause wrong qgroup numbers 1638 * In this simplified commit, we don't really care about other trees 1639 * like chunk and root tree, as they won't affect qgroup. 1640 * And we don't write super to avoid half committed status. 1641 */ 1642 ret = commit_cowonly_roots(trans); 1643 if (ret) 1644 goto out; 1645 switch_commit_roots(trans); 1646 ret = btrfs_write_and_wait_transaction(trans); 1647 if (ret) 1648 btrfs_handle_fs_error(fs_info, ret, 1649 "Error while writing out transaction for qgroup"); 1650 1651 out: 1652 /* 1653 * Force parent root to be updated, as we recorded it before so its 1654 * last_trans == cur_transid. 1655 * Or it won't be committed again onto disk after later 1656 * insert_dir_item() 1657 */ 1658 if (!ret) 1659 ret = record_root_in_trans(trans, parent, 1); 1660 return ret; 1661 } 1662 1663 /* 1664 * new snapshots need to be created at a very specific time in the 1665 * transaction commit. This does the actual creation. 1666 * 1667 * Note: 1668 * If the error which may affect the commitment of the current transaction 1669 * happens, we should return the error number. If the error which just affect 1670 * the creation of the pending snapshots, just return 0. 1671 */ 1672 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1673 struct btrfs_pending_snapshot *pending) 1674 { 1675 1676 struct btrfs_fs_info *fs_info = trans->fs_info; 1677 struct btrfs_key key; 1678 struct btrfs_root_item *new_root_item; 1679 struct btrfs_root *tree_root = fs_info->tree_root; 1680 struct btrfs_root *root = pending->root; 1681 struct btrfs_root *parent_root; 1682 struct btrfs_block_rsv *rsv; 1683 struct inode *parent_inode = pending->dir; 1684 struct btrfs_path *path; 1685 struct btrfs_dir_item *dir_item; 1686 struct extent_buffer *tmp; 1687 struct extent_buffer *old; 1688 struct timespec64 cur_time; 1689 int ret = 0; 1690 u64 to_reserve = 0; 1691 u64 index = 0; 1692 u64 objectid; 1693 u64 root_flags; 1694 unsigned int nofs_flags; 1695 struct fscrypt_name fname; 1696 1697 ASSERT(pending->path); 1698 path = pending->path; 1699 1700 ASSERT(pending->root_item); 1701 new_root_item = pending->root_item; 1702 1703 /* 1704 * We're inside a transaction and must make sure that any potential 1705 * allocations with GFP_KERNEL in fscrypt won't recurse back to 1706 * filesystem. 1707 */ 1708 nofs_flags = memalloc_nofs_save(); 1709 pending->error = fscrypt_setup_filename(parent_inode, 1710 &pending->dentry->d_name, 0, 1711 &fname); 1712 memalloc_nofs_restore(nofs_flags); 1713 if (pending->error) 1714 goto free_pending; 1715 1716 pending->error = btrfs_get_free_objectid(tree_root, &objectid); 1717 if (pending->error) 1718 goto free_fname; 1719 1720 /* 1721 * Make qgroup to skip current new snapshot's qgroupid, as it is 1722 * accounted by later btrfs_qgroup_inherit(). 1723 */ 1724 btrfs_set_skip_qgroup(trans, objectid); 1725 1726 btrfs_reloc_pre_snapshot(pending, &to_reserve); 1727 1728 if (to_reserve > 0) { 1729 pending->error = btrfs_block_rsv_add(fs_info, 1730 &pending->block_rsv, 1731 to_reserve, 1732 BTRFS_RESERVE_NO_FLUSH); 1733 if (pending->error) 1734 goto clear_skip_qgroup; 1735 } 1736 1737 key.objectid = objectid; 1738 key.offset = (u64)-1; 1739 key.type = BTRFS_ROOT_ITEM_KEY; 1740 1741 rsv = trans->block_rsv; 1742 trans->block_rsv = &pending->block_rsv; 1743 trans->bytes_reserved = trans->block_rsv->reserved; 1744 trace_btrfs_space_reservation(fs_info, "transaction", 1745 trans->transid, 1746 trans->bytes_reserved, 1); 1747 parent_root = BTRFS_I(parent_inode)->root; 1748 ret = record_root_in_trans(trans, parent_root, 0); 1749 if (ret) 1750 goto fail; 1751 cur_time = current_time(parent_inode); 1752 1753 /* 1754 * insert the directory item 1755 */ 1756 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index); 1757 if (ret) { 1758 btrfs_abort_transaction(trans, ret); 1759 goto fail; 1760 } 1761 1762 /* check if there is a file/dir which has the same name. */ 1763 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1764 btrfs_ino(BTRFS_I(parent_inode)), 1765 &fname.disk_name, 0); 1766 if (dir_item != NULL && !IS_ERR(dir_item)) { 1767 pending->error = -EEXIST; 1768 goto dir_item_existed; 1769 } else if (IS_ERR(dir_item)) { 1770 ret = PTR_ERR(dir_item); 1771 btrfs_abort_transaction(trans, ret); 1772 goto fail; 1773 } 1774 btrfs_release_path(path); 1775 1776 ret = btrfs_create_qgroup(trans, objectid); 1777 if (ret && ret != -EEXIST) { 1778 btrfs_abort_transaction(trans, ret); 1779 goto fail; 1780 } 1781 1782 /* 1783 * pull in the delayed directory update 1784 * and the delayed inode item 1785 * otherwise we corrupt the FS during 1786 * snapshot 1787 */ 1788 ret = btrfs_run_delayed_items(trans); 1789 if (ret) { /* Transaction aborted */ 1790 btrfs_abort_transaction(trans, ret); 1791 goto fail; 1792 } 1793 1794 ret = record_root_in_trans(trans, root, 0); 1795 if (ret) { 1796 btrfs_abort_transaction(trans, ret); 1797 goto fail; 1798 } 1799 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1800 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1801 btrfs_check_and_init_root_item(new_root_item); 1802 1803 root_flags = btrfs_root_flags(new_root_item); 1804 if (pending->readonly) 1805 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1806 else 1807 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1808 btrfs_set_root_flags(new_root_item, root_flags); 1809 1810 btrfs_set_root_generation_v2(new_root_item, 1811 trans->transid); 1812 generate_random_guid(new_root_item->uuid); 1813 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1814 BTRFS_UUID_SIZE); 1815 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1816 memset(new_root_item->received_uuid, 0, 1817 sizeof(new_root_item->received_uuid)); 1818 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1819 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1820 btrfs_set_root_stransid(new_root_item, 0); 1821 btrfs_set_root_rtransid(new_root_item, 0); 1822 } 1823 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1824 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1825 btrfs_set_root_otransid(new_root_item, trans->transid); 1826 1827 old = btrfs_lock_root_node(root); 1828 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old, 1829 BTRFS_NESTING_COW); 1830 if (ret) { 1831 btrfs_tree_unlock(old); 1832 free_extent_buffer(old); 1833 btrfs_abort_transaction(trans, ret); 1834 goto fail; 1835 } 1836 1837 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1838 /* clean up in any case */ 1839 btrfs_tree_unlock(old); 1840 free_extent_buffer(old); 1841 if (ret) { 1842 btrfs_abort_transaction(trans, ret); 1843 goto fail; 1844 } 1845 /* see comments in should_cow_block() */ 1846 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1847 smp_wmb(); 1848 1849 btrfs_set_root_node(new_root_item, tmp); 1850 /* record when the snapshot was created in key.offset */ 1851 key.offset = trans->transid; 1852 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1853 btrfs_tree_unlock(tmp); 1854 free_extent_buffer(tmp); 1855 if (ret) { 1856 btrfs_abort_transaction(trans, ret); 1857 goto fail; 1858 } 1859 1860 /* 1861 * insert root back/forward references 1862 */ 1863 ret = btrfs_add_root_ref(trans, objectid, 1864 parent_root->root_key.objectid, 1865 btrfs_ino(BTRFS_I(parent_inode)), index, 1866 &fname.disk_name); 1867 if (ret) { 1868 btrfs_abort_transaction(trans, ret); 1869 goto fail; 1870 } 1871 1872 key.offset = (u64)-1; 1873 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev); 1874 if (IS_ERR(pending->snap)) { 1875 ret = PTR_ERR(pending->snap); 1876 pending->snap = NULL; 1877 btrfs_abort_transaction(trans, ret); 1878 goto fail; 1879 } 1880 1881 ret = btrfs_reloc_post_snapshot(trans, pending); 1882 if (ret) { 1883 btrfs_abort_transaction(trans, ret); 1884 goto fail; 1885 } 1886 1887 /* 1888 * Do special qgroup accounting for snapshot, as we do some qgroup 1889 * snapshot hack to do fast snapshot. 1890 * To co-operate with that hack, we do hack again. 1891 * Or snapshot will be greatly slowed down by a subtree qgroup rescan 1892 */ 1893 if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_FULL) 1894 ret = qgroup_account_snapshot(trans, root, parent_root, 1895 pending->inherit, objectid); 1896 else if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE) 1897 ret = btrfs_qgroup_inherit(trans, root->root_key.objectid, objectid, 1898 parent_root->root_key.objectid, pending->inherit); 1899 if (ret < 0) 1900 goto fail; 1901 1902 ret = btrfs_insert_dir_item(trans, &fname.disk_name, 1903 BTRFS_I(parent_inode), &key, BTRFS_FT_DIR, 1904 index); 1905 /* We have check then name at the beginning, so it is impossible. */ 1906 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1907 if (ret) { 1908 btrfs_abort_transaction(trans, ret); 1909 goto fail; 1910 } 1911 1912 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size + 1913 fname.disk_name.len * 2); 1914 inode_set_mtime_to_ts(parent_inode, 1915 inode_set_ctime_current(parent_inode)); 1916 ret = btrfs_update_inode_fallback(trans, BTRFS_I(parent_inode)); 1917 if (ret) { 1918 btrfs_abort_transaction(trans, ret); 1919 goto fail; 1920 } 1921 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid, 1922 BTRFS_UUID_KEY_SUBVOL, 1923 objectid); 1924 if (ret) { 1925 