1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/slab.h> 8 #include <linux/sched.h> 9 #include <linux/sched/mm.h> 10 #include <linux/writeback.h> 11 #include <linux/pagemap.h> 12 #include <linux/blkdev.h> 13 #include <linux/uuid.h> 14 #include <linux/timekeeping.h> 15 #include "misc.h" 16 #include "ctree.h" 17 #include "disk-io.h" 18 #include "transaction.h" 19 #include "locking.h" 20 #include "tree-log.h" 21 #include "volumes.h" 22 #include "dev-replace.h" 23 #include "qgroup.h" 24 #include "block-group.h" 25 #include "space-info.h" 26 #include "zoned.h" 27 #include "fs.h" 28 #include "accessors.h" 29 #include "extent-tree.h" 30 #include "root-tree.h" 31 #include "defrag.h" 32 #include "dir-item.h" 33 #include "uuid-tree.h" 34 #include "ioctl.h" 35 #include "relocation.h" 36 #include "scrub.h" 37 38 static struct kmem_cache *btrfs_trans_handle_cachep; 39 40 /* 41 * Transaction states and transitions 42 * 43 * No running transaction (fs tree blocks are not modified) 44 * | 45 * | To next stage: 46 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart(). 47 * V 48 * Transaction N [[TRANS_STATE_RUNNING]] 49 * | 50 * | New trans handles can be attached to transaction N by calling all 51 * | start_transaction() variants. 52 * | 53 * | To next stage: 54 * | Call btrfs_commit_transaction() on any trans handle attached to 55 * | transaction N 56 * V 57 * Transaction N [[TRANS_STATE_COMMIT_PREP]] 58 * | 59 * | If there are simultaneous calls to btrfs_commit_transaction() one will win 60 * | the race and the rest will wait for the winner to commit the transaction. 61 * | 62 * | The winner will wait for previous running transaction to completely finish 63 * | if there is one. 64 * | 65 * Transaction N [[TRANS_STATE_COMMIT_START]] 66 * | 67 * | Then one of the following happens: 68 * | - Wait for all other trans handle holders to release. 69 * | The btrfs_commit_transaction() caller will do the commit work. 70 * | - Wait for current transaction to be committed by others. 71 * | Other btrfs_commit_transaction() caller will do the commit work. 72 * | 73 * | At this stage, only btrfs_join_transaction*() variants can attach 74 * | to this running transaction. 75 * | All other variants will wait for current one to finish and attach to 76 * | transaction N+1. 77 * | 78 * | To next stage: 79 * | Caller is chosen to commit transaction N, and all other trans handle 80 * | haven been released. 81 * V 82 * Transaction N [[TRANS_STATE_COMMIT_DOING]] 83 * | 84 * | The heavy lifting transaction work is started. 85 * | From running delayed refs (modifying extent tree) to creating pending 86 * | snapshots, running qgroups. 87 * | In short, modify supporting trees to reflect modifications of subvolume 88 * | trees. 89 * | 90 * | At this stage, all start_transaction() calls will wait for this 91 * | transaction to finish and attach to transaction N+1. 92 * | 93 * | To next stage: 94 * | Until all supporting trees are updated. 95 * V 96 * Transaction N [[TRANS_STATE_UNBLOCKED]] 97 * | Transaction N+1 98 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]] 99 * | need to write them back to disk and update | 100 * | super blocks. | 101 * | | 102 * | At this stage, new transaction is allowed to | 103 * | start. | 104 * | All new start_transaction() calls will be | 105 * | attached to transid N+1. | 106 * | | 107 * | To next stage: | 108 * | Until all tree blocks are super blocks are | 109 * | written to block devices | 110 * V | 111 * Transaction N [[TRANS_STATE_COMPLETED]] V 112 * All tree blocks and super blocks are written. Transaction N+1 113 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]] 114 * data structures will be cleaned up. | Life goes on 115 */ 116 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 117 [TRANS_STATE_RUNNING] = 0U, 118 [TRANS_STATE_COMMIT_PREP] = 0U, 119 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH), 120 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START | 121 __TRANS_ATTACH | 122 __TRANS_JOIN | 123 __TRANS_JOIN_NOSTART), 124 [TRANS_STATE_UNBLOCKED] = (__TRANS_START | 125 __TRANS_ATTACH | 126 __TRANS_JOIN | 127 __TRANS_JOIN_NOLOCK | 128 __TRANS_JOIN_NOSTART), 129 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START | 130 __TRANS_ATTACH | 131 __TRANS_JOIN | 132 __TRANS_JOIN_NOLOCK | 133 __TRANS_JOIN_NOSTART), 134 [TRANS_STATE_COMPLETED] = (__TRANS_START | 135 __TRANS_ATTACH | 136 __TRANS_JOIN | 137 __TRANS_JOIN_NOLOCK | 138 __TRANS_JOIN_NOSTART), 139 }; 140 141 void btrfs_put_transaction(struct btrfs_transaction *transaction) 142 { 143 WARN_ON(refcount_read(&transaction->use_count) == 0); 144 if (refcount_dec_and_test(&transaction->use_count)) { 145 BUG_ON(!list_empty(&transaction->list)); 146 WARN_ON(!RB_EMPTY_ROOT( 147 &transaction->delayed_refs.href_root.rb_root)); 148 WARN_ON(!RB_EMPTY_ROOT( 149 &transaction->delayed_refs.dirty_extent_root)); 150 if (transaction->delayed_refs.pending_csums) 151 btrfs_err(transaction->fs_info, 152 "pending csums is %llu", 153 transaction->delayed_refs.pending_csums); 154 /* 155 * If any block groups are found in ->deleted_bgs then it's 156 * because the transaction was aborted and a commit did not 157 * happen (things failed before writing the new superblock 158 * and calling btrfs_finish_extent_commit()), so we can not 159 * discard the physical locations of the block groups. 160 */ 161 while (!list_empty(&transaction->deleted_bgs)) { 162 struct btrfs_block_group *cache; 163 164 cache = list_first_entry(&transaction->deleted_bgs, 165 struct btrfs_block_group, 166 bg_list); 167 list_del_init(&cache->bg_list); 168 btrfs_unfreeze_block_group(cache); 169 btrfs_put_block_group(cache); 170 } 171 WARN_ON(!list_empty(&transaction->dev_update_list)); 172 kfree(transaction); 173 } 174 } 175 176 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans) 177 { 178 struct btrfs_transaction *cur_trans = trans->transaction; 179 struct btrfs_fs_info *fs_info = trans->fs_info; 180 struct btrfs_root *root, *tmp; 181 182 /* 183 * At this point no one can be using this transaction to modify any tree 184 * and no one can start another transaction to modify any tree either. 185 */ 186 ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING); 187 188 down_write(&fs_info->commit_root_sem); 189 190 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 191 fs_info->last_reloc_trans = trans->transid; 192 193 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits, 194 dirty_list) { 195 list_del_init(&root->dirty_list); 196 free_extent_buffer(root->commit_root); 197 root->commit_root = btrfs_root_node(root); 198 extent_io_tree_release(&root->dirty_log_pages); 199 btrfs_qgroup_clean_swapped_blocks(root); 200 } 201 202 /* We can free old roots now. */ 203 spin_lock(&cur_trans->dropped_roots_lock); 204 while (!list_empty(&cur_trans->dropped_roots)) { 205 root = list_first_entry(&cur_trans->dropped_roots, 206 struct btrfs_root, root_list); 207 list_del_init(&root->root_list); 208 spin_unlock(&cur_trans->dropped_roots_lock); 209 btrfs_free_log(trans, root); 210 btrfs_drop_and_free_fs_root(fs_info, root); 211 spin_lock(&cur_trans->dropped_roots_lock); 212 } 213 spin_unlock(&cur_trans->dropped_roots_lock); 214 215 up_write(&fs_info->commit_root_sem); 216 } 217 218 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 219 unsigned int type) 220 { 221 if (type & TRANS_EXTWRITERS) 222 atomic_inc(&trans->num_extwriters); 223 } 224 225 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 226 unsigned int type) 227 { 228 if (type & TRANS_EXTWRITERS) 229 atomic_dec(&trans->num_extwriters); 230 } 231 232 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 233 unsigned int type) 234 { 235 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 236 } 237 238 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 239 { 240 return atomic_read(&trans->num_extwriters); 241 } 242 243 /* 244 * To be called after doing the chunk btree updates right after allocating a new 245 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a 246 * chunk after all chunk btree updates and after finishing the second phase of 247 * chunk allocation (btrfs_create_pending_block_groups()) in case some block 248 * group had its chunk item insertion delayed to the second phase. 249 */ 250 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 251 { 252 struct btrfs_fs_info *fs_info = trans->fs_info; 253 254 if (!trans->chunk_bytes_reserved) 255 return; 256 257 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv, 258 trans->chunk_bytes_reserved, NULL); 259 trans->chunk_bytes_reserved = 0; 260 } 261 262 /* 263 * either allocate a new transaction or hop into the existing one 264 */ 265 static noinline int join_transaction(struct btrfs_fs_info *fs_info, 266 unsigned int type) 267 { 268 struct btrfs_transaction *cur_trans; 269 270 spin_lock(&fs_info->trans_lock); 271 loop: 272 /* The file system has been taken offline. No new transactions. */ 273 if (BTRFS_FS_ERROR(fs_info)) { 274 spin_unlock(&fs_info->trans_lock); 275 return -EROFS; 276 } 277 278 cur_trans = fs_info->running_transaction; 279 if (cur_trans) { 280 if (TRANS_ABORTED(cur_trans)) { 281 spin_unlock(&fs_info->trans_lock); 282 return cur_trans->aborted; 283 } 284 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 285 spin_unlock(&fs_info->trans_lock); 286 return -EBUSY; 287 } 288 refcount_inc(&cur_trans->use_count); 289 atomic_inc(&cur_trans->num_writers); 290 extwriter_counter_inc(cur_trans, type); 291 spin_unlock(&fs_info->trans_lock); 292 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers); 293 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters); 294 return 0; 295 } 296 spin_unlock(&fs_info->trans_lock); 297 298 /* 299 * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the 300 * current transaction, and commit it. If there is no transaction, just 301 * return ENOENT. 302 */ 303 if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART) 304 return -ENOENT; 305 306 /* 307 * JOIN_NOLOCK only happens during the transaction commit, so 308 * it is impossible that ->running_transaction is NULL 309 */ 310 BUG_ON(type == TRANS_JOIN_NOLOCK); 311 312 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS); 313 if (!cur_trans) 314 return -ENOMEM; 315 316 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers); 317 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters); 318 319 spin_lock(&fs_info->trans_lock); 320 if (fs_info->running_transaction) { 321 /* 322 * someone started a transaction after we unlocked. Make sure 323 * to redo the checks above 324 */ 325 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters); 326 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 327 kfree(cur_trans); 328 goto loop; 329 } else if (BTRFS_FS_ERROR(fs_info)) { 330 spin_unlock(&fs_info->trans_lock); 331 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters); 332 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 333 kfree(cur_trans); 334 return -EROFS; 335 } 336 337 cur_trans->fs_info = fs_info; 338 atomic_set(&cur_trans->pending_ordered, 0); 339 init_waitqueue_head(&cur_trans->pending_wait); 340 atomic_set(&cur_trans->num_writers, 1); 341 extwriter_counter_init(cur_trans, type); 342 init_waitqueue_head(&cur_trans->writer_wait); 343 init_waitqueue_head(&cur_trans->commit_wait); 344 cur_trans->state = TRANS_STATE_RUNNING; 345 /* 346 * One for this trans handle, one so it will live on until we 347 * commit the transaction. 