1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/slab.h> 8 #include <linux/sched.h> 9 #include <linux/writeback.h> 10 #include <linux/pagemap.h> 11 #include <linux/blkdev.h> 12 #include <linux/uuid.h> 13 #include "misc.h" 14 #include "ctree.h" 15 #include "disk-io.h" 16 #include "transaction.h" 17 #include "locking.h" 18 #include "tree-log.h" 19 #include "inode-map.h" 20 #include "volumes.h" 21 #include "dev-replace.h" 22 #include "qgroup.h" 23 #include "block-group.h" 24 25 #define BTRFS_ROOT_TRANS_TAG 0 26 27 /* 28 * Transaction states and transitions 29 * 30 * No running transaction (fs tree blocks are not modified) 31 * | 32 * | To next stage: 33 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart(). 34 * V 35 * Transaction N [[TRANS_STATE_RUNNING]] 36 * | 37 * | New trans handles can be attached to transaction N by calling all 38 * | start_transaction() variants. 39 * | 40 * | To next stage: 41 * | Call btrfs_commit_transaction() on any trans handle attached to 42 * | transaction N 43 * V 44 * Transaction N [[TRANS_STATE_COMMIT_START]] 45 * | 46 * | Will wait for previous running transaction to completely finish if there 47 * | is one 48 * | 49 * | Then one of the following happes: 50 * | - Wait for all other trans handle holders to release. 51 * | The btrfs_commit_transaction() caller will do the commit work. 52 * | - Wait for current transaction to be committed by others. 53 * | Other btrfs_commit_transaction() caller will do the commit work. 54 * | 55 * | At this stage, only btrfs_join_transaction*() variants can attach 56 * | to this running transaction. 57 * | All other variants will wait for current one to finish and attach to 58 * | transaction N+1. 59 * | 60 * | To next stage: 61 * | Caller is chosen to commit transaction N, and all other trans handle 62 * | haven been released. 63 * V 64 * Transaction N [[TRANS_STATE_COMMIT_DOING]] 65 * | 66 * | The heavy lifting transaction work is started. 67 * | From running delayed refs (modifying extent tree) to creating pending 68 * | snapshots, running qgroups. 69 * | In short, modify supporting trees to reflect modifications of subvolume 70 * | trees. 71 * | 72 * | At this stage, all start_transaction() calls will wait for this 73 * | transaction to finish and attach to transaction N+1. 74 * | 75 * | To next stage: 76 * | Until all supporting trees are updated. 77 * V 78 * Transaction N [[TRANS_STATE_UNBLOCKED]] 79 * | Transaction N+1 80 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]] 81 * | need to write them back to disk and update | 82 * | super blocks. | 83 * | | 84 * | At this stage, new transaction is allowed to | 85 * | start. | 86 * | All new start_transaction() calls will be | 87 * | attached to transid N+1. | 88 * | | 89 * | To next stage: | 90 * | Until all tree blocks are super blocks are | 91 * | written to block devices | 92 * V | 93 * Transaction N [[TRANS_STATE_COMPLETED]] V 94 * All tree blocks and super blocks are written. Transaction N+1 95 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]] 96 * data structures will be cleaned up. | Life goes on 97 */ 98 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 99 [TRANS_STATE_RUNNING] = 0U, 100 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH), 101 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START | 102 __TRANS_ATTACH | 103 __TRANS_JOIN | 104 __TRANS_JOIN_NOSTART), 105 [TRANS_STATE_UNBLOCKED] = (__TRANS_START | 106 __TRANS_ATTACH | 107 __TRANS_JOIN | 108 __TRANS_JOIN_NOLOCK | 109 __TRANS_JOIN_NOSTART), 110 [TRANS_STATE_COMPLETED] = (__TRANS_START | 111 __TRANS_ATTACH | 112 __TRANS_JOIN | 113 __TRANS_JOIN_NOLOCK | 114 __TRANS_JOIN_NOSTART), 115 }; 116 117 void btrfs_put_transaction(struct btrfs_transaction *transaction) 118 { 119 WARN_ON(refcount_read(&transaction->use_count) == 0); 120 if (refcount_dec_and_test(&transaction->use_count)) { 121 BUG_ON(!list_empty(&transaction->list)); 122 WARN_ON(!RB_EMPTY_ROOT( 123 &transaction->delayed_refs.href_root.rb_root)); 124 WARN_ON(!RB_EMPTY_ROOT( 125 &transaction->delayed_refs.dirty_extent_root)); 126 if (transaction->delayed_refs.pending_csums) 127 btrfs_err(transaction->fs_info, 128 "pending csums is %llu", 129 transaction->delayed_refs.pending_csums); 130 /* 131 * If any block groups are found in ->deleted_bgs then it's 132 * because the transaction was aborted and a commit did not 133 * happen (things failed before writing the new superblock 134 * and calling btrfs_finish_extent_commit()), so we can not 135 * discard the physical locations of the block groups. 136 */ 137 while (!list_empty(&transaction->deleted_bgs)) { 138 struct btrfs_block_group *cache; 139 140 cache = list_first_entry(&transaction->deleted_bgs, 141 struct btrfs_block_group, 142 bg_list); 143 list_del_init(&cache->bg_list); 144 btrfs_put_block_group_trimming(cache); 145 btrfs_put_block_group(cache); 146 } 147 WARN_ON(!list_empty(&transaction->dev_update_list)); 148 kfree(transaction); 149 } 150 } 151 152 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans) 153 { 154 struct btrfs_transaction *cur_trans = trans->transaction; 155 struct btrfs_fs_info *fs_info = trans->fs_info; 156 struct btrfs_root *root, *tmp; 157 158 down_write(&fs_info->commit_root_sem); 159 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits, 160 dirty_list) { 161 list_del_init(&root->dirty_list); 162 free_extent_buffer(root->commit_root); 163 root->commit_root = btrfs_root_node(root); 164 if (is_fstree(root->root_key.objectid)) 165 btrfs_unpin_free_ino(root); 166 extent_io_tree_release(&root->dirty_log_pages); 167 btrfs_qgroup_clean_swapped_blocks(root); 168 } 169 170 /* We can free old roots now. */ 171 spin_lock(&cur_trans->dropped_roots_lock); 172 while (!list_empty(&cur_trans->dropped_roots)) { 173 root = list_first_entry(&cur_trans->dropped_roots, 174 struct btrfs_root, root_list); 175 list_del_init(&root->root_list); 176 spin_unlock(&cur_trans->dropped_roots_lock); 177 btrfs_free_log(trans, root); 178 btrfs_drop_and_free_fs_root(fs_info, root); 179 spin_lock(&cur_trans->dropped_roots_lock); 180 } 181 spin_unlock(&cur_trans->dropped_roots_lock); 182 up_write(&fs_info->commit_root_sem); 183 } 184 185 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 186 unsigned int type) 187 { 188 if (type & TRANS_EXTWRITERS) 189 atomic_inc(&trans->num_extwriters); 190 } 191 192 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 193 unsigned int type) 194 { 195 if (type & TRANS_EXTWRITERS) 196 atomic_dec(&trans->num_extwriters); 197 } 198 199 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 200 unsigned int type) 201 { 202 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 203 } 204 205 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 206 { 207 return atomic_read(&trans->num_extwriters); 208 } 209 210 /* 211 * To be called after all the new block groups attached to the transaction 212 * handle have been created (btrfs_create_pending_block_groups()). 213 */ 214 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 215 { 216 struct btrfs_fs_info *fs_info = trans->fs_info; 217 218 if (!trans->chunk_bytes_reserved) 219 return; 220 221 WARN_ON_ONCE(!list_empty(&trans->new_bgs)); 222 223 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv, 224 trans->chunk_bytes_reserved, NULL); 225 trans->chunk_bytes_reserved = 0; 226 } 227 228 /* 229 * either allocate a new transaction or hop into the existing one 230 */ 231 static noinline int join_transaction(struct btrfs_fs_info *fs_info, 232 unsigned int type) 233 { 234 struct btrfs_transaction *cur_trans; 235 236 spin_lock(&fs_info->trans_lock); 237 loop: 238 /* The file system has been taken offline. No new transactions. */ 239 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 240 spin_unlock(&fs_info->trans_lock); 241 return -EROFS; 242 } 243 244 cur_trans = fs_info->running_transaction; 245 if (cur_trans) { 246 if (TRANS_ABORTED(cur_trans)) { 247 spin_unlock(&fs_info->trans_lock); 248 return cur_trans->aborted; 249 } 250 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 251 spin_unlock(&fs_info->trans_lock); 252 return -EBUSY; 253 } 254 refcount_inc(&cur_trans->use_count); 255 atomic_inc(&cur_trans->num_writers); 256 extwriter_counter_inc(cur_trans, type); 257 spin_unlock(&fs_info->trans_lock); 258 return 0; 259 } 260 spin_unlock(&fs_info->trans_lock); 261 262 /* 263 * If we are ATTACH, we just want to catch the current transaction, 264 * and commit it. If there is no transaction, just return ENOENT. 265 */ 266 if (type == TRANS_ATTACH) 267 return -ENOENT; 268 269 /* 270 * JOIN_NOLOCK only happens during the transaction commit, so 271 * it is impossible that ->running_transaction is NULL 272 */ 273 BUG_ON(type == TRANS_JOIN_NOLOCK); 274 275 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS); 276 if (!cur_trans) 277 return -ENOMEM; 278 279 spin_lock(&fs_info->trans_lock); 280 if (fs_info->running_transaction) { 281 /* 282 * someone started a transaction after we unlocked. Make sure 283 * to redo the checks above 284 */ 285 kfree(cur_trans); 286 goto loop; 287 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 288 spin_unlock(&fs_info->trans_lock); 289 kfree(cur_trans); 290 return -EROFS; 291 } 292 293 cur_trans->fs_info = fs_info; 294 atomic_set(&cur_trans->num_writers, 1); 295 extwriter_counter_init(cur_trans, type); 296 init_waitqueue_head(&cur_trans->writer_wait); 297 init_waitqueue_head(&cur_trans->commit_wait); 298 cur_trans->state = TRANS_STATE_RUNNING; 299 /* 300 * One for this trans handle, one so it will live on until we 301 * commit the transaction. 