xref: /linux/fs/btrfs/transaction.c (revision d89dffa976bcd13fd87eb76e02e3b71c3a7868e3)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 
34 #define BTRFS_ROOT_TRANS_TAG 0
35 
36 void put_transaction(struct btrfs_transaction *transaction)
37 {
38 	WARN_ON(atomic_read(&transaction->use_count) == 0);
39 	if (atomic_dec_and_test(&transaction->use_count)) {
40 		BUG_ON(!list_empty(&transaction->list));
41 		WARN_ON(transaction->delayed_refs.root.rb_node);
42 		memset(transaction, 0, sizeof(*transaction));
43 		kmem_cache_free(btrfs_transaction_cachep, transaction);
44 	}
45 }
46 
47 static noinline void switch_commit_root(struct btrfs_root *root)
48 {
49 	free_extent_buffer(root->commit_root);
50 	root->commit_root = btrfs_root_node(root);
51 }
52 
53 /*
54  * either allocate a new transaction or hop into the existing one
55  */
56 static noinline int join_transaction(struct btrfs_root *root, int nofail)
57 {
58 	struct btrfs_transaction *cur_trans;
59 	struct btrfs_fs_info *fs_info = root->fs_info;
60 
61 	spin_lock(&fs_info->trans_lock);
62 loop:
63 	/* The file system has been taken offline. No new transactions. */
64 	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
65 		spin_unlock(&fs_info->trans_lock);
66 		return -EROFS;
67 	}
68 
69 	if (fs_info->trans_no_join) {
70 		if (!nofail) {
71 			spin_unlock(&fs_info->trans_lock);
72 			return -EBUSY;
73 		}
74 	}
75 
76 	cur_trans = fs_info->running_transaction;
77 	if (cur_trans) {
78 		if (cur_trans->aborted) {
79 			spin_unlock(&fs_info->trans_lock);
80 			return cur_trans->aborted;
81 		}
82 		atomic_inc(&cur_trans->use_count);
83 		atomic_inc(&cur_trans->num_writers);
84 		cur_trans->num_joined++;
85 		spin_unlock(&fs_info->trans_lock);
86 		return 0;
87 	}
88 	spin_unlock(&fs_info->trans_lock);
89 
90 	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
91 	if (!cur_trans)
92 		return -ENOMEM;
93 
94 	spin_lock(&fs_info->trans_lock);
95 	if (fs_info->running_transaction) {
96 		/*
97 		 * someone started a transaction after we unlocked.  Make sure
98 		 * to redo the trans_no_join checks above
99 		 */
100 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
101 		cur_trans = fs_info->running_transaction;
102 		goto loop;
103 	} else if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
104 		spin_unlock(&fs_info->trans_lock);
105 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
106 		return -EROFS;
107 	}
108 
109 	atomic_set(&cur_trans->num_writers, 1);
110 	cur_trans->num_joined = 0;
111 	init_waitqueue_head(&cur_trans->writer_wait);
112 	init_waitqueue_head(&cur_trans->commit_wait);
113 	cur_trans->in_commit = 0;
114 	cur_trans->blocked = 0;
115 	/*
116 	 * One for this trans handle, one so it will live on until we
117 	 * commit the transaction.
118 	 */
119 	atomic_set(&cur_trans->use_count, 2);
120 	cur_trans->commit_done = 0;
121 	cur_trans->start_time = get_seconds();
122 
123 	cur_trans->delayed_refs.root = RB_ROOT;
124 	cur_trans->delayed_refs.num_entries = 0;
125 	cur_trans->delayed_refs.num_heads_ready = 0;
126 	cur_trans->delayed_refs.num_heads = 0;
127 	cur_trans->delayed_refs.flushing = 0;
128 	cur_trans->delayed_refs.run_delayed_start = 0;
129 
130 	/*
131 	 * although the tree mod log is per file system and not per transaction,
132 	 * the log must never go across transaction boundaries.
133 	 */
134 	smp_mb();
135 	if (!list_empty(&fs_info->tree_mod_seq_list)) {
136 		printk(KERN_ERR "btrfs: tree_mod_seq_list not empty when "
137 			"creating a fresh transaction\n");
138 		WARN_ON(1);
139 	}
140 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) {
141 		printk(KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
142 			"creating a fresh transaction\n");
143 		WARN_ON(1);
144 	}
145 	atomic_set(&fs_info->tree_mod_seq, 0);
146 
147 	spin_lock_init(&cur_trans->commit_lock);
148 	spin_lock_init(&cur_trans->delayed_refs.lock);
149 
150 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
151 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
152 	extent_io_tree_init(&cur_trans->dirty_pages,
153 			     fs_info->btree_inode->i_mapping);
154 	fs_info->generation++;
155 	cur_trans->transid = fs_info->generation;
156 	fs_info->running_transaction = cur_trans;
157 	cur_trans->aborted = 0;
158 	spin_unlock(&fs_info->trans_lock);
159 
160 	return 0;
161 }
162 
163 /*
164  * this does all the record keeping required to make sure that a reference
165  * counted root is properly recorded in a given transaction.  This is required
166  * to make sure the old root from before we joined the transaction is deleted
167  * when the transaction commits
168  */
169 static int record_root_in_trans(struct btrfs_trans_handle *trans,
170 			       struct btrfs_root *root)
171 {
172 	if (root->ref_cows && root->last_trans < trans->transid) {
173 		WARN_ON(root == root->fs_info->extent_root);
174 		WARN_ON(root->commit_root != root->node);
175 
176 		/*
177 		 * see below for in_trans_setup usage rules
178 		 * we have the reloc mutex held now, so there
179 		 * is only one writer in this function
180 		 */
181 		root->in_trans_setup = 1;
182 
183 		/* make sure readers find in_trans_setup before
184 		 * they find our root->last_trans update
185 		 */
186 		smp_wmb();
187 
188 		spin_lock(&root->fs_info->fs_roots_radix_lock);
189 		if (root->last_trans == trans->transid) {
190 			spin_unlock(&root->fs_info->fs_roots_radix_lock);
191 			return 0;
192 		}
193 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
194 			   (unsigned long)root->root_key.objectid,
195 			   BTRFS_ROOT_TRANS_TAG);
196 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
197 		root->last_trans = trans->transid;
198 
199 		/* this is pretty tricky.  We don't want to
200 		 * take the relocation lock in btrfs_record_root_in_trans
201 		 * unless we're really doing the first setup for this root in
202 		 * this transaction.
203 		 *
204 		 * Normally we'd use root->last_trans as a flag to decide
205 		 * if we want to take the expensive mutex.
206 		 *
207 		 * But, we have to set root->last_trans before we
208 		 * init the relocation root, otherwise, we trip over warnings
209 		 * in ctree.c.  The solution used here is to flag ourselves
210 		 * with root->in_trans_setup.  When this is 1, we're still
211 		 * fixing up the reloc trees and everyone must wait.
