xref: /linux/fs/btrfs/transaction.c (revision db1ecca22edf27c5a3dd66af406c88b5b5ac7cc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/writeback.h>
11 #include <linux/pagemap.h>
12 #include <linux/blkdev.h>
13 #include <linux/uuid.h>
14 #include <linux/timekeeping.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "disk-io.h"
18 #include "transaction.h"
19 #include "locking.h"
20 #include "tree-log.h"
21 #include "volumes.h"
22 #include "dev-replace.h"
23 #include "qgroup.h"
24 #include "block-group.h"
25 #include "space-info.h"
26 #include "zoned.h"
27 #include "fs.h"
28 #include "accessors.h"
29 #include "extent-tree.h"
30 #include "root-tree.h"
31 #include "defrag.h"
32 #include "dir-item.h"
33 #include "uuid-tree.h"
34 #include "ioctl.h"
35 #include "relocation.h"
36 #include "scrub.h"
37 
38 static struct kmem_cache *btrfs_trans_handle_cachep;
39 
40 /*
41  * Transaction states and transitions
42  *
43  * No running transaction (fs tree blocks are not modified)
44  * |
45  * | To next stage:
46  * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
47  * V
48  * Transaction N [[TRANS_STATE_RUNNING]]
49  * |
50  * | New trans handles can be attached to transaction N by calling all
51  * | start_transaction() variants.
52  * |
53  * | To next stage:
54  * |  Call btrfs_commit_transaction() on any trans handle attached to
55  * |  transaction N
56  * V
57  * Transaction N [[TRANS_STATE_COMMIT_PREP]]
58  * |
59  * | If there are simultaneous calls to btrfs_commit_transaction() one will win
60  * | the race and the rest will wait for the winner to commit the transaction.
61  * |
62  * | The winner will wait for previous running transaction to completely finish
63  * | if there is one.
64  * |
65  * Transaction N [[TRANS_STATE_COMMIT_START]]
66  * |
67  * | Then one of the following happens:
68  * | - Wait for all other trans handle holders to release.
69  * |   The btrfs_commit_transaction() caller will do the commit work.
70  * | - Wait for current transaction to be committed by others.
71  * |   Other btrfs_commit_transaction() caller will do the commit work.
72  * |
73  * | At this stage, only btrfs_join_transaction*() variants can attach
74  * | to this running transaction.
75  * | All other variants will wait for current one to finish and attach to
76  * | transaction N+1.
77  * |
78  * | To next stage:
79  * |  Caller is chosen to commit transaction N, and all other trans handle
80  * |  haven been released.
81  * V
82  * Transaction N [[TRANS_STATE_COMMIT_DOING]]
83  * |
84  * | The heavy lifting transaction work is started.
85  * | From running delayed refs (modifying extent tree) to creating pending
86  * | snapshots, running qgroups.
87  * | In short, modify supporting trees to reflect modifications of subvolume
88  * | trees.
89  * |
90  * | At this stage, all start_transaction() calls will wait for this
91  * | transaction to finish and attach to transaction N+1.
92  * |
93  * | To next stage:
94  * |  Until all supporting trees are updated.
95  * V
96  * Transaction N [[TRANS_STATE_UNBLOCKED]]
97  * |						    Transaction N+1
98  * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
99  * | need to write them back to disk and update	    |
100  * | super blocks.				    |
101  * |						    |
102  * | At this stage, new transaction is allowed to   |
103  * | start.					    |
104  * | All new start_transaction() calls will be	    |
105  * | attached to transid N+1.			    |
106  * |						    |
107  * | To next stage:				    |
108  * |  Until all tree blocks are super blocks are    |
109  * |  written to block devices			    |
110  * V						    |
111  * Transaction N [[TRANS_STATE_COMPLETED]]	    V
112  *   All tree blocks and super blocks are written.  Transaction N+1
113  *   This transaction is finished and all its	    [[TRANS_STATE_COMMIT_START]]
114  *   data structures will be cleaned up.	    | Life goes on
115  */
116 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
117 	[TRANS_STATE_RUNNING]		= 0U,
118 	[TRANS_STATE_COMMIT_PREP]	= 0U,
119 	[TRANS_STATE_COMMIT_START]	= (__TRANS_START | __TRANS_ATTACH),
120 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_START |
121 					   __TRANS_ATTACH |
122 					   __TRANS_JOIN |
123 					   __TRANS_JOIN_NOSTART),
124 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_START |
125 					   __TRANS_ATTACH |
126 					   __TRANS_JOIN |
127 					   __TRANS_JOIN_NOLOCK |
128 					   __TRANS_JOIN_NOSTART),
129 	[TRANS_STATE_SUPER_COMMITTED]	= (__TRANS_START |
130 					   __TRANS_ATTACH |
131 					   __TRANS_JOIN |
132 					   __TRANS_JOIN_NOLOCK |
133 					   __TRANS_JOIN_NOSTART),
134 	[TRANS_STATE_COMPLETED]		= (__TRANS_START |
135 					   __TRANS_ATTACH |
136 					   __TRANS_JOIN |
137 					   __TRANS_JOIN_NOLOCK |
138 					   __TRANS_JOIN_NOSTART),
139 };
140 
141 void btrfs_put_transaction(struct btrfs_transaction *transaction)
142 {
143 	WARN_ON(refcount_read(&transaction->use_count) == 0);
144 	if (refcount_dec_and_test(&transaction->use_count)) {
145 		BUG_ON(!list_empty(&transaction->list));
146 		WARN_ON(!RB_EMPTY_ROOT(
147 				&transaction->delayed_refs.href_root.rb_root));
148 		WARN_ON(!RB_EMPTY_ROOT(
149 				&transaction->delayed_refs.dirty_extent_root));
150 		if (transaction->delayed_refs.pending_csums)
151 			btrfs_err(transaction->fs_info,
152 				  "pending csums is %llu",
153 				  transaction->delayed_refs.pending_csums);
154 		/*
155 		 * If any block groups are found in ->deleted_bgs then it's
156 		 * because the transaction was aborted and a commit did not
157 		 * happen (things failed before writing the new superblock
158 		 * and calling btrfs_finish_extent_commit()), so we can not
159 		 * discard the physical locations of the block groups.
160 		 */
161 		while (!list_empty(&transaction->deleted_bgs)) {
162 			struct btrfs_block_group *cache;
163 
164 			cache = list_first_entry(&transaction->deleted_bgs,
165 						 struct btrfs_block_group,
166 						 bg_list);
167 			list_del_init(&cache->bg_list);
168 			btrfs_unfreeze_block_group(cache);
169 			btrfs_put_block_group(cache);
170 		}
171 		WARN_ON(!list_empty(&transaction->dev_update_list));
172 		kfree(transaction);
173 	}
174 }
175 
176 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
177 {
178 	struct btrfs_transaction *cur_trans = trans->transaction;
179 	struct btrfs_fs_info *fs_info = trans->fs_info;
180 	struct btrfs_root *root, *tmp;
181 
182 	/*
183 	 * At this point no one can be using this transaction to modify any tree
184 	 * and no one can start another transaction to modify any tree either.
185 	 */
186 	ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
187 
188 	down_write(&fs_info->commit_root_sem);
189 
190 	if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
191 		fs_info->last_reloc_trans = trans->transid;
192 
193 	list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
194 				 dirty_list) {
195 		list_del_init(&root->dirty_list);
196 		free_extent_buffer(root->commit_root);
197 		root->commit_root = btrfs_root_node(root);
198 		extent_io_tree_release(&root->dirty_log_pages);
199 		btrfs_qgroup_clean_swapped_blocks(root);
200 	}
201 
202 	/* We can free old roots now. */
203 	spin_lock(&cur_trans->dropped_roots_lock);
204 	while (!list_empty(&cur_trans->dropped_roots)) {
205 		root = list_first_entry(&cur_trans->dropped_roots,
206 					struct btrfs_root, root_list);
207 		list_del_init(&root->root_list);
208 		spin_unlock(&cur_trans->dropped_roots_lock);
209 		btrfs_free_log(trans, root);
210 		btrfs_drop_and_free_fs_root(fs_info, root);
211 		spin_lock(&cur_trans->dropped_roots_lock);
212 	}
213 	spin_unlock(&cur_trans->dropped_roots_lock);
214 
215 	up_write(&fs_info->commit_root_sem);
216 }
217 
218 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
219 					 unsigned int type)
220 {
221 	if (type & TRANS_EXTWRITERS)
222 		atomic_inc(&trans->num_extwriters);
223 }
224 
225 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
226 					 unsigned int type)
227 {
228 	if (type & TRANS_EXTWRITERS)
229 		atomic_dec(&trans->num_extwriters);
230 }
231 
232 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
233 					  unsigned int type)
234 {
235 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
236 }
237 
238 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
239 {
240 	return atomic_read(&trans->num_extwriters);
241 }
242 
243 /*
244  * To be called after doing the chunk btree updates right after allocating a new
245  * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
246  * chunk after all chunk btree updates and after finishing the second phase of
247  * chunk allocation (btrfs_create_pending_block_groups()) in case some block
248  * group had its chunk item insertion delayed to the second phase.
249  */
250 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
251 {
252 	struct btrfs_fs_info *fs_info = trans->fs_info;
253 
254 	if (!trans->chunk_bytes_reserved)
255 		return;
256 
257 	btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
258 				trans->chunk_bytes_reserved, NULL);
259 	trans->chunk_bytes_reserved = 0;
260 }
261 
262 /*
263  * either allocate a new transaction or hop into the existing one
264  */
265 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
266 				     unsigned int type)
267 {
268 	struct btrfs_transaction *cur_trans;
269 
270 	spin_lock(&fs_info->trans_lock);
271 loop:
272 	/* The file system has been taken offline. No new transactions. */
273 	if (BTRFS_FS_ERROR(fs_info)) {
274 		spin_unlock(&fs_info->trans_lock);
275 		return -EROFS;
276 	}
277 
278 	cur_trans = fs_info->running_transaction;
279 	if (cur_trans) {
280 		if (TRANS_ABORTED(cur_trans)) {
281 			spin_unlock(&fs_info->trans_lock);
282 			return cur_trans->aborted;
283 		}
284 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
285 			spin_unlock(&fs_info->trans_lock);
286 			return -EBUSY;
287 		}
288 		refcount_inc(&cur_trans->use_count);
289 		atomic_inc(&cur_trans->num_writers);
290 		extwriter_counter_inc(cur_trans, type);
291 		spin_unlock(&fs_info->trans_lock);
292 		btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
293 		btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
294 		return 0;
295 	}
296 	spin_unlock(&fs_info->trans_lock);
297 
298 	/*
299 	 * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the
300 	 * current transaction, and commit it. If there is no transaction, just
301 	 * return ENOENT.
302 	 */
303 	if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART)
304 		return -ENOENT;
305 
306 	/*
307 	 * JOIN_NOLOCK only happens during the transaction commit, so
308 	 * it is impossible that ->running_transaction is NULL
309 	 */
310 	BUG_ON(type == TRANS_JOIN_NOLOCK);
311 
312 	cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
313 	if (!cur_trans)
314 		return -ENOMEM;
315 
316 	btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
317 	btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
318 
319 	spin_lock(&fs_info->trans_lock);
320 	if (fs_info->running_transaction) {
321 		/*
322 		 * someone started a transaction after we unlocked.  Make sure
323 		 * to redo the checks above
324 		 */
325 		btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
326 		btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
327 		kfree(cur_trans);
328 		goto loop;
329 	} else if (BTRFS_FS_ERROR(fs_info)) {
330 		spin_unlock(&fs_info->trans_lock);
331 		btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
332 		btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
333 		kfree(cur_trans);
334 		return -EROFS;
335 	}
336 
337 	cur_trans->fs_info = fs_info;
338 	atomic_set(&cur_trans->pending_ordered, 0);
339 	init_waitqueue_head(&cur_trans->pending_wait);
340 	atomic_set(&cur_trans->num_writers, 1);
341 	extwriter_counter_init(cur_trans, type);
342 	init_waitqueue_head(&cur_trans->writer_wait);
343 	init_waitqueue_head(&cur_trans->commit_wait);
344 	cur_trans->state = TRANS_STATE_RUNNING;
345 	/*
346 	 * One for this trans handle, one so it will live on until we
347 	 * commit the transaction.