302 */ 303 refcount_set(&cur_trans->use_count, 2); 304 cur_trans->flags = 0; 305 cur_trans->start_time = ktime_get_seconds(); 306 307 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs)); 308 309 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED; 310 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT; 311 atomic_set(&cur_trans->delayed_refs.num_entries, 0); 312 313 /* 314 * although the tree mod log is per file system and not per transaction, 315 * the log must never go across transaction boundaries. 316 */ 317 smp_mb(); 318 if (!list_empty(&fs_info->tree_mod_seq_list)) 319 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n"); 320 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 321 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n"); 322 atomic64_set(&fs_info->tree_mod_seq, 0); 323 324 spin_lock_init(&cur_trans->delayed_refs.lock); 325 326 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 327 INIT_LIST_HEAD(&cur_trans->dev_update_list); 328 INIT_LIST_HEAD(&cur_trans->switch_commits); 329 INIT_LIST_HEAD(&cur_trans->dirty_bgs); 330 INIT_LIST_HEAD(&cur_trans->io_bgs); 331 INIT_LIST_HEAD(&cur_trans->dropped_roots); 332 mutex_init(&cur_trans->cache_write_mutex); 333 spin_lock_init(&cur_trans->dirty_bgs_lock); 334 INIT_LIST_HEAD(&cur_trans->deleted_bgs); 335 spin_lock_init(&cur_trans->dropped_roots_lock); 336 list_add_tail(&cur_trans->list, &fs_info->trans_list); 337 extent_io_tree_init(fs_info, &cur_trans->dirty_pages, 338 IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode); 339 extent_io_tree_init(fs_info, &cur_trans->pinned_extents, 340 IO_TREE_FS_PINNED_EXTENTS, NULL); 341 fs_info->generation++; 342 cur_trans->transid = fs_info->generation; 343 fs_info->running_transaction = cur_trans; 344 cur_trans->aborted = 0; 345 spin_unlock(&fs_info->trans_lock); 346 347 return 0; 348 } 349 350 /* 351 * this does all the record keeping required to make sure that a reference 352 * counted root is properly recorded in a given transaction. This is required 353 * to make sure the old root from before we joined the transaction is deleted 354 * when the transaction commits 355 */ 356 static int record_root_in_trans(struct btrfs_trans_handle *trans, 357 struct btrfs_root *root, 358 int force) 359 { 360 struct btrfs_fs_info *fs_info = root->fs_info; 361 362 if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 363 root->last_trans < trans->transid) || force) { 364 WARN_ON(root == fs_info->extent_root); 365 WARN_ON(!force && root->commit_root != root->node); 366 367 /* 368 * see below for IN_TRANS_SETUP usage rules 369 * we have the reloc mutex held now, so there 370 * is only one writer in this function 371 */ 372 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 373 374 /* make sure readers find IN_TRANS_SETUP before 375 * they find our root->last_trans update 376 */ 377 smp_wmb(); 378 379 spin_lock(&fs_info->fs_roots_radix_lock); 380 if (root->last_trans == trans->transid && !force) { 381 spin_unlock(&fs_info->fs_roots_radix_lock); 382 return 0; 383 } 384 radix_tree_tag_set(&fs_info->fs_roots_radix, 385 (unsigned long)root->root_key.objectid, 386 BTRFS_ROOT_TRANS_TAG); 387 spin_unlock(&fs_info->fs_roots_radix_lock); 388 root->last_trans = trans->transid; 389 390 /* this is pretty tricky. We don't want to 391 * take the relocation lock in btrfs_record_root_in_trans 392 * unless we're really doing the first setup for this root in 393 * this transaction. 394 * 395 * Normally we'd use root->last_trans as a flag to decide 396 * if we want to take the expensive mutex. 397 * 398 * But, we have to set root->last_trans before we 399 * init the relocation root, otherwise, we trip over warnings 400 * in ctree.c. The solution used here is to flag ourselves 401 * with root IN_TRANS_SETUP. When this is 1, we're still 402 * fixing up the reloc trees and everyone must wait. 403 * 404 * When this is zero, they can trust root->last_trans and fly 405 * through btrfs_record_root_in_trans without having to take the 406 * lock. smp_wmb() makes sure that all the writes above are 407 * done before we pop in the zero below 408 */ 409 btrfs_init_reloc_root(trans, root); 410 smp_mb__before_atomic(); 411 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 412 } 413 return 0; 414 } 415 416 417 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans, 418 struct btrfs_root *root) 419 { 420 struct btrfs_fs_info *fs_info = root->fs_info; 421 struct btrfs_transaction *cur_trans = trans->transaction; 422 423 /* Add ourselves to the transaction dropped list */ 424 spin_lock(&cur_trans->dropped_roots_lock); 425 list_add_tail(&root->root_list, &cur_trans->dropped_roots); 426 spin_unlock(&cur_trans->dropped_roots_lock); 427 428 /* Make sure we don't try to update the root at commit time */ 429 spin_lock(&fs_info->fs_roots_radix_lock); 430 radix_tree_tag_clear(&fs_info->fs_roots_radix, 431 (unsigned long)root->root_key.objectid, 432 BTRFS_ROOT_TRANS_TAG); 433 spin_unlock(&fs_info->fs_roots_radix_lock); 434 } 435 436 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 437 struct btrfs_root *root) 438 { 439 struct btrfs_fs_info *fs_info = root->fs_info; 440 441 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 442 return 0; 443 444 /* 445 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 446 * and barriers 447 */ 448 smp_rmb(); 449 if (root->last_trans == trans->transid && 450 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 451 return 0; 452 453 mutex_lock(&fs_info->reloc_mutex); 454 record_root_in_trans(trans, root, 0); 455 mutex_unlock(&fs_info->reloc_mutex); 456 457 return 0; 458 } 459 460 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 461 { 462 return (trans->state >= TRANS_STATE_COMMIT_START && 463 trans->state < TRANS_STATE_UNBLOCKED && 464 !TRANS_ABORTED(trans)); 465 } 466 467 /* wait for commit against the current transaction to become unblocked 468 * when this is done, it is safe to start a new transaction, but the current 469 * transaction might not be fully on disk. 470 */ 471 static void wait_current_trans(struct btrfs_fs_info *fs_info) 472 { 473 struct btrfs_transaction *cur_trans; 474 475 spin_lock(&fs_info->trans_lock); 476 cur_trans = fs_info->running_transaction; 477 if (cur_trans && is_transaction_blocked(cur_trans)) { 478 refcount_inc(&cur_trans->use_count); 479 spin_unlock(&fs_info->trans_lock); 480 481 wait_event(fs_info->transaction_wait, 482 cur_trans->state >= TRANS_STATE_UNBLOCKED || 483 TRANS_ABORTED(cur_trans)); 484 btrfs_put_transaction(cur_trans); 485 } else { 486 spin_unlock(&fs_info->trans_lock); 487 } 488 } 489 490 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type) 491 { 492 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 493 return 0; 494 495 if (type == TRANS_START) 496 return 1; 497 498 return 0; 499 } 500 501 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 502 { 503 struct btrfs_fs_info *fs_info = root->fs_info; 504 505 if (!fs_info->reloc_ctl || 506 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 507 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 508 root->reloc_root) 509 return false; 510 511 return true; 512 } 513 514 static struct btrfs_trans_handle * 515 start_transaction(struct btrfs_root *root, unsigned int num_items, 516 unsigned int type, enum btrfs_reserve_flush_enum flush, 517 bool enforce_qgroups) 518 { 519 struct btrfs_fs_info *fs_info = root->fs_info; 520 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 521 struct btrfs_trans_handle *h; 522 struct btrfs_transaction *cur_trans; 523 u64 num_bytes = 0; 524 u64 qgroup_reserved = 0; 525 bool reloc_reserved = false; 526 int ret; 527 528 /* Send isn't supposed to start transactions. */ 529 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB); 530 531 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 532 return ERR_PTR(-EROFS); 533 534 if (current->journal_info) { 535 WARN_ON(type & TRANS_EXTWRITERS); 536 h = current->journal_info; 537 refcount_inc(&h->use_count); 538 WARN_ON(refcount_read(&h->use_count) > 2); 539 h->orig_rsv = h->block_rsv; 540 h->block_rsv = NULL; 541 goto got_it; 542 } 543 544 /* 545 * Do the reservation before we join the transaction so we can do all 546 * the appropriate flushing if need be. 547 */ 548 if (num_items && root != fs_info->chunk_root) { 549 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv; 550 u64 delayed_refs_bytes = 0; 551 552 qgroup_reserved = num_items * fs_info->nodesize; 553 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved, 554 enforce_qgroups); 555 if (ret) 556 return ERR_PTR(ret); 557 558 /* 559 * We want to reserve all the bytes we may need all at once, so 560 * we only do 1 enospc flushing cycle per transaction start. We 561 * accomplish this by simply assuming we'll do 2 x num_items 562 * worth of delayed refs updates in this trans handle, and 563 * refill that amount for whatever is missing in the reserve. 