1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/slab.h> 8 #include <linux/sched.h> 9 #include <linux/sched/mm.h> 10 #include <linux/writeback.h> 11 #include <linux/pagemap.h> 12 #include <linux/blkdev.h> 13 #include <linux/uuid.h> 14 #include <linux/timekeeping.h> 15 #include "misc.h" 16 #include "ctree.h" 17 #include "disk-io.h" 18 #include "transaction.h" 19 #include "locking.h" 20 #include "tree-log.h" 21 #include "volumes.h" 22 #include "dev-replace.h" 23 #include "qgroup.h" 24 #include "block-group.h" 25 #include "space-info.h" 26 #include "fs.h" 27 #include "accessors.h" 28 #include "extent-tree.h" 29 #include "root-tree.h" 30 #include "dir-item.h" 31 #include "uuid-tree.h" 32 #include "ioctl.h" 33 #include "relocation.h" 34 #include "scrub.h" 35 36 static struct kmem_cache *btrfs_trans_handle_cachep; 37 38 /* 39 * Transaction states and transitions 40 * 41 * No running transaction (fs tree blocks are not modified) 42 * | 43 * | To next stage: 44 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart(). 45 * V 46 * Transaction N [[TRANS_STATE_RUNNING]] 47 * | 48 * | New trans handles can be attached to transaction N by calling all 49 * | start_transaction() variants. 50 * | 51 * | To next stage: 52 * | Call btrfs_commit_transaction() on any trans handle attached to 53 * | transaction N 54 * V 55 * Transaction N [[TRANS_STATE_COMMIT_PREP]] 56 * | 57 * | If there are simultaneous calls to btrfs_commit_transaction() one will win 58 * | the race and the rest will wait for the winner to commit the transaction. 59 * | 60 * | The winner will wait for previous running transaction to completely finish 61 * | if there is one. 62 * | 63 * Transaction N [[TRANS_STATE_COMMIT_START]] 64 * | 65 * | Then one of the following happens: 66 * | - Wait for all other trans handle holders to release. 67 * | The btrfs_commit_transaction() caller will do the commit work. 68 * | - Wait for current transaction to be committed by others. 69 * | Other btrfs_commit_transaction() caller will do the commit work. 70 * | 71 * | At this stage, only btrfs_join_transaction*() variants can attach 72 * | to this running transaction. 73 * | All other variants will wait for current one to finish and attach to 74 * | transaction N+1. 75 * | 76 * | To next stage: 77 * | Caller is chosen to commit transaction N, and all other trans handle 78 * | haven been released. 79 * V 80 * Transaction N [[TRANS_STATE_COMMIT_DOING]] 81 * | 82 * | The heavy lifting transaction work is started. 83 * | From running delayed refs (modifying extent tree) to creating pending 84 * | snapshots, running qgroups. 85 * | In short, modify supporting trees to reflect modifications of subvolume 86 * | trees. 87 * | 88 * | At this stage, all start_transaction() calls will wait for this 89 * | transaction to finish and attach to transaction N+1. 90 * | 91 * | To next stage: 92 * | Until all supporting trees are updated. 93 * V 94 * Transaction N [[TRANS_STATE_UNBLOCKED]] 95 * | Transaction N+1 96 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]] 97 * | need to write them back to disk and update | 98 * | super blocks. | 99 * | | 100 * | At this stage, new transaction is allowed to | 101 * | start. | 102 * | All new start_transaction() calls will be | 103 * | attached to transid N+1. | 104 * | | 105 * | To next stage: | 106 * | Until all tree blocks are super blocks are | 107 * | written to block devices | 108 * V | 109 * Transaction N [[TRANS_STATE_COMPLETED]] V 110 * All tree blocks and super blocks are written. Transaction N+1 111 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]] 112 * data structures will be cleaned up. | Life goes on 113 */ 114 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 115 [TRANS_STATE_RUNNING] = 0U, 116 [TRANS_STATE_COMMIT_PREP] = 0U, 117 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH), 118 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START | 119 __TRANS_ATTACH | 120 __TRANS_JOIN | 121 __TRANS_JOIN_NOSTART), 122 [TRANS_STATE_UNBLOCKED] = (__TRANS_START | 123 __TRANS_ATTACH | 124 __TRANS_JOIN | 125 __TRANS_JOIN_NOLOCK | 126 __TRANS_JOIN_NOSTART), 127 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START | 128 __TRANS_ATTACH | 129 __TRANS_JOIN | 130 __TRANS_JOIN_NOLOCK | 131 __TRANS_JOIN_NOSTART), 132 [TRANS_STATE_COMPLETED] = (__TRANS_START | 133 __TRANS_ATTACH | 134 __TRANS_JOIN | 135 __TRANS_JOIN_NOLOCK | 136 __TRANS_JOIN_NOSTART), 137 }; 138 139 void btrfs_put_transaction(struct btrfs_transaction *transaction) 140 { 141 WARN_ON(refcount_read(&transaction->use_count) == 0); 142 if (refcount_dec_and_test(&transaction->use_count)) { 143 BUG_ON(!list_empty(&transaction->list)); 144 WARN_ON(!xa_empty(&transaction->delayed_refs.head_refs)); 145 WARN_ON(!xa_empty(&transaction->delayed_refs.dirty_extents)); 146 if (transaction->delayed_refs.pending_csums) 147 btrfs_err(transaction->fs_info, 148 "pending csums is %llu", 149 transaction->delayed_refs.pending_csums); 150 /* 151 * If any block groups are found in ->deleted_bgs then it's 152 * because the transaction was aborted and a commit did not 153 * happen (things failed before writing the new superblock 154 * and calling btrfs_finish_extent_commit()), so we can not 155 * discard the physical locations of the block groups. 156 */ 157 while (!list_empty(&transaction->deleted_bgs)) { 158 struct btrfs_block_group *cache; 159 160 cache = list_first_entry(&transaction->deleted_bgs, 161 struct btrfs_block_group, 162 bg_list); 163 list_del_init(&cache->bg_list); 164 btrfs_unfreeze_block_group(cache); 165 btrfs_put_block_group(cache); 166 } 167 WARN_ON(!list_empty(&transaction->dev_update_list)); 168 kfree(transaction); 169 } 170 } 171 172 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans) 173 { 174 struct btrfs_transaction *cur_trans = trans->transaction; 175 struct btrfs_fs_info *fs_info = trans->fs_info; 176 struct btrfs_root *root, *tmp; 177 178 /* 179 * At this point no one can be using this transaction to modify any tree 180 * and no one can start another transaction to modify any tree either. 181 */ 182 ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING); 183 184 down_write(&fs_info->commit_root_sem); 185 186 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 187 fs_info->last_reloc_trans = trans->transid; 188 189 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits, 190 dirty_list) { 191 list_del_init(&root->dirty_list); 192 free_extent_buffer(root->commit_root); 193 root->commit_root = btrfs_root_node(root); 194 extent_io_tree_release(&root->dirty_log_pages); 195 btrfs_qgroup_clean_swapped_blocks(root); 196 } 197 198 /* We can free old roots now. */ 199 spin_lock(&cur_trans->dropped_roots_lock); 200 while (!list_empty(&cur_trans->dropped_roots)) { 201 root = list_first_entry(&cur_trans->dropped_roots, 202 struct btrfs_root, root_list); 203 list_del_init(&root->root_list); 204 spin_unlock(&cur_trans->dropped_roots_lock); 205 btrfs_free_log(trans, root); 206 btrfs_drop_and_free_fs_root(fs_info, root); 207 spin_lock(&cur_trans->dropped_roots_lock); 208 } 209 spin_unlock(&cur_trans->dropped_roots_lock); 210 211 up_write(&fs_info->commit_root_sem); 212 } 213 214 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 215 unsigned int type) 216 { 217 if (type & TRANS_EXTWRITERS) 218 atomic_inc(&trans->num_extwriters); 219 } 220 221 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 222 unsigned int type) 223 { 224 if (type & TRANS_EXTWRITERS) 225 atomic_dec(&trans->num_extwriters); 226 } 227 228 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 229 unsigned int type) 230 { 231 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 232 } 233 234 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 235 { 236 return atomic_read(&trans->num_extwriters); 237 } 238 239 /* 240 * To be called after doing the chunk btree updates right after allocating a new 241 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a 242 * chunk after all chunk btree updates and after finishing the second phase of 243 * chunk allocation (btrfs_create_pending_block_groups()) in case some block 244 * group had its chunk item insertion delayed to the second phase. 245 */ 246 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 247 { 248 struct btrfs_fs_info *fs_info = trans->fs_info; 249 250 if (!trans->chunk_bytes_reserved) 251 return; 252 253 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv, 254 trans->chunk_bytes_reserved, NULL); 255 trans->chunk_bytes_reserved = 0; 256 } 257 258 /* 259 * either allocate a new transaction or hop into the existing one 260 */ 261 static noinline int join_transaction(struct btrfs_fs_info *fs_info, 262 unsigned int type) 263 { 264 struct btrfs_transaction *cur_trans; 265 266 spin_lock(&fs_info->trans_lock); 267 loop: 268 /* The file system has been taken offline. No new transactions. */ 269 if (BTRFS_FS_ERROR(fs_info)) { 270 spin_unlock(&fs_info->trans_lock); 271 return -EROFS; 272 } 273 274 cur_trans = fs_info->running_transaction; 275 if (cur_trans) { 276 if (TRANS_ABORTED(cur_trans)) { 277 spin_unlock(&fs_info->trans_lock); 278 return cur_trans->aborted; 279 } 280 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 281 spin_unlock(&fs_info->trans_lock); 282 return -EBUSY; 283 } 284 refcount_inc(&cur_trans->use_count); 285 atomic_inc(&cur_trans->num_writers); 286 extwriter_counter_inc(cur_trans, type); 287 spin_unlock(&fs_info->trans_lock); 288 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers); 289 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters); 290 return 0; 291 } 292 spin_unlock(&fs_info->trans_lock); 293 294 /* 295 * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the 296 * current transaction, and commit it. If there is no transaction, just 297 * return ENOENT. 298 */ 299 if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART) 300 return -ENOENT; 301 302 /* 303 * JOIN_NOLOCK only happens during the transaction commit, so 304 * it is impossible that ->running_transaction is NULL 305 */ 306 BUG_ON(type == TRANS_JOIN_NOLOCK); 307 308 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS); 309 if (!cur_trans) 310 return -ENOMEM; 311 312 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers); 313 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters); 314 315 spin_lock(&fs_info->trans_lock); 316 if (fs_info->running_transaction) { 317 /* 318 * someone started a transaction after we unlocked. Make sure 319 * to redo the checks above 320 */ 321 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters); 322 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 323 kfree(cur_trans); 324 goto loop; 325 } else if (BTRFS_FS_ERROR(fs_info)) { 326 spin_unlock(&fs_info->trans_lock); 327 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters); 328 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 329 kfree(cur_trans); 330 return -EROFS; 331 } 332 333 cur_trans->fs_info = fs_info; 334 atomic_set(&cur_trans->pending_ordered, 0); 335 init_waitqueue_head(&cur_trans->pending_wait); 336 atomic_set(&cur_trans->num_writers, 1); 337 extwriter_counter_init(cur_trans, type); 338 init_waitqueue_head(&cur_trans->writer_wait); 339 init_waitqueue_head(&cur_trans->commit_wait); 340 cur_trans->state = TRANS_STATE_RUNNING; 341 /* 342 * One for this trans handle, one so it will live on until we 343 * commit the transaction. 