btrfs_abort_transaction(trans, ret); 1926 goto fail; 1927 } 1928 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1929 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid, 1930 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1931 objectid); 1932 if (ret && ret != -EEXIST) { 1933 btrfs_abort_transaction(trans, ret); 1934 goto fail; 1935 } 1936 } 1937 1938 fail: 1939 pending->error = ret; 1940 dir_item_existed: 1941 trans->block_rsv = rsv; 1942 trans->bytes_reserved = 0; 1943 clear_skip_qgroup: 1944 btrfs_clear_skip_qgroup(trans); 1945 free_fname: 1946 fscrypt_free_filename(&fname); 1947 free_pending: 1948 kfree(new_root_item); 1949 pending->root_item = NULL; 1950 btrfs_free_path(path); 1951 pending->path = NULL; 1952 1953 return ret; 1954 } 1955 1956 /* 1957 * create all the snapshots we've scheduled for creation 1958 */ 1959 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans) 1960 { 1961 struct btrfs_pending_snapshot *pending, *next; 1962 struct list_head *head = &trans->transaction->pending_snapshots; 1963 int ret = 0; 1964 1965 list_for_each_entry_safe(pending, next, head, list) { 1966 list_del(&pending->list); 1967 ret = create_pending_snapshot(trans, pending); 1968 if (ret) 1969 break; 1970 } 1971 return ret; 1972 } 1973 1974 static void update_super_roots(struct btrfs_fs_info *fs_info) 1975 { 1976 struct btrfs_root_item *root_item; 1977 struct btrfs_super_block *super; 1978 1979 super = fs_info->super_copy; 1980 1981 root_item = &fs_info->chunk_root->root_item; 1982 super->chunk_root = root_item->bytenr; 1983 super->chunk_root_generation = root_item->generation; 1984 super->chunk_root_level = root_item->level; 1985 1986 root_item = &fs_info->tree_root->root_item; 1987 super->root = root_item->bytenr; 1988 super->generation = root_item->generation; 1989 super->root_level = root_item->level; 1990 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 1991 super->cache_generation = root_item->generation; 1992 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags)) 1993 super->cache_generation = 0; 1994 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags)) 1995 super->uuid_tree_generation = root_item->generation; 1996 } 1997 1998 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1999 { 2000 struct btrfs_transaction *trans; 2001 int ret = 0; 2002 2003 spin_lock(&info->trans_lock); 2004 trans = info->running_transaction; 2005 if (trans) 2006 ret = (trans->state >= TRANS_STATE_COMMIT_START); 2007 spin_unlock(&info->trans_lock); 2008 return ret; 2009 } 2010 2011 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 2012 { 2013 struct btrfs_transaction *trans; 2014 int ret = 0; 2015 2016 spin_lock(&info->trans_lock); 2017 trans = info->running_transaction; 2018 if (trans) 2019 ret = is_transaction_blocked(trans); 2020 spin_unlock(&info->trans_lock); 2021 return ret; 2022 } 2023 2024 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans) 2025 { 2026 struct btrfs_fs_info *fs_info = trans->fs_info; 2027 struct btrfs_transaction *cur_trans; 2028 2029 /* Kick the transaction kthread. */ 2030 set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags); 2031 wake_up_process(fs_info->transaction_kthread); 2032 2033 /* take transaction reference */ 2034 cur_trans = trans->transaction; 2035 refcount_inc(&cur_trans->use_count); 2036 2037 btrfs_end_transaction(trans); 2038 2039 /* 2040 * Wait for the current transaction commit to start and block 2041 * subsequent transaction joins 2042 */ 2043 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2044 wait_event(fs_info->transaction_blocked_wait, 2045 cur_trans->state >= TRANS_STATE_COMMIT_START || 2046 TRANS_ABORTED(cur_trans)); 2047 btrfs_put_transaction(cur_trans); 2048 } 2049 2050 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err) 2051 { 2052 struct btrfs_fs_info *fs_info = trans->fs_info; 2053 struct btrfs_transaction *cur_trans = trans->transaction; 2054 2055 WARN_ON(refcount_read(&trans->use_count) > 1); 2056 2057 btrfs_abort_transaction(trans, err); 2058 2059 spin_lock(&fs_info->trans_lock); 2060 2061 /* 2062 * If the transaction is removed from the list, it means this 2063 * transaction has been committed successfully, so it is impossible 2064 * to call the cleanup function. 2065 */ 2066 BUG_ON(list_empty(&cur_trans->list)); 2067 2068 if (cur_trans == fs_info->running_transaction) { 2069 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2070 spin_unlock(&fs_info->trans_lock); 2071 2072 /* 2073 * The thread has already released the lockdep map as reader 2074 * already in btrfs_commit_transaction(). 