1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/writeback.h> 23 #include <linux/pagemap.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include "ctree.h" 27 #include "disk-io.h" 28 #include "transaction.h" 29 #include "locking.h" 30 #include "tree-log.h" 31 #include "inode-map.h" 32 #include "volumes.h" 33 #include "dev-replace.h" 34 #include "qgroup.h" 35 36 #define BTRFS_ROOT_TRANS_TAG 0 37 38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 39 [TRANS_STATE_RUNNING] = 0U, 40 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE | 41 __TRANS_START), 42 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE | 43 __TRANS_START | 44 __TRANS_ATTACH), 45 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE | 46 __TRANS_START | 47 __TRANS_ATTACH | 48 __TRANS_JOIN), 49 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE | 50 __TRANS_START | 51 __TRANS_ATTACH | 52 __TRANS_JOIN | 53 __TRANS_JOIN_NOLOCK), 54 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE | 55 __TRANS_START | 56 __TRANS_ATTACH | 57 __TRANS_JOIN | 58 __TRANS_JOIN_NOLOCK), 59 }; 60 61 void btrfs_put_transaction(struct btrfs_transaction *transaction) 62 { 63 WARN_ON(atomic_read(&transaction->use_count) == 0); 64 if (atomic_dec_and_test(&transaction->use_count)) { 65 BUG_ON(!list_empty(&transaction->list)); 66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root)); 67 if (transaction->delayed_refs.pending_csums) 68 printk(KERN_ERR "pending csums is %llu\n", 69 transaction->delayed_refs.pending_csums); 70 while (!list_empty(&transaction->pending_chunks)) { 71 struct extent_map *em; 72 73 em = list_first_entry(&transaction->pending_chunks, 74 struct extent_map, list); 75 list_del_init(&em->list); 76 free_extent_map(em); 77 } 78 kmem_cache_free(btrfs_transaction_cachep, transaction); 79 } 80 } 81 82 static void clear_btree_io_tree(struct extent_io_tree *tree) 83 { 84 spin_lock(&tree->lock); 85 while (!RB_EMPTY_ROOT(&tree->state)) { 86 struct rb_node *node; 87 struct extent_state *state; 88 89 node = rb_first(&tree->state); 90 state = rb_entry(node, struct extent_state, rb_node); 91 rb_erase(&state->rb_node, &tree->state); 92 RB_CLEAR_NODE(&state->rb_node); 93 /* 94 * btree io trees aren't supposed to have tasks waiting for 95 * changes in the flags of extent states ever. 96 */ 97 ASSERT(!waitqueue_active(&state->wq)); 98 free_extent_state(state); 99 100 cond_resched_lock(&tree->lock); 101 } 102 spin_unlock(&tree->lock); 103 } 104 105 static noinline void switch_commit_roots(struct btrfs_transaction *trans, 106 struct btrfs_fs_info *fs_info) 107 { 108 struct btrfs_root *root, *tmp; 109 110 down_write(&fs_info->commit_root_sem); 111 list_for_each_entry_safe(root, tmp, &trans->switch_commits, 112 dirty_list) { 113 list_del_init(&root->dirty_list); 114 free_extent_buffer(root->commit_root); 115 root->commit_root = btrfs_root_node(root); 116 if (is_fstree(root->objectid)) 117 btrfs_unpin_free_ino(root); 118 clear_btree_io_tree(&root->dirty_log_pages); 119 } 120 121 /* We can free old roots now. */ 122 spin_lock(&trans->dropped_roots_lock); 123 while (!list_empty(&trans->dropped_roots)) { 124 root = list_first_entry(&trans->dropped_roots, 125 struct btrfs_root, root_list); 126 list_del_init(&root->root_list); 127 spin_unlock(&trans->dropped_roots_lock); 128 btrfs_drop_and_free_fs_root(fs_info, root); 129 spin_lock(&trans->dropped_roots_lock); 130 } 131 spin_unlock(&trans->dropped_roots_lock); 132 up_write(&fs_info->commit_root_sem); 133 } 134 135 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 136 unsigned int type) 137 { 138 if (type & TRANS_EXTWRITERS) 139 atomic_inc(&trans->num_extwriters); 140 } 141 142 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 143 unsigned int type) 144 { 145 if (type & TRANS_EXTWRITERS) 146 atomic_dec(&trans->num_extwriters); 147 } 148 149 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 150 unsigned int type) 151 { 152 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 153 } 154 155 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 156 { 157 return atomic_read(&trans->num_extwriters); 158 } 159 160 /* 161 * either allocate a new transaction or hop into the existing one 162 */ 163 static noinline int join_transaction(struct btrfs_root *root, unsigned int type) 164 { 165 struct btrfs_transaction *cur_trans; 166 struct btrfs_fs_info *fs_info = root->fs_info; 167 168 spin_lock(&fs_info->trans_lock); 169 loop: 170 /* The file system has been taken offline. No new transactions. */ 171 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 172 spin_unlock(&fs_info->trans_lock); 173 return -EROFS; 174 } 175 176 cur_trans = fs_info->running_transaction; 177 if (cur_trans) { 178 if (cur_trans->aborted) { 179 spin_unlock(&fs_info->trans_lock); 180 return cur_trans->aborted; 181 } 182 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 183 spin_unlock(&fs_info->trans_lock); 184 return -EBUSY; 185 } 186 atomic_inc(&cur_trans->use_count); 187 atomic_inc(&cur_trans->num_writers); 188 extwriter_counter_inc(cur_trans, type); 189 spin_unlock(&fs_info->trans_lock); 190 return 0; 191 } 192 spin_unlock(&fs_info->trans_lock); 193 194 /* 195 * If we are ATTACH, we just want to catch the current transaction, 196 * and commit it. If there is no transaction, just return ENOENT. 197 */ 198 if (type == TRANS_ATTACH) 199 return -ENOENT; 200 201 /* 202 * JOIN_NOLOCK only happens during the transaction commit, so 203 * it is impossible that ->running_transaction is NULL 204 */ 205 BUG_ON(type == TRANS_JOIN_NOLOCK); 206 207 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS); 208 if (!cur_trans) 209 return -ENOMEM; 210 211 spin_lock(&fs_info->trans_lock); 212 if (fs_info->running_transaction) { 213 /* 214 * someone started a transaction after we unlocked. Make sure 215 * to redo the checks above 216 */ 217 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 218 goto loop; 219 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 220 spin_unlock(&fs_info->trans_lock); 221 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 222 return -EROFS; 223 } 224 225 atomic_set(&cur_trans->num_writers, 1); 226 extwriter_counter_init(cur_trans, type); 227 init_waitqueue_head(&cur_trans->writer_wait); 228 init_waitqueue_head(&cur_trans->commit_wait); 229 cur_trans->state = TRANS_STATE_RUNNING; 230 /* 231 * One for this trans handle, one so it will live on until we 232 * commit the transaction. 233 */ 234 atomic_set(&cur_trans->use_count, 2); 235 cur_trans->have_free_bgs = 0; 236 cur_trans->start_time = get_seconds(); 237 cur_trans->dirty_bg_run = 0; 238 239 cur_trans->delayed_refs.href_root = RB_ROOT; 240 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT; 241 atomic_set(&cur_trans->delayed_refs.num_entries, 0); 242 cur_trans->delayed_refs.num_heads_ready = 0; 243 cur_trans->delayed_refs.pending_csums = 0; 244 cur_trans->delayed_refs.num_heads = 0; 245 cur_trans->delayed_refs.flushing = 0; 246 cur_trans->delayed_refs.run_delayed_start = 0; 247 cur_trans->delayed_refs.qgroup_to_skip = 0; 248 249 /* 250 * although the tree mod log is per file system and not per transaction, 251 * the log must never go across transaction boundaries. 252 */ 253 smp_mb(); 254 if (!list_empty(&fs_info->tree_mod_seq_list)) 255 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when " 256 "creating a fresh transaction\n"); 257 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 258 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when " 259 "creating a fresh transaction\n"); 260 atomic64_set(&fs_info->tree_mod_seq, 0); 261 262 spin_lock_init(&cur_trans->delayed_refs.lock); 263 264 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 265 INIT_LIST_HEAD(&cur_trans->pending_chunks); 266 INIT_LIST_HEAD(&cur_trans->switch_commits); 267 INIT_LIST_HEAD(&cur_trans->pending_ordered); 268 INIT_LIST_HEAD(&cur_trans->dirty_bgs); 269 INIT_LIST_HEAD(&cur_trans->io_bgs); 270 INIT_LIST_HEAD(&cur_trans->dropped_roots); 271 mutex_init(&cur_trans->cache_write_mutex); 272 cur_trans->num_dirty_bgs = 0; 273 spin_lock_init(&cur_trans->dirty_bgs_lock); 274 INIT_LIST_HEAD(&cur_trans->deleted_bgs); 275 spin_lock_init(&cur_trans->deleted_bgs_lock); 276 spin_lock_init(&cur_trans->dropped_roots_lock); 277 list_add_tail(&cur_trans->list, &fs_info->trans_list); 278 extent_io_tree_init(&cur_trans->dirty_pages, 279 fs_info->btree_inode->i_mapping); 280 fs_info->generation++; 281 cur_trans->transid = fs_info->generation; 282 fs_info->running_transaction = cur_trans; 283 cur_trans->aborted = 0; 284 spin_unlock(&fs_info->trans_lock); 285 286 return 0; 287 } 288 289 /* 290 * this does all the record keeping required to make sure that a reference 291 * counted