212 		 *
213 		 * When this is zero, they can trust root->last_trans and fly
214 		 * through btrfs_record_root_in_trans without having to take the
215 		 * lock.  smp_wmb() makes sure that all the writes above are
216 		 * done before we pop in the zero below
217 		 */
218 		btrfs_init_reloc_root(trans, root);
219 		smp_wmb();
220 		root->in_trans_setup = 0;
221 	}
222 	return 0;
223 }
224 
225 
226 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
227 			       struct btrfs_root *root)
228 {
229 	if (!root->ref_cows)
230 		return 0;
231 
232 	/*
233 	 * see record_root_in_trans for comments about in_trans_setup usage
234 	 * and barriers
235 	 */
236 	smp_rmb();
237 	if (root->last_trans == trans->transid &&
238 	    !root->in_trans_setup)
239 		return 0;
240 
241 	mutex_lock(&root->fs_info->reloc_mutex);
242 	record_root_in_trans(trans, root);
243 	mutex_unlock(&root->fs_info->reloc_mutex);
244 
245 	return 0;
246 }
247 
248 /* wait for commit against the current transaction to become unblocked
249  * when this is done, it is safe to start a new transaction, but the current
250  * transaction might not be fully on disk.
251  */
252 static void wait_current_trans(struct btrfs_root *root)
253 {
254 	struct btrfs_transaction *cur_trans;
255 
256 	spin_lock(&root->fs_info->trans_lock);
257 	cur_trans = root->fs_info->running_transaction;
258 	if (cur_trans && cur_trans->blocked) {
259 		atomic_inc(&cur_trans->use_count);
260 		spin_unlock(&root->fs_info->trans_lock);
261 
262 		wait_event(root->fs_info->transaction_wait,
263 			   !cur_trans->blocked);
264 		put_transaction(cur_trans);
265 	} else {
266 		spin_unlock(&root->fs_info->trans_lock);
267 	}
268 }
269 
270 enum btrfs_trans_type {
271 	TRANS_START,
272 	TRANS_JOIN,
273 	TRANS_USERSPACE,
274 	TRANS_JOIN_NOLOCK,
275 };
276 
277 static int may_wait_transaction(struct btrfs_root *root, int type)
278 {
279 	if (root->fs_info->log_root_recovering)
280 		return 0;
281 
282 	if (type == TRANS_USERSPACE)
283 		return 1;
284 
285 	if (type == TRANS_START &&
286 	    !atomic_read(&root->fs_info->open_ioctl_trans))
287 		return 1;
288 
289 	return 0;
290 }
291 
292 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
293 						    u64 num_items, int type)
294 {
295 	struct btrfs_trans_handle *h;
296 	struct btrfs_transaction *cur_trans;
297 	u64 num_bytes = 0;
298 	int ret;
299 	u64 qgroup_reserved = 0;
300 
301 	if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
302 		return ERR_PTR(-EROFS);
303 
304 	if (current->journal_info) {
305 		WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
306 		h = current->journal_info;
307 		h->use_count++;
308 		h->orig_rsv = h->block_rsv;
309 		h->block_rsv = NULL;
310 		goto got_it;
311 	}
312 
313 	/*
314 	 * Do the reservation before we join the transaction so we can do all
315 	 * the appropriate flushing if need be.
316 	 */
317 	if (num_items > 0 && root != root->fs_info->chunk_root) {
318 		if (root->fs_info->quota_enabled &&
319 		    is_fstree(root->root_key.objectid)) {
320 			qgroup_reserved = num_items * root->leafsize;
321 			ret = btrfs_qgroup_reserve(root, qgroup_reserved);
322 			if (ret)
323 				return ERR_PTR(ret);
324 		}
325 
326 		num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
327 		ret = btrfs_block_rsv_add(root,
328 					  &root->fs_info->trans_block_rsv,
329 					  num_bytes);
330 		if (ret)
331 			return ERR_PTR(ret);
332 	}
333 again:
334 	h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
335 	if (!h)
336 		return ERR_PTR(-ENOMEM);
337 
338 	if (may_wait_transaction(root, type))
339 		wait_current_trans(root);
340 
341 	do {
342 		ret = join_transaction(root, type == TRANS_JOIN_NOLOCK);
343 		if (ret == -EBUSY)
344 			wait_current_trans(root);
345 	} while (ret == -EBUSY);
346 
347 	if (ret < 0) {
348 		kmem_cache_free(btrfs_trans_handle_cachep, h);
349 		return ERR_PTR(ret);
350 	}
351 
352 	cur_trans = root->fs_info->running_transaction;
353 
354 	h->transid = cur_trans->transid;
355 	h->transaction = cur_trans;
356 	h->blocks_used = 0;
357 	h->bytes_reserved = 0;
358 	h->root = root;
359 	h->delayed_ref_updates = 0;
360 	h->use_count = 1;
361 	h->adding_csums = 0;
362 	h->block_rsv = NULL;
363 	h->orig_rsv = NULL;
364 	h->aborted = 0;
365 	h->qgroup_reserved = qgroup_reserved;
366 	h->delayed_ref_elem.seq = 0;
367 	INIT_LIST_HEAD(&h->qgroup_ref_list);
368 
369 	smp_mb();
370 	if (cur_trans->blocked && may_wait_transaction(root, type)) {
371 		btrfs_commit_transaction(h, root);
372 		goto again;
373 	}
374 
375 	if (num_bytes) {
376 		trace_btrfs_space_reservation(root->fs_info, "transaction",
377 					      h->transid, num_bytes, 1);
378 		h->block_rsv = &root->fs_info->trans_block_rsv;
379 		h->bytes_reserved = num_bytes;
380 	}
381 
382 got_it:
383 	btrfs_record_root_in_trans(h, root);
384 
385 	if (!current->journal_info && type != TRANS_USERSPACE)
386 		current->journal_info = h;
387 	return h;
388 }
389 
390 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
391 						   int num_items)
392 {
393 	return start_transaction(root, num_items, TRANS_START);
394 }
395 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
396 {
397 	return start_transaction(root, 0, TRANS_JOIN);
398 }
399 
400 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
401 {
402 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
403 }
404 
405 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
406 {
407 	return start_transaction(root, 0, TRANS_USERSPACE);
408 }
409 
410 /* wait for a transaction commit to be fully complete */
411 static noinline void wait_for_commit(struct btrfs_root *root,
412 				    struct btrfs_transaction *commit)
413 {
414 	wait_event(commit->commit_wait, commit->commit_done);
415 }
416 
417 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
418 {
419 	struct btrfs_transaction *cur_trans = NULL, *t;
420 	int ret;
421 
422 	ret = 0;
423 	if (transid) {
424 		if (transid <= root->fs_info->last_trans_committed)
425 			goto out;
426 
427 		/* find specified transaction */
428 		spin_lock(&root->fs_info->trans_lock);
429 		list_for_each_entry(t, &root->fs_info->trans_list, list) {
430 			if (t->transid == transid) {
431 				cur_trans = t;
432 				atomic_inc(&cur_trans->use_count);
433 				break;
434 			}
435 			if (t->transid > transid)
436 				break;
437 		}
438 		spin_unlock(&root->fs_info->trans_lock);
439 		ret = -EINVAL;
440 		if (!cur_trans)
441 			goto out;  /* bad transid */
442 	} else {
443 		/* find newest transaction that is committing | committed */
444 		spin_lock(&root->fs_info->trans_lock);
