1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/writeback.h> 23 #include <linux/pagemap.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include "ctree.h" 27 #include "disk-io.h" 28 #include "transaction.h" 29 #include "locking.h" 30 #include "tree-log.h" 31 #include "inode-map.h" 32 #include "volumes.h" 33 #include "dev-replace.h" 34 35 #define BTRFS_ROOT_TRANS_TAG 0 36 37 void put_transaction(struct btrfs_transaction *transaction) 38 { 39 WARN_ON(atomic_read(&transaction->use_count) == 0); 40 if (atomic_dec_and_test(&transaction->use_count)) { 41 BUG_ON(!list_empty(&transaction->list)); 42 WARN_ON(transaction->delayed_refs.root.rb_node); 43 kmem_cache_free(btrfs_transaction_cachep, transaction); 44 } 45 } 46 47 static noinline void switch_commit_root(struct btrfs_root *root) 48 { 49 free_extent_buffer(root->commit_root); 50 root->commit_root = btrfs_root_node(root); 51 } 52 53 static inline int can_join_transaction(struct btrfs_transaction *trans, 54 int type) 55 { 56 return !(trans->in_commit && 57 type != TRANS_JOIN && 58 type != TRANS_JOIN_NOLOCK); 59 } 60 61 /* 62 * either allocate a new transaction or hop into the existing one 63 */ 64 static noinline int join_transaction(struct btrfs_root *root, int type) 65 { 66 struct btrfs_transaction *cur_trans; 67 struct btrfs_fs_info *fs_info = root->fs_info; 68 69 spin_lock(&fs_info->trans_lock); 70 loop: 71 /* The file system has been taken offline. No new transactions. */ 72 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 73 spin_unlock(&fs_info->trans_lock); 74 return -EROFS; 75 } 76 77 if (fs_info->trans_no_join) { 78 /* 79 * If we are JOIN_NOLOCK we're already committing a current 80 * transaction, we just need a handle to deal with something 81 * when committing the transaction, such as inode cache and 82 * space cache. It is a special case. 83 */ 84 if (type != TRANS_JOIN_NOLOCK) { 85 spin_unlock(&fs_info->trans_lock); 86 return -EBUSY; 87 } 88 } 89 90 cur_trans = fs_info->running_transaction; 91 if (cur_trans) { 92 if (cur_trans->aborted) { 93 spin_unlock(&fs_info->trans_lock); 94 return cur_trans->aborted; 95 } 96 if (!can_join_transaction(cur_trans, type)) { 97 spin_unlock(&fs_info->trans_lock); 98 return -EBUSY; 99 } 100 atomic_inc(&cur_trans->use_count); 101 atomic_inc(&cur_trans->num_writers); 102 cur_trans->num_joined++; 103 spin_unlock(&fs_info->trans_lock); 104 return 0; 105 } 106 spin_unlock(&fs_info->trans_lock); 107 108 /* 109 * If we are ATTACH, we just want to catch the current transaction, 110 * and commit it. If there is no transaction, just return ENOENT. 111 */ 112 if (type == TRANS_ATTACH) 113 return -ENOENT; 114 115 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS); 116 if (!cur_trans) 117 return -ENOMEM; 118 119 spin_lock(&fs_info->trans_lock); 120 if (fs_info->running_transaction) { 121 /* 122 * someone started a transaction after we unlocked. Make sure 123 * to redo the trans_no_join checks above 124 */ 125 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 126 goto loop; 127 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 128 spin_unlock(&fs_info->trans_lock); 129 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 130 return -EROFS; 131 } 132 133 atomic_set(&cur_trans->num_writers, 1); 134 cur_trans->num_joined = 0; 135 init_waitqueue_head(&cur_trans->writer_wait); 136 init_waitqueue_head(&cur_trans->commit_wait); 137 cur_trans->in_commit = 0; 138 cur_trans->blocked = 0; 139 /* 140 * One for this trans handle, one so it will live on until we 141 * commit the transaction. 142 */ 143 atomic_set(&cur_trans->use_count, 2); 144 cur_trans->commit_done = 0; 145 cur_trans->start_time = get_seconds(); 146 147 cur_trans->delayed_refs.root = RB_ROOT; 148 cur_trans->delayed_refs.num_entries = 0; 149 cur_trans->delayed_refs.num_heads_ready = 0; 150 cur_trans->delayed_refs.num_heads = 0; 151 cur_trans->delayed_refs.flushing = 0; 152 cur_trans->delayed_refs.run_delayed_start = 0; 153 154 /* 155 * although the tree mod log is per file system and not per transaction, 156 * the log must never go across transaction boundaries. 157 */ 158 smp_mb(); 159 if (!list_empty(&fs_info->tree_mod_seq_list)) 160 WARN(1, KERN_ERR "btrfs: tree_mod_seq_list not empty when " 161 "creating a fresh transaction\n"); 162 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 163 WARN(1, KERN_ERR "btrfs: tree_mod_log rb tree not empty when " 164 "creating a fresh transaction\n"); 165 atomic_set(&fs_info->tree_mod_seq, 0); 166 167 spin_lock_init(&cur_trans->commit_lock); 168 spin_lock_init(&cur_trans->delayed_refs.lock); 169 atomic_set(&cur_trans->delayed_refs.procs_running_refs, 0); 170 atomic_set(&cur_trans->delayed_refs.ref_seq, 0); 171 init_waitqueue_head(&cur_trans->delayed_refs.wait); 172 173 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 174 INIT_LIST_HEAD(&cur_trans->ordered_operations); 175 list_add_tail(&cur_trans->list, &fs_info->trans_list); 176 extent_io_tree_init(&cur_trans->dirty_pages, 177 fs_info->btree_inode->i_mapping); 178 fs_info->generation++; 179 cur_trans->transid = fs_info->generation; 180 fs_info->running_transaction = cur_trans; 181 cur_trans->aborted = 0; 182 spin_unlock(&fs_info->trans_lock); 183 184 return 0; 185 } 186 187 /* 188 * this does all the record keeping required to make sure that a reference 189 * counted root is properly recorded in a given transaction. This is required 190 * to make sure the old root from before we joined the transaction is deleted 191 * when the transaction commits 192 */ 193 static int record_root_in_trans(struct btrfs_trans_handle *trans, 194 struct btrfs_root *root) 195 { 196 if (root->ref_cows && root->last_trans < trans->transid) { 197 WARN_ON(root == root->fs_info->extent_root); 198 WARN_ON(root->commit_root != root->node); 199 200 /* 201 * see below for in_trans_setup usage rules 202 * we have the reloc mutex held now, so there 203 * is only one writer in this function 204 */ 205 root->in_trans_setup = 1; 206 207 /* make sure readers find in_trans_setup before 208 * they find our root->last_trans update 209 */ 210 smp_wmb(); 211 212 spin_lock(&root->fs_info->fs_roots_radix_lock); 213 if (root->last_trans == trans->transid) { 214 spin_unlock(&root->fs_info->fs_roots_radix_lock); 215 return 0; 216 } 217 radix_tree_tag_set(&root->fs_info->fs_roots_radix, 218 (unsigned long)root->root_key.objectid, 219 BTRFS_ROOT_TRANS_TAG); 220 spin_unlock(&root->fs_info->fs_roots_radix_lock); 221 root->last_trans = trans->transid; 222 223 /* this is pretty tricky. We don't want to 224 * take the relocation lock in btrfs_record_root_in_trans 225 * unless we're really doing the first setup for this root in 226 * this transaction. 227 * 228 * Normally we'd use root->last_trans as a flag to decide 229 * if we want to take the expensive mutex. 