root is properly recorded in a given transaction. This is required 292 * to make sure the old root from before we joined the transaction is deleted 293 * when the transaction commits 294 */ 295 static int record_root_in_trans(struct btrfs_trans_handle *trans, 296 struct btrfs_root *root) 297 { 298 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 299 root->last_trans < trans->transid) { 300 WARN_ON(root == root->fs_info->extent_root); 301 WARN_ON(root->commit_root != root->node); 302 303 /* 304 * see below for IN_TRANS_SETUP usage rules 305 * we have the reloc mutex held now, so there 306 * is only one writer in this function 307 */ 308 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 309 310 /* make sure readers find IN_TRANS_SETUP before 311 * they find our root->last_trans update 312 */ 313 smp_wmb(); 314 315 spin_lock(&root->fs_info->fs_roots_radix_lock); 316 if (root->last_trans == trans->transid) { 317 spin_unlock(&root->fs_info->fs_roots_radix_lock); 318 return 0; 319 } 320 radix_tree_tag_set(&root->fs_info->fs_roots_radix, 321 (unsigned long)root->root_key.objectid, 322 BTRFS_ROOT_TRANS_TAG); 323 spin_unlock(&root->fs_info->fs_roots_radix_lock); 324 root->last_trans = trans->transid; 325 326 /* this is pretty tricky. We don't want to 327 * take the relocation lock in btrfs_record_root_in_trans 328 * unless we're really doing the first setup for this root in 329 * this transaction. 330 * 331 * Normally we'd use root->last_trans as a flag to decide 332 * if we want to take the expensive mutex. 333 * 334 * But, we have to set root->last_trans before we 335 * init the relocation root, otherwise, we trip over warnings 336 * in ctree.c. The solution used here is to flag ourselves 337 * with root IN_TRANS_SETUP. When this is 1, we're still 338 * fixing up the reloc trees and everyone must wait. 339 * 340 * When this is zero, they can trust root->last_trans and fly 341 * through btrfs_record_root_in_trans without having to take the 342 * lock. smp_wmb() makes sure that all the writes above are 343 * done before we pop in the zero below 344 */ 345 btrfs_init_reloc_root(trans, root); 346 smp_mb__before_atomic(); 347 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 348 } 349 return 0; 350 } 351 352 353 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans, 354 struct btrfs_root *root) 355 { 356 struct btrfs_transaction *cur_trans = trans->transaction; 357 358 /* Add ourselves to the transaction dropped list */ 359 spin_lock(&cur_trans->dropped_roots_lock); 360 list_add_tail(&root->root_list, &cur_trans->dropped_roots); 361 spin_unlock(&cur_trans->dropped_roots_lock); 362 363 /* Make sure we don't try to update the root at commit time */ 364 spin_lock(&root->fs_info->fs_roots_radix_lock); 365 radix_tree_tag_clear(&root->fs_info->fs_roots_radix, 366 (unsigned long)root->root_key.objectid, 367 BTRFS_ROOT_TRANS_TAG); 368 spin_unlock(&root->fs_info->fs_roots_radix_lock); 369 } 370 371 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 372 struct btrfs_root *root) 373 { 374 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 375 return 0; 376 377 /* 378 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 379 * and barriers 380 */ 381 smp_rmb(); 382 if (root->last_trans == trans->transid && 383 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 384 return 0; 385 386 mutex_lock(&root->fs_info->reloc_mutex); 387 record_root_in_trans(trans, root); 388 mutex_unlock(&root->fs_info->reloc_mutex); 389 390 return 0; 391 } 392 393 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 394 { 395 return (trans->state >= TRANS_STATE_BLOCKED && 396 trans->state < TRANS_STATE_UNBLOCKED && 397 !trans->aborted); 398 } 399 400 /* wait for commit against the current transaction to become unblocked 401 * when this is done, it is safe to start a new transaction, but the current 402 * transaction might not be fully on disk. 403 */ 404 static void wait_current_trans(struct btrfs_root *root) 405 { 406 struct btrfs_transaction *cur_trans; 407 408 spin_lock(&root->fs_info->trans_lock); 409 cur_trans = root->fs_info->running_transaction; 410 if (cur_trans && is_transaction_blocked(cur_trans)) { 411 atomic_inc(&cur_trans->use_count); 412 spin_unlock(&root->fs_info->trans_lock); 413 414 wait_event(root->fs_info->transaction_wait, 415 cur_trans->state >= TRANS_STATE_UNBLOCKED || 416 cur_trans->aborted); 417 btrfs_put_transaction(cur_trans); 418 } else { 419 spin_unlock(&root->fs_info->trans_lock); 420 } 421 } 422 423 static int may_wait_transaction(struct btrfs_root *root, int type) 424 { 425 if (root->fs_info->log_root_recovering) 426 return 0; 427 428 if (type == TRANS_USERSPACE) 429 return 1; 430 431 if (type == TRANS_START && 432 !atomic_read(&root->fs_info->open_ioctl_trans)) 433 return 1; 434 435 return 0; 436 } 437 438 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 439 { 440 if (!root->fs_info->reloc_ctl || 441 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 442 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 443 root->reloc_root) 444 return false; 445 446 return true; 447 } 448 449 static struct btrfs_trans_handle * 450 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type, 451 enum btrfs_reserve_flush_enum flush) 452 { 453 struct btrfs_trans_handle *h; 454 struct btrfs_transaction *cur_trans; 455 u64 num_bytes = 0; 456 u64 qgroup_reserved = 0; 457 bool reloc_reserved = false; 458 int ret; 459 460 /* Send isn't supposed to start transactions. */ 461 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB); 462 463 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 464 return ERR_PTR(-EROFS); 465 466 if (current->journal_info) { 467 WARN_ON(type & TRANS_EXTWRITERS); 468 h = current->journal_info; 469 h->use_count++; 470 WARN_ON(h->use_count > 2); 471 h->orig_rsv = h->block_rsv; 472 h->block_rsv = NULL; 473 goto got_it; 474 } 475 476 /* 477 * Do the reservation before we join the transaction so we can do all 478 * the appropriate flushing if need be. 479 */ 480 if (num_items > 0 && root != root->fs_info->chunk_root) { 481 if (root->fs_info->quota_enabled && 482 is_fstree(root->root_key.objectid)) { 483 qgroup_reserved = num_items * root->nodesize; 484 ret = btrfs_qgroup_reserve(root, qgroup_reserved); 485 if (ret) 486 return ERR_PTR(ret); 487 } 488 489 num_bytes = btrfs_calc_trans_metadata_size(root, num_items); 490 /* 491 * Do the reservation for the relocation root creation 492 */ 493 if (need_reserve_reloc_root(root)) { 494 num_bytes += root->nodesize; 495 reloc_reserved = true; 496 } 497 498 ret = btrfs_block_rsv_add(root, 499 &root->fs_info->trans_block_rsv, 500 num_bytes, flush); 501 if (ret) 502 goto reserve_fail; 503 } 504 again: 505 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS); 506 if (!h) { 507 ret = -ENOMEM; 508 goto alloc_fail; 509 } 510 511 /* 512 * If we are JOIN_NOLOCK we're already committing a transaction and 513 * waiting on this guy, so we don't need to do the sb_start_intwrite 514 * because we're already holding a ref. We need this because we could 515 * have raced in and did an fsync() on a file which can kick a commit 516 * and then we deadlock with somebody doing a freeze. 517 * 518 * If we are ATTACH, it means we just want to catch the current 519 * transaction and commit it, so we needn't do sb_start_intwrite(). 520 */ 521 if (type & __TRANS_FREEZABLE) 522 sb_start_intwrite(root->fs_info->sb); 523 524 if (may_wait_transaction(root, type)) 525 wait_current_trans(root); 526 527 do { 528 ret = join_transaction(root, type); 529 if (ret == -EBUSY) { 530 wait_current_trans(root); 531 if (unlikely(type == TRANS_ATTACH)) 532 ret = -ENOENT; 533 } 534 } while (ret == -EBUSY); 535 536 if (ret < 0) { 537 /* We must get the transaction if we are JOIN_NOLOCK. */ 538 BUG_ON(type == TRANS_JOIN_NOLOCK); 539 goto join_fail; 540 } 541 542 cur_trans = root->fs_info->running_transaction; 543 544 h->transid = cur_trans->transid; 545 h->transaction = cur_trans; 546 h->blocks_used = 0; 547 h->bytes_reserved = 0; 548 h->chunk_bytes_reserved = 0; 549 h->root = root; 550 h->delayed_ref_updates = 0; 551 h->use_count = 1; 552 h->adding_csums = 0; 553 h->block_rsv = NULL; 554 h->orig_rsv = NULL; 555 h->aborted = 0; 556 h->qgroup_reserved = 0; 557 h->delayed_ref_elem.seq = 0; 558 h->type = type; 559 h->allocating_chunk = false; 560 h->can_flush_pending_bgs = true; 561 h->reloc_reserved = false; 562 h->sync = false; 563 INIT_LIST_HEAD(&h->qgroup_ref_list); 564 INIT_LIST_HEAD(&h->new_bgs); 565 INIT_LIST_HEAD(&h->ordered); 566 567 smp_mb(); 568 if (cur_trans->state >= TRANS_STATE_BLOCKED && 569 may_wait_transaction(root, type)) { 570 current->journal_info = h; 571 btrfs_commit_transaction(h, root); 