xref: /linux/fs/btrfs/transaction.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 
31 #define BTRFS_ROOT_TRANS_TAG 0
32 
33 static noinline void put_transaction(struct btrfs_transaction *transaction)
34 {
35 	WARN_ON(transaction->use_count == 0);
36 	transaction->use_count--;
37 	if (transaction->use_count == 0) {
38 		list_del_init(&transaction->list);
39 		memset(transaction, 0, sizeof(*transaction));
40 		kmem_cache_free(btrfs_transaction_cachep, transaction);
41 	}
42 }
43 
44 static noinline void switch_commit_root(struct btrfs_root *root)
45 {
46 	free_extent_buffer(root->commit_root);
47 	root->commit_root = btrfs_root_node(root);
48 }
49 
50 /*
51  * either allocate a new transaction or hop into the existing one
52  */
53 static noinline int join_transaction(struct btrfs_root *root)
54 {
55 	struct btrfs_transaction *cur_trans;
56 	cur_trans = root->fs_info->running_transaction;
57 	if (!cur_trans) {
58 		cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
59 					     GFP_NOFS);
60 		BUG_ON(!cur_trans);
61 		root->fs_info->generation++;
62 		cur_trans->num_writers = 1;
63 		cur_trans->num_joined = 0;
64 		cur_trans->transid = root->fs_info->generation;
65 		init_waitqueue_head(&cur_trans->writer_wait);
66 		init_waitqueue_head(&cur_trans->commit_wait);
67 		cur_trans->in_commit = 0;
68 		cur_trans->blocked = 0;
69 		cur_trans->use_count = 1;
70 		cur_trans->commit_done = 0;
71 		cur_trans->start_time = get_seconds();
72 
73 		cur_trans->delayed_refs.root = RB_ROOT;
74 		cur_trans->delayed_refs.num_entries = 0;
75 		cur_trans->delayed_refs.num_heads_ready = 0;
76 		cur_trans->delayed_refs.num_heads = 0;
77 		cur_trans->delayed_refs.flushing = 0;
78 		cur_trans->delayed_refs.run_delayed_start = 0;
79 		spin_lock_init(&cur_trans->delayed_refs.lock);
80 
81 		INIT_LIST_HEAD(&cur_trans->pending_snapshots);
82 		list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
83 		extent_io_tree_init(&cur_trans->dirty_pages,
84 				     root->fs_info->btree_inode->i_mapping,
85 				     GFP_NOFS);
86 		spin_lock(&root->fs_info->new_trans_lock);
87 		root->fs_info->running_transaction = cur_trans;
88 		spin_unlock(&root->fs_info->new_trans_lock);
89 	} else {
90 		cur_trans->num_writers++;
91 		cur_trans->num_joined++;
92 	}
93 
94 	return 0;
95 }
96 
97 /*
98  * this does all the record keeping required to make sure that a reference
99  * counted root is properly recorded in a given transaction.  This is required
100  * to make sure the old root from before we joined the transaction is deleted
101  * when the transaction commits
102  */
103 static noinline int record_root_in_trans(struct btrfs_trans_handle *trans,
104 					 struct btrfs_root *root)
105 {
106 	if (root->ref_cows && root->last_trans < trans->transid) {
107 		WARN_ON(root == root->fs_info->extent_root);
108 		WARN_ON(root->commit_root != root->node);
109 
110 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
111 			   (unsigned long)root->root_key.objectid,
112 			   BTRFS_ROOT_TRANS_TAG);
113 		root->last_trans = trans->transid;
114 		btrfs_init_reloc_root(trans, root);
115 	}
116 	return 0;
117 }
118 
119 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
120 			       struct btrfs_root *root)
121 {
122 	if (!root->ref_cows)
123 		return 0;
124 
125 	mutex_lock(&root->fs_info->trans_mutex);
126 	if (root->last_trans == trans->transid) {
127 		mutex_unlock(&root->fs_info->trans_mutex);
128 		return 0;
129 	}
130 
131 	record_root_in_trans(trans, root);
132 	mutex_unlock(&root->fs_info->trans_mutex);
133 	return 0;
134 }
135 
136 /* wait for commit against the current transaction to become unblocked
137  * when this is done, it is safe to start a new transaction, but the current
138  * transaction might not be fully on disk.