348 */ 349 refcount_set(&cur_trans->use_count, 2); 350 cur_trans->flags = 0; 351 cur_trans->start_time = ktime_get_seconds(); 352 353 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs)); 354 355 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED; 356 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT; 357 atomic_set(&cur_trans->delayed_refs.num_entries, 0); 358 359 /* 360 * although the tree mod log is per file system and not per transaction, 361 * the log must never go across transaction boundaries. 362 */ 363 smp_mb(); 364 if (!list_empty(&fs_info->tree_mod_seq_list)) 365 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n"); 366 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 367 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n"); 368 atomic64_set(&fs_info->tree_mod_seq, 0); 369 370 spin_lock_init(&cur_trans->delayed_refs.lock); 371 372 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 373 INIT_LIST_HEAD(&cur_trans->dev_update_list); 374 INIT_LIST_HEAD(&cur_trans->switch_commits); 375 INIT_LIST_HEAD(&cur_trans->dirty_bgs); 376 INIT_LIST_HEAD(&cur_trans->io_bgs); 377 INIT_LIST_HEAD(&cur_trans->dropped_roots); 378 mutex_init(&cur_trans->cache_write_mutex); 379 spin_lock_init(&cur_trans->dirty_bgs_lock); 380 INIT_LIST_HEAD(&cur_trans->deleted_bgs); 381 spin_lock_init(&cur_trans->dropped_roots_lock); 382 list_add_tail(&cur_trans->list, &fs_info->trans_list); 383 extent_io_tree_init(fs_info, &cur_trans->dirty_pages, 384 IO_TREE_TRANS_DIRTY_PAGES); 385 extent_io_tree_init(fs_info, &cur_trans->pinned_extents, 386 IO_TREE_FS_PINNED_EXTENTS); 387 btrfs_set_fs_generation(fs_info, fs_info->generation + 1); 388 cur_trans->transid = fs_info->generation; 389 fs_info->running_transaction = cur_trans; 390 cur_trans->aborted = 0; 391 spin_unlock(&fs_info->trans_lock); 392 393 return 0; 394 } 395 396 /* 397 * This does all the record keeping required to make sure that a shareable root 398 * is properly recorded in a given transaction. This is required to make sure 399 * the old root from before we joined the transaction is deleted when the 400 * transaction commits. 401 */ 402 static int record_root_in_trans(struct btrfs_trans_handle *trans, 403 struct btrfs_root *root, 404 int force) 405 { 406 struct btrfs_fs_info *fs_info = root->fs_info; 407 int ret = 0; 408 409 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 410 root->last_trans < trans->transid) || force) { 411 WARN_ON(!force && root->commit_root != root->node); 412 413 /* 414 * see below for IN_TRANS_SETUP usage rules 415 * we have the reloc mutex held now, so there 416 * is only one writer in this function 417 */ 418 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 419 420 /* make sure readers find IN_TRANS_SETUP before 421 * they find our root->last_trans update 422 */ 423 smp_wmb(); 424 425 spin_lock(&fs_info->fs_roots_radix_lock); 426 if (root->last_trans == trans->transid && !force) { 427 spin_unlock(&fs_info->fs_roots_radix_lock); 428 return 0; 429 } 430 radix_tree_tag_set(&fs_info->fs_roots_radix, 431 (unsigned long)root->root_key.objectid, 432 BTRFS_ROOT_TRANS_TAG); 433 spin_unlock(&fs_info->fs_roots_radix_lock); 434 root->last_trans = trans->transid; 435 436 /* this is pretty tricky. We don't want to 437 * take the relocation lock in btrfs_record_root_in_trans 438 * unless we're really doing the first setup for this root in 439 * this transaction. 440 * 441 * Normally we'd use root->last_trans as a flag to decide 442 * if we want to take the expensive mutex. 443 * 444 * But, we have to set root->last_trans before we 445 * init the relocation root, otherwise, we trip over warnings 446 * in ctree.c. The solution used here is to flag ourselves 447 * with root IN_TRANS_SETUP. When this is 1, we're still 448 * fixing up the reloc trees and everyone must wait. 449 * 450 * When this is zero, they can trust root->last_trans and fly 451 * through btrfs_record_root_in_trans without having to take the 452 * lock. smp_wmb() makes sure that all the writes above are 453 * done before we pop in the zero below 454 */ 455 ret = btrfs_init_reloc_root(trans, root); 456 smp_mb__before_atomic(); 457 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 458 } 459 return ret; 460 } 461 462 463 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans, 464 struct btrfs_root *root) 465 { 466 struct btrfs_fs_info *fs_info = root->fs_info; 467 struct btrfs_transaction *cur_trans = trans->transaction; 468 469 /* Add ourselves to the transaction dropped list */ 470 spin_lock(&cur_trans->dropped_roots_lock); 471 list_add_tail(&root->root_list, &cur_trans->dropped_roots); 472 spin_unlock(&cur_trans->dropped_roots_lock); 473 474 /* Make sure we don't try to update the root at commit time */ 475 spin_lock(&fs_info->fs_roots_radix_lock); 476 radix_tree_tag_clear(&fs_info->fs_roots_radix, 477 (unsigned long)root->root_key.objectid, 478 BTRFS_ROOT_TRANS_TAG); 479 spin_unlock(&fs_info->fs_roots_radix_lock); 480 } 481 482 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 483 struct btrfs_root *root) 484 { 485 struct btrfs_fs_info *fs_info = root->fs_info; 486 int ret; 487 488 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 489 return 0; 490 491 /* 492 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 493 * and barriers 494 */ 495 smp_rmb(); 496 if (root->last_trans == trans->transid && 497 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 498 return 0; 499 500 mutex_lock(&fs_info->reloc_mutex); 501 ret = record_root_in_trans(trans, root, 0); 502 mutex_unlock(&fs_info->reloc_mutex); 503 504 return ret; 505 } 506 507 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 508 { 509 return (trans->state >= TRANS_STATE_COMMIT_START && 510 trans->state < TRANS_STATE_UNBLOCKED && 511 !TRANS_ABORTED(trans)); 512 } 513 514 /* wait for commit against the current transaction to become unblocked 515 * when this is done, it is safe to start a new transaction, but the current 516 * transaction might not be fully on disk. 517 */ 518 static void wait_current_trans(struct btrfs_fs_info *fs_info) 519 { 520 struct btrfs_transaction *cur_trans; 521 522 spin_lock(&fs_info->trans_lock); 523 cur_trans = fs_info->running_transaction; 524 if (cur_trans && is_transaction_blocked(cur_trans)) { 525 refcount_inc(&cur_trans->use_count); 526 spin_unlock(&fs_info->trans_lock); 527 528 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 529 wait_event(fs_info->transaction_wait, 530 cur_trans->state >= TRANS_STATE_UNBLOCKED || 531 TRANS_ABORTED(cur_trans)); 532 btrfs_put_transaction(cur_trans); 533 } else { 534 spin_unlock(&fs_info->trans_lock); 535 } 536 } 537 538 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type) 539 { 540 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 541 return 0; 542 543 if (type == TRANS_START) 544 return 1; 545 546 return 0; 547 } 548 549 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 550 { 551 struct btrfs_fs_info *fs_info = root->fs_info; 552 553 if (!fs_info->reloc_ctl || 554 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) || 555 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 556 root->reloc_root) 557 return false; 558 559 return true; 560 } 561 562 static int btrfs_reserve_trans_metadata(struct btrfs_fs_info *fs_info, 563 enum btrfs_reserve_flush_enum flush, 564 u64 num_bytes, 565 u64 *delayed_refs_bytes) 566 { 567 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 568 struct btrfs_space_info *si = fs_info->trans_block_rsv.space_info; 569 u64 extra_delayed_refs_bytes = 0; 570 u64 bytes; 571 int ret; 572 573 /* 574 * If there's a gap between the size of the delayed refs reserve and 575 * its reserved space, than some tasks have added delayed refs or bumped 576 * its size otherwise (due to block group creation or removal, or block 577 * group item update). Also try to allocate that gap in order to prevent 578 * using (and possibly abusing) the global reserve when committing the 579 * transaction. 580 */ 581 if (flush == BTRFS_RESERVE_FLUSH_ALL && 582 !btrfs_block_rsv_full(delayed_refs_rsv)) { 583 spin_lock(&delayed_refs_rsv->lock); 584 if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) 585 extra_delayed_refs_bytes = delayed_refs_rsv->size - 586 delayed_refs_rsv->reserved; 587 spin_unlock(&delayed_refs_rsv->lock); 588 } 589 590 bytes = num_bytes + *delayed_refs_bytes + extra_delayed_refs_bytes; 591 592 /* 593 * We want to reserve all the bytes we may need all at once, so we only 594 * do 1 enospc flushing cycle per transaction start. 595 */ 596 ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush); 597 if (ret == 0) { 598 if (extra_delayed_refs_bytes > 0) 599 btrfs_migrate_to_delayed_refs_rsv(fs_info, 600 extra_delayed_refs_bytes); 601 return 0; 602 } 603 604 if (extra_delayed_refs_bytes > 0) { 605 bytes -= extra_delayed_refs_bytes; 606 ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush); 607 if (ret == 0) 608 return 0; 609 } 610 611 /* 612 * If we are an emergency flush, which can steal from the global block 613 * reserve, then attempt to not reserve space for the delayed refs, as 614 * we will consume space for them from the global block reserve. 615 */ 616 if (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL) { 617 bytes -= *delayed_refs_bytes; 618 *delayed_refs_bytes = 0; 619 ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush); 620 } 621 622 return ret; 623 } 624 625 static struct btrfs_trans_handle * 626 start_transaction(struct btrfs_root *root, unsigned int num_items, 627 unsigned int type, enum btrfs_reserve_flush_enum flush, 628 bool enforce_qgroups) 629 { 630 struct btrfs_fs_info *fs_info = root->fs_info; 631 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 632 struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv; 633 struct btrfs_trans_handle *h; 634 struct btrfs_transaction *cur_trans; 635 u64 num_bytes = 0; 636 u64 qgroup_reserved = 0; 637 u64 delayed_refs_bytes = 0; 638 bool reloc_reserved = false; 639 bool do_chunk_alloc = false; 640 int ret; 641 642 if (BTRFS_FS_ERROR(fs_info)) 643 return ERR_PTR(-EROFS); 644 645 if (current->journal_info) { 646 WARN_ON(type & TRANS_EXTWRITERS); 647 h = current->journal_info; 648 refcount_inc(&h->use_count); 649 WARN_ON(refcount_read(&h->use_count) > 2); 650 h->orig_rsv = h->block_rsv; 651 h->block_rsv = NULL; 652 goto got_it; 653 } 654 655 /* 656 * Do the reservation before we join the transaction so we can do all 657 * the appropriate flushing if need be. 658 */ 659 if (num_items && root != fs_info->chunk_root) { 660 qgroup_reserved = num_items * fs_info->nodesize; 661 /* 662 * Use prealloc for now, as there might be a currently running 663 * transaction that could free this reserved space prematurely 664 * by committing. 