564 */ 565 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items); 566 if (delayed_refs_rsv->full == 0) { 567 delayed_refs_bytes = num_bytes; 568 num_bytes <<= 1; 569 } 570 571 /* 572 * Do the reservation for the relocation root creation 573 */ 574 if (need_reserve_reloc_root(root)) { 575 num_bytes += fs_info->nodesize; 576 reloc_reserved = true; 577 } 578 579 ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush); 580 if (ret) 581 goto reserve_fail; 582 if (delayed_refs_bytes) { 583 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv, 584 delayed_refs_bytes); 585 num_bytes -= delayed_refs_bytes; 586 } 587 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL && 588 !delayed_refs_rsv->full) { 589 /* 590 * Some people call with btrfs_start_transaction(root, 0) 591 * because they can be throttled, but have some other mechanism 592 * for reserving space. We still want these guys to refill the 593 * delayed block_rsv so just add 1 items worth of reservation 594 * here. 595 */ 596 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush); 597 if (ret) 598 goto reserve_fail; 599 } 600 again: 601 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS); 602 if (!h) { 603 ret = -ENOMEM; 604 goto alloc_fail; 605 } 606 607 /* 608 * If we are JOIN_NOLOCK we're already committing a transaction and 609 * waiting on this guy, so we don't need to do the sb_start_intwrite 610 * because we're already holding a ref. We need this because we could 611 * have raced in and did an fsync() on a file which can kick a commit 612 * and then we deadlock with somebody doing a freeze. 613 * 614 * If we are ATTACH, it means we just want to catch the current 615 * transaction and commit it, so we needn't do sb_start_intwrite(). 616 */ 617 if (type & __TRANS_FREEZABLE) 618 sb_start_intwrite(fs_info->sb); 619 620 if (may_wait_transaction(fs_info, type)) 621 wait_current_trans(fs_info); 622 623 do { 624 ret = join_transaction(fs_info, type); 625 if (ret == -EBUSY) { 626 wait_current_trans(fs_info); 627 if (unlikely(type == TRANS_ATTACH || 628 type == TRANS_JOIN_NOSTART)) 629 ret = -ENOENT; 630 } 631 } while (ret == -EBUSY); 632 633 if (ret < 0) 634 goto join_fail; 635 636 cur_trans = fs_info->running_transaction; 637 638 h->transid = cur_trans->transid; 639 h->transaction = cur_trans; 640 h->root = root; 641 refcount_set(&h->use_count, 1); 642 h->fs_info = root->fs_info; 643 644 h->type = type; 645 h->can_flush_pending_bgs = true; 646 INIT_LIST_HEAD(&h->new_bgs); 647 648 smp_mb(); 649 if (cur_trans->state >= TRANS_STATE_COMMIT_START && 650 may_wait_transaction(fs_info, type)) { 651 current->journal_info = h; 652 btrfs_commit_transaction(h); 653 goto again; 654 } 655 656 if (num_bytes) { 657 trace_btrfs_space_reservation(fs_info, "transaction", 658 h->transid, num_bytes, 1); 659 h->block_rsv = &fs_info->trans_block_rsv; 660 h->bytes_reserved = num_bytes; 661 h->reloc_reserved = reloc_reserved; 662 } 663 664 got_it: 665 btrfs_record_root_in_trans(h, root); 666 667 if (!current->journal_info) 668 current->journal_info = h; 669 return h; 670 671 join_fail: 672 if (type & __TRANS_FREEZABLE) 673 sb_end_intwrite(fs_info->sb); 674 kmem_cache_free(btrfs_trans_handle_cachep, h); 675 alloc_fail: 676 if (num_bytes) 677 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv, 678 num_bytes, NULL); 679 reserve_fail: 680 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved); 681 return ERR_PTR(ret); 682 } 683 684 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 685 unsigned int num_items) 686 { 687 return start_transaction(root, num_items, TRANS_START, 688 BTRFS_RESERVE_FLUSH_ALL, true); 689 } 690 691 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv( 692 struct btrfs_root *root, 693 unsigned int num_items, 694 int min_factor) 695 { 696 struct btrfs_fs_info *fs_info = root->fs_info; 697 struct btrfs_trans_handle *trans; 698 u64 num_bytes; 699 int ret; 700 701 /* 702 * We have two callers: unlink and block group removal. The 703 * former should succeed even if we will temporarily exceed 704 * quota and the latter operates on the extent root so 705 * qgroup enforcement is ignored anyway. 706 */ 707 trans = start_transaction(root, num_items, TRANS_START, 708 BTRFS_RESERVE_FLUSH_ALL, false); 709 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 710 return trans; 711 712 trans = btrfs_start_transaction(root, 0); 713 if (IS_ERR(trans)) 714 return trans; 715 716 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items); 717 ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv, 718 num_bytes, min_factor); 719 if (ret) { 720 btrfs_end_transaction(trans); 721 return ERR_PTR(ret); 722 } 723 724 trans->block_rsv = &fs_info->trans_block_rsv; 725 trans->bytes_reserved = num_bytes; 726 trace_btrfs_space_reservation(fs_info, "transaction", 727 trans->transid, num_bytes, 1); 728 729 return trans; 730 } 731 732 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 733 { 734 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH, 735 true); 736 } 737 738 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root) 739 { 740 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 741 BTRFS_RESERVE_NO_FLUSH, true); 742 } 743 744 /* 745 * Similar to regular join but it never starts a transaction when none is 746 * running or after waiting for the current one to finish. 747 */ 748 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root) 749 { 750 return start_transaction(root, 0, TRANS_JOIN_NOSTART, 751 BTRFS_RESERVE_NO_FLUSH, true); 752 } 753 754 /* 755 * btrfs_attach_transaction() - catch the running transaction 756 * 757 * It is used when we want to commit the current the transaction, but 758 * don't want to start a new one. 759 * 760 * Note: If this function return -ENOENT, it just means there is no 761 * running transaction. But it is possible that the inactive transaction 762 * is still in the memory, not fully on disk. If you hope there is no 763 * inactive transaction in the fs when -ENOENT is returned, you should 764 * invoke 765 * btrfs_attach_transaction_barrier() 766 */ 767 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 768 { 769 return start_transaction(root, 0, TRANS_ATTACH, 770 BTRFS_RESERVE_NO_FLUSH, true); 771 } 772 773 /* 774 * btrfs_attach_transaction_barrier() - catch the running transaction 775 * 776 * It is similar to the above function, the difference is this one 777 * will wait for all the inactive transactions until they fully 778 * complete. 779 */ 780 struct btrfs_trans_handle * 781 btrfs_attach_transaction_barrier(struct btrfs_root *root) 782 { 783 struct btrfs_trans_handle *trans; 784 785 trans = start_transaction(root, 0, TRANS_ATTACH, 786 BTRFS_RESERVE_NO_FLUSH, true); 787 if (trans == ERR_PTR(-ENOENT)) 788 btrfs_wait_for_commit(root->fs_info, 0); 789 790 return trans; 791 } 792 793 /* wait for a transaction commit to be fully complete */ 794 static noinline void wait_for_commit(struct btrfs_transaction *commit) 795 { 796 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED); 797 } 798 799 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid) 800 { 801 struct btrfs_transaction *cur_trans = NULL, *t; 802 int ret = 0; 803 804 if (transid) { 805 if (transid <= fs_info->last_trans_committed) 806 goto out; 807 808 /* find specified transaction */ 809 spin_lock(&fs_info->trans_lock); 810 list_for_each_entry(t, &fs_info->trans_list, list) { 811 if (t->transid == transid) { 812 cur_trans = t; 813 refcount_inc(&cur_trans->use_count); 814 ret = 0; 815 break; 816 } 817 if (t->transid > transid) { 818 ret = 0; 819 break; 820 } 821 } 822 spin_unlock(&fs_info->trans_lock); 823 824 /* 825 * The specified transaction doesn't exist, or we 826 * raced with btrfs_commit_transaction 827 */ 828 if (!cur_trans) { 829 if (transid > fs_info->last_trans_committed) 830 ret = -EINVAL; 831 goto out; 832 } 833 } else { 834 /* find newest transaction that is committing | committed */ 835 spin_lock(&fs_info->trans_lock); 836 list_for_each_entry_reverse(t, &fs_info->trans_list, 837 list) { 838 if (t->state >= TRANS_STATE_COMMIT_START) { 839 if (t->state == TRANS_STATE_COMPLETED) 840 break; 841 cur_trans = t; 842 refcount_inc(&cur_trans->use_count); 843 break; 844 } 845 } 846 spin_unlock(&fs_info->trans_lock); 847 if (!cur_trans) 848 goto out; /* nothing committing|committed */ 849 } 850 851 wait_for_commit(cur_trans); 852 btrfs_put_transaction(cur_trans); 853 out: 854 return ret; 855 } 856 857 void btrfs_throttle(struct btrfs_fs_info *fs_info) 858 { 859 wait_current_trans(fs_info); 860 } 861 862 static int should_end_transaction(struct btrfs_trans_handle *trans) 863 { 864 struct btrfs_fs_info *fs_info = trans->fs_info; 865 866 if (btrfs_check_space_for_delayed_refs(fs_info)) 867 return 1; 868 869 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5); 870 } 871 872 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans) 873 { 874 struct btrfs_transaction *cur_trans = trans->transaction; 875 876 smp_mb(); 877 if (cur_trans->state >= TRANS_STATE_COMMIT_START || 878 cur_trans->delayed_refs.flushing) 879 return 1; 880 881 return should_end_transaction(trans); 882 } 883 884 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans) 885 886 { 887 struct btrfs_fs_info *fs_info = trans->fs_info; 888 889 if (!trans->block_rsv) { 890 ASSERT(!trans->bytes_reserved); 891 return; 892 } 893 894 if (!trans->bytes_reserved) 895 return; 896 897 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv); 898 trace_btrfs_space_reservation(fs_info, "transaction", 899 trans->transid, trans->bytes_reserved, 0); 900 btrfs_block_rsv_release(fs_info, trans->block_rsv, 901 trans->bytes_reserved, NULL); 902 trans->bytes_reserved = 0; 903 } 904 905 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 906 int throttle) 907 { 908 struct btrfs_fs_info *info = trans->fs_info; 909 struct btrfs_transaction *cur_trans = trans->transaction; 910 int err = 0; 911 912 if (refcount_read(&trans->use_count) > 1) { 913 refcount_dec(&trans->use_count); 914 trans->block_rsv = trans->orig_rsv; 915 return 0; 916 } 917 918 btrfs_trans_release_metadata(trans); 919 trans->block_rsv = NULL; 920 921 btrfs_create_pending_block_groups(trans); 922 923 btrfs_trans_release_chunk_metadata(trans); 924 925 if (trans->type & __TRANS_FREEZABLE) 926 sb_end_intwrite(info->sb); 