139  */
140 static void wait_current_trans(struct btrfs_root *root)
141 {
142 	struct btrfs_transaction *cur_trans;
143 
144 	cur_trans = root->fs_info->running_transaction;
145 	if (cur_trans && cur_trans->blocked) {
146 		DEFINE_WAIT(wait);
147 		cur_trans->use_count++;
148 		while (1) {
149 			prepare_to_wait(&root->fs_info->transaction_wait, &wait,
150 					TASK_UNINTERRUPTIBLE);
151 			if (!cur_trans->blocked)
152 				break;
153 			mutex_unlock(&root->fs_info->trans_mutex);
154 			schedule();
155 			mutex_lock(&root->fs_info->trans_mutex);
156 		}
157 		finish_wait(&root->fs_info->transaction_wait, &wait);
158 		put_transaction(cur_trans);
159 	}
160 }
161 
162 enum btrfs_trans_type {
163 	TRANS_START,
164 	TRANS_JOIN,
165 	TRANS_USERSPACE,
166 };
167 
168 static int may_wait_transaction(struct btrfs_root *root, int type)
169 {
170 	if (!root->fs_info->log_root_recovering &&
171 	    ((type == TRANS_START && !root->fs_info->open_ioctl_trans) ||
172 	     type == TRANS_USERSPACE))
173 		return 1;
174 	return 0;
175 }
176 
177 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
178 						    u64 num_items, int type)
179 {
180 	struct btrfs_trans_handle *h;
181 	struct btrfs_transaction *cur_trans;
182 	int retries = 0;
183 	int ret;
184 again:
185 	h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
186 	if (!h)
187 		return ERR_PTR(-ENOMEM);
188 
189 	mutex_lock(&root->fs_info->trans_mutex);
190 	if (may_wait_transaction(root, type))
191 		wait_current_trans(root);
192 
193 	ret = join_transaction(root);
194 	BUG_ON(ret);
195 
196 	cur_trans = root->fs_info->running_transaction;
197 	cur_trans->use_count++;
198 	mutex_unlock(&root->fs_info->trans_mutex);
199 
200 	h->transid = cur_trans->transid;
201 	h->transaction = cur_trans;
202 	h->blocks_used = 0;
203 	h->block_group = 0;
204 	h->bytes_reserved = 0;
205 	h->delayed_ref_updates = 0;
206 	h->block_rsv = NULL;
207 
208 	smp_mb();
209 	if (cur_trans->blocked && may_wait_transaction(root, type)) {
210 		btrfs_commit_transaction(h, root);
211 		goto again;
212 	}
213 
214 	if (num_items > 0) {
215 		ret = btrfs_trans_reserve_metadata(h, root, num_items,
216 						   &retries);
217 		if (ret == -EAGAIN) {
218 			btrfs_commit_transaction(h, root);
219 			goto again;
220 		}
221 		if (ret < 0) {
222 			btrfs_end_transaction(h, root);
223 			return ERR_PTR(ret);
224 		}
225 	}
226 
227 	mutex_lock(&root->fs_info->trans_mutex);
228 	record_root_in_trans(h, root);
229 	mutex_unlock(&root->fs_info->trans_mutex);
230 
231 	if (!current->journal_info && type != TRANS_USERSPACE)
232 		current->journal_info = h;
233 	return h;
234 }
235 
236 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
237 						   int num_items)
238 {
239 	return start_transaction(root, num_items, TRANS_START);
240 }
241 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root,
242 						   int num_blocks)
243 {
244 	return start_transaction(root, 0, TRANS_JOIN);
245 }
246 
247 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r,
248 							 int num_blocks)
249 {
250 	return start_transaction(r, 0, TRANS_USERSPACE);
251 }
252 
253 /* wait for a transaction commit to be fully complete */
254 static noinline int wait_for_commit(struct btrfs_root *root,
255 				    struct btrfs_transaction *commit)
256 {
257 	DEFINE_WAIT(wait);
258 	mutex_lock(&root->fs_info->trans_mutex);
259 	while (!commit->commit_done) {
260 		prepare_to_wait(&commit->commit_wait, &wait,
261 				TASK_UNINTERRUPTIBLE);
262 		if (commit->commit_done)
263 			break;
264 		mutex_unlock(&root->fs_info->trans_mutex);
265 		schedule();
266 		mutex_lock(&root->fs_info->trans_mutex);
267 	}
268 	mutex_unlock(&root->fs_info->trans_mutex);
269 	finish_wait(&commit->commit_wait, &wait);
270 	return 0;
271 }
272 
273 #if 0
274 /*
275  * rate limit against the drop_snapshot code.  This helps to slow down new
276  * operations if the drop_snapshot code isn't able to keep up.