665 */ 666 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserved, 667 enforce_qgroups, false); 668 if (ret) 669 return ERR_PTR(ret); 670 671 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items); 672 /* 673 * If we plan to insert/update/delete "num_items" from a btree, 674 * we will also generate delayed refs for extent buffers in the 675 * respective btree paths, so reserve space for the delayed refs 676 * that will be generated by the caller as it modifies btrees. 677 * Try to reserve them to avoid excessive use of the global 678 * block reserve. 679 */ 680 delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info, num_items); 681 682 /* 683 * Do the reservation for the relocation root creation 684 */ 685 if (need_reserve_reloc_root(root)) { 686 num_bytes += fs_info->nodesize; 687 reloc_reserved = true; 688 } 689 690 ret = btrfs_reserve_trans_metadata(fs_info, flush, num_bytes, 691 &delayed_refs_bytes); 692 if (ret) 693 goto reserve_fail; 694 695 btrfs_block_rsv_add_bytes(trans_rsv, num_bytes, true); 696 697 if (trans_rsv->space_info->force_alloc) 698 do_chunk_alloc = true; 699 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL && 700 !btrfs_block_rsv_full(delayed_refs_rsv)) { 701 /* 702 * Some people call with btrfs_start_transaction(root, 0) 703 * because they can be throttled, but have some other mechanism 704 * for reserving space. We still want these guys to refill the 705 * delayed block_rsv so just add 1 items worth of reservation 706 * here. 707 */ 708 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush); 709 if (ret) 710 goto reserve_fail; 711 } 712 again: 713 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS); 714 if (!h) { 715 ret = -ENOMEM; 716 goto alloc_fail; 717 } 718 719 /* 720 * If we are JOIN_NOLOCK we're already committing a transaction and 721 * waiting on this guy, so we don't need to do the sb_start_intwrite 722 * because we're already holding a ref. We need this because we could 723 * have raced in and did an fsync() on a file which can kick a commit 724 * and then we deadlock with somebody doing a freeze. 725 * 726 * If we are ATTACH, it means we just want to catch the current 727 * transaction and commit it, so we needn't do sb_start_intwrite(). 728 */ 729 if (type & __TRANS_FREEZABLE) 730 sb_start_intwrite(fs_info->sb); 731 732 if (may_wait_transaction(fs_info, type)) 733 wait_current_trans(fs_info); 734 735 do { 736 ret = join_transaction(fs_info, type); 737 if (ret == -EBUSY) { 738 wait_current_trans(fs_info); 739 if (unlikely(type == TRANS_ATTACH || 740 type == TRANS_JOIN_NOSTART)) 741 ret = -ENOENT; 742 } 743 } while (ret == -EBUSY); 744 745 if (ret < 0) 746 goto join_fail; 747 748 cur_trans = fs_info->running_transaction; 749 750 h->transid = cur_trans->transid; 751 h->transaction = cur_trans; 752 refcount_set(&h->use_count, 1); 753 h->fs_info = root->fs_info; 754 755 h->type = type; 756 INIT_LIST_HEAD(&h->new_bgs); 757 btrfs_init_metadata_block_rsv(fs_info, &h->delayed_rsv, BTRFS_BLOCK_RSV_DELOPS); 758 759 smp_mb(); 760 if (cur_trans->state >= TRANS_STATE_COMMIT_START && 761 may_wait_transaction(fs_info, type)) { 762 current->journal_info = h; 763 btrfs_commit_transaction(h); 764 goto again; 765 } 766 767 if (num_bytes) { 768 trace_btrfs_space_reservation(fs_info, "transaction", 769 h->transid, num_bytes, 1); 770 h->block_rsv = trans_rsv; 771 h->bytes_reserved = num_bytes; 772 if (delayed_refs_bytes > 0) { 773 trace_btrfs_space_reservation(fs_info, 774 "local_delayed_refs_rsv", 775 h->transid, 776 delayed_refs_bytes, 1); 777 h->delayed_refs_bytes_reserved = delayed_refs_bytes; 778 btrfs_block_rsv_add_bytes(&h->delayed_rsv, delayed_refs_bytes, true); 779 delayed_refs_bytes = 0; 780 } 781 h->reloc_reserved = reloc_reserved; 782 } 783 784 /* 785 * Now that we have found a transaction to be a part of, convert the 786 * qgroup reservation from prealloc to pertrans. A different transaction 787 * can't race in and free our pertrans out from under us. 788 */ 789 if (qgroup_reserved) 790 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 791 792 got_it: 793 if (!current->journal_info) 794 current->journal_info = h; 795 796 /* 797 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to 798 * ALLOC_FORCE the first run through, and then we won't allocate for 799 * anybody else who races in later. We don't care about the return 800 * value here. 801 */ 802 if (do_chunk_alloc && num_bytes) { 803 u64 flags = h->block_rsv->space_info->flags; 804 805 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags), 806 CHUNK_ALLOC_NO_FORCE); 807 } 808 809 /* 810 * btrfs_record_root_in_trans() needs to alloc new extents, and may 811 * call btrfs_join_transaction() while we're also starting a 812 * transaction. 813 * 814 * Thus it need to be called after current->journal_info initialized, 815 * or we can deadlock. 816 */ 817 ret = btrfs_record_root_in_trans(h, root); 818 if (ret) { 819 /* 820 * The transaction handle is fully initialized and linked with 821 * other structures so it needs to be ended in case of errors, 822 * not just freed. 823 */ 824 btrfs_end_transaction(h); 825 return ERR_PTR(ret); 826 } 827 828 return h; 829 830 join_fail: 831 if (type & __TRANS_FREEZABLE) 832 sb_end_intwrite(fs_info->sb); 833 kmem_cache_free(btrfs_trans_handle_cachep, h); 834 alloc_fail: 835 if (num_bytes) 836 btrfs_block_rsv_release(fs_info, trans_rsv, num_bytes, NULL); 837 if (delayed_refs_bytes) 838 btrfs_space_info_free_bytes_may_use(fs_info, trans_rsv->space_info, 839 delayed_refs_bytes); 840 reserve_fail: 841 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 842 return ERR_PTR(ret); 843 } 844 845 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 846 unsigned int num_items) 847 { 848 return start_transaction(root, num_items, TRANS_START, 849 BTRFS_RESERVE_FLUSH_ALL, true); 850 } 851 852 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv( 853 struct btrfs_root *root, 854 unsigned int num_items) 855 { 856 return start_transaction(root, num_items, TRANS_START, 857 BTRFS_RESERVE_FLUSH_ALL_STEAL, false); 858 } 859 860 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 861 { 862 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH, 863 true); 864 } 865 866 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root) 867 { 868 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 869 BTRFS_RESERVE_NO_FLUSH, true); 870 } 871 872 /* 873 * Similar to regular join but it never starts a transaction when none is 874 * running or when there's a running one at a state >= TRANS_STATE_UNBLOCKED. 875 * This is similar to btrfs_attach_transaction() but it allows the join to 876 * happen if the transaction commit already started but it's not yet in the 877 * "doing" phase (the state is < TRANS_STATE_COMMIT_DOING). 878 */ 879 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root) 880 { 881 return start_transaction(root, 0, TRANS_JOIN_NOSTART, 882 BTRFS_RESERVE_NO_FLUSH, true); 883 } 884 885 /* 886 * Catch the running transaction. 887 * 888 * It is used when we want to commit the current the transaction, but 889 * don't want to start a new one. 890 * 891 * Note: If this function return -ENOENT, it just means there is no 892 * running transaction. But it is possible that the inactive transaction 893 * is still in the memory, not fully on disk. If you hope there is no 894 * inactive transaction in the fs when -ENOENT is returned, you should 895 * invoke 896 * btrfs_attach_transaction_barrier() 897 */ 898 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 899 { 900 return start_transaction(root, 0, TRANS_ATTACH, 901 BTRFS_RESERVE_NO_FLUSH, true); 902 } 903 904 /* 905 * Catch the running transaction. 906 * 907 * It is similar to the above function, the difference is this one 908 * will wait for all the inactive transactions until they fully 909 * complete. 910 */ 911 struct btrfs_trans_handle * 912 btrfs_attach_transaction_barrier(struct btrfs_root *root) 913 { 914 struct btrfs_trans_handle *trans; 915 916 trans = start_transaction(root, 0, TRANS_ATTACH, 917 BTRFS_RESERVE_NO_FLUSH, true); 918 if (trans == ERR_PTR(-ENOENT)) { 919 int ret; 920 921 ret = btrfs_wait_for_commit(root->fs_info, 0); 922 if (ret) 923 return ERR_PTR(ret); 924 } 925 926 return trans; 927 } 928 929 /* Wait for a transaction commit to reach at least the given state. */ 930 static noinline void wait_for_commit(struct btrfs_transaction *commit, 931 const enum btrfs_trans_state min_state) 932 { 933 struct btrfs_fs_info *fs_info = commit->fs_info; 934 u64 transid = commit->transid; 935 bool put = false; 936 937 /* 938 * At the moment this function is called with min_state either being 939 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED. 940 */ 941 if (min_state == TRANS_STATE_COMPLETED) 942 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED); 943 else 944 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 945 946 while (1) { 947 wait_event(commit->commit_wait, commit->state >= min_state); 948 if (put) 949 btrfs_put_transaction(commit); 950 951 if (min_state < TRANS_STATE_COMPLETED) 952 break; 953 954 /* 955 * A transaction isn't really completed until all of the 956 * previous transactions are completed, but with fsync we can 957 * end up with SUPER_COMMITTED transactions before a COMPLETED 958 * transaction. Wait for those. 959 */ 960 961 spin_lock(&fs_info->trans_lock); 962 commit = list_first_entry_or_null(&fs_info->trans_list, 963 struct btrfs_transaction, 964 list); 965 if (!commit || commit->transid > transid) { 966 spin_unlock(&fs_info->trans_lock); 967 break; 968 } 969 refcount_inc(&commit->use_count); 970 put = true; 971 spin_unlock(&fs_info->trans_lock); 972 } 973 } 974 975 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid) 976 { 977 struct btrfs_transaction *cur_trans = NULL, *t; 978 int ret = 0; 979 980 if (transid) { 981 if (transid <= btrfs_get_last_trans_committed(fs_info)) 982 goto out; 983 984 /* find specified transaction */ 985 spin_lock(&fs_info->trans_lock); 986 list_for_each_entry(t, &fs_info->trans_list, list) { 987 if (t->transid == transid) { 988 cur_trans = t; 989 refcount_inc(&cur_trans->use_count); 990 ret = 0; 991 break; 992 } 993 if (t->transid > transid) { 994 ret = 0; 995 break; 996 } 997 } 998 spin_unlock(&fs_info->trans_lock); 999 1000 /* 1001 * The specified transaction doesn't exist, or we 1002 * raced with btrfs_commit_transaction 1003 */ 1004 if (!cur_trans) { 1005 if (transid > btrfs_get_last_trans_committed(fs_info)) 1006 ret = -EINVAL; 1007 goto out; 1008 } 1009 } else { 1010 /* find newest transaction that is committing | committed */ 1011 spin_lock(&fs_info->trans_lock); 1012 list_for_each_entry_reverse(t, &fs_info->trans_list, 1013 list) { 1014 if (t->state >= TRANS_STATE_COMMIT_START) { 1015 if (t->state == TRANS_STATE_COMPLETED) 1016 break; 1017 cur_trans = t; 1018 refcount_inc(&cur_trans->use_count); 1019 break; 1020 } 1021 } 1022 spin_unlock(&fs_info->trans_lock); 1023 if (!cur_trans) 1024 goto out; /* nothing committing|committed */ 1025 } 1026 1027 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED); 1028 ret = cur_trans->aborted; 1029 btrfs_put_transaction(cur_trans); 1030 out: 1031 return ret; 1032 } 1033 1034 void btrfs_throttle(struct btrfs_fs_info *fs_info) 1035 { 1036 wait_current_trans(fs_info); 1037 } 1038 1039 