xref: /linux/fs/btrfs/transaction.c (revision e7b2b108cdeab76a7e7324459e50b0c1214c0386)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/writeback.h>
11 #include <linux/pagemap.h>
12 #include <linux/blkdev.h>
13 #include <linux/uuid.h>
14 #include <linux/timekeeping.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "disk-io.h"
18 #include "transaction.h"
19 #include "locking.h"
20 #include "tree-log.h"
21 #include "volumes.h"
22 #include "dev-replace.h"
23 #include "qgroup.h"
24 #include "block-group.h"
25 #include "space-info.h"
26 #include "zoned.h"
27 #include "fs.h"
28 #include "accessors.h"
29 #include "extent-tree.h"
30 #include "root-tree.h"
31 #include "defrag.h"
32 #include "dir-item.h"
33 #include "uuid-tree.h"
34 #include "ioctl.h"
35 #include "relocation.h"
36 #include "scrub.h"
37 
38 static struct kmem_cache *btrfs_trans_handle_cachep;
39 
40 #define BTRFS_ROOT_TRANS_TAG 0
41 
42 /*
43  * Transaction states and transitions
44  *
45  * No running transaction (fs tree blocks are not modified)
46  * |
47  * | To next stage:
48  * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
49  * V
50  * Transaction N [[TRANS_STATE_RUNNING]]
51  * |
52  * | New trans handles can be attached to transaction N by calling all
53  * | start_transaction() variants.
54  * |
55  * | To next stage:
56  * |  Call btrfs_commit_transaction() on any trans handle attached to
57  * |  transaction N
58  * V
59  * Transaction N [[TRANS_STATE_COMMIT_PREP]]
60  * |
61  * | If there are simultaneous calls to btrfs_commit_transaction() one will win
62  * | the race and the rest will wait for the winner to commit the transaction.
63  * |
64  * | The winner will wait for previous running transaction to completely finish
65  * | if there is one.
66  * |
67  * Transaction N [[TRANS_STATE_COMMIT_START]]
68  * |
69  * | Then one of the following happens:
70  * | - Wait for all other trans handle holders to release.
71  * |   The btrfs_commit_transaction() caller will do the commit work.
72  * | - Wait for current transaction to be committed by others.
73  * |   Other btrfs_commit_transaction() caller will do the commit work.
74  * |
75  * | At this stage, only btrfs_join_transaction*() variants can attach
76  * | to this running transaction.
77  * | All other variants will wait for current one to finish and attach to
78  * | transaction N+1.
79  * |
80  * | To next stage:
81  * |  Caller is chosen to commit transaction N, and all other trans handle
82  * |  haven been released.
83  * V
84  * Transaction N [[TRANS_STATE_COMMIT_DOING]]
85  * |
86  * | The heavy lifting transaction work is started.
87  * | From running delayed refs (modifying extent tree) to creating pending
88  * | snapshots, running qgroups.
89  * | In short, modify supporting trees to reflect modifications of subvolume
90  * | trees.
91  * |
92  * | At this stage, all start_transaction() calls will wait for this
93  * | transaction to finish and attach to transaction N+1.
94  * |
95  * | To next stage:
96  * |  Until all supporting trees are updated.
97  * V
98  * Transaction N [[TRANS_STATE_UNBLOCKED]]
99  * |						    Transaction N+1
100  * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
101  * | need to write them back to disk and update	    |
102  * | super blocks.				    |
103  * |						    |
104  * | At this stage, new transaction is allowed to   |
105  * | start.					    |
106  * | All new start_transaction() calls will be	    |
107  * | attached to transid N+1.			    |
108  * |						    |
109  * | To next stage:				    |
110  * |  Until all tree blocks are super blocks are    |
111  * |  written to block devices			    |
112  * V						    |
113  * Transaction N [[TRANS_STATE_COMPLETED]]	    V
114  *   All tree blocks and super blocks are written.  Transaction N+1
115  *   This transaction is finished and all its	    [[TRANS_STATE_COMMIT_START]]
116  *   data structures will be cleaned up.	    | Life goes on
117  */
118 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
119 	[TRANS_STATE_RUNNING]		= 0U,
120 	[TRANS_STATE_COMMIT_PREP]	= 0U,
121 	[TRANS_STATE_COMMIT_START]	= (__TRANS_START | __TRANS_ATTACH),
122 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_START |
123 					   __TRANS_ATTACH |
124 					   __TRANS_JOIN |
125 					   __TRANS_JOIN_NOSTART),
126 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_START |
127 					   __TRANS_ATTACH |
128 					   __TRANS_JOIN |
129 					   __TRANS_JOIN_NOLOCK |
130 					   __TRANS_JOIN_NOSTART),
131 	[TRANS_STATE_SUPER_COMMITTED]	= (__TRANS_START |
132 					   __TRANS_ATTACH |
133 					   __TRANS_JOIN |
134 					   __TRANS_JOIN_NOLOCK |
135 					   __TRANS_JOIN_NOSTART),
136 	[TRANS_STATE_COMPLETED]		= (__TRANS_START |
137 					   __TRANS_ATTACH |
138 					   __TRANS_JOIN |
139 					   __TRANS_JOIN_NOLOCK |
140 					   __TRANS_JOIN_NOSTART),
141 };
142 
143 void btrfs_put_transaction(struct btrfs_transaction *transaction)
144 {
145 	WARN_ON(refcount_read(&transaction->use_count) == 0);
146 	if (refcount_dec_and_test(&transaction->use_count)) {
147 		BUG_ON(!list_empty(&transaction->list));
148 		WARN_ON(!RB_EMPTY_ROOT(
149 				&transaction->delayed_refs.href_root.rb_root));
150 		WARN_ON(!RB_EMPTY_ROOT(
151 				&transaction->delayed_refs.dirty_extent_root));
152 		if (transaction->delayed_refs.pending_csums)
153 			btrfs_err(transaction->fs_info,
154 				  "pending csums is %llu",
155 				  transaction->delayed_refs.pending_csums);
156 		/*
157 		 * If any block groups are found in ->deleted_bgs then it's
158 		 * because the transaction was aborted and a commit did not
159 		 * happen (things failed before writing the new superblock
160 		 * and calling btrfs_finish_extent_commit()), so we can not
161 		 * discard the physical locations of the block groups.
162 		 */
163 		while (!list_empty(&transaction->deleted_bgs)) {
164 			struct btrfs_block_group *cache;
165 
166 			cache = list_first_entry(&transaction->deleted_bgs,
167 						 struct btrfs_block_group,
168 						 bg_list);
169 			list_del_init(&cache->bg_list);
170 			btrfs_unfreeze_block_group(cache);
171 			btrfs_put_block_group(cache);
172 		}
173 		WARN_ON(!list_empty(&transaction->dev_update_list));
174 		kfree(transaction);
175 	}
176 }
177 
178 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
179 {
180 	struct btrfs_transaction *cur_trans = trans->transaction;
181 	struct btrfs_fs_info *fs_info = trans->fs_info;
182 	struct btrfs_root *root, *tmp;
183 
184 	/*
185 	 * At this point no one can be using this transaction to modify any tree
186 	 * and no one can start another transaction to modify any tree either.
187 	 */
188 	ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
189 
190 	down_write(&fs_info->commit_root_sem);
191 
192 	if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
193 		fs_info->last_reloc_trans = trans->transid;
194 
195 	list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
196 				 dirty_list) {
197 		list_del_init(&root->dirty_list);
198 		free_extent_buffer(root->commit_root);
199 		root->commit_root = btrfs_root_node(root);
200 		extent_io_tree_release(&root->dirty_log_pages);
201 		btrfs_qgroup_clean_swapped_blocks(root);
202 	}
203 
204 	/* We can free old roots now. */
205 	spin_lock(&cur_trans->dropped_roots_lock);
206 	while (!list_empty(&cur_trans->dropped_roots)) {
207 		root = list_first_entry(&cur_trans->dropped_roots,
208 					struct btrfs_root, root_list);
209 		list_del_init(&root->root_list);
210 		spin_unlock(&cur_trans->dropped_roots_lock);
211 		btrfs_free_log(trans, root);
212 		btrfs_drop_and_free_fs_root(fs_info, root);
213 		spin_lock(&cur_trans->dropped_roots_lock);
214 	}
215 	spin_unlock(&cur_trans->dropped_roots_lock);
216 
217 	up_write(&fs_info->commit_root_sem);
218 }
219 
220 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
221 					 unsigned int type)
222 {
223 	if (type & TRANS_EXTWRITERS)
224 		atomic_inc(&trans->num_extwriters);
225 }
226 
227 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
228 					 unsigned int type)
229 {
230 	if (type & TRANS_EXTWRITERS)
231 		atomic_dec(&trans->num_extwriters);
232 }
233 
234 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
235 					  unsigned int type)
236 {
237 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
238 }
239 
240 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
241 {
242 	return atomic_read(&trans->num_extwriters);
243 }
244 
245 /*
246  * To be called after doing the chunk btree updates right after allocating a new
247  * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
248  * chunk after all chunk btree updates and after finishing the second phase of
249  * chunk allocation (btrfs_create_pending_block_groups()) in case some block
250  * group had its chunk item insertion delayed to the second phase.
251  */
252 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
253 {
254 	struct btrfs_fs_info *fs_info = trans->fs_info;
255 
256 	if (!trans->chunk_bytes_reserved)
257 		return;
258 
259 	btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
260 				trans->chunk_bytes_reserved, NULL);
261 	trans->chunk_bytes_reserved = 0;
262 }
263 
264 /*
265  * either allocate a new transaction or hop into the existing one
266  */
267 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
268 				     unsigned int type)
269 {
270 	struct btrfs_transaction *cur_trans;
271 
272 	spin_lock(&fs_info->trans_lock);
273 loop:
274 	/* The file system has been taken offline. No new transactions. */
275 	if (BTRFS_FS_ERROR(fs_info)) {
276 		spin_unlock(&fs_info->trans_lock);
277 		return -EROFS;
278 	}
279 
280 	cur_trans = fs_info->running_transaction;
281 	if (cur_trans) {
282 		if (TRANS_ABORTED(cur_trans)) {
283 			spin_unlock(&fs_info->trans_lock);
284 			return cur_trans->aborted;
285 		}
286 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
287 			spin_unlock(&fs_info->trans_lock);
288 			return -EBUSY;
289 		}
290 		refcount_inc(&cur_trans->use_count);
291 		atomic_inc(&cur_trans->num_writers);
292 		extwriter_counter_inc(cur_trans, type);
293 		spin_unlock(&fs_info->trans_lock);
294 		btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
295 		btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
296 		return 0;
297 	}
298 	spin_unlock(&fs_info->trans_lock);
299 
300 	/*
301 	 * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the
302 	 * current transaction, and commit it. If there is no transaction, just
303 	 * return ENOENT.
304 	 */
305 	if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART)
306 		return -ENOENT;
307 
308 	/*
309 	 * JOIN_NOLOCK only happens during the transaction commit, so
310 	 * it is impossible that ->running_transaction is NULL
311 	 */
312 	BUG_ON(type == TRANS_JOIN_NOLOCK);
313 
314 	cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
315 	if (!cur_trans)
316 		return -ENOMEM;
317 
318 	btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
319 	btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
320 
321 	spin_lock(&fs_info->trans_lock);
322 	if (fs_info->running_transaction) {
323 		/*
324 		 * someone started a transaction after we unlocked.  Make sure
325 		 * to redo the checks above
326 		 */
327 		btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
328 		btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
329 		kfree(cur_trans);
330 		goto loop;
331 	} else if (BTRFS_FS_ERROR(fs_info)) {
332 		spin_unlock(&fs_info->trans_lock);
333 		btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
334 		btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
335 		kfree(cur_trans);
336 		return -EROFS;
337 	}
338 
339 	cur_trans->fs_info = fs_info;
340 	atomic_set(&cur_trans->pending_ordered, 0);
341 	init_waitqueue_head(&cur_trans->pending_wait);
342 	atomic_set(&cur_trans->num_writers, 1);
343 	extwriter_counter_init(cur_trans, type);
344 	init_waitqueue_head(&cur_trans->writer_wait);
345 	init_waitqueue_head(&cur_trans->commit_wait);
346 	cur_trans->state = TRANS_STATE_RUNNING;
347 	/*
348 	 * One for this trans handle, one so it will live on until we
349 	 * commit the transaction.