277  */
278 static void throttle_on_drops(struct btrfs_root *root)
279 {
280 	struct btrfs_fs_info *info = root->fs_info;
281 	int harder_count = 0;
282 
283 harder:
284 	if (atomic_read(&info->throttles)) {
285 		DEFINE_WAIT(wait);
286 		int thr;
287 		thr = atomic_read(&info->throttle_gen);
288 
289 		do {
290 			prepare_to_wait(&info->transaction_throttle,
291 					&wait, TASK_UNINTERRUPTIBLE);
292 			if (!atomic_read(&info->throttles)) {
293 				finish_wait(&info->transaction_throttle, &wait);
294 				break;
295 			}
296 			schedule();
297 			finish_wait(&info->transaction_throttle, &wait);
298 		} while (thr == atomic_read(&info->throttle_gen));
299 		harder_count++;
300 
301 		if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 &&
302 		    harder_count < 2)
303 			goto harder;
304 
305 		if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 &&
306 		    harder_count < 10)
307 			goto harder;
308 
309 		if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 &&
310 		    harder_count < 20)
311 			goto harder;
312 	}
313 }
314 #endif
315 
316 void btrfs_throttle(struct btrfs_root *root)
317 {
318 	mutex_lock(&root->fs_info->trans_mutex);
319 	if (!root->fs_info->open_ioctl_trans)
320 		wait_current_trans(root);
321 	mutex_unlock(&root->fs_info->trans_mutex);
322 }
323 
324 static int should_end_transaction(struct btrfs_trans_handle *trans,
325 				  struct btrfs_root *root)
326 {
327 	int ret;
328 	ret = btrfs_block_rsv_check(trans, root,
329 				    &root->fs_info->global_block_rsv, 0, 5);
330 	return ret ? 1 : 0;
331 }
332 
333 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
334 				 struct btrfs_root *root)
335 {
336 	struct btrfs_transaction *cur_trans = trans->transaction;
337 	int updates;
338 
339 	if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
340 		return 1;
341 
342 	updates = trans->delayed_ref_updates;
343 	trans->delayed_ref_updates = 0;
344 	if (updates)
345 		btrfs_run_delayed_refs(trans, root, updates);
346 
347 	return should_end_transaction(trans, root);
348 }
349 
350 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
351 			  struct btrfs_root *root, int throttle)
352 {
353 	struct btrfs_transaction *cur_trans = trans->transaction;
354 	struct btrfs_fs_info *info = root->fs_info;
355 	int count = 0;
356 
357 	while (count < 4) {
358 		unsigned long cur = trans->delayed_ref_updates;
359 		trans->delayed_ref_updates = 0;
360 		if (cur &&
361 		    trans->transaction->delayed_refs.num_heads_ready > 64) {
362 			trans->delayed_ref_updates = 0;
363 
364 			/*
365 			 * do a full flush if the transaction is trying
366 			 * to close
367 			 */
368 			if (trans->transaction->delayed_refs.flushing)
369 				cur = 0;
370 			btrfs_run_delayed_refs(trans, root, cur);
371 		} else {
372 			break;
373 		}
374 		count++;
375 	}
376 
377 	btrfs_trans_release_metadata(trans, root);
378 
379 	if (!root->fs_info->open_ioctl_trans &&
380 	    should_end_transaction(trans, root))
381 		trans->transaction->blocked = 1;
382 
383 	if (cur_trans->blocked && !cur_trans->in_commit) {
384 		if (throttle)
385 			return btrfs_commit_transaction(trans, root);
386 		else
387 			wake_up_process(info->transaction_kthread);
388 	}
389 
390 	mutex_lock(&info->trans_mutex);
391 	WARN_ON(cur_trans != info->running_transaction);
392 	WARN_ON(cur_trans->num_writers < 1);
393 	cur_trans->num_writers--;
394 
395 	if (waitqueue_active(&cur_trans->writer_wait))
396 		wake_up(&cur_trans->writer_wait);
397 	put_transaction(cur_trans);
398 	mutex_unlock(&info->trans_mutex);
399 
400 	if (current->journal_info == trans)
401 		current->journal_info = NULL;
402 	memset(trans, 0, sizeof(*trans));
403 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
404 
405 	if (throttle)
406 		btrfs_run_delayed_iputs(root);
407 
408 	return 0;
409 }
410 
411 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
412 			  struct btrfs_root *root)
413 {
414 	return __btrfs_end_transaction(trans, root, 0);
415 }
416 
417 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
418 				   struct btrfs_root *root)
419 {
420 	return __btrfs_end_transaction(trans, root, 1);
421 }
422 
423 /*
424  * when btree blocks are allocated, they have some corresponding bits set for
425  * them in one of two extent_io trees.  This is used to make sure all of
426  * those extents are sent to disk but does not wait on them
427  */
428 int btrfs_write_marked_extents(struct btrfs_root *root,
429 			       struct extent_io_tree *dirty_pages, int mark)
430 {
431 	int ret;
432 	int err = 0;
433 	int werr = 0;
434 	struct page *page;
435 	struct inode *btree_inode = root->fs_info->btree_inode;
436 	u64 start = 0;
437 	u64 end;
438 	unsigned long index;
439 
440 	while (1) {
441 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
442 					    mark);
443 		if (ret)
444 			break;
445 		while (start <= end) {
446 			cond_resched();
447 
448 			index = start >> PAGE_CACHE_SHIFT;