572 goto again; 573 } 574 575 if (num_bytes) { 576 trace_btrfs_space_reservation(root->fs_info, "transaction", 577 h->transid, num_bytes, 1); 578 h->block_rsv = &root->fs_info->trans_block_rsv; 579 h->bytes_reserved = num_bytes; 580 h->reloc_reserved = reloc_reserved; 581 } 582 h->qgroup_reserved = qgroup_reserved; 583 584 got_it: 585 btrfs_record_root_in_trans(h, root); 586 587 if (!current->journal_info && type != TRANS_USERSPACE) 588 current->journal_info = h; 589 return h; 590 591 join_fail: 592 if (type & __TRANS_FREEZABLE) 593 sb_end_intwrite(root->fs_info->sb); 594 kmem_cache_free(btrfs_trans_handle_cachep, h); 595 alloc_fail: 596 if (num_bytes) 597 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv, 598 num_bytes); 599 reserve_fail: 600 if (qgroup_reserved) 601 btrfs_qgroup_free(root, qgroup_reserved); 602 return ERR_PTR(ret); 603 } 604 605 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 606 int num_items) 607 { 608 return start_transaction(root, num_items, TRANS_START, 609 BTRFS_RESERVE_FLUSH_ALL); 610 } 611 612 struct btrfs_trans_handle *btrfs_start_transaction_lflush( 613 struct btrfs_root *root, int num_items) 614 { 615 return start_transaction(root, num_items, TRANS_START, 616 BTRFS_RESERVE_FLUSH_LIMIT); 617 } 618 619 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 620 { 621 return start_transaction(root, 0, TRANS_JOIN, 0); 622 } 623 624 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root) 625 { 626 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0); 627 } 628 629 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root) 630 { 631 return start_transaction(root, 0, TRANS_USERSPACE, 0); 632 } 633 634 /* 635 * btrfs_attach_transaction() - catch the running transaction 636 * 637 * It is used when we want to commit the current the transaction, but 638 * don't want to start a new one. 639 * 640 * Note: If this function return -ENOENT, it just means there is no 641 * running transaction. But it is possible that the inactive transaction 642 * is still in the memory, not fully on disk. If you hope there is no 643 * inactive transaction in the fs when -ENOENT is returned, you should 644 * invoke 645 * btrfs_attach_transaction_barrier() 646 */ 647 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 648 { 649 return start_transaction(root, 0, TRANS_ATTACH, 0); 650 } 651 652 /* 653 * btrfs_attach_transaction_barrier() - catch the running transaction 654 * 655 * It is similar to the above function, the differentia is this one 656 * will wait for all the inactive transactions until they fully 657 * complete. 658 */ 659 struct btrfs_trans_handle * 660 btrfs_attach_transaction_barrier(struct btrfs_root *root) 661 { 662 struct btrfs_trans_handle *trans; 663 664 trans = start_transaction(root, 0, TRANS_ATTACH, 0); 665 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT) 666 btrfs_wait_for_commit(root, 0); 667 668 return trans; 669 } 670 671 /* wait for a transaction commit to be fully complete */ 672 static noinline void wait_for_commit(struct btrfs_root *root, 673 struct btrfs_transaction *commit) 674 { 675 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED); 676 } 677 678 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid) 679 { 680 struct btrfs_transaction *cur_trans = NULL, *t; 681 int ret = 0; 682 683 if (transid) { 684 if (transid <= root->fs_info->last_trans_committed) 685 goto out; 686 687 /* find specified transaction */ 688 spin_lock(&root->fs_info->trans_lock); 689 list_for_each_entry(t, &root->fs_info->trans_list, list) { 690 if (t->transid == transid) { 691 cur_trans = t; 692 atomic_inc(&cur_trans->use_count); 693 ret = 0; 694 break; 695 } 696 if (t->transid > transid) { 697 ret = 0; 698 break; 699 } 700 } 701 spin_unlock(&root->fs_info->trans_lock); 702 703 /* 704 * The specified transaction doesn't exist, or we 705 * raced with btrfs_commit_transaction 706 */ 707 if (!cur_trans) { 708 if (transid > root->fs_info->last_trans_committed) 709 ret = -EINVAL; 710 goto out; 711 } 712 } else { 713 /* find newest transaction that is committing | committed */ 714 spin_lock(&root->fs_info->trans_lock); 715 list_for_each_entry_reverse(t, &root->fs_info->trans_list, 716 list) { 717 if (t->state >= TRANS_STATE_COMMIT_START) { 718 if (t->state == TRANS_STATE_COMPLETED) 719 break; 720 cur_trans = t; 721 atomic_inc(&cur_trans->use_count); 722 break; 723 } 724 } 725 spin_unlock(&root->fs_info->trans_lock); 726 if (!cur_trans) 727 goto out; /* nothing committing|committed */ 728 } 729 730 wait_for_commit(root, cur_trans); 731 btrfs_put_transaction(cur_trans); 732 out: 733 return ret; 734 } 735 736 void btrfs_throttle(struct btrfs_root *root) 737 { 738 if (!atomic_read(&root->fs_info->open_ioctl_trans)) 739 wait_current_trans(root); 740 } 741 742 static int should_end_transaction(struct btrfs_trans_handle *trans, 743 struct btrfs_root *root) 744 { 745 if (root->fs_info->global_block_rsv.space_info->full && 746 btrfs_check_space_for_delayed_refs(trans, root)) 747 return 1; 748 749 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5); 750 } 751 752 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans, 753 struct btrfs_root *root) 754 { 755 struct btrfs_transaction *cur_trans = trans->transaction; 756 int updates; 757 int err; 758 759 smp_mb(); 760 if (cur_trans->state >= TRANS_STATE_BLOCKED || 761 cur_trans->delayed_refs.flushing) 762 return 1; 763 764 updates = trans->delayed_ref_updates; 765 trans->delayed_ref_updates = 0; 766 if (updates) { 767 err = btrfs_run_delayed_refs(trans, root, updates * 2); 768 if (err) /* Error code will also eval true */ 769 return err; 770 } 771 772 return should_end_transaction(trans, root); 773 } 774 775 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 776 struct btrfs_root *root, int throttle) 777 { 778 struct btrfs_transaction *cur_trans = trans->transaction; 779 struct btrfs_fs_info *info = root->fs_info; 780 unsigned long cur = trans->delayed_ref_updates; 781 int lock = (trans->type != TRANS_JOIN_NOLOCK); 782 int err = 0; 783 int must_run_delayed_refs = 0; 784 785 if (trans->use_count > 1) { 786 trans->use_count--; 787 trans->block_rsv = trans->orig_rsv; 788 return 0; 789 } 790 791 btrfs_trans_release_metadata(trans, root); 792 trans->block_rsv = NULL; 793 794 if (!list_empty(&trans->new_bgs)) 795 btrfs_create_pending_block_groups(trans, root); 796 797 if (!list_empty(&trans->ordered)) { 798 spin_lock(&info->trans_lock); 799 list_splice_init(&trans->ordered, &cur_trans->pending_ordered); 800 spin_unlock(&info->trans_lock); 801 } 802 803 trans->delayed_ref_updates = 0; 804 if (!trans->sync) { 805 must_run_delayed_refs = 806 btrfs_should_throttle_delayed_refs(trans, root); 807 cur = max_t(unsigned long, cur, 32); 808 809 /* 810 * don't make the caller wait if they are from a NOLOCK 811 * or ATTACH transaction, it will deadlock with commit 812 */ 813 if (must_run_delayed_refs == 1 && 814 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH))) 815 must_run_delayed_refs = 2; 816 } 817 818 if (trans->qgroup_reserved) { 819 /* 820 * the same root has to be passed here between start_transaction 821 * and end_transaction. Subvolume quota depends on this. 822 */ 823 btrfs_qgroup_free(trans->root, trans->qgroup_reserved); 824 trans->qgroup_reserved = 0; 825 } 826 827 btrfs_trans_release_metadata(trans, root); 828 trans->block_rsv = NULL; 829 830 if (!list_empty(&trans->new_bgs)) 831 btrfs_create_pending_block_groups(trans, root); 832 833 btrfs_trans_release_chunk_metadata(trans); 834 835 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) && 836 should_end_transaction(trans, root) && 837 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) { 838 spin_lock(&info->trans_lock); 839 if (cur_trans->state == TRANS_STATE_RUNNING) 840 cur_trans->state = TRANS_STATE_BLOCKED; 841 spin_unlock(&info->trans_lock); 842 } 843 844 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) { 845 if (throttle) 846 return btrfs_commit_transaction(trans, root); 847 else 848 wake_up_process(info->transaction_kthread); 849 } 850 851 if (trans->type & __TRANS_FREEZABLE) 852 sb_end_intwrite(root->fs_info->sb); 853 854 WARN_ON(cur_trans != info->running_transaction); 855 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 856 atomic_dec(&cur_trans->num_writers); 857 extwriter_counter_dec(cur_trans, trans->type); 858 859 smp_mb(); 860 if (waitqueue_active(&cur_trans->writer_wait)) 861 wake_up(&cur_trans->writer_wait); 862 btrfs_put_transaction(cur_trans); 863 864 if (current->journal_info == trans) 865 current->journal_info = NULL; 866 867 if (throttle) 868 btrfs_run_delayed_iputs(root); 869 870 if (trans->aborted || 871 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) { 