1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/sched.h> 21 #include <linux/writeback.h> 22 #include <linux/pagemap.h> 23 #include <linux/blkdev.h> 24 #include "ctree.h" 25 #include "disk-io.h" 26 #include "transaction.h" 27 #include "locking.h" 28 #include "tree-log.h" 29 30 #define BTRFS_ROOT_TRANS_TAG 0 31 32 static noinline void put_transaction(struct btrfs_transaction *transaction) 33 { 34 WARN_ON(transaction->use_count == 0); 35 transaction->use_count--; 36 if (transaction->use_count == 0) { 37 list_del_init(&transaction->list); 38 memset(transaction, 0, sizeof(*transaction)); 39 kmem_cache_free(btrfs_transaction_cachep, transaction); 40 } 41 } 42 43 static noinline void switch_commit_root(struct btrfs_root *root) 44 { 45 free_extent_buffer(root->commit_root); 46 root->commit_root = btrfs_root_node(root); 47 } 48 49 /* 50 * either allocate a new transaction or hop into the existing one 51 */ 52 static noinline int join_transaction(struct btrfs_root *root) 53 { 54 struct btrfs_transaction *cur_trans; 55 cur_trans = root->fs_info->running_transaction; 56 if (!cur_trans) { 57 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, 58 GFP_NOFS); 59 BUG_ON(!cur_trans); 60 root->fs_info->generation++; 61 cur_trans->num_writers = 1; 62 cur_trans->num_joined = 0; 63 cur_trans->transid = root->fs_info->generation; 64 init_waitqueue_head(&cur_trans->writer_wait); 65 init_waitqueue_head(&cur_trans->commit_wait); 66 cur_trans->in_commit = 0; 67 cur_trans->blocked = 0; 68 cur_trans->use_count = 1; 69 cur_trans->commit_done = 0; 70 cur_trans->start_time = get_seconds(); 71 72 cur_trans->delayed_refs.root.rb_node = NULL; 73 cur_trans->delayed_refs.num_entries = 0; 74 cur_trans->delayed_refs.num_heads_ready = 0; 75 cur_trans->delayed_refs.num_heads = 0; 76 cur_trans->delayed_refs.flushing = 0; 77 cur_trans->delayed_refs.run_delayed_start = 0; 78 spin_lock_init(&cur_trans->delayed_refs.lock); 79 80 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 81 list_add_tail(&cur_trans->list, &root->fs_info->trans_list); 82 extent_io_tree_init(&cur_trans->dirty_pages, 83 root->fs_info->btree_inode->i_mapping, 84 GFP_NOFS); 85 spin_lock(&root->fs_info->new_trans_lock); 86 root->fs_info->running_transaction = cur_trans; 87 spin_unlock(&root->fs_info->new_trans_lock); 88 } else { 89 cur_trans->num_writers++; 90 cur_trans->num_joined++; 91 } 92 93 return 0; 94 } 95 96 /* 97 * this does all the record keeping required to make sure that a reference 98 * counted root is properly recorded in a given transaction. This is required 99 * to make sure the old root from before we joined the transaction is deleted 100 * when the transaction commits 101 */ 102 static noinline int record_root_in_trans(struct btrfs_trans_handle *trans, 103 struct btrfs_root *root) 104 { 105 if (root->ref_cows && root->last_trans < trans->transid) { 106 WARN_ON(root == root->fs_info->extent_root); 107 WARN_ON(root->commit_root != root->node); 108 109 radix_tree_tag_set(&root->fs_info->fs_roots_radix, 110 (unsigned long)root->root_key.objectid, 111 BTRFS_ROOT_TRANS_TAG); 112 root->last_trans = trans->transid; 113 btrfs_init_reloc_root(trans, root); 114 } 115 return 0; 116 } 117 118 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 119 struct btrfs_root *root) 120 { 121 if (!root->ref_cows) 122 return 0; 123 124 mutex_lock(&root->fs_info->trans_mutex); 125 if (root->last_trans == trans->transid) { 126 mutex_unlock(&root->fs_info->trans_mutex); 127 return 0; 128 } 129 130 record_root_in_trans(trans, root); 131 mutex_unlock(&root->fs_info->trans_mutex); 132 return 0; 133 } 134 135 /* wait for commit against the current transaction to become unblocked 136 * when this is done, it is safe to start a new transaction, but the current 137 * transaction might not be fully on disk. 138 */ 139 static void wait_current_trans(struct btrfs_root *root) 140 { 141 struct btrfs_transaction *cur_trans; 142 143 cur_trans = root->fs_info->running_transaction; 144 if (cur_trans && cur_trans->blocked) { 145 DEFINE_WAIT(wait); 146 