344 */ 345 refcount_set(&cur_trans->use_count, 2); 346 cur_trans->flags = 0; 347 cur_trans->start_time = ktime_get_seconds(); 348 349 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs)); 350 351 xa_init(&cur_trans->delayed_refs.head_refs); 352 xa_init(&cur_trans->delayed_refs.dirty_extents); 353 354 /* 355 * although the tree mod log is per file system and not per transaction, 356 * the log must never go across transaction boundaries. 357 */ 358 smp_mb(); 359 if (!list_empty(&fs_info->tree_mod_seq_list)) 360 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n"); 361 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 362 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n"); 363 atomic64_set(&fs_info->tree_mod_seq, 0); 364 365 spin_lock_init(&cur_trans->delayed_refs.lock); 366 367 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 368 INIT_LIST_HEAD(&cur_trans->dev_update_list); 369 INIT_LIST_HEAD(&cur_trans->switch_commits); 370 INIT_LIST_HEAD(&cur_trans->dirty_bgs); 371 INIT_LIST_HEAD(&cur_trans->io_bgs); 372 INIT_LIST_HEAD(&cur_trans->dropped_roots); 373 mutex_init(&cur_trans->cache_write_mutex); 374 spin_lock_init(&cur_trans->dirty_bgs_lock); 375 INIT_LIST_HEAD(&cur_trans->deleted_bgs); 376 spin_lock_init(&cur_trans->dropped_roots_lock); 377 list_add_tail(&cur_trans->list, &fs_info->trans_list); 378 extent_io_tree_init(fs_info, &cur_trans->dirty_pages, 379 IO_TREE_TRANS_DIRTY_PAGES); 380 extent_io_tree_init(fs_info, &cur_trans->pinned_extents, 381 IO_TREE_FS_PINNED_EXTENTS); 382 btrfs_set_fs_generation(fs_info, fs_info->generation + 1); 383 cur_trans->transid = fs_info->generation; 384 fs_info->running_transaction = cur_trans; 385 cur_trans->aborted = 0; 386 spin_unlock(&fs_info->trans_lock); 387 388 return 0; 389 } 390 391 /* 392 * This does all the record keeping required to make sure that a shareable root 393 * is properly recorded in a given transaction. This is required to make sure 394 * the old root from before we joined the transaction is deleted when the 395 * transaction commits. 396 */ 397 static int record_root_in_trans(struct btrfs_trans_handle *trans, 398 struct btrfs_root *root, 399 int force) 400 { 401 struct btrfs_fs_info *fs_info = root->fs_info; 402 int ret = 0; 403 404 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 405 btrfs_get_root_last_trans(root) < trans->transid) || force) { 406 WARN_ON(!force && root->commit_root != root->node); 407 408 /* 409 * see below for IN_TRANS_SETUP usage rules 410 * we have the reloc mutex held now, so there 411 * is only one writer in this function 412 */ 413 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 414 415 /* make sure readers find IN_TRANS_SETUP before 416 * they find our root->last_trans update 417 */ 418 smp_wmb(); 419 420 spin_lock(&fs_info->fs_roots_radix_lock); 421 if (btrfs_get_root_last_trans(root) == trans->transid && !force) { 422 spin_unlock(&fs_info->fs_roots_radix_lock); 423 return 0; 424 } 425 radix_tree_tag_set(&fs_info->fs_roots_radix, 426 (unsigned long)btrfs_root_id(root), 427 BTRFS_ROOT_TRANS_TAG); 428 spin_unlock(&fs_info->fs_roots_radix_lock); 429 btrfs_set_root_last_trans(root, trans->transid); 430 431 /* this is pretty tricky. We don't want to 432 * take the relocation lock in btrfs_record_root_in_trans 433 * unless we're really doing the first setup for this root in 434 * this transaction. 435 * 436 * Normally we'd use root->last_trans as a flag to decide 437 * if we want to take the expensive mutex. 438 * 439 * But, we have to set root->last_trans before we 440 * init the relocation root, otherwise, we trip over warnings 441 * in ctree.c. The solution used here is to flag ourselves 442 * with root IN_TRANS_SETUP. When this is 1, we're still 443 * fixing up the reloc trees and everyone must wait. 444 * 445 * When this is zero, they can trust root->last_trans and fly 446 * through btrfs_record_root_in_trans without having to take the 447 * lock. smp_wmb() makes sure that all the writes above are 448 * done before we pop in the zero below 449 */ 450 ret = btrfs_init_reloc_root(trans, root); 451 smp_mb__before_atomic(); 452 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 453 } 454 return ret; 455 } 456 457 458 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans, 459 struct btrfs_root *root) 460 { 461 struct btrfs_fs_info *fs_info = root->fs_info; 462 struct btrfs_transaction *cur_trans = trans->transaction; 463 464 /* Add ourselves to the transaction dropped list */ 465 spin_lock(&cur_trans->dropped_roots_lock); 466 list_add_tail(&root->root_list, &cur_trans->dropped_roots); 467 spin_unlock(&cur_trans->dropped_roots_lock); 468 469 /* Make sure we don't try to update the root at commit time */ 470 spin_lock(&fs_info->fs_roots_radix_lock); 471 radix_tree_tag_clear(&fs_info->fs_roots_radix, 472 (unsigned long)btrfs_root_id(root), 473 BTRFS_ROOT_TRANS_TAG); 474 spin_unlock(&fs_info->fs_roots_radix_lock); 475 } 476 477 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 478 struct btrfs_root *root) 479 { 480 struct btrfs_fs_info *fs_info = root->fs_info; 481 int ret; 482 483 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 484 return 0; 485 486 /* 487 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 488 * and barriers 489 */ 490 smp_rmb(); 491 if (btrfs_get_root_last_trans(root) == trans->transid && 492 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 493 return 0; 494 495 mutex_lock(&fs_info->reloc_mutex); 496 ret = record_root_in_trans(trans, root, 0); 497 mutex_unlock(&fs_info->reloc_mutex); 498 499 return ret; 500 } 501 502 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 503 { 504 return (trans->state >= TRANS_STATE_COMMIT_START && 505 trans->state < TRANS_STATE_UNBLOCKED && 506 !TRANS_ABORTED(trans)); 507 } 508 509 /* wait for commit against the current transaction to become unblocked 510 * when this is done, it is safe to start a new transaction, but the current 511 * transaction might not be fully on disk. 512 */ 513 static void wait_current_trans(struct btrfs_fs_info *fs_info) 514 { 515 struct btrfs_transaction *cur_trans; 516 517 spin_lock(&fs_info->trans_lock); 518 cur_trans = fs_info->running_transaction; 519 if (cur_trans && is_transaction_blocked(cur_trans)) { 520 refcount_inc(&cur_trans->use_count); 521 spin_unlock(&fs_info->trans_lock); 522 523 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 524 wait_event(fs_info->transaction_wait, 525 cur_trans->state >= TRANS_STATE_UNBLOCKED || 526 TRANS_ABORTED(cur_trans)); 527 btrfs_put_transaction(cur_trans); 528 } else { 529 spin_unlock(&fs_info->trans_lock); 530 } 531 } 532 533 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type) 534 { 535 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 536 return 0; 537 538 if (type == TRANS_START) 539 return 1; 540 541 return 0; 542 } 543 544 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 545 { 546 struct btrfs_fs_info *fs_info = root->fs_info; 547 548 if (!fs_info->reloc_ctl || 549 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) || 550 btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID || 551 root->reloc_root) 552 return false; 553 554 return true; 555 } 556 557 static int btrfs_reserve_trans_metadata(struct btrfs_fs_info *fs_info, 558 enum btrfs_reserve_flush_enum flush, 559 u64 num_bytes, 560 u64 *delayed_refs_bytes) 561 { 562 struct btrfs_space_info *si = fs_info->trans_block_rsv.space_info; 563 u64 bytes = num_bytes + *delayed_refs_bytes; 564 int ret; 565 566 /* 567 * We want to reserve all the bytes we may need all at once, so we only 568 * do 1 enospc flushing cycle per transaction start. 569 */ 570 ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush); 571 572 /* 573 * If we are an emergency flush, which can steal from the global block 574 * reserve, then attempt to not reserve space for the delayed refs, as 575 * we will consume space for them from the global block reserve. 576 */ 577 if (ret && flush == BTRFS_RESERVE_FLUSH_ALL_STEAL) { 578 bytes -= *delayed_refs_bytes; 579 *delayed_refs_bytes = 0; 580 ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush); 581 } 582 583 return ret; 584 } 585 586 static struct btrfs_trans_handle * 587 start_transaction(struct btrfs_root *root, unsigned int num_items, 588 unsigned int type, enum btrfs_reserve_flush_enum flush, 589 bool enforce_qgroups) 590 { 591 struct btrfs_fs_info *fs_info = root->fs_info; 592 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 593 struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv; 594 struct btrfs_trans_handle *h; 595 struct btrfs_transaction *cur_trans; 596 u64 num_bytes = 0; 597 u64 qgroup_reserved = 0; 598 u64 delayed_refs_bytes = 0; 599 bool reloc_reserved = false; 600 bool do_chunk_alloc = false; 601 int ret; 602 603 if (BTRFS_FS_ERROR(fs_info)) 604 return ERR_PTR(-EROFS); 605 606 if (current->journal_info) { 607 WARN_ON(type & TRANS_EXTWRITERS); 608 h = current->journal_info; 609 refcount_inc(&h->use_count); 610 WARN_ON(refcount_read(&h->use_count) > 2); 611 h->orig_rsv = h->block_rsv; 612 h->block_rsv = NULL; 613 goto got_it; 614 } 615 616 /* 617 * Do the reservation before we join the transaction so we can do all 618 * the appropriate flushing if need be. 619 */ 620 if (num_items && root != fs_info->chunk_root) { 621 qgroup_reserved = num_items * fs_info->nodesize; 622 /* 623 * Use prealloc for now, as there might be a currently running 624 * transaction that could free this reserved space prematurely 625 * by committing. 626 */ 627 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserved, 628 enforce_qgroups, false); 629 if (ret) 630 return ERR_PTR(ret); 631 632 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items); 633 /* 634 * If we plan to insert/update/delete "num_items" from a btree, 635 * we will also generate delayed refs for extent buffers in the 636 * respective btree paths, so reserve space for the delayed refs 637 * that will be generated by the caller as it modifies btrees. 638 * Try to reserve them to avoid excessive use of the global 639 * block reserve. 