872 wake_up_process(info->transaction_kthread); 873 err = -EIO; 874 } 875 assert_qgroups_uptodate(trans); 876 877 kmem_cache_free(btrfs_trans_handle_cachep, trans); 878 if (must_run_delayed_refs) { 879 btrfs_async_run_delayed_refs(root, cur, 880 must_run_delayed_refs == 1); 881 } 882 return err; 883 } 884 885 int btrfs_end_transaction(struct btrfs_trans_handle *trans, 886 struct btrfs_root *root) 887 { 888 return __btrfs_end_transaction(trans, root, 0); 889 } 890 891 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans, 892 struct btrfs_root *root) 893 { 894 return __btrfs_end_transaction(trans, root, 1); 895 } 896 897 /* 898 * when btree blocks are allocated, they have some corresponding bits set for 899 * them in one of two extent_io trees. This is used to make sure all of 900 * those extents are sent to disk but does not wait on them 901 */ 902 int btrfs_write_marked_extents(struct btrfs_root *root, 903 struct extent_io_tree *dirty_pages, int mark) 904 { 905 int err = 0; 906 int werr = 0; 907 struct address_space *mapping = root->fs_info->btree_inode->i_mapping; 908 struct extent_state *cached_state = NULL; 909 u64 start = 0; 910 u64 end; 911 912 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 913 mark, &cached_state)) { 914 bool wait_writeback = false; 915 916 err = convert_extent_bit(dirty_pages, start, end, 917 EXTENT_NEED_WAIT, 918 mark, &cached_state, GFP_NOFS); 919 /* 920 * convert_extent_bit can return -ENOMEM, which is most of the 921 * time a temporary error. So when it happens, ignore the error 922 * and wait for writeback of this range to finish - because we 923 * failed to set the bit EXTENT_NEED_WAIT for the range, a call 924 * to btrfs_wait_marked_extents() would not know that writeback 925 * for this range started and therefore wouldn't wait for it to 926 * finish - we don't want to commit a superblock that points to 927 * btree nodes/leafs for which writeback hasn't finished yet 928 * (and without errors). 929 * We cleanup any entries left in the io tree when committing 930 * the transaction (through clear_btree_io_tree()). 931 */ 932 if (err == -ENOMEM) { 933 err = 0; 934 wait_writeback = true; 935 } 936 if (!err) 937 err = filemap_fdatawrite_range(mapping, start, end); 938 if (err) 939 werr = err; 940 else if (wait_writeback) 941 werr = filemap_fdatawait_range(mapping, start, end); 942 free_extent_state(cached_state); 943 cached_state = NULL; 944 cond_resched(); 945 start = end + 1; 946 } 947 return werr; 948 } 949 950 /* 951 * when btree blocks are allocated, they have some corresponding bits set for 952 * them in one of two extent_io trees. This is used to make sure all of 953 * those extents are on disk for transaction or log commit. We wait 954 * on all the pages and clear them from the dirty pages state tree 955 */ 956 int btrfs_wait_marked_extents(struct btrfs_root *root, 957 struct extent_io_tree *dirty_pages, int mark) 958 { 959 int err = 0; 960 int werr = 0; 961 struct address_space *mapping = root->fs_info->btree_inode->i_mapping; 962 struct extent_state *cached_state = NULL; 963 u64 start = 0; 964 u64 end; 965 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode); 966 bool errors = false; 967 968 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 969 EXTENT_NEED_WAIT, &cached_state)) { 970 /* 971 * Ignore -ENOMEM errors returned by clear_extent_bit(). 972 * When committing the transaction, we'll remove any entries 973 * left in the io tree. For a log commit, we don't remove them 974 * after committing the log because the tree can be accessed 975 * concurrently - we do it only at transaction commit time when 976 * it's safe to do it (through clear_btree_io_tree()). 977 */ 978 err = clear_extent_bit(dirty_pages, start, end, 979 EXTENT_NEED_WAIT, 980 0, 0, &cached_state, GFP_NOFS); 981 if (err == -ENOMEM) 982 err = 0; 983 if (!err) 984 err = filemap_fdatawait_range(mapping, start, end); 985 if (err) 986 werr = err; 987 free_extent_state(cached_state); 988 cached_state = NULL; 989 cond_resched(); 990 start = end + 1; 991 } 992 if (err) 993 werr = err; 994 995 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 996 if ((mark & EXTENT_DIRTY) && 997 test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, 998 &btree_ino->runtime_flags)) 999 errors = true; 1000 1001 if ((mark & EXTENT_NEW) && 1002 test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, 1003 &btree_ino->runtime_flags)) 1004 errors = true; 1005 } else { 1006 if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR, 1007 &btree_ino->runtime_flags)) 1008 errors = true; 1009 } 1010 1011 if (errors && !werr) 1012 werr = -EIO; 1013 1014 return werr; 1015 } 1016 1017 /* 1018 * when btree blocks are allocated, they have some corresponding bits set for 1019 * them in one of two extent_io trees. This is used to make sure all of 1020 * those extents are on disk for transaction or log commit 1021 */ 1022 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root, 1023 struct extent_io_tree *dirty_pages, int mark) 1024 { 1025 int ret; 1026 int ret2; 1027 struct blk_plug plug; 1028 1029 blk_start_plug(&plug); 1030 ret = btrfs_write_marked_extents(root, dirty_pages, mark); 1031 blk_finish_plug(&plug); 1032 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark); 1033 1034 if (ret) 1035 return ret; 1036 if (ret2) 1037 return ret2; 1038 return 0; 1039 } 1040 1041 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans, 1042 struct btrfs_root *root) 1043 { 1044 int ret; 1045 1046 ret = btrfs_write_and_wait_marked_extents(root, 1047 &trans->transaction->dirty_pages, 1048 EXTENT_DIRTY); 1049 clear_btree_io_tree(&trans->transaction->dirty_pages); 1050 1051 return ret; 1052 } 1053 1054 /* 1055 * this is used to update the root pointer in the tree of tree roots. 1056 * 1057 * But, in the case of the extent allocation tree, updating the root 1058 * pointer may allocate blocks which may change the root of the extent 1059 * allocation tree. 1060 * 1061 * So, this loops and repeats and makes sure the cowonly root didn't 1062 * change while the root pointer was being updated in the metadata. 1063 */ 1064 static int update_cowonly_root(struct btrfs_trans_handle *trans, 1065 struct btrfs_root *root) 1066 { 1067 int ret; 1068 u64 old_root_bytenr; 1069 u64 old_root_used; 1070 struct btrfs_root *tree_root = root->fs_info->tree_root; 1071 1072 old_root_used = btrfs_root_used(&root->root_item); 1073 1074 while (1) { 1075 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 1076 if (old_root_bytenr == root->node->start && 1077 old_root_used == btrfs_root_used(&root->root_item)) 1078 break; 1079 1080 btrfs_set_root_node(&root->root_item, root->node); 1081 ret = btrfs_update_root(trans, tree_root, 1082 &root->root_key, 1083 &root->root_item); 1084 if (ret) 1085 return ret; 1086 1087 old_root_used = btrfs_root_used(&root->root_item); 1088 } 1089 1090 return 0; 1091 } 1092 1093 /* 1094 * update all the cowonly tree roots on disk 1095 * 1096 * The error handling in this function may not be obvious. Any of the 1097 * failures will cause the file system to go offline. We still need 1098 * to clean up the delayed refs. 1099 */ 1100 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans, 1101 struct btrfs_root *root) 1102 { 1103 struct btrfs_fs_info *fs_info = root->fs_info; 1104 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; 1105 struct list_head *io_bgs = &trans->transaction->io_bgs; 1106 struct list_head *next; 1107 struct extent_buffer *eb; 1108 int ret; 1109 1110 eb = btrfs_lock_root_node(fs_info->tree_root); 1111 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 1112 0, &eb); 1113 btrfs_tree_unlock(eb); 1114 free_extent_buffer(eb); 1115 1116 if (ret) 1117 return ret; 1118 1119 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1120 if (ret) 1121 return ret; 1122 1123 ret = btrfs_run_dev_stats(trans, root->fs_info); 1124 if (ret) 1125 return ret; 1126 ret = btrfs_run_dev_replace(trans, root->fs_info); 1127 if (ret) 1128 return ret; 1129 ret = btrfs_run_qgroups(trans, root->fs_info); 1130 if (ret) 1131 return ret; 1132 1133 ret = btrfs_setup_space_cache(trans, root); 1134 if (ret) 1135 return ret; 1136 1137 /* run_qgroups might have added some more refs */ 1138 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1139 if (ret) 1140 return ret; 1141 again: 1142 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1143 next = fs_info->dirty_cowonly_roots.next; 1144 list_del_init(next); 1145 root = list_entry(next, struct btrfs_root, dirty_list); 1146 clear_bit(BTRFS_ROOT_DIRTY, &root->state); 1147 1148 if (root != fs_info->extent_root) 1149 list_add_tail(&root->dirty_list, 1150 &trans->transaction->switch_commits); 1151 ret = update_cowonly_root(trans, root); 1152 if (ret) 1153 return ret; 1154 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1155 if (ret) 1156 return ret; 1157 } 1158 1159 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { 1160 ret = btrfs_write_dirty_block_groups(trans, root); 1161 if (ret) 1162 return ret; 1163 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1164 if (ret) 1165 return ret; 1166 } 1167 1168 if (!list_empty(&fs_info->dirty_cowonly_roots)) 1169 goto again; 1170 1171 list_add_tail(&fs_info->extent_root->dirty_list, 1172 &trans->transaction->switch_commits); 1173 btrfs_after_dev_replace_commit(fs_info); 1174 1175 return 0; 1176 } 1177 1178 /* 1179 * dead roots are old snapshots that need to be deleted. This allocates 1180 * a dirty root struct and adds it into the list of dead roots that need to 1181 * be deleted 1182 */ 1183 void btrfs_add_dead_root(struct btrfs_root *root) 1184 { 1185 spin_lock(&root->fs_info->trans_lock); 1186 if (list_empty(&root->root_list)) 1187 list_add_tail(&root->root_list, &root->fs_info->dead_roots); 1188 spin_unlock(&root->fs_info->trans_lock); 1189 } 1190 1191 /* 1192 * update all the cowonly tree roots on disk 1193 */ 1194 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans, 1195 struct btrfs_root *root) 1196 { 1197 struct btrfs_root *gang[8]; 1198 struct btrfs_fs_info *fs_info = root->fs_info; 1199 int i; 1200 int ret; 1201 int err = 0; 1202 1203 spin_lock(&fs_info->fs_roots_radix_lock); 1204 while (1) { 1205 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1206 (void **)gang, 0, 1207 ARRAY_SIZE(gang), 1208 BTRFS_ROOT_TRANS_TAG); 1209 if (ret == 0) 1210 break; 1211 for (i = 0; i < ret; i++) { 1212 root = gang[i]; 1213 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1214 (unsigned long)root->root_key.objectid, 1215 BTRFS_ROOT_TRANS_TAG); 1216 spin_unlock(&fs_info->fs_roots_radix_lock); 1217 1218 btrfs_free_log(trans, root); 1219 btrfs_update_reloc_root(trans, root); 1220 btrfs_orphan_commit_root(trans, root); 1221 1222 btrfs_save_ino_cache(root, trans); 1223 1224 /* see comments in should_cow_block() */ 1225 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1226 smp_mb__after_atomic(); 1227 1228 if (root->commit_root != root->node) { 1229 list_add_tail(&root->dirty_list, 1230 &trans->transaction->switch_commits); 1231 btrfs_set_root_node(&root->root_item, 1232 root->node); 1233 } 1234 1235 err = btrfs_update_root(trans, fs_info->tree_root, 1236 &root->root_key, 1237 &root->root_item); 1238 spin_lock(&fs_info->fs_roots_radix_lock); 1239 if (err) 1240 break; 1241 } 1242 } 1243 spin_unlock(&fs_info->fs_roots_radix_lock); 1244 return err; 1245 } 1246 1247 /* 1248 * defrag a given btree. 1249 * Every leaf in the btree is read and defragged. 1250 */ 1251 int btrfs_defrag_root(struct btrfs_root *root) 1252 { 1253 struct btrfs_fs_info *info = root->fs_info; 1254 struct btrfs_trans_handle *trans; 1255 int ret; 1256 1257 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) 1258 return 0; 1259 1260 while (1) { 1261 trans = btrfs_start_transaction(root, 0); 1262 if (IS_ERR(trans)) 1263 return PTR_ERR(trans); 1264 1265 ret = btrfs_defrag_leaves(trans, root); 1266 1267 btrfs_end_transaction(trans, root); 1268 btrfs_btree_balance_dirty(info->tree_root); 1269 cond_resched(); 1270 1271 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN) 1272 break; 1273 1274 if (btrfs_defrag_cancelled(root->fs_info)) { 1275 pr_debug("BTRFS: defrag_root cancelled\n"); 1276 ret = -EAGAIN; 1277 break; 1278 } 1279 } 1280 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); 1281 return ret; 1282 } 1283 1284 /* 1285 * new snapshots need to be created at a very specific time in the 1286 * transaction commit. This does the actual creation. 1287 * 1288 * Note: 1289 * If the error which may affect the commitment of the current transaction 1290 * happens, we should return the error number. If the error which just affect 1291 * the creation of the pending snapshots, just return 0. 1292 */ 1293 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1294 struct btrfs_fs_info *fs_info, 1295 struct btrfs_pending_snapshot *pending) 1296 { 1297 struct btrfs_key key; 1298 struct btrfs_root_item *new_root_item; 1299 struct btrfs_root *tree_root = fs_info->tree_root; 1300 struct btrfs_root *root = pending->root; 1301 struct btrfs_root *parent_root; 1302 struct btrfs_block_rsv *rsv; 1303 struct inode *parent_inode; 1304 struct btrfs_path *path; 1305 struct btrfs_dir_item *dir_item; 1306 struct dentry *dentry; 1307 struct extent_buffer *tmp; 1308 struct extent_buffer *old; 1309 struct timespec cur_time = CURRENT_TIME; 1310 int ret = 0; 1311 u64 to_reserve = 0; 1312 u64 index = 0; 1313 u64 objectid; 1314 u64 root_flags; 1315 uuid_le new_uuid; 1316 1317 path = btrfs_alloc_path(); 1318 if (!path) { 1319 pending->error = -ENOMEM; 1320 return 0; 1321 } 1322 1323 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS); 1324 if (!new_root_item) { 1325 pending->error = -ENOMEM; 1326 goto root_item_alloc_fail; 1327 } 1328 1329 pending->error = btrfs_find_free_objectid(tree_root, &objectid); 1330 if (pending->error) 1331 goto no_free_objectid; 1332 1333 /* 1334 * Make qgroup to skip current new snapshot's qgroupid, as it is 1335 * accounted by later btrfs_qgroup_inherit(). 1336 */ 1337 btrfs_set_skip_qgroup(trans, objectid); 1338 1339 btrfs_reloc_pre_snapshot(pending, &to_reserve); 1340 1341 if (to_reserve > 0) { 1342 pending->error = btrfs_block_rsv_add(root, 1343 &pending->block_rsv, 1344 to_reserve, 1345 BTRFS_RESERVE_NO_FLUSH); 1346 if (pending->error) 1347 goto clear_skip_qgroup; 1348 } 1349 1350 key.objectid = objectid; 1351 key.offset = (u64)-1; 1352 key.type = BTRFS_ROOT_ITEM_KEY; 1353 1354 rsv = trans->block_rsv; 1355 trans->block_rsv = &pending->block_rsv; 1356 trans->bytes_reserved = trans->block_rsv->reserved; 1357 1358 dentry = pending->dentry; 1359 parent_inode = pending->dir; 1360 parent_root = BTRFS_I(parent_inode)->root; 1361 record_root_in_trans(trans, parent_root); 1362 1363 /* 1364 * insert the directory item 1365 */ 1366 ret = btrfs_set_inode_index(parent_inode, &index); 1367 BUG_ON(ret); /* -ENOMEM */ 1368 1369 /* check if there is a file/dir which has the same name. */ 1370 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1371 btrfs_ino(parent_inode), 1372 dentry->d_name.name, 1373 dentry->d_name.len, 0); 1374 if (dir_item != NULL && !IS_ERR(dir_item)) { 1375 pending->error = -EEXIST; 1376 goto dir_item_existed; 1377 } else if (IS_ERR(dir_item)) { 1378 ret = PTR_ERR(dir_item); 1379 btrfs_abort_transaction(trans, root, ret); 1380 goto fail; 1381 } 1382 btrfs_release_path(path); 1383 1384 /* 1385 * pull in the delayed directory update 1386 * and the delayed inode item 1387 * otherwise we corrupt the FS during 1388 * snapshot 1389 */ 1390 ret = btrfs_run_delayed_items(trans, root); 1391 if (ret) { /* Transaction aborted */ 1392 btrfs_abort_transaction(trans, root, ret); 1393 goto fail; 1394 } 1395 1396 record_root_in_trans(trans, root); 1397 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1398 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1399 btrfs_check_and_init_root_item(new_root_item); 1400 1401 root_flags = btrfs_root_flags(new_root_item); 1402 if (pending->readonly) 1403 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1404 else 1405 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1406 btrfs_set_root_flags(new_root_item, root_flags); 1407 1408 btrfs_set_root_generation_v2(new_root_item, 1409 trans->transid); 1410 uuid_le_gen(&new_uuid); 1411 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 1412 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1413 BTRFS_UUID_SIZE); 1414 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1415 memset(new_root_item->received_uuid, 0, 1416 sizeof(new_root_item->received_uuid)); 1417 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1418 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1419 btrfs_set_root_stransid(new_root_item, 0); 1420 btrfs_set_root_rtransid(new_root_item, 0); 1421 } 1422 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1423 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1424 btrfs_set_root_otransid(new_root_item, trans->transid); 1425 1426 old = btrfs_lock_root_node(root); 1427 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old); 1428 if (ret) { 1429 btrfs_tree_unlock(old); 1430 free_extent_buffer(old); 1431 btrfs_abort_transaction(trans, root, ret); 1432 goto fail; 1433 } 1434 1435 btrfs_set_lock_blocking(old); 1436 1437 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1438 /* clean up in any case */ 1439 btrfs_tree_unlock(old); 