cur_trans->use_count++; 147 while (1) { 148 prepare_to_wait(&root->fs_info->transaction_wait, &wait, 149 TASK_UNINTERRUPTIBLE); 150 if (cur_trans->blocked) { 151 mutex_unlock(&root->fs_info->trans_mutex); 152 schedule(); 153 mutex_lock(&root->fs_info->trans_mutex); 154 finish_wait(&root->fs_info->transaction_wait, 155 &wait); 156 } else { 157 finish_wait(&root->fs_info->transaction_wait, 158 &wait); 159 break; 160 } 161 } 162 put_transaction(cur_trans); 163 } 164 } 165 166 enum btrfs_trans_type { 167 TRANS_START, 168 TRANS_JOIN, 169 TRANS_USERSPACE, 170 }; 171 172 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root, 173 int num_blocks, int type) 174 { 175 struct btrfs_trans_handle *h = 176 kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS); 177 int ret; 178 179 mutex_lock(&root->fs_info->trans_mutex); 180 if (!root->fs_info->log_root_recovering && 181 ((type == TRANS_START && !root->fs_info->open_ioctl_trans) || 182 type == TRANS_USERSPACE)) 183 wait_current_trans(root); 184 ret = join_transaction(root); 185 BUG_ON(ret); 186 187 h->transid = root->fs_info->running_transaction->transid; 188 h->transaction = root->fs_info->running_transaction; 189 h->blocks_reserved = num_blocks; 190 h->blocks_used = 0; 191 h->block_group = 0; 192 h->alloc_exclude_nr = 0; 193 h->alloc_exclude_start = 0; 194 h->delayed_ref_updates = 0; 195 196 if (!current->journal_info && type != TRANS_USERSPACE) 197 current->journal_info = h; 198 199 root->fs_info->running_transaction->use_count++; 200 record_root_in_trans(h, root); 201 mutex_unlock(&root->fs_info->trans_mutex); 202 return h; 203 } 204 205 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 206 int num_blocks) 207 { 208 return start_transaction(root, num_blocks, TRANS_START); 209 } 210 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root, 211 int num_blocks) 212 { 213 return start_transaction(root, num_blocks, TRANS_JOIN); 214 } 215 216 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r, 217 int num_blocks) 218 { 219 return start_transaction(r, num_blocks, TRANS_USERSPACE); 220 } 221 222 /* wait for a transaction commit to be fully complete */ 223 static noinline int wait_for_commit(struct btrfs_root *root, 224 struct btrfs_transaction *commit) 225 { 226 DEFINE_WAIT(wait); 227 mutex_lock(&root->fs_info->trans_mutex); 228 while (!commit->commit_done) { 229 prepare_to_wait(&commit->commit_wait, &wait, 230 TASK_UNINTERRUPTIBLE); 231 if (commit->commit_done) 232 break; 233 mutex_unlock(&root->fs_info->trans_mutex); 234 schedule(); 235 mutex_lock(&root->fs_info->trans_mutex); 236 } 237 mutex_unlock(&root->fs_info->trans_mutex); 238 finish_wait(&commit->commit_wait, &wait); 239 return 0; 240 } 241 242 #if 0 243 /* 244 * rate limit against the drop_snapshot code. This helps to slow down new 245 * operations if the drop_snapshot code isn't able to keep up. 246 */ 247 static void throttle_on_drops(struct btrfs_root *root) 248 { 249 struct btrfs_fs_info *info = root->fs_info; 250 int harder_count = 0; 251 252 harder: 253 if (atomic_read(&info->throttles)) { 254 DEFINE_WAIT(wait); 255 int thr; 256 thr = atomic_read(&info->throttle_gen); 257 258 do { 259 prepare_to_wait(&info->transaction_throttle, 260 &wait, TASK_UNINTERRUPTIBLE); 261 if (!atomic_read(&info->throttles)) { 262 finish_wait(&info->transaction_throttle, &wait); 263 break; 264 } 265 schedule(); 266 finish_wait(&info->transaction_throttle, &wait); 267 } while (thr == atomic_read(&info->throttle_gen)); 268 harder_count++; 269 270 if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 && 271 harder_count < 2) 272 goto harder; 273 274 if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 && 275 harder_count < 10) 276 goto harder; 277 278 if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 && 279 harder_count < 20) 280 goto harder; 281 } 282 } 283 #endif 284 285 void btrfs_throttle(struct btrfs_root *root) 286 { 287 mutex_lock(&root->fs_info->trans_mutex); 288 if (!root->fs_info->open_ioctl_trans) 289 wait_current_trans(root); 290 mutex_unlock(&root->fs_info->trans_mutex); 