230 * 231 * But, we have to set root->last_trans before we 232 * init the relocation root, otherwise, we trip over warnings 233 * in ctree.c. The solution used here is to flag ourselves 234 * with root->in_trans_setup. When this is 1, we're still 235 * fixing up the reloc trees and everyone must wait. 236 * 237 * When this is zero, they can trust root->last_trans and fly 238 * through btrfs_record_root_in_trans without having to take the 239 * lock. smp_wmb() makes sure that all the writes above are 240 * done before we pop in the zero below 241 */ 242 btrfs_init_reloc_root(trans, root); 243 smp_wmb(); 244 root->in_trans_setup = 0; 245 } 246 return 0; 247 } 248 249 250 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 251 struct btrfs_root *root) 252 { 253 if (!root->ref_cows) 254 return 0; 255 256 /* 257 * see record_root_in_trans for comments about in_trans_setup usage 258 * and barriers 259 */ 260 smp_rmb(); 261 if (root->last_trans == trans->transid && 262 !root->in_trans_setup) 263 return 0; 264 265 mutex_lock(&root->fs_info->reloc_mutex); 266 record_root_in_trans(trans, root); 267 mutex_unlock(&root->fs_info->reloc_mutex); 268 269 return 0; 270 } 271 272 /* wait for commit against the current transaction to become unblocked 273 * when this is done, it is safe to start a new transaction, but the current 274 * transaction might not be fully on disk. 275 */ 276 static void wait_current_trans(struct btrfs_root *root) 277 { 278 struct btrfs_transaction *cur_trans; 279 280 spin_lock(&root->fs_info->trans_lock); 281 cur_trans = root->fs_info->running_transaction; 282 if (cur_trans && cur_trans->blocked) { 283 atomic_inc(&cur_trans->use_count); 284 spin_unlock(&root->fs_info->trans_lock); 285 286 wait_event(root->fs_info->transaction_wait, 287 !cur_trans->blocked); 288 put_transaction(cur_trans); 289 } else { 290 spin_unlock(&root->fs_info->trans_lock); 291 } 292 } 293 294 static int may_wait_transaction(struct btrfs_root *root, int type) 295 { 296 if (root->fs_info->log_root_recovering) 297 return 0; 298 299 if (type == TRANS_USERSPACE) 300 return 1; 301 302 if (type == TRANS_START && 303 !atomic_read(&root->fs_info->open_ioctl_trans)) 304 return 1; 305 306 return 0; 307 } 308 309 static struct btrfs_trans_handle * 310 start_transaction(struct btrfs_root *root, u64 num_items, int type, 311 enum btrfs_reserve_flush_enum flush) 312 { 313 struct btrfs_trans_handle *h; 314 struct btrfs_transaction *cur_trans; 315 u64 num_bytes = 0; 316 int ret; 317 u64 qgroup_reserved = 0; 318 319 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 320 return ERR_PTR(-EROFS); 321 322 if (current->journal_info) { 323 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK); 324 h = current->journal_info; 325 h->use_count++; 326 WARN_ON(h->use_count > 2); 327 h->orig_rsv = h->block_rsv; 328 h->block_rsv = NULL; 329 goto got_it; 330 } 331 332 /* 333 * Do the reservation before we join the transaction so we can do all 334 * the appropriate flushing if need be. 335 */ 336 if (num_items > 0 && root != root->fs_info->chunk_root) { 337 if (root->fs_info->quota_enabled && 338 is_fstree(root->root_key.objectid)) { 339 qgroup_reserved = num_items * root->leafsize; 340 ret = btrfs_qgroup_reserve(root, qgroup_reserved); 341 if (ret) 342 return ERR_PTR(ret); 343 } 344 345 num_bytes = btrfs_calc_trans_metadata_size(root, num_items); 346 ret = btrfs_block_rsv_add(root, 347 &root->fs_info->trans_block_rsv, 348 num_bytes, flush); 349 if (ret) 350 goto reserve_fail; 351 } 352 again: 353 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS); 354 if (!h) { 355 ret = -ENOMEM; 356 goto alloc_fail; 357 } 358 359 /* 360 * If we are JOIN_NOLOCK we're already committing a transaction and 361 * waiting on this guy, so we don't need to do the sb_start_intwrite 362 * because we're already holding a ref. We need this because we could 363 * have raced in and did an fsync() on a file which can kick a commit 364 * and then we deadlock with somebody doing a freeze. 365 * 366 * If we are ATTACH, it means we just want to catch the current 367 * transaction and commit it, so we needn't do sb_start_intwrite(). 368 */ 369 if (type < TRANS_JOIN_NOLOCK) 370 sb_start_intwrite(root->fs_info->sb); 371 372 if (may_wait_transaction(root, type)) 373 wait_current_trans(root); 374 375 do { 376 ret = join_transaction(root, type); 377 if (ret == -EBUSY) { 378 wait_current_trans(root); 379 if (unlikely(type == TRANS_ATTACH)) 380 ret = -ENOENT; 381 } 382 } while (ret == -EBUSY); 383 384 if (ret < 0) { 385 /* We must get the transaction if we are JOIN_NOLOCK. */ 386 BUG_ON(type == TRANS_JOIN_NOLOCK); 387 goto join_fail; 388 } 389 390 cur_trans = root->fs_info->running_transaction; 391 392 h->transid = cur_trans->transid; 393 h->transaction = cur_trans; 394 h->blocks_used = 0; 395 h->bytes_reserved = 0; 396 h->root = root; 397 h->delayed_ref_updates = 0; 398 h->use_count = 1; 399 h->adding_csums = 0; 400 h->block_rsv = NULL; 401 h->orig_rsv = NULL; 402 h->aborted = 0; 403 h->qgroup_reserved = 0; 404 h->delayed_ref_elem.seq = 0; 405 h->type = type; 406 h->allocating_chunk = false; 407 INIT_LIST_HEAD(&h->qgroup_ref_list); 408 INIT_LIST_HEAD(&h->new_bgs); 409 410 smp_mb(); 411 if (cur_trans->blocked && may_wait_transaction(root, type)) { 412 btrfs_commit_transaction(h, root); 413 goto again; 414 } 415 416 if (num_bytes) { 417 trace_btrfs_space_reservation(root->fs_info, "transaction", 418 h->transid, num_bytes, 1); 419 h->block_rsv = &root->fs_info->trans_block_rsv; 420 h->bytes_reserved = num_bytes; 421 } 422 h->qgroup_reserved = qgroup_reserved; 423 424 got_it: 425 btrfs_record_root_in_trans(h, root); 426 427 if (!current->journal_info && type != TRANS_USERSPACE) 428 current->journal_info = h; 429 return h; 430 431 join_fail: 432 if (type < TRANS_JOIN_NOLOCK) 433 sb_end_intwrite(root->fs_info->sb); 434 kmem_cache_free(btrfs_trans_handle_cachep, h); 435 alloc_fail: 436 if (num_bytes) 437 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv, 438 num_bytes); 439 reserve_fail: 440 if (qgroup_reserved) 441 btrfs_qgroup_free(root, qgroup_reserved); 442 return ERR_PTR(ret); 443 } 444 445 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 446 int num_items) 447 { 448 return start_transaction(root, num_items, TRANS_START, 449 BTRFS_RESERVE_FLUSH_ALL); 450 } 451 452 struct btrfs_trans_handle *btrfs_start_transaction_lflush( 453 struct btrfs_root *root, int num_items) 454 { 455 return start_transaction(root, num_items, TRANS_START, 456 BTRFS_RESERVE_FLUSH_LIMIT); 457 } 458 459 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 460 { 461 return start_transaction(root, 0, TRANS_JOIN, 0); 462 } 463 464 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root) 465 { 466 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0); 467 } 468 469 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root) 470 { 471 return start_transaction(root, 0, TRANS_USERSPACE, 0); 472 } 473 474 /* 475 * btrfs_attach_transaction() - catch the running transaction 476 * 477 * It is used when we want to commit the current the transaction, but 478 * don't want to start a new one. 479 * 480 * Note: If this function return -ENOENT, it just means there is no 481 * running transaction. But it is possible that the inactive transaction 482 * is still in the memory, not fully on disk. If you hope there is no 483 * inactive transaction in the fs when -ENOENT is returned, you should 484 * invoke 485 * btrfs_attach_transaction_barrier() 486 */ 487 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 488 { 489 return start_transaction(root, 0, TRANS_ATTACH, 0); 490 } 491 492 /* 493 * btrfs_attach_transaction() - catch the running transaction 494 * 495 * It is similar to the above function, the differentia is this one 496 * will wait for all the inactive transactions until they fully 497 * complete. 