1440 free_extent_buffer(old); 1441 if (ret) { 1442 btrfs_abort_transaction(trans, root, ret); 1443 goto fail; 1444 } 1445 /* see comments in should_cow_block() */ 1446 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1447 smp_wmb(); 1448 1449 btrfs_set_root_node(new_root_item, tmp); 1450 /* record when the snapshot was created in key.offset */ 1451 key.offset = trans->transid; 1452 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1453 btrfs_tree_unlock(tmp); 1454 free_extent_buffer(tmp); 1455 if (ret) { 1456 btrfs_abort_transaction(trans, root, ret); 1457 goto fail; 1458 } 1459 1460 /* 1461 * insert root back/forward references 1462 */ 1463 ret = btrfs_add_root_ref(trans, tree_root, objectid, 1464 parent_root->root_key.objectid, 1465 btrfs_ino(parent_inode), index, 1466 dentry->d_name.name, dentry->d_name.len); 1467 if (ret) { 1468 btrfs_abort_transaction(trans, root, ret); 1469 goto fail; 1470 } 1471 1472 key.offset = (u64)-1; 1473 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key); 1474 if (IS_ERR(pending->snap)) { 1475 ret = PTR_ERR(pending->snap); 1476 btrfs_abort_transaction(trans, root, ret); 1477 goto fail; 1478 } 1479 1480 ret = btrfs_reloc_post_snapshot(trans, pending); 1481 if (ret) { 1482 btrfs_abort_transaction(trans, root, ret); 1483 goto fail; 1484 } 1485 1486 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1487 if (ret) { 1488 btrfs_abort_transaction(trans, root, ret); 1489 goto fail; 1490 } 1491 1492 ret = btrfs_insert_dir_item(trans, parent_root, 1493 dentry->d_name.name, dentry->d_name.len, 1494 parent_inode, &key, 1495 BTRFS_FT_DIR, index); 1496 /* We have check then name at the beginning, so it is impossible. */ 1497 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1498 if (ret) { 1499 btrfs_abort_transaction(trans, root, ret); 1500 goto fail; 1501 } 1502 1503 btrfs_i_size_write(parent_inode, parent_inode->i_size + 1504 dentry->d_name.len * 2); 1505 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 1506 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode); 1507 if (ret) { 1508 btrfs_abort_transaction(trans, root, ret); 1509 goto fail; 1510 } 1511 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b, 1512 BTRFS_UUID_KEY_SUBVOL, objectid); 1513 if (ret) { 1514 btrfs_abort_transaction(trans, root, ret); 1515 goto fail; 1516 } 1517 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1518 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, 1519 new_root_item->received_uuid, 1520 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1521 objectid); 1522 if (ret && ret != -EEXIST) { 1523 btrfs_abort_transaction(trans, root, ret); 1524 goto fail; 1525 } 1526 } 1527 1528 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1529 if (ret) { 1530 btrfs_abort_transaction(trans, root, ret); 1531 goto fail; 1532 } 1533 1534 /* 1535 * account qgroup counters before qgroup_inherit() 1536 */ 1537 ret = btrfs_qgroup_prepare_account_extents(trans, fs_info); 1538 if (ret) 1539 goto fail; 1540 ret = btrfs_qgroup_account_extents(trans, fs_info); 1541 if (ret) 1542 goto fail; 1543 ret = btrfs_qgroup_inherit(trans, fs_info, 1544 root->root_key.objectid, 1545 objectid, pending->inherit); 1546 if (ret) { 1547 btrfs_abort_transaction(trans, root, ret); 1548 goto fail; 1549 } 1550 1551 fail: 1552 pending->error = ret; 1553 dir_item_existed: 1554 trans->block_rsv = rsv; 1555 trans->bytes_reserved = 0; 1556 clear_skip_qgroup: 1557 btrfs_clear_skip_qgroup(trans); 1558 no_free_objectid: 1559 kfree(new_root_item); 1560 root_item_alloc_fail: 1561 btrfs_free_path(path); 1562 return ret; 1563 } 1564 1565 /* 1566 * create all the snapshots we've scheduled for creation 1567 */ 1568 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans, 1569 struct btrfs_fs_info *fs_info) 1570 { 1571 struct btrfs_pending_snapshot *pending, *next; 1572 struct list_head *head = &trans->transaction->pending_snapshots; 1573 int ret = 0; 1574 1575 list_for_each_entry_safe(pending, next, head, list) { 1576 list_del(&pending->list); 1577 ret = create_pending_snapshot(trans, fs_info, pending); 1578 if (ret) 1579 break; 1580 } 1581 return ret; 1582 } 1583 1584 static void update_super_roots(struct btrfs_root *root) 1585 { 1586 struct btrfs_root_item *root_item; 1587 struct btrfs_super_block *super; 1588 1589 super = root->fs_info->super_copy; 1590 1591 root_item = &root->fs_info->chunk_root->root_item; 1592 super->chunk_root = root_item->bytenr; 1593 super->chunk_root_generation = root_item->generation; 1594 super->chunk_root_level = root_item->level; 1595 1596 root_item = &root->fs_info->tree_root->root_item; 1597 super->root = root_item->bytenr; 1598 super->generation = root_item->generation; 1599 super->root_level = root_item->level; 1600 if (btrfs_test_opt(root, SPACE_CACHE)) 1601 super->cache_generation = root_item->generation; 1602 if (root->fs_info->update_uuid_tree_gen) 1603 super->uuid_tree_generation = root_item->generation; 1604 } 1605 1606 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1607 { 1608 struct btrfs_transaction *trans; 1609 int ret = 0; 1610 1611 spin_lock(&info->trans_lock); 1612 trans = info->running_transaction; 1613 if (trans) 1614 ret = (trans->state >= TRANS_STATE_COMMIT_START); 1615 spin_unlock(&info->trans_lock); 1616 return ret; 1617 } 1618 1619 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1620 { 1621 struct btrfs_transaction *trans; 1622 int ret = 0; 1623 1624 spin_lock(&info->trans_lock); 1625 trans = info->running_transaction; 1626 if (trans) 1627 ret = is_transaction_blocked(trans); 1628 spin_unlock(&info->trans_lock); 1629 return ret; 1630 } 1631 1632 /* 1633 * wait for the current transaction commit to start and block subsequent 1634 * transaction joins 1635 */ 1636 static void wait_current_trans_commit_start(struct btrfs_root *root, 1637 struct btrfs_transaction *trans) 1638 { 1639 wait_event(root->fs_info->transaction_blocked_wait, 1640 trans->state >= TRANS_STATE_COMMIT_START || 1641 trans->aborted); 1642 } 1643 1644 /* 1645 * wait for the current transaction to start and then become unblocked. 1646 * caller holds ref. 1647 */ 1648 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root, 1649 struct btrfs_transaction *trans) 1650 { 1651 wait_event(root->fs_info->transaction_wait, 1652 trans->state >= TRANS_STATE_UNBLOCKED || 1653 trans->aborted); 1654 } 1655 1656 /* 1657 * commit transactions asynchronously. once btrfs_commit_transaction_async 1658 * returns, any subsequent transaction will not be allowed to join. 1659 */ 1660 struct btrfs_async_commit { 1661 struct btrfs_trans_handle *newtrans; 1662 struct btrfs_root *root; 1663 struct work_struct work; 1664 }; 1665 1666 static void do_async_commit(struct work_struct *work) 1667 { 1668 struct btrfs_async_commit *ac = 1669 container_of(work, struct btrfs_async_commit, work); 1670 1671 /* 1672 * We've got freeze protection passed with the transaction. 1673 * Tell lockdep about it. 1674 */ 1675 if (ac->newtrans->type & __TRANS_FREEZABLE) 1676 __sb_writers_acquired(ac->root->fs_info->sb, SB_FREEZE_FS); 1677 1678 current->journal_info = ac->newtrans; 1679 1680 btrfs_commit_transaction(ac->newtrans, ac->root); 1681 kfree(ac); 1682 } 1683 1684 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, 1685 struct btrfs_root *root, 1686 int wait_for_unblock) 1687 { 1688 struct btrfs_async_commit *ac; 1689 struct btrfs_transaction *cur_trans; 1690 1691 ac = kmalloc(sizeof(*ac), GFP_NOFS); 1692 if (!ac) 1693 return -ENOMEM; 1694 1695 INIT_WORK(&ac->work, do_async_commit); 1696 ac->root = root; 1697 ac->newtrans = btrfs_join_transaction(root); 1698 if (IS_ERR(ac->newtrans)) { 1699 int err = PTR_ERR(ac->newtrans); 1700 kfree(ac); 1701 return err; 1702 } 1703 1704 /* take transaction reference */ 1705 cur_trans = trans->transaction; 1706 atomic_inc(&cur_trans->use_count); 1707 1708 btrfs_end_transaction(trans, root); 1709 1710 /* 1711 * Tell lockdep we've released the freeze rwsem, since the 1712 * async commit thread will be the one to unlock it. 1713 */ 1714 if (ac->newtrans->type & __TRANS_FREEZABLE) 1715 __sb_writers_release(root->fs_info->sb, SB_FREEZE_FS); 1716 1717 schedule_work(&ac->work); 1718 1719 /* wait for transaction to start and unblock */ 1720 if (wait_for_unblock) 1721 wait_current_trans_commit_start_and_unblock(root, cur_trans); 1722 else 1723 wait_current_trans_commit_start(root, cur_trans); 1724 1725 if (current->journal_info == trans) 1726 current->journal_info = NULL; 1727 1728 btrfs_put_transaction(cur_trans); 1729 return 0; 1730 } 1731 1732 1733 static void cleanup_transaction(struct btrfs_trans_handle *trans, 1734 struct btrfs_root *root, int err) 1735 { 1736 struct btrfs_transaction *cur_trans = trans->transaction; 1737 DEFINE_WAIT(wait); 1738 1739 WARN_ON(trans->use_count > 1); 1740 1741 btrfs_abort_transaction(trans, root, err); 1742 1743 spin_lock(&root->fs_info->trans_lock); 1744 1745 /* 1746 * If the transaction is removed from the list, it means this 1747 * transaction has been committed successfully, so it is impossible 1748 * to call the cleanup function. 