1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/writeback.h> 23 #include <linux/pagemap.h> 24 #include <linux/blkdev.h> 25 #include "ctree.h" 26 #include "disk-io.h" 27 #include "transaction.h" 28 #include "locking.h" 29 #include "tree-log.h" 30 31 #define BTRFS_ROOT_TRANS_TAG 0 32 33 static noinline void put_transaction(struct btrfs_transaction *transaction) 34 { 35 WARN_ON(transaction->use_count == 0); 36 transaction->use_count--; 37 if (transaction->use_count == 0) { 38 list_del_init(&transaction->list); 39 memset(transaction, 0, sizeof(*transaction)); 40 kmem_cache_free(btrfs_transaction_cachep, transaction); 41 } 42 } 43 44 static noinline void switch_commit_root(struct btrfs_root *root) 45 { 46 free_extent_buffer(root->commit_root); 47 root->commit_root = btrfs_root_node(root); 48 } 49 50 /* 51 * either allocate a new transaction or hop into the existing one 52 */ 53 static noinline int join_transaction(struct btrfs_root *root) 54 { 55 struct btrfs_transaction *cur_trans; 56 cur_trans = root->fs_info->running_transaction; 57 if (!cur_trans) { 58 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, 59 GFP_NOFS); 60 BUG_ON(!cur_trans); 61 root->fs_info->generation++; 62 cur_trans->num_writers = 1; 63 cur_trans->num_joined = 0; 64 cur_trans->transid = root->fs_info->generation; 65 init_waitqueue_head(&cur_trans->writer_wait); 66 init_waitqueue_head(&cur_trans->commit_wait); 67 cur_trans->in_commit = 0; 68 cur_trans->blocked = 0; 69 cur_trans->use_count = 1; 70 cur_trans->commit_done = 0; 71 cur_trans->start_time = get_seconds(); 72 73 cur_trans->delayed_refs.root = RB_ROOT; 74 cur_trans->delayed_refs.num_entries = 0; 75 cur_trans->delayed_refs.num_heads_ready = 0; 76 cur_trans->delayed_refs.num_heads = 0; 77 cur_trans->delayed_refs.flushing = 0; 78 cur_trans->delayed_refs.run_delayed_start = 0; 79 spin_lock_init(&cur_trans->delayed_refs.lock); 80 81 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 82 list_add_tail(&cur_trans->list, &root->fs_info->trans_list); 83 extent_io_tree_init(&cur_trans->dirty_pages, 84 root->fs_info->btree_inode->i_mapping, 85 GFP_NOFS); 86 spin_lock(&root->fs_info->new_trans_lock); 87 root->fs_info->running_transaction = cur_trans; 88 spin_unlock(&root->fs_info->new_trans_lock); 89 } else { 90 cur_trans->num_writers++; 91 cur_trans->num_joined++; 92 } 93 94 return 0; 95 } 96 97 /* 98 * this does all the record keeping required to make sure that a reference 99 * counted root is properly recorded in a given transaction. This is required 100 * to make sure the old root from before we joined the transaction is deleted 101 * when the transaction commits 102 */ 103 static noinline int record_root_in_trans(struct btrfs_trans_handle *trans, 104 struct btrfs_root *root) 105 { 106 if (root->ref_cows && root->last_trans < trans->transid) { 107 WARN_ON(root == root->fs_info->extent_root); 108 WARN_ON(root->commit_root != root->node); 109 110 radix_tree_tag_set(&root->fs_info->fs_roots_radix, 111 (unsigned long)root->root_key.objectid, 112 BTRFS_ROOT_TRANS_TAG); 113 root->last_trans = trans->transid; 114 btrfs_init_reloc_root(trans, root); 115 } 116 return 0; 117 } 118 119 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 120 struct btrfs_root *root) 121 { 122 if (!root->ref_cows) 123 return 0; 124 125 mutex_lock(&root->fs_info->trans_mutex); 126 if (root->last_trans == trans->transid) { 127 mutex_unlock(&root->fs_info->trans_mutex); 128 return 0; 129 } 130 131 record_root_in_trans(trans, root); 132 mutex_unlock(&root->fs_info->trans_mutex); 133 return 0; 134 } 135 136 /* wait for commit against the current transaction to become unblocked 137 * when this is done, it is safe to start a new transaction, but the current 138 * transaction might not be fully on disk. 139 */ 140 static void wait_current_trans(struct btrfs_root *root) 141 { 142 struct btrfs_transaction *cur_trans; 143 144 cur_trans = root->fs_info->running_transaction; 145 if (cur_trans && cur_trans->blocked) { 146 DEFINE_WAIT(wait); 147 cur_trans->use_count++; 148 while (1) { 149 prepare_to_wait(&root->fs_info->transaction_wait, &wait, 150 TASK_UNINTERRUPTIBLE); 151 if (!cur_trans->blocked) 152 break; 153 mutex_unlock(&root->fs_info->trans_mutex); 154 schedule(); 155 mutex_lock(&root->fs_info->trans_mutex); 