449 			start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
450 			page = find_get_page(btree_inode->i_mapping, index);
451 			if (!page)
452 				continue;
453 
454 			btree_lock_page_hook(page);
455 			if (!page->mapping) {
456 				unlock_page(page);
457 				page_cache_release(page);
458 				continue;
459 			}
460 
461 			if (PageWriteback(page)) {
462 				if (PageDirty(page))
463 					wait_on_page_writeback(page);
464 				else {
465 					unlock_page(page);
466 					page_cache_release(page);
467 					continue;
468 				}
469 			}
470 			err = write_one_page(page, 0);
471 			if (err)
472 				werr = err;
473 			page_cache_release(page);
474 		}
475 	}
476 	if (err)
477 		werr = err;
478 	return werr;
479 }
480 
481 /*
482  * when btree blocks are allocated, they have some corresponding bits set for
483  * them in one of two extent_io trees.  This is used to make sure all of
484  * those extents are on disk for transaction or log commit.  We wait
485  * on all the pages and clear them from the dirty pages state tree
486  */
487 int btrfs_wait_marked_extents(struct btrfs_root *root,
488 			      struct extent_io_tree *dirty_pages, int mark)
489 {
490 	int ret;
491 	int err = 0;
492 	int werr = 0;
493 	struct page *page;
494 	struct inode *btree_inode = root->fs_info->btree_inode;
495 	u64 start = 0;
496 	u64 end;
497 	unsigned long index;
498 
499 	while (1) {
500 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
501 					    mark);
502 		if (ret)
503 			break;
504 
505 		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
506 		while (start <= end) {
507 			index = start >> PAGE_CACHE_SHIFT;
508 			start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
509 			page = find_get_page(btree_inode->i_mapping, index);
510 			if (!page)
511 				continue;
512 			if (PageDirty(page)) {
513 				btree_lock_page_hook(page);
514 				wait_on_page_writeback(page);
515 				err = write_one_page(page, 0);
516 				if (err)
517 					werr = err;
518 			}
519 			wait_on_page_writeback(page);
520 			page_cache_release(page);
521 			cond_resched();
522 		}
523 	}
524 	if (err)
525 		werr = err;
526 	return werr;
527 }
528 
529 /*
530  * when btree blocks are allocated, they have some corresponding bits set for
531  * them in one of two extent_io trees.  This is used to make sure all of
532  * those extents are on disk for transaction or log commit
533  */
534 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
535 				struct extent_io_tree *dirty_pages, int mark)
536 {
537 	int ret;
538 	int ret2;
539 
540 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
541 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
542 	return ret || ret2;
543 }
544 
545 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
546 				     struct btrfs_root *root)
547 {
548 	if (!trans || !trans->transaction) {
549 		struct inode *btree_inode;
550 		btree_inode = root->fs_info->btree_inode;
551 		return filemap_write_and_wait(btree_inode->i_mapping);
552 	}
553 	return btrfs_write_and_wait_marked_extents(root,
554 					   &trans->transaction->dirty_pages,
555 					   EXTENT_DIRTY);
556 }
557 
558 /*
559  * this is used to update the root pointer in the tree of tree roots.
560  *
561  * But, in the case of the extent allocation tree, updating the root
562  * pointer may allocate blocks which may change the root of the extent
563  * allocation tree.
564  *
565  * So, this loops and repeats and makes sure the cowonly root didn't
566  * change while the root pointer was being updated in the metadata.
567  */
568 static int update_cowonly_root(struct btrfs_trans_handle *trans,
569 			       struct btrfs_root *root)
570 {
571 	int ret;
572 	u64 old_root_bytenr;
573 	u64 old_root_used;
574 	struct btrfs_root *tree_root = root->fs_info->tree_root;
575 
576 	old_root_used = btrfs_root_used(&root->root_item);
577 	btrfs_write_dirty_block_groups(trans, root);
578 
579 	while (1) {
580 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
581 		if (old_root_bytenr == root->node->start &&
582 		    old_root_used == btrfs_root_used(&root->root_item))
583 			break;
584 
585 		btrfs_set_root_node(&root->root_item, root->node);
586 		ret = btrfs_update_root(trans, tree_root,
587 					&root->root_key,
588 					&root->root_item);
589 		BUG_ON(ret);
590 
591 		old_root_used = btrfs_root_used(&root->root_item);
592 		ret = btrfs_write_dirty_block_groups(trans, root);
593 		BUG_ON(ret);
594 	}
595 
596 	if (root != root->fs_info->extent_root)
597 		switch_commit_root(root);
598 
599 	return 0;
600 }
601 
602 /*
603  * update all the cowonly tree roots on disk
604  */
605 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
606 					 struct btrfs_root *root)
607 {
608 	struct btrfs_fs_info *fs_info = root->fs_info;
609 	struct list_head *next;
610 	struct extent_buffer *eb;
611 	int ret;
612 
613 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
614 	BUG_ON(ret);
615 