640 */ 641 delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info, num_items); 642 643 /* 644 * Do the reservation for the relocation root creation 645 */ 646 if (need_reserve_reloc_root(root)) { 647 num_bytes += fs_info->nodesize; 648 reloc_reserved = true; 649 } 650 651 ret = btrfs_reserve_trans_metadata(fs_info, flush, num_bytes, 652 &delayed_refs_bytes); 653 if (ret) 654 goto reserve_fail; 655 656 btrfs_block_rsv_add_bytes(trans_rsv, num_bytes, true); 657 658 if (trans_rsv->space_info->force_alloc) 659 do_chunk_alloc = true; 660 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL && 661 !btrfs_block_rsv_full(delayed_refs_rsv)) { 662 /* 663 * Some people call with btrfs_start_transaction(root, 0) 664 * because they can be throttled, but have some other mechanism 665 * for reserving space. We still want these guys to refill the 666 * delayed block_rsv so just add 1 items worth of reservation 667 * here. 668 */ 669 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush); 670 if (ret) 671 goto reserve_fail; 672 } 673 again: 674 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS); 675 if (!h) { 676 ret = -ENOMEM; 677 goto alloc_fail; 678 } 679 680 /* 681 * If we are JOIN_NOLOCK we're already committing a transaction and 682 * waiting on this guy, so we don't need to do the sb_start_intwrite 683 * because we're already holding a ref. We need this because we could 684 * have raced in and did an fsync() on a file which can kick a commit 685 * and then we deadlock with somebody doing a freeze. 686 * 687 * If we are ATTACH, it means we just want to catch the current 688 * transaction and commit it, so we needn't do sb_start_intwrite(). 689 */ 690 if (type & __TRANS_FREEZABLE) 691 sb_start_intwrite(fs_info->sb); 692 693 if (may_wait_transaction(fs_info, type)) 694 wait_current_trans(fs_info); 695 696 do { 697 ret = join_transaction(fs_info, type); 698 if (ret == -EBUSY) { 699 wait_current_trans(fs_info); 700 if (unlikely(type == TRANS_ATTACH || 701 type == TRANS_JOIN_NOSTART)) 702 ret = -ENOENT; 703 } 704 } while (ret == -EBUSY); 705 706 if (ret < 0) 707 goto join_fail; 708 709 cur_trans = fs_info->running_transaction; 710 711 h->transid = cur_trans->transid; 712 h->transaction = cur_trans; 713 refcount_set(&h->use_count, 1); 714 h->fs_info = root->fs_info; 715 716 h->type = type; 717 INIT_LIST_HEAD(&h->new_bgs); 718 btrfs_init_metadata_block_rsv(fs_info, &h->delayed_rsv, BTRFS_BLOCK_RSV_DELOPS); 719 720 smp_mb(); 721 if (cur_trans->state >= TRANS_STATE_COMMIT_START && 722 may_wait_transaction(fs_info, type)) { 723 current->journal_info = h; 724 btrfs_commit_transaction(h); 725 goto again; 726 } 727 728 if (num_bytes) { 729 trace_btrfs_space_reservation(fs_info, "transaction", 730 h->transid, num_bytes, 1); 731 h->block_rsv = trans_rsv; 732 h->bytes_reserved = num_bytes; 733 if (delayed_refs_bytes > 0) { 734 trace_btrfs_space_reservation(fs_info, 735 "local_delayed_refs_rsv", 736 h->transid, 737 delayed_refs_bytes, 1); 738 h->delayed_refs_bytes_reserved = delayed_refs_bytes; 739 btrfs_block_rsv_add_bytes(&h->delayed_rsv, delayed_refs_bytes, true); 740 delayed_refs_bytes = 0; 741 } 742 h->reloc_reserved = reloc_reserved; 743 } 744 745 got_it: 746 if (!current->journal_info) 747 current->journal_info = h; 748 749 /* 750 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to 751 * ALLOC_FORCE the first run through, and then we won't allocate for 752 * anybody else who races in later. We don't care about the return 753 * value here. 754 */ 755 if (do_chunk_alloc && num_bytes) { 756 u64 flags = h->block_rsv->space_info->flags; 757 758 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags), 759 CHUNK_ALLOC_NO_FORCE); 760 } 761 762 /* 763 * btrfs_record_root_in_trans() needs to alloc new extents, and may 764 * call btrfs_join_transaction() while we're also starting a 765 * transaction. 766 * 767 * Thus it need to be called after current->journal_info initialized, 768 * or we can deadlock. 769 */ 770 ret = btrfs_record_root_in_trans(h, root); 771 if (ret) { 772 /* 773 * The transaction handle is fully initialized and linked with 774 * other structures so it needs to be ended in case of errors, 775 * not just freed. 776 */ 777 btrfs_end_transaction(h); 778 goto reserve_fail; 779 } 780 /* 781 * Now that we have found a transaction to be a part of, convert the 782 * qgroup reservation from prealloc to pertrans. A different transaction 783 * can't race in and free our pertrans out from under us. 784 */ 785 if (qgroup_reserved) 786 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 787 788 return h; 789 790 join_fail: 791 if (type & __TRANS_FREEZABLE) 792 sb_end_intwrite(fs_info->sb); 793 kmem_cache_free(btrfs_trans_handle_cachep, h); 794 alloc_fail: 795 if (num_bytes) 796 btrfs_block_rsv_release(fs_info, trans_rsv, num_bytes, NULL); 797 if (delayed_refs_bytes) 798 btrfs_space_info_free_bytes_may_use(fs_info, trans_rsv->space_info, 799 delayed_refs_bytes); 800 reserve_fail: 801 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 802 return ERR_PTR(ret); 803 } 804 805 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 806 unsigned int num_items) 807 { 808 return start_transaction(root, num_items, TRANS_START, 809 BTRFS_RESERVE_FLUSH_ALL, true); 810 } 811 812 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv( 813 struct btrfs_root *root, 814 unsigned int num_items) 815 { 816 return start_transaction(root, num_items, TRANS_START, 817 BTRFS_RESERVE_FLUSH_ALL_STEAL, false); 818 } 819 820 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 821 { 822 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH, 823 true); 824 } 825 826 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root) 827 { 828 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 829 BTRFS_RESERVE_NO_FLUSH, true); 830 } 831 832 /* 833 * Similar to regular join but it never starts a transaction when none is 834 * running or when there's a running one at a state >= TRANS_STATE_UNBLOCKED. 835 * This is similar to btrfs_attach_transaction() but it allows the join to 836 * happen if the transaction commit already started but it's not yet in the 837 * "doing" phase (the state is < TRANS_STATE_COMMIT_DOING). 838 */ 839 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root) 840 { 841 return start_transaction(root, 0, TRANS_JOIN_NOSTART, 842 BTRFS_RESERVE_NO_FLUSH, true); 843 } 844 845 /* 846 * Catch the running transaction. 847 * 848 * It is used when we want to commit the current the transaction, but 849 * don't want to start a new one. 850 * 851 * Note: If this function return -ENOENT, it just means there is no 852 * running transaction. But it is possible that the inactive transaction 853 * is still in the memory, not fully on disk. If you hope there is no 854 * inactive transaction in the fs when -ENOENT is returned, you should 855 * invoke 856 * btrfs_attach_transaction_barrier() 857 */ 858 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 859 { 860 return start_transaction(root, 0, TRANS_ATTACH, 861 BTRFS_RESERVE_NO_FLUSH, true); 862 } 863 864 /* 865 * Catch the running transaction. 866 * 867 * It is similar to the above function, the difference is this one 868 * will wait for all the inactive transactions until they fully 869 * complete. 870 */ 871 struct btrfs_trans_handle * 872 btrfs_attach_transaction_barrier(struct btrfs_root *root) 873 { 874 struct btrfs_trans_handle *trans; 875 876 trans = start_transaction(root, 0, TRANS_ATTACH, 877 BTRFS_RESERVE_NO_FLUSH, true); 878 if (trans == ERR_PTR(-ENOENT)) { 879 int ret; 880 881 ret = btrfs_wait_for_commit(root->fs_info, 0); 882 if (ret) 883 return ERR_PTR(ret); 884 } 885 886 return trans; 887 } 888 889 /* Wait for a transaction commit to reach at least the given state. */ 890 static noinline void wait_for_commit(struct btrfs_transaction *commit, 891 const enum btrfs_trans_state min_state) 892 { 893 struct btrfs_fs_info *fs_info = commit->fs_info; 894 u64 transid = commit->transid; 895 bool put = false; 896 897 /* 898 * At the moment this function is called with min_state either being 899 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED. 900 */ 901 if (min_state == TRANS_STATE_COMPLETED) 902 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED); 903 else 904 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 905 906 while (1) { 907 wait_event(commit->commit_wait, commit->state >= min_state); 908 if (put) 909 btrfs_put_transaction(commit); 910 911 if (min_state < TRANS_STATE_COMPLETED) 912 break; 913 914 /* 915 * A transaction isn't really completed until all of the 916 * previous transactions are completed, but with fsync we can 917 * end up with SUPER_COMMITTED transactions before a COMPLETED 918 * transaction. Wait for those. 919 */ 920 921 spin_lock(&fs_info->trans_lock); 922 commit = list_first_entry_or_null(&fs_info->trans_list, 923 struct btrfs_transaction, 924 list); 925 if (!commit || commit->transid > transid) { 926 spin_unlock(&fs_info->trans_lock); 927 break; 928 } 929 refcount_inc(&commit->use_count); 930 put = true; 931 spin_unlock(&fs_info->trans_lock); 932 } 933 } 934 935 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid) 936 { 937 struct btrfs_transaction *cur_trans = NULL, *t; 938 int ret = 0; 939 940 if (transid) { 941 if (transid <= btrfs_get_last_trans_committed(fs_info)) 942 goto out; 943 944 /* find specified transaction */ 945 spin_lock(&fs_info->trans_lock); 946 list_for_each_entry(t, &fs_info->trans_list, list) { 947 if (t->transid == transid) { 948 cur_trans = t; 949 refcount_inc(&cur_trans->use_count); 950 ret = 0; 951 break; 952 } 953 if (t->transid > transid) { 954 ret = 0; 955 break; 956 } 957 } 958 spin_unlock(&fs_info->trans_lock); 959 960 /* 961 * The specified transaction doesn't exist, or we 962 * raced with btrfs_commit_transaction 963 */ 964 if (!cur_trans) { 965 if (transid > btrfs_get_last_trans_committed(fs_info)) 966 ret = -EINVAL; 967 goto out; 968 } 969 } else { 970 /* find newest transaction that is committing | committed */ 971 spin_lock(&fs_info->trans_lock); 972 list_for_each_entry_reverse(t, &fs_info->trans_list, 973 list) { 974 if (t->state >= TRANS_STATE_COMMIT_START) { 975 if (t->state == TRANS_STATE_COMPLETED) 976 break; 977 cur_trans = t; 978 refcount_inc(&cur_trans->use_count); 979 break; 980 } 981 } 982 spin_unlock(&fs_info->trans_lock); 983 if (!cur_trans) 984 goto out; /* nothing committing|committed */ 985 } 986 987 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED); 988 ret = cur_trans->aborted; 989 btrfs_put_transaction(cur_trans); 990 out: 991 return ret; 992 } 993 994 void btrfs_throttle(struct btrfs_fs_info *fs_info) 995 { 996 wait_current_trans(fs_info); 997 } 998 999 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans) 1000 { 1001 struct btrfs_transaction *cur_trans = trans->transaction; 1002 1003 if (cur_trans->state >= TRANS_STATE_COMMIT_START || 1004 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags)) 1005 return true; 1006 1007 if (btrfs_check_space_for_delayed_refs(trans->fs_info)) 1008 return true; 1009 1010 return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50); 1011 } 1012 1013 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans) 1014 1015 { 1016 struct btrfs_fs_info *fs_info = trans->fs_info; 1017 1018 if (!trans->block_rsv) { 1019 ASSERT(!trans->bytes_reserved); 1020 ASSERT(!trans->delayed_refs_bytes_reserved); 1021 return; 1022 } 1023 1024 if (!trans->bytes_reserved) { 1025 ASSERT(!trans->delayed_refs_bytes_reserved); 1026 return; 1027 } 1028 1029 