2075 */ 2076 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers); 2077 wait_event(cur_trans->writer_wait, 2078 atomic_read(&cur_trans->num_writers) == 1); 2079 2080 spin_lock(&fs_info->trans_lock); 2081 } 2082 2083 /* 2084 * Now that we know no one else is still using the transaction we can 2085 * remove the transaction from the list of transactions. This avoids 2086 * the transaction kthread from cleaning up the transaction while some 2087 * other task is still using it, which could result in a use-after-free 2088 * on things like log trees, as it forces the transaction kthread to 2089 * wait for this transaction to be cleaned up by us. 2090 */ 2091 list_del_init(&cur_trans->list); 2092 2093 spin_unlock(&fs_info->trans_lock); 2094 2095 btrfs_cleanup_one_transaction(trans->transaction, fs_info); 2096 2097 spin_lock(&fs_info->trans_lock); 2098 if (cur_trans == fs_info->running_transaction) 2099 fs_info->running_transaction = NULL; 2100 spin_unlock(&fs_info->trans_lock); 2101 2102 if (trans->type & __TRANS_FREEZABLE) 2103 sb_end_intwrite(fs_info->sb); 2104 btrfs_put_transaction(cur_trans); 2105 btrfs_put_transaction(cur_trans); 2106 2107 trace_btrfs_transaction_commit(fs_info); 2108 2109 if (current->journal_info == trans) 2110 current->journal_info = NULL; 2111 2112 /* 2113 * If relocation is running, we can't cancel scrub because that will 2114 * result in a deadlock. Before relocating a block group, relocation 2115 * pauses scrub, then starts and commits a transaction before unpausing 2116 * scrub. If the transaction commit is being done by the relocation 2117 * task or triggered by another task and the relocation task is waiting 2118 * for the commit, and we end up here due to an error in the commit 2119 * path, then calling btrfs_scrub_cancel() will deadlock, as we are 2120 * asking for scrub to stop while having it asked to be paused higher 2121 * above in relocation code. 2122 */ 2123 if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 2124 btrfs_scrub_cancel(fs_info); 2125 2126 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2127 } 2128 2129 /* 2130 * Release reserved delayed ref space of all pending block groups of the 2131 * transaction and remove them from the list 2132 */ 2133 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans) 2134 { 2135 struct btrfs_fs_info *fs_info = trans->fs_info; 2136 struct btrfs_block_group *block_group, *tmp; 2137 2138 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 2139 btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info); 2140 list_del_init(&block_group->bg_list); 2141 } 2142 } 2143 2144 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info) 2145 { 2146 /* 2147 * We use try_to_writeback_inodes_sb() here because if we used 2148 * btrfs_start_delalloc_roots we would deadlock with fs freeze. 2149 * Currently are holding the fs freeze lock, if we do an async flush 2150 * we'll do btrfs_join_transaction() and deadlock because we need to 2151 * wait for the fs freeze lock. Using the direct flushing we benefit 2152 * from already being in a transaction and our join_transaction doesn't 2153 * have to re-take the fs freeze lock. 2154 * 2155 * Note that try_to_writeback_inodes_sb() will only trigger writeback 2156 * if it can read lock sb->s_umount. It will always be able to lock it, 2157 * except when the filesystem is being unmounted or being frozen, but in 2158 * those cases sync_filesystem() is called, which results in calling 2159 * writeback_inodes_sb() while holding a write lock on sb->s_umount. 2160 * Note that we don't call writeback_inodes_sb() directly, because it 2161 * will emit a warning if sb->s_umount is not locked. 2162 */ 2163 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 2164 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC); 2165 return 0; 2166 } 2167 2168 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info) 2169 { 2170 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 2171 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 2172 } 2173 2174 /* 2175 * Add a pending snapshot associated with the given transaction handle to the 2176 * respective handle. This must be called after the transaction commit started 2177 * and while holding fs_info->trans_lock. 2178 * This serves to guarantee a caller of btrfs_commit_transaction() that it can 2179 * safely free the pending snapshot pointer in case btrfs_commit_transaction() 2180 * returns an error. 