616 	eb = btrfs_lock_root_node(fs_info->tree_root);
617 	btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
618 	btrfs_tree_unlock(eb);
619 	free_extent_buffer(eb);
620 
621 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
622 	BUG_ON(ret);
623 
624 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
625 		next = fs_info->dirty_cowonly_roots.next;
626 		list_del_init(next);
627 		root = list_entry(next, struct btrfs_root, dirty_list);
628 
629 		update_cowonly_root(trans, root);
630 	}
631 
632 	down_write(&fs_info->extent_commit_sem);
633 	switch_commit_root(fs_info->extent_root);
634 	up_write(&fs_info->extent_commit_sem);
635 
636 	return 0;
637 }
638 
639 /*
640  * dead roots are old snapshots that need to be deleted.  This allocates
641  * a dirty root struct and adds it into the list of dead roots that need to
642  * be deleted
643  */
644 int btrfs_add_dead_root(struct btrfs_root *root)
645 {
646 	mutex_lock(&root->fs_info->trans_mutex);
647 	list_add(&root->root_list, &root->fs_info->dead_roots);
648 	mutex_unlock(&root->fs_info->trans_mutex);
649 	return 0;
650 }
651 
652 /*
653  * update all the cowonly tree roots on disk
654  */
655 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
656 				    struct btrfs_root *root)
657 {
658 	struct btrfs_root *gang[8];
659 	struct btrfs_fs_info *fs_info = root->fs_info;
660 	int i;
661 	int ret;
662 	int err = 0;
663 
664 	while (1) {
665 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
666 						 (void **)gang, 0,
667 						 ARRAY_SIZE(gang),
668 						 BTRFS_ROOT_TRANS_TAG);
669 		if (ret == 0)
670 			break;
671 		for (i = 0; i < ret; i++) {
672 			root = gang[i];
673 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
674 					(unsigned long)root->root_key.objectid,
675 					BTRFS_ROOT_TRANS_TAG);
676 
677 			btrfs_free_log(trans, root);
678 			btrfs_update_reloc_root(trans, root);
679 			btrfs_orphan_commit_root(trans, root);
680 
681 			if (root->commit_root != root->node) {
682 				switch_commit_root(root);
683 				btrfs_set_root_node(&root->root_item,
684 						    root->node);
685 			}
686 
687 			err = btrfs_update_root(trans, fs_info->tree_root,
688 						&root->root_key,
689 						&root->root_item);
690 			if (err)
691 				break;
692 		}
693 	}
694 	return err;
695 }
696 
697 /*
698  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
699  * otherwise every leaf in the btree is read and defragged.
700  */
701 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
702 {
703 	struct btrfs_fs_info *info = root->fs_info;
704 	struct btrfs_trans_handle *trans;
705 	int ret;
706 	unsigned long nr;
707 
708 	if (xchg(&root->defrag_running, 1))
709 		return 0;
710 
711 	while (1) {
712 		trans = btrfs_start_transaction(root, 0);
713 		if (IS_ERR(trans))
714 			return PTR_ERR(trans);
715 
716 		ret = btrfs_defrag_leaves(trans, root, cacheonly);
717 
718 		nr = trans->blocks_used;
719 		btrfs_end_transaction(trans, root);
720 		btrfs_btree_balance_dirty(info->tree_root, nr);
721 		cond_resched();
722 
723 		if (root->fs_info->closing || ret != -EAGAIN)
724 			break;
725 	}
726 	root->defrag_running = 0;
727 	return ret;
728 }
729 
730 #if 0
731 /*
732  * when dropping snapshots, we generate a ton of delayed refs, and it makes
733  * sense not to join the transaction while it is trying to flush the current
734  * queue of delayed refs out.
735  *
736  * This is used by the drop snapshot code only
737  */
738 static noinline int wait_transaction_pre_flush(struct btrfs_fs_info *info)
739 {
740 	DEFINE_WAIT(wait);
741 
742 	mutex_lock(&info->trans_mutex);
743 	while (info->running_transaction &&
744 	       info->running_transaction->delayed_refs.flushing) {
745 		prepare_to_wait(&info->transaction_wait, &wait,
746 				TASK_UNINTERRUPTIBLE);
747 		mutex_unlock(&info->trans_mutex);
748 
749 		schedule();
750 
751 		mutex_lock(&info->trans_mutex);
752 		finish_wait(&info->transaction_wait, &wait);
753 	}
754 	mutex_unlock(&info->trans_mutex);
755 	return 0;
756 }
757 
758 /*
759  * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
760  * all of them
761  */
762 int btrfs_drop_dead_root(struct btrfs_root *root)
763 {
764 	struct btrfs_trans_handle *trans;
765 	struct btrfs_root *tree_root = root->fs_info->tree_root;
766 	unsigned long nr;
767 	int ret;
768 
769 	while (1) {
770 		/*
771 		 * we don't want to jump in and create a bunch of
772 		 * delayed refs if the transaction is starting to close
773 		 */
774 		wait_transaction_pre_flush(tree_root->fs_info);
775 		trans = btrfs_start_transaction(tree_root, 1);
776 
777 		/*
778 		 * we've joined a transaction, make sure it isn't
779 		 * closing right now
780 		 */
781 		if (trans->transaction->delayed_refs.flushing) {
782 			btrfs_end_transaction(trans, tree_root);
783 			continue;
784 		}
785 
786 		ret = btrfs_drop_snapshot(trans, root);
787 		if (ret != -EAGAIN)
788 			break;
789 
790 		ret = btrfs_update_root(trans, tree_root,
