1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/slab.h> 8 #include <linux/sched.h> 9 #include <linux/writeback.h> 10 #include <linux/pagemap.h> 11 #include <linux/blkdev.h> 12 #include <linux/uuid.h> 13 #include "misc.h" 14 #include "ctree.h" 15 #include "disk-io.h" 16 #include "transaction.h" 17 #include "locking.h" 18 #include "tree-log.h" 19 #include "inode-map.h" 20 #include "volumes.h" 21 #include "dev-replace.h" 22 #include "qgroup.h" 23 #include "block-group.h" 24 25 #define BTRFS_ROOT_TRANS_TAG 0 26 27 /* 28 * Transaction states and transitions 29 * 30 * No running transaction (fs tree blocks are not modified) 31 * | 32 * | To next stage: 33 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart(). 34 * V 35 * Transaction N [[TRANS_STATE_RUNNING]] 36 * | 37 * | New trans handles can be attached to transaction N by calling all 38 * | start_transaction() variants. 39 * | 40 * | To next stage: 41 * | Call btrfs_commit_transaction() on any trans handle attached to 42 * | transaction N 43 * V 44 * Transaction N [[TRANS_STATE_COMMIT_START]] 45 * | 46 * | Will wait for previous running transaction to completely finish if there 47 * | is one 48 * | 49 * | Then one of the following happes: 50 * | - Wait for all other trans handle holders to release. 51 * | The btrfs_commit_transaction() caller will do the commit work. 52 * | - Wait for current transaction to be committed by others. 53 * | Other btrfs_commit_transaction() caller will do the commit work. 54 * | 55 * | At this stage, only btrfs_join_transaction*() variants can attach 56 * | to this running transaction. 57 * | All other variants will wait for current one to finish and attach to 58 * | transaction N+1. 59 * | 60 * | To next stage: 61 * | Caller is chosen to commit transaction N, and all other trans handle 62 * | haven been released. 63 * V 64 * Transaction N [[TRANS_STATE_COMMIT_DOING]] 65 * | 66 * | The heavy lifting transaction work is started. 67 * | From running delayed refs (modifying extent tree) to creating pending 68 * | snapshots, running qgroups. 69 * | In short, modify supporting trees to reflect modifications of subvolume 70 * | trees. 71 * | 72 * | At this stage, all start_transaction() calls will wait for this 73 * | transaction to finish and attach to transaction N+1. 74 * | 75 * | To next stage: 76 * | Until all supporting trees are updated. 77 * V 78 * Transaction N [[TRANS_STATE_UNBLOCKED]] 79 * | Transaction N+1 80 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]] 81 * | need to write them back to disk and update | 82 * | super blocks. | 83 * | | 84 * | At this stage, new transaction is allowed to | 85 * | start. | 86 * | All new start_transaction() calls will be | 87 * | attached to transid N+1. | 88 * | | 89 * | To next stage: | 90 * | Until all tree blocks are super blocks are | 91 * | written to block devices | 92 * V | 93 * Transaction N [[TRANS_STATE_COMPLETED]] V 94 * All tree blocks and super blocks are written. Transaction N+1 95 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]] 96 * data structures will be cleaned up. | Life goes on 97 */ 98 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 99 [TRANS_STATE_RUNNING] = 0U, 100 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH), 101 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START | 102 __TRANS_ATTACH | 103 __TRANS_JOIN | 104 __TRANS_JOIN_NOSTART), 105 [TRANS_STATE_UNBLOCKED] = (__TRANS_START | 106 __TRANS_ATTACH | 107 __TRANS_JOIN | 108 __TRANS_JOIN_NOLOCK | 109 __TRANS_JOIN_NOSTART), 110 [TRANS_STATE_COMPLETED] = (__TRANS_START | 111 __TRANS_ATTACH | 112 __TRANS_JOIN | 113 __TRANS_JOIN_NOLOCK | 114 __TRANS_JOIN_NOSTART), 115 }; 116 117 void btrfs_put_transaction(struct btrfs_transaction *transaction) 118 { 119 WARN_ON(refcount_read(&transaction->use_count) == 0); 120 if (refcount_dec_and_test(&transaction->use_count)) { 121 BUG_ON(!list_empty(&transaction->list)); 122 WARN_ON(!RB_EMPTY_ROOT( 123 &transaction->delayed_refs.href_root.rb_root)); 124 WARN_ON(!RB_EMPTY_ROOT( 125 &transaction->delayed_refs.dirty_extent_root)); 126 if (transaction->delayed_refs.pending_csums) 127 btrfs_err(transaction->fs_info, 128 "pending csums is %llu", 129 transaction->delayed_refs.pending_csums); 130 /* 131 * If any block groups are found in ->deleted_bgs then it's 132 * because the transaction was aborted and a commit did not 133 * happen (things failed before writing the new superblock 134 * and calling btrfs_finish_extent_commit()), so we can not 135 * discard the physical locations of the block groups. 