2181 */ 2182 static void add_pending_snapshot(struct btrfs_trans_handle *trans) 2183 { 2184 struct btrfs_transaction *cur_trans = trans->transaction; 2185 2186 if (!trans->pending_snapshot) 2187 return; 2188 2189 lockdep_assert_held(&trans->fs_info->trans_lock); 2190 ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_PREP); 2191 2192 list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots); 2193 } 2194 2195 static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval) 2196 { 2197 fs_info->commit_stats.commit_count++; 2198 fs_info->commit_stats.last_commit_dur = interval; 2199 fs_info->commit_stats.max_commit_dur = 2200 max_t(u64, fs_info->commit_stats.max_commit_dur, interval); 2201 fs_info->commit_stats.total_commit_dur += interval; 2202 } 2203 2204 int btrfs_commit_transaction(struct btrfs_trans_handle *trans) 2205 { 2206 struct btrfs_fs_info *fs_info = trans->fs_info; 2207 struct btrfs_transaction *cur_trans = trans->transaction; 2208 struct btrfs_transaction *prev_trans = NULL; 2209 int ret; 2210 ktime_t start_time; 2211 ktime_t interval; 2212 2213 ASSERT(refcount_read(&trans->use_count) == 1); 2214 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2215 2216 clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags); 2217 2218 /* Stop the commit early if ->aborted is set */ 2219 if (TRANS_ABORTED(cur_trans)) { 2220 ret = cur_trans->aborted; 2221 goto lockdep_trans_commit_start_release; 2222 } 2223 2224 btrfs_trans_release_metadata(trans); 2225 trans->block_rsv = NULL; 2226 2227 /* 2228 * We only want one transaction commit doing the flushing so we do not 2229 * waste a bunch of time on lock contention on the extent root node. 2230 */ 2231 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING, 2232 &cur_trans->delayed_refs.flags)) { 2233 /* 2234 * Make a pass through all the delayed refs we have so far. 2235 * Any running threads may add more while we are here. 2236 */ 2237 ret = btrfs_run_delayed_refs(trans, 0); 2238 if (ret) 2239 goto lockdep_trans_commit_start_release; 2240 } 2241 2242 btrfs_create_pending_block_groups(trans); 2243 2244 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) { 2245 int run_it = 0; 2246 2247 /* this mutex is also taken before trying to set 2248 * block groups readonly. We need to make sure 2249 * that nobody has set a block group readonly 2250 * after a extents from that block group have been 2251 * allocated for cache files. btrfs_set_block_group_ro 2252 * will wait for the transaction to commit if it 2253 * finds BTRFS_TRANS_DIRTY_BG_RUN set. 2254 * 2255 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure 2256 * only one process starts all the block group IO. It wouldn't 2257 * hurt to have more than one go through, but there's no 2258 * real advantage to it either. 2259 */ 2260 mutex_lock(&fs_info->ro_block_group_mutex); 2261 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN, 2262 &cur_trans->flags)) 2263 run_it = 1; 2264 mutex_unlock(&fs_info->ro_block_group_mutex); 2265 2266 if (run_it) { 2267 ret = btrfs_start_dirty_block_groups(trans); 2268 if (ret) 2269 goto lockdep_trans_commit_start_release; 2270 } 2271 } 2272 2273 spin_lock(&fs_info->trans_lock); 2274 if (cur_trans->state >= TRANS_STATE_COMMIT_PREP) { 2275 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED; 2276 2277 add_pending_snapshot(trans); 2278 2279 spin_unlock(&fs_info->trans_lock); 2280 refcount_inc(&cur_trans->use_count); 2281 2282 if (trans->in_fsync) 2283 want_state = TRANS_STATE_SUPER_COMMITTED; 2284 2285 btrfs_trans_state_lockdep_release(fs_info, 2286 BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2287 ret = btrfs_end_transaction(trans); 2288 wait_for_commit(cur_trans, want_state); 2289 2290 if (TRANS_ABORTED(cur_trans)) 2291 ret = cur_trans->aborted; 2292 2293 btrfs_put_transaction(cur_trans); 2294 2295 return ret; 2296 } 2297 2298 cur_trans->state = TRANS_STATE_COMMIT_PREP; 2299 wake_up(&fs_info->transaction_blocked_wait); 2300 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2301 2302 if (cur_trans->list.prev != &fs_info->trans_list) { 2303 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED; 2304 2305 if (trans->in_fsync) 2306 want_state = TRANS_STATE_SUPER_COMMITTED; 2307 2308 prev_trans = list_entry(cur_trans->list.prev, 2309 struct btrfs_transaction, list); 2310 if (prev_trans->state < want_state) { 2311 refcount_inc(&prev_trans->use_count); 2312 spin_unlock(&fs_info->trans_lock); 2313 2314 wait_for_commit(prev_trans, want_state); 2315 2316 ret = READ_ONCE(prev_trans->aborted); 2317 2318 btrfs_put_transaction(prev_trans); 2319 if (ret) 2320 goto lockdep_release; 2321 spin_lock(&fs_info->trans_lock); 2322 } 2323 } else { 2324 /* 2325 * The previous transaction was aborted and was already removed 2326 * from the list of transactions at fs_info->trans_list. So we 2327 * abort to prevent writing a new superblock that reflects a 2328 * corrupt state (pointing to trees with unwritten nodes/leafs). 