348 	 */
349 	refcount_set(&cur_trans->use_count, 2);
350 	cur_trans->flags = 0;
351 	cur_trans->start_time = ktime_get_seconds();
352 
353 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
354 
355 	cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
356 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
357 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
358 
359 	/*
360 	 * although the tree mod log is per file system and not per transaction,
361 	 * the log must never go across transaction boundaries.
362 	 */
363 	smp_mb();
364 	if (!list_empty(&fs_info->tree_mod_seq_list))
365 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
366 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
367 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
368 	atomic64_set(&fs_info->tree_mod_seq, 0);
369 
370 	spin_lock_init(&cur_trans->delayed_refs.lock);
371 
372 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
373 	INIT_LIST_HEAD(&cur_trans->dev_update_list);
374 	INIT_LIST_HEAD(&cur_trans->switch_commits);
375 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
376 	INIT_LIST_HEAD(&cur_trans->io_bgs);
377 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
378 	mutex_init(&cur_trans->cache_write_mutex);
379 	spin_lock_init(&cur_trans->dirty_bgs_lock);
380 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
381 	spin_lock_init(&cur_trans->dropped_roots_lock);
382 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
383 	extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
384 			IO_TREE_TRANS_DIRTY_PAGES);
385 	extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
386 			IO_TREE_FS_PINNED_EXTENTS);
387 	btrfs_set_fs_generation(fs_info, fs_info->generation + 1);
388 	cur_trans->transid = fs_info->generation;
389 	fs_info->running_transaction = cur_trans;
390 	cur_trans->aborted = 0;
391 	spin_unlock(&fs_info->trans_lock);
392 
393 	return 0;
394 }
395 
396 /*
397  * This does all the record keeping required to make sure that a shareable root
398  * is properly recorded in a given transaction.  This is required to make sure
399  * the old root from before we joined the transaction is deleted when the
400  * transaction commits.
401  */
402 static int record_root_in_trans(struct btrfs_trans_handle *trans,
403 			       struct btrfs_root *root,
404 			       int force)
405 {
406 	struct btrfs_fs_info *fs_info = root->fs_info;
407 	int ret = 0;
408 
409 	if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
410 	    root->last_trans < trans->transid) || force) {
411 		WARN_ON(!force && root->commit_root != root->node);
412 
413 		/*
414 		 * see below for IN_TRANS_SETUP usage rules
415 		 * we have the reloc mutex held now, so there
416 		 * is only one writer in this function
417 		 */
418 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
419 
420 		/* make sure readers find IN_TRANS_SETUP before
421 		 * they find our root->last_trans update
422 		 */
423 		smp_wmb();
424 
425 		spin_lock(&fs_info->fs_roots_radix_lock);
426 		if (root->last_trans == trans->transid && !force) {
427 			spin_unlock(&fs_info->fs_roots_radix_lock);
428 			return 0;
429 		}
430 		radix_tree_tag_set(&fs_info->fs_roots_radix,
431 				   (unsigned long)root->root_key.objectid,
432 				   BTRFS_ROOT_TRANS_TAG);
433 		spin_unlock(&fs_info->fs_roots_radix_lock);
434 		root->last_trans = trans->transid;
435 
436 		/* this is pretty tricky.  We don't want to
437 		 * take the relocation lock in btrfs_record_root_in_trans
438 		 * unless we're really doing the first setup for this root in
439 		 * this transaction.
440 		 *
441 		 * Normally we'd use root->last_trans as a flag to decide
442 		 * if we want to take the expensive mutex.
443 		 *
444 		 * But, we have to set root->last_trans before we
445 		 * init the relocation root, otherwise, we trip over warnings
446 		 * in ctree.c.  The solution used here is to flag ourselves
447 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
448 		 * fixing up the reloc trees and everyone must wait.
449 		 *
450 		 * When this is zero, they can trust root->last_trans and fly
451 		 * through btrfs_record_root_in_trans without having to take the
452 		 * lock.  smp_wmb() makes sure that all the writes above are
453 		 * done before we pop in the zero below
454 		 */
455 		ret = btrfs_init_reloc_root(trans, root);
456 		smp_mb__before_atomic();
457 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
458 	}
459 	return ret;
460 }
461 
462 
463 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
464 			    struct btrfs_root *root)
465 {
466 	struct btrfs_fs_info *fs_info = root->fs_info;
467 	struct btrfs_transaction *cur_trans = trans->transaction;
468 
469 	/* Add ourselves to the transaction dropped list */
470 	spin_lock(&cur_trans->dropped_roots_lock);
471 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
472 	spin_unlock(&cur_trans->dropped_roots_lock);
473 
474 	/* Make sure we don't try to update the root at commit time */
475 	spin_lock(&fs_info->fs_roots_radix_lock);
476 	radix_tree_tag_clear(&fs_info->fs_roots_radix,
477 			     (unsigned long)root->root_key.objectid,
478 			     BTRFS_ROOT_TRANS_TAG);
479 	spin_unlock(&fs_info->fs_roots_radix_lock);
480 }
481 
482 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
483 			       struct btrfs_root *root)
484 {
485 	struct btrfs_fs_info *fs_info = root->fs_info;
486 	int ret;
487 
488 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
489 		return 0;
490 
491 	/*
492 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
493 	 * and barriers
494 	 */
495 	smp_rmb();
496 	if (root->last_trans == trans->transid &&
497 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
498 		return 0;
499 
500 	mutex_lock(&fs_info->reloc_mutex);
501 	ret = record_root_in_trans(trans, root, 0);
502 	mutex_unlock(&fs_info->reloc_mutex);
503 
504 	return ret;
505 }
506 
507 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
508 {
509 	return (trans->state >= TRANS_STATE_COMMIT_START &&
510 		trans->state < TRANS_STATE_UNBLOCKED &&
511 		!TRANS_ABORTED(trans));
512 }
513 
514 /* wait for commit against the current transaction to become unblocked
515  * when this is done, it is safe to start a new transaction, but the current
516  * transaction might not be fully on disk.
517  */
518 static void wait_current_trans(struct btrfs_fs_info *fs_info)
519 {
520 	struct btrfs_transaction *cur_trans;
521 
522 	spin_lock(&fs_info->trans_lock);
523 	cur_trans = fs_info->running_transaction;
524 	if (cur_trans && is_transaction_blocked(cur_trans)) {
525 		refcount_inc(&cur_trans->use_count);
526 		spin_unlock(&fs_info->trans_lock);
527 
528 		btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
529 		wait_event(fs_info->transaction_wait,
530 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
531 			   TRANS_ABORTED(cur_trans));
532 		btrfs_put_transaction(cur_trans);
533 	} else {
534 		spin_unlock(&fs_info->trans_lock);
535 	}
536 }
537 
538 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
539 {
540 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
541 		return 0;
542 
543 	if (type == TRANS_START)
544 		return 1;
545 
546 	return 0;
547 }
548 
549 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
550 {
551 	struct btrfs_fs_info *fs_info = root->fs_info;
552 
553 	if (!fs_info->reloc_ctl ||
554 	    !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
555 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
556 	    root->reloc_root)
557 		return false;
558 
559 	return true;
560 }
561 
562 static int btrfs_reserve_trans_metadata(struct btrfs_fs_info *fs_info,
563 					enum btrfs_reserve_flush_enum flush,
564 					u64 num_bytes,
565 					u64 *delayed_refs_bytes)
566 {
567 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
568 	struct btrfs_space_info *si = fs_info->trans_block_rsv.space_info;
569 	u64 extra_delayed_refs_bytes = 0;
570 	u64 bytes;
571 	int ret;
572 
573 	/*
574 	 * If there's a gap between the size of the delayed refs reserve and
575 	 * its reserved space, than some tasks have added delayed refs or bumped
576 	 * its size otherwise (due to block group creation or removal, or block
577 	 * group item update). Also try to allocate that gap in order to prevent
578 	 * using (and possibly abusing) the global reserve when committing the
579 	 * transaction.
580 	 */
581 	if (flush == BTRFS_RESERVE_FLUSH_ALL &&
582 	    !btrfs_block_rsv_full(delayed_refs_rsv)) {
583 		spin_lock(&delayed_refs_rsv->lock);
584 		if (delayed_refs_rsv->size > delayed_refs_rsv->reserved)
585 			extra_delayed_refs_bytes = delayed_refs_rsv->size -
586 				delayed_refs_rsv->reserved;
587 		spin_unlock(&delayed_refs_rsv->lock);
588 	}
589 
590 	bytes = num_bytes + *delayed_refs_bytes + extra_delayed_refs_bytes;
591 
592 	/*
593 	 * We want to reserve all the bytes we may need all at once, so we only
594 	 * do 1 enospc flushing cycle per transaction start.
595 	 */
596 	ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
597 	if (ret == 0) {
598 		if (extra_delayed_refs_bytes > 0)
599 			btrfs_migrate_to_delayed_refs_rsv(fs_info,
600 							  extra_delayed_refs_bytes);
601 		return 0;
602 	}
603 
604 	if (extra_delayed_refs_bytes > 0) {
605 		bytes -= extra_delayed_refs_bytes;
606 		ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
607 		if (ret == 0)
608 			return 0;
609 	}
610 
611 	/*
612 	 * If we are an emergency flush, which can steal from the global block
613 	 * reserve, then attempt to not reserve space for the delayed refs, as
614 	 * we will consume space for them from the global block reserve.
615 	 */
616 	if (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL) {
617 		bytes -= *delayed_refs_bytes;
618 		*delayed_refs_bytes = 0;
619 		ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
620 	}
621 
622 	return ret;
623 }
624 
625 static struct btrfs_trans_handle *
626 start_transaction(struct btrfs_root *root, unsigned int num_items,
627 		  unsigned int type, enum btrfs_reserve_flush_enum flush,
628 		  bool enforce_qgroups)
629 {
630 	struct btrfs_fs_info *fs_info = root->fs_info;
631 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
632 	struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
633 	struct btrfs_trans_handle *h;
634 	struct btrfs_transaction *cur_trans;
635 	u64 num_bytes = 0;
636 	u64 qgroup_reserved = 0;
637 	u64 delayed_refs_bytes = 0;
638 	bool reloc_reserved = false;
639 	bool do_chunk_alloc = false;
640 	int ret;
641 
642 	if (BTRFS_FS_ERROR(fs_info))
643 		return ERR_PTR(-EROFS);
644 
645 	if (current->journal_info) {
646 		WARN_ON(type & TRANS_EXTWRITERS);
647 		h = current->journal_info;
648 		refcount_inc(&h->use_count);
649 		WARN_ON(refcount_read(&h->use_count) > 2);
650 		h->orig_rsv = h->block_rsv;
651 		h->block_rsv = NULL;
652 		goto got_it;
653 	}
654 
655 	/*
656 	 * Do the reservation before we join the transaction so we can do all
657 	 * the appropriate flushing if need be.
658 	 */
659 	if (num_items && root != fs_info->chunk_root) {
660 		qgroup_reserved = num_items * fs_info->nodesize;
661 		/*
662 		 * Use prealloc for now, as there might be a currently running
663 		 * transaction that could free this reserved space prematurely
664 		 * by committing.
665 		 */
666 		ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserved,
667 							 enforce_qgroups, false);
668 		if (ret)
669 			return ERR_PTR(ret);
670 
671 		num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
672 		/*
673 		 * If we plan to insert/update/delete "num_items" from a btree,
674 		 * we will also generate delayed refs for extent buffers in the
675 		 * respective btree paths, so reserve space for the delayed refs
676 		 * that will be generated by the caller as it modifies btrees.