136 */ 137 while (!list_empty(&transaction->deleted_bgs)) { 138 struct btrfs_block_group *cache; 139 140 cache = list_first_entry(&transaction->deleted_bgs, 141 struct btrfs_block_group, 142 bg_list); 143 list_del_init(&cache->bg_list); 144 btrfs_put_block_group_trimming(cache); 145 btrfs_put_block_group(cache); 146 } 147 WARN_ON(!list_empty(&transaction->dev_update_list)); 148 kfree(transaction); 149 } 150 } 151 152 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans) 153 { 154 struct btrfs_transaction *cur_trans = trans->transaction; 155 struct btrfs_fs_info *fs_info = trans->fs_info; 156 struct btrfs_root *root, *tmp; 157 158 down_write(&fs_info->commit_root_sem); 159 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits, 160 dirty_list) { 161 list_del_init(&root->dirty_list); 162 free_extent_buffer(root->commit_root); 163 root->commit_root = btrfs_root_node(root); 164 if (is_fstree(root->root_key.objectid)) 165 btrfs_unpin_free_ino(root); 166 extent_io_tree_release(&root->dirty_log_pages); 167 btrfs_qgroup_clean_swapped_blocks(root); 168 } 169 170 /* We can free old roots now. */ 171 spin_lock(&cur_trans->dropped_roots_lock); 172 while (!list_empty(&cur_trans->dropped_roots)) { 173 root = list_first_entry(&cur_trans->dropped_roots, 174 struct btrfs_root, root_list); 175 list_del_init(&root->root_list); 176 spin_unlock(&cur_trans->dropped_roots_lock); 177 btrfs_free_log(trans, root); 178 btrfs_drop_and_free_fs_root(fs_info, root); 179 spin_lock(&cur_trans->dropped_roots_lock); 180 } 181 spin_unlock(&cur_trans->dropped_roots_lock); 182 up_write(&fs_info->commit_root_sem); 183 } 184 185 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 186 unsigned int type) 187 { 188 if (type & TRANS_EXTWRITERS) 189 atomic_inc(&trans->num_extwriters); 190 } 191 192 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 193 unsigned int type) 194 { 195 if (type & TRANS_EXTWRITERS) 196 atomic_dec(&trans->num_extwriters); 197 } 198 199 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 200 unsigned int type) 201 { 202 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 203 } 204 205 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 206 { 207 return atomic_read(&trans->num_extwriters); 208 } 209 210 /* 211 * To be called after all the new block groups attached to the transaction 212 * handle have been created (btrfs_create_pending_block_groups()). 213 */ 214 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 215 { 216 struct btrfs_fs_info *fs_info = trans->fs_info; 217 218 if (!trans->chunk_bytes_reserved) 219 return; 220 221 WARN_ON_ONCE(!list_empty(&trans->new_bgs)); 222 223 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv, 224 trans->chunk_bytes_reserved); 225 trans->chunk_bytes_reserved = 0; 226 } 227 228 /* 229 * either allocate a new transaction or hop into the existing one 230 */ 231 static noinline int join_transaction(struct btrfs_fs_info *fs_info, 232 unsigned int type) 233 { 234 struct btrfs_transaction *cur_trans; 235 236 spin_lock(&fs_info->trans_lock); 237 loop: 238 /* The file system has been taken offline. No new transactions. */ 239 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 240 spin_unlock(&fs_info->trans_lock); 241 return -EROFS; 242 } 243 244 cur_trans = fs_info->running_transaction; 245 if (cur_trans) { 246 if (cur_trans->aborted) { 247 spin_unlock(&fs_info->trans_lock); 248 return cur_trans->aborted; 249 } 250 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 251 spin_unlock(&fs_info->trans_lock); 252 return -EBUSY; 253 } 254 refcount_inc(&cur_trans->use_count); 255 atomic_inc(&cur_trans->num_writers); 256 extwriter_counter_inc(cur_trans, type); 257 spin_unlock(&fs_info->trans_lock); 258 return 0; 259 } 260 spin_unlock(&fs_info->trans_lock); 261 262 /* 263 * If we are ATTACH, we just want to catch the current transaction, 264 * and commit it. If there is no transaction, just return ENOENT. 