156 } 157 finish_wait(&root->fs_info->transaction_wait, &wait); 158 put_transaction(cur_trans); 159 } 160 } 161 162 enum btrfs_trans_type { 163 TRANS_START, 164 TRANS_JOIN, 165 TRANS_USERSPACE, 166 }; 167 168 static int may_wait_transaction(struct btrfs_root *root, int type) 169 { 170 if (!root->fs_info->log_root_recovering && 171 ((type == TRANS_START && !root->fs_info->open_ioctl_trans) || 172 type == TRANS_USERSPACE)) 173 return 1; 174 return 0; 175 } 176 177 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root, 178 u64 num_items, int type) 179 { 180 struct btrfs_trans_handle *h; 181 struct btrfs_transaction *cur_trans; 182 int retries = 0; 183 int ret; 184 again: 185 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS); 186 if (!h) 187 return ERR_PTR(-ENOMEM); 188 189 mutex_lock(&root->fs_info->trans_mutex); 190 if (may_wait_transaction(root, type)) 191 wait_current_trans(root); 192 193 ret = join_transaction(root); 194 BUG_ON(ret); 195 196 cur_trans = root->fs_info->running_transaction; 197 cur_trans->use_count++; 198 mutex_unlock(&root->fs_info->trans_mutex); 199 200 h->transid = cur_trans->transid; 201 h->transaction = cur_trans; 202 h->blocks_used = 0; 203 h->block_group = 0; 204 h->bytes_reserved = 0; 205 h->delayed_ref_updates = 0; 206 h->block_rsv = NULL; 207 208 smp_mb(); 209 if (cur_trans->blocked && may_wait_transaction(root, type)) { 210 btrfs_commit_transaction(h, root); 211 goto again; 212 } 213 214 if (num_items > 0) { 215 ret = btrfs_trans_reserve_metadata(h, root, num_items, 216 &retries); 217 if (ret == -EAGAIN) { 218 btrfs_commit_transaction(h, root); 219 goto again; 220 } 221 if (ret < 0) { 222 btrfs_end_transaction(h, root); 223 return ERR_PTR(ret); 224 } 225 } 226 227 mutex_lock(&root->fs_info->trans_mutex); 228 record_root_in_trans(h, root); 229 mutex_unlock(&root->fs_info->trans_mutex); 230 231 if (!current->journal_info && type != TRANS_USERSPACE) 232 current->journal_info = h; 233 return h; 234 } 235 236 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 237 int num_items) 238 { 239 return start_transaction(root, num_items, TRANS_START); 240 } 241 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root, 242 int num_blocks) 243 { 244 return start_transaction(root, 0, TRANS_JOIN); 245 } 246 247 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r, 248 int num_blocks) 249 { 250 return start_transaction(r, 0, TRANS_USERSPACE); 251 } 252 253 /* wait for a transaction commit to be fully complete */ 254 static noinline int wait_for_commit(struct btrfs_root *root, 255 struct btrfs_transaction *commit) 256 { 257 DEFINE_WAIT(wait); 258 mutex_lock(&root->fs_info->trans_mutex); 259 while (!commit->commit_done) { 260 prepare_to_wait(&commit->commit_wait, &wait, 261 TASK_UNINTERRUPTIBLE); 262 if (commit->commit_done) 263 break; 264 mutex_unlock(&root->fs_info->trans_mutex); 265 schedule(); 266 mutex_lock(&root->fs_info->trans_mutex); 267 } 268 mutex_unlock(&root->fs_info->trans_mutex); 269 finish_wait(&commit->commit_wait, &wait); 270 return 0; 271 } 272 273 #if 0 274 /* 275 * rate limit against the drop_snapshot code. This helps to slow down new 276 * operations if the drop_snapshot code isn't able to keep up. 277 */ 278 static void throttle_on_drops(struct btrfs_root *root) 279 { 280 struct btrfs_fs_info *info = root->fs_info; 281 int harder_count = 0; 282 283 harder: 284 if (atomic_read(&info->throttles)) { 285 DEFINE_WAIT(wait); 286 int thr; 287 thr = atomic_read(&info->throttle_gen); 288 289 do { 290 prepare_to_wait(&info->transaction_throttle, 291 &wait, TASK_UNINTERRUPTIBLE); 292 if (!atomic_read(&info->throttles)) { 293 finish_wait(&info->transaction_throttle, &wait); 294 break; 295 } 296 schedule(); 297 finish_wait(&info->transaction_throttle, &wait); 298 } while (thr == atomic_read(&info->throttle_gen)); 299 harder_count++; 300 301 if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 && 302 harder_count < 2) 303 goto harder; 304 305 if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 && 306 harder_count < 10) 307 goto harder; 308 309 if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 && 310 harder_count < 20) 311 goto harder; 312 } 313 } 314 #endif 315 316 void btrfs_throttle(struct btrfs_root *root) 317 { 318 mutex_lock(&root->fs_info->trans_mutex); 319 if (!root->fs_info->open_ioctl_trans) 320 wait_current_trans(root); 321 mutex_unlock(&root->fs_info->trans_mutex); 322 } 323 324 static int should_end_transaction(struct btrfs_trans_handle *trans, 325 struct btrfs_root *root) 326 { 327 int ret; 328 ret = btrfs_block_rsv_check(trans, root, 329 &root->fs_info->global_block_rsv, 0, 5); 330 return ret ? 