291 } 292 293 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 294 struct btrfs_root *root, int throttle) 295 { 296 struct btrfs_transaction *cur_trans; 297 struct btrfs_fs_info *info = root->fs_info; 298 int count = 0; 299 300 while (count < 4) { 301 unsigned long cur = trans->delayed_ref_updates; 302 trans->delayed_ref_updates = 0; 303 if (cur && 304 trans->transaction->delayed_refs.num_heads_ready > 64) { 305 trans->delayed_ref_updates = 0; 306 307 /* 308 * do a full flush if the transaction is trying 309 * to close 310 */ 311 if (trans->transaction->delayed_refs.flushing) 312 cur = 0; 313 btrfs_run_delayed_refs(trans, root, cur); 314 } else { 315 break; 316 } 317 count++; 318 } 319 320 mutex_lock(&info->trans_mutex); 321 cur_trans = info->running_transaction; 322 WARN_ON(cur_trans != trans->transaction); 323 WARN_ON(cur_trans->num_writers < 1); 324 cur_trans->num_writers--; 325 326 if (waitqueue_active(&cur_trans->writer_wait)) 327 wake_up(&cur_trans->writer_wait); 328 put_transaction(cur_trans); 329 mutex_unlock(&info->trans_mutex); 330 331 if (current->journal_info == trans) 332 current->journal_info = NULL; 333 memset(trans, 0, sizeof(*trans)); 334 kmem_cache_free(btrfs_trans_handle_cachep, trans); 335 336 return 0; 337 } 338 339 int btrfs_end_transaction(struct btrfs_trans_handle *trans, 340 struct btrfs_root *root) 341 { 342 return __btrfs_end_transaction(trans, root, 0); 343 } 344 345 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans, 346 struct btrfs_root *root) 347 { 348 return __btrfs_end_transaction(trans, root, 1); 349 } 350 351 /* 352 * when btree blocks are allocated, they have some corresponding bits set for 353 * them in one of two extent_io trees. This is used to make sure all of 354 * those extents are sent to disk but does not wait on them 355 */ 356 int btrfs_write_marked_extents(struct btrfs_root *root, 357 struct extent_io_tree *dirty_pages) 358 { 359 int ret; 360 int err = 0; 361 int werr = 0; 362 struct page *page; 363 struct inode *btree_inode = root->fs_info->btree_inode; 364 u64 start = 0; 365 u64 end; 366 unsigned long index; 367 368 while (1) { 369 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 370 EXTENT_DIRTY); 371 if (ret) 372 break; 373 while (start <= end) { 374 cond_resched(); 375 376 index = start >> PAGE_CACHE_SHIFT; 377 start = (u64)(index + 1) << PAGE_CACHE_SHIFT; 378 page = find_get_page(btree_inode->i_mapping, index); 379 if (!page) 380 continue; 381 382 btree_lock_page_hook(page); 383 if (!page->mapping) { 384 unlock_page(page); 385 page_cache_release(page); 386 continue; 387 } 388 389 if (PageWriteback(page)) { 390 if (PageDirty(page)) 391 wait_on_page_writeback(page); 392 else { 393 unlock_page(page); 394 page_cache_release(page); 395 continue; 396 } 397 } 398 err = write_one_page(page, 0); 399 if (err) 400 werr = err; 401 page_cache_release(page); 402 } 403 } 404 if (err) 405 werr = err; 406 return werr; 407 } 408 409 /* 410 * when btree blocks are allocated, they have some corresponding bits set for 411 * them in one of two extent_io trees. This is used to make sure all of 412 * those extents are on disk for transaction or log commit. We wait 413 * on all the pages and clear them from the dirty pages state tree 414 */ 415 int btrfs_wait_marked_extents(struct btrfs_root *root, 416 struct extent_io_tree *dirty_pages) 417 { 418 int ret; 419 int err = 0; 420 int werr = 0; 421 struct page *page; 422 struct inode *btree_inode = root->fs_info->btree_inode; 423 u64 start = 0; 424 u64 end; 425 unsigned long index; 426 427 while (1) { 428 ret = find_first_extent_bit(dirty_pages, 0, &start, &end, 429 EXTENT_DIRTY); 430 if (ret) 431 break; 432 433 clear_extent_dirty(dirty_pages, start, end, GFP_NOFS); 434 while (start <= end) { 435 index = start >> PAGE_CACHE_SHIFT; 436 start = (u64)(index + 1) << PAGE_CACHE_SHIFT; 437 page = find_get_page(btree_inode->i_mapping, index); 438 if (!page) 439 continue; 440 if (PageDirty(page)) { 441 btree_lock_page_hook(page); 442 wait_on_page_writeback(page); 