265 */ 266 if (type == TRANS_ATTACH) 267 return -ENOENT; 268 269 /* 270 * JOIN_NOLOCK only happens during the transaction commit, so 271 * it is impossible that ->running_transaction is NULL 272 */ 273 BUG_ON(type == TRANS_JOIN_NOLOCK); 274 275 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS); 276 if (!cur_trans) 277 return -ENOMEM; 278 279 spin_lock(&fs_info->trans_lock); 280 if (fs_info->running_transaction) { 281 /* 282 * someone started a transaction after we unlocked. Make sure 283 * to redo the checks above 284 */ 285 kfree(cur_trans); 286 goto loop; 287 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 288 spin_unlock(&fs_info->trans_lock); 289 kfree(cur_trans); 290 return -EROFS; 291 } 292 293 cur_trans->fs_info = fs_info; 294 atomic_set(&cur_trans->num_writers, 1); 295 extwriter_counter_init(cur_trans, type); 296 init_waitqueue_head(&cur_trans->writer_wait); 297 init_waitqueue_head(&cur_trans->commit_wait); 298 cur_trans->state = TRANS_STATE_RUNNING; 299 /* 300 * One for this trans handle, one so it will live on until we 301 * commit the transaction. 302 */ 303 refcount_set(&cur_trans->use_count, 2); 304 cur_trans->flags = 0; 305 cur_trans->start_time = ktime_get_seconds(); 306 307 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs)); 308 309 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED; 310 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT; 311 atomic_set(&cur_trans->delayed_refs.num_entries, 0); 312 313 /* 314 * although the tree mod log is per file system and not per transaction, 315 * the log must never go across transaction boundaries. 316 */ 317 smp_mb(); 318 if (!list_empty(&fs_info->tree_mod_seq_list)) 319 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n"); 320 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 321 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n"); 322 atomic64_set(&fs_info->tree_mod_seq, 0); 323 324 spin_lock_init(&cur_trans->delayed_refs.lock); 325 326 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 327 INIT_LIST_HEAD(&cur_trans->dev_update_list); 328 INIT_LIST_HEAD(&cur_trans->switch_commits); 329 INIT_LIST_HEAD(&cur_trans->dirty_bgs); 330 INIT_LIST_HEAD(&cur_trans->io_bgs); 331 INIT_LIST_HEAD(&cur_trans->dropped_roots); 332 mutex_init(&cur_trans->cache_write_mutex); 333 spin_lock_init(&cur_trans->dirty_bgs_lock); 334 INIT_LIST_HEAD(&cur_trans->deleted_bgs); 335 spin_lock_init(&cur_trans->dropped_roots_lock); 336 list_add_tail(&cur_trans->list, &fs_info->trans_list); 337 extent_io_tree_init(fs_info, &cur_trans->dirty_pages, 338 IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode); 339 fs_info->generation++; 340 cur_trans->transid = fs_info->generation; 341 fs_info->running_transaction = cur_trans; 342 cur_trans->aborted = 0; 343 spin_unlock(&fs_info->trans_lock); 344 345 return 0; 346 } 347 348 /* 349 * this does all the record keeping required to make sure that a reference 350 * counted root is properly recorded in a given transaction. This is required 351 * to make sure the old root from before we joined the transaction is deleted 352 * when the transaction commits 353 */ 354 static int record_root_in_trans(struct btrfs_trans_handle *trans, 355 struct btrfs_root *root, 356 int force) 357 { 358 struct btrfs_fs_info *fs_info = root->fs_info; 359 360 if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 361 root->last_trans < trans->transid) || force) { 362 WARN_ON(root == fs_info->extent_root); 363 WARN_ON(!force && root->commit_root != root->node); 