677 		 * Try to reserve them to avoid excessive use of the global
678 		 * block reserve.
679 		 */
680 		delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info, num_items);
681 
682 		/*
683 		 * Do the reservation for the relocation root creation
684 		 */
685 		if (need_reserve_reloc_root(root)) {
686 			num_bytes += fs_info->nodesize;
687 			reloc_reserved = true;
688 		}
689 
690 		ret = btrfs_reserve_trans_metadata(fs_info, flush, num_bytes,
691 						   &delayed_refs_bytes);
692 		if (ret)
693 			goto reserve_fail;
694 
695 		btrfs_block_rsv_add_bytes(trans_rsv, num_bytes, true);
696 
697 		if (trans_rsv->space_info->force_alloc)
698 			do_chunk_alloc = true;
699 	} else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
700 		   !btrfs_block_rsv_full(delayed_refs_rsv)) {
701 		/*
702 		 * Some people call with btrfs_start_transaction(root, 0)
703 		 * because they can be throttled, but have some other mechanism
704 		 * for reserving space.  We still want these guys to refill the
705 		 * delayed block_rsv so just add 1 items worth of reservation
706 		 * here.
707 		 */
708 		ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
709 		if (ret)
710 			goto reserve_fail;
711 	}
712 again:
713 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
714 	if (!h) {
715 		ret = -ENOMEM;
716 		goto alloc_fail;
717 	}
718 
719 	/*
720 	 * If we are JOIN_NOLOCK we're already committing a transaction and
721 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
722 	 * because we're already holding a ref.  We need this because we could
723 	 * have raced in and did an fsync() on a file which can kick a commit
724 	 * and then we deadlock with somebody doing a freeze.
725 	 *
726 	 * If we are ATTACH, it means we just want to catch the current
727 	 * transaction and commit it, so we needn't do sb_start_intwrite().
728 	 */
729 	if (type & __TRANS_FREEZABLE)
730 		sb_start_intwrite(fs_info->sb);
731 
732 	if (may_wait_transaction(fs_info, type))
733 		wait_current_trans(fs_info);
734 
735 	do {
736 		ret = join_transaction(fs_info, type);
737 		if (ret == -EBUSY) {
738 			wait_current_trans(fs_info);
739 			if (unlikely(type == TRANS_ATTACH ||
740 				     type == TRANS_JOIN_NOSTART))
741 				ret = -ENOENT;
742 		}
743 	} while (ret == -EBUSY);
744 
745 	if (ret < 0)
746 		goto join_fail;
747 
748 	cur_trans = fs_info->running_transaction;
749 
750 	h->transid = cur_trans->transid;
751 	h->transaction = cur_trans;
752 	refcount_set(&h->use_count, 1);
753 	h->fs_info = root->fs_info;
754 
755 	h->type = type;
756 	INIT_LIST_HEAD(&h->new_bgs);
757 	btrfs_init_metadata_block_rsv(fs_info, &h->delayed_rsv, BTRFS_BLOCK_RSV_DELOPS);
758 
759 	smp_mb();
760 	if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
761 	    may_wait_transaction(fs_info, type)) {
762 		current->journal_info = h;
763 		btrfs_commit_transaction(h);
764 		goto again;
765 	}
766 
767 	if (num_bytes) {
768 		trace_btrfs_space_reservation(fs_info, "transaction",
769 					      h->transid, num_bytes, 1);
770 		h->block_rsv = trans_rsv;
771 		h->bytes_reserved = num_bytes;
772 		if (delayed_refs_bytes > 0) {
773 			trace_btrfs_space_reservation(fs_info,
774 						      "local_delayed_refs_rsv",
775 						      h->transid,
776 						      delayed_refs_bytes, 1);
777 			h->delayed_refs_bytes_reserved = delayed_refs_bytes;
778 			btrfs_block_rsv_add_bytes(&h->delayed_rsv, delayed_refs_bytes, true);
779 			delayed_refs_bytes = 0;
780 		}
781 		h->reloc_reserved = reloc_reserved;
782 	}
783 
784 	/*
785 	 * Now that we have found a transaction to be a part of, convert the
786 	 * qgroup reservation from prealloc to pertrans. A different transaction
787 	 * can't race in and free our pertrans out from under us.
788 	 */
789 	if (qgroup_reserved)
790 		btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
791 
792 got_it:
793 	if (!current->journal_info)
794 		current->journal_info = h;
795 
796 	/*
797 	 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
798 	 * ALLOC_FORCE the first run through, and then we won't allocate for
799 	 * anybody else who races in later.  We don't care about the return
800 	 * value here.
801 	 */
802 	if (do_chunk_alloc && num_bytes) {
803 		u64 flags = h->block_rsv->space_info->flags;
804 
805 		btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
806 				  CHUNK_ALLOC_NO_FORCE);
807 	}
808 
809 	/*
810 	 * btrfs_record_root_in_trans() needs to alloc new extents, and may
811 	 * call btrfs_join_transaction() while we're also starting a
812 	 * transaction.
813 	 *
814 	 * Thus it need to be called after current->journal_info initialized,
815 	 * or we can deadlock.
816 	 */
817 	ret = btrfs_record_root_in_trans(h, root);
818 	if (ret) {
819 		/*
820 		 * The transaction handle is fully initialized and linked with
821 		 * other structures so it needs to be ended in case of errors,
822 		 * not just freed.
823 		 */
824 		btrfs_end_transaction(h);
825 		return ERR_PTR(ret);
826 	}
827 
828 	return h;
829 
830 join_fail:
831 	if (type & __TRANS_FREEZABLE)
832 		sb_end_intwrite(fs_info->sb);
833 	kmem_cache_free(btrfs_trans_handle_cachep, h);
834 alloc_fail:
835 	if (num_bytes)
836 		btrfs_block_rsv_release(fs_info, trans_rsv, num_bytes, NULL);
837 	if (delayed_refs_bytes)
838 		btrfs_space_info_free_bytes_may_use(fs_info, trans_rsv->space_info,
839 						    delayed_refs_bytes);
840 reserve_fail:
841 	btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
842 	return ERR_PTR(ret);
843 }
844 
845 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
846 						   unsigned int num_items)
847 {
848 	return start_transaction(root, num_items, TRANS_START,
849 				 BTRFS_RESERVE_FLUSH_ALL, true);
850 }
851 
852 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
853 					struct btrfs_root *root,
854 					unsigned int num_items)
855 {
856 	return start_transaction(root, num_items, TRANS_START,
857 				 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
858 }
859 
860 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
861 {
862 	return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
863 				 true);
864 }
865 
866 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
867 {
868 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
869 				 BTRFS_RESERVE_NO_FLUSH, true);
870 }
871 
872 /*
873  * Similar to regular join but it never starts a transaction when none is
874  * running or when there's a running one at a state >= TRANS_STATE_UNBLOCKED.
875  * This is similar to btrfs_attach_transaction() but it allows the join to
876  * happen if the transaction commit already started but it's not yet in the
877  * "doing" phase (the state is < TRANS_STATE_COMMIT_DOING).
878  */
879 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
880 {
881 	return start_transaction(root, 0, TRANS_JOIN_NOSTART,
882 				 BTRFS_RESERVE_NO_FLUSH, true);
883 }
884 
885 /*
886  * Catch the running transaction.
887  *
888  * It is used when we want to commit the current the transaction, but
889  * don't want to start a new one.
890  *
891  * Note: If this function return -ENOENT, it just means there is no
892  * running transaction. But it is possible that the inactive transaction
893  * is still in the memory, not fully on disk. If you hope there is no
894  * inactive transaction in the fs when -ENOENT is returned, you should
895  * invoke
896  *     btrfs_attach_transaction_barrier()
897  */
898 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
899 {
900 	return start_transaction(root, 0, TRANS_ATTACH,
901 				 BTRFS_RESERVE_NO_FLUSH, true);
902 }
903 
904 /*
905  * Catch the running transaction.
906  *
907  * It is similar to the above function, the difference is this one
908  * will wait for all the inactive transactions until they fully
909  * complete.
910  */
911 struct btrfs_trans_handle *
912 btrfs_attach_transaction_barrier(struct btrfs_root *root)
913 {
914 	struct btrfs_trans_handle *trans;
915 
916 	trans = start_transaction(root, 0, TRANS_ATTACH,
917 				  BTRFS_RESERVE_NO_FLUSH, true);
918 	if (trans == ERR_PTR(-ENOENT)) {
919 		int ret;
920 
921 		ret = btrfs_wait_for_commit(root->fs_info, 0);
922 		if (ret)
923 			return ERR_PTR(ret);
924 	}
925 
926 	return trans;
927 }
928 
929 /* Wait for a transaction commit to reach at least the given state. */
930 static noinline void wait_for_commit(struct btrfs_transaction *commit,
931 				     const enum btrfs_trans_state min_state)
932 {
933 	struct btrfs_fs_info *fs_info = commit->fs_info;
934 	u64 transid = commit->transid;
935 	bool put = false;
936 
937 	/*
938 	 * At the moment this function is called with min_state either being
939 	 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
940 	 */
941 	if (min_state == TRANS_STATE_COMPLETED)
942 		btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
943 	else
944 		btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
945 
946 	while (1) {
947 		wait_event(commit->commit_wait, commit->state >= min_state);
948 		if (put)
949 			btrfs_put_transaction(commit);
950 
951 		if (min_state < TRANS_STATE_COMPLETED)
952 			break;
953 
954 		/*
955 		 * A transaction isn't really completed until all of the
956 		 * previous transactions are completed, but with fsync we can
957 		 * end up with SUPER_COMMITTED transactions before a COMPLETED
958 		 * transaction. Wait for those.