498 */ 499 struct btrfs_trans_handle * 500 btrfs_attach_transaction_barrier(struct btrfs_root *root) 501 { 502 struct btrfs_trans_handle *trans; 503 504 trans = start_transaction(root, 0, TRANS_ATTACH, 0); 505 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT) 506 btrfs_wait_for_commit(root, 0); 507 508 return trans; 509 } 510 511 /* wait for a transaction commit to be fully complete */ 512 static noinline void wait_for_commit(struct btrfs_root *root, 513 struct btrfs_transaction *commit) 514 { 515 wait_event(commit->commit_wait, commit->commit_done); 516 } 517 518 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid) 519 { 520 struct btrfs_transaction *cur_trans = NULL, *t; 521 int ret = 0; 522 523 if (transid) { 524 if (transid <= root->fs_info->last_trans_committed) 525 goto out; 526 527 ret = -EINVAL; 528 /* find specified transaction */ 529 spin_lock(&root->fs_info->trans_lock); 530 list_for_each_entry(t, &root->fs_info->trans_list, list) { 531 if (t->transid == transid) { 532 cur_trans = t; 533 atomic_inc(&cur_trans->use_count); 534 ret = 0; 535 break; 536 } 537 if (t->transid > transid) { 538 ret = 0; 539 break; 540 } 541 } 542 spin_unlock(&root->fs_info->trans_lock); 543 /* The specified transaction doesn't exist */ 544 if (!cur_trans) 545 goto out; 546 } else { 547 /* find newest transaction that is committing | committed */ 548 spin_lock(&root->fs_info->trans_lock); 549 list_for_each_entry_reverse(t, &root->fs_info->trans_list, 550 list) { 551 if (t->in_commit) { 552 if (t->commit_done) 553 break; 554 cur_trans = t; 555 atomic_inc(&cur_trans->use_count); 556 break; 557 } 558 } 559 spin_unlock(&root->fs_info->trans_lock); 560 if (!cur_trans) 561 goto out; /* nothing committing|committed */ 562 } 563 564 wait_for_commit(root, cur_trans); 565 put_transaction(cur_trans); 566 out: 567 return ret; 568 } 569 570 void btrfs_throttle(struct btrfs_root *root) 571 { 572 if (!atomic_read(&root->fs_info->open_ioctl_trans)) 573 wait_current_trans(root); 574 } 575 576 static int should_end_transaction(struct btrfs_trans_handle *trans, 577 struct btrfs_root *root) 578 { 579 int ret; 580 581 ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5); 582 return ret ? 1 : 0; 583 } 584 585 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans, 586 struct btrfs_root *root) 587 { 588 struct btrfs_transaction *cur_trans = trans->transaction; 589 int updates; 590 int err; 591 592 smp_mb(); 593 if (cur_trans->blocked || cur_trans->delayed_refs.flushing) 594 return 1; 595 596 updates = trans->delayed_ref_updates; 597 trans->delayed_ref_updates = 0; 598 if (updates) { 599 err = btrfs_run_delayed_refs(trans, root, updates); 600 if (err) /* Error code will also eval true */ 601 return err; 602 } 603 604 return should_end_transaction(trans, root); 605 } 606 607 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 608 struct btrfs_root *root, int throttle) 609 { 610 struct btrfs_transaction *cur_trans = trans->transaction; 611 struct btrfs_fs_info *info = root->fs_info; 612 int count = 0; 613 int lock = (trans->type != TRANS_JOIN_NOLOCK); 614 int err = 0; 615 616 if (--trans->use_count) { 617 trans->block_rsv = trans->orig_rsv; 618 return 0; 619 } 620 621 /* 622 * do the qgroup accounting as early as possible 623 */ 624 err = btrfs_delayed_refs_qgroup_accounting(trans, info); 625 626 btrfs_trans_release_metadata(trans, root); 627 trans->block_rsv = NULL; 628 629 if (trans->qgroup_reserved) { 630 /* 631 * the same root has to be passed here between start_transaction 632 * and end_transaction. Subvolume quota depends on this. 633 */ 634 btrfs_qgroup_free(trans->root, trans->qgroup_reserved); 635 trans->qgroup_reserved = 0; 636 } 637 638 if (!list_empty(&trans->new_bgs)) 639 btrfs_create_pending_block_groups(trans, root); 640 641 while (count < 1) { 642 unsigned long cur = trans->delayed_ref_updates; 643 trans->delayed_ref_updates = 0; 644 if (cur && 645 trans->transaction->delayed_refs.num_heads_ready > 64) { 646 trans->delayed_ref_updates = 0; 647 btrfs_run_delayed_refs(trans, root, cur); 648 } else { 649 break; 650 } 651 count++; 652 } 653 654 btrfs_trans_release_metadata(trans, root); 655 trans->block_rsv = NULL; 656 657 if (!list_empty(&trans->new_bgs)) 658 btrfs_create_pending_block_groups(trans, root); 659 660 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) && 661 should_end_transaction(trans, root)) { 662 trans->transaction->blocked = 1; 663 smp_wmb(); 664 } 665 666 if (lock && cur_trans->blocked && !cur_trans->in_commit) { 667 if (throttle) { 668 /* 669 * We may race with somebody else here so end up having 670 * to call end_transaction on ourselves again, so inc 671 * our use_count. 672 */ 673 trans->use_count++; 674 return btrfs_commit_transaction(trans, root); 675 } else { 676 wake_up_process(info->transaction_kthread); 677 } 678 } 679 680 if (trans->type < TRANS_JOIN_NOLOCK) 681 sb_end_intwrite(root->fs_info->sb); 682 683 WARN_ON(cur_trans != info->running_transaction); 684 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 685 atomic_dec(&cur_trans->num_writers); 686 687 smp_mb(); 688 if (waitqueue_active(&cur_trans->writer_wait)) 689 wake_up(&cur_trans->writer_wait); 690 put_transaction(cur_trans); 691 692 if (current->journal_info == trans) 693 current->journal_info = NULL; 694 695 if (throttle) 696 btrfs_run_delayed_iputs(root); 697 698 if (trans->aborted || 699 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 700 err = -EIO; 701 assert_qgroups_uptodate(trans); 702 703 kmem_cache_free(btrfs_trans_handle_cachep, trans); 704 return err; 705 } 706 707 int btrfs_end_transaction(struct btrfs_trans_handle *trans, 708 struct btrfs_root *root) 709 { 710 int ret; 711 712 ret = __btrfs_end_transaction(trans, root, 0); 713 if (ret) 714 return ret; 715 return 0; 716 } 717 718 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans, 719 struct btrfs_root *root) 720 { 721 int ret; 722 723 ret = __btrfs_end_transaction(trans, root, 1); 724 if (ret) 725 return ret; 726 return 0; 727 } 728 729 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans, 730 struct btrfs_root *root) 731 { 732 return __btrfs_end_transaction(trans, root, 1); 733 } 734 735 /* 736 * when btree blocks are allocated, they have some corresponding bits set for 737 * them