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans) 1040 { 1041 struct btrfs_transaction *cur_trans = trans->transaction; 1042 1043 if (cur_trans->state >= TRANS_STATE_COMMIT_START || 1044 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags)) 1045 return true; 1046 1047 if (btrfs_check_space_for_delayed_refs(trans->fs_info)) 1048 return true; 1049 1050 return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50); 1051 } 1052 1053 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans) 1054 1055 { 1056 struct btrfs_fs_info *fs_info = trans->fs_info; 1057 1058 if (!trans->block_rsv) { 1059 ASSERT(!trans->bytes_reserved); 1060 ASSERT(!trans->delayed_refs_bytes_reserved); 1061 return; 1062 } 1063 1064 if (!trans->bytes_reserved) { 1065 ASSERT(!trans->delayed_refs_bytes_reserved); 1066 return; 1067 } 1068 1069 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv); 1070 trace_btrfs_space_reservation(fs_info, "transaction", 1071 trans->transid, trans->bytes_reserved, 0); 1072 btrfs_block_rsv_release(fs_info, trans->block_rsv, 1073 trans->bytes_reserved, NULL); 1074 trans->bytes_reserved = 0; 1075 1076 if (!trans->delayed_refs_bytes_reserved) 1077 return; 1078 1079 trace_btrfs_space_reservation(fs_info, "local_delayed_refs_rsv", 1080 trans->transid, 1081 trans->delayed_refs_bytes_reserved, 0); 1082 btrfs_block_rsv_release(fs_info, &trans->delayed_rsv, 1083 trans->delayed_refs_bytes_reserved, NULL); 1084 trans->delayed_refs_bytes_reserved = 0; 1085 } 1086 1087 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 1088 int throttle) 1089 { 1090 struct btrfs_fs_info *info = trans->fs_info; 1091 struct btrfs_transaction *cur_trans = trans->transaction; 1092 int err = 0; 1093 1094 if (refcount_read(&trans->use_count) > 1) { 1095 refcount_dec(&trans->use_count); 1096 trans->block_rsv = trans->orig_rsv; 1097 return 0; 1098 } 1099 1100 btrfs_trans_release_metadata(trans); 1101 trans->block_rsv = NULL; 1102 1103 btrfs_create_pending_block_groups(trans); 1104 1105 btrfs_trans_release_chunk_metadata(trans); 1106 1107 if (trans->type & __TRANS_FREEZABLE) 1108 sb_end_intwrite(info->sb); 1109 1110 WARN_ON(cur_trans != info->running_transaction); 1111 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 1112 atomic_dec(&cur_trans->num_writers); 1113 extwriter_counter_dec(cur_trans, trans->type); 1114 1115 cond_wake_up(&cur_trans->writer_wait); 1116 1117 btrfs_lockdep_release(info, btrfs_trans_num_extwriters); 1118 btrfs_lockdep_release(info, btrfs_trans_num_writers); 1119 1120 btrfs_put_transaction(cur_trans); 1121 1122 if (current->journal_info == trans) 1123 current->journal_info = NULL; 1124 1125 if (throttle) 1126 btrfs_run_delayed_iputs(info); 1127 1128 if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) { 1129 wake_up_process(info->transaction_kthread); 1130 if (TRANS_ABORTED(trans)) 1131 err = trans->aborted; 1132 else 1133 err = -EROFS; 1134 } 1135 1136 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1137 return err; 1138 } 1139 1140 int btrfs_end_transaction(struct btrfs_trans_handle *trans) 1141 { 1142 return __btrfs_end_transaction(trans, 0); 1143 } 1144 1145 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans) 1146 { 1147 return __btrfs_end_transaction(trans, 1); 1148 } 1149 1150 /* 1151 * when btree blocks are allocated, they have some corresponding bits set for 1152 * them in one of two extent_io trees. This is used to make sure all of 1153 * those extents are sent to disk but does not wait on them 1154 */ 1155 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info, 1156 struct extent_io_tree *dirty_pages, int mark) 1157 { 1158 int err = 0; 1159 int werr = 0; 1160 struct address_space *mapping = fs_info->btree_inode->i_mapping; 1161 struct extent_state *cached_state = NULL; 1162 u64 start = 0; 1163 u64 end; 1164 1165 while (find_first_extent_bit(dirty_pages, start, &start, &end, 1166 mark, &cached_state)) { 1167 bool wait_writeback = false; 1168 1169 err = convert_extent_bit(dirty_pages, start, end, 1170 EXTENT_NEED_WAIT, 1171 mark, &cached_state); 1172 /* 1173 * convert_extent_bit can return -ENOMEM, which is most of the 1174 * time a temporary error. So when it happens, ignore the error 1175 * and wait for writeback of this range to finish - because we 1176 * failed to set the bit EXTENT_NEED_WAIT for the range, a call 1177 * to __btrfs_wait_marked_extents() would not know that 1178 * writeback for this range started and therefore wouldn't 1179 * wait for it to finish - we don't want to commit a 1180 * superblock that points to btree nodes/leafs for which 1181 * writeback hasn't finished yet (and without errors). 1182 * We cleanup any entries left in the io tree when committing 1183 * the transaction (through extent_io_tree_release()). 1184 */ 1185 if (err == -ENOMEM) { 1186 err = 0; 1187 wait_writeback = true; 1188 } 1189 if (!err) 1190 err = filemap_fdatawrite_range(mapping, start, end); 1191 if (err) 1192 werr = err; 1193 else if (wait_writeback) 1194 werr = filemap_fdatawait_range(mapping, start, end); 1195 free_extent_state(cached_state); 1196 cached_state = NULL; 1197 cond_resched(); 1198 start = end + 1; 1199 } 1200 return werr; 1201 } 1202 1203 /* 1204 * when btree blocks are allocated, they have some corresponding bits set for 1205 * them in one of two extent_io trees. This is used to make sure all of 1206 * those extents are on disk for transaction or log commit. We wait 1207 * on all the pages and clear them from the dirty pages state tree 1208 */ 1209 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info, 1210 struct extent_io_tree *dirty_pages) 1211 { 1212 int err = 0; 1213 int werr = 0; 1214 struct address_space *mapping = fs_info->btree_inode->i_mapping; 1215 struct extent_state *cached_state = NULL; 1216 u64 start = 0; 1217 u64 end; 1218 1219 while (find_first_extent_bit(dirty_pages, start, &start, &end, 1220 EXTENT_NEED_WAIT, &cached_state)) { 1221 /* 1222 * Ignore -ENOMEM errors returned by clear_extent_bit(). 1223 * When committing the transaction, we'll remove any entries 1224 * left in the io tree. For a log commit, we don't remove them 1225 * after committing the log because the tree can be accessed 1226 * concurrently - we do it only at transaction commit time when 1227 * it's safe to do it (through extent_io_tree_release()). 1228 */ 1229 err = clear_extent_bit(dirty_pages, start, end, 1230 EXTENT_NEED_WAIT, &cached_state); 1231 if (err == -ENOMEM) 1232 err = 0; 1233 if (!err) 1234 err = filemap_fdatawait_range(mapping, start, end); 1235 if (err) 1236 werr = err; 1237 free_extent_state(cached_state); 1238 cached_state = NULL; 1239 cond_resched(); 1240 start = end + 1; 1241 } 1242 if (err) 1243 werr = err; 1244 return werr; 1245 } 1246 1247 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info, 1248 struct extent_io_tree *dirty_pages) 1249 { 1250 bool errors = false; 1251 int err; 1252 1253 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1254 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags)) 1255 errors = true; 1256 1257 if (errors && !err) 1258 err = -EIO; 1259 return err; 1260 } 1261 1262 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark) 1263 { 1264 struct btrfs_fs_info *fs_info = log_root->fs_info; 1265 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages; 1266 bool errors = false; 1267 int err; 1268 1269 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 1270 1271 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1272 if ((mark & EXTENT_DIRTY) && 1273 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags)) 1274 errors = true; 1275 1276 if ((mark & EXTENT_NEW) && 1277 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags)) 1278 errors = true; 1279 1280 if (errors && !err) 1281 err = -EIO; 1282 return err; 1283 } 1284 1285 /* 1286 * When btree blocks are allocated the corresponding extents are marked dirty. 1287 * This function ensures such extents are persisted on disk for transaction or 1288 * log commit. 1289 * 1290 * @trans: transaction whose dirty pages we'd like to write 1291 */ 1292 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans) 1293 { 1294 int ret; 1295 int ret2; 1296 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages; 1297 struct btrfs_fs_info *fs_info = trans->fs_info; 1298 struct blk_plug plug; 1299 1300 blk_start_plug(&plug); 1301 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY); 1302 blk_finish_plug(&plug); 1303 ret2 = btrfs_wait_extents(fs_info, dirty_pages); 1304 1305 extent_io_tree_release(&trans->transaction->dirty_pages); 1306 1307 if (ret) 1308 return ret; 1309 else if (ret2) 1310 return ret2; 1311 else 1312 return 0; 1313 } 1314 1315 /* 1316 * this is used to update the root pointer in the tree of tree roots. 1317 * 1318 * But, in the case of the extent allocation tree, updating the root 1319 * pointer may allocate blocks which may change the root of the extent 1320 * allocation tree. 1321 * 1322 * So, this loops and repeats and makes sure the cowonly root didn't 1323 * change while the root pointer was being updated in the metadata. 1324 */ 1325 static int update_cowonly_root(struct btrfs_trans_handle *trans, 1326 struct btrfs_root *root) 1327 { 1328 int ret; 1329 u64 old_root_bytenr; 1330 u64 old_root_used; 1331 struct btrfs_fs_info *fs_info = root->fs_info; 1332 struct btrfs_root *tree_root = fs_info->tree_root; 1333 1334 old_root_used = btrfs_root_used(&root->root_item); 1335 1336 while (1) { 1337 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 1338 if (old_root_bytenr == root->node->start && 1339 old_root_used == btrfs_root_used(&root->root_item)) 1340 break; 1341 1342 btrfs_set_root_node(&root->root_item, root->node); 1343 ret = btrfs_update_root(trans, tree_root, 1344 &root->root_key, 1345 &root->root_item); 1346 if (ret) 1347 return ret; 1348 1349 old_root_used = btrfs_root_used(&root->root_item); 1350 } 1351 1352 return 0; 1353 } 1354 1355 /* 1356 * update all the cowonly tree roots on disk 1357 * 1358 * The error handling in this function may not be obvious. Any of the 1359 * failures will cause the file system to go offline. We still need 1360 * to clean up the delayed refs. 1361 */ 1362 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans) 1363 { 1364 struct btrfs_fs_info *fs_info = trans->fs_info; 1365 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; 1366 struct list_head *io_bgs = &trans->transaction->io_bgs; 1367 struct list_head *next; 1368 struct extent_buffer *eb; 1369 int ret; 1370 1371 /* 1372 * At this point no one can be using this transaction to modify any tree 1373 * and no one can start another transaction to modify any tree either. 