959 		 */
960 
961 		spin_lock(&fs_info->trans_lock);
962 		commit = list_first_entry_or_null(&fs_info->trans_list,
963 						  struct btrfs_transaction,
964 						  list);
965 		if (!commit || commit->transid > transid) {
966 			spin_unlock(&fs_info->trans_lock);
967 			break;
968 		}
969 		refcount_inc(&commit->use_count);
970 		put = true;
971 		spin_unlock(&fs_info->trans_lock);
972 	}
973 }
974 
975 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
976 {
977 	struct btrfs_transaction *cur_trans = NULL, *t;
978 	int ret = 0;
979 
980 	if (transid) {
981 		if (transid <= btrfs_get_last_trans_committed(fs_info))
982 			goto out;
983 
984 		/* find specified transaction */
985 		spin_lock(&fs_info->trans_lock);
986 		list_for_each_entry(t, &fs_info->trans_list, list) {
987 			if (t->transid == transid) {
988 				cur_trans = t;
989 				refcount_inc(&cur_trans->use_count);
990 				ret = 0;
991 				break;
992 			}
993 			if (t->transid > transid) {
994 				ret = 0;
995 				break;
996 			}
997 		}
998 		spin_unlock(&fs_info->trans_lock);
999 
1000 		/*
1001 		 * The specified transaction doesn't exist, or we
1002 		 * raced with btrfs_commit_transaction
1003 		 */
1004 		if (!cur_trans) {
1005 			if (transid > btrfs_get_last_trans_committed(fs_info))
1006 				ret = -EINVAL;
1007 			goto out;
1008 		}
1009 	} else {
1010 		/* find newest transaction that is committing | committed */
1011 		spin_lock(&fs_info->trans_lock);
1012 		list_for_each_entry_reverse(t, &fs_info->trans_list,
1013 					    list) {
1014 			if (t->state >= TRANS_STATE_COMMIT_START) {
1015 				if (t->state == TRANS_STATE_COMPLETED)
1016 					break;
1017 				cur_trans = t;
1018 				refcount_inc(&cur_trans->use_count);
1019 				break;
1020 			}
1021 		}
1022 		spin_unlock(&fs_info->trans_lock);
1023 		if (!cur_trans)
1024 			goto out;  /* nothing committing|committed */
1025 	}
1026 
1027 	wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
1028 	ret = cur_trans->aborted;
1029 	btrfs_put_transaction(cur_trans);
1030 out:
1031 	return ret;
1032 }
1033 
1034 void btrfs_throttle(struct btrfs_fs_info *fs_info)
1035 {
1036 	wait_current_trans(fs_info);
1037 }
1038 
1039 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
1040 {
1041 	struct btrfs_transaction *cur_trans = trans->transaction;
1042 
1043 	if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
1044 	    test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
1045 		return true;
1046 
1047 	if (btrfs_check_space_for_delayed_refs(trans->fs_info))
1048 		return true;
1049 
1050 	return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50);
1051 }
1052 
1053 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
1054 
1055 {
1056 	struct btrfs_fs_info *fs_info = trans->fs_info;
1057 
1058 	if (!trans->block_rsv) {
1059 		ASSERT(!trans->bytes_reserved);
1060 		ASSERT(!trans->delayed_refs_bytes_reserved);
1061 		return;
1062 	}
1063 
1064 	if (!trans->bytes_reserved) {
1065 		ASSERT(!trans->delayed_refs_bytes_reserved);
1066 		return;
1067 	}
1068 
1069 	ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
1070 	trace_btrfs_space_reservation(fs_info, "transaction",
1071 				      trans->transid, trans->bytes_reserved, 0);
1072 	btrfs_block_rsv_release(fs_info, trans->block_rsv,
1073 				trans->bytes_reserved, NULL);
1074 	trans->bytes_reserved = 0;
1075 
1076 	if (!trans->delayed_refs_bytes_reserved)
1077 		return;
1078 
1079 	trace_btrfs_space_reservation(fs_info, "local_delayed_refs_rsv",
1080 				      trans->transid,
1081 				      trans->delayed_refs_bytes_reserved, 0);
1082 	btrfs_block_rsv_release(fs_info, &trans->delayed_rsv,
1083 				trans->delayed_refs_bytes_reserved, NULL);
1084 	trans->delayed_refs_bytes_reserved = 0;
1085 }
1086 
1087 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
1088 				   int throttle)
1089 {
1090 	struct btrfs_fs_info *info = trans->fs_info;
1091 	struct btrfs_transaction *cur_trans = trans->transaction;
1092 	int err = 0;
1093 
1094 	if (refcount_read(&trans->use_count) > 1) {
1095 		refcount_dec(&trans->use_count);
1096 		trans->block_rsv = trans->orig_rsv;
1097 		return 0;
1098 	}
1099 
1100 	btrfs_trans_release_metadata(trans);
1101 	trans->block_rsv = NULL;
1102 
1103 	btrfs_create_pending_block_groups(trans);
1104 
1105 	btrfs_trans_release_chunk_metadata(trans);
1106 
1107 	if (trans->type & __TRANS_FREEZABLE)
1108 		sb_end_intwrite(info->sb);
1109 
1110 	WARN_ON(cur_trans != info->running_transaction);
1111 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1112 	atomic_dec(&cur_trans->num_writers);
1113 	extwriter_counter_dec(cur_trans, trans->type);
1114 
1115 	cond_wake_up(&cur_trans->writer_wait);
1116 
1117 	btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
1118 	btrfs_lockdep_release(info, btrfs_trans_num_writers);
1119 
1120 	btrfs_put_transaction(cur_trans);
1121 
1122 	if (current->journal_info == trans)
1123 		current->journal_info = NULL;
1124 
1125 	if (throttle)
1126 		btrfs_run_delayed_iputs(info);
1127 
1128 	if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1129 		wake_up_process(info->transaction_kthread);
1130 		if (TRANS_ABORTED(trans))
1131 			err = trans->aborted;
1132 		else
1133 			err = -EROFS;
1134 	}
1135 
1136 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1137 	return err;
1138 }
1139 
1140 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1141 {
1142 	return __btrfs_end_transaction(trans, 0);
1143 }
1144 
1145 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1146 {
1147 	return __btrfs_end_transaction(trans, 1);
1148 }
1149 
1150 /*
1151  * when btree blocks are allocated, they have some corresponding bits set for
1152  * them in one of two extent_io trees.  This is used to make sure all of
1153  * those extents are sent to disk but does not wait on them
1154  */
1155 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1156 			       struct extent_io_tree *dirty_pages, int mark)
1157 {
1158 	int err = 0;
1159 	int werr = 0;
1160 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1161 	struct extent_state *cached_state = NULL;
1162 	u64 start = 0;
1163 	u64 end;
1164 
1165 	while (find_first_extent_bit(dirty_pages, start, &start, &end,
1166 				     mark, &cached_state)) {
1167 		bool wait_writeback = false;
1168 
1169 		err = convert_extent_bit(dirty_pages, start, end,
1170 					 EXTENT_NEED_WAIT,
1171 					 mark, &cached_state);
1172 		/*
1173 		 * convert_extent_bit can return -ENOMEM, which is most of the
1174 		 * time a temporary error. So when it happens, ignore the error
1175 		 * and wait for writeback of this range to finish - because we
1176 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1177 		 * to __btrfs_wait_marked_extents() would not know that
1178 		 * writeback for this range started and therefore wouldn't
1179 		 * wait for it to finish - we don't want to commit a
1180 		 * superblock that points to btree nodes/leafs for which
1181 		 * writeback hasn't finished yet (and without errors).
1182 		 * We cleanup any entries left in the io tree when committing
1183 		 * the transaction (through extent_io_tree_release()).
1184 		 */
1185 		if (err == -ENOMEM) {
1186 			err = 0;
1187 			wait_writeback = true;
1188 		}
1189 		if (!err)
1190 			err = filemap_fdatawrite_range(mapping, start, end);
1191 		if (err)
1192 			werr = err;
1193 		else if (wait_writeback)
1194 			werr = filemap_fdatawait_range(mapping, start, end);
1195 		free_extent_state(cached_state);
1196 		cached_state = NULL;
1197 		cond_resched();
1198 		start = end + 1;
1199 	}
1200 	return werr;
1201 }
1202 
1203 /*
1204  * when btree blocks are allocated, they have some corresponding bits set for
1205  * them in one of two extent_io trees.  This is used to make sure all of
1206  * those extents are on disk for transaction or log commit.  We wait
1207  * on all the pages and clear them from the dirty pages state tree
1208  */
1209 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1210 				       struct extent_io_tree *dirty_pages)
1211 {
1212 	int err = 0;
1213 	int werr = 0;
1214 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1215 	struct extent_state *cached_state = NULL;
1216 	u64 start = 0;
1217 	u64 end;
1218 
1219 	while (find_first_extent_bit(dirty_pages, start, &start, &end,
1220 				     EXTENT_NEED_WAIT, &cached_state)) {
1221 		/*
1222 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
1223 		 * When committing the transaction, we'll remove any entries
1224 		 * left in the io tree. For a log commit, we don't remove them
1225 		 * after committing the log because the tree can be accessed
1226 		 * concurrently - we do it only at transaction commit time when
1227 		 * it's safe to do it (through extent_io_tree_release()).
1228 		 */
1229 		err = clear_extent_bit(dirty_pages, start, end,
1230 				       EXTENT_NEED_WAIT, &cached_state);
1231 		if (err == -ENOMEM)
1232 			err = 0;
1233 		if (!err)
1234 			err = filemap_fdatawait_range(mapping, start, end);
1235 		if (err)
1236 			werr = err;
1237 		free_extent_state(cached_state);
1238 		cached_state = NULL;
1239 		cond_resched();
1240 		start = end + 1;
1241 	}
1242 	if (err)
1243 		werr = err;
1244 	return werr;
1245 }
1246 
1247 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1248 		       struct extent_io_tree *dirty_pages)
1249 {
1250 	bool errors = false;
1251 	int err;
1252 
1253 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1254 	if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1255 		errors = true;
1256 
1257 	if (errors && !err)
1258 		err = -EIO;
1259 	return err;
1260 }
1261 
1262 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1263 {
1264 	struct btrfs_fs_info *fs_info = log_root->fs_info;
1265 	struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1266 	bool errors = false;
1267 	int err;
1268 
1269 	ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1270 
1271 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1272 	if ((mark & EXTENT_DIRTY) &&
1273 	    test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1274 		errors = true;
1275 
1276 	if ((mark & EXTENT_NEW) &&
1277 	    test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1278 		errors = true;
1279 
1280 	if (errors && !err)
1281 		err = -EIO;
1282 	return err;
1283 }
1284 
1285 /*
1286  * When btree blocks are allocated the corresponding extents are marked dirty.
1287  * This function ensures such extents are persisted on disk for transaction or
1288  * log commit.
1289  *
1290  * @trans: transaction whose dirty pages we'd like to write
1291  */
1292 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1293 {
1294 	int ret;
1295 	int ret2;
1296 	struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1297 	struct btrfs_fs_info *fs_info = trans->fs_info;
1298 	struct blk_plug plug;
1299 
1300 	blk_start_plug(&plug);
1301 	ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1302 	blk_finish_plug(&plug);
1303 	ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1304 
1305 	extent_io_tree_release(&trans->transaction->dirty_pages);
1306 
1307 	if (ret)
1308 		return ret;
1309 	else if (ret2)
1310 		return ret2;
1311 	else
1312 		return 0;
1313 }
1314 
1315 /*
1316  * this is used to update the root pointer in the tree of tree roots.
1317  *
1318  * But, in the case of the extent allocation tree, updating the root
1319  * pointer may allocate blocks which may change the root of the extent
1320  * allocation tree.
1321  *
1322  * So, this loops and repeats and makes sure the cowonly root didn't
1323  * change while the root pointer was being updated in the metadata.
1324  */
1325 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1326 			       struct btrfs_root *root)
1327 {
1328 	int ret;
1329 	u64 old_root_bytenr;
1330 	u64 old_root_used;
1331 	struct btrfs_fs_info *fs_info = root->fs_info;
1332 	struct btrfs_root *tree_root = fs_info->tree_root;
1333 
1334 	old_root_used = btrfs_root_used(&root->root_item);
1335 
1336 	while (1) {
1337 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1338 		if (old_root_bytenr == root->node->start &&
1339 		    old_root_used == btrfs_root_used(&root->root_item))
1340 			break;
1341 
1342 		btrfs_set_root_node(&root->root_item, root->node);
1343 		ret = btrfs_update_root(trans, tree_root,
1344 					&root->root_key,
1345 					&root->root_item);
1346 		if (ret)
1347 			return ret;
1348 
1349 		old_root_used = btrfs_root_used(&root->root_item);
1350 	}
1351 
1352 	return 0;
1353 }
1354 
1355 /*
1356  * update all the cowonly tree roots on disk
1357  *
1358  * The error handling in this function may not be obvious. Any of the
1359  * failures will cause the file system to go offline. We still need
1360  * to clean up the delayed refs.
1361  */
1362 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1363 {
1364 	struct btrfs_fs_info *fs_info = trans->fs_info;
1365 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1366 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1367 	struct list_head *next;
1368 	struct extent_buffer *eb;
1369 	int ret;
1370 
1371 	/*
1372 	 * At this point no one can be using this transaction to modify any tree
1373 	 * and no one can start another transaction to modify any tree either.