791 					&root->root_key,
792 					&root->root_item);
793 		if (ret)
794 			break;
795 
796 		nr = trans->blocks_used;
797 		ret = btrfs_end_transaction(trans, tree_root);
798 		BUG_ON(ret);
799 
800 		btrfs_btree_balance_dirty(tree_root, nr);
801 		cond_resched();
802 	}
803 	BUG_ON(ret);
804 
805 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
806 	BUG_ON(ret);
807 
808 	nr = trans->blocks_used;
809 	ret = btrfs_end_transaction(trans, tree_root);
810 	BUG_ON(ret);
811 
812 	free_extent_buffer(root->node);
813 	free_extent_buffer(root->commit_root);
814 	kfree(root);
815 
816 	btrfs_btree_balance_dirty(tree_root, nr);
817 	return ret;
818 }
819 #endif
820 
821 /*
822  * new snapshots need to be created at a very specific time in the
823  * transaction commit.  This does the actual creation
824  */
825 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
826 				   struct btrfs_fs_info *fs_info,
827 				   struct btrfs_pending_snapshot *pending)
828 {
829 	struct btrfs_key key;
830 	struct btrfs_root_item *new_root_item;
831 	struct btrfs_root *tree_root = fs_info->tree_root;
832 	struct btrfs_root *root = pending->root;
833 	struct btrfs_root *parent_root;
834 	struct inode *parent_inode;
835 	struct dentry *dentry;
836 	struct extent_buffer *tmp;
837 	struct extent_buffer *old;
838 	int ret;
839 	int retries = 0;
840 	u64 to_reserve = 0;
841 	u64 index = 0;
842 	u64 objectid;
843 
844 	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
845 	if (!new_root_item) {
846 		pending->error = -ENOMEM;
847 		goto fail;
848 	}
849 
850 	ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
851 	if (ret) {
852 		pending->error = ret;
853 		goto fail;
854 	}
855 
856 	btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
857 	btrfs_orphan_pre_snapshot(trans, pending, &to_reserve);
858 
859 	if (to_reserve > 0) {
860 		ret = btrfs_block_rsv_add(trans, root, &pending->block_rsv,
861 					  to_reserve, &retries);
862 		if (ret) {
863 			pending->error = ret;
864 			goto fail;
865 		}
866 	}
867 
868 	key.objectid = objectid;
869 	key.offset = (u64)-1;
870 	key.type = BTRFS_ROOT_ITEM_KEY;
871 
872 	trans->block_rsv = &pending->block_rsv;
873 
874 	dentry = pending->dentry;
875 	parent_inode = dentry->d_parent->d_inode;
876 	parent_root = BTRFS_I(parent_inode)->root;
877 	record_root_in_trans(trans, parent_root);
878 
879 	/*
880 	 * insert the directory item
881 	 */
882 	ret = btrfs_set_inode_index(parent_inode, &index);
883 	BUG_ON(ret);
884 	ret = btrfs_insert_dir_item(trans, parent_root,
885 				dentry->d_name.name, dentry->d_name.len,
886 				parent_inode->i_ino, &key,
887 				BTRFS_FT_DIR, index);
888 	BUG_ON(ret);
889 
890 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
891 					 dentry->d_name.len * 2);
892 	ret = btrfs_update_inode(trans, parent_root, parent_inode);
893 	BUG_ON(ret);
894 
895 	record_root_in_trans(trans, root);
896 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
897 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
898 
899 	old = btrfs_lock_root_node(root);
900 	btrfs_cow_block(trans, root, old, NULL, 0, &old);
901 	btrfs_set_lock_blocking(old);
902 
903 	btrfs_copy_root(trans, root, old, &tmp, objectid);
904 	btrfs_tree_unlock(old);
905 	free_extent_buffer(old);
906 
907 	btrfs_set_root_node(new_root_item, tmp);
908 	/* record when the snapshot was created in key.offset */
909 	key.offset = trans->transid;
910 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
911 	btrfs_tree_unlock(tmp);
912 	free_extent_buffer(tmp);
913 	BUG_ON(ret);
914 
915 	/*
916 	 * insert root back/forward references
917 	 */
918 	ret = btrfs_add_root_ref(trans, tree_root, objectid,
919 				 parent_root->root_key.objectid,
920 				 parent_inode->i_ino, index,
921 				 dentry->d_name.name, dentry->d_name.len);
922 	BUG_ON(ret);
923 
924 	key.offset = (u64)-1;
925 	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
926 	BUG_ON(IS_ERR(pending->snap));
927 
928 	btrfs_reloc_post_snapshot(trans, pending);
929 	btrfs_orphan_post_snapshot(trans, pending);
930 fail:
931 	kfree(new_root_item);
932 	btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
933 	return 0;
934 }
935 
936 /*
937  * create all the snapshots we've scheduled for creation
938  */
939 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
940 					     struct btrfs_fs_info *fs_info)
941 {
942 	struct btrfs_pending_snapshot *pending;
943 	struct list_head *head = &trans->transaction->pending_snapshots;
944 	int ret;
945 
946 	list_for_each_entry(pending, head, list) {
947 		ret = create_pending_snapshot(trans, fs_info, pending);
948 		BUG_ON(ret);
949 	}
950 	return 0;
951 }
952 
953 static void update_super_roots(struct btrfs_root *root)
954 {
955 	struct btrfs_root_item *root_item;
956 	struct btrfs_super_block *super;
957 
958 	super = &root->fs_info->super_copy;
959 
960 	root_item = &root->fs_info->chunk_root->root_item;
961 	super->chunk_root = root_item->bytenr;