1374 */ 1375 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING); 1376 1377 eb = btrfs_lock_root_node(fs_info->tree_root); 1378 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 1379 0, &eb, BTRFS_NESTING_COW); 1380 btrfs_tree_unlock(eb); 1381 free_extent_buffer(eb); 1382 1383 if (ret) 1384 return ret; 1385 1386 ret = btrfs_run_dev_stats(trans); 1387 if (ret) 1388 return ret; 1389 ret = btrfs_run_dev_replace(trans); 1390 if (ret) 1391 return ret; 1392 ret = btrfs_run_qgroups(trans); 1393 if (ret) 1394 return ret; 1395 1396 ret = btrfs_setup_space_cache(trans); 1397 if (ret) 1398 return ret; 1399 1400 again: 1401 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1402 struct btrfs_root *root; 1403 next = fs_info->dirty_cowonly_roots.next; 1404 list_del_init(next); 1405 root = list_entry(next, struct btrfs_root, dirty_list); 1406 clear_bit(BTRFS_ROOT_DIRTY, &root->state); 1407 1408 list_add_tail(&root->dirty_list, 1409 &trans->transaction->switch_commits); 1410 ret = update_cowonly_root(trans, root); 1411 if (ret) 1412 return ret; 1413 } 1414 1415 /* Now flush any delayed refs generated by updating all of the roots */ 1416 ret = btrfs_run_delayed_refs(trans, U64_MAX); 1417 if (ret) 1418 return ret; 1419 1420 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { 1421 ret = btrfs_write_dirty_block_groups(trans); 1422 if (ret) 1423 return ret; 1424 1425 /* 1426 * We're writing the dirty block groups, which could generate 1427 * delayed refs, which could generate more dirty block groups, 1428 * so we want to keep this flushing in this loop to make sure 1429 * everything gets run. 1430 */ 1431 ret = btrfs_run_delayed_refs(trans, U64_MAX); 1432 if (ret) 1433 return ret; 1434 } 1435 1436 if (!list_empty(&fs_info->dirty_cowonly_roots)) 1437 goto again; 1438 1439 /* Update dev-replace pointer once everything is committed */ 1440 fs_info->dev_replace.committed_cursor_left = 1441 fs_info->dev_replace.cursor_left_last_write_of_item; 1442 1443 return 0; 1444 } 1445 1446 /* 1447 * If we had a pending drop we need to see if there are any others left in our 1448 * dead roots list, and if not clear our bit and wake any waiters. 1449 */ 1450 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info) 1451 { 1452 /* 1453 * We put the drop in progress roots at the front of the list, so if the 1454 * first entry doesn't have UNFINISHED_DROP set we can wake everybody 1455 * up. 1456 */ 1457 spin_lock(&fs_info->trans_lock); 1458 if (!list_empty(&fs_info->dead_roots)) { 1459 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots, 1460 struct btrfs_root, 1461 root_list); 1462 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) { 1463 spin_unlock(&fs_info->trans_lock); 1464 return; 1465 } 1466 } 1467 spin_unlock(&fs_info->trans_lock); 1468 1469 btrfs_wake_unfinished_drop(fs_info); 1470 } 1471 1472 /* 1473 * dead roots are old snapshots that need to be deleted. This allocates 1474 * a dirty root struct and adds it into the list of dead roots that need to 1475 * be deleted 1476 */ 1477 void btrfs_add_dead_root(struct btrfs_root *root) 1478 { 1479 struct btrfs_fs_info *fs_info = root->fs_info; 1480 1481 spin_lock(&fs_info->trans_lock); 1482 if (list_empty(&root->root_list)) { 1483 btrfs_grab_root(root); 1484 1485 /* We want to process the partially complete drops first. */ 1486 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) 1487 list_add(&root->root_list, &fs_info->dead_roots); 1488 else 1489 list_add_tail(&root->root_list, &fs_info->dead_roots); 1490 } 1491 spin_unlock(&fs_info->trans_lock); 1492 } 1493 1494 /* 1495 * Update each subvolume root and its relocation root, if it exists, in the tree 1496 * of tree roots. Also free log roots if they exist. 1497 */ 1498 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans) 1499 { 1500 struct btrfs_fs_info *fs_info = trans->fs_info; 1501 struct btrfs_root *gang[8]; 1502 int i; 1503 int ret; 1504 1505 /* 1506 * At this point no one can be using this transaction to modify any tree 1507 * and no one can start another transaction to modify any tree either. 1508 */ 1509 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING); 1510 1511 spin_lock(&fs_info->fs_roots_radix_lock); 1512 while (1) { 1513 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1514 (void **)gang, 0, 1515 ARRAY_SIZE(gang), 1516 BTRFS_ROOT_TRANS_TAG); 1517 if (ret == 0) 1518 break; 1519 for (i = 0; i < ret; i++) { 1520 struct btrfs_root *root = gang[i]; 1521 int ret2; 1522 1523 /* 1524 * At this point we can neither have tasks logging inodes 1525 * from a root nor trying to commit a log tree. 1526 */ 1527 ASSERT(atomic_read(&root->log_writers) == 0); 1528 ASSERT(atomic_read(&root->log_commit[0]) == 0); 1529 ASSERT(atomic_read(&root->log_commit[1]) == 0); 1530 1531 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1532 (unsigned long)root->root_key.objectid, 1533 BTRFS_ROOT_TRANS_TAG); 1534 spin_unlock(&fs_info->fs_roots_radix_lock); 1535 1536 btrfs_free_log(trans, root); 1537 ret2 = btrfs_update_reloc_root(trans, root); 1538 if (ret2) 1539 return ret2; 1540 1541 /* see comments in should_cow_block() */ 1542 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1543 smp_mb__after_atomic(); 1544 1545 if (root->commit_root != root->node) { 1546 list_add_tail(&root->dirty_list, 1547 &trans->transaction->switch_commits); 1548 btrfs_set_root_node(&root->root_item, 1549 root->node); 1550 } 1551 1552 ret2 = btrfs_update_root(trans, fs_info->tree_root, 1553 &root->root_key, 1554 &root->root_item); 1555 if (ret2) 1556 return ret2; 1557 spin_lock(&fs_info->fs_roots_radix_lock); 1558 btrfs_qgroup_free_meta_all_pertrans(root); 1559 } 1560 } 1561 spin_unlock(&fs_info->fs_roots_radix_lock); 1562 return 0; 1563 } 1564 1565 /* 1566 * Do all special snapshot related qgroup dirty hack. 1567 * 1568 * Will do all needed qgroup inherit and dirty hack like switch commit 1569 * roots inside one transaction and write all btree into disk, to make 1570 * qgroup works. 1571 */ 1572 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans, 1573 struct btrfs_root *src, 1574 struct btrfs_root *parent, 1575 struct btrfs_qgroup_inherit *inherit, 1576 u64 dst_objectid) 1577 { 1578 struct btrfs_fs_info *fs_info = src->fs_info; 1579 int ret; 1580 1581 /* 1582 * Save some performance in the case that qgroups are not enabled. If 1583 * this check races with the ioctl, rescan will kick in anyway. 1584 */ 1585 if (!btrfs_qgroup_full_accounting(fs_info)) 1586 return 0; 1587 1588 /* 1589 * Ensure dirty @src will be committed. Or, after coming 1590 * commit_fs_roots() and switch_commit_roots(), any dirty but not 1591 * recorded root will never be updated again, causing an outdated root 1592 * item. 1593 */ 1594 ret = record_root_in_trans(trans, src, 1); 1595 if (ret) 1596 return ret; 1597 1598 /* 1599 * btrfs_qgroup_inherit relies on a consistent view of the usage for the 1600 * src root, so we must run the delayed refs here. 1601 * 1602 * However this isn't particularly fool proof, because there's no 1603 * synchronization keeping us from changing the tree after this point 1604 * before we do the qgroup_inherit, or even from making changes while 1605 * we're doing the qgroup_inherit. But that's a problem for the future, 1606 * for now flush the delayed refs to narrow the race window where the 1607 * qgroup counters could end up wrong. 1608 */ 1609 ret = btrfs_run_delayed_refs(trans, U64_MAX); 1610 if (ret) { 1611 btrfs_abort_transaction(trans, ret); 1612 return ret; 1613 } 1614 1615 ret = commit_fs_roots(trans); 1616 if (ret) 1617 goto out; 1618 ret = btrfs_qgroup_account_extents(trans); 1619 if (ret < 0) 1620 goto out; 1621 1622 /* Now qgroup are all updated, we can inherit it to new qgroups */ 1623 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid, 1624 parent->root_key.objectid, inherit); 1625 if (ret < 0) 1626 goto out; 1627 1628 /* 1629 * Now we do a simplified commit transaction, which will: 1630 * 1) commit all subvolume and extent tree 1631 * To ensure all subvolume and extent tree have a valid 1632 * commit_root to accounting later insert_dir_item() 1633 * 2) write all btree blocks onto disk 1634 * This is to make sure later btree modification will be cowed 1635 * Or commit_root can be populated and cause wrong qgroup numbers 1636 * In this simplified commit, we don't really care about other trees 1637 * like chunk and root tree, as they won't affect qgroup. 1638 * And we don't write super to avoid half committed status. 1639 */ 1640 ret = commit_cowonly_roots(trans); 1641 if (ret) 1642 goto out; 1643 switch_commit_roots(trans); 1644 ret = btrfs_write_and_wait_transaction(trans); 1645 if (ret) 1646 btrfs_handle_fs_error(fs_info, ret, 1647 "Error while writing out transaction for qgroup"); 1648 1649 out: 1650 /* 1651 * Force parent root to be updated, as we recorded it before so its 1652 * last_trans == cur_transid. 1653 * Or it won't be committed again onto disk after later 1654 * insert_dir_item() 1655 */ 1656 if (!ret) 1657 ret = record_root_in_trans(trans, parent, 1); 1658 return ret; 1659 } 1660 1661 /* 1662 * new snapshots need to be created at a very specific time in the 1663 * transaction commit. This does the actual creation. 1664 * 1665 * Note: 1666 * If the error which may affect the commitment of the current transaction 1667 * happens, we should return the error number. If the error which just affect 1668 * the creation of the pending snapshots, just return 0. 1669 */ 1670 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1671 struct btrfs_pending_snapshot *pending) 1672 { 1673 1674 struct btrfs_fs_info *fs_info = trans->fs_info; 1675 struct btrfs_key key; 1676 struct btrfs_root_item *new_root_item; 1677 struct btrfs_root *tree_root = fs_info->tree_root; 1678 struct btrfs_root *root = pending->root; 1679 struct btrfs_root *parent_root; 1680 struct btrfs_block_rsv *rsv; 1681 struct inode *parent_inode = pending->dir; 1682 struct btrfs_path *path; 1683 struct btrfs_dir_item *dir_item; 1684 struct extent_buffer *tmp; 1685 struct extent_buffer *old; 1686 struct timespec64 cur_time; 1687 int ret = 0; 1688 u64 to_reserve = 0; 1689 u64 index = 0; 1690 u64 objectid; 1691 u64 root_flags; 1692 unsigned int nofs_flags; 1693 struct fscrypt_name fname; 1694 1695 ASSERT(pending->path); 1696 path = pending->path; 1697 1698 ASSERT(pending->root_item); 1699 new_root_item = pending->root_item; 1700 1701 /* 1702 * We're inside a transaction and must make sure that any potential 1703 * allocations with GFP_KERNEL in fscrypt won't recurse back to 1704 * filesystem. 1705 */ 1706 nofs_flags = memalloc_nofs_save(); 1707 pending->error = fscrypt_setup_filename(parent_inode, 1708 &pending->dentry->d_name, 0, 1709 &fname); 1710 memalloc_nofs_restore(nofs_flags); 1711 if (pending->error) 1712 goto free_pending; 1713 1714 pending->error = btrfs_get_free_objectid(tree_root, &objectid); 1715 if (pending->error) 1716 goto free_fname; 1717 1718 /* 1719 * Make qgroup to skip current new snapshot's qgroupid, as it is 1720 * accounted by later btrfs_qgroup_inherit(). 