1374 	 */
1375 	ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1376 
1377 	eb = btrfs_lock_root_node(fs_info->tree_root);
1378 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1379 			      0, &eb, BTRFS_NESTING_COW);
1380 	btrfs_tree_unlock(eb);
1381 	free_extent_buffer(eb);
1382 
1383 	if (ret)
1384 		return ret;
1385 
1386 	ret = btrfs_run_dev_stats(trans);
1387 	if (ret)
1388 		return ret;
1389 	ret = btrfs_run_dev_replace(trans);
1390 	if (ret)
1391 		return ret;
1392 	ret = btrfs_run_qgroups(trans);
1393 	if (ret)
1394 		return ret;
1395 
1396 	ret = btrfs_setup_space_cache(trans);
1397 	if (ret)
1398 		return ret;
1399 
1400 again:
1401 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1402 		struct btrfs_root *root;
1403 		next = fs_info->dirty_cowonly_roots.next;
1404 		list_del_init(next);
1405 		root = list_entry(next, struct btrfs_root, dirty_list);
1406 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1407 
1408 		list_add_tail(&root->dirty_list,
1409 			      &trans->transaction->switch_commits);
1410 		ret = update_cowonly_root(trans, root);
1411 		if (ret)
1412 			return ret;
1413 	}
1414 
1415 	/* Now flush any delayed refs generated by updating all of the roots */
1416 	ret = btrfs_run_delayed_refs(trans, U64_MAX);
1417 	if (ret)
1418 		return ret;
1419 
1420 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1421 		ret = btrfs_write_dirty_block_groups(trans);
1422 		if (ret)
1423 			return ret;
1424 
1425 		/*
1426 		 * We're writing the dirty block groups, which could generate
1427 		 * delayed refs, which could generate more dirty block groups,
1428 		 * so we want to keep this flushing in this loop to make sure
1429 		 * everything gets run.
1430 		 */
1431 		ret = btrfs_run_delayed_refs(trans, U64_MAX);
1432 		if (ret)
1433 			return ret;
1434 	}
1435 
1436 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1437 		goto again;
1438 
1439 	/* Update dev-replace pointer once everything is committed */
1440 	fs_info->dev_replace.committed_cursor_left =
1441 		fs_info->dev_replace.cursor_left_last_write_of_item;
1442 
1443 	return 0;
1444 }
1445 
1446 /*
1447  * If we had a pending drop we need to see if there are any others left in our
1448  * dead roots list, and if not clear our bit and wake any waiters.
1449  */
1450 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1451 {
1452 	/*
1453 	 * We put the drop in progress roots at the front of the list, so if the
1454 	 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1455 	 * up.
1456 	 */
1457 	spin_lock(&fs_info->trans_lock);
1458 	if (!list_empty(&fs_info->dead_roots)) {
1459 		struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1460 							   struct btrfs_root,
1461 							   root_list);
1462 		if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1463 			spin_unlock(&fs_info->trans_lock);
1464 			return;
1465 		}
1466 	}
1467 	spin_unlock(&fs_info->trans_lock);
1468 
1469 	btrfs_wake_unfinished_drop(fs_info);
1470 }
1471 
1472 /*
1473  * dead roots are old snapshots that need to be deleted.  This allocates
1474  * a dirty root struct and adds it into the list of dead roots that need to
1475  * be deleted
1476  */
1477 void btrfs_add_dead_root(struct btrfs_root *root)
1478 {
1479 	struct btrfs_fs_info *fs_info = root->fs_info;
1480 
1481 	spin_lock(&fs_info->trans_lock);
1482 	if (list_empty(&root->root_list)) {
1483 		btrfs_grab_root(root);
1484 
1485 		/* We want to process the partially complete drops first. */
1486 		if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1487 			list_add(&root->root_list, &fs_info->dead_roots);
1488 		else
1489 			list_add_tail(&root->root_list, &fs_info->dead_roots);
1490 	}
1491 	spin_unlock(&fs_info->trans_lock);
1492 }
1493 
1494 /*
1495  * Update each subvolume root and its relocation root, if it exists, in the tree
1496  * of tree roots. Also free log roots if they exist.
1497  */
1498 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1499 {
1500 	struct btrfs_fs_info *fs_info = trans->fs_info;
1501 	struct btrfs_root *gang[8];
1502 	int i;
1503 	int ret;
1504 
1505 	/*
1506 	 * At this point no one can be using this transaction to modify any tree
1507 	 * and no one can start another transaction to modify any tree either.
1508 	 */
1509 	ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1510 
1511 	spin_lock(&fs_info->fs_roots_radix_lock);
1512 	while (1) {
1513 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1514 						 (void **)gang, 0,
1515 						 ARRAY_SIZE(gang),
1516 						 BTRFS_ROOT_TRANS_TAG);
1517 		if (ret == 0)
1518 			break;
1519 		for (i = 0; i < ret; i++) {
1520 			struct btrfs_root *root = gang[i];
1521 			int ret2;
1522 
1523 			/*
1524 			 * At this point we can neither have tasks logging inodes
1525 			 * from a root nor trying to commit a log tree.
1526 			 */
1527 			ASSERT(atomic_read(&root->log_writers) == 0);
1528 			ASSERT(atomic_read(&root->log_commit[0]) == 0);
1529 			ASSERT(atomic_read(&root->log_commit[1]) == 0);
1530 
1531 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1532 					(unsigned long)root->root_key.objectid,
1533 					BTRFS_ROOT_TRANS_TAG);
1534 			spin_unlock(&fs_info->fs_roots_radix_lock);
1535 
1536 			btrfs_free_log(trans, root);
1537 			ret2 = btrfs_update_reloc_root(trans, root);
1538 			if (ret2)
1539 				return ret2;
1540 
1541 			/* see comments in should_cow_block() */
1542 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1543 			smp_mb__after_atomic();
1544 
1545 			if (root->commit_root != root->node) {
1546 				list_add_tail(&root->dirty_list,
1547 					&trans->transaction->switch_commits);
1548 				btrfs_set_root_node(&root->root_item,
1549 						    root->node);
1550 			}
1551 
1552 			ret2 = btrfs_update_root(trans, fs_info->tree_root,
1553 						&root->root_key,
1554 						&root->root_item);
1555 			if (ret2)
1556 				return ret2;
1557 			spin_lock(&fs_info->fs_roots_radix_lock);
1558 			btrfs_qgroup_free_meta_all_pertrans(root);
1559 		}
1560 	}
1561 	spin_unlock(&fs_info->fs_roots_radix_lock);
1562 	return 0;
1563 }
1564 
1565 /*
1566  * Do all special snapshot related qgroup dirty hack.
1567  *
1568  * Will do all needed qgroup inherit and dirty hack like switch commit
1569  * roots inside one transaction and write all btree into disk, to make
1570  * qgroup works.
1571  */
1572 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1573 				   struct btrfs_root *src,
1574 				   struct btrfs_root *parent,
1575 				   struct btrfs_qgroup_inherit *inherit,
1576 				   u64 dst_objectid)
1577 {
1578 	struct btrfs_fs_info *fs_info = src->fs_info;
1579 	int ret;
1580 
1581 	/*
1582 	 * Save some performance in the case that qgroups are not enabled. If
1583 	 * this check races with the ioctl, rescan will kick in anyway.
1584 	 */
1585 	if (!btrfs_qgroup_full_accounting(fs_info))
1586 		return 0;
1587 
1588 	/*
1589 	 * Ensure dirty @src will be committed.  Or, after coming
1590 	 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1591 	 * recorded root will never be updated again, causing an outdated root
1592 	 * item.
1593 	 */
1594 	ret = record_root_in_trans(trans, src, 1);
1595 	if (ret)
1596 		return ret;
1597 
1598 	/*
1599 	 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1600 	 * src root, so we must run the delayed refs here.
1601 	 *
1602 	 * However this isn't particularly fool proof, because there's no
1603 	 * synchronization keeping us from changing the tree after this point
1604 	 * before we do the qgroup_inherit, or even from making changes while
1605 	 * we're doing the qgroup_inherit.  But that's a problem for the future,
1606 	 * for now flush the delayed refs to narrow the race window where the
1607 	 * qgroup counters could end up wrong.
1608 	 */
1609 	ret = btrfs_run_delayed_refs(trans, U64_MAX);
1610 	if (ret) {
1611 		btrfs_abort_transaction(trans, ret);
1612 		return ret;
1613 	}
1614 
1615 	ret = commit_fs_roots(trans);
1616 	if (ret)
1617 		goto out;
1618 	ret = btrfs_qgroup_account_extents(trans);
1619 	if (ret < 0)
1620 		goto out;
1621 
1622 	/* Now qgroup are all updated, we can inherit it to new qgroups */
1623 	ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1624 				   parent->root_key.objectid, inherit);
1625 	if (ret < 0)
1626 		goto out;
1627 
1628 	/*
1629 	 * Now we do a simplified commit transaction, which will:
1630 	 * 1) commit all subvolume and extent tree
1631 	 *    To ensure all subvolume and extent tree have a valid
1632 	 *    commit_root to accounting later insert_dir_item()
1633 	 * 2) write all btree blocks onto disk
1634 	 *    This is to make sure later btree modification will be cowed
1635 	 *    Or commit_root can be populated and cause wrong qgroup numbers
1636 	 * In this simplified commit, we don't really care about other trees
1637 	 * like chunk and root tree, as they won't affect qgroup.
1638 	 * And we don't write super to avoid half committed status.
1639 	 */
1640 	ret = commit_cowonly_roots(trans);
1641 	if (ret)
1642 		goto out;
1643 	switch_commit_roots(trans);
1644 	ret = btrfs_write_and_wait_transaction(trans);
1645 	if (ret)
1646 		btrfs_handle_fs_error(fs_info, ret,
1647 			"Error while writing out transaction for qgroup");
1648 
1649 out:
1650 	/*
1651 	 * Force parent root to be updated, as we recorded it before so its
1652 	 * last_trans == cur_transid.
1653 	 * Or it won't be committed again onto disk after later
1654 	 * insert_dir_item()
1655 	 */
1656 	if (!ret)
1657 		ret = record_root_in_trans(trans, parent, 1);
1658 	return ret;
1659 }
1660 
1661 /*
1662  * new snapshots need to be created at a very specific time in the
1663  * transaction commit.  This does the actual creation.
1664  *
1665  * Note:
1666  * If the error which may affect the commitment of the current transaction
1667  * happens, we should return the error number. If the error which just affect
1668  * the creation of the pending snapshots, just return 0.
1669  */
1670 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1671 				   struct btrfs_pending_snapshot *pending)
1672 {
1673 
1674 	struct btrfs_fs_info *fs_info = trans->fs_info;
1675 	struct btrfs_key key;
1676 	struct btrfs_root_item *new_root_item;
1677 	struct btrfs_root *tree_root = fs_info->tree_root;
1678 	struct btrfs_root *root = pending->root;
1679 	struct btrfs_root *parent_root;
1680 	struct btrfs_block_rsv *rsv;
1681 	struct inode *parent_inode = pending->dir;
1682 	struct btrfs_path *path;
1683 	struct btrfs_dir_item *dir_item;
1684 	struct extent_buffer *tmp;
1685 	struct extent_buffer *old;
1686 	struct timespec64 cur_time;
1687 	int ret = 0;
1688 	u64 to_reserve = 0;
1689 	u64 index = 0;
1690 	u64 objectid;
1691 	u64 root_flags;
1692 	unsigned int nofs_flags;
1693 	struct fscrypt_name fname;
1694 
1695 	ASSERT(pending->path);
1696 	path = pending->path;
1697 
1698 	ASSERT(pending->root_item);
1699 	new_root_item = pending->root_item;
1700 
1701 	/*
1702 	 * We're inside a transaction and must make sure that any potential
1703 	 * allocations with GFP_KERNEL in fscrypt won't recurse back to
1704 	 * filesystem.
1705 	 */
1706 	nofs_flags = memalloc_nofs_save();
1707 	pending->error = fscrypt_setup_filename(parent_inode,
1708 						&pending->dentry->d_name, 0,
1709 						&fname);
1710 	memalloc_nofs_restore(nofs_flags);
1711 	if (pending->error)
1712 		goto free_pending;
1713 
1714 	pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1715 	if (pending->error)
1716 		goto free_fname;
1717 
1718 	/*
1719 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1720 	 * accounted by later btrfs_qgroup_inherit().