2329 */ 2330 if (BTRFS_FS_ERROR(fs_info)) { 2331 spin_unlock(&fs_info->trans_lock); 2332 ret = -EROFS; 2333 goto lockdep_release; 2334 } 2335 } 2336 2337 cur_trans->state = TRANS_STATE_COMMIT_START; 2338 wake_up(&fs_info->transaction_blocked_wait); 2339 spin_unlock(&fs_info->trans_lock); 2340 2341 /* 2342 * Get the time spent on the work done by the commit thread and not 2343 * the time spent waiting on a previous commit 2344 */ 2345 start_time = ktime_get_ns(); 2346 2347 extwriter_counter_dec(cur_trans, trans->type); 2348 2349 ret = btrfs_start_delalloc_flush(fs_info); 2350 if (ret) 2351 goto lockdep_release; 2352 2353 ret = btrfs_run_delayed_items(trans); 2354 if (ret) 2355 goto lockdep_release; 2356 2357 /* 2358 * The thread has started/joined the transaction thus it holds the 2359 * lockdep map as a reader. It has to release it before acquiring the 2360 * lockdep map as a writer. 2361 */ 2362 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters); 2363 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters); 2364 wait_event(cur_trans->writer_wait, 2365 extwriter_counter_read(cur_trans) == 0); 2366 2367 /* some pending stuffs might be added after the previous flush. */ 2368 ret = btrfs_run_delayed_items(trans); 2369 if (ret) { 2370 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 2371 goto cleanup_transaction; 2372 } 2373 2374 btrfs_wait_delalloc_flush(fs_info); 2375 2376 /* 2377 * Wait for all ordered extents started by a fast fsync that joined this 2378 * transaction. Otherwise if this transaction commits before the ordered 2379 * extents complete we lose logged data after a power failure. 2380 */ 2381 btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered); 2382 wait_event(cur_trans->pending_wait, 2383 atomic_read(&cur_trans->pending_ordered) == 0); 2384 2385 btrfs_scrub_pause(fs_info); 2386 /* 2387 * Ok now we need to make sure to block out any other joins while we 2388 * commit the transaction. We could have started a join before setting 2389 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 2390 */ 2391 spin_lock(&fs_info->trans_lock); 2392 add_pending_snapshot(trans); 2393 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2394 spin_unlock(&fs_info->trans_lock); 2395 2396 /* 2397 * The thread has started/joined the transaction thus it holds the 2398 * lockdep map as a reader. It has to release it before acquiring the 2399 * lockdep map as a writer. 2400 */ 2401 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 2402 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers); 2403 wait_event(cur_trans->writer_wait, 2404 atomic_read(&cur_trans->num_writers) == 1); 2405 2406 /* 2407 * Make lockdep happy by acquiring the state locks after 2408 * btrfs_trans_num_writers is released. If we acquired the state locks 2409 * before releasing the btrfs_trans_num_writers lock then lockdep would 2410 * complain because we did not follow the reverse order unlocking rule. 2411 */ 2412 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED); 2413 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2414 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2415 2416 /* 2417 * We've started the commit, clear the flag in case we were triggered to 2418 * do an async commit but somebody else started before the transaction 2419 * kthread could do the work. 2420 */ 2421 clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags); 2422 2423 if (TRANS_ABORTED(cur_trans)) { 2424 ret = cur_trans->aborted; 2425 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2426 goto scrub_continue; 2427 } 2428 /* 2429 * the reloc mutex makes sure that we stop 2430 * the balancing code from coming in and moving 2431 * extents around in the middle of the commit 2432 */ 2433 mutex_lock(&fs_info->reloc_mutex); 2434 2435 /* 2436 * We needn't worry about the delayed items because we will 2437 * deal with them in create_pending_snapshot(), which is the 2438 * core function of the snapshot creation. 2439 */ 2440 ret = create_pending_snapshots(trans); 2441 if (ret) 2442 goto unlock_reloc; 2443 2444 /* 2445 * We insert the dir indexes of the snapshots and update the inode 2446 * of the snapshots' parents after the snapshot creation, so there 2447 * are some delayed items which are not dealt with. Now deal with 2448 * them. 2449 * 2450 * We needn't worry that this operation will corrupt the snapshots, 2451 * because all the tree which are snapshoted will be forced to COW 2452 * the nodes and leaves. 