927 928 WARN_ON(cur_trans != info->running_transaction); 929 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 930 atomic_dec(&cur_trans->num_writers); 931 extwriter_counter_dec(cur_trans, trans->type); 932 933 cond_wake_up(&cur_trans->writer_wait); 934 btrfs_put_transaction(cur_trans); 935 936 if (current->journal_info == trans) 937 current->journal_info = NULL; 938 939 if (throttle) 940 btrfs_run_delayed_iputs(info); 941 942 if (TRANS_ABORTED(trans) || 943 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) { 944 wake_up_process(info->transaction_kthread); 945 err = -EIO; 946 } 947 948 kmem_cache_free(btrfs_trans_handle_cachep, trans); 949 return err; 950 } 951 952 int btrfs_end_transaction(struct btrfs_trans_handle *trans) 953 { 954 return __btrfs_end_transaction(trans, 0); 955 } 956 957 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans) 958 { 959 return __btrfs_end_transaction(trans, 1); 960 } 961 962 /* 963 * when btree blocks are allocated, they have some corresponding bits set for 964 * them in one of two extent_io trees. This is used to make sure all of 965 * those extents are sent to disk but does not wait on them 966 */ 967 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info, 968 struct extent_io_tree *dirty_pages, int mark) 969 { 970 int err = 0; 971 int werr = 0; 972 struct address_space *mapping = fs_info->btree_inode->i_mapping; 973 struct extent_state *cached_state = NULL; 974 u64 start = 0; 975 u64 end; 976 977 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers); 978 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 979 mark, &cached_state)) { 980 bool wait_writeback = false; 981 982 err = convert_extent_bit(dirty_pages, start, end, 983 EXTENT_NEED_WAIT, 984 mark, &cached_state); 985 /* 986 * convert_extent_bit can return -ENOMEM, which is most of the 987 * time a temporary error. So when it happens, ignore the error 988 * and wait for writeback of this range to finish - because we 989 * failed to set the bit EXTENT_NEED_WAIT for the range, a call 990 * to __btrfs_wait_marked_extents() would not know that 991 * writeback for this range started and therefore wouldn't 992 * wait for it to finish - we don't want to commit a 993 * superblock that points to btree nodes/leafs for which 994 * writeback hasn't finished yet (and without errors). 995 * We cleanup any entries left in the io tree when committing 996 * the transaction (through extent_io_tree_release()). 997 */ 998 if (err == -ENOMEM) { 999 err = 0; 1000 wait_writeback = true; 1001 } 1002 if (!err) 1003 err = filemap_fdatawrite_range(mapping, start, end); 1004 if (err) 1005 werr = err; 1006 else if (wait_writeback) 1007 werr = filemap_fdatawait_range(mapping, start, end); 1008 free_extent_state(cached_state); 1009 cached_state = NULL; 1010 cond_resched(); 1011 start = end + 1; 1012 } 1013 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers); 1014 return werr; 1015 } 1016 1017 /* 1018 * when btree blocks are allocated, they have some corresponding bits set for 1019 * them in one of two extent_io trees. This is used to make sure all of 1020 * those extents are on disk for transaction or log commit. We wait 1021 * on all the pages and clear them from the dirty pages state tree 1022 */ 1023 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info, 1024 struct extent_io_tree *dirty_pages) 1025 { 1026 int err = 0; 1027 int werr = 0; 1028 struct address_space *mapping = fs_info->btree_inode->i_mapping; 1029 struct extent_state *cached_state = NULL; 1030 u64 start = 0; 1031 u64 end; 1032 1033 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 1034 EXTENT_NEED_WAIT, &cached_state)) { 1035 /* 1036 * Ignore -ENOMEM errors returned by clear_extent_bit(). 1037 * When committing the transaction, we'll remove any entries 1038 * left in the io tree. For a log commit, we don't remove them 1039 * after committing the log because the tree can be accessed 1040 * concurrently - we do it only at transaction commit time when 1041 * it's safe to do it (through extent_io_tree_release()). 1042 */ 1043 err = clear_extent_bit(dirty_pages, start, end, 1044 EXTENT_NEED_WAIT, 0, 0, &cached_state); 1045 if (err == -ENOMEM) 1046 err = 0; 1047 if (!err) 1048 err = filemap_fdatawait_range(mapping, start, end); 1049 if (err) 1050 werr = err; 1051 free_extent_state(cached_state); 1052 cached_state = NULL; 1053 cond_resched(); 1054 start = end + 1; 1055 } 1056 if (err) 1057 werr = err; 1058 return werr; 1059 } 1060 1061 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info, 1062 struct extent_io_tree *dirty_pages) 1063 { 1064 bool errors = false; 1065 int err; 1066 1067 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1068 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags)) 1069 errors = true; 1070 1071 if (errors && !err) 1072 err = -EIO; 1073 return err; 1074 } 1075 1076 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark) 1077 { 1078 struct btrfs_fs_info *fs_info = log_root->fs_info; 1079 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages; 1080 bool errors = false; 1081 int err; 1082 1083 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 1084 1085 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1086 if ((mark & EXTENT_DIRTY) && 1087 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags)) 1088 errors = true; 1089 1090 if ((mark & EXTENT_NEW) && 1091 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags)) 1092 errors = true; 1093 1094 if (errors && !err) 1095 err = -EIO; 1096 return err; 1097 } 1098 1099 /* 1100 * When btree blocks are allocated the corresponding extents are marked dirty. 1101 * This function ensures such extents are persisted on disk for transaction or 1102 * log commit. 1103 * 1104 * @trans: transaction whose dirty pages we'd like to write 1105 */ 1106 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans) 1107 { 1108 int ret; 1109 int ret2; 1110 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages; 1111 struct btrfs_fs_info *fs_info = trans->fs_info; 1112 struct blk_plug plug; 1113 1114 blk_start_plug(&plug); 1115 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY); 1116 blk_finish_plug(&plug); 1117 ret2 = btrfs_wait_extents(fs_info, dirty_pages); 1118 1119 extent_io_tree_release(&trans->transaction->dirty_pages); 1120 1121 if (ret) 1122 return ret; 1123 else if (ret2) 1124 return ret2; 1125 else 1126 return 0; 1127 } 1128 1129 /* 1130 * this is used to update the root pointer in the tree of tree roots. 1131 * 1132 * But, in the case of the extent allocation tree, updating the root 1133 * pointer may allocate blocks which may change the root of the extent 1134 * allocation tree. 1135 * 1136 * So, this loops and repeats and makes sure the cowonly root didn't 1137 * change while the root pointer was being updated in the metadata. 1138 */ 1139 static int update_cowonly_root(struct btrfs_trans_handle *trans, 1140 struct btrfs_root *root) 1141 { 1142 int ret; 1143 u64 old_root_bytenr; 1144 u64 old_root_used; 1145 struct btrfs_fs_info *fs_info = root->fs_info; 1146 struct btrfs_root *tree_root = fs_info->tree_root; 1147 1148 old_root_used = btrfs_root_used(&root->root_item); 1149 1150 while (1) { 1151 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 1152 if (old_root_bytenr == root->node->start && 1153 old_root_used == btrfs_root_used(&root->root_item)) 1154 break; 1155 1156 btrfs_set_root_node(&root->root_item, root->node); 1157 ret = btrfs_update_root(trans, tree_root, 1158 &root->root_key, 1159 &root->root_item); 1160 if (ret) 1161 return ret; 1162 1163 old_root_used = btrfs_root_used(&root->root_item); 1164 } 1165 1166 return 0; 1167 } 1168 1169 /* 1170 * update all the cowonly tree roots on disk 1171 * 1172 * The error handling in this function may not be obvious. Any of the 1173 * failures will cause the file system to go offline. We still need 1174 * to clean up the delayed refs. 1175 */ 1176 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans) 1177 { 1178 struct btrfs_fs_info *fs_info = trans->fs_info; 1179 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; 1180 struct list_head *io_bgs = &trans->transaction->io_bgs; 1181 struct list_head *next; 1182 struct extent_buffer *eb; 1183 int ret; 1184 1185 eb = btrfs_lock_root_node(fs_info->tree_root); 1186 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 1187 0, &eb); 1188 btrfs_tree_unlock(eb); 1189 free_extent_buffer(eb); 1190 1191 if (ret) 1192 return ret; 1193 1194 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1195 if (ret) 1196 return ret; 1197 1198 ret = btrfs_run_dev_stats(trans); 1199 if (ret) 1200 return ret; 1201 ret = btrfs_run_dev_replace(trans); 1202 if (ret) 1203 return ret; 1204 ret = btrfs_run_qgroups(trans); 1205 if (ret) 1206 return ret; 1207 1208 ret = btrfs_setup_space_cache(trans); 1209 if (ret) 1210 return ret; 1211 1212 /* run_qgroups might have added some more refs */ 1213 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1214 if (ret) 1215 return ret; 1216 again: 1217 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1218 struct btrfs_root *root; 1219 next = fs_info->dirty_cowonly_roots.next; 1220 list_del_init(next); 1221 root = list_entry(next, struct btrfs_root, dirty_list); 1222 clear_bit(BTRFS_ROOT_DIRTY, &root->state); 1223 1224 if (root != fs_info->extent_root) 1225 list_add_tail(&root->dirty_list, 1226 &trans->transaction->switch_commits); 1227 ret = update_cowonly_root(trans, root); 1228 if (ret) 1229 return ret; 1230 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1231 if (ret) 1232 return ret; 1233 } 1234 1235 