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv); 1030 trace_btrfs_space_reservation(fs_info, "transaction", 1031 trans->transid, trans->bytes_reserved, 0); 1032 btrfs_block_rsv_release(fs_info, trans->block_rsv, 1033 trans->bytes_reserved, NULL); 1034 trans->bytes_reserved = 0; 1035 1036 if (!trans->delayed_refs_bytes_reserved) 1037 return; 1038 1039 trace_btrfs_space_reservation(fs_info, "local_delayed_refs_rsv", 1040 trans->transid, 1041 trans->delayed_refs_bytes_reserved, 0); 1042 btrfs_block_rsv_release(fs_info, &trans->delayed_rsv, 1043 trans->delayed_refs_bytes_reserved, NULL); 1044 trans->delayed_refs_bytes_reserved = 0; 1045 } 1046 1047 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 1048 int throttle) 1049 { 1050 struct btrfs_fs_info *info = trans->fs_info; 1051 struct btrfs_transaction *cur_trans = trans->transaction; 1052 int ret = 0; 1053 1054 if (refcount_read(&trans->use_count) > 1) { 1055 refcount_dec(&trans->use_count); 1056 trans->block_rsv = trans->orig_rsv; 1057 return 0; 1058 } 1059 1060 btrfs_trans_release_metadata(trans); 1061 trans->block_rsv = NULL; 1062 1063 btrfs_create_pending_block_groups(trans); 1064 1065 btrfs_trans_release_chunk_metadata(trans); 1066 1067 if (trans->type & __TRANS_FREEZABLE) 1068 sb_end_intwrite(info->sb); 1069 1070 WARN_ON(cur_trans != info->running_transaction); 1071 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 1072 atomic_dec(&cur_trans->num_writers); 1073 extwriter_counter_dec(cur_trans, trans->type); 1074 1075 cond_wake_up(&cur_trans->writer_wait); 1076 1077 btrfs_lockdep_release(info, btrfs_trans_num_extwriters); 1078 btrfs_lockdep_release(info, btrfs_trans_num_writers); 1079 1080 btrfs_put_transaction(cur_trans); 1081 1082 if (current->journal_info == trans) 1083 current->journal_info = NULL; 1084 1085 if (throttle) 1086 btrfs_run_delayed_iputs(info); 1087 1088 if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) { 1089 wake_up_process(info->transaction_kthread); 1090 if (TRANS_ABORTED(trans)) 1091 ret = trans->aborted; 1092 else 1093 ret = -EROFS; 1094 } 1095 1096 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1097 return ret; 1098 } 1099 1100 int btrfs_end_transaction(struct btrfs_trans_handle *trans) 1101 { 1102 return __btrfs_end_transaction(trans, 0); 1103 } 1104 1105 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans) 1106 { 1107 return __btrfs_end_transaction(trans, 1); 1108 } 1109 1110 /* 1111 * when btree blocks are allocated, they have some corresponding bits set for 1112 * them in one of two extent_io trees. This is used to make sure all of 1113 * those extents are sent to disk but does not wait on them 1114 */ 1115 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info, 1116 struct extent_io_tree *dirty_pages, int mark) 1117 { 1118 int ret = 0; 1119 struct address_space *mapping = fs_info->btree_inode->i_mapping; 1120 struct extent_state *cached_state = NULL; 1121 u64 start = 0; 1122 u64 end; 1123 1124 while (find_first_extent_bit(dirty_pages, start, &start, &end, 1125 mark, &cached_state)) { 1126 bool wait_writeback = false; 1127 1128 ret = convert_extent_bit(dirty_pages, start, end, 1129 EXTENT_NEED_WAIT, 1130 mark, &cached_state); 1131 /* 1132 * convert_extent_bit can return -ENOMEM, which is most of the 1133 * time a temporary error. So when it happens, ignore the error 1134 * and wait for writeback of this range to finish - because we 1135 * failed to set the bit EXTENT_NEED_WAIT for the range, a call 1136 * to __btrfs_wait_marked_extents() would not know that 1137 * writeback for this range started and therefore wouldn't 1138 * wait for it to finish - we don't want to commit a 1139 * superblock that points to btree nodes/leafs for which 1140 * writeback hasn't finished yet (and without errors). 1141 * We cleanup any entries left in the io tree when committing 1142 * the transaction (through extent_io_tree_release()). 1143 */ 1144 if (ret == -ENOMEM) { 1145 ret = 0; 1146 wait_writeback = true; 1147 } 1148 if (!ret) 1149 ret = filemap_fdatawrite_range(mapping, start, end); 1150 if (!ret && wait_writeback) 1151 ret = filemap_fdatawait_range(mapping, start, end); 1152 free_extent_state(cached_state); 1153 if (ret) 1154 break; 1155 cached_state = NULL; 1156 cond_resched(); 1157 start = end + 1; 1158 } 1159 return ret; 1160 } 1161 1162 /* 1163 * when btree blocks are allocated, they have some corresponding bits set for 1164 * them in one of two extent_io trees. This is used to make sure all of 1165 * those extents are on disk for transaction or log commit. We wait 1166 * on all the pages and clear them from the dirty pages state tree 1167 */ 1168 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info, 1169 struct extent_io_tree *dirty_pages) 1170 { 1171 struct address_space *mapping = fs_info->btree_inode->i_mapping; 1172 struct extent_state *cached_state = NULL; 1173 u64 start = 0; 1174 u64 end; 1175 int ret = 0; 1176 1177 while (find_first_extent_bit(dirty_pages, start, &start, &end, 1178 EXTENT_NEED_WAIT, &cached_state)) { 1179 /* 1180 * Ignore -ENOMEM errors returned by clear_extent_bit(). 1181 * When committing the transaction, we'll remove any entries 1182 * left in the io tree. For a log commit, we don't remove them 1183 * after committing the log because the tree can be accessed 1184 * concurrently - we do it only at transaction commit time when 1185 * it's safe to do it (through extent_io_tree_release()). 1186 */ 1187 ret = clear_extent_bit(dirty_pages, start, end, 1188 EXTENT_NEED_WAIT, &cached_state); 1189 if (ret == -ENOMEM) 1190 ret = 0; 1191 if (!ret) 1192 ret = filemap_fdatawait_range(mapping, start, end); 1193 free_extent_state(cached_state); 1194 if (ret) 1195 break; 1196 cached_state = NULL; 1197 cond_resched(); 1198 start = end + 1; 1199 } 1200 return ret; 1201 } 1202 1203 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info, 1204 struct extent_io_tree *dirty_pages) 1205 { 1206 bool errors = false; 1207 int err; 1208 1209 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1210 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags)) 1211 errors = true; 1212 1213 if (errors && !err) 1214 err = -EIO; 1215 return err; 1216 } 1217 1218 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark) 1219 { 1220 struct btrfs_fs_info *fs_info = log_root->fs_info; 1221 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages; 1222 bool errors = false; 1223 int err; 1224 1225 ASSERT(btrfs_root_id(log_root) == BTRFS_TREE_LOG_OBJECTID); 1226 1227 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1228 if ((mark & EXTENT_DIRTY) && 1229 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags)) 1230 errors = true; 1231 1232 if ((mark & EXTENT_NEW) && 1233 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags)) 1234 errors = true; 1235 1236 if (errors && !err) 1237 err = -EIO; 1238 return err; 1239 } 1240 1241 /* 1242 * When btree blocks are allocated the corresponding extents are marked dirty. 1243 * This function ensures such extents are persisted on disk for transaction or 1244 * log commit. 1245 * 1246 * @trans: transaction whose dirty pages we'd like to write 1247 */ 1248 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans) 1249 { 1250 int ret; 1251 int ret2; 1252 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages; 1253 struct btrfs_fs_info *fs_info = trans->fs_info; 1254 struct blk_plug plug; 1255 1256 blk_start_plug(&plug); 1257 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY); 1258 blk_finish_plug(&plug); 1259 ret2 = btrfs_wait_extents(fs_info, dirty_pages); 1260 1261 extent_io_tree_release(&trans->transaction->dirty_pages); 1262 1263 if (ret) 1264 return ret; 1265 else if (ret2) 1266 return ret2; 1267 else 1268 return 0; 1269 } 1270 1271 /* 1272 * this is used to update the root pointer in the tree of tree roots. 1273 * 1274 * But, in the case of the extent allocation tree, updating the root 1275 * pointer may allocate blocks which may change the root of the extent 1276 * allocation tree. 1277 * 1278 * So, this loops and repeats and makes sure the cowonly root didn't 1279 * change while the root pointer was being updated in the metadata. 1280 */ 1281 static int update_cowonly_root(struct btrfs_trans_handle *trans, 1282 struct btrfs_root *root) 1283 { 1284 int ret; 1285 u64 old_root_bytenr; 1286 u64 old_root_used; 1287 struct btrfs_fs_info *fs_info = root->fs_info; 1288 struct btrfs_root *tree_root = fs_info->tree_root; 1289 1290 old_root_used = btrfs_root_used(&root->root_item); 1291 1292 while (1) { 1293 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 1294 if (old_root_bytenr == root->node->start && 1295 old_root_used == btrfs_root_used(&root->root_item)) 1296 break; 1297 1298 btrfs_set_root_node(&root->root_item, root->node); 1299 ret = btrfs_update_root(trans, tree_root, 1300 &root->root_key, 1301 &root->root_item); 1302 if (ret) 1303 return ret; 1304 1305 old_root_used = btrfs_root_used(&root->root_item); 1306 } 1307 1308 return 0; 1309 } 1310 1311 /* 1312 * update all the cowonly tree roots on disk 1313 * 1314 * The error handling in this function may not be obvious. Any of the 1315 * failures will cause the file system to go offline. We still need 1316 * to clean up the delayed refs. 1317 */ 1318 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans) 1319 { 1320 struct btrfs_fs_info *fs_info = trans->fs_info; 1321 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; 1322 struct list_head *io_bgs = &trans->transaction->io_bgs; 1323 struct list_head *next; 1324 struct extent_buffer *eb; 1325 int ret; 1326 1327 /* 1328 * At this point no one can be using this transaction to modify any tree 1329 * and no one can start another transaction to modify any tree either. 1330 */ 1331 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING); 1332 1333 eb = btrfs_lock_root_node(fs_info->tree_root); 1334 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 1335 0, &eb, BTRFS_NESTING_COW); 1336 btrfs_tree_unlock(eb); 1337 free_extent_buffer(eb); 1338 1339 if (ret) 1340 return ret; 1341 1342 ret = btrfs_run_dev_stats(trans); 1343 if (ret) 1344 return ret; 1345 ret = btrfs_run_dev_replace(trans); 1346 if (ret) 1347 return ret; 1348 ret = btrfs_run_qgroups(trans); 1349 if (ret) 1350 return ret; 1351 1352 ret = btrfs_setup_space_cache(trans); 1353 if (ret) 1354 return ret; 1355 1356 again: 1357 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1358 struct btrfs_root *root; 1359 next = fs_info->dirty_cowonly_roots.next; 1360 list_del_init(next); 1361 root = list_entry(next, struct btrfs_root, dirty_list); 1362 clear_bit(BTRFS_ROOT_DIRTY, &root->state); 1363 1364 list_add_tail(&root->dirty_list, 1365 &trans->transaction->switch_commits); 1366 ret = update_cowonly_root(trans, root); 1367 if (ret) 1368 return ret; 1369 } 1370 1371 /* Now flush any delayed refs generated by updating all of the roots */ 1372 ret = btrfs_run_delayed_refs(trans, U64_MAX); 1373 if (ret) 1374 return ret; 1375 1376 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { 1377 ret = btrfs_write_dirty_block_groups(trans); 1378 if (ret) 1379 return ret; 1380 1381 /* 1382 * We're writing the dirty block groups, which could generate 1383 * delayed refs, which could generate more dirty block groups, 1384 * so we want to keep this flushing in this loop to make sure 1385 * everything gets run. 1386 */ 1387 ret = btrfs_run_delayed_refs(trans, U64_MAX); 1388 if (ret) 1389 return ret; 1390 } 1391 1392 if (!list_empty(&fs_info->dirty_cowonly_roots)) 1393 goto again; 1394 1395 /* Update dev-replace pointer once everything is committed */ 1396 fs_info->dev_replace.committed_cursor_left = 1397 fs_info->dev_replace.cursor_left_last_write_of_item; 1398 1399 return 0; 1400 } 1401 1402 /* 1403 * If we had a pending drop we need to see if there are any others left in our 1404 * dead roots list, and if not clear our bit and wake any waiters. 