350 	 */
351 	refcount_set(&cur_trans->use_count, 2);
352 	cur_trans->flags = 0;
353 	cur_trans->start_time = ktime_get_seconds();
354 
355 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
356 
357 	cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
358 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
359 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
360 
361 	/*
362 	 * although the tree mod log is per file system and not per transaction,
363 	 * the log must never go across transaction boundaries.
364 	 */
365 	smp_mb();
366 	if (!list_empty(&fs_info->tree_mod_seq_list))
367 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
368 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
369 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
370 	atomic64_set(&fs_info->tree_mod_seq, 0);
371 
372 	spin_lock_init(&cur_trans->delayed_refs.lock);
373 
374 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
375 	INIT_LIST_HEAD(&cur_trans->dev_update_list);
376 	INIT_LIST_HEAD(&cur_trans->switch_commits);
377 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
378 	INIT_LIST_HEAD(&cur_trans->io_bgs);
379 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
380 	mutex_init(&cur_trans->cache_write_mutex);
381 	spin_lock_init(&cur_trans->dirty_bgs_lock);
382 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
383 	spin_lock_init(&cur_trans->dropped_roots_lock);
384 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
385 	extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
386 			IO_TREE_TRANS_DIRTY_PAGES);
387 	extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
388 			IO_TREE_FS_PINNED_EXTENTS);
389 	btrfs_set_fs_generation(fs_info, fs_info->generation + 1);
390 	cur_trans->transid = fs_info->generation;
391 	fs_info->running_transaction = cur_trans;
392 	cur_trans->aborted = 0;
393 	spin_unlock(&fs_info->trans_lock);
394 
395 	return 0;
396 }
397 
398 /*
399  * This does all the record keeping required to make sure that a shareable root
400  * is properly recorded in a given transaction.  This is required to make sure
401  * the old root from before we joined the transaction is deleted when the
402  * transaction commits.
403  */
404 static int record_root_in_trans(struct btrfs_trans_handle *trans,
405 			       struct btrfs_root *root,
406 			       int force)
407 {
408 	struct btrfs_fs_info *fs_info = root->fs_info;
409 	int ret = 0;
410 
411 	if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
412 	    root->last_trans < trans->transid) || force) {
413 		WARN_ON(!force && root->commit_root != root->node);
414 
415 		/*
416 		 * see below for IN_TRANS_SETUP usage rules
417 		 * we have the reloc mutex held now, so there
418 		 * is only one writer in this function
419 		 */
420 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
421 
422 		/* make sure readers find IN_TRANS_SETUP before
423 		 * they find our root->last_trans update
424 		 */
425 		smp_wmb();
426 
427 		spin_lock(&fs_info->fs_roots_radix_lock);
428 		if (root->last_trans == trans->transid && !force) {
429 			spin_unlock(&fs_info->fs_roots_radix_lock);
430 			return 0;
431 		}
432 		radix_tree_tag_set(&fs_info->fs_roots_radix,
433 				   (unsigned long)root->root_key.objectid,
434 				   BTRFS_ROOT_TRANS_TAG);
435 		spin_unlock(&fs_info->fs_roots_radix_lock);
436 		root->last_trans = trans->transid;
437 
438 		/* this is pretty tricky.  We don't want to
439 		 * take the relocation lock in btrfs_record_root_in_trans
440 		 * unless we're really doing the first setup for this root in
441 		 * this transaction.
442 		 *
443 		 * Normally we'd use root->last_trans as a flag to decide
444 		 * if we want to take the expensive mutex.
445 		 *
446 		 * But, we have to set root->last_trans before we
447 		 * init the relocation root, otherwise, we trip over warnings
448 		 * in ctree.c.  The solution used here is to flag ourselves
449 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
450 		 * fixing up the reloc trees and everyone must wait.
451 		 *
452 		 * When this is zero, they can trust root->last_trans and fly
453 		 * through btrfs_record_root_in_trans without having to take the
454 		 * lock.  smp_wmb() makes sure that all the writes above are
455 		 * done before we pop in the zero below
456 		 */
457 		ret = btrfs_init_reloc_root(trans, root);
458 		smp_mb__before_atomic();
459 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
460 	}
461 	return ret;
462 }
463 
464 
465 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
466 			    struct btrfs_root *root)
467 {
468 	struct btrfs_fs_info *fs_info = root->fs_info;
469 	struct btrfs_transaction *cur_trans = trans->transaction;
470 
471 	/* Add ourselves to the transaction dropped list */
472 	spin_lock(&cur_trans->dropped_roots_lock);
473 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
474 	spin_unlock(&cur_trans->dropped_roots_lock);
475 
476 	/* Make sure we don't try to update the root at commit time */
477 	spin_lock(&fs_info->fs_roots_radix_lock);
478 	radix_tree_tag_clear(&fs_info->fs_roots_radix,
479 			     (unsigned long)root->root_key.objectid,
480 			     BTRFS_ROOT_TRANS_TAG);
481 	spin_unlock(&fs_info->fs_roots_radix_lock);
482 }
483 
484 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
485 			       struct btrfs_root *root)
486 {
487 	struct btrfs_fs_info *fs_info = root->fs_info;
488 	int ret;
489 
490 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
491 		return 0;
492 
493 	/*
494 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
495 	 * and barriers
496 	 */
497 	smp_rmb();
498 	if (root->last_trans == trans->transid &&
499 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
500 		return 0;
501 
502 	mutex_lock(&fs_info->reloc_mutex);
503 	ret = record_root_in_trans(trans, root, 0);
504 	mutex_unlock(&fs_info->reloc_mutex);
505 
506 	return ret;
507 }
508 
509 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
510 {
511 	return (trans->state >= TRANS_STATE_COMMIT_START &&
512 		trans->state < TRANS_STATE_UNBLOCKED &&
513 		!TRANS_ABORTED(trans));
514 }
515 
516 /* wait for commit against the current transaction to become unblocked
517  * when this is done, it is safe to start a new transaction, but the current
518  * transaction might not be fully on disk.
519  */
520 static void wait_current_trans(struct btrfs_fs_info *fs_info)
521 {
522 	struct btrfs_transaction *cur_trans;
523 
524 	spin_lock(&fs_info->trans_lock);
525 	cur_trans = fs_info->running_transaction;
526 	if (cur_trans && is_transaction_blocked(cur_trans)) {
527 		refcount_inc(&cur_trans->use_count);
528 		spin_unlock(&fs_info->trans_lock);
529 
530 		btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
531 		wait_event(fs_info->transaction_wait,
532 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
533 			   TRANS_ABORTED(cur_trans));
534 		btrfs_put_transaction(cur_trans);
535 	} else {
536 		spin_unlock(&fs_info->trans_lock);
537 	}
538 }
539 
540 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
541 {
542 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
543 		return 0;
544 
545 	if (type == TRANS_START)
546 		return 1;
547 
548 	return 0;
549 }
550 
551 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
552 {
553 	struct btrfs_fs_info *fs_info = root->fs_info;
554 
555 	if (!fs_info->reloc_ctl ||
556 	    !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
557 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
558 	    root->reloc_root)
559 		return false;
560 
561 	return true;
562 }
563 
564 static int btrfs_reserve_trans_metadata(struct btrfs_fs_info *fs_info,
565 					enum btrfs_reserve_flush_enum flush,
566 					u64 num_bytes,
567 					u64 *delayed_refs_bytes)
568 {
569 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
570 	struct btrfs_space_info *si = fs_info->trans_block_rsv.space_info;
571 	u64 extra_delayed_refs_bytes = 0;
572 	u64 bytes;
573 	int ret;
574 
575 	/*
576 	 * If there's a gap between the size of the delayed refs reserve and
577 	 * its reserved space, than some tasks have added delayed refs or bumped
578 	 * its size otherwise (due to block group creation or removal, or block
579 	 * group item update). Also try to allocate that gap in order to prevent
580 	 * using (and possibly abusing) the global reserve when committing the
581 	 * transaction.
582 	 */
583 	if (flush == BTRFS_RESERVE_FLUSH_ALL &&
584 	    !btrfs_block_rsv_full(delayed_refs_rsv)) {
585 		spin_lock(&delayed_refs_rsv->lock);
586 		if (delayed_refs_rsv->size > delayed_refs_rsv->reserved)
587 			extra_delayed_refs_bytes = delayed_refs_rsv->size -
588 				delayed_refs_rsv->reserved;
589 		spin_unlock(&delayed_refs_rsv->lock);
590 	}
591 
592 	bytes = num_bytes + *delayed_refs_bytes + extra_delayed_refs_bytes;
593 
594 	/*
595 	 * We want to reserve all the bytes we may need all at once, so we only
596 	 * do 1 enospc flushing cycle per transaction start.
597 	 */
598 	ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
599 	if (ret == 0) {
600 		if (extra_delayed_refs_bytes > 0)
601 			btrfs_migrate_to_delayed_refs_rsv(fs_info,
602 							  extra_delayed_refs_bytes);
603 		return 0;
604 	}
605 
606 	if (extra_delayed_refs_bytes > 0) {
607 		bytes -= extra_delayed_refs_bytes;
608 		ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
609 		if (ret == 0)
610 			return 0;
611 	}
612 
613 	/*
614 	 * If we are an emergency flush, which can steal from the global block
615 	 * reserve, then attempt to not reserve space for the delayed refs, as
616 	 * we will consume space for them from the global block reserve.
617 	 */
618 	if (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL) {
619 		bytes -= *delayed_refs_bytes;
620 		*delayed_refs_bytes = 0;
621 		ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
622 	}
623 
624 	return ret;
625 }
626 
627 static struct btrfs_trans_handle *
628 start_transaction(struct btrfs_root *root, unsigned int num_items,
629 		  unsigned int type, enum btrfs_reserve_flush_enum flush,
630 		  bool enforce_qgroups)
631 {
632 	struct btrfs_fs_info *fs_info = root->fs_info;
633 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
634 	struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
635 	struct btrfs_trans_handle *h;
636 	struct btrfs_transaction *cur_trans;
637 	u64 num_bytes = 0;
638 	u64 qgroup_reserved = 0;
639 	u64 delayed_refs_bytes = 0;
640 	bool reloc_reserved = false;
641 	bool do_chunk_alloc = false;
642 	int ret;
643 
644 	if (BTRFS_FS_ERROR(fs_info))
645 		return ERR_PTR(-EROFS);
646 
647 	if (current->journal_info) {
648 		WARN_ON(type & TRANS_EXTWRITERS);
649 		h = current->journal_info;
650 		refcount_inc(&h->use_count);
651 		WARN_ON(refcount_read(&h->use_count) > 2);
652 		h->orig_rsv = h->block_rsv;
653 		h->block_rsv = NULL;
654 		goto got_it;
655 	}
656 
657 	/*
658 	 * Do the reservation before we join the transaction so we can do all
659 	 * the appropriate flushing if need be.
660 	 */
661 	if (num_items && root != fs_info->chunk_root) {
662 		qgroup_reserved = num_items * fs_info->nodesize;
663 		/*
664 		 * Use prealloc for now, as there might be a currently running
665 		 * transaction that could free this reserved space prematurely
666 		 * by committing.
667 		 */
668 		ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserved,
669 							 enforce_qgroups, false);
670 		if (ret)
671 			return ERR_PTR(ret);
672 
673 		num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
674 		/*
675 		 * If we plan to insert/update/delete "num_items" from a btree,
676 		 * we will also generate delayed refs for extent buffers in the
677 		 * respective btree paths, so reserve space for the delayed refs
678 		 * that will be generated by the caller as it modifies btrees.