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { 1236 ret = btrfs_write_dirty_block_groups(trans); 1237 if (ret) 1238 return ret; 1239 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1240 if (ret) 1241 return ret; 1242 } 1243 1244 if (!list_empty(&fs_info->dirty_cowonly_roots)) 1245 goto again; 1246 1247 list_add_tail(&fs_info->extent_root->dirty_list, 1248 &trans->transaction->switch_commits); 1249 1250 /* Update dev-replace pointer once everything is committed */ 1251 fs_info->dev_replace.committed_cursor_left = 1252 fs_info->dev_replace.cursor_left_last_write_of_item; 1253 1254 return 0; 1255 } 1256 1257 /* 1258 * dead roots are old snapshots that need to be deleted. This allocates 1259 * a dirty root struct and adds it into the list of dead roots that need to 1260 * be deleted 1261 */ 1262 void btrfs_add_dead_root(struct btrfs_root *root) 1263 { 1264 struct btrfs_fs_info *fs_info = root->fs_info; 1265 1266 spin_lock(&fs_info->trans_lock); 1267 if (list_empty(&root->root_list)) { 1268 btrfs_grab_root(root); 1269 list_add_tail(&root->root_list, &fs_info->dead_roots); 1270 } 1271 spin_unlock(&fs_info->trans_lock); 1272 } 1273 1274 /* 1275 * update all the cowonly tree roots on disk 1276 */ 1277 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans) 1278 { 1279 struct btrfs_fs_info *fs_info = trans->fs_info; 1280 struct btrfs_root *gang[8]; 1281 int i; 1282 int ret; 1283 int err = 0; 1284 1285 spin_lock(&fs_info->fs_roots_radix_lock); 1286 while (1) { 1287 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1288 (void **)gang, 0, 1289 ARRAY_SIZE(gang), 1290 BTRFS_ROOT_TRANS_TAG); 1291 if (ret == 0) 1292 break; 1293 for (i = 0; i < ret; i++) { 1294 struct btrfs_root *root = gang[i]; 1295 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1296 (unsigned long)root->root_key.objectid, 1297 BTRFS_ROOT_TRANS_TAG); 1298 spin_unlock(&fs_info->fs_roots_radix_lock); 1299 1300 btrfs_free_log(trans, root); 1301 btrfs_update_reloc_root(trans, root); 1302 1303 btrfs_save_ino_cache(root, trans); 1304 1305 /* see comments in should_cow_block() */ 1306 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1307 smp_mb__after_atomic(); 1308 1309 if (root->commit_root != root->node) { 1310 list_add_tail(&root->dirty_list, 1311 &trans->transaction->switch_commits); 1312 btrfs_set_root_node(&root->root_item, 1313 root->node); 1314 } 1315 1316 err = btrfs_update_root(trans, fs_info->tree_root, 1317 &root->root_key, 1318 &root->root_item); 1319 spin_lock(&fs_info->fs_roots_radix_lock); 1320 if (err) 1321 break; 1322 btrfs_qgroup_free_meta_all_pertrans(root); 1323 } 1324 } 1325 spin_unlock(&fs_info->fs_roots_radix_lock); 1326 return err; 1327 } 1328 1329 /* 1330 * defrag a given btree. 1331 * Every leaf in the btree is read and defragged. 1332 */ 1333 int btrfs_defrag_root(struct btrfs_root *root) 1334 { 1335 struct btrfs_fs_info *info = root->fs_info; 1336 struct btrfs_trans_handle *trans; 1337 int ret; 1338 1339 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) 1340 return 0; 1341 1342 while (1) { 1343 trans = btrfs_start_transaction(root, 0); 1344 if (IS_ERR(trans)) 1345 return PTR_ERR(trans); 1346 1347 ret = btrfs_defrag_leaves(trans, root); 1348 1349 btrfs_end_transaction(trans); 1350 btrfs_btree_balance_dirty(info); 1351 cond_resched(); 1352 1353 if (btrfs_fs_closing(info) || ret != -EAGAIN) 1354 break; 1355 1356 if (btrfs_defrag_cancelled(info)) { 1357 btrfs_debug(info, "defrag_root cancelled"); 1358 ret = -EAGAIN; 1359 break; 1360 } 1361 } 1362 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); 1363 return ret; 1364 } 1365 1366 /* 1367 * Do all special snapshot related qgroup dirty hack. 1368 * 1369 * Will do all needed qgroup inherit and dirty hack like switch commit 1370 * roots inside one transaction and write all btree into disk, to make 1371 * qgroup works. 1372 */ 1373 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans, 1374 struct btrfs_root *src, 1375 struct btrfs_root *parent, 1376 struct btrfs_qgroup_inherit *inherit, 1377 u64 dst_objectid) 1378 { 1379 struct btrfs_fs_info *fs_info = src->fs_info; 1380 int ret; 1381 1382 /* 1383 * Save some performance in the case that qgroups are not 1384 * enabled. If this check races with the ioctl, rescan will 1385 * kick in anyway. 1386 */ 1387 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) 1388 return 0; 1389 1390 /* 1391 * Ensure dirty @src will be committed. Or, after coming 1392 * commit_fs_roots() and switch_commit_roots(), any dirty but not 1393 * recorded root will never be updated again, causing an outdated root 1394 * item. 1395 */ 1396 record_root_in_trans(trans, src, 1); 1397 1398 /* 1399 * We are going to commit transaction, see btrfs_commit_transaction() 1400 * comment for reason locking tree_log_mutex 1401 */ 1402 mutex_lock(&fs_info->tree_log_mutex); 1403 1404 ret = commit_fs_roots(trans); 1405 if (ret) 1406 goto out; 1407 ret = btrfs_qgroup_account_extents(trans); 1408 if (ret < 0) 1409 goto out; 1410 1411 /* Now qgroup are all updated, we can inherit it to new qgroups */ 1412 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid, 1413 inherit); 1414 if (ret < 0) 1415 goto out; 1416 1417 /* 1418 * Now we do a simplified commit transaction, which will: 1419 * 1) commit all subvolume and extent tree 1420 * To ensure all subvolume and extent tree have a valid 1421 * commit_root to accounting later insert_dir_item() 1422 * 2) write all btree blocks onto disk 1423 * This is to make sure later btree modification will be cowed 1424 * Or commit_root can be populated and cause wrong qgroup numbers 1425 * In this simplified commit, we don't really care about other trees 1426 * like chunk and root tree, as they won't affect qgroup. 1427 * And we don't write super to avoid half committed status. 1428 */ 1429 ret = commit_cowonly_roots(trans); 1430 if (ret) 1431 goto out; 1432 switch_commit_roots(trans); 1433 ret = btrfs_write_and_wait_transaction(trans); 1434 if (ret) 1435 btrfs_handle_fs_error(fs_info, ret, 1436 "Error while writing out transaction for qgroup"); 1437 1438 out: 1439 mutex_unlock(&fs_info->tree_log_mutex); 1440 1441 /* 1442 * Force parent root to be updated, as we recorded it before so its 1443 * last_trans == cur_transid. 1444 * Or it won't be committed again onto disk after later 1445 * insert_dir_item() 1446 */ 1447 if (!ret) 1448 record_root_in_trans(trans, parent, 1); 1449 return ret; 1450 } 1451 1452 /* 1453 * new snapshots need to be created at a very specific time in the 1454 * transaction commit. This does the actual creation. 1455 * 1456 * Note: 1457 * If the error which may affect the commitment of the current transaction 1458 * happens, we should return the error number. If the error which just affect 1459 * the creation of the pending snapshots, just return 0. 1460 */ 1461 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1462 struct btrfs_pending_snapshot *pending) 1463 { 1464 1465 struct btrfs_fs_info *fs_info = trans->fs_info; 1466 struct btrfs_key key; 1467 struct btrfs_root_item *new_root_item; 1468 struct btrfs_root *tree_root = fs_info->tree_root; 1469 struct btrfs_root *root = pending->root; 1470 struct btrfs_root *parent_root; 1471 struct btrfs_block_rsv *rsv; 1472 struct inode *parent_inode; 1473 struct btrfs_path *path; 1474 struct btrfs_dir_item *dir_item; 1475 struct dentry *dentry; 1476 struct extent_buffer *tmp; 1477 struct extent_buffer *old; 1478 struct timespec64 cur_time; 1479 int ret = 0; 1480 u64 to_reserve = 0; 1481 u64 index = 0; 1482 u64 objectid; 1483 u64 root_flags; 1484 1485 ASSERT(pending->path); 1486 path = pending->path; 1487 1488 ASSERT(pending->root_item); 1489 new_root_item = pending->root_item; 1490 1491 pending->error = btrfs_find_free_objectid(tree_root, &objectid); 1492 if (pending->error) 1493 goto no_free_objectid; 1494 1495 /* 1496 * Make qgroup to skip current new snapshot's qgroupid, as it is 1497 * accounted by later btrfs_qgroup_inherit(). 1498 */ 1499 btrfs_set_skip_qgroup(trans, objectid); 1500 1501 btrfs_reloc_pre_snapshot(pending, &to_reserve); 1502 1503 if (to_reserve > 0) { 1504 pending->error = btrfs_block_rsv_add(root, 1505 &pending->block_rsv, 1506 to_reserve, 1507 BTRFS_RESERVE_NO_FLUSH); 1508 if (pending->error) 1509 goto clear_skip_qgroup; 1510 } 1511 1512 key.objectid = objectid; 1513 key.offset = (u64)-1; 1514 key.type = BTRFS_ROOT_ITEM_KEY; 1515 1516 rsv = trans->block_rsv; 1517 trans->block_rsv = &pending->block_rsv; 1518 trans->bytes_reserved = trans->block_rsv->reserved; 1519 trace_btrfs_space_reservation(fs_info, "transaction", 1520 trans->transid, 1521 trans->bytes_reserved, 1); 1522 dentry = pending->dentry; 1523 parent_inode = pending->dir; 1524 parent_root = BTRFS_I(parent_inode)->root; 1525 record_root_in_trans(trans, parent_root, 0); 1526 1527 cur_time = current_time(parent_inode); 1528 1529 /* 1530 * insert the directory item 1531 */ 1532 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index); 1533 BUG_ON(ret); /* -ENOMEM */ 1534 1535 /* check if there is a file/dir which has the same name. */ 1536 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1537 btrfs_ino(BTRFS_I(parent_inode)), 1538 dentry->d_name.name, 1539 dentry->d_name.len, 0); 1540 if (dir_item != NULL && !IS_ERR(dir_item)) { 1541 pending->error = -EEXIST; 1542 goto dir_item_existed; 1543 } else if (IS_ERR(dir_item)) { 1544 ret = PTR_ERR(dir_item); 1545 btrfs_abort_transaction(trans, ret); 1546 goto fail; 1547 } 1548 btrfs_release_path(path); 1549 1550 /* 1551 * pull in the delayed directory update 1552 * and the delayed inode item 1553 * otherwise we corrupt