445 		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
446 					    list) {
447 			if (t->in_commit) {
448 				if (t->commit_done)
449 					break;
450 				cur_trans = t;
451 				atomic_inc(&cur_trans->use_count);
452 				break;
453 			}
454 		}
455 		spin_unlock(&root->fs_info->trans_lock);
456 		if (!cur_trans)
457 			goto out;  /* nothing committing|committed */
458 	}
459 
460 	wait_for_commit(root, cur_trans);
461 
462 	put_transaction(cur_trans);
463 	ret = 0;
464 out:
465 	return ret;
466 }
467 
468 void btrfs_throttle(struct btrfs_root *root)
469 {
470 	if (!atomic_read(&root->fs_info->open_ioctl_trans))
471 		wait_current_trans(root);
472 }
473 
474 static int should_end_transaction(struct btrfs_trans_handle *trans,
475 				  struct btrfs_root *root)
476 {
477 	int ret;
478 
479 	ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
480 	return ret ? 1 : 0;
481 }
482 
483 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
484 				 struct btrfs_root *root)
485 {
486 	struct btrfs_transaction *cur_trans = trans->transaction;
487 	int updates;
488 	int err;
489 
490 	smp_mb();
491 	if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
492 		return 1;
493 
494 	updates = trans->delayed_ref_updates;
495 	trans->delayed_ref_updates = 0;
496 	if (updates) {
497 		err = btrfs_run_delayed_refs(trans, root, updates);
498 		if (err) /* Error code will also eval true */
499 			return err;
500 	}
501 
502 	return should_end_transaction(trans, root);
503 }
504 
505 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
506 			  struct btrfs_root *root, int throttle, int lock)
507 {
508 	struct btrfs_transaction *cur_trans = trans->transaction;
509 	struct btrfs_fs_info *info = root->fs_info;
510 	int count = 0;
511 	int err = 0;
512 
513 	if (--trans->use_count) {
514 		trans->block_rsv = trans->orig_rsv;
515 		return 0;
516 	}
517 
518 	/*
519 	 * do the qgroup accounting as early as possible
520 	 */
521 	err = btrfs_delayed_refs_qgroup_accounting(trans, info);
522 
523 	btrfs_trans_release_metadata(trans, root);
524 	trans->block_rsv = NULL;
525 	/*
526 	 * the same root has to be passed to start_transaction and
527 	 * end_transaction. Subvolume quota depends on this.
528 	 */
529 	WARN_ON(trans->root != root);
530 
531 	if (trans->qgroup_reserved) {
532 		btrfs_qgroup_free(root, trans->qgroup_reserved);
533 		trans->qgroup_reserved = 0;
534 	}
535 
536 	while (count < 2) {
537 		unsigned long cur = trans->delayed_ref_updates;
538 		trans->delayed_ref_updates = 0;
539 		if (cur &&
540 		    trans->transaction->delayed_refs.num_heads_ready > 64) {
541 			trans->delayed_ref_updates = 0;
542 			btrfs_run_delayed_refs(trans, root, cur);
543 		} else {
544 			break;
545 		}
546 		count++;
547 	}
548 	btrfs_trans_release_metadata(trans, root);
549 	trans->block_rsv = NULL;
550 
551 	if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
552 	    should_end_transaction(trans, root)) {
553 		trans->transaction->blocked = 1;
554 		smp_wmb();
555 	}
556 
557 	if (lock && cur_trans->blocked && !cur_trans->in_commit) {
558 		if (throttle) {
559 			/*
560 			 * We may race with somebody else here so end up having
561 			 * to call end_transaction on ourselves again, so inc
562 			 * our use_count.
563 			 */
564 			trans->use_count++;
565 			return btrfs_commit_transaction(trans, root);
566 		} else {
567 			wake_up_process(info->transaction_kthread);
568 		}
569 	}
570 
571 	WARN_ON(cur_trans != info->running_transaction);
572 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
573 	atomic_dec(&cur_trans->num_writers);
574 
575 	smp_mb();
576 	if (waitqueue_active(&cur_trans->writer_wait))
577 		wake_up(&cur_trans->writer_wait);
578 	put_transaction(cur_trans);
579 
580 	if (current->journal_info == trans)
581 		current->journal_info = NULL;
582 
583 	if (throttle)
584 		btrfs_run_delayed_iputs(root);
585 
586 	if (trans->aborted ||
587 	    root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
588 		err = -EIO;
589 	}
590 	assert_qgroups_uptodate(trans);
591 
592 	memset(trans, 0, sizeof(*trans));
593 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
594 	return err;
595 }
596 
597 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
598 			  struct btrfs_root *root)
599 {
600 	int ret;
601 
602 	ret = __btrfs_end_transaction(trans, root, 0, 1);
603 	if (ret)
604 		return ret;
605 	return 0;
606 }
607 
608 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
609 				   struct btrfs_root *root)
610 {
611 	int ret;
612 
613 	ret = __btrfs_end_transaction(trans, root, 1, 1);
614 	if (ret)
615 		return ret;
616 	return 0;
617 }
618 
619 int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
620 				 struct btrfs_root *root)
621 {
622 	int ret;
623 
624 	ret = __btrfs_end_transaction(trans, root, 0, 0);
625 	if (ret)
626 		return ret;
627 	return 0;
628 }
629 
630 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
631 				struct btrfs_root *root)
632 {
633 	return __btrfs_end_transaction(trans, root, 1, 1);
634 }
635 
636 /*
637  * when btree blocks are allocated, they have some corresponding bits set for
638  * them in one of two extent_io trees.  This is used to make sure all of
639  * those extents are sent to disk but does not wait on them
640  */
641 int btrfs_write_marked_extents(struct btrfs_root *root,
642 			       struct extent_io_tree *dirty_pages, int mark)
643 {
644 	int err = 0;
645 	int werr = 0;
646 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
647 	u64 start = 0;
648 	u64 end;
649 
650 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
651 				      mark)) {
652 		convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, mark,
653 				   GFP_NOFS);
654 		err = filemap_fdatawrite_range(mapping, start, end);
655 		if (err)
656 			werr = err;
657 		cond_resched();
658 		start = end + 1;
659 	}
660 	if (err)
661 		werr = err;
662 	return werr;
663 }
664 
665 /*
666  * when btree blocks are allocated, they have some corresponding bits set for
667  * them in one of two extent_io trees.  This is used to make sure all of
668  * those extents are on disk for transaction or log commit.  We wait
669  * on all the pages and clear them from the dirty pages state tree
670  */
671 int btrfs_wait_marked_extents(struct btrfs_root *root,
672 			      struct extent_io_tree *dirty_pages, int mark)
673 {
674 	int err = 0;
675 	int werr = 0;
676 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
677 	u64 start = 0;
678 	u64 end;
679 
680 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
681 				      EXTENT_NEED_WAIT)) {
682 		clear_extent_bits(dirty_pages, start, end, EXTENT_NEED_WAIT, GFP_NOFS);