1749 */ 1750 BUG_ON(list_empty(&cur_trans->list)); 1751 1752 list_del_init(&cur_trans->list); 1753 if (cur_trans == root->fs_info->running_transaction) { 1754 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1755 spin_unlock(&root->fs_info->trans_lock); 1756 wait_event(cur_trans->writer_wait, 1757 atomic_read(&cur_trans->num_writers) == 1); 1758 1759 spin_lock(&root->fs_info->trans_lock); 1760 } 1761 spin_unlock(&root->fs_info->trans_lock); 1762 1763 btrfs_cleanup_one_transaction(trans->transaction, root); 1764 1765 spin_lock(&root->fs_info->trans_lock); 1766 if (cur_trans == root->fs_info->running_transaction) 1767 root->fs_info->running_transaction = NULL; 1768 spin_unlock(&root->fs_info->trans_lock); 1769 1770 if (trans->type & __TRANS_FREEZABLE) 1771 sb_end_intwrite(root->fs_info->sb); 1772 btrfs_put_transaction(cur_trans); 1773 btrfs_put_transaction(cur_trans); 1774 1775 trace_btrfs_transaction_commit(root); 1776 1777 if (current->journal_info == trans) 1778 current->journal_info = NULL; 1779 btrfs_scrub_cancel(root->fs_info); 1780 1781 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1782 } 1783 1784 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info) 1785 { 1786 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT)) 1787 return btrfs_start_delalloc_roots(fs_info, 1, -1); 1788 return 0; 1789 } 1790 1791 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info) 1792 { 1793 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT)) 1794 btrfs_wait_ordered_roots(fs_info, -1); 1795 } 1796 1797 static inline void 1798 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans, 1799 struct btrfs_fs_info *fs_info) 1800 { 1801 struct btrfs_ordered_extent *ordered; 1802 1803 spin_lock(&fs_info->trans_lock); 1804 while (!list_empty(&cur_trans->pending_ordered)) { 1805 ordered = list_first_entry(&cur_trans->pending_ordered, 1806 struct btrfs_ordered_extent, 1807 trans_list); 1808 list_del_init(&ordered->trans_list); 1809 spin_unlock(&fs_info->trans_lock); 1810 1811 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_COMPLETE, 1812 &ordered->flags)); 1813 btrfs_put_ordered_extent(ordered); 1814 spin_lock(&fs_info->trans_lock); 1815 } 1816 spin_unlock(&fs_info->trans_lock); 1817 } 1818 1819 int btrfs_commit_transaction(struct btrfs_trans_handle *trans, 1820 struct btrfs_root *root) 1821 { 1822 struct btrfs_transaction *cur_trans = trans->transaction; 1823 struct btrfs_transaction *prev_trans = NULL; 1824 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode); 1825 int ret; 1826 1827 /* Stop the commit early if ->aborted is set */ 1828 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 1829 ret = cur_trans->aborted; 1830 btrfs_end_transaction(trans, root); 1831 return ret; 1832 } 1833 1834 /* make a pass through all the delayed refs we have so far 1835 * any runnings procs may add more while we are here 1836 */ 1837 ret = btrfs_run_delayed_refs(trans, root, 0); 1838 if (ret) { 1839 btrfs_end_transaction(trans, root); 1840 return ret; 1841 } 1842 1843 btrfs_trans_release_metadata(trans, root); 1844 trans->block_rsv = NULL; 1845 if (trans->qgroup_reserved) { 1846 btrfs_qgroup_free(root, trans->qgroup_reserved); 1847 trans->qgroup_reserved = 0; 1848 } 1849 1850 cur_trans = trans->transaction; 1851 1852 /* 1853 * set the flushing flag so procs in this transaction have to 1854 * start sending their work down. 1855 */ 1856 cur_trans->delayed_refs.flushing = 1; 1857 smp_wmb(); 1858 1859 if (!list_empty(&trans->new_bgs)) 1860 btrfs_create_pending_block_groups(trans, root); 1861 1862 ret = btrfs_run_delayed_refs(trans, root, 0); 1863 if (ret) { 1864 btrfs_end_transaction(trans, root); 1865 return ret; 1866 } 1867 1868 if (!cur_trans->dirty_bg_run) { 1869 int run_it = 0; 1870 1871 /* this mutex is also taken before trying to set 1872 * block groups readonly. We need to make sure 1873 * that nobody has set a block group readonly 1874 * after a extents from that block group have been 1875 * allocated for cache files. btrfs_set_block_group_ro 1876 * will wait for the transaction to commit if it 1877 * finds dirty_bg_run = 1 1878 * 1879 * The dirty_bg_run flag is also used to make sure only 1880 * one process starts all the block group IO. It wouldn't 1881 * hurt to have more than one go through, but there's no 1882 * real advantage to it either. 1883 */ 1884 mutex_lock(&root->fs_info->ro_block_group_mutex); 1885 if (!cur_trans->dirty_bg_run) { 1886 run_it = 1; 1887 cur_trans->dirty_bg_run = 1; 1888 } 1889 mutex_unlock(&root->fs_info->ro_block_group_mutex); 1890 1891 if (run_it) 1892 ret = btrfs_start_dirty_block_groups(trans, root); 1893 } 1894 if (ret) { 1895 btrfs_end_transaction(trans, root); 1896 return ret; 1897 } 1898 1899 spin_lock(&root->fs_info->trans_lock); 1900 list_splice_init(&trans->ordered, &cur_trans->pending_ordered); 1901 if (cur_trans->state >= TRANS_STATE_COMMIT_START) { 1902 spin_unlock(&root->fs_info->trans_lock); 1903 atomic_inc(&cur_trans->use_count); 1904 ret = btrfs_end_transaction(trans, root); 1905 1906 wait_for_commit(root, cur_trans); 1907 1908 if (unlikely(cur_trans->aborted)) 1909 ret = cur_trans->aborted; 1910 1911 btrfs_put_transaction(cur_trans); 1912 1913 return ret; 1914 } 1915 1916 cur_trans->state = TRANS_STATE_COMMIT_START; 1917 wake_up(&root->fs_info->transaction_blocked_wait); 1918 1919 if (cur_trans->list.prev != &root->fs_info->trans_list) { 1920 prev_trans = list_entry(cur_trans->list.prev, 1921 struct btrfs_transaction, list); 1922 if (prev_trans->state != TRANS_STATE_COMPLETED) { 1923 atomic_inc(&prev_trans->use_count); 1924 spin_unlock(&root->fs_info->trans_lock); 1925 1926 wait_for_commit(root, prev_trans); 1927 ret = prev_trans->aborted; 1928 1929 btrfs_put_transaction(prev_trans); 1930 if (ret) 1931 goto cleanup_transaction; 1932 } else { 1933 spin_unlock(&root->fs_info->trans_lock); 1934 } 1935 } else { 1936 spin_unlock(&root->fs_info->trans_lock); 1937 } 1938 1939 extwriter_counter_dec(cur_trans, trans->type); 1940 1941 ret = btrfs_start_delalloc_flush(root->fs_info); 1942 if (ret) 1943 goto cleanup_transaction; 1944 1945 ret = btrfs_run_delayed_items(trans, root); 1946 if (ret) 1947 goto cleanup_transaction; 1948 1949 wait_event(cur_trans->writer_wait, 1950 extwriter_counter_read(cur_trans) == 0); 1951 1952 /* some pending stuffs might be added after the previous flush. */ 1953 ret = btrfs_run_delayed_items(trans, root); 1954 if (ret) 1955 goto cleanup_transaction; 1956 1957 btrfs_wait_delalloc_flush(root->fs_info); 1958 1959 btrfs_wait_pending_ordered(cur_trans, root->fs_info); 1960 1961 btrfs_scrub_pause(root); 1962 /* 1963 * Ok now we need to make sure to block out any other joins while we 1964 * commit the transaction. We could have started a join before setting 1965 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 1966 */ 1967 spin_lock(&root->fs_info->trans_lock); 1968 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1969 spin_unlock(&root->fs_info->trans_lock); 1970 wait_event(cur_trans->writer_wait, 1971 atomic_read(&cur_trans->num_writers) == 1); 1972 1973 /* ->aborted might be set after the previous check, so check it */ 1974 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 1975 ret = cur_trans->aborted; 1976 goto scrub_continue; 1977 } 1978 /* 1979 * the reloc mutex makes sure that we stop 1980 * the balancing code from coming in and moving 1981 * extents around in the middle of the commit 1982 */ 1983 mutex_lock(&root->fs_info->reloc_mutex); 1984 1985 /* 1986 * We needn't worry about the delayed items because we will 1987 * deal with them in create_pending_snapshot(), which is the 1988 * core function of the snapshot creation. 1989 */ 1990 ret = create_pending_snapshots(trans, root->fs_info); 1991 if (ret) { 1992 mutex_unlock(&root->fs_info->reloc_mutex); 1993 goto scrub_continue; 1994 } 1995 1996 /* 1997 * We insert the dir indexes of the snapshots and update the inode 1998 * of the snapshots' parents after the snapshot creation, so there 1999 * are some delayed items which are not dealt with. Now deal with 2000 * them. 2001 * 2002 * We needn't worry that this operation will corrupt the snapshots, 2003 * because all the tree which are snapshoted will be forced to COW 2004 * the nodes and leaves. 