1721 */ 1722 btrfs_set_skip_qgroup(trans, objectid); 1723 1724 btrfs_reloc_pre_snapshot(pending, &to_reserve); 1725 1726 if (to_reserve > 0) { 1727 pending->error = btrfs_block_rsv_add(fs_info, 1728 &pending->block_rsv, 1729 to_reserve, 1730 BTRFS_RESERVE_NO_FLUSH); 1731 if (pending->error) 1732 goto clear_skip_qgroup; 1733 } 1734 1735 key.objectid = objectid; 1736 key.offset = (u64)-1; 1737 key.type = BTRFS_ROOT_ITEM_KEY; 1738 1739 rsv = trans->block_rsv; 1740 trans->block_rsv = &pending->block_rsv; 1741 trans->bytes_reserved = trans->block_rsv->reserved; 1742 trace_btrfs_space_reservation(fs_info, "transaction", 1743 trans->transid, 1744 trans->bytes_reserved, 1); 1745 parent_root = BTRFS_I(parent_inode)->root; 1746 ret = record_root_in_trans(trans, parent_root, 0); 1747 if (ret) 1748 goto fail; 1749 cur_time = current_time(parent_inode); 1750 1751 /* 1752 * insert the directory item 1753 */ 1754 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index); 1755 if (ret) { 1756 btrfs_abort_transaction(trans, ret); 1757 goto fail; 1758 } 1759 1760 /* check if there is a file/dir which has the same name. */ 1761 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1762 btrfs_ino(BTRFS_I(parent_inode)), 1763 &fname.disk_name, 0); 1764 if (dir_item != NULL && !IS_ERR(dir_item)) { 1765 pending->error = -EEXIST; 1766 goto dir_item_existed; 1767 } else if (IS_ERR(dir_item)) { 1768 ret = PTR_ERR(dir_item); 1769 btrfs_abort_transaction(trans, ret); 1770 goto fail; 1771 } 1772 btrfs_release_path(path); 1773 1774 ret = btrfs_create_qgroup(trans, objectid); 1775 if (ret && ret != -EEXIST) { 1776 btrfs_abort_transaction(trans, ret); 1777 goto fail; 1778 } 1779 1780 /* 1781 * pull in the delayed directory update 1782 * and the delayed inode item 1783 * otherwise we corrupt the FS during 1784 * snapshot 1785 */ 1786 ret = btrfs_run_delayed_items(trans); 1787 if (ret) { /* Transaction aborted */ 1788 btrfs_abort_transaction(trans, ret); 1789 goto fail; 1790 } 1791 1792 ret = record_root_in_trans(trans, root, 0); 1793 if (ret) { 1794 btrfs_abort_transaction(trans, ret); 1795 goto fail; 1796 } 1797 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1798 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1799 btrfs_check_and_init_root_item(new_root_item); 1800 1801 root_flags = btrfs_root_flags(new_root_item); 1802 if (pending->readonly) 1803 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1804 else 1805 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1806 btrfs_set_root_flags(new_root_item, root_flags); 1807 1808 btrfs_set_root_generation_v2(new_root_item, 1809 trans->transid); 1810 generate_random_guid(new_root_item->uuid); 1811 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1812 BTRFS_UUID_SIZE); 1813 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1814 memset(new_root_item->received_uuid, 0, 1815 sizeof(new_root_item->received_uuid)); 1816 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1817 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1818 btrfs_set_root_stransid(new_root_item, 0); 1819 btrfs_set_root_rtransid(new_root_item, 0); 1820 } 1821 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1822 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1823 btrfs_set_root_otransid(new_root_item, trans->transid); 1824 1825 old = btrfs_lock_root_node(root); 1826 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old, 1827 BTRFS_NESTING_COW); 1828 if (ret) { 1829 btrfs_tree_unlock(old); 1830 free_extent_buffer(old); 1831 btrfs_abort_transaction(trans, ret); 1832 goto fail; 1833 } 1834 1835 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1836 /* clean up in any case */ 1837 btrfs_tree_unlock(old); 1838 free_extent_buffer(old); 1839 if (ret) { 1840 btrfs_abort_transaction(trans, ret); 1841 goto fail; 1842 } 1843 /* see comments in should_cow_block() */ 1844 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1845 smp_wmb(); 1846 1847 btrfs_set_root_node(new_root_item, tmp); 1848 /* record when the snapshot was created in key.offset */ 1849 key.offset = trans->transid; 1850 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1851 btrfs_tree_unlock(tmp); 1852 free_extent_buffer(tmp); 1853 if (ret) { 1854 btrfs_abort_transaction(trans, ret); 1855 goto fail; 1856 } 1857 1858 /* 1859 * insert root back/forward references 1860 */ 1861 ret = btrfs_add_root_ref(trans, objectid, 1862 parent_root->root_key.objectid, 1863 btrfs_ino(BTRFS_I(parent_inode)), index, 1864 &fname.disk_name); 1865 if (ret) { 1866 btrfs_abort_transaction(trans, ret); 1867 goto fail; 1868 } 1869 1870 key.offset = (u64)-1; 1871 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev); 1872 if (IS_ERR(pending->snap)) { 1873 ret = PTR_ERR(pending->snap); 1874 pending->snap = NULL; 1875 btrfs_abort_transaction(trans, ret); 1876 goto fail; 1877 } 1878 1879 ret = btrfs_reloc_post_snapshot(trans, pending); 1880 if (ret) { 1881 btrfs_abort_transaction(trans, ret); 1882 goto fail; 1883 } 1884 1885 /* 1886 * Do special qgroup accounting for snapshot, as we do some qgroup 1887 * snapshot hack to do fast snapshot. 1888 * To co-operate with that hack, we do hack again. 1889 * Or snapshot will be greatly slowed down by a subtree qgroup rescan 1890 */ 1891 if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_FULL) 1892 ret = qgroup_account_snapshot(trans, root, parent_root, 1893 pending->inherit, objectid); 1894 else if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE) 1895 ret = btrfs_qgroup_inherit(trans, root->root_key.objectid, objectid, 1896 parent_root->root_key.objectid, pending->inherit); 1897 if (ret < 0) 1898 goto fail; 1899 1900 ret = btrfs_insert_dir_item(trans, &fname.disk_name, 1901 BTRFS_I(parent_inode), &key, BTRFS_FT_DIR, 1902 index); 1903 /* We have check then name at the beginning, so it is impossible. */ 1904 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1905 if (ret) { 1906 btrfs_abort_transaction(trans, ret); 1907 goto fail; 1908 } 1909 1910 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size + 1911 fname.disk_name.len * 2); 1912 inode_set_mtime_to_ts(parent_inode, 1913 inode_set_ctime_current(parent_inode)); 1914 ret = btrfs_update_inode_fallback(trans, BTRFS_I(parent_inode)); 1915 if (ret) { 1916 btrfs_abort_transaction(trans, ret); 1917 goto fail; 1918 } 1919 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid, 1920 BTRFS_UUID_KEY_SUBVOL, 1921 objectid); 1922 if (ret) { 1923 btrfs_abort_transaction(trans, ret); 1924 goto fail; 1925 } 1926 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1927 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid, 1928 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1929 objectid); 1930 if (ret && ret != -EEXIST) { 1931 btrfs_abort_transaction(trans, ret); 1932 goto fail; 1933 } 1934 } 1935 1936 fail: 1937 pending->error = ret; 1938 dir_item_existed: 1939 trans->block_rsv = rsv; 1940 trans->bytes_reserved = 0; 1941 clear_skip_qgroup: 1942 btrfs_clear_skip_qgroup(trans); 1943 free_fname: 1944 fscrypt_free_filename(&fname); 1945 free_pending: 1946 kfree(new_root_item); 1947 pending->root_item = NULL; 1948 btrfs_free_path(path); 1949 pending->path = NULL; 1950 1951 return ret; 1952 } 1953 1954 /* 1955 * create all the snapshots we've scheduled for creation 1956 */ 1957 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans) 1958 { 1959 struct btrfs_pending_snapshot *pending, *next; 1960 struct list_head *head = &trans->transaction->pending_snapshots; 1961 int ret = 0; 1962 1963 list_for_each_entry_safe(pending, next, head, list) { 1964 list_del(&pending->list); 1965 ret = create_pending_snapshot(trans, pending); 1966 if (ret) 1967 break; 1968 } 1969 return ret; 1970 } 1971 1972 static void update_super_roots(struct btrfs_fs_info *fs_info) 1973 { 1974 struct btrfs_root_item *root_item; 1975 struct btrfs_super_block *super; 1976 1977 super = fs_info->super_copy; 1978 1979 root_item = &fs_info->chunk_root->root_item; 1980 super->chunk_root = root_item->bytenr; 1981 super->chunk_root_generation = root_item->generation; 1982 super->chunk_root_level = root_item->level; 1983 1984 root_item = &fs_info->tree_root->root_item; 1985 super->root = root_item->bytenr; 1986 super->generation = root_item->generation; 1987 super->root_level = root_item->level; 1988 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 1989 super->cache_generation = root_item->generation; 1990 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags)) 1991 super->cache_generation = 0; 1992 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags)) 1993 super->uuid_tree_generation = root_item->generation; 1994 } 1995 1996 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1997 { 1998 struct btrfs_transaction *trans; 1999 int ret = 0; 2000 2001 spin_lock(&info->trans_lock); 2002 trans = info->running_transaction; 2003 if (trans) 2004 ret = (trans->state >= TRANS_STATE_COMMIT_START); 2005 spin_unlock(&info->trans_lock); 2006 return ret; 2007 } 2008 2009 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 2010 { 2011 struct btrfs_transaction *trans; 2012 int ret = 0; 2013 2014 spin_lock(&info->trans_lock); 2015 trans = info->running_transaction; 2016 if (trans) 2017 ret = is_transaction_blocked(trans); 2018 spin_unlock(&info->trans_lock); 2019 return ret; 2020 } 2021 2022 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans) 2023 { 2024 struct btrfs_fs_info *fs_info = trans->fs_info; 2025 struct btrfs_transaction *cur_trans; 2026 2027 /* Kick the transaction kthread. */ 2028 set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags); 2029 wake_up_process(fs_info->transaction_kthread); 2030 2031 /* take transaction reference */ 2032 cur_trans = trans->transaction; 2033 refcount_inc(&cur_trans->use_count); 2034 2035 btrfs_end_transaction(trans); 2036 2037 /* 2038 * Wait for the current transaction commit to start and block 2039 * subsequent transaction joins 2040 */ 2041 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2042 wait_event(fs_info->transaction_blocked_wait, 2043 cur_trans->state >= TRANS_STATE_COMMIT_START || 2044 TRANS_ABORTED(cur_trans)); 2045 btrfs_put_transaction(cur_trans); 2046 } 2047 2048 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err) 2049 { 2050 struct btrfs_fs_info *fs_info = trans->fs_info; 2051 struct btrfs_transaction *cur_trans = trans->transaction; 2052 2053 WARN_ON(refcount_read(&trans->use_count) > 1); 2054 2055 btrfs_abort_transaction(trans, err); 2056 2057 spin_lock(&fs_info->trans_lock); 2058 2059 /* 2060 * If the transaction is removed from the list, it means this 2061 * transaction has been committed successfully, so it is impossible 2062 * to call the cleanup function. 2063 */ 2064 BUG_ON(list_empty(&cur_trans->list)); 2065 2066 if (cur_trans == fs_info->running_transaction) { 2067 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2068 spin_unlock(&fs_info->trans_lock); 2069 2070 /* 2071 * The thread has already released the lockdep map as reader 2072 * already in btrfs_commit_transaction(). 