in one of two extent_io trees. This is used to make sure all of 738 * those extents are sent to disk but does not wait on them 739 */ 740 int btrfs_write_marked_extents(struct btrfs_root *root, 741 struct extent_io_tree *dirty_pages, int mark) 742 { 743 int err = 0; 744 int werr = 0; 745 struct address_space *mapping = root->fs_info->btree_inode->i_mapping; 746 struct extent_state *cached_state = NULL; 747 u64 start = 0; 748 u64 end; 749 struct blk_plug plug; 750 751 blk_start_plug(&plug); 752 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 753 mark, &cached_state)) { 754 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, 755 mark, &cached_state, GFP_NOFS); 756 cached_state = NULL; 757 err = filemap_fdatawrite_range(mapping, start, end); 758 if (err) 759 werr = err; 760 cond_resched(); 761 start = end + 1; 762 } 763 if (err) 764 werr = err; 765 blk_finish_plug(&plug); 766 return werr; 767 } 768 769 /* 770 * when btree blocks are allocated, they have some corresponding bits set for 771 * them in one of two extent_io trees. This is used to make sure all of 772 * those extents are on disk for transaction or log commit. We wait 773 * on all the pages and clear them from the dirty pages state tree 774 */ 775 int btrfs_wait_marked_extents(struct btrfs_root *root, 776 struct extent_io_tree *dirty_pages, int mark) 777 { 778 int err = 0; 779 int werr = 0; 780 struct address_space *mapping = root->fs_info->btree_inode->i_mapping; 781 struct extent_state *cached_state = NULL; 782 u64 start = 0; 783 u64 end; 784 785 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 786 EXTENT_NEED_WAIT, &cached_state)) { 787 clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, 788 0, 0, &cached_state, GFP_NOFS); 789 err = filemap_fdatawait_range(mapping, start, end); 790 if (err) 791 werr = err; 792 cond_resched(); 793 start = end + 1; 794 } 795 if (err) 796 werr = err; 797 return werr; 798 } 799 800 /* 801 * when btree blocks are allocated, they have some corresponding bits set for 802 * them in one of two extent_io trees. This is used to make sure all of 803 * those extents are on disk for transaction or log commit 804 */ 805 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root, 806 struct extent_io_tree *dirty_pages, int mark) 807 { 808 int ret; 809 int ret2; 810 811 ret = btrfs_write_marked_extents(root, dirty_pages, mark); 812 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark); 813 814 if (ret) 815 return ret; 816 if (ret2) 817 return ret2; 818 return 0; 819 } 820 821 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans, 822 struct btrfs_root *root) 823 { 824 if (!trans || !trans->transaction) { 825 struct inode *btree_inode; 826 btree_inode = root->fs_info->btree_inode; 827 return filemap_write_and_wait(btree_inode->i_mapping); 828 } 829 return btrfs_write_and_wait_marked_extents(root, 830 &trans->transaction->dirty_pages, 831 EXTENT_DIRTY); 832 } 833 834 /* 835 * this is used to update the root pointer in the tree of tree roots. 836 * 837 * But, in the case of the extent allocation tree, updating the root 838 * pointer may allocate blocks which may change the root of the extent 839 * allocation tree. 840 * 841 * So, this loops and repeats and makes sure the cowonly root didn't 842 * change while the root pointer was being updated in the metadata. 843 */ 844 static int update_cowonly_root(struct btrfs_trans_handle *trans, 845 struct btrfs_root *root) 846 { 847 int ret; 848 u64 old_root_bytenr; 849 u64 old_root_used; 850 struct btrfs_root *tree_root = root->fs_info->tree_root; 851 852 old_root_used = btrfs_root_used(&root->root_item); 853 btrfs_write_dirty_block_groups(trans, root); 854 855 while (1) { 856 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 857 if (old_root_bytenr == root->node->start && 858 old_root_used == btrfs_root_used(&root->root_item)) 859 break; 860 861 btrfs_set_root_node(&root->root_item, root->node); 862 ret = btrfs_update_root(trans, tree_root, 863 &root->root_key, 864 &root->root_item); 865 if (ret) 866 return ret; 867 868 old_root_used = btrfs_root_used(&root->root_item); 869 ret = btrfs_write_dirty_block_groups(trans, root); 870 if (ret) 871 return ret; 872 } 873 874 if (root != root->fs_info->extent_root) 875 switch_commit_root(root); 876 877 return 0; 878 } 879 880 /* 881 * update all the cowonly tree roots on disk 882 * 883 * The error handling in this function may not be obvious. Any of the 884 * failures will cause the file system to go offline. We still need 885 * to clean up the delayed refs. 886 */ 887 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans, 888 struct btrfs_root *root) 889 { 890 struct btrfs_fs_info *fs_info = root->fs_info; 891 struct list_head *next; 892 struct extent_buffer *eb; 893 int ret; 894 895 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 896 if (ret) 897 return ret; 898 899 eb = btrfs_lock_root_node(fs_info->tree_root); 900 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 901 0, &eb); 902 btrfs_tree_unlock(eb); 903 free_extent_buffer(eb); 904 905 if (ret) 906 return ret; 907 908 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 909 if (ret) 910 return ret; 911 912 ret = btrfs_run_dev_stats(trans, root->fs_info); 913 WARN_ON(ret); 914 ret = btrfs_run_dev_replace(trans, root->fs_info); 915 WARN_ON(ret); 916 917 ret = btrfs_run_qgroups(trans, root->fs_info); 918 BUG_ON(ret); 919 920 /* run_qgroups might have added some more refs */ 921 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 922 BUG_ON(ret); 923 924 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 925 next = fs_info->dirty_cowonly_roots.next; 926 list_del_init(next); 927 root = list_entry(next, struct btrfs_root, dirty_list); 928 929 ret = update_cowonly_root(trans, root); 930 if (ret) 931 return ret; 932 } 933 934 down_write(&fs_info->extent_commit_sem); 935 switch_commit_root(fs_info->extent_root); 936 up_write(&fs_info->extent_commit_sem); 937 938 btrfs_after_dev_replace_commit(fs_info); 939 940 return 0; 941 } 942 943 /* 944 * dead roots are old snapshots that need to be deleted. This allocates 945 * a dirty root struct and adds it into the list of dead roots that need to 946 * be deleted 947 */ 948 int btrfs_add_dead_root(struct btrfs_root *root) 949 { 950 spin_lock(&root->fs_info->trans_lock); 951 list_add(&root->root_list, &root->fs_info->dead_roots); 952 spin_unlock(&root->fs_info->trans_lock); 953 return 0; 954 } 955 956 /* 957 * update all the cowonly tree roots on disk 958 */ 959 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans, 960 struct btrfs_root *root) 961 { 962 struct btrfs_root *gang[8]; 963 struct btrfs_fs_info *fs_info = root->fs_info; 964 int i; 965 int ret; 966 int err = 0; 967 968 spin_lock(&fs_info->fs_roots_radix_lock); 969 while (1) { 970 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 971 (void **)gang, 0, 972 ARRAY_SIZE(gang), 973 BTRFS_ROOT_TRANS_TAG); 974 if (ret == 0) 975 break; 976 for (i = 0; i < ret; i++) { 977 root = gang[i]; 978 radix_tree_tag_clear(&fs_info->fs_roots_radix, 979 (unsigned long)root->root_key.objectid, 980 BTRFS_ROOT_TRANS_TAG); 981 spin_unlock(&fs_info->fs_roots_radix_lock); 982 983 btrfs_free_log(trans, root); 984 btrfs_update_reloc_root(trans, root); 985 btrfs_orphan_commit_root(trans, root); 986 987 btrfs_save_ino_cache(root, trans); 988 989 /* see comments in should_cow_block() */ 990 root->force_cow = 0; 991 smp_wmb(); 992 993 if (root->commit_root != root->node) { 994 mutex_lock(&root->fs_commit_mutex); 995 switch_commit_root(root); 996 btrfs_unpin_free_ino(root); 997 mutex_unlock(&root->fs_commit_mutex); 998 999 btrfs_set_root_node(&root->root_item, 1000 root->node); 1001 } 1002 1003 err = btrfs_update_root(trans, fs_info->tree_root, 1004 &root->root_key, 1005 &root->root_item); 1006 spin_lock(&fs_info->fs_roots_radix_lock); 1007 if (err) 1008 break; 1009 } 1010 } 1011 spin_unlock(&fs_info->fs_roots_radix_lock); 1012 return err; 1013 } 1014 1015 /* 1016 * defrag a given btree. 