1405 */ 1406 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info) 1407 { 1408 /* 1409 * We put the drop in progress roots at the front of the list, so if the 1410 * first entry doesn't have UNFINISHED_DROP set we can wake everybody 1411 * up. 1412 */ 1413 spin_lock(&fs_info->trans_lock); 1414 if (!list_empty(&fs_info->dead_roots)) { 1415 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots, 1416 struct btrfs_root, 1417 root_list); 1418 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) { 1419 spin_unlock(&fs_info->trans_lock); 1420 return; 1421 } 1422 } 1423 spin_unlock(&fs_info->trans_lock); 1424 1425 btrfs_wake_unfinished_drop(fs_info); 1426 } 1427 1428 /* 1429 * dead roots are old snapshots that need to be deleted. This allocates 1430 * a dirty root struct and adds it into the list of dead roots that need to 1431 * be deleted 1432 */ 1433 void btrfs_add_dead_root(struct btrfs_root *root) 1434 { 1435 struct btrfs_fs_info *fs_info = root->fs_info; 1436 1437 spin_lock(&fs_info->trans_lock); 1438 if (list_empty(&root->root_list)) { 1439 btrfs_grab_root(root); 1440 1441 /* We want to process the partially complete drops first. */ 1442 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) 1443 list_add(&root->root_list, &fs_info->dead_roots); 1444 else 1445 list_add_tail(&root->root_list, &fs_info->dead_roots); 1446 } 1447 spin_unlock(&fs_info->trans_lock); 1448 } 1449 1450 /* 1451 * Update each subvolume root and its relocation root, if it exists, in the tree 1452 * of tree roots. Also free log roots if they exist. 1453 */ 1454 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans) 1455 { 1456 struct btrfs_fs_info *fs_info = trans->fs_info; 1457 struct btrfs_root *gang[8]; 1458 int i; 1459 int ret; 1460 1461 /* 1462 * At this point no one can be using this transaction to modify any tree 1463 * and no one can start another transaction to modify any tree either. 1464 */ 1465 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING); 1466 1467 spin_lock(&fs_info->fs_roots_radix_lock); 1468 while (1) { 1469 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1470 (void **)gang, 0, 1471 ARRAY_SIZE(gang), 1472 BTRFS_ROOT_TRANS_TAG); 1473 if (ret == 0) 1474 break; 1475 for (i = 0; i < ret; i++) { 1476 struct btrfs_root *root = gang[i]; 1477 int ret2; 1478 1479 /* 1480 * At this point we can neither have tasks logging inodes 1481 * from a root nor trying to commit a log tree. 1482 */ 1483 ASSERT(atomic_read(&root->log_writers) == 0); 1484 ASSERT(atomic_read(&root->log_commit[0]) == 0); 1485 ASSERT(atomic_read(&root->log_commit[1]) == 0); 1486 1487 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1488 (unsigned long)btrfs_root_id(root), 1489 BTRFS_ROOT_TRANS_TAG); 1490 btrfs_qgroup_free_meta_all_pertrans(root); 1491 spin_unlock(&fs_info->fs_roots_radix_lock); 1492 1493 btrfs_free_log(trans, root); 1494 ret2 = btrfs_update_reloc_root(trans, root); 1495 if (ret2) 1496 return ret2; 1497 1498 /* see comments in should_cow_block() */ 1499 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1500 smp_mb__after_atomic(); 1501 1502 if (root->commit_root != root->node) { 1503 list_add_tail(&root->dirty_list, 1504 &trans->transaction->switch_commits); 1505 btrfs_set_root_node(&root->root_item, 1506 root->node); 1507 } 1508 1509 ret2 = btrfs_update_root(trans, fs_info->tree_root, 1510 &root->root_key, 1511 &root->root_item); 1512 if (ret2) 1513 return ret2; 1514 spin_lock(&fs_info->fs_roots_radix_lock); 1515 } 1516 } 1517 spin_unlock(&fs_info->fs_roots_radix_lock); 1518 return 0; 1519 } 1520 1521 /* 1522 * Do all special snapshot related qgroup dirty hack. 1523 * 1524 * Will do all needed qgroup inherit and dirty hack like switch commit 1525 * roots inside one transaction and write all btree into disk, to make 1526 * qgroup works. 1527 */ 1528 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans, 1529 struct btrfs_root *src, 1530 struct btrfs_root *parent, 1531 struct btrfs_qgroup_inherit *inherit, 1532 u64 dst_objectid) 1533 { 1534 struct btrfs_fs_info *fs_info = src->fs_info; 1535 int ret; 1536 1537 /* 1538 * Save some performance in the case that qgroups are not enabled. If 1539 * this check races with the ioctl, rescan will kick in anyway. 1540 */ 1541 if (!btrfs_qgroup_full_accounting(fs_info)) 1542 return 0; 1543 1544 /* 1545 * Ensure dirty @src will be committed. Or, after coming 1546 * commit_fs_roots() and switch_commit_roots(), any dirty but not 1547 * recorded root will never be updated again, causing an outdated root 1548 * item. 1549 */ 1550 ret = record_root_in_trans(trans, src, 1); 1551 if (ret) 1552 return ret; 1553 1554 /* 1555 * btrfs_qgroup_inherit relies on a consistent view of the usage for the 1556 * src root, so we must run the delayed refs here. 1557 * 1558 * However this isn't particularly fool proof, because there's no 1559 * synchronization keeping us from changing the tree after this point 1560 * before we do the qgroup_inherit, or even from making changes while 1561 * we're doing the qgroup_inherit. But that's a problem for the future, 1562 * for now flush the delayed refs to narrow the race window where the 1563 * qgroup counters could end up wrong. 1564 */ 1565 ret = btrfs_run_delayed_refs(trans, U64_MAX); 1566 if (ret) { 1567 btrfs_abort_transaction(trans, ret); 1568 return ret; 1569 } 1570 1571 ret = commit_fs_roots(trans); 1572 if (ret) 1573 goto out; 1574 ret = btrfs_qgroup_account_extents(trans); 1575 if (ret < 0) 1576 goto out; 1577 1578 /* Now qgroup are all updated, we can inherit it to new qgroups */ 1579 ret = btrfs_qgroup_inherit(trans, btrfs_root_id(src), dst_objectid, 1580 btrfs_root_id(parent), inherit); 1581 if (ret < 0) 1582 goto out; 1583 1584 /* 1585 * Now we do a simplified commit transaction, which will: 1586 * 1) commit all subvolume and extent tree 1587 * To ensure all subvolume and extent tree have a valid 1588 * commit_root to accounting later insert_dir_item() 1589 * 2) write all btree blocks onto disk 1590 * This is to make sure later btree modification will be cowed 1591 * Or commit_root can be populated and cause wrong qgroup numbers 1592 * In this simplified commit, we don't really care about other trees 1593 * like chunk and root tree, as they won't affect qgroup. 1594 * And we don't write super to avoid half committed status. 1595 */ 1596 ret = commit_cowonly_roots(trans); 1597 if (ret) 1598 goto out; 1599 switch_commit_roots(trans); 1600 ret = btrfs_write_and_wait_transaction(trans); 1601 if (ret) 1602 btrfs_handle_fs_error(fs_info, ret, 1603 "Error while writing out transaction for qgroup"); 1604 1605 out: 1606 /* 1607 * Force parent root to be updated, as we recorded it before so its 1608 * last_trans == cur_transid. 1609 * Or it won't be committed again onto disk after later 1610 * insert_dir_item() 1611 */ 1612 if (!ret) 1613 ret = record_root_in_trans(trans, parent, 1); 1614 return ret; 1615 } 1616 1617 /* 1618 * new snapshots need to be created at a very specific time in the 1619 * transaction commit. This does the actual creation. 1620 * 1621 * Note: 1622 * If the error which may affect the commitment of the current transaction 1623 * happens, we should return the error number. If the error which just affect 1624 * the creation of the pending snapshots, just return 0. 1625 */ 1626 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1627 struct btrfs_pending_snapshot *pending) 1628 { 1629 1630 struct btrfs_fs_info *fs_info = trans->fs_info; 1631 struct btrfs_key key; 1632 struct btrfs_root_item *new_root_item; 1633 struct btrfs_root *tree_root = fs_info->tree_root; 1634 struct btrfs_root *root = pending->root; 1635 struct btrfs_root *parent_root; 1636 struct btrfs_block_rsv *rsv; 1637 struct inode *parent_inode = &pending->dir->vfs_inode; 1638 struct btrfs_path *path; 1639 struct btrfs_dir_item *dir_item; 1640 struct extent_buffer *tmp; 1641 struct extent_buffer *old; 1642 struct timespec64 cur_time; 1643 int ret = 0; 1644 u64 to_reserve = 0; 1645 u64 index = 0; 1646 u64 objectid; 1647 u64 root_flags; 1648 unsigned int nofs_flags; 1649 struct fscrypt_name fname; 1650 1651 ASSERT(pending->path); 1652 path = pending->path; 1653 1654 ASSERT(pending->root_item); 1655 new_root_item = pending->root_item; 1656 1657 /* 1658 * We're inside a transaction and must make sure that any potential 1659 * allocations with GFP_KERNEL in fscrypt won't recurse back to 1660 * filesystem. 1661 */ 1662 nofs_flags = memalloc_nofs_save(); 1663 pending->error = fscrypt_setup_filename(parent_inode, 1664 &pending->dentry->d_name, 0, 1665 &fname); 1666 memalloc_nofs_restore(nofs_flags); 1667 if (pending->error) 1668 goto free_pending; 1669 1670 pending->error = btrfs_get_free_objectid(tree_root, &objectid); 1671 if (pending->error) 1672 goto free_fname; 1673 1674 /* 1675 * Make qgroup to skip current new snapshot's qgroupid, as it is 1676 * accounted by later btrfs_qgroup_inherit(). 