962 	super->chunk_root_generation = root_item->generation;
963 	super->chunk_root_level = root_item->level;
964 
965 	root_item = &root->fs_info->tree_root->root_item;
966 	super->root = root_item->bytenr;
967 	super->generation = root_item->generation;
968 	super->root_level = root_item->level;
969 }
970 
971 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
972 {
973 	int ret = 0;
974 	spin_lock(&info->new_trans_lock);
975 	if (info->running_transaction)
976 		ret = info->running_transaction->in_commit;
977 	spin_unlock(&info->new_trans_lock);
978 	return ret;
979 }
980 
981 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
982 {
983 	int ret = 0;
984 	spin_lock(&info->new_trans_lock);
985 	if (info->running_transaction)
986 		ret = info->running_transaction->blocked;
987 	spin_unlock(&info->new_trans_lock);
988 	return ret;
989 }
990 
991 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
992 			     struct btrfs_root *root)
993 {
994 	unsigned long joined = 0;
995 	unsigned long timeout = 1;
996 	struct btrfs_transaction *cur_trans;
997 	struct btrfs_transaction *prev_trans = NULL;
998 	DEFINE_WAIT(wait);
999 	int ret;
1000 	int should_grow = 0;
1001 	unsigned long now = get_seconds();
1002 	int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1003 
1004 	btrfs_run_ordered_operations(root, 0);
1005 
1006 	/* make a pass through all the delayed refs we have so far
1007 	 * any runnings procs may add more while we are here
1008 	 */
1009 	ret = btrfs_run_delayed_refs(trans, root, 0);
1010 	BUG_ON(ret);
1011 
1012 	btrfs_trans_release_metadata(trans, root);
1013 
1014 	cur_trans = trans->transaction;
1015 	/*
1016 	 * set the flushing flag so procs in this transaction have to
1017 	 * start sending their work down.
1018 	 */
1019 	cur_trans->delayed_refs.flushing = 1;
1020 
1021 	ret = btrfs_run_delayed_refs(trans, root, 0);
1022 	BUG_ON(ret);
1023 
1024 	mutex_lock(&root->fs_info->trans_mutex);
1025 	if (cur_trans->in_commit) {
1026 		cur_trans->use_count++;
1027 		mutex_unlock(&root->fs_info->trans_mutex);
1028 		btrfs_end_transaction(trans, root);
1029 
1030 		ret = wait_for_commit(root, cur_trans);
1031 		BUG_ON(ret);
1032 
1033 		mutex_lock(&root->fs_info->trans_mutex);
1034 		put_transaction(cur_trans);
1035 		mutex_unlock(&root->fs_info->trans_mutex);
1036 
1037 		return 0;
1038 	}
1039 
1040 	trans->transaction->in_commit = 1;
1041 	trans->transaction->blocked = 1;
1042 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
1043 		prev_trans = list_entry(cur_trans->list.prev,
1044 					struct btrfs_transaction, list);
1045 		if (!prev_trans->commit_done) {
1046 			prev_trans->use_count++;
1047 			mutex_unlock(&root->fs_info->trans_mutex);
1048 
1049 			wait_for_commit(root, prev_trans);
1050 
1051 			mutex_lock(&root->fs_info->trans_mutex);
1052 			put_transaction(prev_trans);
1053 		}
1054 	}
1055 
1056 	if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
1057 		should_grow = 1;
1058 
1059 	do {
1060 		int snap_pending = 0;
1061 		joined = cur_trans->num_joined;
1062 		if (!list_empty(&trans->transaction->pending_snapshots))
1063 			snap_pending = 1;
1064 
1065 		WARN_ON(cur_trans != trans->transaction);
1066 		if (cur_trans->num_writers > 1)
1067 			timeout = MAX_SCHEDULE_TIMEOUT;
1068 		else if (should_grow)
1069 			timeout = 1;
1070 
1071 		mutex_unlock(&root->fs_info->trans_mutex);
1072 
1073 		if (flush_on_commit || snap_pending) {
1074 			btrfs_start_delalloc_inodes(root, 1);
1075 			ret = btrfs_wait_ordered_extents(root, 0, 1);
1076 			BUG_ON(ret);
1077 		}
1078 
1079 		/*
1080 		 * rename don't use btrfs_join_transaction, so, once we
1081 		 * set the transaction to blocked above, we aren't going
1082 		 * to get any new ordered operations.  We can safely run
1083 		 * it here and no for sure that nothing new will be added
1084 		 * to the list
1085 		 */
1086 		btrfs_run_ordered_operations(root, 1);
1087 
1088 		prepare_to_wait(&cur_trans->writer_wait, &wait,
1089 				TASK_UNINTERRUPTIBLE);
1090 
1091 		smp_mb();
1092 		if (cur_trans->num_writers > 1 || should_grow)
1093 			schedule_timeout(timeout);
1094 
1095 		mutex_lock(&root->fs_info->trans_mutex);
1096 		finish_wait(&cur_trans->writer_wait, &wait);
1097 	} while (cur_trans->num_writers > 1 ||
1098 		 (should_grow && cur_trans->num_joined != joined));
1099 
1100 	ret = create_pending_snapshots(trans, root->fs_info);
1101 	BUG_ON(ret);
1102 
1103 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1104 	BUG_ON(ret);
1105 
1106 	WARN_ON(cur_trans != trans->transaction);
1107 
1108 	/* btrfs_commit_tree_roots is responsible for getting the
1109 	 * various roots consistent with each other.  Every pointer
1110 	 * in the tree of tree roots has to point to the most up to date
1111 	 * root for every subvolume and other tree.  So, we have to keep
1112 	 * the tree logging code from jumping in and changing any
1113 	 * of the trees.