364 365 /* 366 * see below for IN_TRANS_SETUP usage rules 367 * we have the reloc mutex held now, so there 368 * is only one writer in this function 369 */ 370 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 371 372 /* make sure readers find IN_TRANS_SETUP before 373 * they find our root->last_trans update 374 */ 375 smp_wmb(); 376 377 spin_lock(&fs_info->fs_roots_radix_lock); 378 if (root->last_trans == trans->transid && !force) { 379 spin_unlock(&fs_info->fs_roots_radix_lock); 380 return 0; 381 } 382 radix_tree_tag_set(&fs_info->fs_roots_radix, 383 (unsigned long)root->root_key.objectid, 384 BTRFS_ROOT_TRANS_TAG); 385 spin_unlock(&fs_info->fs_roots_radix_lock); 386 root->last_trans = trans->transid; 387 388 /* this is pretty tricky. We don't want to 389 * take the relocation lock in btrfs_record_root_in_trans 390 * unless we're really doing the first setup for this root in 391 * this transaction. 392 * 393 * Normally we'd use root->last_trans as a flag to decide 394 * if we want to take the expensive mutex. 395 * 396 * But, we have to set root->last_trans before we 397 * init the relocation root, otherwise, we trip over warnings 398 * in ctree.c. The solution used here is to flag ourselves 399 * with root IN_TRANS_SETUP. When this is 1, we're still 400 * fixing up the reloc trees and everyone must wait. 401 * 402 * When this is zero, they can trust root->last_trans and fly 403 * through btrfs_record_root_in_trans without having to take the 404 * lock. smp_wmb() makes sure that all the writes above are 405 * done before we pop in the zero below 406 */ 407 btrfs_init_reloc_root(trans, root); 408 smp_mb__before_atomic(); 409 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 410 } 411 return 0; 412 } 413 414 415 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans, 416 struct btrfs_root *root) 417 { 418 struct btrfs_fs_info *fs_info = root->fs_info; 419 struct btrfs_transaction *cur_trans = trans->transaction; 420 421 /* Add ourselves to the transaction dropped list */ 422 spin_lock(&cur_trans->dropped_roots_lock); 423 list_add_tail(&root->root_list, &cur_trans->dropped_roots); 424 spin_unlock(&cur_trans->dropped_roots_lock); 425 426 /* Make sure we don't try to update the root at commit time */ 427 spin_lock(&fs_info->fs_roots_radix_lock); 428 radix_tree_tag_clear(&fs_info->fs_roots_radix, 429 (unsigned long)root->root_key.objectid, 430 BTRFS_ROOT_TRANS_TAG); 431 spin_unlock(&fs_info->fs_roots_radix_lock); 432 } 433 434 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 435 struct btrfs_root *root) 436 { 437 struct btrfs_fs_info *fs_info = root->fs_info; 438 439 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 440 return 0; 441 442 /* 443 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 444 * and barriers 445 */ 446 smp_rmb(); 447 if (root->last_trans == trans->transid && 448 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 449 return 0; 450 451 mutex_lock(&fs_info->reloc_mutex); 452 record_root_in_trans(trans, root, 0); 453 mutex_unlock(&fs_info->reloc_mutex); 454 455 return 0; 456 } 457 458 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 459 { 460 return (trans->state >= TRANS_STATE_COMMIT_START && 461 trans->state < TRANS_STATE_UNBLOCKED && 462 !trans->aborted); 463 } 464 465 /* wait for commit against the current transaction to become unblocked 466 * when this is done, it is safe to start a new transaction, but the current 467 * transaction might not be fully on disk. 468 */ 469 static void wait_current_trans(struct btrfs_fs_info *fs_info) 470 { 471 struct btrfs_transaction *cur_trans; 472 473 spin_lock(&fs_info->trans_lock); 474 cur_trans = fs_info->running_transaction; 475 if (cur_trans && is_transaction_blocked(cur_trans)) { 476 refcount_inc(&cur_trans->use_count); 477 spin_unlock(&fs_info->trans_lock); 478 479 wait_event(fs_info->transaction_wait, 480 cur_trans->state >= TRANS_STATE_UNBLOCKED || 481 cur_trans->aborted); 482 btrfs_put_transaction(cur_trans); 483 } else { 484 spin_unlock(&fs_info->trans_lock); 485 } 486 } 487 488 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type) 489 { 490 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 491 return 0; 492 493 if (type == TRANS_START) 494 return 1; 495 496 return 0; 497 } 498 499 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 500 { 501 struct btrfs_fs_info *fs_info = root->fs_info; 502 503 if (!fs_info->reloc_ctl || 504 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 505 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 506 root->reloc_root) 507 return false; 508 509 return true; 510 } 511 512 static struct btrfs_trans_handle * 513 start_transaction(struct btrfs_root *root, unsigned int num_items, 514 unsigned int type, enum btrfs_reserve_flush_enum flush, 515 bool enforce_qgroups) 516 { 517 struct btrfs_fs_info *fs_info = root->fs_info; 518 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 519 struct btrfs_trans_handle *h; 520 struct btrfs_transaction *cur_trans; 521 u64 num_bytes = 0; 522 u64 qgroup_reserved = 0; 523 bool reloc_reserved = false; 524 int ret; 525 526 /* Send isn't supposed to start transactions. */ 527 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB); 528 529 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 530 return ERR_PTR(-EROFS); 531 532 if (current->journal_info) { 533 WARN_ON(type & TRANS_EXTWRITERS); 534 h = current->journal_info; 535 refcount_inc(&h->use_count); 536 WARN_ON(refcount_read(&h->use_count) > 2); 537 h->orig_rsv = h->block_rsv; 538 h->block_rsv = NULL; 539 goto got_it; 540 } 541 542 /* 543 * Do the reservation before we join the transaction so we can do all 544 * the appropriate flushing if need be. 545 */ 546 if (num_items && root != fs_info->chunk_root) { 547 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv; 548 u64 delayed_refs_bytes = 0; 549 550 qgroup_reserved = num_items * fs_info->nodesize; 551 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved, 552 enforce_qgroups); 553 if (ret) 554 return ERR_PTR(ret); 555 556 /* 557 * We want to reserve all the bytes we may need all at once, so 558 * we only do 1 enospc flushing cycle per transaction start. We 559 * accomplish this by simply assuming we'll do 2 x num_items 560 * worth of delayed refs updates in this trans handle, and 561 * refill that amount for whatever is missing in the reserve. 562 */ 563 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items); 564 if (delayed_refs_rsv->full == 0) { 565 delayed_refs_bytes = num_bytes; 566 num_bytes <<= 1; 567 } 568 569 /* 570 * Do the reservation for the relocation root creation 571 */ 572 if (need_reserve_reloc_root(root)) { 573 num_bytes += fs_info->nodesize; 574 reloc_reserved = true; 575 } 576 577 ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush); 578 if (ret) 579 goto reserve_fail; 580 if (delayed_refs_bytes) { 581 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv, 582 delayed_refs_bytes); 583 num_bytes -= delayed_refs_bytes; 584 } 585 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL && 586 !delayed_refs_rsv->full) { 587 /* 588 * Some people call with btrfs_start_transaction(root, 0) 589 * because they can be throttled, but have some other mechanism 590 * for reserving space. We still want these guys to refill the 591 * delayed block_rsv so just add 1 items worth of reservation 592 * here. 593 */ 594 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush); 595 if (ret) 596 goto reserve_fail; 597 } 598 again: 599 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS); 600 if (!h) { 601 ret = -ENOMEM; 602 goto alloc_fail; 603 } 604 605 /* 606 * If we are JOIN_NOLOCK we're already committing a transaction and 607 * waiting on this guy, so we don't need to do the sb_start_intwrite 608 * because we're already holding a ref. We need this because we could 609 * have raced in and did an fsync() on a file which can kick a commit 610 * and then we deadlock with somebody doing a freeze. 