679 		 * Try to reserve them to avoid excessive use of the global
680 		 * block reserve.
681 		 */
682 		delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info, num_items);
683 
684 		/*
685 		 * Do the reservation for the relocation root creation
686 		 */
687 		if (need_reserve_reloc_root(root)) {
688 			num_bytes += fs_info->nodesize;
689 			reloc_reserved = true;
690 		}
691 
692 		ret = btrfs_reserve_trans_metadata(fs_info, flush, num_bytes,
693 						   &delayed_refs_bytes);
694 		if (ret)
695 			goto reserve_fail;
696 
697 		btrfs_block_rsv_add_bytes(trans_rsv, num_bytes, true);
698 
699 		if (trans_rsv->space_info->force_alloc)
700 			do_chunk_alloc = true;
701 	} else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
702 		   !btrfs_block_rsv_full(delayed_refs_rsv)) {
703 		/*
704 		 * Some people call with btrfs_start_transaction(root, 0)
705 		 * because they can be throttled, but have some other mechanism
706 		 * for reserving space.  We still want these guys to refill the
707 		 * delayed block_rsv so just add 1 items worth of reservation
708 		 * here.
709 		 */
710 		ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
711 		if (ret)
712 			goto reserve_fail;
713 	}
714 again:
715 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
716 	if (!h) {
717 		ret = -ENOMEM;
718 		goto alloc_fail;
719 	}
720 
721 	/*
722 	 * If we are JOIN_NOLOCK we're already committing a transaction and
723 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
724 	 * because we're already holding a ref.  We need this because we could
725 	 * have raced in and did an fsync() on a file which can kick a commit
726 	 * and then we deadlock with somebody doing a freeze.
727 	 *
728 	 * If we are ATTACH, it means we just want to catch the current
729 	 * transaction and commit it, so we needn't do sb_start_intwrite().
730 	 */
731 	if (type & __TRANS_FREEZABLE)
732 		sb_start_intwrite(fs_info->sb);
733 
734 	if (may_wait_transaction(fs_info, type))
735 		wait_current_trans(fs_info);
736 
737 	do {
738 		ret = join_transaction(fs_info, type);
739 		if (ret == -EBUSY) {
740 			wait_current_trans(fs_info);
741 			if (unlikely(type == TRANS_ATTACH ||
742 				     type == TRANS_JOIN_NOSTART))
743 				ret = -ENOENT;
744 		}
745 	} while (ret == -EBUSY);
746 
747 	if (ret < 0)
748 		goto join_fail;
749 
750 	cur_trans = fs_info->running_transaction;
751 
752 	h->transid = cur_trans->transid;
753 	h->transaction = cur_trans;
754 	refcount_set(&h->use_count, 1);
755 	h->fs_info = root->fs_info;
756 
757 	h->type = type;
758 	INIT_LIST_HEAD(&h->new_bgs);
759 	btrfs_init_metadata_block_rsv(fs_info, &h->delayed_rsv, BTRFS_BLOCK_RSV_DELOPS);
760 
761 	smp_mb();
762 	if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
763 	    may_wait_transaction(fs_info, type)) {
764 		current->journal_info = h;
765 		btrfs_commit_transaction(h);
766 		goto again;
767 	}
768 
769 	if (num_bytes) {
770 		trace_btrfs_space_reservation(fs_info, "transaction",
771 					      h->transid, num_bytes, 1);
772 		h->block_rsv = trans_rsv;
773 		h->bytes_reserved = num_bytes;
774 		if (delayed_refs_bytes > 0) {
775 			trace_btrfs_space_reservation(fs_info,
776 						      "local_delayed_refs_rsv",
777 						      h->transid,
778 						      delayed_refs_bytes, 1);
779 			h->delayed_refs_bytes_reserved = delayed_refs_bytes;
780 			btrfs_block_rsv_add_bytes(&h->delayed_rsv, delayed_refs_bytes, true);
781 			delayed_refs_bytes = 0;
782 		}
783 		h->reloc_reserved = reloc_reserved;
784 	}
785 
786 	/*
787 	 * Now that we have found a transaction to be a part of, convert the
788 	 * qgroup reservation from prealloc to pertrans. A different transaction
789 	 * can't race in and free our pertrans out from under us.
790 	 */
791 	if (qgroup_reserved)
792 		btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
793 
794 got_it:
795 	if (!current->journal_info)
796 		current->journal_info = h;
797 
798 	/*
799 	 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
800 	 * ALLOC_FORCE the first run through, and then we won't allocate for
801 	 * anybody else who races in later.  We don't care about the return
802 	 * value here.
803 	 */
804 	if (do_chunk_alloc && num_bytes) {
805 		u64 flags = h->block_rsv->space_info->flags;
806 
807 		btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
808 				  CHUNK_ALLOC_NO_FORCE);
809 	}
810 
811 	/*
812 	 * btrfs_record_root_in_trans() needs to alloc new extents, and may
813 	 * call btrfs_join_transaction() while we're also starting a
814 	 * transaction.
815 	 *
816 	 * Thus it need to be called after current->journal_info initialized,
817 	 * or we can deadlock.
818 	 */
819 	ret = btrfs_record_root_in_trans(h, root);
820 	if (ret) {
821 		/*
822 		 * The transaction handle is fully initialized and linked with
823 		 * other structures so it needs to be ended in case of errors,
824 		 * not just freed.
825 		 */
826 		btrfs_end_transaction(h);
827 		return ERR_PTR(ret);
828 	}
829 
830 	return h;
831 
832 join_fail:
833 	if (type & __TRANS_FREEZABLE)
834 		sb_end_intwrite(fs_info->sb);
835 	kmem_cache_free(btrfs_trans_handle_cachep, h);
836 alloc_fail:
837 	if (num_bytes)
838 		btrfs_block_rsv_release(fs_info, trans_rsv, num_bytes, NULL);
839 	if (delayed_refs_bytes)
840 		btrfs_space_info_free_bytes_may_use(fs_info, trans_rsv->space_info,
841 						    delayed_refs_bytes);
842 reserve_fail:
843 	btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
844 	return ERR_PTR(ret);
845 }
846 
847 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
848 						   unsigned int num_items)
849 {
850 	return start_transaction(root, num_items, TRANS_START,
851 				 BTRFS_RESERVE_FLUSH_ALL, true);
852 }
853 
854 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
855 					struct btrfs_root *root,
856 					unsigned int num_items)
857 {
858 	return start_transaction(root, num_items, TRANS_START,
859 				 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
860 }
861 
862 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
863 {
864 	return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
865 				 true);
866 }
867 
868 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
869 {
870 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
871 				 BTRFS_RESERVE_NO_FLUSH, true);
872 }
873 
874 /*
875  * Similar to regular join but it never starts a transaction when none is
876  * running or when there's a running one at a state >= TRANS_STATE_UNBLOCKED.
877  * This is similar to btrfs_attach_transaction() but it allows the join to
878  * happen if the transaction commit already started but it's not yet in the
879  * "doing" phase (the state is < TRANS_STATE_COMMIT_DOING).
880  */
881 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
882 {
883 	return start_transaction(root, 0, TRANS_JOIN_NOSTART,
884 				 BTRFS_RESERVE_NO_FLUSH, true);
885 }
886 
887 /*
888  * Catch the running transaction.
889  *
890  * It is used when we want to commit the current the transaction, but
891  * don't want to start a new one.
892  *
893  * Note: If this function return -ENOENT, it just means there is no
894  * running transaction. But it is possible that the inactive transaction
895  * is still in the memory, not fully on disk. If you hope there is no
896  * inactive transaction in the fs when -ENOENT is returned, you should
897  * invoke
898  *     btrfs_attach_transaction_barrier()
899  */
900 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
901 {
902 	return start_transaction(root, 0, TRANS_ATTACH,
903 				 BTRFS_RESERVE_NO_FLUSH, true);
904 }
905 
906 /*
907  * Catch the running transaction.
908  *
909  * It is similar to the above function, the difference is this one
910  * will wait for all the inactive transactions until they fully
911  * complete.
912  */
913 struct btrfs_trans_handle *
914 btrfs_attach_transaction_barrier(struct btrfs_root *root)
915 {
916 	struct btrfs_trans_handle *trans;
917 
918 	trans = start_transaction(root, 0, TRANS_ATTACH,
919 				  BTRFS_RESERVE_NO_FLUSH, true);
920 	if (trans == ERR_PTR(-ENOENT)) {
921 		int ret;
922 
923 		ret = btrfs_wait_for_commit(root->fs_info, 0);
924 		if (ret)
925 			return ERR_PTR(ret);
926 	}
927 
928 	return trans;
929 }
930 
931 /* Wait for a transaction commit to reach at least the given state. */
932 static noinline void wait_for_commit(struct btrfs_transaction *commit,
933 				     const enum btrfs_trans_state min_state)
934 {
935 	struct btrfs_fs_info *fs_info = commit->fs_info;
936 	u64 transid = commit->transid;
937 	bool put = false;
938 
939 	/*
940 	 * At the moment this function is called with min_state either being
941 	 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
942 	 */
943 	if (min_state == TRANS_STATE_COMPLETED)
944 		btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
945 	else
946 		btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
947 
948 	while (1) {
949 		wait_event(commit->commit_wait, commit->state >= min_state);
950 		if (put)
951 			btrfs_put_transaction(commit);
952 
953 		if (min_state < TRANS_STATE_COMPLETED)
954 			break;
955 
956 		/*
957 		 * A transaction isn't really completed until all of the
958 		 * previous transactions are completed, but with fsync we can
959 		 * end up with SUPER_COMMITTED transactions before a COMPLETED
960 		 * transaction. Wait for those.