683 		err = filemap_fdatawait_range(mapping, start, end);
684 		if (err)
685 			werr = err;
686 		cond_resched();
687 		start = end + 1;
688 	}
689 	if (err)
690 		werr = err;
691 	return werr;
692 }
693 
694 /*
695  * when btree blocks are allocated, they have some corresponding bits set for
696  * them in one of two extent_io trees.  This is used to make sure all of
697  * those extents are on disk for transaction or log commit
698  */
699 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
700 				struct extent_io_tree *dirty_pages, int mark)
701 {
702 	int ret;
703 	int ret2;
704 
705 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
706 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
707 
708 	if (ret)
709 		return ret;
710 	if (ret2)
711 		return ret2;
712 	return 0;
713 }
714 
715 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
716 				     struct btrfs_root *root)
717 {
718 	if (!trans || !trans->transaction) {
719 		struct inode *btree_inode;
720 		btree_inode = root->fs_info->btree_inode;
721 		return filemap_write_and_wait(btree_inode->i_mapping);
722 	}
723 	return btrfs_write_and_wait_marked_extents(root,
724 					   &trans->transaction->dirty_pages,
725 					   EXTENT_DIRTY);
726 }
727 
728 /*
729  * this is used to update the root pointer in the tree of tree roots.
730  *
731  * But, in the case of the extent allocation tree, updating the root
732  * pointer may allocate blocks which may change the root of the extent
733  * allocation tree.
734  *
735  * So, this loops and repeats and makes sure the cowonly root didn't
736  * change while the root pointer was being updated in the metadata.
737  */
738 static int update_cowonly_root(struct btrfs_trans_handle *trans,
739 			       struct btrfs_root *root)
740 {
741 	int ret;
742 	u64 old_root_bytenr;
743 	u64 old_root_used;
744 	struct btrfs_root *tree_root = root->fs_info->tree_root;
745 
746 	old_root_used = btrfs_root_used(&root->root_item);
747 	btrfs_write_dirty_block_groups(trans, root);
748 
749 	while (1) {
750 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
751 		if (old_root_bytenr == root->node->start &&
752 		    old_root_used == btrfs_root_used(&root->root_item))
753 			break;
754 
755 		btrfs_set_root_node(&root->root_item, root->node);
756 		ret = btrfs_update_root(trans, tree_root,
757 					&root->root_key,
758 					&root->root_item);
759 		if (ret)
760 			return ret;
761 
762 		old_root_used = btrfs_root_used(&root->root_item);
763 		ret = btrfs_write_dirty_block_groups(trans, root);
764 		if (ret)
765 			return ret;
766 	}
767 
768 	if (root != root->fs_info->extent_root)
769 		switch_commit_root(root);
770 
771 	return 0;
772 }
773 
774 /*
775  * update all the cowonly tree roots on disk
776  *
777  * The error handling in this function may not be obvious. Any of the
778  * failures will cause the file system to go offline. We still need
779  * to clean up the delayed refs.
780  */
781 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
782 					 struct btrfs_root *root)
783 {
784 	struct btrfs_fs_info *fs_info = root->fs_info;
785 	struct list_head *next;
786 	struct extent_buffer *eb;
787 	int ret;
788 
789 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
790 	if (ret)
791 		return ret;
792 
793 	eb = btrfs_lock_root_node(fs_info->tree_root);
794 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
795 			      0, &eb);
796 	btrfs_tree_unlock(eb);
797 	free_extent_buffer(eb);
798 
799 	if (ret)
800 		return ret;
801 
802 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
803 	if (ret)
804 		return ret;
805 
806 	ret = btrfs_run_dev_stats(trans, root->fs_info);
807 	BUG_ON(ret);
808 
809 	ret = btrfs_run_qgroups(trans, root->fs_info);
810 	BUG_ON(ret);
811 
812 	/* run_qgroups might have added some more refs */
813 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
814 	BUG_ON(ret);
815 
816 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
817 		next = fs_info->dirty_cowonly_roots.next;
818 		list_del_init(next);
819 		root = list_entry(next, struct btrfs_root, dirty_list);
820 
821 		ret = update_cowonly_root(trans, root);
822 		if (ret)
823 			return ret;
824 	}
825 
826 	down_write(&fs_info->extent_commit_sem);
827 	switch_commit_root(fs_info->extent_root);
828 	up_write(&fs_info->extent_commit_sem);
829 
830 	return 0;
831 }
832 
833 /*
834  * dead roots are old snapshots that need to be deleted.  This allocates
835  * a dirty root struct and adds it into the list of dead roots that need to
836  * be deleted
837  */
838 int btrfs_add_dead_root(struct btrfs_root *root)
839 {
840 	spin_lock(&root->fs_info->trans_lock);
841 	list_add(&root->root_list, &root->fs_info->dead_roots);
842 	spin_unlock(&root->fs_info->trans_lock);
843 	return 0;
844 }
845 
846 /*
847  * update all the cowonly tree roots on disk
848  */
849 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
850 				    struct btrfs_root *root)
851 {
852 	struct btrfs_root *gang[8];
853 	struct btrfs_fs_info *fs_info = root->fs_info;
854 	int i;
855 	int ret;
856 	int err = 0;
857 
858 	spin_lock(&fs_info->fs_roots_radix_lock);
859 	while (1) {
860 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
861 						 (void **)gang, 0,
862 						 ARRAY_SIZE(gang),
863 						 BTRFS_ROOT_TRANS_TAG);
864 		if (ret == 0)
865 			break;
866 		for (i = 0; i < ret; i++) {
867 			root = gang[i];
868 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
869 					(unsigned long)root->root_key.objectid,
870 					BTRFS_ROOT_TRANS_TAG);
871 			spin_unlock(&fs_info->fs_roots_radix_lock);
872 
873 			btrfs_free_log(trans, root);
874 			btrfs_update_reloc_root(trans, root);
875 			btrfs_orphan_commit_root(trans, root);
876 
877 			btrfs_save_ino_cache(root, trans);
878 
879 			/* see comments in should_cow_block() */
880 			root->force_cow = 0;
881 			smp_wmb();
882 
883 			if (root->commit_root != root->node) {
884 				mutex_lock(&root->fs_commit_mutex);
885 				switch_commit_root(root);
886 				btrfs_unpin_free_ino(root);
887 				mutex_unlock(&root->fs_commit_mutex);
888 
889 				btrfs_set_root_node(&root->root_item,
890 						    root->node);
891 			}
892 
893 			err = btrfs_update_root(trans, fs_info->tree_root,
894 						&root->root_key,
895 						&root->root_item);
896 			spin_lock(&fs_info->fs_roots_radix_lock);
897 			if (err)
898 				break;
899 		}
900 	}
901 	spin_unlock(&fs_info->fs_roots_radix_lock);
902 	return err;
903 }
904 
905 /*
906  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
907  * otherwise every leaf in the btree is read and defragged.