1721 	 */
1722 	btrfs_set_skip_qgroup(trans, objectid);
1723 
1724 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1725 
1726 	if (to_reserve > 0) {
1727 		pending->error = btrfs_block_rsv_add(fs_info,
1728 						     &pending->block_rsv,
1729 						     to_reserve,
1730 						     BTRFS_RESERVE_NO_FLUSH);
1731 		if (pending->error)
1732 			goto clear_skip_qgroup;
1733 	}
1734 
1735 	key.objectid = objectid;
1736 	key.offset = (u64)-1;
1737 	key.type = BTRFS_ROOT_ITEM_KEY;
1738 
1739 	rsv = trans->block_rsv;
1740 	trans->block_rsv = &pending->block_rsv;
1741 	trans->bytes_reserved = trans->block_rsv->reserved;
1742 	trace_btrfs_space_reservation(fs_info, "transaction",
1743 				      trans->transid,
1744 				      trans->bytes_reserved, 1);
1745 	parent_root = BTRFS_I(parent_inode)->root;
1746 	ret = record_root_in_trans(trans, parent_root, 0);
1747 	if (ret)
1748 		goto fail;
1749 	cur_time = current_time(parent_inode);
1750 
1751 	/*
1752 	 * insert the directory item
1753 	 */
1754 	ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1755 	if (ret) {
1756 		btrfs_abort_transaction(trans, ret);
1757 		goto fail;
1758 	}
1759 
1760 	/* check if there is a file/dir which has the same name. */
1761 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1762 					 btrfs_ino(BTRFS_I(parent_inode)),
1763 					 &fname.disk_name, 0);
1764 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1765 		pending->error = -EEXIST;
1766 		goto dir_item_existed;
1767 	} else if (IS_ERR(dir_item)) {
1768 		ret = PTR_ERR(dir_item);
1769 		btrfs_abort_transaction(trans, ret);
1770 		goto fail;
1771 	}
1772 	btrfs_release_path(path);
1773 
1774 	ret = btrfs_create_qgroup(trans, objectid);
1775 	if (ret && ret != -EEXIST) {
1776 		btrfs_abort_transaction(trans, ret);
1777 		goto fail;
1778 	}
1779 
1780 	/*
1781 	 * pull in the delayed directory update
1782 	 * and the delayed inode item
1783 	 * otherwise we corrupt the FS during
1784 	 * snapshot
1785 	 */
1786 	ret = btrfs_run_delayed_items(trans);
1787 	if (ret) {	/* Transaction aborted */
1788 		btrfs_abort_transaction(trans, ret);
1789 		goto fail;
1790 	}
1791 
1792 	ret = record_root_in_trans(trans, root, 0);
1793 	if (ret) {
1794 		btrfs_abort_transaction(trans, ret);
1795 		goto fail;
1796 	}
1797 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1798 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1799 	btrfs_check_and_init_root_item(new_root_item);
1800 
1801 	root_flags = btrfs_root_flags(new_root_item);
1802 	if (pending->readonly)
1803 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1804 	else
1805 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1806 	btrfs_set_root_flags(new_root_item, root_flags);
1807 
1808 	btrfs_set_root_generation_v2(new_root_item,
1809 			trans->transid);
1810 	generate_random_guid(new_root_item->uuid);
1811 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1812 			BTRFS_UUID_SIZE);
1813 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1814 		memset(new_root_item->received_uuid, 0,
1815 		       sizeof(new_root_item->received_uuid));
1816 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1817 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1818 		btrfs_set_root_stransid(new_root_item, 0);
1819 		btrfs_set_root_rtransid(new_root_item, 0);
1820 	}
1821 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1822 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1823 	btrfs_set_root_otransid(new_root_item, trans->transid);
1824 
1825 	old = btrfs_lock_root_node(root);
1826 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1827 			      BTRFS_NESTING_COW);
1828 	if (ret) {
1829 		btrfs_tree_unlock(old);
1830 		free_extent_buffer(old);
1831 		btrfs_abort_transaction(trans, ret);
1832 		goto fail;
1833 	}
1834 
1835 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1836 	/* clean up in any case */
1837 	btrfs_tree_unlock(old);
1838 	free_extent_buffer(old);
1839 	if (ret) {
1840 		btrfs_abort_transaction(trans, ret);
1841 		goto fail;
1842 	}
1843 	/* see comments in should_cow_block() */
1844 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1845 	smp_wmb();
1846 
1847 	btrfs_set_root_node(new_root_item, tmp);
1848 	/* record when the snapshot was created in key.offset */
1849 	key.offset = trans->transid;
1850 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1851 	btrfs_tree_unlock(tmp);
1852 	free_extent_buffer(tmp);
1853 	if (ret) {
1854 		btrfs_abort_transaction(trans, ret);
1855 		goto fail;
1856 	}
1857 
1858 	/*
1859 	 * insert root back/forward references
1860 	 */
1861 	ret = btrfs_add_root_ref(trans, objectid,
1862 				 parent_root->root_key.objectid,
1863 				 btrfs_ino(BTRFS_I(parent_inode)), index,
1864 				 &fname.disk_name);
1865 	if (ret) {
1866 		btrfs_abort_transaction(trans, ret);
1867 		goto fail;
1868 	}
1869 
1870 	key.offset = (u64)-1;
1871 	pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1872 	if (IS_ERR(pending->snap)) {
1873 		ret = PTR_ERR(pending->snap);
1874 		pending->snap = NULL;
1875 		btrfs_abort_transaction(trans, ret);
1876 		goto fail;
1877 	}
1878 
1879 	ret = btrfs_reloc_post_snapshot(trans, pending);
1880 	if (ret) {
1881 		btrfs_abort_transaction(trans, ret);
1882 		goto fail;
1883 	}
1884 
1885 	/*
1886 	 * Do special qgroup accounting for snapshot, as we do some qgroup
1887 	 * snapshot hack to do fast snapshot.
1888 	 * To co-operate with that hack, we do hack again.
1889 	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1890 	 */
1891 	if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_FULL)
1892 		ret = qgroup_account_snapshot(trans, root, parent_root,
1893 					      pending->inherit, objectid);
1894 	else if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE)
1895 		ret = btrfs_qgroup_inherit(trans, root->root_key.objectid, objectid,
1896 					   parent_root->root_key.objectid, pending->inherit);
1897 	if (ret < 0)
1898 		goto fail;
1899 
1900 	ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1901 				    BTRFS_I(parent_inode), &key, BTRFS_FT_DIR,
1902 				    index);
1903 	/* We have check then name at the beginning, so it is impossible. */
1904 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1905 	if (ret) {
1906 		btrfs_abort_transaction(trans, ret);
1907 		goto fail;
1908 	}
1909 
1910 	btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1911 						  fname.disk_name.len * 2);
1912 	inode_set_mtime_to_ts(parent_inode,
1913 			      inode_set_ctime_current(parent_inode));
1914 	ret = btrfs_update_inode_fallback(trans, BTRFS_I(parent_inode));
1915 	if (ret) {
1916 		btrfs_abort_transaction(trans, ret);
1917 		goto fail;
1918 	}
1919 	ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1920 				  BTRFS_UUID_KEY_SUBVOL,
1921 				  objectid);
1922 	if (ret) {
1923 		btrfs_abort_transaction(trans, ret);
1924 		goto fail;
1925 	}
1926 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1927 		ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1928 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1929 					  objectid);
1930 		if (ret && ret != -EEXIST) {
1931 			btrfs_abort_transaction(trans, ret);
1932 			goto fail;
1933 		}
1934 	}
1935 
1936 fail:
1937 	pending->error = ret;
1938 dir_item_existed:
1939 	trans->block_rsv = rsv;
1940 	trans->bytes_reserved = 0;
1941 clear_skip_qgroup:
1942 	btrfs_clear_skip_qgroup(trans);
1943 free_fname:
1944 	fscrypt_free_filename(&fname);
1945 free_pending:
1946 	kfree(new_root_item);
1947 	pending->root_item = NULL;
1948 	btrfs_free_path(path);
1949 	pending->path = NULL;
1950 
1951 	return ret;
1952 }
1953 
1954 /*
1955  * create all the snapshots we've scheduled for creation
1956  */
1957 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1958 {
1959 	struct btrfs_pending_snapshot *pending, *next;
1960 	struct list_head *head = &trans->transaction->pending_snapshots;
1961 	int ret = 0;
1962 
1963 	list_for_each_entry_safe(pending, next, head, list) {
1964 		list_del(&pending->list);
1965 		ret = create_pending_snapshot(trans, pending);
1966 		if (ret)
1967 			break;
1968 	}
1969 	return ret;
1970 }
1971 
1972 static void update_super_roots(struct btrfs_fs_info *fs_info)
1973 {
1974 	struct btrfs_root_item *root_item;
1975 	struct btrfs_super_block *super;
1976 
1977 	super = fs_info->super_copy;
1978 
1979 	root_item = &fs_info->chunk_root->root_item;
1980 	super->chunk_root = root_item->bytenr;
1981 	super->chunk_root_generation = root_item->generation;
1982 	super->chunk_root_level = root_item->level;
1983 
1984 	root_item = &fs_info->tree_root->root_item;
1985 	super->root = root_item->bytenr;
1986 	super->generation = root_item->generation;
1987 	super->root_level = root_item->level;
1988 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
1989 		super->cache_generation = root_item->generation;
1990 	else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1991 		super->cache_generation = 0;
1992 	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1993 		super->uuid_tree_generation = root_item->generation;
1994 }
1995 
1996 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1997 {
1998 	struct btrfs_transaction *trans;
1999 	int ret = 0;
2000 
2001 	spin_lock(&info->trans_lock);
2002 	trans = info->running_transaction;
2003 	if (trans)
2004 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
2005 	spin_unlock(&info->trans_lock);
2006 	return ret;
2007 }
2008 
2009 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
2010 {
2011 	struct btrfs_transaction *trans;
2012 	int ret = 0;
2013 
2014 	spin_lock(&info->trans_lock);
2015 	trans = info->running_transaction;
2016 	if (trans)
2017 		ret = is_transaction_blocked(trans);
2018 	spin_unlock(&info->trans_lock);
2019 	return ret;
2020 }
2021 
2022 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
2023 {
2024 	struct btrfs_fs_info *fs_info = trans->fs_info;
2025 	struct btrfs_transaction *cur_trans;
2026 
2027 	/* Kick the transaction kthread. */
2028 	set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2029 	wake_up_process(fs_info->transaction_kthread);
2030 
2031 	/* take transaction reference */
2032 	cur_trans = trans->transaction;
2033 	refcount_inc(&cur_trans->use_count);
2034 
2035 	btrfs_end_transaction(trans);
2036 
2037 	/*
2038 	 * Wait for the current transaction commit to start and block
2039 	 * subsequent transaction joins
2040 	 */
2041 	btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2042 	wait_event(fs_info->transaction_blocked_wait,
2043 		   cur_trans->state >= TRANS_STATE_COMMIT_START ||
2044 		   TRANS_ABORTED(cur_trans));
2045 	btrfs_put_transaction(cur_trans);
2046 }
2047 
2048 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
2049 {
2050 	struct btrfs_fs_info *fs_info = trans->fs_info;
2051 	struct btrfs_transaction *cur_trans = trans->transaction;
2052 
2053 	WARN_ON(refcount_read(&trans->use_count) > 1);
2054 
2055 	btrfs_abort_transaction(trans, err);
2056 
2057 	spin_lock(&fs_info->trans_lock);
2058 
2059 	/*
2060 	 * If the transaction is removed from the list, it means this
2061 	 * transaction has been committed successfully, so it is impossible
2062 	 * to call the cleanup function.
2063 	 */
2064 	BUG_ON(list_empty(&cur_trans->list));
2065 
2066 	if (cur_trans == fs_info->running_transaction) {
2067 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
2068 		spin_unlock(&fs_info->trans_lock);
2069 
2070 		/*
2071 		 * The thread has already released the lockdep map as reader
2072 		 * already in btrfs_commit_transaction().