1114 	 *
1115 	 * At this point in the commit, there can't be any tree-log
1116 	 * writers, but a little lower down we drop the trans mutex
1117 	 * and let new people in.  By holding the tree_log_mutex
1118 	 * from now until after the super is written, we avoid races
1119 	 * with the tree-log code.
1120 	 */
1121 	mutex_lock(&root->fs_info->tree_log_mutex);
1122 
1123 	ret = commit_fs_roots(trans, root);
1124 	BUG_ON(ret);
1125 
1126 	/* commit_fs_roots gets rid of all the tree log roots, it is now
1127 	 * safe to free the root of tree log roots
1128 	 */
1129 	btrfs_free_log_root_tree(trans, root->fs_info);
1130 
1131 	ret = commit_cowonly_roots(trans, root);
1132 	BUG_ON(ret);
1133 
1134 	btrfs_prepare_extent_commit(trans, root);
1135 
1136 	cur_trans = root->fs_info->running_transaction;
1137 	spin_lock(&root->fs_info->new_trans_lock);
1138 	root->fs_info->running_transaction = NULL;
1139 	spin_unlock(&root->fs_info->new_trans_lock);
1140 
1141 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1142 			    root->fs_info->tree_root->node);
1143 	switch_commit_root(root->fs_info->tree_root);
1144 
1145 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1146 			    root->fs_info->chunk_root->node);
1147 	switch_commit_root(root->fs_info->chunk_root);
1148 
1149 	update_super_roots(root);
1150 
1151 	if (!root->fs_info->log_root_recovering) {
1152 		btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1153 		btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1154 	}
1155 
1156 	memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1157 	       sizeof(root->fs_info->super_copy));
1158 
1159 	trans->transaction->blocked = 0;
1160 
1161 	wake_up(&root->fs_info->transaction_wait);
1162 
1163 	mutex_unlock(&root->fs_info->trans_mutex);
1164 	ret = btrfs_write_and_wait_transaction(trans, root);
1165 	BUG_ON(ret);
1166 	write_ctree_super(trans, root, 0);
1167 
1168 	/*
1169 	 * the super is written, we can safely allow the tree-loggers
1170 	 * to go about their business
1171 	 */
1172 	mutex_unlock(&root->fs_info->tree_log_mutex);
1173 
1174 	btrfs_finish_extent_commit(trans, root);
1175 
1176 	mutex_lock(&root->fs_info->trans_mutex);
1177 
1178 	cur_trans->commit_done = 1;
1179 
1180 	root->fs_info->last_trans_committed = cur_trans->transid;
1181 
1182 	wake_up(&cur_trans->commit_wait);
1183 
1184 	put_transaction(cur_trans);
1185 	put_transaction(cur_trans);
1186 
1187 	mutex_unlock(&root->fs_info->trans_mutex);
1188 
1189 	if (current->journal_info == trans)
1190 		current->journal_info = NULL;
1191 
1192 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1193 
1194 	if (current != root->fs_info->transaction_kthread)
1195 		btrfs_run_delayed_iputs(root);
1196 
1197 	return ret;
1198 }
1199 
1200 /*
1201  * interface function to delete all the snapshots we have scheduled for deletion
1202  */
1203 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1204 {
1205 	LIST_HEAD(list);
1206 	struct btrfs_fs_info *fs_info = root->fs_info;
1207 
1208 	mutex_lock(&fs_info->trans_mutex);
1209 	list_splice_init(&fs_info->dead_roots, &list);
1210 	mutex_unlock(&fs_info->trans_mutex);
1211 
1212 	while (!list_empty(&list)) {
1213 		root = list_entry(list.next, struct btrfs_root, root_list);
1214 		list_del(&root->root_list);
1215 
1216 		if (btrfs_header_backref_rev(root->node) <
1217 		    BTRFS_MIXED_BACKREF_REV)
1218 			btrfs_drop_snapshot(root, NULL, 0);
1219 		else
1220 			btrfs_drop_snapshot(root, NULL, 1);
1221 	}
1222 	return 0;
1223 }
1224