2453 */ 2454 ret = btrfs_run_delayed_items(trans); 2455 if (ret) 2456 goto unlock_reloc; 2457 2458 ret = btrfs_run_delayed_refs(trans, U64_MAX); 2459 if (ret) 2460 goto unlock_reloc; 2461 2462 /* 2463 * make sure none of the code above managed to slip in a 2464 * delayed item 2465 */ 2466 btrfs_assert_delayed_root_empty(fs_info); 2467 2468 WARN_ON(cur_trans != trans->transaction); 2469 2470 ret = commit_fs_roots(trans); 2471 if (ret) 2472 goto unlock_reloc; 2473 2474 /* commit_fs_roots gets rid of all the tree log roots, it is now 2475 * safe to free the root of tree log roots 2476 */ 2477 btrfs_free_log_root_tree(trans, fs_info); 2478 2479 /* 2480 * Since fs roots are all committed, we can get a quite accurate 2481 * new_roots. So let's do quota accounting. 2482 */ 2483 ret = btrfs_qgroup_account_extents(trans); 2484 if (ret < 0) 2485 goto unlock_reloc; 2486 2487 ret = commit_cowonly_roots(trans); 2488 if (ret) 2489 goto unlock_reloc; 2490 2491 /* 2492 * The tasks which save the space cache and inode cache may also 2493 * update ->aborted, check it. 2494 */ 2495 if (TRANS_ABORTED(cur_trans)) { 2496 ret = cur_trans->aborted; 2497 goto unlock_reloc; 2498 } 2499 2500 cur_trans = fs_info->running_transaction; 2501 2502 btrfs_set_root_node(&fs_info->tree_root->root_item, 2503 fs_info->tree_root->node); 2504 list_add_tail(&fs_info->tree_root->dirty_list, 2505 &cur_trans->switch_commits); 2506 2507 btrfs_set_root_node(&fs_info->chunk_root->root_item, 2508 fs_info->chunk_root->node); 2509 list_add_tail(&fs_info->chunk_root->dirty_list, 2510 &cur_trans->switch_commits); 2511 2512 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2513 btrfs_set_root_node(&fs_info->block_group_root->root_item, 2514 fs_info->block_group_root->node); 2515 list_add_tail(&fs_info->block_group_root->dirty_list, 2516 &cur_trans->switch_commits); 2517 } 2518 2519 switch_commit_roots(trans); 2520 2521 ASSERT(list_empty(&cur_trans->dirty_bgs)); 2522 ASSERT(list_empty(&cur_trans->io_bgs)); 2523 update_super_roots(fs_info); 2524 2525 btrfs_set_super_log_root(fs_info->super_copy, 0); 2526 btrfs_set_super_log_root_level(fs_info->super_copy, 0); 2527 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2528 sizeof(*fs_info->super_copy)); 2529 2530 btrfs_commit_device_sizes(cur_trans); 2531 2532 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 2533 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 2534 2535 btrfs_trans_release_chunk_metadata(trans); 2536 2537 /* 2538 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and 2539 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to 2540 * make sure that before we commit our superblock, no other task can 2541 * start a new transaction and commit a log tree before we commit our 2542 * superblock. Anyone trying to commit a log tree locks this mutex before 2543 * writing its superblock. 2544 */ 2545 mutex_lock(&fs_info->tree_log_mutex); 2546 2547 spin_lock(&fs_info->trans_lock); 2548 cur_trans->state = TRANS_STATE_UNBLOCKED; 2549 fs_info->running_transaction = NULL; 2550 spin_unlock(&fs_info->trans_lock); 2551 mutex_unlock(&fs_info->reloc_mutex); 2552 2553 wake_up(&fs_info->transaction_wait); 2554 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2555 2556 /* If we have features changed, wake up the cleaner to update sysfs. */ 2557 if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) && 2558 fs_info->cleaner_kthread) 2559 wake_up_process(fs_info->cleaner_kthread); 2560 2561 ret = btrfs_write_and_wait_transaction(trans); 2562 if (ret) { 2563 btrfs_handle_fs_error(fs_info, ret, 2564 "Error while writing out transaction"); 2565 mutex_unlock(&fs_info->tree_log_mutex); 2566 goto scrub_continue; 2567 } 2568 2569 ret = write_all_supers(fs_info, 0); 2570 /* 2571 * the super is written, we can safely allow the tree-loggers 2572 * to go about their business 2573 */ 2574 mutex_unlock(&fs_info->tree_log_mutex); 2575 if (ret) 2576 goto scrub_continue; 2577 2578 /* 2579 * We needn't acquire the lock here because there is no other task 2580 * which can change it. 2581 */ 2582 cur_trans->state = TRANS_STATE_SUPER_COMMITTED; 2583 wake_up(&cur_trans->commit_wait); 2584 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2585 2586 btrfs_finish_extent_commit(trans); 2587 2588 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags)) 2589 btrfs_clear_space_info_full(fs_info); 2590 2591 btrfs_set_last_trans_committed(fs_info, cur_trans->transid); 2592 /* 2593 * We needn't acquire the lock here because there is no other task 2594 * which can change it. 2595 */ 2596 cur_trans->state = TRANS_STATE_COMPLETED; 2597 wake_up(&cur_trans->commit_wait); 2598 