2073 */ 2074 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers); 2075 wait_event(cur_trans->writer_wait, 2076 atomic_read(&cur_trans->num_writers) == 1); 2077 2078 spin_lock(&fs_info->trans_lock); 2079 } 2080 2081 /* 2082 * Now that we know no one else is still using the transaction we can 2083 * remove the transaction from the list of transactions. This avoids 2084 * the transaction kthread from cleaning up the transaction while some 2085 * other task is still using it, which could result in a use-after-free 2086 * on things like log trees, as it forces the transaction kthread to 2087 * wait for this transaction to be cleaned up by us. 2088 */ 2089 list_del_init(&cur_trans->list); 2090 2091 spin_unlock(&fs_info->trans_lock); 2092 2093 btrfs_cleanup_one_transaction(trans->transaction, fs_info); 2094 2095 spin_lock(&fs_info->trans_lock); 2096 if (cur_trans == fs_info->running_transaction) 2097 fs_info->running_transaction = NULL; 2098 spin_unlock(&fs_info->trans_lock); 2099 2100 if (trans->type & __TRANS_FREEZABLE) 2101 sb_end_intwrite(fs_info->sb); 2102 btrfs_put_transaction(cur_trans); 2103 btrfs_put_transaction(cur_trans); 2104 2105 trace_btrfs_transaction_commit(fs_info); 2106 2107 if (current->journal_info == trans) 2108 current->journal_info = NULL; 2109 2110 /* 2111 * If relocation is running, we can't cancel scrub because that will 2112 * result in a deadlock. Before relocating a block group, relocation 2113 * pauses scrub, then starts and commits a transaction before unpausing 2114 * scrub. If the transaction commit is being done by the relocation 2115 * task or triggered by another task and the relocation task is waiting 2116 * for the commit, and we end up here due to an error in the commit 2117 * path, then calling btrfs_scrub_cancel() will deadlock, as we are 2118 * asking for scrub to stop while having it asked to be paused higher 2119 * above in relocation code. 2120 */ 2121 if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 2122 btrfs_scrub_cancel(fs_info); 2123 2124 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2125 } 2126 2127 /* 2128 * Release reserved delayed ref space of all pending block groups of the 2129 * transaction and remove them from the list 2130 */ 2131 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans) 2132 { 2133 struct btrfs_fs_info *fs_info = trans->fs_info; 2134 struct btrfs_block_group *block_group, *tmp; 2135 2136 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 2137 btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info); 2138 list_del_init(&block_group->bg_list); 2139 } 2140 } 2141 2142 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info) 2143 { 2144 /* 2145 * We use try_to_writeback_inodes_sb() here because if we used 2146 * btrfs_start_delalloc_roots we would deadlock with fs freeze. 2147 * Currently are holding the fs freeze lock, if we do an async flush 2148 * we'll do btrfs_join_transaction() and deadlock because we need to 2149 * wait for the fs freeze lock. Using the direct flushing we benefit 2150 * from already being in a transaction and our join_transaction doesn't 2151 * have to re-take the fs freeze lock. 2152 * 2153 * Note that try_to_writeback_inodes_sb() will only trigger writeback 2154 * if it can read lock sb->s_umount. It will always be able to lock it, 2155 * except when the filesystem is being unmounted or being frozen, but in 2156 * those cases sync_filesystem() is called, which results in calling 2157 * writeback_inodes_sb() while holding a write lock on sb->s_umount. 2158 * Note that we don't call writeback_inodes_sb() directly, because it 2159 * will emit a warning if sb->s_umount is not locked. 2160 */ 2161 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 2162 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC); 2163 return 0; 2164 } 2165 2166 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info) 2167 { 2168 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 2169 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 2170 } 2171 2172 /* 2173 * Add a pending snapshot associated with the given transaction handle to the 2174 * respective handle. This must be called after the transaction commit started 2175 * and while holding fs_info->trans_lock. 2176 * This serves to guarantee a caller of btrfs_commit_transaction() that it can 2177 * safely free the pending snapshot pointer in case btrfs_commit_transaction() 2178 * returns an error. 2179 */ 2180 static void add_pending_snapshot(struct btrfs_trans_handle *trans) 2181 { 2182 struct btrfs_transaction *cur_trans = trans->transaction; 2183 2184 if (!trans->pending_snapshot) 2185 return; 2186 2187 lockdep_assert_held(&trans->fs_info->trans_lock); 2188 ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_PREP); 2189 2190 list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots); 2191 } 2192 2193 static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval) 2194 { 2195 fs_info->commit_stats.commit_count++; 2196 fs_info->commit_stats.last_commit_dur = interval; 2197 fs_info->commit_stats.max_commit_dur = 2198 max_t(u64, fs_info->commit_stats.max_commit_dur, interval); 2199 fs_info->commit_stats.total_commit_dur += interval; 2200 } 2201 2202 int btrfs_commit_transaction(struct btrfs_trans_handle *trans) 2203 { 2204 struct btrfs_fs_info *fs_info = trans->fs_info; 2205 struct btrfs_transaction *cur_trans = trans->transaction; 2206 struct btrfs_transaction *prev_trans = NULL; 2207 int ret; 2208 ktime_t start_time; 2209 ktime_t interval; 2210 2211 ASSERT(refcount_read(&trans->use_count) == 1); 2212 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2213 2214 clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags); 2215 2216 /* Stop the commit early if ->aborted is set */ 2217 if (TRANS_ABORTED(cur_trans)) { 2218 ret = cur_trans->aborted; 2219 goto lockdep_trans_commit_start_release; 2220 } 2221 2222 btrfs_trans_release_metadata(trans); 2223 trans->block_rsv = NULL; 2224 2225 /* 2226 * We only want one transaction commit doing the flushing so we do not 2227 * waste a bunch of time on lock contention on the extent root node. 2228 */ 2229 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING, 2230 &cur_trans->delayed_refs.flags)) { 2231 /* 2232 * Make a pass through all the delayed refs we have so far. 2233 * Any running threads may add more while we are here. 2234 */ 2235 ret = btrfs_run_delayed_refs(trans, 0); 2236 if (ret) 2237 goto lockdep_trans_commit_start_release; 2238 } 2239 2240 btrfs_create_pending_block_groups(trans); 2241 2242 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) { 2243 int run_it = 0; 2244 2245 /* this mutex is also taken before trying to set 2246 * block groups readonly. We need to make sure 2247 * that nobody has set a block group readonly 2248 * after a extents from that block group have been 2249 * allocated for cache files. btrfs_set_block_group_ro 2250 * will wait for the transaction to commit if it 2251 * finds BTRFS_TRANS_DIRTY_BG_RUN set. 2252 * 2253 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure 2254 * only one process starts all the block group IO. It wouldn't 2255 * hurt to have more than one go through, but there's no 2256 * real advantage to it either. 2257 */ 2258 mutex_lock(&fs_info->ro_block_group_mutex); 2259 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN, 2260 &cur_trans->flags)) 2261 run_it = 1; 2262 mutex_unlock(&fs_info->ro_block_group_mutex); 2263 2264 if (run_it) { 2265 ret = btrfs_start_dirty_block_groups(trans); 2266 if (ret) 2267 goto lockdep_trans_commit_start_release; 2268 } 2269 } 2270 2271 spin_lock(&fs_info->trans_lock); 2272 if (cur_trans->state >= TRANS_STATE_COMMIT_PREP) { 2273 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED; 2274 2275 add_pending_snapshot(trans); 2276 2277 spin_unlock(&fs_info->trans_lock); 2278 refcount_inc(&cur_trans->use_count); 2279 2280 if (trans->in_fsync) 2281 want_state = TRANS_STATE_SUPER_COMMITTED; 2282 2283 btrfs_trans_state_lockdep_release(fs_info, 2284 BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2285 ret = btrfs_end_transaction(trans); 2286 wait_for_commit(cur_trans, want_state); 2287 2288 if (TRANS_ABORTED(cur_trans)) 2289 ret = cur_trans->aborted; 2290 2291 btrfs_put_transaction(cur_trans); 2292 2293 return ret; 2294 } 2295 2296 cur_trans->state = TRANS_STATE_COMMIT_PREP; 2297 wake_up(&fs_info->transaction_blocked_wait); 2298 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2299 2300 if (cur_trans->list.prev != &fs_info->trans_list) { 2301 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED; 2302 2303 if (trans->in_fsync) 2304 want_state = TRANS_STATE_SUPER_COMMITTED; 2305 2306 prev_trans = list_entry(cur_trans->list.prev, 2307 struct btrfs_transaction, list); 2308 if (prev_trans->state < want_state) { 2309 refcount_inc(&prev_trans->use_count); 2310 spin_unlock(&fs_info->trans_lock); 2311 2312 wait_for_commit(prev_trans, want_state); 2313 2314 ret = READ_ONCE(prev_trans->aborted); 2315 2316 btrfs_put_transaction(prev_trans); 2317 if (ret) 2318 goto lockdep_release; 2319 spin_lock(&fs_info->trans_lock); 2320 } 2321 } else { 2322 /* 2323 * The previous transaction was aborted and was already removed 2324 * from the list of transactions at fs_info->trans_list. So we 2325 * abort to prevent writing a new superblock that reflects a 2326 * corrupt state (pointing to trees with unwritten nodes/leafs). 2327 */ 2328 if (BTRFS_FS_ERROR(fs_info)) { 2329 spin_unlock(&fs_info->trans_lock); 2330 ret = -EROFS; 2331 goto lockdep_release; 2332 } 2333 } 2334 2335 cur_trans->state = TRANS_STATE_COMMIT_START; 2336 wake_up(&fs_info->transaction_blocked_wait); 2337 spin_unlock(&fs_info->trans_lock); 2338 2339 /* 2340 * Get the time spent on the work done by the commit thread and not 2341 * the time spent waiting on a previous commit 2342 */ 2343 start_time = ktime_get_ns(); 2344 2345 extwriter_counter_dec(cur_trans, trans->type); 2346 2347 ret = btrfs_start_delalloc_flush(fs_info); 2348 if (ret) 2349 goto lockdep_release; 2350 2351 ret = btrfs_run_delayed_items(trans); 2352 if (ret) 2353 goto lockdep_release; 2354 2355 /* 2356 * The thread has started/joined the transaction thus it holds the 2357 * lockdep map as a reader. It has to release it before acquiring the 2358 * lockdep map as a writer. 2359 */ 2360 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters); 2361 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters); 2362 wait_event(cur_trans->writer_wait, 2363 extwriter_counter_read(cur_trans) == 0); 2364 2365 /* some pending stuffs might be added after the previous flush. */ 2366 ret = btrfs_run_delayed_items(trans); 2367 if (ret) { 2368 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 2369 goto cleanup_transaction; 2370 } 2371 2372 btrfs_wait_delalloc_flush(fs_info); 2373 2374 /* 2375 * Wait for all ordered extents started by a fast fsync that joined this 2376 * transaction. Otherwise if this transaction commits before the ordered 2377 * extents complete we lose logged data after a power failure. 2378 */ 2379 btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered); 2380 wait_event(cur_trans->pending_wait, 2381 atomic_read(&cur_trans->pending_ordered) == 0); 2382 2383 btrfs_scrub_pause(fs_info); 2384 /* 2385 * Ok now we need to make sure to block out any other joins while we 2386 * commit the transaction. We could have started a join before setting 2387 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 2388 */ 2389 spin_lock(&fs_info->trans_lock); 2390 add_pending_snapshot(trans); 2391 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2392 spin_unlock(&fs_info->trans_lock); 2393 2394 /* 2395 * The thread has started/joined the transaction thus it holds the 2396 * lockdep map as a reader. It has to release it before acquiring the 2397 * lockdep map as a writer. 