961 		 */
962 
963 		spin_lock(&fs_info->trans_lock);
964 		commit = list_first_entry_or_null(&fs_info->trans_list,
965 						  struct btrfs_transaction,
966 						  list);
967 		if (!commit || commit->transid > transid) {
968 			spin_unlock(&fs_info->trans_lock);
969 			break;
970 		}
971 		refcount_inc(&commit->use_count);
972 		put = true;
973 		spin_unlock(&fs_info->trans_lock);
974 	}
975 }
976 
977 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
978 {
979 	struct btrfs_transaction *cur_trans = NULL, *t;
980 	int ret = 0;
981 
982 	if (transid) {
983 		if (transid <= btrfs_get_last_trans_committed(fs_info))
984 			goto out;
985 
986 		/* find specified transaction */
987 		spin_lock(&fs_info->trans_lock);
988 		list_for_each_entry(t, &fs_info->trans_list, list) {
989 			if (t->transid == transid) {
990 				cur_trans = t;
991 				refcount_inc(&cur_trans->use_count);
992 				ret = 0;
993 				break;
994 			}
995 			if (t->transid > transid) {
996 				ret = 0;
997 				break;
998 			}
999 		}
1000 		spin_unlock(&fs_info->trans_lock);
1001 
1002 		/*
1003 		 * The specified transaction doesn't exist, or we
1004 		 * raced with btrfs_commit_transaction
1005 		 */
1006 		if (!cur_trans) {
1007 			if (transid > btrfs_get_last_trans_committed(fs_info))
1008 				ret = -EINVAL;
1009 			goto out;
1010 		}
1011 	} else {
1012 		/* find newest transaction that is committing | committed */
1013 		spin_lock(&fs_info->trans_lock);
1014 		list_for_each_entry_reverse(t, &fs_info->trans_list,
1015 					    list) {
1016 			if (t->state >= TRANS_STATE_COMMIT_START) {
1017 				if (t->state == TRANS_STATE_COMPLETED)
1018 					break;
1019 				cur_trans = t;
1020 				refcount_inc(&cur_trans->use_count);
1021 				break;
1022 			}
1023 		}
1024 		spin_unlock(&fs_info->trans_lock);
1025 		if (!cur_trans)
1026 			goto out;  /* nothing committing|committed */
1027 	}
1028 
1029 	wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
1030 	ret = cur_trans->aborted;
1031 	btrfs_put_transaction(cur_trans);
1032 out:
1033 	return ret;
1034 }
1035 
1036 void btrfs_throttle(struct btrfs_fs_info *fs_info)
1037 {
1038 	wait_current_trans(fs_info);
1039 }
1040 
1041 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
1042 {
1043 	struct btrfs_transaction *cur_trans = trans->transaction;
1044 
1045 	if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
1046 	    test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
1047 		return true;
1048 
1049 	if (btrfs_check_space_for_delayed_refs(trans->fs_info))
1050 		return true;
1051 
1052 	return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50);
1053 }
1054 
1055 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
1056 
1057 {
1058 	struct btrfs_fs_info *fs_info = trans->fs_info;
1059 
1060 	if (!trans->block_rsv) {
1061 		ASSERT(!trans->bytes_reserved);
1062 		ASSERT(!trans->delayed_refs_bytes_reserved);
1063 		return;
1064 	}
1065 
1066 	if (!trans->bytes_reserved) {
1067 		ASSERT(!trans->delayed_refs_bytes_reserved);
1068 		return;
1069 	}
1070 
1071 	ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
1072 	trace_btrfs_space_reservation(fs_info, "transaction",
1073 				      trans->transid, trans->bytes_reserved, 0);
1074 	btrfs_block_rsv_release(fs_info, trans->block_rsv,
1075 				trans->bytes_reserved, NULL);
1076 	trans->bytes_reserved = 0;
1077 
1078 	if (!trans->delayed_refs_bytes_reserved)
1079 		return;
1080 
1081 	trace_btrfs_space_reservation(fs_info, "local_delayed_refs_rsv",
1082 				      trans->transid,
1083 				      trans->delayed_refs_bytes_reserved, 0);
1084 	btrfs_block_rsv_release(fs_info, &trans->delayed_rsv,
1085 				trans->delayed_refs_bytes_reserved, NULL);
1086 	trans->delayed_refs_bytes_reserved = 0;
1087 }
1088 
1089 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
1090 				   int throttle)
1091 {
1092 	struct btrfs_fs_info *info = trans->fs_info;
1093 	struct btrfs_transaction *cur_trans = trans->transaction;
1094 	int err = 0;
1095 
1096 	if (refcount_read(&trans->use_count) > 1) {
1097 		refcount_dec(&trans->use_count);
1098 		trans->block_rsv = trans->orig_rsv;
1099 		return 0;
1100 	}
1101 
1102 	btrfs_trans_release_metadata(trans);
1103 	trans->block_rsv = NULL;
1104 
1105 	btrfs_create_pending_block_groups(trans);
1106 
1107 	btrfs_trans_release_chunk_metadata(trans);
1108 
1109 	if (trans->type & __TRANS_FREEZABLE)
1110 		sb_end_intwrite(info->sb);
1111 
1112 	WARN_ON(cur_trans != info->running_transaction);
1113 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1114 	atomic_dec(&cur_trans->num_writers);
1115 	extwriter_counter_dec(cur_trans, trans->type);
1116 
1117 	cond_wake_up(&cur_trans->writer_wait);
1118 
1119 	btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
1120 	btrfs_lockdep_release(info, btrfs_trans_num_writers);
1121 
1122 	btrfs_put_transaction(cur_trans);
1123 
1124 	if (current->journal_info == trans)
1125 		current->journal_info = NULL;
1126 
1127 	if (throttle)
1128 		btrfs_run_delayed_iputs(info);
1129 
1130 	if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1131 		wake_up_process(info->transaction_kthread);
1132 		if (TRANS_ABORTED(trans))
1133 			err = trans->aborted;
1134 		else
1135 			err = -EROFS;
1136 	}
1137 
1138 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1139 	return err;
1140 }
1141 
1142 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1143 {
1144 	return __btrfs_end_transaction(trans, 0);
1145 }
1146 
1147 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1148 {
1149 	return __btrfs_end_transaction(trans, 1);
1150 }
1151 
1152 /*
1153  * when btree blocks are allocated, they have some corresponding bits set for
1154  * them in one of two extent_io trees.  This is used to make sure all of
1155  * those extents are sent to disk but does not wait on them
1156  */
1157 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1158 			       struct extent_io_tree *dirty_pages, int mark)
1159 {
1160 	int err = 0;
1161 	int werr = 0;
1162 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1163 	struct extent_state *cached_state = NULL;
1164 	u64 start = 0;
1165 	u64 end;
1166 
1167 	while (find_first_extent_bit(dirty_pages, start, &start, &end,
1168 				     mark, &cached_state)) {
1169 		bool wait_writeback = false;
1170 
1171 		err = convert_extent_bit(dirty_pages, start, end,
1172 					 EXTENT_NEED_WAIT,
1173 					 mark, &cached_state);
1174 		/*
1175 		 * convert_extent_bit can return -ENOMEM, which is most of the
1176 		 * time a temporary error. So when it happens, ignore the error
1177 		 * and wait for writeback of this range to finish - because we
1178 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1179 		 * to __btrfs_wait_marked_extents() would not know that
1180 		 * writeback for this range started and therefore wouldn't
1181 		 * wait for it to finish - we don't want to commit a
1182 		 * superblock that points to btree nodes/leafs for which
1183 		 * writeback hasn't finished yet (and without errors).
1184 		 * We cleanup any entries left in the io tree when committing
1185 		 * the transaction (through extent_io_tree_release()).
1186 		 */
1187 		if (err == -ENOMEM) {
1188 			err = 0;
1189 			wait_writeback = true;
1190 		}
1191 		if (!err)
1192 			err = filemap_fdatawrite_range(mapping, start, end);
1193 		if (err)
1194 			werr = err;
1195 		else if (wait_writeback)
1196 			werr = filemap_fdatawait_range(mapping, start, end);
1197 		free_extent_state(cached_state);
1198 		cached_state = NULL;
1199 		cond_resched();
1200 		start = end + 1;
1201 	}
1202 	return werr;
1203 }
1204 
1205 /*
1206  * when btree blocks are allocated, they have some corresponding bits set for
1207  * them in one of two extent_io trees.  This is used to make sure all of
1208  * those extents are on disk for transaction or log commit.  We wait
1209  * on all the pages and clear them from the dirty pages state tree
1210  */
1211 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1212 				       struct extent_io_tree *dirty_pages)
1213 {
1214 	int err = 0;
1215 	int werr = 0;
1216 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1217 	struct extent_state *cached_state = NULL;
1218 	u64 start = 0;
1219 	u64 end;
1220 
1221 	while (find_first_extent_bit(dirty_pages, start, &start, &end,
1222 				     EXTENT_NEED_WAIT, &cached_state)) {
1223 		/*
1224 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
1225 		 * When committing the transaction, we'll remove any entries
1226 		 * left in the io tree. For a log commit, we don't remove them
1227 		 * after committing the log because the tree can be accessed
1228 		 * concurrently - we do it only at transaction commit time when
1229 		 * it's safe to do it (through extent_io_tree_release()).
1230 		 */
1231 		err = clear_extent_bit(dirty_pages, start, end,
1232 				       EXTENT_NEED_WAIT, &cached_state);
1233 		if (err == -ENOMEM)
1234 			err = 0;
1235 		if (!err)
1236 			err = filemap_fdatawait_range(mapping, start, end);
1237 		if (err)
1238 			werr = err;
1239 		free_extent_state(cached_state);
1240 		cached_state = NULL;
1241 		cond_resched();
1242 		start = end + 1;
1243 	}
1244 	if (err)
1245 		werr = err;
1246 	return werr;
1247 }
1248 
1249 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1250 		       struct extent_io_tree *dirty_pages)
1251 {
1252 	bool errors = false;
1253 	int err;
1254 
1255 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1256 	if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1257 		errors = true;
1258 
1259 	if (errors && !err)
1260 		err = -EIO;
1261 	return err;
1262 }
1263 
1264 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1265 {
1266 	struct btrfs_fs_info *fs_info = log_root->fs_info;
1267 	struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1268 	bool errors = false;
1269 	int err;
1270 
1271 	ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1272 
1273 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1274 	if ((mark & EXTENT_DIRTY) &&
1275 	    test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1276 		errors = true;
1277 
1278 	if ((mark & EXTENT_NEW) &&
1279 	    test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1280 		errors = true;
1281 
1282 	if (errors && !err)
1283 		err = -EIO;
1284 	return err;
1285 }
1286 
1287 /*
1288  * When btree blocks are allocated the corresponding extents are marked dirty.
1289  * This function ensures such extents are persisted on disk for transaction or
1290  * log commit.
1291  *
1292  * @trans: transaction whose dirty pages we'd like to write
1293  */
1294 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1295 {
1296 	int ret;
1297 	int ret2;
1298 	struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1299 	struct btrfs_fs_info *fs_info = trans->fs_info;
1300 	struct blk_plug plug;
1301 
1302 	blk_start_plug(&plug);
1303 	ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1304 	blk_finish_plug(&plug);
1305 	ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1306 
1307 	extent_io_tree_release(&trans->transaction->dirty_pages);
1308 
1309 	if (ret)
1310 		return ret;
1311 	else if (ret2)
1312 		return ret2;
1313 	else
1314 		return 0;
1315 }
1316 
1317 /*
1318  * this is used to update the root pointer in the tree of tree roots.
1319  *
1320  * But, in the case of the extent allocation tree, updating the root
1321  * pointer may allocate blocks which may change the root of the extent
1322  * allocation tree.
1323  *
1324  * So, this loops and repeats and makes sure the cowonly root didn't
1325  * change while the root pointer was being updated in the metadata.
1326  */
1327 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1328 			       struct btrfs_root *root)
1329 {
1330 	int ret;
1331 	u64 old_root_bytenr;
1332 	u64 old_root_used;
1333 	struct btrfs_fs_info *fs_info = root->fs_info;
1334 	struct btrfs_root *tree_root = fs_info->tree_root;
1335 
1336 	old_root_used = btrfs_root_used(&root->root_item);
1337 
1338 	while (1) {
1339 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1340 		if (old_root_bytenr == root->node->start &&
1341 		    old_root_used == btrfs_root_used(&root->root_item))
1342 			break;
1343 
1344 		btrfs_set_root_node(&root->root_item, root->node);
1345 		ret = btrfs_update_root(trans, tree_root,
1346 					&root->root_key,
1347 					&root->root_item);
1348 		if (ret)
1349 			return ret;
1350 
1351 		old_root_used = btrfs_root_used(&root->root_item);
1352 	}
1353 
1354 	return 0;
1355 }
1356 
1357 /*
1358  * update all the cowonly tree roots on disk
1359  *
1360  * The error handling in this function may not be obvious. Any of the
1361  * failures will cause the file system to go offline. We still need
1362  * to clean up the delayed refs.
1363  */
1364 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1365 {
1366 	struct btrfs_fs_info *fs_info = trans->fs_info;
1367 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1368 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1369 	struct list_head *next;
1370 	struct extent_buffer *eb;
1371 	int ret;
1372 
1373 	/*
1374 	 * At this point no one can be using this transaction to modify any tree
1375 	 * and no one can start another transaction to modify any tree either.