2005 */ 2006 ret = btrfs_run_delayed_items(trans, root); 2007 if (ret) { 2008 mutex_unlock(&root->fs_info->reloc_mutex); 2009 goto scrub_continue; 2010 } 2011 2012 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 2013 if (ret) { 2014 mutex_unlock(&root->fs_info->reloc_mutex); 2015 goto scrub_continue; 2016 } 2017 2018 /* Reocrd old roots for later qgroup accounting */ 2019 ret = btrfs_qgroup_prepare_account_extents(trans, root->fs_info); 2020 if (ret) { 2021 mutex_unlock(&root->fs_info->reloc_mutex); 2022 goto scrub_continue; 2023 } 2024 2025 /* 2026 * make sure none of the code above managed to slip in a 2027 * delayed item 2028 */ 2029 btrfs_assert_delayed_root_empty(root); 2030 2031 WARN_ON(cur_trans != trans->transaction); 2032 2033 /* btrfs_commit_tree_roots is responsible for getting the 2034 * various roots consistent with each other. Every pointer 2035 * in the tree of tree roots has to point to the most up to date 2036 * root for every subvolume and other tree. So, we have to keep 2037 * the tree logging code from jumping in and changing any 2038 * of the trees. 2039 * 2040 * At this point in the commit, there can't be any tree-log 2041 * writers, but a little lower down we drop the trans mutex 2042 * and let new people in. By holding the tree_log_mutex 2043 * from now until after the super is written, we avoid races 2044 * with the tree-log code. 2045 */ 2046 mutex_lock(&root->fs_info->tree_log_mutex); 2047 2048 ret = commit_fs_roots(trans, root); 2049 if (ret) { 2050 mutex_unlock(&root->fs_info->tree_log_mutex); 2051 mutex_unlock(&root->fs_info->reloc_mutex); 2052 goto scrub_continue; 2053 } 2054 2055 /* 2056 * Since the transaction is done, we can apply the pending changes 2057 * before the next transaction. 2058 */ 2059 btrfs_apply_pending_changes(root->fs_info); 2060 2061 /* commit_fs_roots gets rid of all the tree log roots, it is now 2062 * safe to free the root of tree log roots 2063 */ 2064 btrfs_free_log_root_tree(trans, root->fs_info); 2065 2066 /* 2067 * Since fs roots are all committed, we can get a quite accurate 2068 * new_roots. So let's do quota accounting. 2069 */ 2070 ret = btrfs_qgroup_account_extents(trans, root->fs_info); 2071 if (ret < 0) { 2072 mutex_unlock(&root->fs_info->tree_log_mutex); 2073 mutex_unlock(&root->fs_info->reloc_mutex); 2074 goto scrub_continue; 2075 } 2076 2077 ret = commit_cowonly_roots(trans, root); 2078 if (ret) { 2079 mutex_unlock(&root->fs_info->tree_log_mutex); 2080 mutex_unlock(&root->fs_info->reloc_mutex); 2081 goto scrub_continue; 2082 } 2083 2084 /* 2085 * The tasks which save the space cache and inode cache may also 2086 * update ->aborted, check it. 2087 */ 2088 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 2089 ret = cur_trans->aborted; 2090 mutex_unlock(&root->fs_info->tree_log_mutex); 2091 mutex_unlock(&root->fs_info->reloc_mutex); 2092 goto scrub_continue; 2093 } 2094 2095 btrfs_prepare_extent_commit(trans, root); 2096 2097 cur_trans = root->fs_info->running_transaction; 2098 2099 btrfs_set_root_node(&root->fs_info->tree_root->root_item, 2100 root->fs_info->tree_root->node); 2101 list_add_tail(&root->fs_info->tree_root->dirty_list, 2102 &cur_trans->switch_commits); 2103 2104 btrfs_set_root_node(&root->fs_info->chunk_root->root_item, 2105 root->fs_info->chunk_root->node); 2106 list_add_tail(&root->fs_info->chunk_root->dirty_list, 2107 &cur_trans->switch_commits); 2108 2109 switch_commit_roots(cur_trans, root->fs_info); 2110 2111 assert_qgroups_uptodate(trans); 2112 ASSERT(list_empty(&cur_trans->dirty_bgs)); 2113 ASSERT(list_empty(&cur_trans->io_bgs)); 2114 update_super_roots(root); 2115 2116 btrfs_set_super_log_root(root->fs_info->super_copy, 0); 2117 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0); 2118 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy, 2119 sizeof(*root->fs_info->super_copy)); 2120 2121 btrfs_update_commit_device_size(root->fs_info); 2122 btrfs_update_commit_device_bytes_used(root, cur_trans); 2123 2124 clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags); 2125 clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags); 2126 2127 btrfs_trans_release_chunk_metadata(trans); 2128 2129 spin_lock(&root->fs_info->trans_lock); 2130 cur_trans->state = TRANS_STATE_UNBLOCKED; 2131 root->fs_info->running_transaction = NULL; 2132 spin_unlock(&root->fs_info->trans_lock); 2133 mutex_unlock(&root->fs_info->reloc_mutex); 2134 2135 wake_up(&root->fs_info->transaction_wait); 2136 2137 ret = btrfs_write_and_wait_transaction(trans, root); 2138 if (ret) { 2139 btrfs_error(root->fs_info, ret, 2140 "Error while writing out transaction"); 2141 mutex_unlock(&root->fs_info->tree_log_mutex); 2142 goto scrub_continue; 2143 } 2144 2145 ret = write_ctree_super(trans, root, 0); 2146 if (ret) { 2147 mutex_unlock(&root->fs_info->tree_log_mutex); 2148 goto scrub_continue; 2149 } 2150 2151 /* 2152 * the super is written, we can safely allow the tree-loggers 2153 * to go about their business 2154 */ 2155 mutex_unlock(&root->fs_info->tree_log_mutex); 2156 2157 btrfs_finish_extent_commit(trans, root); 2158 2159 if (cur_trans->have_free_bgs) 2160 btrfs_clear_space_info_full(root->fs_info); 2161 2162 root->fs_info->last_trans_committed = cur_trans->transid; 2163 /* 2164 * We needn't acquire the lock here because there is no other task 2165 * which can change it. 2166 */ 2167 cur_trans->state = TRANS_STATE_COMPLETED; 2168 wake_up(&cur_trans->commit_wait); 2169 2170 spin_lock(&root->fs_info->trans_lock); 2171 list_del_init(&cur_trans->list); 2172 spin_unlock(&root->fs_info->trans_lock); 2173 2174 btrfs_put_transaction(cur_trans); 2175 btrfs_put_transaction(cur_trans); 2176 2177 if (trans->type & __TRANS_FREEZABLE) 2178 sb_end_intwrite(root->fs_info->sb); 2179 2180 trace_btrfs_transaction_commit(root); 2181 2182 btrfs_scrub_continue(root); 2183 2184 if (current->journal_info == trans) 2185 current->journal_info = NULL; 2186 2187 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2188 2189 if (current != root->fs_info->transaction_kthread && 2190 current != root->fs_info->cleaner_kthread) 2191 btrfs_run_delayed_iputs(root); 2192 2193 return ret; 2194 2195 scrub_continue: 2196 btrfs_scrub_continue(root); 2197 cleanup_transaction: 2198 btrfs_trans_release_metadata(trans, root); 2199 btrfs_trans_release_chunk_metadata(trans); 2200 trans->block_rsv = NULL; 2201 if (trans->qgroup_reserved) { 2202 btrfs_qgroup_free(root, trans->qgroup_reserved); 2203 trans->qgroup_reserved = 0; 2204 } 2205 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction."); 2206 if (current->journal_info == trans) 2207 current->journal_info = NULL; 2208 cleanup_transaction(trans, root, ret); 2209 2210 return ret; 2211 } 2212 2213 /* 2214 * return < 0 if error 2215 * 0 if there are no more dead_roots at the time of call 2216 * 1 there are more to be processed, call me again 2217 * 2218 * The return value indicates there are certainly more snapshots to delete, but 2219 * if there comes a new one during processing, it may return 0. We don't mind, 2220 * because btrfs_commit_super will poke cleaner thread and it will process it a 2221 * few seconds later. 2222 */ 2223 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root) 2224 { 2225 int ret; 2226 struct btrfs_fs_info *fs_info = root->fs_info; 2227 2228 spin_lock(&fs_info->trans_lock); 2229 if (list_empty(&fs_info->dead_roots)) { 2230 spin_unlock(&fs_info->trans_lock); 2231 return 0; 2232 } 2233 root = list_first_entry(&fs_info->dead_roots, 2234 struct btrfs_root, root_list); 2235 list_del_init(&root->root_list); 2236 spin_unlock(&fs_info->trans_lock); 2237 2238 pr_debug("BTRFS: cleaner removing %llu\n", root->objectid); 2239 2240 btrfs_kill_all_delayed_nodes(root); 2241 2242 if (btrfs_header_backref_rev(root->node) < 2243 BTRFS_MIXED_BACKREF_REV) 2244 ret = btrfs_drop_snapshot(root, NULL, 0, 0); 2245 else 2246 ret = btrfs_drop_snapshot(root, NULL, 1, 0); 2247 2248 return (ret < 0) ? 0 : 1; 2249 } 2250 2251 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info) 2252 { 2253 unsigned long prev; 2254 unsigned long bit; 2255 2256 prev = xchg(&fs_info->pending_changes, 0); 2257 if (!prev) 2258 return; 2259 2260 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE; 2261 if (prev & bit) 2262 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2263 prev &= ~bit; 2264 2265 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE; 2266 if (prev & bit) 2267 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2268 prev &= ~bit; 2269 2270 bit = 1 << BTRFS_PENDING_COMMIT; 2271 if (prev & bit) 2272 btrfs_debug(fs_info, "pending commit done"); 2273 prev &= ~bit; 2274 2275 if (prev) 2276 btrfs_warn(fs_info, 2277 "unknown pending changes left 0x%lx, ignoring", prev); 2278 } 2279