1 : 0; 331 } 332 333 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans, 334 struct btrfs_root *root) 335 { 336 struct btrfs_transaction *cur_trans = trans->transaction; 337 int updates; 338 339 if (cur_trans->blocked || cur_trans->delayed_refs.flushing) 340 return 1; 341 342 updates = trans->delayed_ref_updates; 343 trans->delayed_ref_updates = 0; 344 if (updates) 345 btrfs_run_delayed_refs(trans, root, updates); 346 347 return should_end_transaction(trans, root); 348 } 349 350 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 351 struct btrfs_root *root, int throttle) 352 { 353 struct btrfs_transaction *cur_trans = trans->transaction; 354 struct btrfs_fs_info *info = root->fs_info; 355 int count = 0; 356 357 while (count < 4) { 358 unsigned long cur = trans->delayed_ref_updates; 359 trans->delayed_ref_updates = 0; 360 if (cur && 361 trans->transaction->delayed_refs.num_heads_ready > 64) { 362 trans->delayed_ref_updates = 0; 363 364 /* 365 * do a full flush if the transaction is trying 366 * to close 367 */ 368 if (trans->transaction->delayed_refs.flushing) 369 cur = 0; 370 btrfs_run_delayed_refs(trans, root, cur); 371 } else { 372 break; 373 } 374 count++; 375 } 376 377 btrfs_trans_release_metadata(trans, root); 378 379 if (!root->fs_info->open_ioctl_trans && 380 should_end_transaction(trans, root)) 381 trans->transaction->blocked = 1; 382 383 if (cur_trans->blocked && !cur_trans->in_commit) { 384 if (throttle) 385 return btrfs_commit_transaction(trans, root); 386 else 387 wake_up_process(info->transaction_kthread); 388 } 389 390 mutex_lock(&info->trans_mutex); 391 WARN_ON(cur_trans != info->running_transaction); 392 WARN_ON(cur_trans->num_writers < 1); 393 cur_trans->num_writers--; 394 395 if (waitqueue_active(&cur_trans->writer_wait)) 396 wake_up(&cur_trans->writer_wait); 397 put_transaction(cur_trans); 398 mutex_unlock(&info->trans_mutex); 399 400 if (current->journal_info == trans) 401 current->journal_info = NULL; 402 memset(trans, 0, sizeof(*trans)); 403 kmem_cache_free(btrfs_trans_handle_cachep, trans); 404 405 if (throttle) 406 btrfs_run_delayed_iputs(root); 407 408 return 0; 409 } 410 411 int btrfs_end_transaction(struct btrfs_trans_handle *trans, 412 struct btrfs_root *root) 413 { 414 return __btrfs_end_transaction(trans, root, 0); 415 } 416 417 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans, 418 struct btrfs_root *root) 419 { 420 return __btrfs_end_transaction(trans, root, 1); 421 } 422 423 /* 424 * when btree blocks are allocated, they have some corresponding bits set for 425 * them in one of two extent_io trees. This is used to make sure all of 426 * those extents are sent to disk but does not wait on them 427 */ 428 int btrfs_write_marked_extents(struct btrfs_root *root, 429 struct extent_io_tree *dirty_pages, int mark) 430 { 431 int ret; 432 int err = 0; 433 int werr = 0; 434 struct page *page; 435 struct inode *btree_inode = root->fs_info->btree_inode; 436 u64 start = 0; 437 u64 end; 438 unsigned long index; 439 440 while (1) { 441 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 442 mark); 443 if (ret) 444 break; 445 while (start <= end) { 446 cond_resched(); 447 448 index = start >> PAGE_CACHE_SHIFT; 449 start = (u64)(index + 1) << PAGE_CACHE_SHIFT; 450 page = find_get_page(btree_inode->i_mapping, index); 451 if (!page) 452 continue; 453 454 btree_lock_page_hook(page); 455 if (!page->mapping) { 456 unlock_page(page); 457 page_cache_release(page); 458 continue; 459 } 460 461 if (PageWriteback(page)) { 462 if (PageDirty(page)) 463 wait_on_page_writeback(page); 464 else { 465 unlock_page(page); 466 page_cache_release(page); 467 continue; 468 } 469 } 470 err = write_one_page(page, 0); 471 if (err) 472 werr = err; 473 page_cache_release(page); 474 } 475 } 476 if (err) 477 werr = err; 478 return werr; 479 } 480 481 /* 482 * when btree blocks are allocated, they have some corresponding bits set