908  */
909 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
910 {
911 	struct btrfs_fs_info *info = root->fs_info;
912 	struct btrfs_trans_handle *trans;
913 	int ret;
914 	unsigned long nr;
915 
916 	if (xchg(&root->defrag_running, 1))
917 		return 0;
918 
919 	while (1) {
920 		trans = btrfs_start_transaction(root, 0);
921 		if (IS_ERR(trans))
922 			return PTR_ERR(trans);
923 
924 		ret = btrfs_defrag_leaves(trans, root, cacheonly);
925 
926 		nr = trans->blocks_used;
927 		btrfs_end_transaction(trans, root);
928 		btrfs_btree_balance_dirty(info->tree_root, nr);
929 		cond_resched();
930 
931 		if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
932 			break;
933 	}
934 	root->defrag_running = 0;
935 	return ret;
936 }
937 
938 /*
939  * new snapshots need to be created at a very specific time in the
940  * transaction commit.  This does the actual creation
941  */
942 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
943 				   struct btrfs_fs_info *fs_info,
944 				   struct btrfs_pending_snapshot *pending)
945 {
946 	struct btrfs_key key;
947 	struct btrfs_root_item *new_root_item;
948 	struct btrfs_root *tree_root = fs_info->tree_root;
949 	struct btrfs_root *root = pending->root;
950 	struct btrfs_root *parent_root;
951 	struct btrfs_block_rsv *rsv;
952 	struct inode *parent_inode;
953 	struct dentry *parent;
954 	struct dentry *dentry;
955 	struct extent_buffer *tmp;
956 	struct extent_buffer *old;
957 	struct timespec cur_time = CURRENT_TIME;
958 	int ret;
959 	u64 to_reserve = 0;
960 	u64 index = 0;
961 	u64 objectid;
962 	u64 root_flags;
963 	uuid_le new_uuid;
964 
965 	rsv = trans->block_rsv;
966 
967 	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
968 	if (!new_root_item) {
969 		ret = pending->error = -ENOMEM;
970 		goto fail;
971 	}
972 
973 	ret = btrfs_find_free_objectid(tree_root, &objectid);
974 	if (ret) {
975 		pending->error = ret;
976 		goto fail;
977 	}
978 
979 	btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
980 
981 	if (to_reserve > 0) {
982 		ret = btrfs_block_rsv_add_noflush(root, &pending->block_rsv,
983 						  to_reserve);
984 		if (ret) {
985 			pending->error = ret;
986 			goto fail;
987 		}
988 	}
989 
990 	ret = btrfs_qgroup_inherit(trans, fs_info, root->root_key.objectid,
991 				   objectid, pending->inherit);
992 	kfree(pending->inherit);
993 	if (ret) {
994 		pending->error = ret;
995 		goto fail;
996 	}
997 
998 	key.objectid = objectid;
999 	key.offset = (u64)-1;
1000 	key.type = BTRFS_ROOT_ITEM_KEY;
1001 
1002 	trans->block_rsv = &pending->block_rsv;
1003 
1004 	dentry = pending->dentry;
1005 	parent = dget_parent(dentry);
1006 	parent_inode = parent->d_inode;
1007 	parent_root = BTRFS_I(parent_inode)->root;
1008 	record_root_in_trans(trans, parent_root);
1009 
1010 	/*
1011 	 * insert the directory item
1012 	 */
1013 	ret = btrfs_set_inode_index(parent_inode, &index);
1014 	BUG_ON(ret); /* -ENOMEM */
1015 	ret = btrfs_insert_dir_item(trans, parent_root,
1016 				dentry->d_name.name, dentry->d_name.len,
1017 				parent_inode, &key,
1018 				BTRFS_FT_DIR, index);
1019 	if (ret == -EEXIST) {
1020 		pending->error = -EEXIST;
1021 		dput(parent);
1022 		goto fail;
1023 	} else if (ret) {
1024 		goto abort_trans_dput;
1025 	}
1026 
1027 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
1028 					 dentry->d_name.len * 2);
1029 	ret = btrfs_update_inode(trans, parent_root, parent_inode);
1030 	if (ret)
1031 		goto abort_trans_dput;
1032 
1033 	/*
1034 	 * pull in the delayed directory update
1035 	 * and the delayed inode item
1036 	 * otherwise we corrupt the FS during
1037 	 * snapshot
1038 	 */
1039 	ret = btrfs_run_delayed_items(trans, root);
1040 	if (ret) { /* Transaction aborted */
1041 		dput(parent);
1042 		goto fail;
1043 	}
1044 
1045 	record_root_in_trans(trans, root);
1046 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1047 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1048 	btrfs_check_and_init_root_item(new_root_item);
1049 
1050 	root_flags = btrfs_root_flags(new_root_item);
1051 	if (pending->readonly)
1052 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1053 	else
1054 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1055 	btrfs_set_root_flags(new_root_item, root_flags);
1056 
1057 	btrfs_set_root_generation_v2(new_root_item,
1058 			trans->transid);
1059 	uuid_le_gen(&new_uuid);
1060 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1061 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1062 			BTRFS_UUID_SIZE);
1063 	new_root_item->otime.sec = cpu_to_le64(cur_time.tv_sec);
1064 	new_root_item->otime.nsec = cpu_to_le64(cur_time.tv_nsec);
1065 	btrfs_set_root_otransid(new_root_item, trans->transid);
1066 	memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1067 	memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1068 	btrfs_set_root_stransid(new_root_item, 0);
1069 	btrfs_set_root_rtransid(new_root_item, 0);
1070 
1071 	old = btrfs_lock_root_node(root);
1072 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1073 	if (ret) {
1074 		btrfs_tree_unlock(old);
1075 		free_extent_buffer(old);
1076 		goto abort_trans_dput;
1077 	}
1078 
1079 	btrfs_set_lock_blocking(old);
1080 
1081 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1082 	/* clean up in any case */
1083 	btrfs_tree_unlock(old);
1084 	free_extent_buffer(old);
1085 	if (ret)
1086 		goto abort_trans_dput;
1087 
1088 	/* see comments in should_cow_block() */