the FS during 1554 * snapshot 1555 */ 1556 ret = btrfs_run_delayed_items(trans); 1557 if (ret) { /* Transaction aborted */ 1558 btrfs_abort_transaction(trans, ret); 1559 goto fail; 1560 } 1561 1562 record_root_in_trans(trans, root, 0); 1563 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1564 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1565 btrfs_check_and_init_root_item(new_root_item); 1566 1567 root_flags = btrfs_root_flags(new_root_item); 1568 if (pending->readonly) 1569 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1570 else 1571 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1572 btrfs_set_root_flags(new_root_item, root_flags); 1573 1574 btrfs_set_root_generation_v2(new_root_item, 1575 trans->transid); 1576 generate_random_guid(new_root_item->uuid); 1577 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1578 BTRFS_UUID_SIZE); 1579 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1580 memset(new_root_item->received_uuid, 0, 1581 sizeof(new_root_item->received_uuid)); 1582 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1583 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1584 btrfs_set_root_stransid(new_root_item, 0); 1585 btrfs_set_root_rtransid(new_root_item, 0); 1586 } 1587 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1588 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1589 btrfs_set_root_otransid(new_root_item, trans->transid); 1590 1591 old = btrfs_lock_root_node(root); 1592 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old); 1593 if (ret) { 1594 btrfs_tree_unlock(old); 1595 free_extent_buffer(old); 1596 btrfs_abort_transaction(trans, ret); 1597 goto fail; 1598 } 1599 1600 btrfs_set_lock_blocking_write(old); 1601 1602 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1603 /* clean up in any case */ 1604 btrfs_tree_unlock(old); 1605 free_extent_buffer(old); 1606 if (ret) { 1607 btrfs_abort_transaction(trans, ret); 1608 goto fail; 1609 } 1610 /* see comments in should_cow_block() */ 1611 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1612 smp_wmb(); 1613 1614 btrfs_set_root_node(new_root_item, tmp); 1615 /* record when the snapshot was created in key.offset */ 1616 key.offset = trans->transid; 1617 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1618 btrfs_tree_unlock(tmp); 1619 free_extent_buffer(tmp); 1620 if (ret) { 1621 btrfs_abort_transaction(trans, ret); 1622 goto fail; 1623 } 1624 1625 /* 1626 * insert root back/forward references 1627 */ 1628 ret = btrfs_add_root_ref(trans, objectid, 1629 parent_root->root_key.objectid, 1630 btrfs_ino(BTRFS_I(parent_inode)), index, 1631 dentry->d_name.name, dentry->d_name.len); 1632 if (ret) { 1633 btrfs_abort_transaction(trans, ret); 1634 goto fail; 1635 } 1636 1637 key.offset = (u64)-1; 1638 pending->snap = btrfs_get_fs_root(fs_info, &key, true); 1639 if (IS_ERR(pending->snap)) { 1640 ret = PTR_ERR(pending->snap); 1641 btrfs_abort_transaction(trans, ret); 1642 goto fail; 1643 } 1644 1645 ret = btrfs_reloc_post_snapshot(trans, pending); 1646 if (ret) { 1647 btrfs_abort_transaction(trans, ret); 1648 goto fail; 1649 } 1650 1651 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1652 if (ret) { 1653 btrfs_abort_transaction(trans, ret); 1654 goto fail; 1655 } 1656 1657 /* 1658 * Do special qgroup accounting for snapshot, as we do some qgroup 1659 * snapshot hack to do fast snapshot. 1660 * To co-operate with that hack, we do hack again. 1661 * Or snapshot will be greatly slowed down by a subtree qgroup rescan 1662 */ 1663 ret = qgroup_account_snapshot(trans, root, parent_root, 1664 pending->inherit, objectid); 1665 if (ret < 0) 1666 goto fail; 1667 1668 ret = btrfs_insert_dir_item(trans, dentry->d_name.name, 1669 dentry->d_name.len, BTRFS_I(parent_inode), 1670 &key, BTRFS_FT_DIR, index); 1671 /* We have check then name at the beginning, so it is impossible. */ 1672 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1673 if (ret) { 1674 btrfs_abort_transaction(trans, ret); 1675 goto fail; 1676 } 1677 1678 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size + 1679 dentry->d_name.len * 2); 1680 parent_inode->i_mtime = parent_inode->i_ctime = 1681 current_time(parent_inode); 1682 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode); 1683 if (ret) { 1684 btrfs_abort_transaction(trans, ret); 1685 goto fail; 1686 } 1687 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid, 1688 BTRFS_UUID_KEY_SUBVOL, 1689 objectid); 1690 if (ret) { 1691 btrfs_abort_transaction(trans, ret); 1692 goto fail; 1693 } 1694 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1695 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid, 1696 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1697 objectid); 1698 if (ret && ret != -EEXIST) { 1699 btrfs_abort_transaction(trans, ret); 1700 goto fail; 1701 } 1702 } 1703 1704 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1705 if (ret) { 1706 btrfs_abort_transaction(trans, ret); 1707 goto fail; 1708 } 1709 1710 fail: 1711 pending->error = ret; 1712 dir_item_existed: 1713 trans->block_rsv = rsv; 1714 trans->bytes_reserved = 0; 1715 clear_skip_qgroup: 1716 btrfs_clear_skip_qgroup(trans); 1717 no_free_objectid: 1718 kfree(new_root_item); 1719 pending->root_item = NULL; 1720 btrfs_free_path(path); 1721 pending->path = NULL; 1722 1723 return ret; 1724 } 1725 1726 /* 1727 * create all the snapshots we've scheduled for creation 1728 */ 1729 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans) 1730 { 1731 struct btrfs_pending_snapshot *pending, *next; 1732 struct list_head *head = &trans->transaction->pending_snapshots; 1733 int ret = 0; 1734 1735 list_for_each_entry_safe(pending, next, head, list) { 1736 list_del(&pending->list); 1737 ret = create_pending_snapshot(trans, pending); 1738 if (ret) 1739 break; 1740 } 1741 return ret; 1742 } 1743 1744 static void update_super_roots(struct btrfs_fs_info *fs_info) 1745 { 1746 struct btrfs_root_item *root_item; 1747 struct btrfs_super_block *super; 1748 1749 super = fs_info->super_copy; 1750 1751 root_item = &fs_info->chunk_root->root_item; 1752 super->chunk_root = root_item->bytenr; 1753 super->chunk_root_generation = root_item->generation; 1754 super->chunk_root_level = root_item->level; 1755 1756 root_item = &fs_info->tree_root->root_item; 1757 super->root = root_item->bytenr; 1758 super->generation = root_item->generation; 1759 super->root_level = root_item->level; 1760 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 1761 super->cache_generation = root_item->generation; 1762 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags)) 1763 super->uuid_tree_generation = root_item->generation; 1764 } 1765 1766 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1767 { 1768 struct btrfs_transaction *trans; 1769 int ret = 0; 1770 1771 spin_lock(&info->trans_lock); 1772 trans = info->running_transaction; 1773 if (trans) 1774 ret = (trans->state >= TRANS_STATE_COMMIT_START); 1775 spin_unlock(&info->trans_lock); 1776 return ret; 1777 } 1778 1779 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1780 { 1781 struct btrfs_transaction *trans; 1782 int ret = 0; 1783 1784 spin_lock(&info->trans_lock); 1785 trans = info->running_transaction; 1786 if (trans) 1787 ret = is_transaction_blocked(trans); 1788 spin_unlock(&info->trans_lock); 1789 return ret; 1790 } 1791 1792 /* 1793 * wait for the current transaction commit to start and block subsequent 1794 * transaction joins 1795 */ 1796 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info, 1797 struct btrfs_transaction *trans) 1798 { 1799 wait_event(fs_info->transaction_blocked_wait, 1800 trans->state >= TRANS_STATE_COMMIT_START || 1801 TRANS_ABORTED(trans)); 1802 } 1803 1804 /* 1805 * wait for the current transaction to start and then become unblocked. 1806 * caller holds ref. 1807 */ 1808 static void wait_current_trans_commit_start_and_unblock( 1809 struct btrfs_fs_info *fs_info, 1810 struct btrfs_transaction *trans) 1811 { 1812 wait_event(fs_info->transaction_wait, 1813 trans->state >= TRANS_STATE_UNBLOCKED || 1814 TRANS_ABORTED(trans)); 1815 } 1816 1817 /* 1818 * commit transactions asynchronously. once btrfs_commit_transaction_async 1819 * returns, any subsequent transaction will not be allowed to join. 1820 */ 1821 struct btrfs_async_commit { 1822 struct btrfs_trans_handle *newtrans; 1823 struct work_struct work; 1824 }; 1825 1826 static void do_async_commit(struct work_struct *work) 1827 { 1828 struct btrfs_async_commit *ac = 1829 container_of(work, struct btrfs_async_commit, work); 1830 1831 /* 1832 * We've got freeze protection passed with the transaction. 