1677 */ 1678 btrfs_set_skip_qgroup(trans, objectid); 1679 1680 btrfs_reloc_pre_snapshot(pending, &to_reserve); 1681 1682 if (to_reserve > 0) { 1683 pending->error = btrfs_block_rsv_add(fs_info, 1684 &pending->block_rsv, 1685 to_reserve, 1686 BTRFS_RESERVE_NO_FLUSH); 1687 if (pending->error) 1688 goto clear_skip_qgroup; 1689 } 1690 1691 key.objectid = objectid; 1692 key.offset = (u64)-1; 1693 key.type = BTRFS_ROOT_ITEM_KEY; 1694 1695 rsv = trans->block_rsv; 1696 trans->block_rsv = &pending->block_rsv; 1697 trans->bytes_reserved = trans->block_rsv->reserved; 1698 trace_btrfs_space_reservation(fs_info, "transaction", 1699 trans->transid, 1700 trans->bytes_reserved, 1); 1701 parent_root = BTRFS_I(parent_inode)->root; 1702 ret = record_root_in_trans(trans, parent_root, 0); 1703 if (ret) 1704 goto fail; 1705 cur_time = current_time(parent_inode); 1706 1707 /* 1708 * insert the directory item 1709 */ 1710 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index); 1711 if (ret) { 1712 btrfs_abort_transaction(trans, ret); 1713 goto fail; 1714 } 1715 1716 /* check if there is a file/dir which has the same name. */ 1717 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1718 btrfs_ino(BTRFS_I(parent_inode)), 1719 &fname.disk_name, 0); 1720 if (dir_item != NULL && !IS_ERR(dir_item)) { 1721 pending->error = -EEXIST; 1722 goto dir_item_existed; 1723 } else if (IS_ERR(dir_item)) { 1724 ret = PTR_ERR(dir_item); 1725 btrfs_abort_transaction(trans, ret); 1726 goto fail; 1727 } 1728 btrfs_release_path(path); 1729 1730 ret = btrfs_create_qgroup(trans, objectid); 1731 if (ret && ret != -EEXIST) { 1732 btrfs_abort_transaction(trans, ret); 1733 goto fail; 1734 } 1735 1736 /* 1737 * pull in the delayed directory update 1738 * and the delayed inode item 1739 * otherwise we corrupt the FS during 1740 * snapshot 1741 */ 1742 ret = btrfs_run_delayed_items(trans); 1743 if (ret) { /* Transaction aborted */ 1744 btrfs_abort_transaction(trans, ret); 1745 goto fail; 1746 } 1747 1748 ret = record_root_in_trans(trans, root, 0); 1749 if (ret) { 1750 btrfs_abort_transaction(trans, ret); 1751 goto fail; 1752 } 1753 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1754 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1755 btrfs_check_and_init_root_item(new_root_item); 1756 1757 root_flags = btrfs_root_flags(new_root_item); 1758 if (pending->readonly) 1759 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1760 else 1761 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1762 btrfs_set_root_flags(new_root_item, root_flags); 1763 1764 btrfs_set_root_generation_v2(new_root_item, 1765 trans->transid); 1766 generate_random_guid(new_root_item->uuid); 1767 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1768 BTRFS_UUID_SIZE); 1769 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1770 memset(new_root_item->received_uuid, 0, 1771 sizeof(new_root_item->received_uuid)); 1772 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1773 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1774 btrfs_set_root_stransid(new_root_item, 0); 1775 btrfs_set_root_rtransid(new_root_item, 0); 1776 } 1777 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1778 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1779 btrfs_set_root_otransid(new_root_item, trans->transid); 1780 1781 old = btrfs_lock_root_node(root); 1782 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old, 1783 BTRFS_NESTING_COW); 1784 if (ret) { 1785 btrfs_tree_unlock(old); 1786 free_extent_buffer(old); 1787 btrfs_abort_transaction(trans, ret); 1788 goto fail; 1789 } 1790 1791 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1792 /* clean up in any case */ 1793 btrfs_tree_unlock(old); 1794 free_extent_buffer(old); 1795 if (ret) { 1796 btrfs_abort_transaction(trans, ret); 1797 goto fail; 1798 } 1799 /* see comments in should_cow_block() */ 1800 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1801 smp_wmb(); 1802 1803 btrfs_set_root_node(new_root_item, tmp); 1804 /* record when the snapshot was created in key.offset */ 1805 key.offset = trans->transid; 1806 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1807 btrfs_tree_unlock(tmp); 1808 free_extent_buffer(tmp); 1809 if (ret) { 1810 btrfs_abort_transaction(trans, ret); 1811 goto fail; 1812 } 1813 1814 /* 1815 * insert root back/forward references 1816 */ 1817 ret = btrfs_add_root_ref(trans, objectid, 1818 btrfs_root_id(parent_root), 1819 btrfs_ino(BTRFS_I(parent_inode)), index, 1820 &fname.disk_name); 1821 if (ret) { 1822 btrfs_abort_transaction(trans, ret); 1823 goto fail; 1824 } 1825 1826 key.offset = (u64)-1; 1827 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, &pending->anon_dev); 1828 if (IS_ERR(pending->snap)) { 1829 ret = PTR_ERR(pending->snap); 1830 pending->snap = NULL; 1831 btrfs_abort_transaction(trans, ret); 1832 goto fail; 1833 } 1834 1835 ret = btrfs_reloc_post_snapshot(trans, pending); 1836 if (ret) { 1837 btrfs_abort_transaction(trans, ret); 1838 goto fail; 1839 } 1840 1841 /* 1842 * Do special qgroup accounting for snapshot, as we do some qgroup 1843 * snapshot hack to do fast snapshot. 1844 * To co-operate with that hack, we do hack again. 1845 * Or snapshot will be greatly slowed down by a subtree qgroup rescan 1846 */ 1847 if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_FULL) 1848 ret = qgroup_account_snapshot(trans, root, parent_root, 1849 pending->inherit, objectid); 1850 else if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE) 1851 ret = btrfs_qgroup_inherit(trans, btrfs_root_id(root), objectid, 1852 btrfs_root_id(parent_root), pending->inherit); 1853 if (ret < 0) 1854 goto fail; 1855 1856 ret = btrfs_insert_dir_item(trans, &fname.disk_name, 1857 BTRFS_I(parent_inode), &key, BTRFS_FT_DIR, 1858 index); 1859 if (ret) { 1860 btrfs_abort_transaction(trans, ret); 1861 goto fail; 1862 } 1863 1864 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size + 1865 fname.disk_name.len * 2); 1866 inode_set_mtime_to_ts(parent_inode, 1867 inode_set_ctime_current(parent_inode)); 1868 ret = btrfs_update_inode_fallback(trans, BTRFS_I(parent_inode)); 1869 if (ret) { 1870 btrfs_abort_transaction(trans, ret); 1871 goto fail; 1872 } 1873 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid, 1874 BTRFS_UUID_KEY_SUBVOL, 1875 objectid); 1876 if (ret) { 1877 btrfs_abort_transaction(trans, ret); 1878 goto fail; 1879 } 1880 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1881 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid, 1882 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1883 objectid); 1884 if (ret && ret != -EEXIST) { 1885 btrfs_abort_transaction(trans, ret); 1886 goto fail; 1887 } 1888 } 1889 1890 fail: 1891 pending->error = ret; 1892 dir_item_existed: 1893 trans->block_rsv = rsv; 1894 trans->bytes_reserved = 0; 1895 clear_skip_qgroup: 1896 btrfs_clear_skip_qgroup(trans); 1897 free_fname: 1898 fscrypt_free_filename(&fname); 1899 free_pending: 1900 kfree(new_root_item); 1901 pending->root_item = NULL; 1902 btrfs_free_path(path); 1903 pending->path = NULL; 1904 1905 return ret; 1906 } 1907 1908 /* 1909 * create all the snapshots we've scheduled for creation 1910 */ 1911 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans) 1912 { 1913 struct btrfs_pending_snapshot *pending, *next; 1914 struct list_head *head = &trans->transaction->pending_snapshots; 1915 int ret = 0; 1916 1917 list_for_each_entry_safe(pending, next, head, list) { 1918 list_del(&pending->list); 1919 ret = create_pending_snapshot(trans, pending); 1920 if (ret) 1921 break; 1922 } 1923 return ret; 1924 } 1925 1926 static void update_super_roots(struct btrfs_fs_info *fs_info) 1927 { 1928 struct btrfs_root_item *root_item; 1929 struct btrfs_super_block *super; 1930 1931 super = fs_info->super_copy; 1932 1933 root_item = &fs_info->chunk_root->root_item; 1934 super->chunk_root = root_item->bytenr; 1935 super->chunk_root_generation = root_item->generation; 1936 super->chunk_root_level = root_item->level; 1937 1938 root_item = &fs_info->tree_root->root_item; 1939 super->root = root_item->bytenr; 1940 super->generation = root_item->generation; 1941 super->root_level = root_item->level; 1942 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 1943 super->cache_generation = root_item->generation; 1944 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags)) 1945 super->cache_generation = 0; 1946 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags)) 1947 super->uuid_tree_generation = root_item->generation; 1948 } 1949 1950 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1951 { 1952 struct btrfs_transaction *trans; 1953 int ret = 0; 1954 1955 spin_lock(&info->trans_lock); 1956 trans = info->running_transaction; 1957 if (trans) 1958 ret = is_transaction_blocked(trans); 1959 spin_unlock(&info->trans_lock); 1960 return ret; 1961 } 1962 1963 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans) 1964 { 1965 struct btrfs_fs_info *fs_info = trans->fs_info; 1966 struct btrfs_transaction *cur_trans; 1967 1968 /* Kick the transaction kthread. */ 1969 set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags); 1970 wake_up_process(fs_info->transaction_kthread); 1971 1972 /* take transaction reference */ 1973 cur_trans = trans->transaction; 1974 refcount_inc(&cur_trans->use_count); 1975 1976 btrfs_end_transaction(trans); 1977 1978 /* 1979 * Wait for the current transaction commit to start and block 1980 * subsequent transaction joins 1981 */ 1982 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 1983 wait_event(fs_info->transaction_blocked_wait, 1984 cur_trans->state >= TRANS_STATE_COMMIT_START || 1985 TRANS_ABORTED(cur_trans)); 1986 btrfs_put_transaction(cur_trans); 1987 } 1988 1989 /* 1990 * If there is a running transaction commit it or if it's already committing, 1991 * wait for its commit to complete. Does not start and commit a new transaction 1992 * if there isn't any running. 1993 */ 1994 int btrfs_commit_current_transaction(struct btrfs_root *root) 1995 { 1996 struct btrfs_trans_handle *trans; 1997 1998 trans = btrfs_attach_transaction_barrier(root); 1999 if (IS_ERR(trans)) { 2000 int ret = PTR_ERR(trans); 2001 2002 return (ret == -ENOENT) ? 0 : ret; 2003 } 2004 2005 return btrfs_commit_transaction(trans); 2006 } 2007 2008 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err) 2009 { 2010 struct btrfs_fs_info *fs_info = trans->fs_info; 2011 struct btrfs_transaction *cur_trans = trans->transaction; 2012 2013 WARN_ON(refcount_read(&trans->use_count) > 1); 2014 2015 btrfs_abort_transaction(trans, err); 2016 2017 spin_lock(&fs_info->trans_lock); 2018 2019 /* 2020 * If the transaction is removed from the list, it means this 2021 * transaction has been committed successfully, so it is impossible 2022 * to call the cleanup function. 2023 */ 2024 BUG_ON(list_empty(&cur_trans->list)); 2025 2026 if (cur_trans == fs_info->running_transaction) { 2027 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2028 spin_unlock(&fs_info->trans_lock); 2029 2030 /* 2031 * The thread has already released the lockdep map as reader 2032 * already in btrfs_commit_transaction(). 