1017 * Every leaf in the btree is read and defragged. 1018 */ 1019 int btrfs_defrag_root(struct btrfs_root *root) 1020 { 1021 struct btrfs_fs_info *info = root->fs_info; 1022 struct btrfs_trans_handle *trans; 1023 int ret; 1024 1025 if (xchg(&root->defrag_running, 1)) 1026 return 0; 1027 1028 while (1) { 1029 trans = btrfs_start_transaction(root, 0); 1030 if (IS_ERR(trans)) 1031 return PTR_ERR(trans); 1032 1033 ret = btrfs_defrag_leaves(trans, root); 1034 1035 btrfs_end_transaction(trans, root); 1036 btrfs_btree_balance_dirty(info->tree_root); 1037 cond_resched(); 1038 1039 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN) 1040 break; 1041 1042 if (btrfs_defrag_cancelled(root->fs_info)) { 1043 printk(KERN_DEBUG "btrfs: defrag_root cancelled\n"); 1044 ret = -EAGAIN; 1045 break; 1046 } 1047 } 1048 root->defrag_running = 0; 1049 return ret; 1050 } 1051 1052 /* 1053 * new snapshots need to be created at a very specific time in the 1054 * transaction commit. This does the actual creation. 1055 * 1056 * Note: 1057 * If the error which may affect the commitment of the current transaction 1058 * happens, we should return the error number. If the error which just affect 1059 * the creation of the pending snapshots, just return 0. 1060 */ 1061 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1062 struct btrfs_fs_info *fs_info, 1063 struct btrfs_pending_snapshot *pending) 1064 { 1065 struct btrfs_key key; 1066 struct btrfs_root_item *new_root_item; 1067 struct btrfs_root *tree_root = fs_info->tree_root; 1068 struct btrfs_root *root = pending->root; 1069 struct btrfs_root *parent_root; 1070 struct btrfs_block_rsv *rsv; 1071 struct inode *parent_inode; 1072 struct btrfs_path *path; 1073 struct btrfs_dir_item *dir_item; 1074 struct dentry *dentry; 1075 struct extent_buffer *tmp; 1076 struct extent_buffer *old; 1077 struct timespec cur_time = CURRENT_TIME; 1078 int ret = 0; 1079 u64 to_reserve = 0; 1080 u64 index = 0; 1081 u64 objectid; 1082 u64 root_flags; 1083 uuid_le new_uuid; 1084 1085 path = btrfs_alloc_path(); 1086 if (!path) { 1087 pending->error = -ENOMEM; 1088 return 0; 1089 } 1090 1091 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS); 1092 if (!new_root_item) { 1093 pending->error = -ENOMEM; 1094 goto root_item_alloc_fail; 1095 } 1096 1097 pending->error = btrfs_find_free_objectid(tree_root, &objectid); 1098 if (pending->error) 1099 goto no_free_objectid; 1100 1101 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve); 1102 1103 if (to_reserve > 0) { 1104 pending->error = btrfs_block_rsv_add(root, 1105 &pending->block_rsv, 1106 to_reserve, 1107 BTRFS_RESERVE_NO_FLUSH); 1108 if (pending->error) 1109 goto no_free_objectid; 1110 } 1111 1112 pending->error = btrfs_qgroup_inherit(trans, fs_info, 1113 root->root_key.objectid, 1114 objectid, pending->inherit); 1115 if (pending->error) 1116 goto no_free_objectid; 1117 1118 key.objectid = objectid; 1119 key.offset = (u64)-1; 1120 key.type = BTRFS_ROOT_ITEM_KEY; 1121 1122 rsv = trans->block_rsv; 1123 trans->block_rsv = &pending->block_rsv; 1124 trans->bytes_reserved = trans->block_rsv->reserved; 1125 1126 dentry = pending->dentry; 1127 parent_inode = pending->dir; 1128 parent_root = BTRFS_I(parent_inode)->root; 1129 record_root_in_trans(trans, parent_root); 1130 1131 /* 1132 * insert the directory item 1133 */ 1134 ret = btrfs_set_inode_index(parent_inode, &index); 1135 BUG_ON(ret); /* -ENOMEM */ 1136 1137 /* check if there is a file/dir which has the same name. */ 1138 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1139 btrfs_ino(parent_inode), 1140 dentry->d_name.name, 1141 dentry->d_name.len, 0); 1142 if (dir_item != NULL && !IS_ERR(dir_item)) { 1143 pending->error = -EEXIST; 1144 goto dir_item_existed; 1145 } else if (IS_ERR(dir_item)) { 1146 ret = PTR_ERR(dir_item); 1147 btrfs_abort_transaction(trans, root, ret); 1148 goto fail; 1149 } 1150 btrfs_release_path(path); 1151 1152 /* 1153 * pull in the delayed directory update 1154 * and the delayed inode item 1155 * otherwise we corrupt the FS during 1156 * snapshot 1157 */ 1158 ret = btrfs_run_delayed_items(trans, root); 1159 if (ret) { /* Transaction aborted */ 1160 btrfs_abort_transaction(trans, root, ret); 1161 goto fail; 1162 } 1163 1164 record_root_in_trans(trans, root); 1165 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1166 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1167 btrfs_check_and_init_root_item(new_root_item); 1168 1169 root_flags = btrfs_root_flags(new_root_item); 1170 if (pending->readonly) 1171 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1172 else 1173 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1174 btrfs_set_root_flags(new_root_item, root_flags); 1175 1176 btrfs_set_root_generation_v2(new_root_item, 1177 trans->transid); 1178 uuid_le_gen(&new_uuid); 1179 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 1180 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1181 BTRFS_UUID_SIZE); 1182 new_root_item->otime.sec = cpu_to_le64(cur_time.tv_sec); 1183 new_root_item->otime.nsec = cpu_to_le32(cur_time.tv_nsec); 1184 btrfs_set_root_otransid(new_root_item, trans->transid); 1185 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1186 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1187 btrfs_set_root_stransid(new_root_item, 0); 1188 btrfs_set_root_rtransid(new_root_item, 0); 1189 1190 old = btrfs_lock_root_node(root); 1191 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old); 1192 if (ret) { 1193 btrfs_tree_unlock(old); 1194 free_extent_buffer(old); 1195 btrfs_abort_transaction(trans, root, ret); 1196 goto fail; 1197 } 1198 1199 btrfs_set_lock_blocking(old); 1200 1201 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1202 /* clean up in any case */ 1203 btrfs_tree_unlock(old); 1204 free_extent_buffer(old); 1205 if (ret) { 1206 btrfs_abort_transaction(trans, root, ret); 1207 goto fail; 1208 } 1209 1210 /* see comments in should_cow_block() */ 1211 root->force_cow = 1; 1212 smp_wmb(); 