1833 * Tell lockdep about it. 1834 */ 1835 if (ac->newtrans->type & __TRANS_FREEZABLE) 1836 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS); 1837 1838 current->journal_info = ac->newtrans; 1839 1840 btrfs_commit_transaction(ac->newtrans); 1841 kfree(ac); 1842 } 1843 1844 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, 1845 int wait_for_unblock) 1846 { 1847 struct btrfs_fs_info *fs_info = trans->fs_info; 1848 struct btrfs_async_commit *ac; 1849 struct btrfs_transaction *cur_trans; 1850 1851 ac = kmalloc(sizeof(*ac), GFP_NOFS); 1852 if (!ac) 1853 return -ENOMEM; 1854 1855 INIT_WORK(&ac->work, do_async_commit); 1856 ac->newtrans = btrfs_join_transaction(trans->root); 1857 if (IS_ERR(ac->newtrans)) { 1858 int err = PTR_ERR(ac->newtrans); 1859 kfree(ac); 1860 return err; 1861 } 1862 1863 /* take transaction reference */ 1864 cur_trans = trans->transaction; 1865 refcount_inc(&cur_trans->use_count); 1866 1867 btrfs_end_transaction(trans); 1868 1869 /* 1870 * Tell lockdep we've released the freeze rwsem, since the 1871 * async commit thread will be the one to unlock it. 1872 */ 1873 if (ac->newtrans->type & __TRANS_FREEZABLE) 1874 __sb_writers_release(fs_info->sb, SB_FREEZE_FS); 1875 1876 schedule_work(&ac->work); 1877 1878 /* wait for transaction to start and unblock */ 1879 if (wait_for_unblock) 1880 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans); 1881 else 1882 wait_current_trans_commit_start(fs_info, cur_trans); 1883 1884 if (current->journal_info == trans) 1885 current->journal_info = NULL; 1886 1887 btrfs_put_transaction(cur_trans); 1888 return 0; 1889 } 1890 1891 1892 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err) 1893 { 1894 struct btrfs_fs_info *fs_info = trans->fs_info; 1895 struct btrfs_transaction *cur_trans = trans->transaction; 1896 1897 WARN_ON(refcount_read(&trans->use_count) > 1); 1898 1899 btrfs_abort_transaction(trans, err); 1900 1901 spin_lock(&fs_info->trans_lock); 1902 1903 /* 1904 * If the transaction is removed from the list, it means this 1905 * transaction has been committed successfully, so it is impossible 1906 * to call the cleanup function. 1907 */ 1908 BUG_ON(list_empty(&cur_trans->list)); 1909 1910 list_del_init(&cur_trans->list); 1911 if (cur_trans == fs_info->running_transaction) { 1912 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1913 spin_unlock(&fs_info->trans_lock); 1914 wait_event(cur_trans->writer_wait, 1915 atomic_read(&cur_trans->num_writers) == 1); 1916 1917 spin_lock(&fs_info->trans_lock); 1918 } 1919 spin_unlock(&fs_info->trans_lock); 1920 1921 btrfs_cleanup_one_transaction(trans->transaction, fs_info); 1922 1923 spin_lock(&fs_info->trans_lock); 1924 if (cur_trans == fs_info->running_transaction) 1925 fs_info->running_transaction = NULL; 1926 spin_unlock(&fs_info->trans_lock); 1927 1928 if (trans->type & __TRANS_FREEZABLE) 1929 sb_end_intwrite(fs_info->sb); 1930 btrfs_put_transaction(cur_trans); 1931 btrfs_put_transaction(cur_trans); 1932 1933 trace_btrfs_transaction_commit(trans->root); 1934 1935 if (current->journal_info == trans) 1936 current->journal_info = NULL; 1937 btrfs_scrub_cancel(fs_info); 1938 1939 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1940 } 1941 1942 /* 1943 * Release reserved delayed ref space of all pending block groups of the 1944 * transaction and remove them from the list 1945 */ 1946 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans) 1947 { 1948 struct btrfs_fs_info *fs_info = trans->fs_info; 1949 struct btrfs_block_group *block_group, *tmp; 1950 1951 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 1952 btrfs_delayed_refs_rsv_release(fs_info, 1); 1953 list_del_init(&block_group->bg_list); 1954 } 1955 } 1956 1957 static inline int btrfs_start_delalloc_flush(struct btrfs_trans_handle *trans) 1958 { 1959 struct btrfs_fs_info *fs_info = trans->fs_info; 1960 1961 /* 1962 * We use writeback_inodes_sb here because if we used 1963 * btrfs_start_delalloc_roots we would deadlock with fs freeze. 1964 * Currently are holding the fs freeze lock, if we do an async flush 1965 * we'll do btrfs_join_transaction() and deadlock because we need to 1966 * wait for the fs freeze lock. Using the direct flushing we benefit 1967 * from already being in a transaction and our join_transaction doesn't 1968 * have to re-take the fs freeze lock. 1969 */ 1970 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) { 1971 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC); 1972 } else { 1973 struct btrfs_pending_snapshot *pending; 1974 struct list_head *head = &trans->transaction->pending_snapshots; 1975 1976 /* 1977 * Flush dellaloc for any root that is going to be snapshotted. 1978 * This is done to avoid a corrupted version of files, in the 1979 * snapshots, that had both buffered and direct IO writes (even 1980 * if they were done sequentially) due to an unordered update of 1981 * the inode's size on disk. 1982 */ 1983 list_for_each_entry(pending, head, list) { 1984 int ret; 1985 1986 ret = btrfs_start_delalloc_snapshot(pending->root); 1987 if (ret) 1988 return ret; 1989 } 1990 } 1991 return 0; 1992 } 1993 1994 static inline void btrfs_wait_delalloc_flush(struct btrfs_trans_handle *trans) 1995 { 1996 struct btrfs_fs_info *fs_info = trans->fs_info; 1997 1998 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) { 1999 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 2000 } else { 2001 struct btrfs_pending_snapshot *pending; 2002 struct list_head *head = &trans->transaction->pending_snapshots; 2003 2004 /* 2005 * Wait for any dellaloc that we started previously for the roots 2006 * that are going to be snapshotted. This is to avoid a corrupted 2007 * version of files in the snapshots that had both buffered and 2008 * direct IO writes (even if they were done sequentially). 2009 */ 2010 list_for_each_entry(pending, head, list) 2011 btrfs_wait_ordered_extents(pending->root, 2012 U64_MAX, 0, U64_MAX); 2013 } 2014 } 2015 2016 int btrfs_commit_transaction(struct btrfs_trans_handle *trans) 2017 { 2018 struct btrfs_fs_info *fs_info = trans->fs_info; 2019 struct btrfs_transaction *cur_trans = trans->transaction; 2020 struct btrfs_transaction *prev_trans = NULL; 2021 int ret; 2022 2023 ASSERT(refcount_read(&trans->use_count) == 1); 2024 2025 /* 2026 * Some places just start a transaction to commit it. We need to make 2027 * sure that if this commit fails that the abort code actually marks the 2028 * transaction as failed, so set trans->dirty to make the abort code do 2029 * the right thing. 2030 */ 2031 trans->dirty = true; 2032 2033 /* Stop the commit early if ->aborted is set */ 2034 if (TRANS_ABORTED(cur_trans)) { 2035 ret = cur_trans->aborted; 2036 btrfs_end_transaction(trans); 2037 return ret; 2038 } 2039 2040 btrfs_trans_release_metadata(trans); 2041 trans->block_rsv = NULL; 2042 2043 /* make a pass through all the delayed refs we have so far 2044 * any runnings procs may add more while we are here 2045 */ 2046 ret = btrfs_run_delayed_refs(trans, 0); 2047 if (ret) { 2048 btrfs_end_transaction(trans); 2049 return ret; 2050 } 2051 2052 cur_trans = trans->transaction; 2053 2054 /* 2055 * set the flushing flag so procs in this transaction have to 2056 * start sending their work down. 2057 */ 2058 cur_trans->delayed_refs.flushing = 1; 2059 smp_wmb(); 2060 2061 btrfs_create_pending_block_groups(trans); 2062 2063 ret = btrfs_run_delayed_refs(trans, 0); 2064 if (ret) { 2065 btrfs_end_transaction(trans); 2066 return ret; 2067 } 2068 2069 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) { 2070 int run_it = 0; 2071 2072 /* this mutex is also taken before trying to set 2073 * block groups readonly. We need to make sure 2074 * that nobody has set a block group readonly 2075 * after a extents from that block group have been 2076 * allocated for cache files. btrfs_set_block_group_ro 2077 * will wait for the transaction to commit if it 2078 * finds BTRFS_TRANS_DIRTY_BG_RUN set. 2079 * 2080 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure 2081 * only one process starts all the block group IO. It wouldn't 2082 * hurt to have more than one go through, but there's no 2083 * real advantage to it either. 2084 */ 2085 mutex_lock(&fs_info->ro_block_group_mutex); 2086 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN, 2087 &cur_trans->flags)) 2088 run_it = 1; 2089 mutex_unlock(&fs_info->ro_block_group_mutex); 2090 2091 if (run_it) { 2092 ret = btrfs_start_dirty_block_groups(trans); 2093 if (ret) { 2094 btrfs_end_transaction(trans); 2095 return ret; 2096 } 2097 } 2098 } 2099 2100 spin_lock(&fs_info->trans_lock); 2101 if (cur_trans->state >= TRANS_STATE_COMMIT_START) { 2102 spin_unlock(&fs_info->trans_lock); 2103 refcount_inc(&cur_trans->use_count); 2104 ret = btrfs_end_transaction(trans); 2105 2106 wait_for_commit(cur_trans); 2107 2108 if (TRANS_ABORTED(cur_trans)) 2109 ret = cur_trans->aborted; 2110 2111 btrfs_put_transaction(cur_trans); 2112 2113 return ret; 2114 } 2115 2116 cur_trans->state = TRANS_STATE_COMMIT_START; 2117 wake_up(&fs_info->transaction_blocked_wait); 2118 2119 if (cur_trans->list.prev != &fs_info->trans_list) { 2120 prev_trans = list_entry(cur_trans->list.prev, 2121 struct btrfs_transaction, list); 2122 if (prev_trans->state != TRANS_STATE_COMPLETED) { 2123 refcount_inc(&prev_trans->use_count); 2124 spin_unlock(&fs_info->trans_lock); 2125 2126 wait_for_commit(prev_trans); 2127 ret = READ_ONCE(prev_trans->aborted); 2128 2129 btrfs_put_transaction(prev_trans); 2130 if (ret) 2131 goto cleanup_transaction; 2132 } else { 2133 spin_unlock(&fs_info->trans_lock); 2134 } 2135 } else { 2136 spin_unlock(&fs_info->trans_lock); 2137 /* 2138 * The previous transaction was aborted and was already removed 2139 * from the list of transactions at fs_info->trans_list. So we 2140 * abort to prevent writing a new superblock that reflects a 2141 * corrupt state (pointing to trees with unwritten nodes/leafs). 