for 483 * them in one of two extent_io trees. This is used to make sure all of 484 * those extents are on disk for transaction or log commit. We wait 485 * on all the pages and clear them from the dirty pages state tree 486 */ 487 int btrfs_wait_marked_extents(struct btrfs_root *root, 488 struct extent_io_tree *dirty_pages, int mark) 489 { 490 int ret; 491 int err = 0; 492 int werr = 0; 493 struct page *page; 494 struct inode *btree_inode = root->fs_info->btree_inode; 495 u64 start = 0; 496 u64 end; 497 unsigned long index; 498 499 while (1) { 500 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 501 mark); 502 if (ret) 503 break; 504 505 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS); 506 while (start <= end) { 507 index = start >> PAGE_CACHE_SHIFT; 508 start = (u64)(index + 1) << PAGE_CACHE_SHIFT; 509 page = find_get_page(btree_inode->i_mapping, index); 510 if (!page) 511 continue; 512 if (PageDirty(page)) { 513 btree_lock_page_hook(page); 514 wait_on_page_writeback(page); 515 err = write_one_page(page, 0); 516 if (err) 517 werr = err; 518 } 519 wait_on_page_writeback(page); 520 page_cache_release(page); 521 cond_resched(); 522 } 523 } 524 if (err) 525 werr = err; 526 return werr; 527 } 528 529 /* 530 * when btree blocks are allocated, they have some corresponding bits set for 531 * them in one of two extent_io trees. This is used to make sure all of 532 * those extents are on disk for transaction or log commit 533 */ 534 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root, 535 struct extent_io_tree *dirty_pages, int mark) 536 { 537 int ret; 538 int ret2; 539 540 ret = btrfs_write_marked_extents(root, dirty_pages, mark); 541 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark); 542 return ret || ret2; 543 } 544 545 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans, 546 struct btrfs_root *root) 547 { 548 if (!trans || !trans->transaction) { 549 struct inode *btree_inode; 550 btree_inode = root->fs_info->btree_inode; 551 return filemap_write_and_wait(btree_inode->i_mapping); 552 } 553 return btrfs_write_and_wait_marked_extents(root, 554 &trans->transaction->dirty_pages, 555 EXTENT_DIRTY); 556 } 557 558 /* 559 * this is used to update the root pointer in the tree of tree roots. 560 * 561 * But, in the case of the extent allocation tree, updating the root 562 * pointer may allocate blocks which may change the root of the extent 563 * allocation tree. 564 * 565 * So, this loops and repeats and makes sure the cowonly root didn't 566 * change while the root pointer was being updated in the metadata. 567 */ 568 static int update_cowonly_root(struct btrfs_trans_handle *trans, 569 struct btrfs_root *root) 570 { 571 int ret; 572 u64 old_root_bytenr; 573 u64 old_root_used; 574 struct btrfs_root *tree_root = root->fs_info->tree_root; 575 576 old_root_used = btrfs_root_used(&root->root_item); 577 btrfs_write_dirty_block_groups(trans, root); 578 579 while (1) { 580 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 581 if (old_root_bytenr == root->node->start && 582 old_root_used == btrfs_root_used(&root->root_item)) 583 break; 584 585 btrfs_set_root_node(&root->root_item, root->node); 586 ret = btrfs_update_root(trans, tree_root, 587 &root->root_key, 588 &root->root_item); 589 BUG_ON(ret); 590 591 old_root_used = btrfs_root_used(&root->root_item); 592 ret = btrfs_write_dirty_block_groups(trans, root); 593 BUG_ON(ret); 594 } 595 596 if (root != root->fs_info->extent_root) 597 switch_commit_root(root); 598 599 return 0; 600 } 601 602 /* 603 * update all the cowonly tree roots on disk 604 */ 605 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans, 606 struct btrfs_root *root) 607 { 608 struct btrfs_fs_info *fs_info = root->fs_info; 609 struct list_head *next; 610 struct extent_buffer *eb; 611 int ret; 612 613 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 614 BUG_ON(ret); 615 616 eb = btrfs_lock_root_node(fs_info->tree_root); 617 btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb); 618 btrfs_tree_unlock(eb); 619 free_extent_buffer(eb); 620 621 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 622 BUG_ON(ret); 623 624 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 625 next = fs_info->dirty_cowonly_roots.next; 626 list_del_init(next); 627 root = list_entry(next, struct btrfs_root, dirty_list); 628 629 update_cowonly_root(trans, root); 630 } 631 632 down_write(&fs_info->extent_commit_sem); 633 switch_commit_root(fs_info->extent_root); 634 up_write(&fs_info->extent_commit_sem); 635 636 return 0; 637 } 638 639 /* 640 * dead roots are old snapshots that need to be deleted. This allocates 641 * a dirty root struct and adds it into the list of dead roots that need to 642 * be deleted 643 */ 644 int btrfs_add_dead_root(struct btrfs_root *root) 645 { 646 mutex_lock(&root->fs_info->trans_mutex); 647 list_add(&root->root_list, &root->fs_info->dead_roots); 648 mutex_unlock(&root->fs_info->trans_mutex); 649 return 0; 650 } 651 652 /* 653 * update all the cowonly tree roots on disk 654 */ 655 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans, 656 struct btrfs_root *root) 657 { 658 struct btrfs_root *gang[8]; 659 struct btrfs_fs_info *fs_info = root->fs_info; 660 int i; 661 int ret; 662 int err = 0; 663 664 while (1) { 665 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 666 (void **)gang, 0, 667 ARRAY_SIZE(gang), 668 BTRFS_ROOT_TRANS_TAG); 669 if (ret == 0) 670 break; 671 for (i = 0; i < ret; i++) { 672 root = gang[i]; 673 radix_tree_tag_clear(&fs_info->fs_roots_radix, 674 (unsigned long)root->root_key.objectid, 675 BTRFS_ROOT_TRANS_TAG); 676 677 btrfs_free_log(trans, root); 678 btrfs_update_reloc_root(trans, root); 679 btrfs_orphan_commit_root(trans, root); 680 681 if (root->commit_root != root->node) { 682 switch_commit_root(root); 683 btrfs_set_root_node(&root->root_item, 684 root->node); 685 } 686 687 err = btrfs_update_root(trans, fs_info->tree_root, 688 &root->root_key, 689 &root->root_item); 690 if (err) 691 break; 692 } 693 } 694 return err; 695 } 696 697 /* 698 * defrag a given btree. If cacheonly == 1, this won't read from the disk, 699 * otherwise every leaf in the btree is read and defragged. 700 */ 701 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly) 702 { 703 struct btrfs_fs_info *info = root->fs_info; 704 struct btrfs_trans_handle *trans; 705 int ret; 706 unsigned long nr; 707 708 if (xchg(&root->defrag_running, 1)) 709 return 0; 710 711 while (1) { 712 trans = btrfs_start_transaction(root, 0); 713 if (IS_ERR(trans)) 714 return PTR_ERR(trans); 715 716 ret = btrfs_defrag_leaves(trans, root, cacheonly); 717 718 nr = trans->blocks_used; 719 btrfs_end_transaction(trans, root); 720 btrfs_btree_balance_dirty(info->tree_root, nr); 721 cond_resched(); 722 723 if (root->fs_info->closing || ret != -EAGAIN) 724 break; 725 } 726 root->defrag_running = 0; 727 return ret; 728 } 729 730 #if 0 731 /* 732 * when dropping snapshots, we generate a ton of delayed refs, and it makes 733 * sense not to join the transaction while it is trying to flush the current 734 * queue of delayed refs out. 735 * 736 * This is used by the drop snapshot code only 737 */ 738 static noinline int wait_transaction_pre_flush(struct btrfs_fs_info *info) 739 { 740 DEFINE_WAIT(wait); 741 742 mutex_lock(&info->trans_mutex); 743 while (info->running_transaction && 744 info->running_transaction->delayed_refs.flushing) { 745 prepare_to_wait(&info->transaction_wait, &wait, 746 TASK_UNINTERRUPTIBLE); 747 mutex_unlock(&info->trans_mutex); 748 749 schedule(); 750 751 mutex_lock(&info->trans_mutex); 752 finish_wait(&info->transaction_wait, &wait); 753 } 754 mutex_unlock(&info->trans_mutex); 755 return 0; 756 } 757 758 /* 759 * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on 760 * all of them 761 */ 762 int btrfs_drop_dead_root(struct btrfs_root *root) 763 { 764 struct btrfs_trans_handle *trans; 765 struct btrfs_root *tree_root = root->fs_info->tree_root; 766 unsigned long nr; 767 int ret; 768 769 while (1) { 770 /* 771 * we don't want to jump in and create a bunch of 772 * delayed refs if the transaction is starting to close 773 */ 774 wait_transaction_pre_flush(tree_root->fs_info); 775 trans = btrfs_start_transaction(tree_root, 1); 776 777 /* 778 * we've joined a transaction, make sure it isn't 779 * closing right now 780 */ 781 if (trans->transaction->delayed_refs.flushing) { 782 btrfs_end_transaction(trans, tree_root); 783 continue; 784 } 785 786 ret = btrfs_drop_snapshot(trans, root); 787 if (ret != -EAGAIN) 788 break; 789 790 ret = btrfs_update_root(trans, tree_root, 