1376 	 */
1377 	ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1378 
1379 	eb = btrfs_lock_root_node(fs_info->tree_root);
1380 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1381 			      0, &eb, BTRFS_NESTING_COW);
1382 	btrfs_tree_unlock(eb);
1383 	free_extent_buffer(eb);
1384 
1385 	if (ret)
1386 		return ret;
1387 
1388 	ret = btrfs_run_dev_stats(trans);
1389 	if (ret)
1390 		return ret;
1391 	ret = btrfs_run_dev_replace(trans);
1392 	if (ret)
1393 		return ret;
1394 	ret = btrfs_run_qgroups(trans);
1395 	if (ret)
1396 		return ret;
1397 
1398 	ret = btrfs_setup_space_cache(trans);
1399 	if (ret)
1400 		return ret;
1401 
1402 again:
1403 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1404 		struct btrfs_root *root;
1405 		next = fs_info->dirty_cowonly_roots.next;
1406 		list_del_init(next);
1407 		root = list_entry(next, struct btrfs_root, dirty_list);
1408 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1409 
1410 		list_add_tail(&root->dirty_list,
1411 			      &trans->transaction->switch_commits);
1412 		ret = update_cowonly_root(trans, root);
1413 		if (ret)
1414 			return ret;
1415 	}
1416 
1417 	/* Now flush any delayed refs generated by updating all of the roots */
1418 	ret = btrfs_run_delayed_refs(trans, U64_MAX);
1419 	if (ret)
1420 		return ret;
1421 
1422 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1423 		ret = btrfs_write_dirty_block_groups(trans);
1424 		if (ret)
1425 			return ret;
1426 
1427 		/*
1428 		 * We're writing the dirty block groups, which could generate
1429 		 * delayed refs, which could generate more dirty block groups,
1430 		 * so we want to keep this flushing in this loop to make sure
1431 		 * everything gets run.
1432 		 */
1433 		ret = btrfs_run_delayed_refs(trans, U64_MAX);
1434 		if (ret)
1435 			return ret;
1436 	}
1437 
1438 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1439 		goto again;
1440 
1441 	/* Update dev-replace pointer once everything is committed */
1442 	fs_info->dev_replace.committed_cursor_left =
1443 		fs_info->dev_replace.cursor_left_last_write_of_item;
1444 
1445 	return 0;
1446 }
1447 
1448 /*
1449  * If we had a pending drop we need to see if there are any others left in our
1450  * dead roots list, and if not clear our bit and wake any waiters.
1451  */
1452 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1453 {
1454 	/*
1455 	 * We put the drop in progress roots at the front of the list, so if the
1456 	 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1457 	 * up.
1458 	 */
1459 	spin_lock(&fs_info->trans_lock);
1460 	if (!list_empty(&fs_info->dead_roots)) {
1461 		struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1462 							   struct btrfs_root,
1463 							   root_list);
1464 		if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1465 			spin_unlock(&fs_info->trans_lock);
1466 			return;
1467 		}
1468 	}
1469 	spin_unlock(&fs_info->trans_lock);
1470 
1471 	btrfs_wake_unfinished_drop(fs_info);
1472 }
1473 
1474 /*
1475  * dead roots are old snapshots that need to be deleted.  This allocates
1476  * a dirty root struct and adds it into the list of dead roots that need to
1477  * be deleted
1478  */
1479 void btrfs_add_dead_root(struct btrfs_root *root)
1480 {
1481 	struct btrfs_fs_info *fs_info = root->fs_info;
1482 
1483 	spin_lock(&fs_info->trans_lock);
1484 	if (list_empty(&root->root_list)) {
1485 		btrfs_grab_root(root);
1486 
1487 		/* We want to process the partially complete drops first. */
1488 		if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1489 			list_add(&root->root_list, &fs_info->dead_roots);
1490 		else
1491 			list_add_tail(&root->root_list, &fs_info->dead_roots);
1492 	}
1493 	spin_unlock(&fs_info->trans_lock);
1494 }
1495 
1496 /*
1497  * Update each subvolume root and its relocation root, if it exists, in the tree
1498  * of tree roots. Also free log roots if they exist.
1499  */
1500 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1501 {
1502 	struct btrfs_fs_info *fs_info = trans->fs_info;
1503 	struct btrfs_root *gang[8];
1504 	int i;
1505 	int ret;
1506 
1507 	/*
1508 	 * At this point no one can be using this transaction to modify any tree
1509 	 * and no one can start another transaction to modify any tree either.
1510 	 */
1511 	ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1512 
1513 	spin_lock(&fs_info->fs_roots_radix_lock);
1514 	while (1) {
1515 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1516 						 (void **)gang, 0,
1517 						 ARRAY_SIZE(gang),
1518 						 BTRFS_ROOT_TRANS_TAG);
1519 		if (ret == 0)
1520 			break;
1521 		for (i = 0; i < ret; i++) {
1522 			struct btrfs_root *root = gang[i];
1523 			int ret2;
1524 
1525 			/*
1526 			 * At this point we can neither have tasks logging inodes
1527 			 * from a root nor trying to commit a log tree.
1528 			 */
1529 			ASSERT(atomic_read(&root->log_writers) == 0);
1530 			ASSERT(atomic_read(&root->log_commit[0]) == 0);
1531 			ASSERT(atomic_read(&root->log_commit[1]) == 0);
1532 
1533 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1534 					(unsigned long)root->root_key.objectid,
1535 					BTRFS_ROOT_TRANS_TAG);
1536 			spin_unlock(&fs_info->fs_roots_radix_lock);
1537 
1538 			btrfs_free_log(trans, root);
1539 			ret2 = btrfs_update_reloc_root(trans, root);
1540 			if (ret2)
1541 				return ret2;
1542 
1543 			/* see comments in should_cow_block() */
1544 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1545 			smp_mb__after_atomic();
1546 
1547 			if (root->commit_root != root->node) {
1548 				list_add_tail(&root->dirty_list,
1549 					&trans->transaction->switch_commits);
1550 				btrfs_set_root_node(&root->root_item,
1551 						    root->node);
1552 			}
1553 
1554 			ret2 = btrfs_update_root(trans, fs_info->tree_root,
1555 						&root->root_key,
1556 						&root->root_item);
1557 			if (ret2)
1558 				return ret2;
1559 			spin_lock(&fs_info->fs_roots_radix_lock);
1560 			btrfs_qgroup_free_meta_all_pertrans(root);
1561 		}
1562 	}
1563 	spin_unlock(&fs_info->fs_roots_radix_lock);
1564 	return 0;
1565 }
1566 
1567 /*
1568  * Do all special snapshot related qgroup dirty hack.
1569  *
1570  * Will do all needed qgroup inherit and dirty hack like switch commit
1571  * roots inside one transaction and write all btree into disk, to make
1572  * qgroup works.
1573  */
1574 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1575 				   struct btrfs_root *src,
1576 				   struct btrfs_root *parent,
1577 				   struct btrfs_qgroup_inherit *inherit,
1578 				   u64 dst_objectid)
1579 {
1580 	struct btrfs_fs_info *fs_info = src->fs_info;
1581 	int ret;
1582 
1583 	/*
1584 	 * Save some performance in the case that qgroups are not enabled. If
1585 	 * this check races with the ioctl, rescan will kick in anyway.
1586 	 */
1587 	if (!btrfs_qgroup_full_accounting(fs_info))
1588 		return 0;
1589 
1590 	/*
1591 	 * Ensure dirty @src will be committed.  Or, after coming
1592 	 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1593 	 * recorded root will never be updated again, causing an outdated root
1594 	 * item.
1595 	 */
1596 	ret = record_root_in_trans(trans, src, 1);
1597 	if (ret)
1598 		return ret;
1599 
1600 	/*
1601 	 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1602 	 * src root, so we must run the delayed refs here.
1603 	 *
1604 	 * However this isn't particularly fool proof, because there's no
1605 	 * synchronization keeping us from changing the tree after this point
1606 	 * before we do the qgroup_inherit, or even from making changes while
1607 	 * we're doing the qgroup_inherit.  But that's a problem for the future,
1608 	 * for now flush the delayed refs to narrow the race window where the
1609 	 * qgroup counters could end up wrong.
1610 	 */
1611 	ret = btrfs_run_delayed_refs(trans, U64_MAX);
1612 	if (ret) {
1613 		btrfs_abort_transaction(trans, ret);
1614 		return ret;
1615 	}
1616 
1617 	ret = commit_fs_roots(trans);
1618 	if (ret)
1619 		goto out;
1620 	ret = btrfs_qgroup_account_extents(trans);
1621 	if (ret < 0)
1622 		goto out;
1623 
1624 	/* Now qgroup are all updated, we can inherit it to new qgroups */
1625 	ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1626 				   parent->root_key.objectid, inherit);
1627 	if (ret < 0)
1628 		goto out;
1629 
1630 	/*
1631 	 * Now we do a simplified commit transaction, which will:
1632 	 * 1) commit all subvolume and extent tree
1633 	 *    To ensure all subvolume and extent tree have a valid
1634 	 *    commit_root to accounting later insert_dir_item()
1635 	 * 2) write all btree blocks onto disk
1636 	 *    This is to make sure later btree modification will be cowed
1637 	 *    Or commit_root can be populated and cause wrong qgroup numbers
1638 	 * In this simplified commit, we don't really care about other trees
1639 	 * like chunk and root tree, as they won't affect qgroup.
1640 	 * And we don't write super to avoid half committed status.
1641 	 */
1642 	ret = commit_cowonly_roots(trans);
1643 	if (ret)
1644 		goto out;
1645 	switch_commit_roots(trans);
1646 	ret = btrfs_write_and_wait_transaction(trans);
1647 	if (ret)
1648 		btrfs_handle_fs_error(fs_info, ret,
1649 			"Error while writing out transaction for qgroup");
1650 
1651 out:
1652 	/*
1653 	 * Force parent root to be updated, as we recorded it before so its
1654 	 * last_trans == cur_transid.
1655 	 * Or it won't be committed again onto disk after later
1656 	 * insert_dir_item()
1657 	 */
1658 	if (!ret)
1659 		ret = record_root_in_trans(trans, parent, 1);
1660 	return ret;
1661 }
1662 
1663 /*
1664  * new snapshots need to be created at a very specific time in the
1665  * transaction commit.  This does the actual creation.
1666  *
1667  * Note:
1668  * If the error which may affect the commitment of the current transaction
1669  * happens, we should return the error number. If the error which just affect
1670  * the creation of the pending snapshots, just return 0.
1671  */
1672 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1673 				   struct btrfs_pending_snapshot *pending)
1674 {
1675 
1676 	struct btrfs_fs_info *fs_info = trans->fs_info;
1677 	struct btrfs_key key;
1678 	struct btrfs_root_item *new_root_item;
1679 	struct btrfs_root *tree_root = fs_info->tree_root;
1680 	struct btrfs_root *root = pending->root;
1681 	struct btrfs_root *parent_root;
1682 	struct btrfs_block_rsv *rsv;
1683 	struct inode *parent_inode = pending->dir;
1684 	struct btrfs_path *path;
1685 	struct btrfs_dir_item *dir_item;
1686 	struct extent_buffer *tmp;
1687 	struct extent_buffer *old;
1688 	struct timespec64 cur_time;
1689 	int ret = 0;
1690 	u64 to_reserve = 0;
1691 	u64 index = 0;
1692 	u64 objectid;
1693 	u64 root_flags;
1694 	unsigned int nofs_flags;
1695 	struct fscrypt_name fname;
1696 
1697 	ASSERT(pending->path);
1698 	path = pending->path;
1699 
1700 	ASSERT(pending->root_item);
1701 	new_root_item = pending->root_item;
1702 
1703 	/*
1704 	 * We're inside a transaction and must make sure that any potential
1705 	 * allocations with GFP_KERNEL in fscrypt won't recurse back to
1706 	 * filesystem.
1707 	 */
1708 	nofs_flags = memalloc_nofs_save();
1709 	pending->error = fscrypt_setup_filename(parent_inode,
1710 						&pending->dentry->d_name, 0,
1711 						&fname);
1712 	memalloc_nofs_restore(nofs_flags);
1713 	if (pending->error)
1714 		goto free_pending;
1715 
1716 	pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1717 	if (pending->error)
1718 		goto free_fname;
1719 
1720 	/*
1721 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1722 	 * accounted by later btrfs_qgroup_inherit().