611 * 612 * If we are ATTACH, it means we just want to catch the current 613 * transaction and commit it, so we needn't do sb_start_intwrite(). 614 */ 615 if (type & __TRANS_FREEZABLE) 616 sb_start_intwrite(fs_info->sb); 617 618 if (may_wait_transaction(fs_info, type)) 619 wait_current_trans(fs_info); 620 621 do { 622 ret = join_transaction(fs_info, type); 623 if (ret == -EBUSY) { 624 wait_current_trans(fs_info); 625 if (unlikely(type == TRANS_ATTACH || 626 type == TRANS_JOIN_NOSTART)) 627 ret = -ENOENT; 628 } 629 } while (ret == -EBUSY); 630 631 if (ret < 0) 632 goto join_fail; 633 634 cur_trans = fs_info->running_transaction; 635 636 h->transid = cur_trans->transid; 637 h->transaction = cur_trans; 638 h->root = root; 639 refcount_set(&h->use_count, 1); 640 h->fs_info = root->fs_info; 641 642 h->type = type; 643 h->can_flush_pending_bgs = true; 644 INIT_LIST_HEAD(&h->new_bgs); 645 646 smp_mb(); 647 if (cur_trans->state >= TRANS_STATE_COMMIT_START && 648 may_wait_transaction(fs_info, type)) { 649 current->journal_info = h; 650 btrfs_commit_transaction(h); 651 goto again; 652 } 653 654 if (num_bytes) { 655 trace_btrfs_space_reservation(fs_info, "transaction", 656 h->transid, num_bytes, 1); 657 h->block_rsv = &fs_info->trans_block_rsv; 658 h->bytes_reserved = num_bytes; 659 h->reloc_reserved = reloc_reserved; 660 } 661 662 got_it: 663 btrfs_record_root_in_trans(h, root); 664 665 if (!current->journal_info) 666 current->journal_info = h; 667 return h; 668 669 join_fail: 670 if (type & __TRANS_FREEZABLE) 671 sb_end_intwrite(fs_info->sb); 672 kmem_cache_free(btrfs_trans_handle_cachep, h); 673 alloc_fail: 674 if (num_bytes) 675 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv, 676 num_bytes); 677 reserve_fail: 678 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved); 679 return ERR_PTR(ret); 680 } 681 682 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 683 unsigned int num_items) 684 { 685 return start_transaction(root, num_items, TRANS_START, 686 BTRFS_RESERVE_FLUSH_ALL, true); 687 } 688 689 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv( 690 struct btrfs_root *root, 691 unsigned int num_items, 692 int min_factor) 693 { 694 struct btrfs_fs_info *fs_info = root->fs_info; 695 struct btrfs_trans_handle *trans; 696 u64 num_bytes; 697 int ret; 698 699 /* 700 * We have two callers: unlink and block group removal. The 701 * former should succeed even if we will temporarily exceed 702 * quota and the latter operates on the extent root so 703 * qgroup enforcement is ignored anyway. 704 */ 705 trans = start_transaction(root, num_items, TRANS_START, 706 BTRFS_RESERVE_FLUSH_ALL, false); 707 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 708 return trans; 709 710 trans = btrfs_start_transaction(root, 0); 711 if (IS_ERR(trans)) 712 return trans; 713 714 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items); 715 ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv, 716 num_bytes, min_factor); 717 if (ret) { 718 btrfs_end_transaction(trans); 719 return ERR_PTR(ret); 720 } 721 722 trans->block_rsv = &fs_info->trans_block_rsv; 723 trans->bytes_reserved = num_bytes; 724 trace_btrfs_space_reservation(fs_info, "transaction", 725 trans->transid, num_bytes, 1); 726 727 return trans; 728 } 729 730 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 731 { 732 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH, 733 true); 734 } 735 736 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root) 737 { 738 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 739 BTRFS_RESERVE_NO_FLUSH, true); 740 } 741 742 /* 743 * Similar to regular join but it never starts a transaction when none is 744 * running or after waiting for the current one to finish. 