1089 	root->force_cow = 1;
1090 	smp_wmb();
1091 
1092 	btrfs_set_root_node(new_root_item, tmp);
1093 	/* record when the snapshot was created in key.offset */
1094 	key.offset = trans->transid;
1095 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1096 	btrfs_tree_unlock(tmp);
1097 	free_extent_buffer(tmp);
1098 	if (ret)
1099 		goto abort_trans_dput;
1100 
1101 	/*
1102 	 * insert root back/forward references
1103 	 */
1104 	ret = btrfs_add_root_ref(trans, tree_root, objectid,
1105 				 parent_root->root_key.objectid,
1106 				 btrfs_ino(parent_inode), index,
1107 				 dentry->d_name.name, dentry->d_name.len);
1108 	dput(parent);
1109 	if (ret)
1110 		goto fail;
1111 
1112 	key.offset = (u64)-1;
1113 	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1114 	if (IS_ERR(pending->snap)) {
1115 		ret = PTR_ERR(pending->snap);
1116 		goto abort_trans;
1117 	}
1118 
1119 	ret = btrfs_reloc_post_snapshot(trans, pending);
1120 	if (ret)
1121 		goto abort_trans;
1122 	ret = 0;
1123 fail:
1124 	kfree(new_root_item);
1125 	trans->block_rsv = rsv;
1126 	btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1127 	return ret;
1128 
1129 abort_trans_dput:
1130 	dput(parent);
1131 abort_trans:
1132 	btrfs_abort_transaction(trans, root, ret);
1133 	goto fail;
1134 }
1135 
1136 /*
1137  * create all the snapshots we've scheduled for creation
1138  */
1139 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1140 					     struct btrfs_fs_info *fs_info)
1141 {
1142 	struct btrfs_pending_snapshot *pending;
1143 	struct list_head *head = &trans->transaction->pending_snapshots;
1144 
1145 	list_for_each_entry(pending, head, list)
1146 		create_pending_snapshot(trans, fs_info, pending);
1147 	return 0;
1148 }
1149 
1150 static void update_super_roots(struct btrfs_root *root)
1151 {
1152 	struct btrfs_root_item *root_item;
1153 	struct btrfs_super_block *super;
1154 
1155 	super = root->fs_info->super_copy;
1156 
1157 	root_item = &root->fs_info->chunk_root->root_item;
1158 	super->chunk_root = root_item->bytenr;
1159 	super->chunk_root_generation = root_item->generation;
1160 	super->chunk_root_level = root_item->level;
1161 
1162 	root_item = &root->fs_info->tree_root->root_item;
1163 	super->root = root_item->bytenr;
1164 	super->generation = root_item->generation;
1165 	super->root_level = root_item->level;
1166 	if (btrfs_test_opt(root, SPACE_CACHE))
1167 		super->cache_generation = root_item->generation;
1168 }
1169 
1170 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1171 {
1172 	int ret = 0;
1173 	spin_lock(&info->trans_lock);
1174 	if (info->running_transaction)
1175 		ret = info->running_transaction->in_commit;
1176 	spin_unlock(&info->trans_lock);
1177 	return ret;
1178 }
1179 
1180 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1181 {
1182 	int ret = 0;
1183 	spin_lock(&info->trans_lock);
1184 	if (info->running_transaction)
1185 		ret = info->running_transaction->blocked;
1186 	spin_unlock(&info->trans_lock);
1187 	return ret;
1188 }
1189 
1190 /*
1191  * wait for the current transaction commit to start and block subsequent
1192  * transaction joins
1193  */
1194 static void wait_current_trans_commit_start(struct btrfs_root *root,
1195 					    struct btrfs_transaction *trans)
1196 {
1197 	wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1198 }
1199 
1200 /*
1201  * wait for the current transaction to start and then become unblocked.
1202  * caller holds ref.
1203  */
1204 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1205 					 struct btrfs_transaction *trans)
1206 {
1207 	wait_event(root->fs_info->transaction_wait,
1208 		   trans->commit_done || (trans->in_commit && !trans->blocked));
1209 }
1210 
1211 /*
1212  * commit transactions asynchronously. once btrfs_commit_transaction_async
1213  * returns, any subsequent transaction will not be allowed to join.
1214  */
1215 struct btrfs_async_commit {
1216 	struct btrfs_trans_handle *newtrans;
1217 	struct btrfs_root *root;
1218 	struct delayed_work work;
1219 };
1220 
1221 static void do_async_commit(struct work_struct *work)
1222 {
1223 	struct btrfs_async_commit *ac =
1224 		container_of(work, struct btrfs_async_commit, work.work);
1225 
1226 	btrfs_commit_transaction(ac->newtrans, ac->root);
1227 	kfree(ac);
1228 }
1229 
1230 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1231 				   struct btrfs_root *root,
1232 				   int wait_for_unblock)
1233 {
1234 	struct btrfs_async_commit *ac;
1235 	struct btrfs_transaction *cur_trans;
1236 
1237 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1238 	if (!ac)
1239 		return -ENOMEM;
1240 
1241 	INIT_DELAYED_WORK(&ac->work, do_async_commit);
1242 	ac->root = root;
1243 	ac->newtrans = btrfs_join_transaction(root);
1244 	if (IS_ERR(ac->newtrans)) {
1245 		int err = PTR_ERR(ac->newtrans);
1246 		kfree(ac);
1247 		return err;
1248 	}
1249 
1250 	/* take transaction reference */
1251 	cur_trans = trans->transaction;
1252 	atomic_inc(&cur_trans->use_count);
1253 
1254 	btrfs_end_transaction(trans, root);
1255 	schedule_delayed_work(&ac->work, 0);
1256 
1257 	/* wait for transaction to start and unblock */
1258 	if (wait_for_unblock)
1259 		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1260 	else
1261 		wait_current_trans_commit_start(root, cur_trans);
1262 
1263 	if (current->journal_info == trans)
1264 		current->journal_info = NULL;
1265 
1266 	put_transaction(cur_trans);
1267 	return 0;