2033 */ 2034 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers); 2035 wait_event(cur_trans->writer_wait, 2036 atomic_read(&cur_trans->num_writers) == 1); 2037 2038 spin_lock(&fs_info->trans_lock); 2039 } 2040 2041 /* 2042 * Now that we know no one else is still using the transaction we can 2043 * remove the transaction from the list of transactions. This avoids 2044 * the transaction kthread from cleaning up the transaction while some 2045 * other task is still using it, which could result in a use-after-free 2046 * on things like log trees, as it forces the transaction kthread to 2047 * wait for this transaction to be cleaned up by us. 2048 */ 2049 list_del_init(&cur_trans->list); 2050 2051 spin_unlock(&fs_info->trans_lock); 2052 2053 btrfs_cleanup_one_transaction(trans->transaction); 2054 2055 spin_lock(&fs_info->trans_lock); 2056 if (cur_trans == fs_info->running_transaction) 2057 fs_info->running_transaction = NULL; 2058 spin_unlock(&fs_info->trans_lock); 2059 2060 if (trans->type & __TRANS_FREEZABLE) 2061 sb_end_intwrite(fs_info->sb); 2062 btrfs_put_transaction(cur_trans); 2063 btrfs_put_transaction(cur_trans); 2064 2065 trace_btrfs_transaction_commit(fs_info); 2066 2067 if (current->journal_info == trans) 2068 current->journal_info = NULL; 2069 2070 /* 2071 * If relocation is running, we can't cancel scrub because that will 2072 * result in a deadlock. Before relocating a block group, relocation 2073 * pauses scrub, then starts and commits a transaction before unpausing 2074 * scrub. If the transaction commit is being done by the relocation 2075 * task or triggered by another task and the relocation task is waiting 2076 * for the commit, and we end up here due to an error in the commit 2077 * path, then calling btrfs_scrub_cancel() will deadlock, as we are 2078 * asking for scrub to stop while having it asked to be paused higher 2079 * above in relocation code. 2080 */ 2081 if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 2082 btrfs_scrub_cancel(fs_info); 2083 2084 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2085 } 2086 2087 /* 2088 * Release reserved delayed ref space of all pending block groups of the 2089 * transaction and remove them from the list 2090 */ 2091 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans) 2092 { 2093 struct btrfs_fs_info *fs_info = trans->fs_info; 2094 struct btrfs_block_group *block_group, *tmp; 2095 2096 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 2097 btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info); 2098 list_del_init(&block_group->bg_list); 2099 } 2100 } 2101 2102 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info) 2103 { 2104 /* 2105 * We use try_to_writeback_inodes_sb() here because if we used 2106 * btrfs_start_delalloc_roots we would deadlock with fs freeze. 2107 * Currently are holding the fs freeze lock, if we do an async flush 2108 * we'll do btrfs_join_transaction() and deadlock because we need to 2109 * wait for the fs freeze lock. Using the direct flushing we benefit 2110 * from already being in a transaction and our join_transaction doesn't 2111 * have to re-take the fs freeze lock. 2112 * 2113 * Note that try_to_writeback_inodes_sb() will only trigger writeback 2114 * if it can read lock sb->s_umount. It will always be able to lock it, 2115 * except when the filesystem is being unmounted or being frozen, but in 2116 * those cases sync_filesystem() is called, which results in calling 2117 * writeback_inodes_sb() while holding a write lock on sb->s_umount. 2118 * Note that we don't call writeback_inodes_sb() directly, because it 2119 * will emit a warning if sb->s_umount is not locked. 2120 */ 2121 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 2122 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC); 2123 return 0; 2124 } 2125 2126 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info) 2127 { 2128 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 2129 btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL); 2130 } 2131 2132 /* 2133 * Add a pending snapshot associated with the given transaction handle to the 2134 * respective handle. This must be called after the transaction commit started 2135 * and while holding fs_info->trans_lock. 2136 * This serves to guarantee a caller of btrfs_commit_transaction() that it can 2137 * safely free the pending snapshot pointer in case btrfs_commit_transaction() 2138 * returns an error. 2139 */ 2140 static void add_pending_snapshot(struct btrfs_trans_handle *trans) 2141 { 2142 struct btrfs_transaction *cur_trans = trans->transaction; 2143 2144 if (!trans->pending_snapshot) 2145 return; 2146 2147 lockdep_assert_held(&trans->fs_info->trans_lock); 2148 ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_PREP); 2149 2150 list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots); 2151 } 2152 2153 static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval) 2154 { 2155 fs_info->commit_stats.commit_count++; 2156 fs_info->commit_stats.last_commit_dur = interval; 2157 fs_info->commit_stats.max_commit_dur = 2158 max_t(u64, fs_info->commit_stats.max_commit_dur, interval); 2159 fs_info->commit_stats.total_commit_dur += interval; 2160 } 2161 2162 int btrfs_commit_transaction(struct btrfs_trans_handle *trans) 2163 { 2164 struct btrfs_fs_info *fs_info = trans->fs_info; 2165 struct btrfs_transaction *cur_trans = trans->transaction; 2166 struct btrfs_transaction *prev_trans = NULL; 2167 int ret; 2168 ktime_t start_time; 2169 ktime_t interval; 2170 2171 ASSERT(refcount_read(&trans->use_count) == 1); 2172 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2173 2174 clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags); 2175 2176 /* Stop the commit early if ->aborted is set */ 2177 if (TRANS_ABORTED(cur_trans)) { 2178 ret = cur_trans->aborted; 2179 goto lockdep_trans_commit_start_release; 2180 } 2181 2182 btrfs_trans_release_metadata(trans); 2183 trans->block_rsv = NULL; 2184 2185 /* 2186 * We only want one transaction commit doing the flushing so we do not 2187 * waste a bunch of time on lock contention on the extent root node. 2188 */ 2189 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING, 2190 &cur_trans->delayed_refs.flags)) { 2191 /* 2192 * Make a pass through all the delayed refs we have so far. 2193 * Any running threads may add more while we are here. 2194 */ 2195 ret = btrfs_run_delayed_refs(trans, 0); 2196 if (ret) 2197 goto lockdep_trans_commit_start_release; 2198 } 2199 2200 btrfs_create_pending_block_groups(trans); 2201 2202 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) { 2203 int run_it = 0; 2204 2205 /* this mutex is also taken before trying to set 2206 * block groups readonly. We need to make sure 2207 * that nobody has set a block group readonly 2208 * after a extents from that block group have been 2209 * allocated for cache files. btrfs_set_block_group_ro 2210 * will wait for the transaction to commit if it 2211 * finds BTRFS_TRANS_DIRTY_BG_RUN set. 2212 * 2213 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure 2214 * only one process starts all the block group IO. It wouldn't 2215 * hurt to have more than one go through, but there's no 2216 * real advantage to it either. 2217 */ 2218 mutex_lock(&fs_info->ro_block_group_mutex); 2219 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN, 2220 &cur_trans->flags)) 2221 run_it = 1; 2222 mutex_unlock(&fs_info->ro_block_group_mutex); 2223 2224 if (run_it) { 2225 ret = btrfs_start_dirty_block_groups(trans); 2226 if (ret) 2227 goto lockdep_trans_commit_start_release; 2228 } 2229 } 2230 2231 spin_lock(&fs_info->trans_lock); 2232 if (cur_trans->state >= TRANS_STATE_COMMIT_PREP) { 2233 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED; 2234 2235 add_pending_snapshot(trans); 2236 2237 spin_unlock(&fs_info->trans_lock); 2238 refcount_inc(&cur_trans->use_count); 2239 2240 if (trans->in_fsync) 2241 want_state = TRANS_STATE_SUPER_COMMITTED; 2242 2243 btrfs_trans_state_lockdep_release(fs_info, 2244 BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2245 ret = btrfs_end_transaction(trans); 2246 wait_for_commit(cur_trans, want_state); 2247 2248 if (TRANS_ABORTED(cur_trans)) 2249 ret = cur_trans->aborted; 2250 2251 btrfs_put_transaction(cur_trans); 2252 2253 return ret; 2254 } 2255 2256 cur_trans->state = TRANS_STATE_COMMIT_PREP; 2257 wake_up(&fs_info->transaction_blocked_wait); 2258 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2259 2260 if (cur_trans->list.prev != &fs_info->trans_list) { 2261 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED; 2262 2263 if (trans->in_fsync) 2264 want_state = TRANS_STATE_SUPER_COMMITTED; 2265 2266 prev_trans = list_entry(cur_trans->list.prev, 2267 struct btrfs_transaction, list); 2268 if (prev_trans->state < want_state) { 2269 refcount_inc(&prev_trans->use_count); 2270 spin_unlock(&fs_info->trans_lock); 2271 2272 wait_for_commit(prev_trans, want_state); 2273 2274 ret = READ_ONCE(prev_trans->aborted); 2275 2276 btrfs_put_transaction(prev_trans); 2277 if (ret) 2278 goto lockdep_release; 2279 spin_lock(&fs_info->trans_lock); 2280 } 2281 } else { 2282 /* 2283 * The previous transaction was aborted and was already removed 2284 * from the list of transactions at fs_info->trans_list. So we 2285 * abort to prevent writing a new superblock that reflects a 2286 * corrupt state (pointing to trees with unwritten nodes/leafs). 2287 */ 2288 if (BTRFS_FS_ERROR(fs_info)) { 2289 spin_unlock(&fs_info->trans_lock); 2290 ret = -EROFS; 2291 goto lockdep_release; 2292 } 2293 } 2294 2295 cur_trans->state = TRANS_STATE_COMMIT_START; 2296 wake_up(&fs_info->transaction_blocked_wait); 2297 spin_unlock(&fs_info->trans_lock); 2298 2299 /* 2300 * Get the time spent on the work done by the commit thread and not 2301 * the time spent waiting on a previous commit 2302 */ 2303 start_time = ktime_get_ns(); 2304 2305 extwriter_counter_dec(cur_trans, trans->type); 2306 2307 ret = btrfs_start_delalloc_flush(fs_info); 2308 if (ret) 2309 goto lockdep_release; 2310 2311 ret = btrfs_run_delayed_items(trans); 2312 if (ret) 2313 goto lockdep_release; 2314 2315 /* 2316 * The thread has started/joined the transaction thus it holds the 2317 * lockdep map as a reader. It has to release it before acquiring the 2318 * lockdep map as a writer. 2319 */ 2320 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters); 2321 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters); 2322 wait_event(cur_trans->writer_wait, 2323 extwriter_counter_read(cur_trans) == 0); 2324 2325 /* some pending stuffs might be added after the previous flush. */ 2326 ret = btrfs_run_delayed_items(trans); 2327 if (ret) { 2328 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 2329 goto cleanup_transaction; 2330 } 2331 2332 btrfs_wait_delalloc_flush(fs_info); 2333 2334 /* 2335 * Wait for all ordered extents started by a fast fsync that joined this 2336 * transaction. Otherwise if this transaction commits before the ordered 2337 * extents complete we lose logged data after a power failure. 2338 */ 2339 btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered); 2340 wait_event(cur_trans->pending_wait, 2341 atomic_read(&cur_trans->pending_ordered) == 0); 2342 2343 btrfs_scrub_pause(fs_info); 2344 /* 2345 * Ok now we need to make sure to block out any other joins while we 2346 * commit the transaction. We could have started a join before setting 2347 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 2348 */ 2349 spin_lock(&fs_info->trans_lock); 2350 add_pending_snapshot(trans); 2351 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2352 spin_unlock(&fs_info->trans_lock); 2353 2354 /* 2355 * The thread has started/joined the transaction thus it holds the 2356 * lockdep map as a reader. It has to release it before acquiring the 2357 * lockdep map as a writer. 