1723 	 */
1724 	btrfs_set_skip_qgroup(trans, objectid);
1725 
1726 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1727 
1728 	if (to_reserve > 0) {
1729 		pending->error = btrfs_block_rsv_add(fs_info,
1730 						     &pending->block_rsv,
1731 						     to_reserve,
1732 						     BTRFS_RESERVE_NO_FLUSH);
1733 		if (pending->error)
1734 			goto clear_skip_qgroup;
1735 	}
1736 
1737 	key.objectid = objectid;
1738 	key.offset = (u64)-1;
1739 	key.type = BTRFS_ROOT_ITEM_KEY;
1740 
1741 	rsv = trans->block_rsv;
1742 	trans->block_rsv = &pending->block_rsv;
1743 	trans->bytes_reserved = trans->block_rsv->reserved;
1744 	trace_btrfs_space_reservation(fs_info, "transaction",
1745 				      trans->transid,
1746 				      trans->bytes_reserved, 1);
1747 	parent_root = BTRFS_I(parent_inode)->root;
1748 	ret = record_root_in_trans(trans, parent_root, 0);
1749 	if (ret)
1750 		goto fail;
1751 	cur_time = current_time(parent_inode);
1752 
1753 	/*
1754 	 * insert the directory item
1755 	 */
1756 	ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1757 	if (ret) {
1758 		btrfs_abort_transaction(trans, ret);
1759 		goto fail;
1760 	}
1761 
1762 	/* check if there is a file/dir which has the same name. */
1763 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1764 					 btrfs_ino(BTRFS_I(parent_inode)),
1765 					 &fname.disk_name, 0);
1766 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1767 		pending->error = -EEXIST;
1768 		goto dir_item_existed;
1769 	} else if (IS_ERR(dir_item)) {
1770 		ret = PTR_ERR(dir_item);
1771 		btrfs_abort_transaction(trans, ret);
1772 		goto fail;
1773 	}
1774 	btrfs_release_path(path);
1775 
1776 	ret = btrfs_create_qgroup(trans, objectid);
1777 	if (ret && ret != -EEXIST) {
1778 		btrfs_abort_transaction(trans, ret);
1779 		goto fail;
1780 	}
1781 
1782 	/*
1783 	 * pull in the delayed directory update
1784 	 * and the delayed inode item
1785 	 * otherwise we corrupt the FS during
1786 	 * snapshot
1787 	 */
1788 	ret = btrfs_run_delayed_items(trans);
1789 	if (ret) {	/* Transaction aborted */
1790 		btrfs_abort_transaction(trans, ret);
1791 		goto fail;
1792 	}
1793 
1794 	ret = record_root_in_trans(trans, root, 0);
1795 	if (ret) {
1796 		btrfs_abort_transaction(trans, ret);
1797 		goto fail;
1798 	}
1799 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1800 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1801 	btrfs_check_and_init_root_item(new_root_item);
1802 
1803 	root_flags = btrfs_root_flags(new_root_item);
1804 	if (pending->readonly)
1805 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1806 	else
1807 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1808 	btrfs_set_root_flags(new_root_item, root_flags);
1809 
1810 	btrfs_set_root_generation_v2(new_root_item,
1811 			trans->transid);
1812 	generate_random_guid(new_root_item->uuid);
1813 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1814 			BTRFS_UUID_SIZE);
1815 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1816 		memset(new_root_item->received_uuid, 0,
1817 		       sizeof(new_root_item->received_uuid));
1818 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1819 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1820 		btrfs_set_root_stransid(new_root_item, 0);
1821 		btrfs_set_root_rtransid(new_root_item, 0);
1822 	}
1823 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1824 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1825 	btrfs_set_root_otransid(new_root_item, trans->transid);
1826 
1827 	old = btrfs_lock_root_node(root);
1828 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1829 			      BTRFS_NESTING_COW);
1830 	if (ret) {
1831 		btrfs_tree_unlock(old);
1832 		free_extent_buffer(old);
1833 		btrfs_abort_transaction(trans, ret);
1834 		goto fail;
1835 	}
1836 
1837 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1838 	/* clean up in any case */
1839 	btrfs_tree_unlock(old);
1840 	free_extent_buffer(old);
1841 	if (ret) {
1842 		btrfs_abort_transaction(trans, ret);
1843 		goto fail;
1844 	}
1845 	/* see comments in should_cow_block() */
1846 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1847 	smp_wmb();
1848 
1849 	btrfs_set_root_node(new_root_item, tmp);
1850 	/* record when the snapshot was created in key.offset */
1851 	key.offset = trans->transid;
1852 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1853 	btrfs_tree_unlock(tmp);
1854 	free_extent_buffer(tmp);
1855 	if (ret) {
1856 		btrfs_abort_transaction(trans, ret);
1857 		goto fail;
1858 	}
1859 
1860 	/*
1861 	 * insert root back/forward references
1862 	 */
1863 	ret = btrfs_add_root_ref(trans, objectid,
1864 				 parent_root->root_key.objectid,
1865 				 btrfs_ino(BTRFS_I(parent_inode)), index,
1866 				 &fname.disk_name);
1867 	if (ret) {
1868 		btrfs_abort_transaction(trans, ret);
1869 		goto fail;
1870 	}
1871 
1872 	key.offset = (u64)-1;
1873 	pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1874 	if (IS_ERR(pending->snap)) {
1875 		ret = PTR_ERR(pending->snap);
1876 		pending->snap = NULL;
1877 		btrfs_abort_transaction(trans, ret);
1878 		goto fail;
1879 	}
1880 
1881 	ret = btrfs_reloc_post_snapshot(trans, pending);
1882 	if (ret) {
1883 		btrfs_abort_transaction(trans, ret);
1884 		goto fail;
1885 	}
1886 
1887 	/*
1888 	 * Do special qgroup accounting for snapshot, as we do some qgroup
1889 	 * snapshot hack to do fast snapshot.
1890 	 * To co-operate with that hack, we do hack again.
1891 	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1892 	 */
1893 	if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_FULL)
1894 		ret = qgroup_account_snapshot(trans, root, parent_root,
1895 					      pending->inherit, objectid);
1896 	else if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE)
1897 		ret = btrfs_qgroup_inherit(trans, root->root_key.objectid, objectid,
1898 					   parent_root->root_key.objectid, pending->inherit);
1899 	if (ret < 0)
1900 		goto fail;
1901 
1902 	ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1903 				    BTRFS_I(parent_inode), &key, BTRFS_FT_DIR,
1904 				    index);
1905 	/* We have check then name at the beginning, so it is impossible. */
1906 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1907 	if (ret) {
1908 		btrfs_abort_transaction(trans, ret);
1909 		goto fail;
1910 	}
1911 
1912 	btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1913 						  fname.disk_name.len * 2);
1914 	inode_set_mtime_to_ts(parent_inode,
1915 			      inode_set_ctime_current(parent_inode));
1916 	ret = btrfs_update_inode_fallback(trans, BTRFS_I(parent_inode));
1917 	if (ret) {
1918 		btrfs_abort_transaction(trans, ret);
1919 		goto fail;
1920 	}
1921 	ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1922 				  BTRFS_UUID_KEY_SUBVOL,
1923 				  objectid);
1924 	if (ret) {
1925 		btrfs_abort_transaction(trans, ret);
1926 		goto fail;
1927 	}
1928 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1929 		ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1930 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1931 					  objectid);
1932 		if (ret && ret != -EEXIST) {
1933 			btrfs_abort_transaction(trans, ret);
1934 			goto fail;
1935 		}
1936 	}
1937 
1938 fail:
1939 	pending->error = ret;
1940 dir_item_existed:
1941 	trans->block_rsv = rsv;
1942 	trans->bytes_reserved = 0;
1943 clear_skip_qgroup:
1944 	btrfs_clear_skip_qgroup(trans);
1945 free_fname:
1946 	fscrypt_free_filename(&fname);
1947 free_pending:
1948 	kfree(new_root_item);
1949 	pending->root_item = NULL;
1950 	btrfs_free_path(path);
1951 	pending->path = NULL;
1952 
1953 	return ret;
1954 }
1955 
1956 /*
1957  * create all the snapshots we've scheduled for creation
1958  */
1959 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1960 {
1961 	struct btrfs_pending_snapshot *pending, *next;
1962 	struct list_head *head = &trans->transaction->pending_snapshots;
1963 	int ret = 0;
1964 
1965 	list_for_each_entry_safe(pending, next, head, list) {
1966 		list_del(&pending->list);
1967 		ret = create_pending_snapshot(trans, pending);
1968 		if (ret)
1969 			break;
1970 	}
1971 	return ret;
1972 }
1973 
1974 static void update_super_roots(struct btrfs_fs_info *fs_info)
1975 {
1976 	struct btrfs_root_item *root_item;
1977 	struct btrfs_super_block *super;
1978 
1979 	super = fs_info->super_copy;
1980 
1981 	root_item = &fs_info->chunk_root->root_item;
1982 	super->chunk_root = root_item->bytenr;
1983 	super->chunk_root_generation = root_item->generation;
1984 	super->chunk_root_level = root_item->level;
1985 
1986 	root_item = &fs_info->tree_root->root_item;
1987 	super->root = root_item->bytenr;
1988 	super->generation = root_item->generation;
1989 	super->root_level = root_item->level;
1990 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
1991 		super->cache_generation = root_item->generation;
1992 	else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1993 		super->cache_generation = 0;
1994 	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1995 		super->uuid_tree_generation = root_item->generation;
1996 }
1997 
1998 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1999 {
2000 	struct btrfs_transaction *trans;
2001 	int ret = 0;
2002 
2003 	spin_lock(&info->trans_lock);
2004 	trans = info->running_transaction;
2005 	if (trans)
2006 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
2007 	spin_unlock(&info->trans_lock);
2008 	return ret;
2009 }
2010 
2011 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
2012 {
2013 	struct btrfs_transaction *trans;
2014 	int ret = 0;
2015 
2016 	spin_lock(&info->trans_lock);
2017 	trans = info->running_transaction;
2018 	if (trans)
2019 		ret = is_transaction_blocked(trans);
2020 	spin_unlock(&info->trans_lock);
2021 	return ret;
2022 }
2023 
2024 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
2025 {
2026 	struct btrfs_fs_info *fs_info = trans->fs_info;
2027 	struct btrfs_transaction *cur_trans;
2028 
2029 	/* Kick the transaction kthread. */
2030 	set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2031 	wake_up_process(fs_info->transaction_kthread);
2032 
2033 	/* take transaction reference */
2034 	cur_trans = trans->transaction;
2035 	refcount_inc(&cur_trans->use_count);
2036 
2037 	btrfs_end_transaction(trans);
2038 
2039 	/*
2040 	 * Wait for the current transaction commit to start and block
2041 	 * subsequent transaction joins
2042 	 */
2043 	btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2044 	wait_event(fs_info->transaction_blocked_wait,
2045 		   cur_trans->state >= TRANS_STATE_COMMIT_START ||
2046 		   TRANS_ABORTED(cur_trans));
2047 	btrfs_put_transaction(cur_trans);
2048 }
2049 
2050 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
2051 {
2052 	struct btrfs_fs_info *fs_info = trans->fs_info;
2053 	struct btrfs_transaction *cur_trans = trans->transaction;
2054 
2055 	WARN_ON(refcount_read(&trans->use_count) > 1);
2056 
2057 	btrfs_abort_transaction(trans, err);
2058 
2059 	spin_lock(&fs_info->trans_lock);
2060 
2061 	/*
2062 	 * If the transaction is removed from the list, it means this
2063 	 * transaction has been committed successfully, so it is impossible
2064 	 * to call the cleanup function.
2065 	 */
2066 	BUG_ON(list_empty(&cur_trans->list));
2067 
2068 	if (cur_trans == fs_info->running_transaction) {
2069 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
2070 		spin_unlock(&fs_info->trans_lock);
2071 
2072 		/*
2073 		 * The thread has already released the lockdep map as reader
2074 		 * already in btrfs_commit_transaction().