2073 		 */
2074 		btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2075 		wait_event(cur_trans->writer_wait,
2076 			   atomic_read(&cur_trans->num_writers) == 1);
2077 
2078 		spin_lock(&fs_info->trans_lock);
2079 	}
2080 
2081 	/*
2082 	 * Now that we know no one else is still using the transaction we can
2083 	 * remove the transaction from the list of transactions. This avoids
2084 	 * the transaction kthread from cleaning up the transaction while some
2085 	 * other task is still using it, which could result in a use-after-free
2086 	 * on things like log trees, as it forces the transaction kthread to
2087 	 * wait for this transaction to be cleaned up by us.
2088 	 */
2089 	list_del_init(&cur_trans->list);
2090 
2091 	spin_unlock(&fs_info->trans_lock);
2092 
2093 	btrfs_cleanup_one_transaction(trans->transaction, fs_info);
2094 
2095 	spin_lock(&fs_info->trans_lock);
2096 	if (cur_trans == fs_info->running_transaction)
2097 		fs_info->running_transaction = NULL;
2098 	spin_unlock(&fs_info->trans_lock);
2099 
2100 	if (trans->type & __TRANS_FREEZABLE)
2101 		sb_end_intwrite(fs_info->sb);
2102 	btrfs_put_transaction(cur_trans);
2103 	btrfs_put_transaction(cur_trans);
2104 
2105 	trace_btrfs_transaction_commit(fs_info);
2106 
2107 	if (current->journal_info == trans)
2108 		current->journal_info = NULL;
2109 
2110 	/*
2111 	 * If relocation is running, we can't cancel scrub because that will
2112 	 * result in a deadlock. Before relocating a block group, relocation
2113 	 * pauses scrub, then starts and commits a transaction before unpausing
2114 	 * scrub. If the transaction commit is being done by the relocation
2115 	 * task or triggered by another task and the relocation task is waiting
2116 	 * for the commit, and we end up here due to an error in the commit
2117 	 * path, then calling btrfs_scrub_cancel() will deadlock, as we are
2118 	 * asking for scrub to stop while having it asked to be paused higher
2119 	 * above in relocation code.
2120 	 */
2121 	if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
2122 		btrfs_scrub_cancel(fs_info);
2123 
2124 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2125 }
2126 
2127 /*
2128  * Release reserved delayed ref space of all pending block groups of the
2129  * transaction and remove them from the list
2130  */
2131 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2132 {
2133        struct btrfs_fs_info *fs_info = trans->fs_info;
2134        struct btrfs_block_group *block_group, *tmp;
2135 
2136        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2137                btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info);
2138                list_del_init(&block_group->bg_list);
2139        }
2140 }
2141 
2142 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2143 {
2144 	/*
2145 	 * We use try_to_writeback_inodes_sb() here because if we used
2146 	 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2147 	 * Currently are holding the fs freeze lock, if we do an async flush
2148 	 * we'll do btrfs_join_transaction() and deadlock because we need to
2149 	 * wait for the fs freeze lock.  Using the direct flushing we benefit
2150 	 * from already being in a transaction and our join_transaction doesn't
2151 	 * have to re-take the fs freeze lock.
2152 	 *
2153 	 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2154 	 * if it can read lock sb->s_umount. It will always be able to lock it,
2155 	 * except when the filesystem is being unmounted or being frozen, but in
2156 	 * those cases sync_filesystem() is called, which results in calling
2157 	 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2158 	 * Note that we don't call writeback_inodes_sb() directly, because it
2159 	 * will emit a warning if sb->s_umount is not locked.
2160 	 */
2161 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2162 		try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2163 	return 0;
2164 }
2165 
2166 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2167 {
2168 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2169 		btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2170 }
2171 
2172 /*
2173  * Add a pending snapshot associated with the given transaction handle to the
2174  * respective handle. This must be called after the transaction commit started
2175  * and while holding fs_info->trans_lock.
2176  * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2177  * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2178  * returns an error.
2179  */
2180 static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2181 {
2182 	struct btrfs_transaction *cur_trans = trans->transaction;
2183 
2184 	if (!trans->pending_snapshot)
2185 		return;
2186 
2187 	lockdep_assert_held(&trans->fs_info->trans_lock);
2188 	ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_PREP);
2189 
2190 	list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2191 }
2192 
2193 static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2194 {
2195 	fs_info->commit_stats.commit_count++;
2196 	fs_info->commit_stats.last_commit_dur = interval;
2197 	fs_info->commit_stats.max_commit_dur =
2198 			max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2199 	fs_info->commit_stats.total_commit_dur += interval;
2200 }
2201 
2202 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2203 {
2204 	struct btrfs_fs_info *fs_info = trans->fs_info;
2205 	struct btrfs_transaction *cur_trans = trans->transaction;
2206 	struct btrfs_transaction *prev_trans = NULL;
2207 	int ret;
2208 	ktime_t start_time;
2209 	ktime_t interval;
2210 
2211 	ASSERT(refcount_read(&trans->use_count) == 1);
2212 	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2213 
2214 	clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
2215 
2216 	/* Stop the commit early if ->aborted is set */
2217 	if (TRANS_ABORTED(cur_trans)) {
2218 		ret = cur_trans->aborted;
2219 		goto lockdep_trans_commit_start_release;
2220 	}
2221 
2222 	btrfs_trans_release_metadata(trans);
2223 	trans->block_rsv = NULL;
2224 
2225 	/*
2226 	 * We only want one transaction commit doing the flushing so we do not
2227 	 * waste a bunch of time on lock contention on the extent root node.
2228 	 */
2229 	if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2230 			      &cur_trans->delayed_refs.flags)) {
2231 		/*
2232 		 * Make a pass through all the delayed refs we have so far.
2233 		 * Any running threads may add more while we are here.
2234 		 */
2235 		ret = btrfs_run_delayed_refs(trans, 0);
2236 		if (ret)
2237 			goto lockdep_trans_commit_start_release;
2238 	}
2239 
2240 	btrfs_create_pending_block_groups(trans);
2241 
2242 	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2243 		int run_it = 0;
2244 
2245 		/* this mutex is also taken before trying to set
2246 		 * block groups readonly.  We need to make sure
2247 		 * that nobody has set a block group readonly
2248 		 * after a extents from that block group have been
2249 		 * allocated for cache files.  btrfs_set_block_group_ro
2250 		 * will wait for the transaction to commit if it
2251 		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2252 		 *
2253 		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2254 		 * only one process starts all the block group IO.  It wouldn't
2255 		 * hurt to have more than one go through, but there's no
2256 		 * real advantage to it either.
2257 		 */
2258 		mutex_lock(&fs_info->ro_block_group_mutex);
2259 		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2260 				      &cur_trans->flags))
2261 			run_it = 1;
2262 		mutex_unlock(&fs_info->ro_block_group_mutex);
2263 
2264 		if (run_it) {
2265 			ret = btrfs_start_dirty_block_groups(trans);
2266 			if (ret)
2267 				goto lockdep_trans_commit_start_release;
2268 		}
2269 	}
2270 
2271 	spin_lock(&fs_info->trans_lock);
2272 	if (cur_trans->state >= TRANS_STATE_COMMIT_PREP) {
2273 		enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2274 
2275 		add_pending_snapshot(trans);
2276 
2277 		spin_unlock(&fs_info->trans_lock);
2278 		refcount_inc(&cur_trans->use_count);
2279 
2280 		if (trans->in_fsync)
2281 			want_state = TRANS_STATE_SUPER_COMMITTED;
2282 
2283 		btrfs_trans_state_lockdep_release(fs_info,
2284 						  BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2285 		ret = btrfs_end_transaction(trans);
2286 		wait_for_commit(cur_trans, want_state);
2287 
2288 		if (TRANS_ABORTED(cur_trans))
2289 			ret = cur_trans->aborted;
2290 
2291 		btrfs_put_transaction(cur_trans);
2292 
2293 		return ret;
2294 	}
2295 
2296 	cur_trans->state = TRANS_STATE_COMMIT_PREP;
2297 	wake_up(&fs_info->transaction_blocked_wait);
2298 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2299 
2300 	if (cur_trans->list.prev != &fs_info->trans_list) {
2301 		enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2302 
2303 		if (trans->in_fsync)
2304 			want_state = TRANS_STATE_SUPER_COMMITTED;
2305 
2306 		prev_trans = list_entry(cur_trans->list.prev,
2307 					struct btrfs_transaction, list);
2308 		if (prev_trans->state < want_state) {
2309 			refcount_inc(&prev_trans->use_count);
2310 			spin_unlock(&fs_info->trans_lock);
2311 
2312 			wait_for_commit(prev_trans, want_state);
2313 
2314 			ret = READ_ONCE(prev_trans->aborted);
2315 
2316 			btrfs_put_transaction(prev_trans);
2317 			if (ret)
2318 				goto lockdep_release;
2319 			spin_lock(&fs_info->trans_lock);
2320 		}
2321 	} else {
2322 		/*
2323 		 * The previous transaction was aborted and was already removed
2324 		 * from the list of transactions at fs_info->trans_list. So we
2325 		 * abort to prevent writing a new superblock that reflects a
2326 		 * corrupt state (pointing to trees with unwritten nodes/leafs).
2327 		 */
2328 		if (BTRFS_FS_ERROR(fs_info)) {
2329 			spin_unlock(&fs_info->trans_lock);
2330 			ret = -EROFS;
2331 			goto lockdep_release;
2332 		}
2333 	}
2334 
2335 	cur_trans->state = TRANS_STATE_COMMIT_START;
2336 	wake_up(&fs_info->transaction_blocked_wait);
2337 	spin_unlock(&fs_info->trans_lock);
2338 
2339 	/*
2340 	 * Get the time spent on the work done by the commit thread and not
2341 	 * the time spent waiting on a previous commit
2342 	 */
2343 	start_time = ktime_get_ns();
2344 
2345 	extwriter_counter_dec(cur_trans, trans->type);
2346 
2347 	ret = btrfs_start_delalloc_flush(fs_info);
2348 	if (ret)
2349 		goto lockdep_release;
2350 
2351 	ret = btrfs_run_delayed_items(trans);
2352 	if (ret)
2353 		goto lockdep_release;
2354 
2355 	/*
2356 	 * The thread has started/joined the transaction thus it holds the
2357 	 * lockdep map as a reader. It has to release it before acquiring the
2358 	 * lockdep map as a writer.
2359 	 */
2360 	btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2361 	btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
2362 	wait_event(cur_trans->writer_wait,
2363 		   extwriter_counter_read(cur_trans) == 0);
2364 
2365 	/* some pending stuffs might be added after the previous flush. */
2366 	ret = btrfs_run_delayed_items(trans);
2367 	if (ret) {
2368 		btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2369 		goto cleanup_transaction;
2370 	}
2371 
2372 	btrfs_wait_delalloc_flush(fs_info);
2373 
2374 	/*
2375 	 * Wait for all ordered extents started by a fast fsync that joined this
2376 	 * transaction. Otherwise if this transaction commits before the ordered
2377 	 * extents complete we lose logged data after a power failure.
2378 	 */
2379 	btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
2380 	wait_event(cur_trans->pending_wait,
2381 		   atomic_read(&cur_trans->pending_ordered) == 0);
2382 
2383 	btrfs_scrub_pause(fs_info);
2384 	/*
2385 	 * Ok now we need to make sure to block out any other joins while we
2386 	 * commit the transaction.  We could have started a join before setting
2387 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2388 	 */
2389 	spin_lock(&fs_info->trans_lock);
2390 	add_pending_snapshot(trans);
2391 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2392 	spin_unlock(&fs_info->trans_lock);
2393 
2394 	/*
2395 	 * The thread has started/joined the transaction thus it holds the
2396 	 * lockdep map as a reader. It has to release it before acquiring the
2397 	 * lockdep map as a writer.