791 &root->root_key, 792 &root->root_item); 793 if (ret) 794 break; 795 796 nr = trans->blocks_used; 797 ret = btrfs_end_transaction(trans, tree_root); 798 BUG_ON(ret); 799 800 btrfs_btree_balance_dirty(tree_root, nr); 801 cond_resched(); 802 } 803 BUG_ON(ret); 804 805 ret = btrfs_del_root(trans, tree_root, &root->root_key); 806 BUG_ON(ret); 807 808 nr = trans->blocks_used; 809 ret = btrfs_end_transaction(trans, tree_root); 810 BUG_ON(ret); 811 812 free_extent_buffer(root->node); 813 free_extent_buffer(root->commit_root); 814 kfree(root); 815 816 btrfs_btree_balance_dirty(tree_root, nr); 817 return ret; 818 } 819 #endif 820 821 /* 822 * new snapshots need to be created at a very specific time in the 823 * transaction commit. This does the actual creation 824 */ 825 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 826 struct btrfs_fs_info *fs_info, 827 struct btrfs_pending_snapshot *pending) 828 { 829 struct btrfs_key key; 830 struct btrfs_root_item *new_root_item; 831 struct btrfs_root *tree_root = fs_info->tree_root; 832 struct btrfs_root *root = pending->root; 833 struct btrfs_root *parent_root; 834 struct inode *parent_inode; 835 struct dentry *dentry; 836 struct extent_buffer *tmp; 837 struct extent_buffer *old; 838 int ret; 839 int retries = 0; 840 u64 to_reserve = 0; 841 u64 index = 0; 842 u64 objectid; 843 844 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS); 845 if (!new_root_item) { 846 pending->error = -ENOMEM; 847 goto fail; 848 } 849 850 ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid); 851 if (ret) { 852 pending->error = ret; 853 goto fail; 854 } 855 856 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve); 857 btrfs_orphan_pre_snapshot(trans, pending, &to_reserve); 858 859 if (to_reserve > 0) { 860 ret = btrfs_block_rsv_add(trans, root, &pending->block_rsv, 861 to_reserve, &retries); 862 if (ret) { 863 pending->error = ret; 864 goto fail; 865 } 866 } 867 868 key.objectid = objectid; 869 key.offset = (u64)-1; 870 key.type = BTRFS_ROOT_ITEM_KEY; 871 872 trans->block_rsv = &pending->block_rsv; 873 874 dentry = pending->dentry; 875 parent_inode = dentry->d_parent->d_inode; 876 parent_root = BTRFS_I(parent_inode)->root; 877 record_root_in_trans(trans, parent_root); 878 879 /* 880 * insert the directory item 881 */ 882 ret = btrfs_set_inode_index(parent_inode, &index); 883 BUG_ON(ret); 884 ret = btrfs_insert_dir_item(trans, parent_root, 885 dentry->d_name.name, dentry->d_name.len, 886 parent_inode->i_ino, &key, 887 BTRFS_FT_DIR, index); 888 BUG_ON(ret); 889 890 btrfs_i_size_write(parent_inode, parent_inode->i_size + 891 dentry->d_name.len * 2); 892 ret = btrfs_update_inode(trans, parent_root, parent_inode); 893 BUG_ON(ret); 894 895 record_root_in_trans(trans, root); 896 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 897 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 898 899 old = btrfs_lock_root_node(root); 900 btrfs_cow_block(trans, root, old, NULL, 0, &old); 901 btrfs_set_lock_blocking(old); 902 903 btrfs_copy_root(trans, root, old, &tmp, objectid); 904 btrfs_tree_unlock(old); 905 free_extent_buffer(old); 906 907 btrfs_set_root_node(new_root_item, tmp); 908 /* record when the snapshot was created in key.offset */ 909 key.offset = trans->transid; 910 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 911 btrfs_tree_unlock(tmp); 912 free_extent_buffer(tmp); 913 BUG_ON(ret); 914 915 /* 916 * insert root back/forward references 917 */ 918 ret = btrfs_add_root_ref(trans, tree_root, objectid, 919 parent_root->root_key.objectid, 920 parent_inode->i_ino, index, 921 dentry->d_name.name, dentry->d_name.len); 922 BUG_ON(ret); 923 924 key.offset = (u64)-1; 925 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key); 926 BUG_ON(IS_ERR(pending->snap)); 927 928 btrfs_reloc_post_snapshot(trans, pending); 929 btrfs_orphan_post_snapshot(trans, pending); 930 fail: 931 kfree(new_root_item); 932 btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1); 933 return 0; 934 } 935 936 /* 937 * create all the snapshots we've scheduled for creation 938 */ 939 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans, 940 struct btrfs_fs_info *fs_info) 941 { 942 struct btrfs_pending_snapshot *pending; 943 struct list_head *head = &trans->transaction->pending_snapshots; 