1213 1214 btrfs_set_root_node(new_root_item, tmp); 1215 /* record when the snapshot was created in key.offset */ 1216 key.offset = trans->transid; 1217 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1218 btrfs_tree_unlock(tmp); 1219 free_extent_buffer(tmp); 1220 if (ret) { 1221 btrfs_abort_transaction(trans, root, ret); 1222 goto fail; 1223 } 1224 1225 /* 1226 * insert root back/forward references 1227 */ 1228 ret = btrfs_add_root_ref(trans, tree_root, objectid, 1229 parent_root->root_key.objectid, 1230 btrfs_ino(parent_inode), index, 1231 dentry->d_name.name, dentry->d_name.len); 1232 if (ret) { 1233 btrfs_abort_transaction(trans, root, ret); 1234 goto fail; 1235 } 1236 1237 key.offset = (u64)-1; 1238 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key); 1239 if (IS_ERR(pending->snap)) { 1240 ret = PTR_ERR(pending->snap); 1241 btrfs_abort_transaction(trans, root, ret); 1242 goto fail; 1243 } 1244 1245 ret = btrfs_reloc_post_snapshot(trans, pending); 1246 if (ret) { 1247 btrfs_abort_transaction(trans, root, ret); 1248 goto fail; 1249 } 1250 1251 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1252 if (ret) { 1253 btrfs_abort_transaction(trans, root, ret); 1254 goto fail; 1255 } 1256 1257 ret = btrfs_insert_dir_item(trans, parent_root, 1258 dentry->d_name.name, dentry->d_name.len, 1259 parent_inode, &key, 1260 BTRFS_FT_DIR, index); 1261 /* We have check then name at the beginning, so it is impossible. */ 1262 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1263 if (ret) { 1264 btrfs_abort_transaction(trans, root, ret); 1265 goto fail; 1266 } 1267 1268 btrfs_i_size_write(parent_inode, parent_inode->i_size + 1269 dentry->d_name.len * 2); 1270 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 1271 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode); 1272 if (ret) 1273 btrfs_abort_transaction(trans, root, ret); 1274 fail: 1275 pending->error = ret; 1276 dir_item_existed: 1277 trans->block_rsv = rsv; 1278 trans->bytes_reserved = 0; 1279 no_free_objectid: 1280 kfree(new_root_item); 1281 root_item_alloc_fail: 1282 btrfs_free_path(path); 1283 return ret; 1284 } 1285 1286 /* 1287 * create all the snapshots we've scheduled for creation 1288 */ 1289 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans, 1290 struct btrfs_fs_info *fs_info) 1291 { 1292 struct btrfs_pending_snapshot *pending, *next; 1293 struct list_head *head = &trans->transaction->pending_snapshots; 1294 int ret = 0; 1295 1296 list_for_each_entry_safe(pending, next, head, list) { 1297 list_del(&pending->list); 1298 ret = create_pending_snapshot(trans, fs_info, pending); 1299 if (ret) 1300 break; 1301 } 1302 return ret; 1303 } 1304 1305 static void update_super_roots(struct btrfs_root *root) 1306 { 1307 struct btrfs_root_item *root_item; 1308 struct btrfs_super_block *super; 1309 1310 super = root->fs_info->super_copy; 1311 1312 root_item = &root->fs_info->chunk_root->root_item; 1313 super->chunk_root = root_item->bytenr; 1314 super->chunk_root_generation = root_item->generation; 1315 super->chunk_root_level = root_item->level; 1316 1317 root_item = &root->fs_info->tree_root->root_item; 1318 super->root = root_item->bytenr; 1319 super->generation = root_item->generation; 1320 super->root_level = root_item->level; 1321 if (btrfs_test_opt(root, SPACE_CACHE)) 1322 super->cache_generation = root_item->generation; 1323 } 1324 1325 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1326 { 1327 int ret = 0; 1328 spin_lock(&info->trans_lock); 1329 if (info->running_transaction) 1330 ret = info->running_transaction->in_commit; 1331 spin_unlock(&info->trans_lock); 1332 return ret; 1333 } 1334 1335 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1336 { 1337 int ret = 0; 1338 spin_lock(&info->trans_lock); 1339 if (info->running_transaction) 1340 ret = info->running_transaction->blocked; 1341 spin_unlock(&info->trans_lock); 1342 return ret; 1343 } 1344 1345 /* 1346 * wait for the current transaction commit to start and block subsequent 1347 * transaction joins 1348 */ 1349 static void wait_current_trans_commit_start(struct btrfs_root *root, 1350 struct btrfs_transaction *trans) 1351 { 1352 wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit); 1353 } 1354 1355 /* 1356 * wait for the current transaction to start and then become unblocked. 1357 * caller holds ref. 1358 */ 1359 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root, 1360 struct btrfs_transaction *trans) 1361 { 1362 wait_event(root->fs_info->transaction_wait, 1363 trans->commit_done || (trans->in_commit && !trans->blocked)); 1364 } 1365 1366 /* 1367 * commit transactions asynchronously. once btrfs_commit_transaction_async 1368 * returns, any subsequent transaction will not be allowed to join. 1369 */ 1370 struct btrfs_async_commit { 1371 struct btrfs_trans_handle *newtrans; 1372 struct btrfs_root *root; 1373 struct work_struct work; 1374 }; 1375 1376 static void do_async_commit(struct work_struct *work) 1377 { 1378 struct btrfs_async_commit *ac = 1379 container_of(work, struct btrfs_async_commit, work); 1380 1381 /* 1382 * We've got freeze protection passed with the transaction. 1383 * Tell lockdep about it. 1384 */ 1385 if (ac->newtrans->type < TRANS_JOIN_NOLOCK) 1386 rwsem_acquire_read( 1387 &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1], 1388 0, 1, _THIS_IP_); 1389 1390 current->journal_info = ac->newtrans; 1391 1392 btrfs_commit_transaction(ac->newtrans, ac->root); 1393 kfree(ac); 1394 } 1395 1396 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, 1397 struct btrfs_root *root, 1398 int wait_for_unblock) 1399 { 1400 struct btrfs_async_commit *ac; 1401 struct btrfs_transaction *cur_trans; 1402 1403 ac = kmalloc(sizeof(*ac), GFP_NOFS); 1404 if (!ac) 1405 return -ENOMEM; 1406 1407 INIT_WORK(&ac->work, do_async_commit); 1408 ac->root = root; 1409 ac->newtrans = btrfs_join_transaction(root); 1410 if (IS_ERR(ac->newtrans)) { 1411 int err = PTR_ERR(ac->newtrans); 1412 kfree(ac); 1413 return err; 1414 } 1415 1416 /* take transaction reference */ 1417 cur_trans = trans->transaction; 1418 atomic_inc(&cur_trans->use_count); 1419 1420 btrfs_end_transaction(trans, root); 1421 1422 /* 1423 * Tell lockdep we've released the freeze rwsem, since the 1424 * async commit thread will be the one to unlock it. 1425 */ 1426 if (trans->type < TRANS_JOIN_NOLOCK) 1427 rwsem_release( 1428 &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1], 1429 1, _THIS_IP_); 1430 1431 schedule_work(&ac->work); 1432 1433 /* wait for transaction to start and unblock */ 1434 if (wait_for_unblock) 1435 wait_current_trans_commit_start_and_unblock(root, cur_trans); 1436 else 1437 wait_current_trans_commit_start(root, cur_trans); 1438 1439 if (current->journal_info == trans) 1440 current->journal_info = NULL; 1441 1442 put_transaction(cur_trans); 1443 return 0; 1444 } 1445 1446 1447 static void cleanup_transaction(struct btrfs_trans_handle *trans, 1448 struct btrfs_root *root, int err) 1449 { 1450 struct