2358 */ 2359 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 2360 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers); 2361 wait_event(cur_trans->writer_wait, 2362 atomic_read(&cur_trans->num_writers) == 1); 2363 2364 /* 2365 * Make lockdep happy by acquiring the state locks after 2366 * btrfs_trans_num_writers is released. If we acquired the state locks 2367 * before releasing the btrfs_trans_num_writers lock then lockdep would 2368 * complain because we did not follow the reverse order unlocking rule. 2369 */ 2370 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED); 2371 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2372 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2373 2374 /* 2375 * We've started the commit, clear the flag in case we were triggered to 2376 * do an async commit but somebody else started before the transaction 2377 * kthread could do the work. 2378 */ 2379 clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags); 2380 2381 if (TRANS_ABORTED(cur_trans)) { 2382 ret = cur_trans->aborted; 2383 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2384 goto scrub_continue; 2385 } 2386 /* 2387 * the reloc mutex makes sure that we stop 2388 * the balancing code from coming in and moving 2389 * extents around in the middle of the commit 2390 */ 2391 mutex_lock(&fs_info->reloc_mutex); 2392 2393 /* 2394 * We needn't worry about the delayed items because we will 2395 * deal with them in create_pending_snapshot(), which is the 2396 * core function of the snapshot creation. 2397 */ 2398 ret = create_pending_snapshots(trans); 2399 if (ret) 2400 goto unlock_reloc; 2401 2402 /* 2403 * We insert the dir indexes of the snapshots and update the inode 2404 * of the snapshots' parents after the snapshot creation, so there 2405 * are some delayed items which are not dealt with. Now deal with 2406 * them. 2407 * 2408 * We needn't worry that this operation will corrupt the snapshots, 2409 * because all the tree which are snapshoted will be forced to COW 2410 * the nodes and leaves. 2411 */ 2412 ret = btrfs_run_delayed_items(trans); 2413 if (ret) 2414 goto unlock_reloc; 2415 2416 ret = btrfs_run_delayed_refs(trans, U64_MAX); 2417 if (ret) 2418 goto unlock_reloc; 2419 2420 /* 2421 * make sure none of the code above managed to slip in a 2422 * delayed item 2423 */ 2424 btrfs_assert_delayed_root_empty(fs_info); 2425 2426 WARN_ON(cur_trans != trans->transaction); 2427 2428 ret = commit_fs_roots(trans); 2429 if (ret) 2430 goto unlock_reloc; 2431 2432 /* commit_fs_roots gets rid of all the tree log roots, it is now 2433 * safe to free the root of tree log roots 2434 */ 2435 btrfs_free_log_root_tree(trans, fs_info); 2436 2437 /* 2438 * Since fs roots are all committed, we can get a quite accurate 2439 * new_roots. So let's do quota accounting. 2440 */ 2441 ret = btrfs_qgroup_account_extents(trans); 2442 if (ret < 0) 2443 goto unlock_reloc; 2444 2445 ret = commit_cowonly_roots(trans); 2446 if (ret) 2447 goto unlock_reloc; 2448 2449 /* 2450 * The tasks which save the space cache and inode cache may also 2451 * update ->aborted, check it. 2452 */ 2453 if (TRANS_ABORTED(cur_trans)) { 2454 ret = cur_trans->aborted; 2455 goto unlock_reloc; 2456 } 2457 2458 cur_trans = fs_info->running_transaction; 2459 2460 btrfs_set_root_node(&fs_info->tree_root->root_item, 2461 fs_info->tree_root->node); 2462 list_add_tail(&fs_info->tree_root->dirty_list, 2463 &cur_trans->switch_commits); 2464 2465 btrfs_set_root_node(&fs_info->chunk_root->root_item, 2466 fs_info->chunk_root->node); 2467 list_add_tail(&fs_info->chunk_root->dirty_list, 2468 &cur_trans->switch_commits); 2469 2470 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2471 btrfs_set_root_node(&fs_info->block_group_root->root_item, 2472 fs_info->block_group_root->node); 2473 list_add_tail(&fs_info->block_group_root->dirty_list, 2474 &cur_trans->switch_commits); 2475 } 2476 2477 switch_commit_roots(trans); 2478 2479 ASSERT(list_empty(&cur_trans->dirty_bgs)); 2480 ASSERT(list_empty(&cur_trans->io_bgs)); 2481 update_super_roots(fs_info); 2482 2483 btrfs_set_super_log_root(fs_info->super_copy, 0); 2484 btrfs_set_super_log_root_level(fs_info->super_copy, 0); 2485 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2486 sizeof(*fs_info->super_copy)); 2487 2488 btrfs_commit_device_sizes(cur_trans); 2489 2490 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 2491 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 2492 2493 btrfs_trans_release_chunk_metadata(trans); 2494 2495 /* 2496 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and 2497 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to 2498 * make sure that before we commit our superblock, no other task can 2499 * start a new transaction and commit a log tree before we commit our 2500 * superblock. Anyone trying to commit a log tree locks this mutex before 2501 * writing its superblock. 2502 */ 2503 mutex_lock(&fs_info->tree_log_mutex); 2504 2505 spin_lock(&fs_info->trans_lock); 2506 cur_trans->state = TRANS_STATE_UNBLOCKED; 2507 fs_info->running_transaction = NULL; 2508 spin_unlock(&fs_info->trans_lock); 2509 mutex_unlock(&fs_info->reloc_mutex); 2510 2511 wake_up(&fs_info->transaction_wait); 2512 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2513 2514 /* If we have features changed, wake up the cleaner to update sysfs. */ 2515 if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) && 2516 fs_info->cleaner_kthread) 2517 wake_up_process(fs_info->cleaner_kthread); 2518 2519 ret = btrfs_write_and_wait_transaction(trans); 2520 if (ret) { 2521 btrfs_handle_fs_error(fs_info, ret, 2522 "Error while writing out transaction"); 2523 mutex_unlock(&fs_info->tree_log_mutex); 2524 goto scrub_continue; 2525 } 2526 2527 ret = write_all_supers(fs_info, 0); 2528 /* 2529 * the super is written, we can safely allow the tree-loggers 2530 * to go about their business 2531 */ 2532 mutex_unlock(&fs_info->tree_log_mutex); 2533 if (ret) 2534 goto scrub_continue; 2535 2536 /* 2537 * We needn't acquire the lock here because there is no other task 2538 * which can change it. 2539 */ 2540 cur_trans->state = TRANS_STATE_SUPER_COMMITTED; 2541 wake_up(&cur_trans->commit_wait); 2542 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2543 2544 btrfs_finish_extent_commit(trans); 2545 2546 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags)) 2547 btrfs_clear_space_info_full(fs_info); 2548 2549 btrfs_set_last_trans_committed(fs_info, cur_trans->transid); 2550 /* 2551 * We needn't acquire the lock here because there is no other task 2552 * which can change it. 2553 */ 2554 cur_trans->state = TRANS_STATE_COMPLETED; 2555 wake_up(&cur_trans->commit_wait); 2556 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED); 2557 2558 spin_lock(&fs_info->trans_lock); 2559 list_del_init(&cur_trans->list); 2560 spin_unlock(&fs_info->trans_lock); 2561 2562 btrfs_put_transaction(cur_trans); 2563 btrfs_put_transaction(cur_trans); 2564 2565 if (trans->type & __TRANS_FREEZABLE) 2566 sb_end_intwrite(fs_info->sb); 2567 2568 trace_btrfs_transaction_commit(fs_info); 2569 2570 interval = ktime_get_ns() - start_time; 2571 2572 btrfs_scrub_continue(fs_info); 2573 2574 if (current->journal_info == trans) 2575 current->journal_info = NULL; 2576 2577 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2578 2579 update_commit_stats(fs_info, interval); 2580 2581 return ret; 2582 2583 unlock_reloc: 2584 mutex_unlock(&fs_info->reloc_mutex); 2585 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2586 scrub_continue: 2587 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2588 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED); 2589 btrfs_scrub_continue(fs_info); 2590 cleanup_transaction: 2591 btrfs_trans_release_metadata(trans); 2592 btrfs_cleanup_pending_block_groups(trans); 2593 btrfs_trans_release_chunk_metadata(trans); 2594 trans->block_rsv = NULL; 2595 btrfs_warn(fs_info, "Skipping commit of aborted transaction."); 2596 if (current->journal_info == trans) 2597 current->journal_info = NULL; 2598 cleanup_transaction(trans, ret); 2599 2600 return ret; 2601 2602 lockdep_release: 2603 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters); 2604 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 2605 goto cleanup_transaction; 2606 2607 lockdep_trans_commit_start_release: 2608 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2609 btrfs_end_transaction(trans); 2610 return ret; 2611 } 2612 2613 /* 2614 * return < 0 if error 2615 * 0 if there are no more dead_roots at the time of call 2616 * 1 there are more to be processed, call me again 2617 * 2618 * The return value indicates there are certainly more snapshots to delete, but 2619 * if there comes a new one during processing, it may return 0. We don't mind, 2620 * because btrfs_commit_super will poke cleaner thread and it will process it a 2621 * few seconds later. 2622 */ 2623 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info) 2624 { 2625 struct btrfs_root *root; 2626 int ret; 2627 2628 spin_lock(&fs_info->trans_lock); 2629 if (list_empty(&fs_info->dead_roots)) { 2630 spin_unlock(&fs_info->trans_lock); 2631 return 0; 2632 } 2633 root = list_first_entry(&fs_info->dead_roots, 2634 struct btrfs_root, root_list); 2635 list_del_init(&root->root_list); 2636 spin_unlock(&fs_info->trans_lock); 2637 2638 btrfs_debug(fs_info, "cleaner removing %llu", btrfs_root_id(root)); 2639 2640 btrfs_kill_all_delayed_nodes(root); 2641 2642 if (btrfs_header_backref_rev(root->node) < 2643 BTRFS_MIXED_BACKREF_REV) 2644 ret = btrfs_drop_snapshot(root, 0, 0); 2645 else 2646 ret = btrfs_drop_snapshot(root, 1, 0); 2647 2648 btrfs_put_root(root); 2649 return (ret < 0) ? 0 : 1; 2650 } 2651 2652 /* 2653 * We only mark the transaction aborted and then set the file system read-only. 2654 * This will prevent new transactions from starting or trying to join this 2655 * one. 2656 * 2657 * This means that error recovery at the call site is limited to freeing 2658 * any local memory allocations and passing the error code up without 2659 * further cleanup. The transaction should complete as it normally would 2660 * in the call path but will return -EIO. 2661 * 2662 * We'll complete the cleanup in btrfs_end_transaction and 2663 * btrfs_commit_transaction. 2664 */ 2665 void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 2666 const char *function, 2667 unsigned int line, int error, bool first_hit) 2668 { 2669 struct btrfs_fs_info *fs_info = trans->fs_info; 2670 2671 WRITE_ONCE(trans->aborted, error); 2672 WRITE_ONCE(trans->transaction->aborted, error); 2673 if (first_hit && error == -ENOSPC) 2674 btrfs_dump_space_info_for_trans_abort(fs_info); 2675 /* Wake up anybody who may be waiting on this transaction */ 2676 wake_up(&fs_info->transaction_wait); 2677 wake_up(&fs_info->transaction_blocked_wait); 2678 __btrfs_handle_fs_error(fs_info, function, line, error, NULL); 2679 } 2680 2681 int __init btrfs_transaction_init(void) 2682 { 2683 btrfs_trans_handle_cachep = KMEM_CACHE(btrfs_trans_handle, SLAB_TEMPORARY); 2684 if (!btrfs_trans_handle_cachep) 2685 return -ENOMEM; 2686 return 0; 2687 } 2688 2689 void __cold btrfs_transaction_exit(void) 2690 { 2691 kmem_cache_destroy(btrfs_trans_handle_cachep); 2692 } 2693