2398 	 */
2399 	btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2400 	btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2401 	wait_event(cur_trans->writer_wait,
2402 		   atomic_read(&cur_trans->num_writers) == 1);
2403 
2404 	/*
2405 	 * Make lockdep happy by acquiring the state locks after
2406 	 * btrfs_trans_num_writers is released. If we acquired the state locks
2407 	 * before releasing the btrfs_trans_num_writers lock then lockdep would
2408 	 * complain because we did not follow the reverse order unlocking rule.
2409 	 */
2410 	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2411 	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2412 	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2413 
2414 	/*
2415 	 * We've started the commit, clear the flag in case we were triggered to
2416 	 * do an async commit but somebody else started before the transaction
2417 	 * kthread could do the work.
2418 	 */
2419 	clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2420 
2421 	if (TRANS_ABORTED(cur_trans)) {
2422 		ret = cur_trans->aborted;
2423 		btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2424 		goto scrub_continue;
2425 	}
2426 	/*
2427 	 * the reloc mutex makes sure that we stop
2428 	 * the balancing code from coming in and moving
2429 	 * extents around in the middle of the commit
2430 	 */
2431 	mutex_lock(&fs_info->reloc_mutex);
2432 
2433 	/*
2434 	 * We needn't worry about the delayed items because we will
2435 	 * deal with them in create_pending_snapshot(), which is the
2436 	 * core function of the snapshot creation.
2437 	 */
2438 	ret = create_pending_snapshots(trans);
2439 	if (ret)
2440 		goto unlock_reloc;
2441 
2442 	/*
2443 	 * We insert the dir indexes of the snapshots and update the inode
2444 	 * of the snapshots' parents after the snapshot creation, so there
2445 	 * are some delayed items which are not dealt with. Now deal with
2446 	 * them.
2447 	 *
2448 	 * We needn't worry that this operation will corrupt the snapshots,
2449 	 * because all the tree which are snapshoted will be forced to COW
2450 	 * the nodes and leaves.
2451 	 */
2452 	ret = btrfs_run_delayed_items(trans);
2453 	if (ret)
2454 		goto unlock_reloc;
2455 
2456 	ret = btrfs_run_delayed_refs(trans, U64_MAX);
2457 	if (ret)
2458 		goto unlock_reloc;
2459 
2460 	/*
2461 	 * make sure none of the code above managed to slip in a
2462 	 * delayed item
2463 	 */
2464 	btrfs_assert_delayed_root_empty(fs_info);
2465 
2466 	WARN_ON(cur_trans != trans->transaction);
2467 
2468 	ret = commit_fs_roots(trans);
2469 	if (ret)
2470 		goto unlock_reloc;
2471 
2472 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2473 	 * safe to free the root of tree log roots
2474 	 */
2475 	btrfs_free_log_root_tree(trans, fs_info);
2476 
2477 	/*
2478 	 * Since fs roots are all committed, we can get a quite accurate
2479 	 * new_roots. So let's do quota accounting.
2480 	 */
2481 	ret = btrfs_qgroup_account_extents(trans);
2482 	if (ret < 0)
2483 		goto unlock_reloc;
2484 
2485 	ret = commit_cowonly_roots(trans);
2486 	if (ret)
2487 		goto unlock_reloc;
2488 
2489 	/*
2490 	 * The tasks which save the space cache and inode cache may also
2491 	 * update ->aborted, check it.
2492 	 */
2493 	if (TRANS_ABORTED(cur_trans)) {
2494 		ret = cur_trans->aborted;
2495 		goto unlock_reloc;
2496 	}
2497 
2498 	cur_trans = fs_info->running_transaction;
2499 
2500 	btrfs_set_root_node(&fs_info->tree_root->root_item,
2501 			    fs_info->tree_root->node);
2502 	list_add_tail(&fs_info->tree_root->dirty_list,
2503 		      &cur_trans->switch_commits);
2504 
2505 	btrfs_set_root_node(&fs_info->chunk_root->root_item,
2506 			    fs_info->chunk_root->node);
2507 	list_add_tail(&fs_info->chunk_root->dirty_list,
2508 		      &cur_trans->switch_commits);
2509 
2510 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2511 		btrfs_set_root_node(&fs_info->block_group_root->root_item,
2512 				    fs_info->block_group_root->node);
2513 		list_add_tail(&fs_info->block_group_root->dirty_list,
2514 			      &cur_trans->switch_commits);
2515 	}
2516 
2517 	switch_commit_roots(trans);
2518 
2519 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2520 	ASSERT(list_empty(&cur_trans->io_bgs));
2521 	update_super_roots(fs_info);
2522 
2523 	btrfs_set_super_log_root(fs_info->super_copy, 0);
2524 	btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2525 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2526 	       sizeof(*fs_info->super_copy));
2527 
2528 	btrfs_commit_device_sizes(cur_trans);
2529 
2530 	clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2531 	clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2532 
2533 	btrfs_trans_release_chunk_metadata(trans);
2534 
2535 	/*
2536 	 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2537 	 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2538 	 * make sure that before we commit our superblock, no other task can
2539 	 * start a new transaction and commit a log tree before we commit our
2540 	 * superblock. Anyone trying to commit a log tree locks this mutex before
2541 	 * writing its superblock.
2542 	 */
2543 	mutex_lock(&fs_info->tree_log_mutex);
2544 
2545 	spin_lock(&fs_info->trans_lock);
2546 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2547 	fs_info->running_transaction = NULL;
2548 	spin_unlock(&fs_info->trans_lock);
2549 	mutex_unlock(&fs_info->reloc_mutex);
2550 
2551 	wake_up(&fs_info->transaction_wait);
2552 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2553 
2554 	/* If we have features changed, wake up the cleaner to update sysfs. */
2555 	if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) &&
2556 	    fs_info->cleaner_kthread)
2557 		wake_up_process(fs_info->cleaner_kthread);
2558 
2559 	ret = btrfs_write_and_wait_transaction(trans);
2560 	if (ret) {
2561 		btrfs_handle_fs_error(fs_info, ret,
2562 				      "Error while writing out transaction");
2563 		mutex_unlock(&fs_info->tree_log_mutex);
2564 		goto scrub_continue;
2565 	}
2566 
2567 	ret = write_all_supers(fs_info, 0);
2568 	/*
2569 	 * the super is written, we can safely allow the tree-loggers
2570 	 * to go about their business
2571 	 */
2572 	mutex_unlock(&fs_info->tree_log_mutex);
2573 	if (ret)
2574 		goto scrub_continue;
2575 
2576 	/*
2577 	 * We needn't acquire the lock here because there is no other task
2578 	 * which can change it.
2579 	 */
2580 	cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2581 	wake_up(&cur_trans->commit_wait);
2582 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2583 
2584 	btrfs_finish_extent_commit(trans);
2585 
2586 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2587 		btrfs_clear_space_info_full(fs_info);
2588 
2589 	btrfs_set_last_trans_committed(fs_info, cur_trans->transid);
2590 	/*
2591 	 * We needn't acquire the lock here because there is no other task
2592 	 * which can change it.
2593 	 */
2594 	cur_trans->state = TRANS_STATE_COMPLETED;
2595 	wake_up(&cur_trans->commit_wait);
2596 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2597 
2598 	spin_lock(&fs_info->trans_lock);
2599 	list_del_init(&cur_trans->list);
2600 	spin_unlock(&fs_info->trans_lock);
2601 
2602 	btrfs_put_transaction(cur_trans);
2603 	btrfs_put_transaction(cur_trans);
2604 
2605 	if (trans->type & __TRANS_FREEZABLE)
2606 		sb_end_intwrite(fs_info->sb);
2607 
2608 	trace_btrfs_transaction_commit(fs_info);
2609 
2610 	interval = ktime_get_ns() - start_time;
2611 
2612 	btrfs_scrub_continue(fs_info);
2613 
2614 	if (current->journal_info == trans)
2615 		current->journal_info = NULL;
2616 
2617 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2618 
2619 	update_commit_stats(fs_info, interval);
2620 
2621 	return ret;
2622 
2623 unlock_reloc:
2624 	mutex_unlock(&fs_info->reloc_mutex);
2625 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2626 scrub_continue:
2627 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2628 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2629 	btrfs_scrub_continue(fs_info);
2630 cleanup_transaction:
2631 	btrfs_trans_release_metadata(trans);
2632 	btrfs_cleanup_pending_block_groups(trans);
2633 	btrfs_trans_release_chunk_metadata(trans);
2634 	trans->block_rsv = NULL;
2635 	btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2636 	if (current->journal_info == trans)
2637 		current->journal_info = NULL;
2638 	cleanup_transaction(trans, ret);
2639 
2640 	return ret;
2641 
2642 lockdep_release:
2643 	btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2644 	btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2645 	goto cleanup_transaction;
2646 
2647 lockdep_trans_commit_start_release:
2648 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2649 	btrfs_end_transaction(trans);
2650 	return ret;
2651 }
2652 
2653 /*
2654  * return < 0 if error
2655  * 0 if there are no more dead_roots at the time of call
2656  * 1 there are more to be processed, call me again
2657  *
2658  * The return value indicates there are certainly more snapshots to delete, but
2659  * if there comes a new one during processing, it may return 0. We don't mind,
2660  * because btrfs_commit_super will poke cleaner thread and it will process it a
2661  * few seconds later.
2662  */
2663 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2664 {
2665 	struct btrfs_root *root;
2666 	int ret;
2667 
2668 	spin_lock(&fs_info->trans_lock);
2669 	if (list_empty(&fs_info->dead_roots)) {
2670 		spin_unlock(&fs_info->trans_lock);
2671 		return 0;
2672 	}
2673 	root = list_first_entry(&fs_info->dead_roots,
2674 			struct btrfs_root, root_list);
2675 	list_del_init(&root->root_list);
2676 	spin_unlock(&fs_info->trans_lock);
2677 
2678 	btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2679 
2680 	btrfs_kill_all_delayed_nodes(root);
2681 
2682 	if (btrfs_header_backref_rev(root->node) <
2683 			BTRFS_MIXED_BACKREF_REV)
2684 		ret = btrfs_drop_snapshot(root, 0, 0);
2685 	else
2686 		ret = btrfs_drop_snapshot(root, 1, 0);
2687 
2688 	btrfs_put_root(root);
2689 	return (ret < 0) ? 0 : 1;
2690 }
2691 
2692 /*
2693  * We only mark the transaction aborted and then set the file system read-only.
2694  * This will prevent new transactions from starting or trying to join this
2695  * one.
2696  *
2697  * This means that error recovery at the call site is limited to freeing
2698  * any local memory allocations and passing the error code up without
2699  * further cleanup. The transaction should complete as it normally would
2700  * in the call path but will return -EIO.
2701  *
2702  * We'll complete the cleanup in btrfs_end_transaction and
2703  * btrfs_commit_transaction.
2704  */
2705 void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
2706 				      const char *function,
2707 				      unsigned int line, int error, bool first_hit)
2708 {
2709 	struct btrfs_fs_info *fs_info = trans->fs_info;
2710 
2711 	WRITE_ONCE(trans->aborted, error);
2712 	WRITE_ONCE(trans->transaction->aborted, error);
2713 	if (first_hit && error == -ENOSPC)
2714 		btrfs_dump_space_info_for_trans_abort(fs_info);
2715 	/* Wake up anybody who may be waiting on this transaction */
2716 	wake_up(&fs_info->transaction_wait);
2717 	wake_up(&fs_info->transaction_blocked_wait);
2718 	__btrfs_handle_fs_error(fs_info, function, line, error, NULL);
2719 }
2720 
2721 int __init btrfs_transaction_init(void)
2722 {
2723 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
2724 			sizeof(struct btrfs_trans_handle), 0,
2725 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
2726 	if (!btrfs_trans_handle_cachep)
2727 		return -ENOMEM;
2728 	return 0;
2729 }
2730 
2731 void __cold btrfs_transaction_exit(void)
2732 {
2733 	kmem_cache_destroy(btrfs_trans_handle_cachep);
2734 }
2735