btrfs_transaction *cur_trans = trans->transaction; 1451 DEFINE_WAIT(wait); 1452 1453 WARN_ON(trans->use_count > 1); 1454 1455 btrfs_abort_transaction(trans, root, err); 1456 1457 spin_lock(&root->fs_info->trans_lock); 1458 1459 if (list_empty(&cur_trans->list)) { 1460 spin_unlock(&root->fs_info->trans_lock); 1461 btrfs_end_transaction(trans, root); 1462 return; 1463 } 1464 1465 list_del_init(&cur_trans->list); 1466 if (cur_trans == root->fs_info->running_transaction) { 1467 root->fs_info->trans_no_join = 1; 1468 spin_unlock(&root->fs_info->trans_lock); 1469 wait_event(cur_trans->writer_wait, 1470 atomic_read(&cur_trans->num_writers) == 1); 1471 1472 spin_lock(&root->fs_info->trans_lock); 1473 root->fs_info->running_transaction = NULL; 1474 } 1475 spin_unlock(&root->fs_info->trans_lock); 1476 1477 btrfs_cleanup_one_transaction(trans->transaction, root); 1478 1479 put_transaction(cur_trans); 1480 put_transaction(cur_trans); 1481 1482 trace_btrfs_transaction_commit(root); 1483 1484 btrfs_scrub_continue(root); 1485 1486 if (current->journal_info == trans) 1487 current->journal_info = NULL; 1488 1489 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1490 } 1491 1492 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans, 1493 struct btrfs_root *root) 1494 { 1495 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT); 1496 int snap_pending = 0; 1497 int ret; 1498 1499 if (!flush_on_commit) { 1500 spin_lock(&root->fs_info->trans_lock); 1501 if (!list_empty(&trans->transaction->pending_snapshots)) 1502 snap_pending = 1; 1503 spin_unlock(&root->fs_info->trans_lock); 1504 } 1505 1506 if (flush_on_commit || snap_pending) { 1507 ret = btrfs_start_delalloc_inodes(root, 1); 1508 if (ret) 1509 return ret; 1510 btrfs_wait_ordered_extents(root, 1); 1511 } 1512 1513 ret = btrfs_run_delayed_items(trans, root); 1514 if (ret) 1515 return ret; 1516 1517 /* 1518 * running the delayed items may have added new refs. account 1519 * them now so that they hinder processing of more delayed refs 1520 * as little as possible. 1521 */ 1522 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info); 1523 1524 /* 1525 * rename don't use btrfs_join_transaction, so, once we 1526 * set the transaction to blocked above, we aren't going 1527 * to get any new ordered operations. We can safely run 1528 * it here and no for sure that nothing new will be added 1529 * to the list 1530 */ 1531 ret = btrfs_run_ordered_operations(trans, root, 1); 1532 1533 return ret; 1534 } 1535 1536 /* 1537 * btrfs_transaction state sequence: 1538 * in_commit = 0, blocked = 0 (initial) 1539 * in_commit = 1, blocked = 1 1540 * blocked = 0 1541 * commit_done = 1 1542 */ 1543 int btrfs_commit_transaction(struct btrfs_trans_handle *trans, 1544 struct btrfs_root *root) 1545 { 1546 unsigned long joined = 0; 1547 struct btrfs_transaction *cur_trans = trans->transaction; 1548 struct btrfs_transaction *prev_trans = NULL; 1549 DEFINE_WAIT(wait); 1550 int ret; 1551 int should_grow = 0; 1552 unsigned long now = get_seconds(); 1553 1554 ret = btrfs_run_ordered_operations(trans, root, 0); 1555 if (ret) { 1556 btrfs_abort_transaction(trans, root, ret); 1557 btrfs_end_transaction(trans, root); 1558 return ret; 1559 } 1560 1561 /* Stop the commit early if ->aborted is set */ 1562 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 1563 ret = cur_trans->aborted; 1564 btrfs_end_transaction(trans, root); 1565 return ret; 1566 } 1567 1568 /* make a pass through all the delayed refs we have so far 1569 * any runnings procs may add more while we are here 1570 */ 1571 ret = btrfs_run_delayed_refs(trans, root, 0); 1572 if (ret) { 1573 btrfs_end_transaction(trans, root); 1574 return ret; 1575 } 1576 1577 btrfs_trans_release_metadata(trans, root); 1578 trans->block_rsv = NULL; 1579 if (trans->qgroup_reserved) { 1580 btrfs_qgroup_free(root, trans->qgroup_reserved); 1581 trans->qgroup_reserved = 0; 1582 } 1583 1584 cur_trans = trans->transaction; 1585 1586 /* 1587 * set the flushing flag so procs in this transaction have to 1588 * start sending their work down. 1589 */ 1590 cur_trans->delayed_refs.flushing = 1; 1591 1592 if (!list_empty(&trans->new_bgs)) 1593 btrfs_create_pending_block_groups(trans, root); 1594 1595 ret = btrfs_run_delayed_refs(trans, root, 0); 1596 if (ret) { 1597 btrfs_end_transaction(trans, root); 1598 return ret; 1599 } 1600 1601 spin_lock(&cur_trans->commit_lock); 1602 if (cur_trans->in_commit) { 1603 spin_unlock(&cur_trans->commit_lock); 1604 atomic_inc(&cur_trans->use_count); 1605 ret = btrfs_end_transaction(trans, root); 1606 1607 wait_for_commit(root, cur_trans); 1608 1609 put_transaction(cur_trans); 1610 1611 return ret; 1612 } 1613 1614 trans->transaction->in_commit = 1; 1615 trans->transaction->blocked = 1; 1616 spin_unlock(&cur_trans->commit_lock); 1617 wake_up(&root->fs_info->transaction_blocked_wait); 1618 1619 spin_lock(&root->fs_info->trans_lock); 1620 if (cur_trans->list.prev != &root->fs_info->trans_list) { 1621 prev_trans = list_entry(cur_trans->list.prev, 1622 struct btrfs_transaction, list); 1623 if (!prev_trans->commit_done) { 1624 atomic_inc(&prev_trans->use_count); 1625 spin_unlock(&root->fs_info->trans_lock); 1626 1627 wait_for_commit(root, prev_trans); 1628 1629 put_transaction(prev_trans); 1630 } else { 1631 spin_unlock(&root->fs_info->trans_lock); 1632 } 1633 } else { 1634 spin_unlock(&root->fs_info->trans_lock); 1635 } 1636 1637 if (!btrfs_test_opt(root, SSD) && 1638 (now < cur_trans->start_time || now - cur_trans->start_time < 1)) 1639 should_grow = 1; 1640 1641 do { 1642 joined = cur_trans->num_joined; 1643 1644 WARN_ON(cur_trans != trans->transaction); 1645 1646 ret = btrfs_flush_all_pending_stuffs(trans, root); 1647 if (ret) 1648 goto cleanup_transaction; 1649 1650 prepare_to_wait(&cur_trans->writer_wait, &wait, 1651 TASK_UNINTERRUPTIBLE); 1652 1653 if (atomic_read(&cur_trans->num_writers) > 1) 1654 schedule_timeout(MAX_SCHEDULE_TIMEOUT); 1655 else if (should_grow) 1656 schedule_timeout(1); 1657 1658 finish_wait(&cur_trans->writer_wait, &wait); 1659 } while (atomic_read(&cur_trans->num_writers) > 1 || 1660 (should_grow && cur_trans->num_joined != joined)); 1661 1662 ret = btrfs_flush_all_pending_stuffs(trans, root); 1663 if (ret) 1664 goto cleanup_transaction; 1665 1666 /* 1667 * Ok now we need to make sure to block out any other joins while we 1668 * commit the transaction. We could have started a join before setting 1669 * no_join so make sure to wait for num_writers to == 1 again. 1670 */ 1671 spin_lock(&root->fs_info->trans_lock); 1672 root->fs_info->trans_no_join = 1; 1673 spin_unlock(&root->fs_info->trans_lock); 1674 wait_event(cur_trans->writer_wait, 1675 atomic_read(&cur_trans->num_writers) == 1); 1676 1677 /* ->aborted might be set after the previous check, so check it */ 1678 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 1679 ret = cur_trans->aborted; 1680 goto cleanup_transaction; 1681 } 1682 /* 1683 * the reloc mutex makes sure that we stop 1684 * the balancing code from coming in and moving 1685 * extents around in the middle of the commit 1686 */ 1687 mutex_lock(&root->fs_info->reloc_mutex); 1688 1689 /* 1690 * We needn't worry about the delayed items because we will 1691 * deal with them in create_pending_snapshot(), which is the 1692 * core function of the snapshot creation. 