443 err = write_one_page(page, 0); 444 if (err) 445 werr = err; 446 } 447 wait_on_page_writeback(page); 448 page_cache_release(page); 449 cond_resched(); 450 } 451 } 452 if (err) 453 werr = err; 454 return werr; 455 } 456 457 /* 458 * when btree blocks are allocated, they have some corresponding bits set for 459 * them in one of two extent_io trees. This is used to make sure all of 460 * those extents are on disk for transaction or log commit 461 */ 462 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root, 463 struct extent_io_tree *dirty_pages) 464 { 465 int ret; 466 int ret2; 467 468 ret = btrfs_write_marked_extents(root, dirty_pages); 469 ret2 = btrfs_wait_marked_extents(root, dirty_pages); 470 return ret || ret2; 471 } 472 473 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans, 474 struct btrfs_root *root) 475 { 476 if (!trans || !trans->transaction) { 477 struct inode *btree_inode; 478 btree_inode = root->fs_info->btree_inode; 479 return filemap_write_and_wait(btree_inode->i_mapping); 480 } 481 return btrfs_write_and_wait_marked_extents(root, 482 &trans->transaction->dirty_pages); 483 } 484 485 /* 486 * this is used to update the root pointer in the tree of tree roots. 487 * 488 * But, in the case of the extent allocation tree, updating the root 489 * pointer may allocate blocks which may change the root of the extent 490 * allocation tree. 491 * 492 * So, this loops and repeats and makes sure the cowonly root didn't 493 * change while the root pointer was being updated in the metadata. 494 */ 495 static int update_cowonly_root(struct btrfs_trans_handle *trans, 496 struct btrfs_root *root) 497 { 498 int ret; 499 u64 old_root_bytenr; 500 struct btrfs_root *tree_root = root->fs_info->tree_root; 501 502 btrfs_write_dirty_block_groups(trans, root); 503 504 while (1) { 505 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 506 if (old_root_bytenr == root->node->start) 507 break; 508 509 btrfs_set_root_node(&root->root_item, root->node); 510 ret = btrfs_update_root(trans, tree_root, 511 &root->root_key, 512 &root->root_item); 513 BUG_ON(ret); 514 515 ret = btrfs_write_dirty_block_groups(trans, root); 516 BUG_ON(ret); 517 } 518 519 if (root != root->fs_info->extent_root) 520 switch_commit_root(root); 521 522 return 0; 523 } 524 525 /* 526 * update all the cowonly tree roots on disk 527 */ 528 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans, 529 struct btrfs_root *root) 530 { 531 struct btrfs_fs_info *fs_info = root->fs_info; 532 struct list_head *next; 533 struct extent_buffer *eb; 534 int ret; 535 536 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 537 BUG_ON(ret); 538 539 eb = btrfs_lock_root_node(fs_info->tree_root); 540 btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb); 541 btrfs_tree_unlock(eb); 542 free_extent_buffer(eb); 543 544 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 545 BUG_ON(ret); 546 547 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 548 next = fs_info->dirty_cowonly_roots.next; 549 list_del_init(next); 550 root = list_entry(next, struct btrfs_root, dirty_list); 551 552 update_cowonly_root(trans, root); 553 } 554 555 down_write(&fs_info->extent_commit_sem); 556 switch_commit_root(fs_info->extent_root); 557 up_write(&fs_info->extent_commit_sem); 558 559 return 0; 560 } 561 562 /* 563 * dead roots are old snapshots that need to be deleted. This allocates 564 * a dirty root struct and adds it into the list of dead roots that need to 565 * be deleted 566 */ 567 int btrfs_add_dead_root(struct btrfs_root *root) 568 { 569 mutex_lock(&root->fs_info->trans_mutex); 570 list_add(&root->root_list, &root->fs_info->dead_roots); 571 mutex_unlock(&root->fs_info->trans_mutex); 572 return 0; 573 } 574 575 /* 576 * update all the cowonly tree roots on disk 577 */ 578 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans, 579 struct btrfs_root *root) 580 { 581 struct btrfs_root *gang[8]; 582 struct btrfs_fs_info *fs_info = root->fs_info; 583 int i; 584 int ret; 585 int err = 0; 586 587 while (1) { 588 