2142 */ 2143 if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) { 2144 ret = -EROFS; 2145 goto cleanup_transaction; 2146 } 2147 } 2148 2149 extwriter_counter_dec(cur_trans, trans->type); 2150 2151 ret = btrfs_start_delalloc_flush(trans); 2152 if (ret) 2153 goto cleanup_transaction; 2154 2155 ret = btrfs_run_delayed_items(trans); 2156 if (ret) 2157 goto cleanup_transaction; 2158 2159 wait_event(cur_trans->writer_wait, 2160 extwriter_counter_read(cur_trans) == 0); 2161 2162 /* some pending stuffs might be added after the previous flush. */ 2163 ret = btrfs_run_delayed_items(trans); 2164 if (ret) 2165 goto cleanup_transaction; 2166 2167 btrfs_wait_delalloc_flush(trans); 2168 2169 btrfs_scrub_pause(fs_info); 2170 /* 2171 * Ok now we need to make sure to block out any other joins while we 2172 * commit the transaction. We could have started a join before setting 2173 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 2174 */ 2175 spin_lock(&fs_info->trans_lock); 2176 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2177 spin_unlock(&fs_info->trans_lock); 2178 wait_event(cur_trans->writer_wait, 2179 atomic_read(&cur_trans->num_writers) == 1); 2180 2181 if (TRANS_ABORTED(cur_trans)) { 2182 ret = cur_trans->aborted; 2183 goto scrub_continue; 2184 } 2185 /* 2186 * the reloc mutex makes sure that we stop 2187 * the balancing code from coming in and moving 2188 * extents around in the middle of the commit 2189 */ 2190 mutex_lock(&fs_info->reloc_mutex); 2191 2192 /* 2193 * We needn't worry about the delayed items because we will 2194 * deal with them in create_pending_snapshot(), which is the 2195 * core function of the snapshot creation. 2196 */ 2197 ret = create_pending_snapshots(trans); 2198 if (ret) 2199 goto unlock_reloc; 2200 2201 /* 2202 * We insert the dir indexes of the snapshots and update the inode 2203 * of the snapshots' parents after the snapshot creation, so there 2204 * are some delayed items which are not dealt with. Now deal with 2205 * them. 2206 * 2207 * We needn't worry that this operation will corrupt the snapshots, 2208 * because all the tree which are snapshoted will be forced to COW 2209 * the nodes and leaves. 2210 */ 2211 ret = btrfs_run_delayed_items(trans); 2212 if (ret) 2213 goto unlock_reloc; 2214 2215 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 2216 if (ret) 2217 goto unlock_reloc; 2218 2219 /* 2220 * make sure none of the code above managed to slip in a 2221 * delayed item 2222 */ 2223 btrfs_assert_delayed_root_empty(fs_info); 2224 2225 WARN_ON(cur_trans != trans->transaction); 2226 2227 /* btrfs_commit_tree_roots is responsible for getting the 2228 * various roots consistent with each other. Every pointer 2229 * in the tree of tree roots has to point to the most up to date 2230 * root for every subvolume and other tree. So, we have to keep 2231 * the tree logging code from jumping in and changing any 2232 * of the trees. 2233 * 2234 * At this point in the commit, there can't be any tree-log 2235 * writers, but a little lower down we drop the trans mutex 2236 * and let new people in. By holding the tree_log_mutex 2237 * from now until after the super is written, we avoid races 2238 * with the tree-log code. 2239 */ 2240 mutex_lock(&fs_info->tree_log_mutex); 2241 2242 ret = commit_fs_roots(trans); 2243 if (ret) 2244 goto unlock_tree_log; 2245 2246 /* 2247 * Since the transaction is done, we can apply the pending changes 2248 * before the next transaction. 2249 */ 2250 btrfs_apply_pending_changes(fs_info); 2251 2252 /* commit_fs_roots gets rid of all the tree log roots, it is now 2253 * safe to free the root of tree log roots 2254 */ 2255 btrfs_free_log_root_tree(trans, fs_info); 2256 2257 /* 2258 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates 2259 * new delayed refs. Must handle them or qgroup can be wrong. 2260 */ 2261 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 2262 if (ret) 2263 goto unlock_tree_log; 2264 2265 /* 2266 * Since fs roots are all committed, we can get a quite accurate 2267 * new_roots. So let's do quota accounting. 2268 */ 2269 ret = btrfs_qgroup_account_extents(trans); 2270 if (ret < 0) 2271 goto unlock_tree_log; 2272 2273 ret = commit_cowonly_roots(trans); 2274 if (ret) 2275 goto unlock_tree_log; 2276 2277 /* 2278 * The tasks which save the space cache and inode cache may also 2279 * update ->aborted, check it. 2280 */ 2281 if (TRANS_ABORTED(cur_trans)) { 2282 ret = cur_trans->aborted; 2283 goto unlock_tree_log; 2284 } 2285 2286 btrfs_prepare_extent_commit(fs_info); 2287 2288 cur_trans = fs_info->running_transaction; 2289 2290 btrfs_set_root_node(&fs_info->tree_root->root_item, 2291 fs_info->tree_root->node); 2292 list_add_tail(&fs_info->tree_root->dirty_list, 2293 &cur_trans->switch_commits); 2294 2295 btrfs_set_root_node(&fs_info->chunk_root->root_item, 2296 fs_info->chunk_root->node); 2297 list_add_tail(&fs_info->chunk_root->dirty_list, 2298 &cur_trans->switch_commits); 2299 2300 switch_commit_roots(trans); 2301 2302 ASSERT(list_empty(&cur_trans->dirty_bgs)); 2303 ASSERT(list_empty(&cur_trans->io_bgs)); 2304 update_super_roots(fs_info); 2305 2306 btrfs_set_super_log_root(fs_info->super_copy, 0); 2307 btrfs_set_super_log_root_level(fs_info->super_copy, 0); 2308 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2309 sizeof(*fs_info->super_copy)); 2310 2311 btrfs_commit_device_sizes(cur_trans); 2312 2313 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 2314 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 2315 2316 btrfs_trans_release_chunk_metadata(trans); 2317 2318 spin_lock(&fs_info->trans_lock); 2319 cur_trans->state = TRANS_STATE_UNBLOCKED; 2320 fs_info->running_transaction = NULL; 2321 spin_unlock(&fs_info->trans_lock); 2322 mutex_unlock(&fs_info->reloc_mutex); 2323 2324 wake_up(&fs_info->transaction_wait); 2325 2326 ret = btrfs_write_and_wait_transaction(trans); 2327 if (ret) { 2328 btrfs_handle_fs_error(fs_info, ret, 2329 "Error while writing out transaction"); 2330 /* 2331 * reloc_mutex has been unlocked, tree_log_mutex is still held 2332 * but we can't jump to unlock_tree_log causing double unlock 2333 */ 2334 mutex_unlock(&fs_info->tree_log_mutex); 2335 goto scrub_continue; 2336 } 2337 2338 ret = write_all_supers(fs_info, 0); 2339 /* 2340 * the super is written, we can safely allow the tree-loggers 2341 * to go about their business 2342 */ 2343 mutex_unlock(&fs_info->tree_log_mutex); 2344 if (ret) 2345 goto scrub_continue; 2346 2347 btrfs_finish_extent_commit(trans); 2348 2349 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags)) 2350 btrfs_clear_space_info_full(fs_info); 2351 2352 fs_info->last_trans_committed = cur_trans->transid; 2353 /* 2354 * We needn't acquire the lock here because there is no other task 2355 * which can change it. 2356 */ 2357 cur_trans->state = TRANS_STATE_COMPLETED; 2358 wake_up(&cur_trans->commit_wait); 2359 clear_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags); 2360 2361 spin_lock(&fs_info->trans_lock); 2362 list_del_init(&cur_trans->list); 2363 spin_unlock(&fs_info->trans_lock); 2364 2365 btrfs_put_transaction(cur_trans); 2366 btrfs_put_transaction(cur_trans); 2367 2368 if (trans->type & __TRANS_FREEZABLE) 2369 sb_end_intwrite(fs_info->sb); 2370 2371 trace_btrfs_transaction_commit(trans->root); 2372 2373 btrfs_scrub_continue(fs_info); 2374 2375 if (current->journal_info == trans) 2376 current->journal_info = NULL; 2377 2378 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2379 2380 return ret; 2381 2382 unlock_tree_log: 2383 mutex_unlock(&fs_info->tree_log_mutex); 2384 unlock_reloc: 2385 mutex_unlock(&fs_info->reloc_mutex); 2386 scrub_continue: 2387 btrfs_scrub_continue(fs_info); 2388 cleanup_transaction: 2389 btrfs_trans_release_metadata(trans); 2390 btrfs_cleanup_pending_block_groups(trans); 2391 btrfs_trans_release_chunk_metadata(trans); 2392 trans->block_rsv = NULL; 2393 btrfs_warn(fs_info, "Skipping commit of aborted transaction."); 2394 if (current->journal_info == trans) 2395 current->journal_info = NULL; 2396 cleanup_transaction(trans, ret); 2397 2398 return ret; 2399 } 2400 2401 /* 2402 * return < 0 if error 2403 * 0 if there are no more dead_roots at the time of call 2404 * 1 there are more to be processed, call me again 2405 * 2406 * The return value indicates there are certainly more snapshots to delete, but 2407 * if there comes a new one during processing, it may return 0. We don't mind, 2408 * because btrfs_commit_super will poke cleaner thread and it will process it a 2409 * few seconds later. 2410 */ 2411 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root) 2412 { 2413 int ret; 2414 struct btrfs_fs_info *fs_info = root->fs_info; 2415 2416 spin_lock(&fs_info->trans_lock); 2417 if (list_empty(&fs_info->dead_roots)) { 2418 spin_unlock(&fs_info->trans_lock); 2419 return 0; 2420 } 2421 root = list_first_entry(&fs_info->dead_roots, 2422 struct btrfs_root, root_list); 2423 list_del_init(&root->root_list); 2424 spin_unlock(&fs_info->trans_lock); 2425 2426 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid); 2427 2428 btrfs_kill_all_delayed_nodes(root); 2429 if (root->ino_cache_inode) { 2430 iput(root->ino_cache_inode); 2431 root->ino_cache_inode = NULL; 2432 } 2433 2434 if (btrfs_header_backref_rev(root->node) < 2435 BTRFS_MIXED_BACKREF_REV) 2436 ret = btrfs_drop_snapshot(root, 0, 0); 2437 else 2438 ret = btrfs_drop_snapshot(root, 1, 0); 2439 2440 btrfs_put_root(root); 2441 return (ret < 0) ? 0 : 1; 2442 } 2443 2444 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info) 2445 { 2446 unsigned long prev; 2447 unsigned long bit; 2448 2449 prev = xchg(&fs_info->pending_changes, 0); 2450 if (!prev) 2451 return; 2452 2453 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE; 2454 if (prev & bit) 2455 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2456 prev &= ~bit; 2457 2458 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE; 2459 if (prev & bit) 2460 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2461 prev &= ~bit; 2462 2463 bit = 1 << BTRFS_PENDING_COMMIT; 2464 if (prev & bit) 2465 btrfs_debug(fs_info, "pending commit done"); 2466 prev &= ~bit; 2467 2468 if (prev) 2469 btrfs_warn(fs_info, 2470 "unknown pending changes left 0x%lx, ignoring", prev); 2471 } 2472