944 int ret; 945 946 list_for_each_entry(pending, head, list) { 947 ret = create_pending_snapshot(trans, fs_info, pending); 948 BUG_ON(ret); 949 } 950 return 0; 951 } 952 953 static void update_super_roots(struct btrfs_root *root) 954 { 955 struct btrfs_root_item *root_item; 956 struct btrfs_super_block *super; 957 958 super = &root->fs_info->super_copy; 959 960 root_item = &root->fs_info->chunk_root->root_item; 961 super->chunk_root = root_item->bytenr; 962 super->chunk_root_generation = root_item->generation; 963 super->chunk_root_level = root_item->level; 964 965 root_item = &root->fs_info->tree_root->root_item; 966 super->root = root_item->bytenr; 967 super->generation = root_item->generation; 968 super->root_level = root_item->level; 969 } 970 971 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 972 { 973 int ret = 0; 974 spin_lock(&info->new_trans_lock); 975 if (info->running_transaction) 976 ret = info->running_transaction->in_commit; 977 spin_unlock(&info->new_trans_lock); 978 return ret; 979 } 980 981 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 982 { 983 int ret = 0; 984 spin_lock(&info->new_trans_lock); 985 if (info->running_transaction) 986 ret = info->running_transaction->blocked; 987 spin_unlock(&info->new_trans_lock); 988 return ret; 989 } 990 991 int btrfs_commit_transaction(struct btrfs_trans_handle *trans, 992 struct btrfs_root *root) 993 { 994 unsigned long joined = 0; 995 unsigned long timeout = 1; 996 struct btrfs_transaction *cur_trans; 997 struct btrfs_transaction *prev_trans = NULL; 998 DEFINE_WAIT(wait); 999 int ret; 1000 int should_grow = 0; 1001 unsigned long now = get_seconds(); 1002 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT); 1003 1004 btrfs_run_ordered_operations(root, 0); 1005 1006 /* make a pass through all the delayed refs we have so far 1007 * any runnings procs may add more while we are here 1008 */ 1009 ret = btrfs_run_delayed_refs(trans, root, 0); 1010 BUG_ON(ret); 1011 1012 btrfs_trans_release_metadata(trans, root); 1013 1014 cur_trans = trans->transaction; 1015 /* 1016 * set the flushing flag so procs in this transaction have to 1017 * start sending their work down. 1018 */ 1019 cur_trans->delayed_refs.flushing = 1; 1020 1021 ret = btrfs_run_delayed_refs(trans, root, 0); 1022 BUG_ON(ret); 1023 1024 mutex_lock(&root->fs_info->trans_mutex); 1025 if (cur_trans->in_commit) { 1026 cur_trans->use_count++; 1027 mutex_unlock(&root->fs_info->trans_mutex); 1028 btrfs_end_transaction(trans, root); 1029 1030 ret = wait_for_commit(root, cur_trans); 1031 BUG_ON(ret); 1032 1033 mutex_lock(&root->fs_info->trans_mutex); 1034 put_transaction(cur_trans); 1035 mutex_unlock(&root->fs_info->trans_mutex); 1036 1037 return 0; 1038 } 1039 1040 trans->transaction->in_commit = 1; 1041 trans->transaction->blocked = 1; 1042 if (cur_trans->list.prev != &root->fs_info->trans_list) { 1043 prev_trans = list_entry(cur_trans->list.prev, 1044 struct btrfs_transaction, list); 1045 if (!prev_trans->commit_done) { 1046 prev_trans->use_count++; 1047 mutex_unlock(&root->fs_info->trans_mutex); 1048 1049 wait_for_commit(root, prev_trans); 1050 1051 mutex_lock(&root->fs_info->trans_mutex); 1052 put_transaction(prev_trans); 1053 } 1054 } 1055 1056 if (now < cur_trans->start_time || now - cur_trans->start_time < 1) 1057 should_grow = 1; 1058 1059 do { 1060 int snap_pending = 0; 1061 joined = cur_trans->num_joined; 1062 if (!list_empty(&trans->transaction->pending_snapshots)) 1063 snap_pending = 1; 1064 1065 WARN_ON(cur_trans != trans->transaction); 1066 if (cur_trans->num_writers > 1) 1067 timeout = MAX_SCHEDULE_TIMEOUT; 1068 else if (should_grow) 1069 timeout = 1; 1070 1071 mutex_unlock(&root->fs_info->trans_mutex); 1072 1073 if (flush_on_commit || snap_pending) { 1074 btrfs_start_delalloc_inodes(root, 1); 1075 ret = btrfs_wait_ordered_extents(root, 0, 1); 1076 BUG_ON(ret); 1077 } 1078 1079 /* 1080 * rename don't use btrfs_join_transaction, so, once we 1081 * set the transaction to blocked above, we aren't going 1082 * to get any new ordered operations. We can safely run 1083 * it here and no for sure that nothing new will be added 1084 * to the list 1085 */ 1086 btrfs_run_ordered_operations(root, 1); 1087 1088 prepare_to_wait(&cur_trans->writer_wait, &wait, 1089 