2075 		 */
2076 		btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2077 		wait_event(cur_trans->writer_wait,
2078 			   atomic_read(&cur_trans->num_writers) == 1);
2079 
2080 		spin_lock(&fs_info->trans_lock);
2081 	}
2082 
2083 	/*
2084 	 * Now that we know no one else is still using the transaction we can
2085 	 * remove the transaction from the list of transactions. This avoids
2086 	 * the transaction kthread from cleaning up the transaction while some
2087 	 * other task is still using it, which could result in a use-after-free
2088 	 * on things like log trees, as it forces the transaction kthread to
2089 	 * wait for this transaction to be cleaned up by us.
2090 	 */
2091 	list_del_init(&cur_trans->list);
2092 
2093 	spin_unlock(&fs_info->trans_lock);
2094 
2095 	btrfs_cleanup_one_transaction(trans->transaction, fs_info);
2096 
2097 	spin_lock(&fs_info->trans_lock);
2098 	if (cur_trans == fs_info->running_transaction)
2099 		fs_info->running_transaction = NULL;
2100 	spin_unlock(&fs_info->trans_lock);
2101 
2102 	if (trans->type & __TRANS_FREEZABLE)
2103 		sb_end_intwrite(fs_info->sb);
2104 	btrfs_put_transaction(cur_trans);
2105 	btrfs_put_transaction(cur_trans);
2106 
2107 	trace_btrfs_transaction_commit(fs_info);
2108 
2109 	if (current->journal_info == trans)
2110 		current->journal_info = NULL;
2111 
2112 	/*
2113 	 * If relocation is running, we can't cancel scrub because that will
2114 	 * result in a deadlock. Before relocating a block group, relocation
2115 	 * pauses scrub, then starts and commits a transaction before unpausing
2116 	 * scrub. If the transaction commit is being done by the relocation
2117 	 * task or triggered by another task and the relocation task is waiting
2118 	 * for the commit, and we end up here due to an error in the commit
2119 	 * path, then calling btrfs_scrub_cancel() will deadlock, as we are
2120 	 * asking for scrub to stop while having it asked to be paused higher
2121 	 * above in relocation code.
2122 	 */
2123 	if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
2124 		btrfs_scrub_cancel(fs_info);
2125 
2126 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2127 }
2128 
2129 /*
2130  * Release reserved delayed ref space of all pending block groups of the
2131  * transaction and remove them from the list
2132  */
2133 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2134 {
2135        struct btrfs_fs_info *fs_info = trans->fs_info;
2136        struct btrfs_block_group *block_group, *tmp;
2137 
2138        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2139                btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info);
2140                list_del_init(&block_group->bg_list);
2141        }
2142 }
2143 
2144 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2145 {
2146 	/*
2147 	 * We use try_to_writeback_inodes_sb() here because if we used
2148 	 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2149 	 * Currently are holding the fs freeze lock, if we do an async flush
2150 	 * we'll do btrfs_join_transaction() and deadlock because we need to
2151 	 * wait for the fs freeze lock.  Using the direct flushing we benefit
2152 	 * from already being in a transaction and our join_transaction doesn't
2153 	 * have to re-take the fs freeze lock.
2154 	 *
2155 	 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2156 	 * if it can read lock sb->s_umount. It will always be able to lock it,
2157 	 * except when the filesystem is being unmounted or being frozen, but in
2158 	 * those cases sync_filesystem() is called, which results in calling
2159 	 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2160 	 * Note that we don't call writeback_inodes_sb() directly, because it
2161 	 * will emit a warning if sb->s_umount is not locked.
2162 	 */
2163 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2164 		try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2165 	return 0;
2166 }
2167 
2168 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2169 {
2170 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2171 		btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2172 }
2173 
2174 /*
2175  * Add a pending snapshot associated with the given transaction handle to the
2176  * respective handle. This must be called after the transaction commit started
2177  * and while holding fs_info->trans_lock.
2178  * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2179  * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2180  * returns an error.
2181  */
2182 static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2183 {
2184 	struct btrfs_transaction *cur_trans = trans->transaction;
2185 
2186 	if (!trans->pending_snapshot)
2187 		return;
2188 
2189 	lockdep_assert_held(&trans->fs_info->trans_lock);
2190 	ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_PREP);
2191 
2192 	list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2193 }
2194 
2195 static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2196 {
2197 	fs_info->commit_stats.commit_count++;
2198 	fs_info->commit_stats.last_commit_dur = interval;
2199 	fs_info->commit_stats.max_commit_dur =
2200 			max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2201 	fs_info->commit_stats.total_commit_dur += interval;
2202 }
2203 
2204 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2205 {
2206 	struct btrfs_fs_info *fs_info = trans->fs_info;
2207 	struct btrfs_transaction *cur_trans = trans->transaction;
2208 	struct btrfs_transaction *prev_trans = NULL;
2209 	int ret;
2210 	ktime_t start_time;
2211 	ktime_t interval;
2212 
2213 	ASSERT(refcount_read(&trans->use_count) == 1);
2214 	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2215 
2216 	clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
2217 
2218 	/* Stop the commit early if ->aborted is set */
2219 	if (TRANS_ABORTED(cur_trans)) {
2220 		ret = cur_trans->aborted;
2221 		goto lockdep_trans_commit_start_release;
2222 	}
2223 
2224 	btrfs_trans_release_metadata(trans);
2225 	trans->block_rsv = NULL;
2226 
2227 	/*
2228 	 * We only want one transaction commit doing the flushing so we do not
2229 	 * waste a bunch of time on lock contention on the extent root node.
2230 	 */
2231 	if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2232 			      &cur_trans->delayed_refs.flags)) {
2233 		/*
2234 		 * Make a pass through all the delayed refs we have so far.
2235 		 * Any running threads may add more while we are here.
2236 		 */
2237 		ret = btrfs_run_delayed_refs(trans, 0);
2238 		if (ret)
2239 			goto lockdep_trans_commit_start_release;
2240 	}
2241 
2242 	btrfs_create_pending_block_groups(trans);
2243 
2244 	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2245 		int run_it = 0;
2246 
2247 		/* this mutex is also taken before trying to set
2248 		 * block groups readonly.  We need to make sure
2249 		 * that nobody has set a block group readonly
2250 		 * after a extents from that block group have been
2251 		 * allocated for cache files.  btrfs_set_block_group_ro
2252 		 * will wait for the transaction to commit if it
2253 		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2254 		 *
2255 		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2256 		 * only one process starts all the block group IO.  It wouldn't
2257 		 * hurt to have more than one go through, but there's no
2258 		 * real advantage to it either.
2259 		 */
2260 		mutex_lock(&fs_info->ro_block_group_mutex);
2261 		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2262 				      &cur_trans->flags))
2263 			run_it = 1;
2264 		mutex_unlock(&fs_info->ro_block_group_mutex);
2265 
2266 		if (run_it) {
2267 			ret = btrfs_start_dirty_block_groups(trans);
2268 			if (ret)
2269 				goto lockdep_trans_commit_start_release;
2270 		}
2271 	}
2272 
2273 	spin_lock(&fs_info->trans_lock);
2274 	if (cur_trans->state >= TRANS_STATE_COMMIT_PREP) {
2275 		enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2276 
2277 		add_pending_snapshot(trans);
2278 
2279 		spin_unlock(&fs_info->trans_lock);
2280 		refcount_inc(&cur_trans->use_count);
2281 
2282 		if (trans->in_fsync)
2283 			want_state = TRANS_STATE_SUPER_COMMITTED;
2284 
2285 		btrfs_trans_state_lockdep_release(fs_info,
2286 						  BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2287 		ret = btrfs_end_transaction(trans);
2288 		wait_for_commit(cur_trans, want_state);
2289 
2290 		if (TRANS_ABORTED(cur_trans))
2291 			ret = cur_trans->aborted;
2292 
2293 		btrfs_put_transaction(cur_trans);
2294 
2295 		return ret;
2296 	}
2297 
2298 	cur_trans->state = TRANS_STATE_COMMIT_PREP;
2299 	wake_up(&fs_info->transaction_blocked_wait);
2300 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2301 
2302 	if (cur_trans->list.prev != &fs_info->trans_list) {
2303 		enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2304 
2305 		if (trans->in_fsync)
2306 			want_state = TRANS_STATE_SUPER_COMMITTED;
2307 
2308 		prev_trans = list_entry(cur_trans->list.prev,
2309 					struct btrfs_transaction, list);
2310 		if (prev_trans->state < want_state) {
2311 			refcount_inc(&prev_trans->use_count);
2312 			spin_unlock(&fs_info->trans_lock);
2313 
2314 			wait_for_commit(prev_trans, want_state);
2315 
2316 			ret = READ_ONCE(prev_trans->aborted);
2317 
2318 			btrfs_put_transaction(prev_trans);
2319 			if (ret)
2320 				goto lockdep_release;
2321 			spin_lock(&fs_info->trans_lock);
2322 		}
2323 	} else {
2324 		/*
2325 		 * The previous transaction was aborted and was already removed
2326 		 * from the list of transactions at fs_info->trans_list. So we
2327 		 * abort to prevent writing a new superblock that reflects a
2328 		 * corrupt state (pointing to trees with unwritten nodes/leafs).
2329 		 */
2330 		if (BTRFS_FS_ERROR(fs_info)) {
2331 			spin_unlock(&fs_info->trans_lock);
2332 			ret = -EROFS;
2333 			goto lockdep_release;
2334 		}
2335 	}
2336 
2337 	cur_trans->state = TRANS_STATE_COMMIT_START;
2338 	wake_up(&fs_info->transaction_blocked_wait);
2339 	spin_unlock(&fs_info->trans_lock);
2340 
2341 	/*
2342 	 * Get the time spent on the work done by the commit thread and not
2343 	 * the time spent waiting on a previous commit
2344 	 */
2345 	start_time = ktime_get_ns();
2346 
2347 	extwriter_counter_dec(cur_trans, trans->type);
2348 
2349 	ret = btrfs_start_delalloc_flush(fs_info);
2350 	if (ret)
2351 		goto lockdep_release;
2352 
2353 	ret = btrfs_run_delayed_items(trans);
2354 	if (ret)
2355 		goto lockdep_release;
2356 
2357 	/*
2358 	 * The thread has started/joined the transaction thus it holds the
2359 	 * lockdep map as a reader. It has to release it before acquiring the
2360 	 * lockdep map as a writer.
2361 	 */
2362 	btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2363 	btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
2364 	wait_event(cur_trans->writer_wait,
2365 		   extwriter_counter_read(cur_trans) == 0);
2366 
2367 	/* some pending stuffs might be added after the previous flush. */
2368 	ret = btrfs_run_delayed_items(trans);
2369 	if (ret) {
2370 		btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2371 		goto cleanup_transaction;
2372 	}
2373 
2374 	btrfs_wait_delalloc_flush(fs_info);
2375 
2376 	/*
2377 	 * Wait for all ordered extents started by a fast fsync that joined this
2378 	 * transaction. Otherwise if this transaction commits before the ordered
2379 	 * extents complete we lose logged data after a power failure.
2380 	 */
2381 	btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
2382 	wait_event(cur_trans->pending_wait,
2383 		   atomic_read(&cur_trans->pending_ordered) == 0);
2384 
2385 	btrfs_scrub_pause(fs_info);
2386 	/*
2387 	 * Ok now we need to make sure to block out any other joins while we
2388 	 * commit the transaction.  We could have started a join before setting
2389 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2390 	 */
2391 	spin_lock(&fs_info->trans_lock);
2392 	add_pending_snapshot(trans);
2393 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2394 	spin_unlock(&fs_info->trans_lock);
2395 
2396 	/*
2397 	 * The thread has started/joined the transaction thus it holds the
2398 	 * lockdep map as a reader. It has to release it before acquiring the
2399 	 * lockdep map as a writer.