2398 */ 2399 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 2400 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers); 2401 wait_event(cur_trans->writer_wait, 2402 atomic_read(&cur_trans->num_writers) == 1); 2403 2404 /* 2405 * Make lockdep happy by acquiring the state locks after 2406 * btrfs_trans_num_writers is released. If we acquired the state locks 2407 * before releasing the btrfs_trans_num_writers lock then lockdep would 2408 * complain because we did not follow the reverse order unlocking rule. 2409 */ 2410 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED); 2411 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2412 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2413 2414 /* 2415 * We've started the commit, clear the flag in case we were triggered to 2416 * do an async commit but somebody else started before the transaction 2417 * kthread could do the work. 2418 */ 2419 clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags); 2420 2421 if (TRANS_ABORTED(cur_trans)) { 2422 ret = cur_trans->aborted; 2423 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2424 goto scrub_continue; 2425 } 2426 /* 2427 * the reloc mutex makes sure that we stop 2428 * the balancing code from coming in and moving 2429 * extents around in the middle of the commit 2430 */ 2431 mutex_lock(&fs_info->reloc_mutex); 2432 2433 /* 2434 * We needn't worry about the delayed items because we will 2435 * deal with them in create_pending_snapshot(), which is the 2436 * core function of the snapshot creation. 2437 */ 2438 ret = create_pending_snapshots(trans); 2439 if (ret) 2440 goto unlock_reloc; 2441 2442 /* 2443 * We insert the dir indexes of the snapshots and update the inode 2444 * of the snapshots' parents after the snapshot creation, so there 2445 * are some delayed items which are not dealt with. Now deal with 2446 * them. 2447 * 2448 * We needn't worry that this operation will corrupt the snapshots, 2449 * because all the tree which are snapshoted will be forced to COW 2450 * the nodes and leaves. 2451 */ 2452 ret = btrfs_run_delayed_items(trans); 2453 if (ret) 2454 goto unlock_reloc; 2455 2456 ret = btrfs_run_delayed_refs(trans, U64_MAX); 2457 if (ret) 2458 goto unlock_reloc; 2459 2460 /* 2461 * make sure none of the code above managed to slip in a 2462 * delayed item 2463 */ 2464 btrfs_assert_delayed_root_empty(fs_info); 2465 2466 WARN_ON(cur_trans != trans->transaction); 2467 2468 ret = commit_fs_roots(trans); 2469 if (ret) 2470 goto unlock_reloc; 2471 2472 /* commit_fs_roots gets rid of all the tree log roots, it is now 2473 * safe to free the root of tree log roots 2474 */ 2475 btrfs_free_log_root_tree(trans, fs_info); 2476 2477 /* 2478 * Since fs roots are all committed, we can get a quite accurate 2479 * new_roots. So let's do quota accounting. 2480 */ 2481 ret = btrfs_qgroup_account_extents(trans); 2482 if (ret < 0) 2483 goto unlock_reloc; 2484 2485 ret = commit_cowonly_roots(trans); 2486 if (ret) 2487 goto unlock_reloc; 2488 2489 /* 2490 * The tasks which save the space cache and inode cache may also 2491 * update ->aborted, check it. 2492 */ 2493 if (TRANS_ABORTED(cur_trans)) { 2494 ret = cur_trans->aborted; 2495 goto unlock_reloc; 2496 } 2497 2498 cur_trans = fs_info->running_transaction; 2499 2500 btrfs_set_root_node(&fs_info->tree_root->root_item, 2501 fs_info->tree_root->node); 2502 list_add_tail(&fs_info->tree_root->dirty_list, 2503 &cur_trans->switch_commits); 2504 2505 btrfs_set_root_node(&fs_info->chunk_root->root_item, 2506 fs_info->chunk_root->node); 2507 list_add_tail(&fs_info->chunk_root->dirty_list, 2508 &cur_trans->switch_commits); 2509 2510 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2511 btrfs_set_root_node(&fs_info->block_group_root->root_item, 2512 fs_info->block_group_root->node); 2513 list_add_tail(&fs_info->block_group_root->dirty_list, 2514 &cur_trans->switch_commits); 2515 } 2516 2517 switch_commit_roots(trans); 2518 2519 ASSERT(list_empty(&cur_trans->dirty_bgs)); 2520 ASSERT(list_empty(&cur_trans->io_bgs)); 2521 update_super_roots(fs_info); 2522 2523 btrfs_set_super_log_root(fs_info->super_copy, 0); 2524 btrfs_set_super_log_root_level(fs_info->super_copy, 0); 2525 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2526 sizeof(*fs_info->super_copy)); 2527 2528 btrfs_commit_device_sizes(cur_trans); 2529 2530 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 2531 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 2532 2533 btrfs_trans_release_chunk_metadata(trans); 2534 2535 /* 2536 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and 2537 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to 2538 * make sure that before we commit our superblock, no other task can 2539 * start a new transaction and commit a log tree before we commit our 2540 * superblock. Anyone trying to commit a log tree locks this mutex before 2541 * writing its superblock. 2542 */ 2543 mutex_lock(&fs_info->tree_log_mutex); 2544 2545 spin_lock(&fs_info->trans_lock); 2546 cur_trans->state = TRANS_STATE_UNBLOCKED; 2547 fs_info->running_transaction = NULL; 2548 spin_unlock(&fs_info->trans_lock); 2549 mutex_unlock(&fs_info->reloc_mutex); 2550 2551 wake_up(&fs_info->transaction_wait); 2552 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2553 2554 /* If we have features changed, wake up the cleaner to update sysfs. */ 2555 if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) && 2556 fs_info->cleaner_kthread) 2557 wake_up_process(fs_info->cleaner_kthread); 2558 2559 ret = btrfs_write_and_wait_transaction(trans); 2560 if (ret) { 2561 btrfs_handle_fs_error(fs_info, ret, 2562 "Error while writing out transaction"); 2563 mutex_unlock(&fs_info->tree_log_mutex); 2564 goto scrub_continue; 2565 } 2566 2567 ret = write_all_supers(fs_info, 0); 2568 /* 2569 * the super is written, we can safely allow the tree-loggers 2570 * to go about their business 2571 */ 2572 mutex_unlock(&fs_info->tree_log_mutex); 2573 if (ret) 2574 goto scrub_continue; 2575 2576 /* 2577 * We needn't acquire the lock here because there is no other task 2578 * which can change it. 2579 */ 2580 cur_trans->state = TRANS_STATE_SUPER_COMMITTED; 2581 wake_up(&cur_trans->commit_wait); 2582 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2583 2584 btrfs_finish_extent_commit(trans); 2585 2586 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags)) 2587 btrfs_clear_space_info_full(fs_info); 2588 2589 btrfs_set_last_trans_committed(fs_info, cur_trans->transid); 2590 /* 2591 * We needn't acquire the lock here because there is no other task 2592 * which can change it. 2593 */ 2594 cur_trans->state = TRANS_STATE_COMPLETED; 2595 wake_up(&cur_trans->commit_wait); 2596 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED); 2597 2598 spin_lock(&fs_info->trans_lock); 2599 list_del_init(&cur_trans->list); 2600 spin_unlock(&fs_info->trans_lock); 2601 2602 btrfs_put_transaction(cur_trans); 2603 btrfs_put_transaction(cur_trans); 2604 2605 if (trans->type & __TRANS_FREEZABLE) 2606 sb_end_intwrite(fs_info->sb); 2607 2608 trace_btrfs_transaction_commit(fs_info); 2609 2610 interval = ktime_get_ns() - start_time; 2611 2612 btrfs_scrub_continue(fs_info); 2613 2614 if (current->journal_info == trans) 2615 current->journal_info = NULL; 2616 2617 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2618 2619 update_commit_stats(fs_info, interval); 2620 2621 return ret; 2622 2623 unlock_reloc: 2624 mutex_unlock(&fs_info->reloc_mutex); 2625 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2626 scrub_continue: 2627 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2628 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED); 2629 btrfs_scrub_continue(fs_info); 2630 cleanup_transaction: 2631 btrfs_trans_release_metadata(trans); 2632 btrfs_cleanup_pending_block_groups(trans); 2633 btrfs_trans_release_chunk_metadata(trans); 2634 trans->block_rsv = NULL; 2635 btrfs_warn(fs_info, "Skipping commit of aborted transaction."); 2636 if (current->journal_info == trans) 2637 current->journal_info = NULL; 2638 cleanup_transaction(trans, ret); 2639 2640 return ret; 2641 2642 lockdep_release: 2643 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters); 2644 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 2645 goto cleanup_transaction; 2646 2647 lockdep_trans_commit_start_release: 2648 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2649 btrfs_end_transaction(trans); 2650 return ret; 2651 } 2652 2653 /* 2654 * return < 0 if error 2655 * 0 if there are no more dead_roots at the time of call 2656 * 1 there are more to be processed, call me again 2657 * 2658 * The return value indicates there are certainly more snapshots to delete, but 2659 * if there comes a new one during processing, it may return 0. We don't mind, 2660 * because btrfs_commit_super will poke cleaner thread and it will process it a 2661 * few seconds later. 2662 */ 2663 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info) 2664 { 2665 struct btrfs_root *root; 2666 int ret; 2667 2668 spin_lock(&fs_info->trans_lock); 2669 if (list_empty(&fs_info->dead_roots)) { 2670 spin_unlock(&fs_info->trans_lock); 2671 return 0; 2672 } 2673 root = list_first_entry(&fs_info->dead_roots, 2674 struct btrfs_root, root_list); 2675 list_del_init(&root->root_list); 2676 spin_unlock(&fs_info->trans_lock); 2677 2678 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid); 2679 2680 btrfs_kill_all_delayed_nodes(root); 2681 2682 if (btrfs_header_backref_rev(root->node) < 2683 BTRFS_MIXED_BACKREF_REV) 2684 ret = btrfs_drop_snapshot(root, 0, 0); 2685 else 2686 ret = btrfs_drop_snapshot(root, 1, 0); 2687 2688 btrfs_put_root(root); 2689 return (ret < 0) ? 0 : 1; 2690 } 2691 2692 /* 2693 * We only mark the transaction aborted and then set the file system read-only. 2694 * This will prevent new transactions from starting or trying to join this 2695 * one. 2696 * 2697 * This means that error recovery at the call site is limited to freeing 2698 * any local memory allocations and passing the error code up without 2699 * further cleanup. The transaction should complete as it normally would 2700 * in the call path but will return -EIO. 2701 * 2702 * We'll complete the cleanup in btrfs_end_transaction and 2703 * btrfs_commit_transaction. 2704 */ 2705 void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 2706 const char *function, 2707 unsigned int line, int error, bool first_hit) 2708 { 2709 struct btrfs_fs_info *fs_info = trans->fs_info; 2710 2711 WRITE_ONCE(trans->aborted, error); 2712 WRITE_ONCE(trans->transaction->aborted, error); 2713 if (first_hit && error == -ENOSPC) 2714 btrfs_dump_space_info_for_trans_abort(fs_info); 2715 /* Wake up anybody who may be waiting on this transaction */ 2716 wake_up(&fs_info->transaction_wait); 2717 wake_up(&fs_info->transaction_blocked_wait); 2718 __btrfs_handle_fs_error(fs_info, function, line, error, NULL); 2719 } 2720 2721 int __init btrfs_transaction_init(void) 2722 { 2723 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 2724 sizeof(struct btrfs_trans_handle), 0, 2725 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 2726 if (!btrfs_trans_handle_cachep) 2727 return -ENOMEM; 2728 return 0; 2729 } 2730 2731 void __cold btrfs_transaction_exit(void) 2732 { 2733 kmem_cache_destroy(btrfs_trans_handle_cachep); 2734 } 2735