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 589 (void **)gang, 0, 590 ARRAY_SIZE(gang), 591 BTRFS_ROOT_TRANS_TAG); 592 if (ret == 0) 593 break; 594 for (i = 0; i < ret; i++) { 595 root = gang[i]; 596 radix_tree_tag_clear(&fs_info->fs_roots_radix, 597 (unsigned long)root->root_key.objectid, 598 BTRFS_ROOT_TRANS_TAG); 599 600 btrfs_free_log(trans, root); 601 btrfs_update_reloc_root(trans, root); 602 603 if (root->commit_root != root->node) { 604 switch_commit_root(root); 605 btrfs_set_root_node(&root->root_item, 606 root->node); 607 } 608 609 err = btrfs_update_root(trans, fs_info->tree_root, 610 &root->root_key, 611 &root->root_item); 612 if (err) 613 break; 614 } 615 } 616 return err; 617 } 618 619 /* 620 * defrag a given btree. If cacheonly == 1, this won't read from the disk, 621 * otherwise every leaf in the btree is read and defragged. 622 */ 623 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly) 624 { 625 struct btrfs_fs_info *info = root->fs_info; 626 int ret; 627 struct btrfs_trans_handle *trans; 628 unsigned long nr; 629 630 smp_mb(); 631 if (root->defrag_running) 632 return 0; 633 trans = btrfs_start_transaction(root, 1); 634 while (1) { 635 root->defrag_running = 1; 636 ret = btrfs_defrag_leaves(trans, root, cacheonly); 637 nr = trans->blocks_used; 638 btrfs_end_transaction(trans, root); 639 btrfs_btree_balance_dirty(info->tree_root, nr); 640 cond_resched(); 641 642 trans = btrfs_start_transaction(root, 1); 643 if (root->fs_info->closing || ret != -EAGAIN) 644 break; 645 } 646 root->defrag_running = 0; 647 smp_mb(); 648 btrfs_end_transaction(trans, root); 649 return 0; 650 } 651 652 #if 0 653 /* 654 * when dropping snapshots, we generate a ton of delayed refs, and it makes 655 * sense not to join the transaction while it is trying to flush the current 656 * queue of delayed refs out. 657 * 658 * This is used by the drop snapshot code only 659 */ 660 static noinline int wait_transaction_pre_flush(struct btrfs_fs_info *info) 661 { 662 DEFINE_WAIT(wait); 663 664 mutex_lock(&info->trans_mutex); 665 while (info->running_transaction && 666 info->running_transaction->delayed_refs.flushing) { 667 prepare_to_wait(&info->transaction_wait, &wait, 668 TASK_UNINTERRUPTIBLE); 669 mutex_unlock(&info->trans_mutex); 670 671 schedule(); 672 673 mutex_lock(&info->trans_mutex); 674 finish_wait(&info->transaction_wait, &wait); 675 } 676 mutex_unlock(&info->trans_mutex); 677 return 0; 678 } 679 680 /* 681 * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on 682 * all of them 683 */ 684 int btrfs_drop_dead_root(struct btrfs_root *root) 685 { 686 struct btrfs_trans_handle *trans; 687 struct btrfs_root *tree_root = root->fs_info->tree_root; 688 unsigned long nr; 689 int ret; 690 691 while (1) { 692 /* 693 * we don't want to jump in and create a bunch of 694 * delayed refs if the transaction is starting to close 695 */ 696 wait_transaction_pre_flush(tree_root->fs_info); 697 trans = btrfs_start_transaction(tree_root, 1); 698 699 /* 700 * we've joined a transaction, make sure it isn't 701 * closing right now 702 */ 703 if (trans->transaction->delayed_refs.flushing) { 704 btrfs_end_transaction(trans, tree_root); 705 continue; 706 } 707 708 ret = btrfs_drop_snapshot(trans, root); 709 if (ret != -EAGAIN) 710 break; 711 712 ret = btrfs_update_root(trans, tree_root, 713 &root->root_key, 714 &root->root_item); 715 if (ret) 716 break; 717 718 nr = trans->blocks_used; 719 ret = btrfs_end_transaction(trans, tree_root); 720 BUG_ON(ret); 721 722 btrfs_btree_balance_dirty(tree_root, nr); 723 cond_resched(); 724 } 725 BUG_ON(ret); 726 727 ret = btrfs_del_root(trans, tree_root, &root->root_key); 728 BUG_ON(ret); 729 730 nr = trans->blocks_used; 731 ret = btrfs_end_transaction(trans, tree_root); 732 BUG_ON(ret); 733 734 free_extent_buffer(root->node); 735 free_extent_buffer(root->commit_root); 736 kfree(root); 737 738 btrfs_btree_balance_dirty(tree_root, nr); 739 return ret; 740 } 741 #endif 742 743 /* 744 * new snapshots need to be created at a very specific time in the 745 * transaction commit. This does the actual creation 746 */ 747 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 748 struct btrfs_fs_info *fs_info, 749 struct btrfs_pending_snapshot *pending) 750 { 751 struct btrfs_key key; 752 struct btrfs_root_item *new_root_item; 753 struct btrfs_root *tree_root = fs_info->tree_root; 754 struct btrfs_root *root = pending->root; 755 struct extent_buffer *tmp; 756 struct extent_buffer *old; 757 int ret; 758 u64 objectid; 759 760 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS); 761 if (!new_root_item) { 762 ret = -ENOMEM; 763 goto fail; 764 } 765 ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid); 766 if (ret) 767 goto fail; 768 769 record_root_in_trans(trans, root); 770 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 771 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 772 773 key.objectid = objectid; 774 /* record when the snapshot was created in key.offset */ 775 key.offset = trans->transid; 776 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); 777 778 old = btrfs_lock_root_node(root); 779 btrfs_cow_block(trans, root, old, NULL, 0, &old); 780 btrfs_set_lock_blocking(old); 781 782 btrfs_copy_root(trans, root, old, &tmp, objectid); 783 btrfs_tree_unlock(old); 784 free_extent_buffer(old); 785 786 btrfs_set_root_node(new_root_item, tmp); 787 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key, 788 new_root_item); 789 btrfs_tree_unlock(tmp); 790 free_extent_buffer(tmp); 791 if (ret) 792 goto fail; 793 794 key.offset = (u64)-1; 795 memcpy(&pending->root_key, &key, sizeof(key)); 796 fail: 797 kfree(new_root_item); 798 btrfs_unreserve_metadata_space(root, 6); 799 return ret; 800 } 801 802 static noinline int finish_pending_snapshot(struct btrfs_fs_info *fs_info, 803 struct btrfs_pending_snapshot *pending) 804 { 805 int ret; 806 int namelen; 807 u64 index = 0; 808 struct btrfs_trans_handle *trans; 809 struct inode *parent_inode; 810 struct inode *inode; 811 struct btrfs_root *parent_root; 812 813 parent_inode = pending->dentry->d_parent->d_inode; 814 parent_root = BTRFS_I(parent_inode)->root; 815 trans = btrfs_join_transaction(parent_root, 1); 816 817 /* 818 * insert the directory item 819 */ 820 namelen = strlen(pending->name); 821 ret = btrfs_set_inode_index(parent_inode, &index); 822 ret = btrfs_insert_dir_item(trans, parent_root, 823 pending->name, namelen, 824 parent_inode->i_ino, 825 &pending->root_key, BTRFS_FT_DIR, index); 826 827 if (ret) 828 goto fail; 829 830 btrfs_i_size_write(parent_inode, parent_inode->i_size + namelen * 2); 831 ret = btrfs_update_inode(trans, parent_root, parent_inode); 832 BUG_ON(ret); 833 834 ret = btrfs_add_root_ref(trans, parent_root->fs_info->tree_root, 835 pending->root_key.objectid, 836 parent_root->root_key.objectid, 837 parent_inode->i_ino, index, pending->name, 838 namelen); 839 840 BUG_ON(ret); 841 842 inode = btrfs_lookup_dentry(parent_inode, pending->dentry); 843 d_instantiate(pending->dentry, inode); 844 fail: 845 btrfs_end_transaction(trans, fs_info->fs_root); 846 return ret; 847 } 848 849 /* 850 * create all the snapshots we've scheduled for creation 851 */ 852 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans, 853 struct btrfs_fs_info *fs_info) 854 { 855 struct btrfs_pending_snapshot *pending; 856 struct list_head *head = &trans->transaction->pending_snapshots; 857 int ret; 858 859 list_for_each_entry(pending, head, list) { 860 ret = create_pending_snapshot(trans, fs_info, pending); 861 BUG_ON(ret); 862 } 863 return 0; 864 } 865 866 static noinline int finish_pending_snapshots(struct btrfs_trans_handle *trans, 867 struct btrfs_fs_info *fs_info) 868 { 869 struct btrfs_pending_snapshot *pending; 870 struct list_head *head = &trans->transaction->pending_snapshots; 871 int ret; 872 873 while (!list_empty(head)) { 874 pending = list_entry(head->next, 875 struct btrfs_pending_snapshot, list); 876 ret = finish_pending_snapshot(fs_info, pending); 877 BUG_ON(ret); 878 list_del(&pending->list); 879 kfree(pending->name); 880 kfree(pending); 881 } 882 return 