2400 	 */
2401 	btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2402 	btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2403 	wait_event(cur_trans->writer_wait,
2404 		   atomic_read(&cur_trans->num_writers) == 1);
2405 
2406 	/*
2407 	 * Make lockdep happy by acquiring the state locks after
2408 	 * btrfs_trans_num_writers is released. If we acquired the state locks
2409 	 * before releasing the btrfs_trans_num_writers lock then lockdep would
2410 	 * complain because we did not follow the reverse order unlocking rule.
2411 	 */
2412 	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2413 	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2414 	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2415 
2416 	/*
2417 	 * We've started the commit, clear the flag in case we were triggered to
2418 	 * do an async commit but somebody else started before the transaction
2419 	 * kthread could do the work.
2420 	 */
2421 	clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2422 
2423 	if (TRANS_ABORTED(cur_trans)) {
2424 		ret = cur_trans->aborted;
2425 		btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2426 		goto scrub_continue;
2427 	}
2428 	/*
2429 	 * the reloc mutex makes sure that we stop
2430 	 * the balancing code from coming in and moving
2431 	 * extents around in the middle of the commit
2432 	 */
2433 	mutex_lock(&fs_info->reloc_mutex);
2434 
2435 	/*
2436 	 * We needn't worry about the delayed items because we will
2437 	 * deal with them in create_pending_snapshot(), which is the
2438 	 * core function of the snapshot creation.
2439 	 */
2440 	ret = create_pending_snapshots(trans);
2441 	if (ret)
2442 		goto unlock_reloc;
2443 
2444 	/*
2445 	 * We insert the dir indexes of the snapshots and update the inode
2446 	 * of the snapshots' parents after the snapshot creation, so there
2447 	 * are some delayed items which are not dealt with. Now deal with
2448 	 * them.
2449 	 *
2450 	 * We needn't worry that this operation will corrupt the snapshots,
2451 	 * because all the tree which are snapshoted will be forced to COW
2452 	 * the nodes and leaves.
2453 	 */
2454 	ret = btrfs_run_delayed_items(trans);
2455 	if (ret)
2456 		goto unlock_reloc;
2457 
2458 	ret = btrfs_run_delayed_refs(trans, U64_MAX);
2459 	if (ret)
2460 		goto unlock_reloc;
2461 
2462 	/*
2463 	 * make sure none of the code above managed to slip in a
2464 	 * delayed item
2465 	 */
2466 	btrfs_assert_delayed_root_empty(fs_info);
2467 
2468 	WARN_ON(cur_trans != trans->transaction);
2469 
2470 	ret = commit_fs_roots(trans);
2471 	if (ret)
2472 		goto unlock_reloc;
2473 
2474 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2475 	 * safe to free the root of tree log roots
2476 	 */
2477 	btrfs_free_log_root_tree(trans, fs_info);
2478 
2479 	/*
2480 	 * Since fs roots are all committed, we can get a quite accurate
2481 	 * new_roots. So let's do quota accounting.
2482 	 */
2483 	ret = btrfs_qgroup_account_extents(trans);
2484 	if (ret < 0)
2485 		goto unlock_reloc;
2486 
2487 	ret = commit_cowonly_roots(trans);
2488 	if (ret)
2489 		goto unlock_reloc;
2490 
2491 	/*
2492 	 * The tasks which save the space cache and inode cache may also
2493 	 * update ->aborted, check it.
2494 	 */
2495 	if (TRANS_ABORTED(cur_trans)) {
2496 		ret = cur_trans->aborted;
2497 		goto unlock_reloc;
2498 	}
2499 
2500 	cur_trans = fs_info->running_transaction;
2501 
2502 	btrfs_set_root_node(&fs_info->tree_root->root_item,
2503 			    fs_info->tree_root->node);
2504 	list_add_tail(&fs_info->tree_root->dirty_list,
2505 		      &cur_trans->switch_commits);
2506 
2507 	btrfs_set_root_node(&fs_info->chunk_root->root_item,
2508 			    fs_info->chunk_root->node);
2509 	list_add_tail(&fs_info->chunk_root->dirty_list,
2510 		      &cur_trans->switch_commits);
2511 
2512 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2513 		btrfs_set_root_node(&fs_info->block_group_root->root_item,
2514 				    fs_info->block_group_root->node);
2515 		list_add_tail(&fs_info->block_group_root->dirty_list,
2516 			      &cur_trans->switch_commits);
2517 	}
2518 
2519 	switch_commit_roots(trans);
2520 
2521 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2522 	ASSERT(list_empty(&cur_trans->io_bgs));
2523 	update_super_roots(fs_info);
2524 
2525 	btrfs_set_super_log_root(fs_info->super_copy, 0);
2526 	btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2527 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2528 	       sizeof(*fs_info->super_copy));
2529 
2530 	btrfs_commit_device_sizes(cur_trans);
2531 
2532 	clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2533 	clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2534 
2535 	btrfs_trans_release_chunk_metadata(trans);
2536 
2537 	/*
2538 	 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2539 	 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2540 	 * make sure that before we commit our superblock, no other task can
2541 	 * start a new transaction and commit a log tree before we commit our
2542 	 * superblock. Anyone trying to commit a log tree locks this mutex before
2543 	 * writing its superblock.
2544 	 */
2545 	mutex_lock(&fs_info->tree_log_mutex);
2546 
2547 	spin_lock(&fs_info->trans_lock);
2548 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2549 	fs_info->running_transaction = NULL;
2550 	spin_unlock(&fs_info->trans_lock);
2551 	mutex_unlock(&fs_info->reloc_mutex);
2552 
2553 	wake_up(&fs_info->transaction_wait);
2554 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2555 
2556 	/* If we have features changed, wake up the cleaner to update sysfs. */
2557 	if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) &&
2558 	    fs_info->cleaner_kthread)
2559 		wake_up_process(fs_info->cleaner_kthread);
2560 
2561 	ret = btrfs_write_and_wait_transaction(trans);
2562 	if (ret) {
2563 		btrfs_handle_fs_error(fs_info, ret,
2564 				      "Error while writing out transaction");
2565 		mutex_unlock(&fs_info->tree_log_mutex);
2566 		goto scrub_continue;
2567 	}
2568 
2569 	ret = write_all_supers(fs_info, 0);
2570 	/*
2571 	 * the super is written, we can safely allow the tree-loggers
2572 	 * to go about their business
2573 	 */
2574 	mutex_unlock(&fs_info->tree_log_mutex);
2575 	if (ret)
2576 		goto scrub_continue;
2577 
2578 	/*
2579 	 * We needn't acquire the lock here because there is no other task
2580 	 * which can change it.
2581 	 */
2582 	cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2583 	wake_up(&cur_trans->commit_wait);
2584 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2585 
2586 	btrfs_finish_extent_commit(trans);
2587 
2588 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2589 		btrfs_clear_space_info_full(fs_info);
2590 
2591 	btrfs_set_last_trans_committed(fs_info, cur_trans->transid);
2592 	/*
2593 	 * We needn't acquire the lock here because there is no other task
2594 	 * which can change it.
2595 	 */
2596 	cur_trans->state = TRANS_STATE_COMPLETED;
2597 	wake_up(&cur_trans->commit_wait);
2598 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2599 
2600 	spin_lock(&fs_info->trans_lock);
2601 	list_del_init(&cur_trans->list);
2602 	spin_unlock(&fs_info->trans_lock);
2603 
2604 	btrfs_put_transaction(cur_trans);
2605 	btrfs_put_transaction(cur_trans);
2606 
2607 	if (trans->type & __TRANS_FREEZABLE)
2608 		sb_end_intwrite(fs_info->sb);
2609 
2610 	trace_btrfs_transaction_commit(fs_info);
2611 
2612 	interval = ktime_get_ns() - start_time;
2613 
2614 	btrfs_scrub_continue(fs_info);
2615 
2616 	if (current->journal_info == trans)
2617 		current->journal_info = NULL;
2618 
2619 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2620 
2621 	update_commit_stats(fs_info, interval);
2622 
2623 	return ret;
2624 
2625 unlock_reloc:
2626 	mutex_unlock(&fs_info->reloc_mutex);
2627 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2628 scrub_continue:
2629 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2630 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2631 	btrfs_scrub_continue(fs_info);
2632 cleanup_transaction:
2633 	btrfs_trans_release_metadata(trans);
2634 	btrfs_cleanup_pending_block_groups(trans);
2635 	btrfs_trans_release_chunk_metadata(trans);
2636 	trans->block_rsv = NULL;
2637 	btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2638 	if (current->journal_info == trans)
2639 		current->journal_info = NULL;
2640 	cleanup_transaction(trans, ret);
2641 
2642 	return ret;
2643 
2644 lockdep_release:
2645 	btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2646 	btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2647 	goto cleanup_transaction;
2648 
2649 lockdep_trans_commit_start_release:
2650 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2651 	btrfs_end_transaction(trans);
2652 	return ret;
2653 }
2654 
2655 /*
2656  * return < 0 if error
2657  * 0 if there are no more dead_roots at the time of call
2658  * 1 there are more to be processed, call me again
2659  *
2660  * The return value indicates there are certainly more snapshots to delete, but
2661  * if there comes a new one during processing, it may return 0. We don't mind,
2662  * because btrfs_commit_super will poke cleaner thread and it will process it a
2663  * few seconds later.
2664  */
2665 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2666 {
2667 	struct btrfs_root *root;
2668 	int ret;
2669 
2670 	spin_lock(&fs_info->trans_lock);
2671 	if (list_empty(&fs_info->dead_roots)) {
2672 		spin_unlock(&fs_info->trans_lock);
2673 		return 0;
2674 	}
2675 	root = list_first_entry(&fs_info->dead_roots,
2676 			struct btrfs_root, root_list);
2677 	list_del_init(&root->root_list);
2678 	spin_unlock(&fs_info->trans_lock);
2679 
2680 	btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2681 
2682 	btrfs_kill_all_delayed_nodes(root);
2683 
2684 	if (btrfs_header_backref_rev(root->node) <
2685 			BTRFS_MIXED_BACKREF_REV)
2686 		ret = btrfs_drop_snapshot(root, 0, 0);
2687 	else
2688 		ret = btrfs_drop_snapshot(root, 1, 0);
2689 
2690 	btrfs_put_root(root);
2691 	return (ret < 0) ? 0 : 1;
2692 }
2693 
2694 /*
2695  * We only mark the transaction aborted and then set the file system read-only.
2696  * This will prevent new transactions from starting or trying to join this
2697  * one.
2698  *
2699  * This means that error recovery at the call site is limited to freeing
2700  * any local memory allocations and passing the error code up without
2701  * further cleanup. The transaction should complete as it normally would
2702  * in the call path but will return -EIO.
2703  *
2704  * We'll complete the cleanup in btrfs_end_transaction and
2705  * btrfs_commit_transaction.
2706  */
2707 void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
2708 				      const char *function,
2709 				      unsigned int line, int error, bool first_hit)
2710 {
2711 	struct btrfs_fs_info *fs_info = trans->fs_info;
2712 
2713 	WRITE_ONCE(trans->aborted, error);
2714 	WRITE_ONCE(trans->transaction->aborted, error);
2715 	if (first_hit && error == -ENOSPC)
2716 		btrfs_dump_space_info_for_trans_abort(fs_info);
2717 	/* Wake up anybody who may be waiting on this transaction */
2718 	wake_up(&fs_info->transaction_wait);
2719 	wake_up(&fs_info->transaction_blocked_wait);
2720 	__btrfs_handle_fs_error(fs_info, function, line, error, NULL);
2721 }
2722 
2723 int __init btrfs_transaction_init(void)
2724 {
2725 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
2726 			sizeof(struct btrfs_trans_handle), 0,
2727 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
2728 	if (!btrfs_trans_handle_cachep)
2729 		return -ENOMEM;
2730 	return 0;
2731 }
2732 
2733 void __cold btrfs_transaction_exit(void)
2734 {
2735 	kmem_cache_destroy(btrfs_trans_handle_cachep);
2736 }
2737