TASK_UNINTERRUPTIBLE); 1090 1091 smp_mb(); 1092 if (cur_trans->num_writers > 1 || should_grow) 1093 schedule_timeout(timeout); 1094 1095 mutex_lock(&root->fs_info->trans_mutex); 1096 finish_wait(&cur_trans->writer_wait, &wait); 1097 } while (cur_trans->num_writers > 1 || 1098 (should_grow && cur_trans->num_joined != joined)); 1099 1100 ret = create_pending_snapshots(trans, root->fs_info); 1101 BUG_ON(ret); 1102 1103 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1104 BUG_ON(ret); 1105 1106 WARN_ON(cur_trans != trans->transaction); 1107 1108 /* btrfs_commit_tree_roots is responsible for getting the 1109 * various roots consistent with each other. Every pointer 1110 * in the tree of tree roots has to point to the most up to date 1111 * root for every subvolume and other tree. So, we have to keep 1112 * the tree logging code from jumping in and changing any 1113 * of the trees. 1114 * 1115 * At this point in the commit, there can't be any tree-log 1116 * writers, but a little lower down we drop the trans mutex 1117 * and let new people in. By holding the tree_log_mutex 1118 * from now until after the super is written, we avoid races 1119 * with the tree-log code. 1120 */ 1121 mutex_lock(&root->fs_info->tree_log_mutex); 1122 1123 ret = commit_fs_roots(trans, root); 1124 BUG_ON(ret); 1125 1126 /* commit_fs_roots gets rid of all the tree log roots, it is now 1127 * safe to free the root of tree log roots 1128 */ 1129 btrfs_free_log_root_tree(trans, root->fs_info); 1130 1131 ret = commit_cowonly_roots(trans, root); 1132 BUG_ON(ret); 1133 1134 btrfs_prepare_extent_commit(trans, root); 1135 1136 cur_trans = root->fs_info->running_transaction; 1137 spin_lock(&root->fs_info->new_trans_lock); 1138 root->fs_info->running_transaction = NULL; 1139 spin_unlock(&root->fs_info->new_trans_lock); 1140 1141 btrfs_set_root_node(&root->fs_info->tree_root->root_item, 1142 root->fs_info->tree_root->node); 1143 switch_commit_root(root->fs_info->tree_root); 1144 1145 btrfs_set_root_node(&root->fs_info->chunk_root->root_item, 1146 root->fs_info->chunk_root->node); 1147 switch_commit_root(root->fs_info->chunk_root); 1148 1149 update_super_roots(root); 1150 1151 if (!root->fs_info->log_root_recovering) { 1152 btrfs_set_super_log_root(&root->fs_info->super_copy, 0); 1153 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0); 1154 } 1155 1156 memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy, 1157 sizeof(root->fs_info->super_copy)); 1158 1159 trans->transaction->blocked = 0; 1160 1161 wake_up(&root->fs_info->transaction_wait); 1162 1163 mutex_unlock(&root->fs_info->trans_mutex); 1164 ret = btrfs_write_and_wait_transaction(trans, root); 1165 BUG_ON(ret); 1166 write_ctree_super(trans, root, 0); 1167 1168 /* 1169 * the super is written, we can safely allow the tree-loggers 1170 * to go about their business 1171 */ 1172 mutex_unlock(&root->fs_info->tree_log_mutex); 1173 1174 btrfs_finish_extent_commit(trans, root); 1175 1176 mutex_lock(&root->fs_info->trans_mutex); 1177 1178 cur_trans->commit_done = 1; 1179 1180 root->fs_info->last_trans_committed = cur_trans->transid; 1181 1182 wake_up(&cur_trans->commit_wait); 1183 1184 put_transaction(cur_trans); 1185 put_transaction(cur_trans); 1186 1187 mutex_unlock(&root->fs_info->trans_mutex); 1188 1189 if (current->journal_info == trans) 1190 current->journal_info = NULL; 1191 1192 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1193 1194 if (current != root->fs_info->transaction_kthread) 1195 btrfs_run_delayed_iputs(root); 1196 1197 return ret; 1198 } 1199 1200 /* 1201 * interface function to delete all the snapshots we have scheduled for deletion 1202 */ 1203 int btrfs_clean_old_snapshots(struct btrfs_root *root) 1204 { 1205 LIST_HEAD(list); 1206 struct btrfs_fs_info *fs_info = root->fs_info; 1207 1208 mutex_lock(&fs_info->trans_mutex); 1209 list_splice_init(&fs_info->dead_roots, &list); 1210 mutex_unlock(&fs_info->trans_mutex); 1211 1212 while (!list_empty(&list)) { 1213 root = list_entry(list.next, struct btrfs_root, root_list); 1214 list_del(&root->root_list); 1215 1216 if (btrfs_header_backref_rev(root->node) < 1217 BTRFS_MIXED_BACKREF_REV) 1218 btrfs_drop_snapshot(root, NULL, 0); 1219 else 1220 btrfs_drop_snapshot(root, NULL, 1); 1221 } 1222 return 0; 1223 } 1224