0; 883 } 884 885 static void update_super_roots(struct btrfs_root *root) 886 { 887 struct btrfs_root_item *root_item; 888 struct btrfs_super_block *super; 889 890 super = &root->fs_info->super_copy; 891 892 root_item = &root->fs_info->chunk_root->root_item; 893 super->chunk_root = root_item->bytenr; 894 super->chunk_root_generation = root_item->generation; 895 super->chunk_root_level = root_item->level; 896 897 root_item = &root->fs_info->tree_root->root_item; 898 super->root = root_item->bytenr; 899 super->generation = root_item->generation; 900 super->root_level = root_item->level; 901 } 902 903 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 904 { 905 int ret = 0; 906 spin_lock(&info->new_trans_lock); 907 if (info->running_transaction) 908 ret = info->running_transaction->in_commit; 909 spin_unlock(&info->new_trans_lock); 910 return ret; 911 } 912 913 int btrfs_commit_transaction(struct btrfs_trans_handle *trans, 914 struct btrfs_root *root) 915 { 916 unsigned long joined = 0; 917 unsigned long timeout = 1; 918 struct btrfs_transaction *cur_trans; 919 struct btrfs_transaction *prev_trans = NULL; 920 DEFINE_WAIT(wait); 921 int ret; 922 int should_grow = 0; 923 unsigned long now = get_seconds(); 924 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT); 925 926 btrfs_run_ordered_operations(root, 0); 927 928 /* make a pass through all the delayed refs we have so far 929 * any runnings procs may add more while we are here 930 */ 931 ret = btrfs_run_delayed_refs(trans, root, 0); 932 BUG_ON(ret); 933 934 cur_trans = trans->transaction; 935 /* 936 * set the flushing flag so procs in this transaction have to 937 * start sending their work down. 938 */ 939 cur_trans->delayed_refs.flushing = 1; 940 941 ret = btrfs_run_delayed_refs(trans, root, 0); 942 BUG_ON(ret); 943 944 mutex_lock(&root->fs_info->trans_mutex); 945 if (cur_trans->in_commit) { 946 cur_trans->use_count++; 947 mutex_unlock(&root->fs_info->trans_mutex); 948 btrfs_end_transaction(trans, root); 949 950 ret = wait_for_commit(root, cur_trans); 951 BUG_ON(ret); 952 953 mutex_lock(&root->fs_info->trans_mutex); 954 put_transaction(cur_trans); 955 mutex_unlock(&root->fs_info->trans_mutex); 956 957 return 0; 958 } 959 960 trans->transaction->in_commit = 1; 961 trans->transaction->blocked = 1; 962 if (cur_trans->list.prev != &root->fs_info->trans_list) { 963 prev_trans = list_entry(cur_trans->list.prev, 964 struct btrfs_transaction, list); 965 if (!prev_trans->commit_done) { 966 prev_trans->use_count++; 967 mutex_unlock(&root->fs_info->trans_mutex); 968 969 wait_for_commit(root, prev_trans); 970 971 mutex_lock(&root->fs_info->trans_mutex); 972 put_transaction(prev_trans); 973 } 974 } 975 976 if (now < cur_trans->start_time || now - cur_trans->start_time < 1) 977 should_grow = 1; 978 979 do { 980 int snap_pending = 0; 981 joined = cur_trans->num_joined; 982 if (!list_empty(&trans->transaction->pending_snapshots)) 983 snap_pending = 1; 984 985 WARN_ON(cur_trans != trans->transaction); 986 prepare_to_wait(&cur_trans->writer_wait, &wait, 987 TASK_UNINTERRUPTIBLE); 988 989 if (cur_trans->num_writers > 1) 990 timeout = MAX_SCHEDULE_TIMEOUT; 991 else if (should_grow) 992 timeout = 1; 993 994 mutex_unlock(&root->fs_info->trans_mutex); 995 996 if (flush_on_commit) { 997 btrfs_start_delalloc_inodes(root); 998 ret = btrfs_wait_ordered_extents(root, 0); 999 BUG_ON(ret); 1000 } else if (snap_pending) { 1001 ret = btrfs_wait_ordered_extents(root, 1); 1002 BUG_ON(ret); 1003 } 1004 1005 /* 1006 * rename don't use btrfs_join_transaction, so, once we 1007 * set the transaction to blocked above, we aren't going 1008 * to get any new ordered operations. We can safely run 1009 * it here and no for sure that nothing new will be added 1010 * to the list 1011 */ 1012 btrfs_run_ordered_operations(root, 1); 1013 1014 smp_mb(); 1015 if (cur_trans->num_writers > 1 || should_grow) 1016 schedule_timeout(timeout); 1017 1018 mutex_lock(&root->fs_info->trans_mutex); 1019 finish_wait(&cur_trans->writer_wait, &wait); 1020 } while (cur_trans->num_writers > 1 || 1021 (should_grow && cur_trans->num_joined != joined)); 1022 1023 ret = create_pending_snapshots(trans, root->fs_info); 1024 BUG_ON(ret); 1025 1026 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1027 BUG_ON(ret); 1028 1029 WARN_ON(cur_trans != trans->transaction); 1030 1031 /* btrfs_commit_tree_roots is responsible for getting the 1032 * various roots consistent with each other. Every pointer 1033 * in the tree of tree roots has to point to the most up to date 1034 * root for every subvolume and other tree. So, we have to keep 1035 * the tree logging code from jumping in and changing any 1036 * of the trees. 1037 * 1038 * At this point in the commit, there can't be any tree-log 1039 * writers, but a little lower down we drop the trans mutex 1040 * and let new people in. By holding the tree_log_mutex 1041 * from now until after the super is written, we avoid races 1042 * with the tree-log code. 1043 */ 1044 mutex_lock(&root->fs_info->tree_log_mutex); 1045 1046 ret = commit_fs_roots(trans, root); 1047 BUG_ON(ret); 1048 1049 /* commit_fs_roots gets rid of all the tree log roots, it is now 1050 * safe to free the root of tree log roots 1051 */ 1052 btrfs_free_log_root_tree(trans, root->fs_info); 1053 1054 ret = commit_cowonly_roots(trans, root); 1055 BUG_ON(ret); 1056 1057 btrfs_prepare_extent_commit(trans, root); 1058 1059 cur_trans = root->fs_info->running_transaction; 1060 spin_lock(&root->fs_info->new_trans_lock); 1061 root->fs_info->running_transaction = NULL; 1062 spin_unlock(&root->fs_info->new_trans_lock); 1063 1064 btrfs_set_root_node(&root->fs_info->tree_root->root_item, 1065 root->fs_info->tree_root->node); 1066 switch_commit_root(root->fs_info->tree_root); 1067 1068 btrfs_set_root_node(&root->fs_info->chunk_root->root_item, 1069 root->fs_info->chunk_root->node); 1070 switch_commit_root(root->fs_info->chunk_root); 1071 1072 update_super_roots(root); 1073 1074 if (!root->fs_info->log_root_recovering) { 1075 btrfs_set_super_log_root(&root->fs_info->super_copy, 0); 1076 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0); 1077 } 1078 1079 memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy, 1080 sizeof(root->fs_info->super_copy)); 1081 1082 trans->transaction->blocked = 0; 1083 1084 wake_up(&root->fs_info->transaction_wait); 1085 1086 mutex_unlock(&root->fs_info->trans_mutex); 1087 ret = btrfs_write_and_wait_transaction(trans, root); 1088 BUG_ON(ret); 1089 write_ctree_super(trans, root, 0); 1090 1091 /* 1092 * the super is written, we can safely allow the tree-loggers 1093 * to go about their business 1094 */ 1095 mutex_unlock(&root->fs_info->tree_log_mutex); 1096 1097 btrfs_finish_extent_commit(trans, root); 1098 1099 /* do the directory inserts of any pending snapshot creations */ 1100 finish_pending_snapshots(trans, root->fs_info); 1101 1102 mutex_lock(&root->fs_info->trans_mutex); 1103 1104 cur_trans->commit_done = 1; 1105 1106 root->fs_info->last_trans_committed = cur_trans->transid; 1107 1108 wake_up(&cur_trans->commit_wait); 1109 1110 put_transaction(cur_trans); 1111 put_transaction(cur_trans); 1112 1113 mutex_unlock(&root->fs_info->trans_mutex); 1114 1115 if (current->journal_info == trans) 1116 current->journal_info = NULL; 1117 1118 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1119 return ret; 1120 } 1121 1122 /* 1123 * interface function to delete all the snapshots we have scheduled for deletion 1124 */ 1125 int btrfs_clean_old_snapshots(struct btrfs_root *root) 1126 { 1127 LIST_HEAD(list); 1128 struct btrfs_fs_info *fs_info = root->fs_info; 1129 1130 mutex_lock(&fs_info->trans_mutex); 1131 list_splice_init(&fs_info->dead_roots, &list); 1132 mutex_unlock(&fs_info->trans_mutex); 1133 1134 while (!list_empty(&list)) { 1135 root = list_entry(list.next, struct btrfs_root, root_list); 1136 list_del(&root->root_list); 1137 1138 if (btrfs_header_backref_rev(root->node) < 1139 BTRFS_MIXED_BACKREF_REV) 1140 btrfs_drop_snapshot(root, 0); 1141 else 1142 btrfs_drop_snapshot(root, 1); 1143 } 1144 return 0; 1145 } 1146