1268 }
1269 
1270 
1271 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1272 				struct btrfs_root *root, int err)
1273 {
1274 	struct btrfs_transaction *cur_trans = trans->transaction;
1275 
1276 	WARN_ON(trans->use_count > 1);
1277 
1278 	btrfs_abort_transaction(trans, root, err);
1279 
1280 	spin_lock(&root->fs_info->trans_lock);
1281 	list_del_init(&cur_trans->list);
1282 	if (cur_trans == root->fs_info->running_transaction) {
1283 		root->fs_info->running_transaction = NULL;
1284 		root->fs_info->trans_no_join = 0;
1285 	}
1286 	spin_unlock(&root->fs_info->trans_lock);
1287 
1288 	btrfs_cleanup_one_transaction(trans->transaction, root);
1289 
1290 	put_transaction(cur_trans);
1291 	put_transaction(cur_trans);
1292 
1293 	trace_btrfs_transaction_commit(root);
1294 
1295 	btrfs_scrub_continue(root);
1296 
1297 	if (current->journal_info == trans)
1298 		current->journal_info = NULL;
1299 
1300 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1301 }
1302 
1303 /*
1304  * btrfs_transaction state sequence:
1305  *    in_commit = 0, blocked = 0  (initial)
1306  *    in_commit = 1, blocked = 1
1307  *    blocked = 0
1308  *    commit_done = 1
1309  */
1310 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1311 			     struct btrfs_root *root)
1312 {
1313 	unsigned long joined = 0;
1314 	struct btrfs_transaction *cur_trans = trans->transaction;
1315 	struct btrfs_transaction *prev_trans = NULL;
1316 	DEFINE_WAIT(wait);
1317 	int ret = -EIO;
1318 	int should_grow = 0;
1319 	unsigned long now = get_seconds();
1320 	int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1321 
1322 	btrfs_run_ordered_operations(root, 0);
1323 
1324 	if (cur_trans->aborted)
1325 		goto cleanup_transaction;
1326 
1327 	/* make a pass through all the delayed refs we have so far
1328 	 * any runnings procs may add more while we are here
1329 	 */
1330 	ret = btrfs_run_delayed_refs(trans, root, 0);
1331 	if (ret)
1332 		goto cleanup_transaction;
1333 
1334 	btrfs_trans_release_metadata(trans, root);
1335 	trans->block_rsv = NULL;
1336 
1337 	cur_trans = trans->transaction;
1338 
1339 	/*
1340 	 * set the flushing flag so procs in this transaction have to
1341 	 * start sending their work down.
1342 	 */
1343 	cur_trans->delayed_refs.flushing = 1;
1344 
1345 	ret = btrfs_run_delayed_refs(trans, root, 0);
1346 	if (ret)
1347 		goto cleanup_transaction;
1348 
1349 	spin_lock(&cur_trans->commit_lock);
1350 	if (cur_trans->in_commit) {
1351 		spin_unlock(&cur_trans->commit_lock);
1352 		atomic_inc(&cur_trans->use_count);
1353 		ret = btrfs_end_transaction(trans, root);
1354 
1355 		wait_for_commit(root, cur_trans);
1356 
1357 		put_transaction(cur_trans);
1358 
1359 		return ret;
1360 	}
1361 
1362 	trans->transaction->in_commit = 1;
1363 	trans->transaction->blocked = 1;
1364 	spin_unlock(&cur_trans->commit_lock);
1365 	wake_up(&root->fs_info->transaction_blocked_wait);
1366 
1367 	spin_lock(&root->fs_info->trans_lock);
1368 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
1369 		prev_trans = list_entry(cur_trans->list.prev,
1370 					struct btrfs_transaction, list);
1371 		if (!prev_trans->commit_done) {
1372 			atomic_inc(&prev_trans->use_count);
1373 			spin_unlock(&root->fs_info->trans_lock);
1374 
1375 			wait_for_commit(root, prev_trans);
1376 
1377 			put_transaction(prev_trans);
1378 		} else {
1379 			spin_unlock(&root->fs_info->trans_lock);
1380 		}
1381 	} else {
1382 		spin_unlock(&root->fs_info->trans_lock);
1383 	}
1384 
1385 	if (!btrfs_test_opt(root, SSD) &&
1386 	    (now < cur_trans->start_time || now - cur_trans->start_time < 1))
1387 		should_grow = 1;
1388 
1389 	do {
1390 		int snap_pending = 0;
1391 
1392 		joined = cur_trans->num_joined;
1393 		if (!list_empty(&trans->transaction->pending_snapshots))
1394 			snap_pending = 1;
1395 
1396 		WARN_ON(cur_trans != trans->transaction);
1397 
1398 		if (flush_on_commit || snap_pending) {
1399 			btrfs_start_delalloc_inodes(root, 1);
1400 			btrfs_wait_ordered_extents(root, 0, 1);
1401 		}
1402 
1403 		ret = btrfs_run_delayed_items(trans, root);
1404 		if (ret)
1405 			goto cleanup_transaction;
1406 
1407 		/*
1408 		 * running the delayed items may have added new refs. account
1409 		 * them now so that they hinder processing of more delayed refs
1410 		 * as little as possible.
1411 		 */
1412 		btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1413 
1414 		/*
1415 		 * rename don't use btrfs_join_transaction, so, once we
1416 		 * set the transaction to blocked above, we aren't going
1417 		 * to get any new ordered operations.  We can safely run
1418 		 * it here and no for sure that nothing new will be added
1419 		 * to the list
1420 		 */
1421 		btrfs_run_ordered_operations(root, 1);
1422 
1423 		prepare_to_wait(&cur_trans->writer_wait, &wait,
1424 				TASK_UNINTERRUPTIBLE);
1425 
1426 		if (atomic_read(&cur_trans->num_writers) > 1)
1427 			schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1428 		else if (should_grow)
1429 			schedule_timeout(1);
1430 
1431 		finish_wait(&cur_trans->writer_wait, &wait);
1432 	} while (atomic_read(&cur_trans->num_writers) > 1 ||
1433 		 (should_grow && cur_trans->num_joined != joined));
1434 
1435 	/*
1436 	 * Ok now we need to make sure to block out any other joins while we
1437 	 * commit the transaction.  We could have started a join before setting
1438 	 * no_join so make sure to wait for num_writers to == 1 again.