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED); 2599 2600 spin_lock(&fs_info->trans_lock); 2601 list_del_init(&cur_trans->list); 2602 spin_unlock(&fs_info->trans_lock); 2603 2604 btrfs_put_transaction(cur_trans); 2605 btrfs_put_transaction(cur_trans); 2606 2607 if (trans->type & __TRANS_FREEZABLE) 2608 sb_end_intwrite(fs_info->sb); 2609 2610 trace_btrfs_transaction_commit(fs_info); 2611 2612 interval = ktime_get_ns() - start_time; 2613 2614 btrfs_scrub_continue(fs_info); 2615 2616 if (current->journal_info == trans) 2617 current->journal_info = NULL; 2618 2619 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2620 2621 update_commit_stats(fs_info, interval); 2622 2623 return ret; 2624 2625 unlock_reloc: 2626 mutex_unlock(&fs_info->reloc_mutex); 2627 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2628 scrub_continue: 2629 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2630 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED); 2631 btrfs_scrub_continue(fs_info); 2632 cleanup_transaction: 2633 btrfs_trans_release_metadata(trans); 2634 btrfs_cleanup_pending_block_groups(trans); 2635 btrfs_trans_release_chunk_metadata(trans); 2636 trans->block_rsv = NULL; 2637 btrfs_warn(fs_info, "Skipping commit of aborted transaction."); 2638 if (current->journal_info == trans) 2639 current->journal_info = NULL; 2640 cleanup_transaction(trans, ret); 2641 2642 return ret; 2643 2644 lockdep_release: 2645 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters); 2646 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 2647 goto cleanup_transaction; 2648 2649 lockdep_trans_commit_start_release: 2650 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2651 btrfs_end_transaction(trans); 2652 return ret; 2653 } 2654 2655 /* 2656 * return < 0 if error 2657 * 0 if there are no more dead_roots at the time of call 2658 * 1 there are more to be processed, call me again 2659 * 2660 * The return value indicates there are certainly more snapshots to delete, but 2661 * if there comes a new one during processing, it may return 0. We don't mind, 2662 * because btrfs_commit_super will poke cleaner thread and it will process it a 2663 * few seconds later. 2664 */ 2665 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info) 2666 { 2667 struct btrfs_root *root; 2668 int ret; 2669 2670 spin_lock(&fs_info->trans_lock); 2671 if (list_empty(&fs_info->dead_roots)) { 2672 spin_unlock(&fs_info->trans_lock); 2673 return 0; 2674 } 2675 root = list_first_entry(&fs_info->dead_roots, 2676 struct btrfs_root, root_list); 2677 list_del_init(&root->root_list); 2678 spin_unlock(&fs_info->trans_lock); 2679 2680 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid); 2681 2682 btrfs_kill_all_delayed_nodes(root); 2683 2684 if (btrfs_header_backref_rev(root->node) < 2685 BTRFS_MIXED_BACKREF_REV) 2686 ret = btrfs_drop_snapshot(root, 0, 0); 2687 else 2688 ret = btrfs_drop_snapshot(root, 1, 0); 2689 2690 btrfs_put_root(root); 2691 return (ret < 0) ? 0 : 1; 2692 } 2693 2694 /* 2695 * We only mark the transaction aborted and then set the file system read-only. 2696 * This will prevent new transactions from starting or trying to join this 2697 * one. 2698 * 2699 * This means that error recovery at the call site is limited to freeing 2700 * any local memory allocations and passing the error code up without 2701 * further cleanup. The transaction should complete as it normally would 2702 * in the call path but will return -EIO. 2703 * 2704 * We'll complete the cleanup in btrfs_end_transaction and 2705 * btrfs_commit_transaction. 2706 */ 2707 void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 2708 const char *function, 2709 unsigned int line, int error, bool first_hit) 2710 { 2711 struct btrfs_fs_info *fs_info = trans->fs_info; 2712 2713 WRITE_ONCE(trans->aborted, error); 2714 WRITE_ONCE(trans->transaction->aborted, error); 2715 if (first_hit && error == -ENOSPC) 2716 btrfs_dump_space_info_for_trans_abort(fs_info); 2717 /* Wake up anybody who may be waiting on this transaction */ 2718 wake_up(&fs_info->transaction_wait); 2719 wake_up(&fs_info->transaction_blocked_wait); 2720 __btrfs_handle_fs_error(fs_info, function, line, error, NULL); 2721 } 2722 2723 int __init btrfs_transaction_init(void) 2724 { 2725 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 2726 sizeof(struct btrfs_trans_handle), 0, 2727 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 2728 if (!btrfs_trans_handle_cachep) 2729 return -ENOMEM; 2730 return 0; 2731 } 2732 2733 void __cold btrfs_transaction_exit(void) 2734 { 2735 kmem_cache_destroy(btrfs_trans_handle_cachep); 2736 } 2737