1693 */ 1694 ret = create_pending_snapshots(trans, root->fs_info); 1695 if (ret) { 1696 mutex_unlock(&root->fs_info->reloc_mutex); 1697 goto cleanup_transaction; 1698 } 1699 1700 /* 1701 * We insert the dir indexes of the snapshots and update the inode 1702 * of the snapshots' parents after the snapshot creation, so there 1703 * are some delayed items which are not dealt with. Now deal with 1704 * them. 1705 * 1706 * We needn't worry that this operation will corrupt the snapshots, 1707 * because all the tree which are snapshoted will be forced to COW 1708 * the nodes and leaves. 1709 */ 1710 ret = btrfs_run_delayed_items(trans, root); 1711 if (ret) { 1712 mutex_unlock(&root->fs_info->reloc_mutex); 1713 goto cleanup_transaction; 1714 } 1715 1716 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1717 if (ret) { 1718 mutex_unlock(&root->fs_info->reloc_mutex); 1719 goto cleanup_transaction; 1720 } 1721 1722 /* 1723 * make sure none of the code above managed to slip in a 1724 * delayed item 1725 */ 1726 btrfs_assert_delayed_root_empty(root); 1727 1728 WARN_ON(cur_trans != trans->transaction); 1729 1730 btrfs_scrub_pause(root); 1731 /* btrfs_commit_tree_roots is responsible for getting the 1732 * various roots consistent with each other. Every pointer 1733 * in the tree of tree roots has to point to the most up to date 1734 * root for every subvolume and other tree. So, we have to keep 1735 * the tree logging code from jumping in and changing any 1736 * of the trees. 1737 * 1738 * At this point in the commit, there can't be any tree-log 1739 * writers, but a little lower down we drop the trans mutex 1740 * and let new people in. By holding the tree_log_mutex 1741 * from now until after the super is written, we avoid races 1742 * with the tree-log code. 1743 */ 1744 mutex_lock(&root->fs_info->tree_log_mutex); 1745 1746 ret = commit_fs_roots(trans, root); 1747 if (ret) { 1748 mutex_unlock(&root->fs_info->tree_log_mutex); 1749 mutex_unlock(&root->fs_info->reloc_mutex); 1750 goto cleanup_transaction; 1751 } 1752 1753 /* commit_fs_roots gets rid of all the tree log roots, it is now 1754 * safe to free the root of tree log roots 1755 */ 1756 btrfs_free_log_root_tree(trans, root->fs_info); 1757 1758 ret = commit_cowonly_roots(trans, root); 1759 if (ret) { 1760 mutex_unlock(&root->fs_info->tree_log_mutex); 1761 mutex_unlock(&root->fs_info->reloc_mutex); 1762 goto cleanup_transaction; 1763 } 1764 1765 /* 1766 * The tasks which save the space cache and inode cache may also 1767 * update ->aborted, check it. 1768 */ 1769 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 1770 ret = cur_trans->aborted; 1771 mutex_unlock(&root->fs_info->tree_log_mutex); 1772 mutex_unlock(&root->fs_info->reloc_mutex); 1773 goto cleanup_transaction; 1774 } 1775 1776 btrfs_prepare_extent_commit(trans, root); 1777 1778 cur_trans = root->fs_info->running_transaction; 1779 1780 btrfs_set_root_node(&root->fs_info->tree_root->root_item, 1781 root->fs_info->tree_root->node); 1782 switch_commit_root(root->fs_info->tree_root); 1783 1784 btrfs_set_root_node(&root->fs_info->chunk_root->root_item, 1785 root->fs_info->chunk_root->node); 1786 switch_commit_root(root->fs_info->chunk_root); 1787 1788 assert_qgroups_uptodate(trans); 1789 update_super_roots(root); 1790 1791 if (!root->fs_info->log_root_recovering) { 1792 btrfs_set_super_log_root(root->fs_info->super_copy, 0); 1793 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0); 1794 } 1795 1796 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy, 1797 sizeof(*root->fs_info->super_copy)); 1798 1799 trans->transaction->blocked = 0; 1800 spin_lock(&root->fs_info->trans_lock); 1801 root->fs_info->running_transaction = NULL; 1802 root->fs_info->trans_no_join = 0; 1803 spin_unlock(&root->fs_info->trans_lock); 1804 mutex_unlock(&root->fs_info->reloc_mutex); 1805 1806 wake_up(&root->fs_info->transaction_wait); 1807 1808 ret = btrfs_write_and_wait_transaction(trans, root); 1809 if (ret) { 1810 btrfs_error(root->fs_info, ret, 1811 "Error while writing out transaction."); 1812 mutex_unlock(&root->fs_info->tree_log_mutex); 1813 goto cleanup_transaction; 1814 } 1815 1816 ret = write_ctree_super(trans, root, 0); 1817 if (ret) { 1818 mutex_unlock(&root->fs_info->tree_log_mutex); 1819 goto cleanup_transaction; 1820 } 1821 1822 /* 1823 * the super is written, we can safely allow the tree-loggers 1824 * to go about their business 1825 */ 1826 mutex_unlock(&root->fs_info->tree_log_mutex); 1827 1828 btrfs_finish_extent_commit(trans, root); 1829 1830 cur_trans->commit_done = 1; 1831 1832 root->fs_info->last_trans_committed = cur_trans->transid; 1833 1834 wake_up(&cur_trans->commit_wait); 1835 1836 spin_lock(&root->fs_info->trans_lock); 1837 list_del_init(&cur_trans->list); 1838 spin_unlock(&root->fs_info->trans_lock); 1839 1840 put_transaction(cur_trans); 1841 put_transaction(cur_trans); 1842 1843 if (trans->type < TRANS_JOIN_NOLOCK) 1844 sb_end_intwrite(root->fs_info->sb); 1845 1846 trace_btrfs_transaction_commit(root); 1847 1848 btrfs_scrub_continue(root); 1849 1850 if (current->journal_info == trans) 1851 current->journal_info = NULL; 1852 1853 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1854 1855 if (current != root->fs_info->transaction_kthread) 1856 btrfs_run_delayed_iputs(root); 1857 1858 return ret; 1859 1860 cleanup_transaction: 1861 btrfs_trans_release_metadata(trans, root); 1862 trans->block_rsv = NULL; 1863 if (trans->qgroup_reserved) { 1864 btrfs_qgroup_free(root, trans->qgroup_reserved); 1865 trans->qgroup_reserved = 0; 1866 } 1867 btrfs_printk(root->fs_info, "Skipping commit of aborted transaction.\n"); 1868 // WARN_ON(1); 1869 if (current->journal_info == trans) 1870 current->journal_info = NULL; 1871 cleanup_transaction(trans, root, ret); 1872 1873 return ret; 1874 } 1875 1876 /* 1877 * interface function to delete all the snapshots we have scheduled for deletion 1878 */ 1879 int btrfs_clean_old_snapshots(struct btrfs_root *root) 1880 { 1881 LIST_HEAD(list); 1882 struct btrfs_fs_info *fs_info = root->fs_info; 1883 1884 spin_lock(&fs_info->trans_lock); 1885 list_splice_init(&fs_info->dead_roots, &list); 1886 spin_unlock(&fs_info->trans_lock); 1887 1888 while (!list_empty(&list)) { 1889 int ret; 1890 1891 root = list_entry(list.next, struct btrfs_root, root_list); 1892 list_del(&root->root_list); 1893 1894 btrfs_kill_all_delayed_nodes(root); 1895 1896 if (btrfs_header_backref_rev(root->node) < 1897 BTRFS_MIXED_BACKREF_REV) 1898 ret = btrfs_drop_snapshot(root, NULL, 0, 0); 1899 else 1900 ret =btrfs_drop_snapshot(root, NULL, 1, 0); 1901 BUG_ON(ret < 0); 1902 } 1903 return 0; 1904 } 1905