1439 	 */
1440 	spin_lock(&root->fs_info->trans_lock);
1441 	root->fs_info->trans_no_join = 1;
1442 	spin_unlock(&root->fs_info->trans_lock);
1443 	wait_event(cur_trans->writer_wait,
1444 		   atomic_read(&cur_trans->num_writers) == 1);
1445 
1446 	/*
1447 	 * the reloc mutex makes sure that we stop
1448 	 * the balancing code from coming in and moving
1449 	 * extents around in the middle of the commit
1450 	 */
1451 	mutex_lock(&root->fs_info->reloc_mutex);
1452 
1453 	ret = btrfs_run_delayed_items(trans, root);
1454 	if (ret) {
1455 		mutex_unlock(&root->fs_info->reloc_mutex);
1456 		goto cleanup_transaction;
1457 	}
1458 
1459 	ret = create_pending_snapshots(trans, root->fs_info);
1460 	if (ret) {
1461 		mutex_unlock(&root->fs_info->reloc_mutex);
1462 		goto cleanup_transaction;
1463 	}
1464 
1465 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1466 	if (ret) {
1467 		mutex_unlock(&root->fs_info->reloc_mutex);
1468 		goto cleanup_transaction;
1469 	}
1470 
1471 	/*
1472 	 * make sure none of the code above managed to slip in a
1473 	 * delayed item
1474 	 */
1475 	btrfs_assert_delayed_root_empty(root);
1476 
1477 	WARN_ON(cur_trans != trans->transaction);
1478 
1479 	btrfs_scrub_pause(root);
1480 	/* btrfs_commit_tree_roots is responsible for getting the
1481 	 * various roots consistent with each other.  Every pointer
1482 	 * in the tree of tree roots has to point to the most up to date
1483 	 * root for every subvolume and other tree.  So, we have to keep
1484 	 * the tree logging code from jumping in and changing any
1485 	 * of the trees.
1486 	 *
1487 	 * At this point in the commit, there can't be any tree-log
1488 	 * writers, but a little lower down we drop the trans mutex
1489 	 * and let new people in.  By holding the tree_log_mutex
1490 	 * from now until after the super is written, we avoid races
1491 	 * with the tree-log code.
1492 	 */
1493 	mutex_lock(&root->fs_info->tree_log_mutex);
1494 
1495 	ret = commit_fs_roots(trans, root);
1496 	if (ret) {
1497 		mutex_unlock(&root->fs_info->tree_log_mutex);
1498 		mutex_unlock(&root->fs_info->reloc_mutex);
1499 		goto cleanup_transaction;
1500 	}
1501 
1502 	/* commit_fs_roots gets rid of all the tree log roots, it is now
1503 	 * safe to free the root of tree log roots
1504 	 */
1505 	btrfs_free_log_root_tree(trans, root->fs_info);
1506 
1507 	ret = commit_cowonly_roots(trans, root);
1508 	if (ret) {
1509 		mutex_unlock(&root->fs_info->tree_log_mutex);
1510 		mutex_unlock(&root->fs_info->reloc_mutex);
1511 		goto cleanup_transaction;
1512 	}
1513 
1514 	btrfs_prepare_extent_commit(trans, root);
1515 
1516 	cur_trans = root->fs_info->running_transaction;
1517 
1518 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1519 			    root->fs_info->tree_root->node);
1520 	switch_commit_root(root->fs_info->tree_root);
1521 
1522 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1523 			    root->fs_info->chunk_root->node);
1524 	switch_commit_root(root->fs_info->chunk_root);
1525 
1526 	assert_qgroups_uptodate(trans);
1527 	update_super_roots(root);
1528 
1529 	if (!root->fs_info->log_root_recovering) {
1530 		btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1531 		btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1532 	}
1533 
1534 	memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1535 	       sizeof(*root->fs_info->super_copy));
1536 
1537 	trans->transaction->blocked = 0;
1538 	spin_lock(&root->fs_info->trans_lock);
1539 	root->fs_info->running_transaction = NULL;
1540 	root->fs_info->trans_no_join = 0;
1541 	spin_unlock(&root->fs_info->trans_lock);
1542 	mutex_unlock(&root->fs_info->reloc_mutex);
1543 
1544 	wake_up(&root->fs_info->transaction_wait);
1545 
1546 	ret = btrfs_write_and_wait_transaction(trans, root);
1547 	if (ret) {
1548 		btrfs_error(root->fs_info, ret,
1549 			    "Error while writing out transaction.");
1550 		mutex_unlock(&root->fs_info->tree_log_mutex);
1551 		goto cleanup_transaction;
1552 	}
1553 
1554 	ret = write_ctree_super(trans, root, 0);
1555 	if (ret) {
1556 		mutex_unlock(&root->fs_info->tree_log_mutex);
1557 		goto cleanup_transaction;
1558 	}
1559 
1560 	/*
1561 	 * the super is written, we can safely allow the tree-loggers
1562 	 * to go about their business
1563 	 */
1564 	mutex_unlock(&root->fs_info->tree_log_mutex);
1565 
1566 	btrfs_finish_extent_commit(trans, root);
1567 
1568 	cur_trans->commit_done = 1;
1569 
1570 	root->fs_info->last_trans_committed = cur_trans->transid;
1571 
1572 	wake_up(&cur_trans->commit_wait);
1573 
1574 	spin_lock(&root->fs_info->trans_lock);
1575 	list_del_init(&cur_trans->list);
1576 	spin_unlock(&root->fs_info->trans_lock);
1577 
1578 	put_transaction(cur_trans);
1579 	put_transaction(cur_trans);
1580 
1581 	trace_btrfs_transaction_commit(root);
1582 
1583 	btrfs_scrub_continue(root);
1584 
1585 	if (current->journal_info == trans)
1586 		current->journal_info = NULL;
1587 
1588 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1589 
1590 	if (current != root->fs_info->transaction_kthread)
1591 		btrfs_run_delayed_iputs(root);
1592 
1593 	return ret;
1594 
1595 cleanup_transaction:
1596 	btrfs_trans_release_metadata(trans, root);
1597 	trans->block_rsv = NULL;
1598 	btrfs_printk(root->fs_info, "Skipping commit of aborted transaction.\n");
1599 //	WARN_ON(1);
1600 	if (current->journal_info == trans)
1601 		current->journal_info = NULL;
1602 	cleanup_transaction(trans, root, ret);
1603 
1604 	return ret;
1605 }
1606 
1607 /*
1608  * interface function to delete all the snapshots we have scheduled for deletion
1609  */
1610 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1611 {
1612 	LIST_HEAD(list);
1613 	struct btrfs_fs_info *fs_info = root->fs_info;
1614 
1615 	spin_lock(&fs_info->trans_lock);
1616 	list_splice_init(&fs_info->dead_roots, &list);
1617 	spin_unlock(&fs_info->trans_lock);
1618 
1619 	while (!list_empty(&list)) {
1620 		int ret;
1621 
1622 		root = list_entry(list.next, struct btrfs_root, root_list);
1623 		list_del(&root->root_list);
1624 
1625 		btrfs_kill_all_delayed_nodes(root);
1626 
1627 		if (btrfs_header_backref_rev(root->node) <
1628 		    BTRFS_MIXED_BACKREF_REV)
1629 			ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1630 		else
1631 			ret =btrfs_drop_snapshot(root, NULL, 1, 0);
1632 		BUG_ON(ret < 0);
1633 	}
1634 	return 0;
1635 }
1636