745 */ 746 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root) 747 { 748 return start_transaction(root, 0, TRANS_JOIN_NOSTART, 749 BTRFS_RESERVE_NO_FLUSH, true); 750 } 751 752 /* 753 * btrfs_attach_transaction() - catch the running transaction 754 * 755 * It is used when we want to commit the current the transaction, but 756 * don't want to start a new one. 757 * 758 * Note: If this function return -ENOENT, it just means there is no 759 * running transaction. But it is possible that the inactive transaction 760 * is still in the memory, not fully on disk. If you hope there is no 761 * inactive transaction in the fs when -ENOENT is returned, you should 762 * invoke 763 * btrfs_attach_transaction_barrier() 764 */ 765 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 766 { 767 return start_transaction(root, 0, TRANS_ATTACH, 768 BTRFS_RESERVE_NO_FLUSH, true); 769 } 770 771 /* 772 * btrfs_attach_transaction_barrier() - catch the running transaction 773 * 774 * It is similar to the above function, the difference is this one 775 * will wait for all the inactive transactions until they fully 776 * complete. 777 */ 778 struct btrfs_trans_handle * 779 btrfs_attach_transaction_barrier(struct btrfs_root *root) 780 { 781 struct btrfs_trans_handle *trans; 782 783 trans = start_transaction(root, 0, TRANS_ATTACH, 784 BTRFS_RESERVE_NO_FLUSH, true); 785 if (trans == ERR_PTR(-ENOENT)) 786 btrfs_wait_for_commit(root->fs_info, 0); 787 788 return trans; 789 } 790 791 /* wait for a transaction commit to be fully complete */ 792 static noinline void wait_for_commit(struct btrfs_transaction *commit) 793 { 794 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED); 795 } 796 797 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid) 798 { 799 struct btrfs_transaction *cur_trans = NULL, *t; 800 int ret = 0; 801 802 if (transid) { 803 if (transid <= fs_info->last_trans_committed) 804 goto out; 805 806 /* find specified transaction */ 807 spin_lock(&fs_info->trans_lock); 808 list_for_each_entry(t, &fs_info->trans_list, list) { 809 if (t->transid == transid) { 810 cur_trans = t; 811 refcount_inc(&cur_trans->use_count); 812 ret = 0; 813 break; 814 } 815 if (t->transid > transid) { 816 ret = 0; 817 break; 818 } 819 } 820 spin_unlock(&fs_info->trans_lock); 821 822 /* 823 * The specified transaction doesn't exist, or we 824 * raced with btrfs_commit_transaction 825 */ 826 if (!cur_trans) { 827 if (transid > fs_info->last_trans_committed) 828 ret = -EINVAL; 829 goto out; 830 } 831 } else { 832 /* find newest transaction that is committing | committed */ 833 spin_lock(&fs_info->trans_lock); 834 list_for_each_entry_reverse(t, &fs_info->trans_list, 835 list) { 836 if (t->state >= TRANS_STATE_COMMIT_START) { 837 if (t->state == TRANS_STATE_COMPLETED) 838 break; 839 cur_trans = t; 840 refcount_inc(&cur_trans->use_count); 841 break; 842 } 843 } 844 spin_unlock(&fs_info->trans_lock); 845 if (!cur_trans) 846 goto out; /* nothing committing|committed */ 847 } 848 849 wait_for_commit(cur_trans); 850 btrfs_put_transaction(cur_trans); 851 out: 852 return ret; 853 } 854 855 void btrfs_throttle(struct btrfs_fs_info *fs_info) 856 { 857 wait_current_trans(fs_info); 858 } 859 860 static int should_end_transaction(struct btrfs_trans_handle *trans) 861 { 862 struct btrfs_fs_info *fs_info = trans->fs_info; 863 864 if (btrfs_check_space_for_delayed_refs(fs_info)) 865 return 1; 866 867 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5); 868 } 869 870 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans) 871 { 872 struct btrfs_transaction *cur_trans = trans->transaction; 873 874 smp_mb(); 875 if (cur_trans->state >= TRANS_STATE_COMMIT_START || 876 cur_trans->delayed_refs.flushing) 877 return 1; 878 879 return should_end_transaction(trans); 880 } 881 882 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans) 883 884 { 885 struct btrfs_fs_info *fs_info = trans->fs_info; 886 887 if (!trans->block_rsv) { 888 ASSERT(!trans->bytes_reserved); 889 return; 890 } 891 892 if (!trans->bytes_reserved) 893 return; 894 895 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv); 896 trace_btrfs_space_reservation(fs_info, "transaction", 897 trans->transid, trans->bytes_reserved, 0); 898 btrfs_block_rsv_release(fs_info, trans->block_rsv, 899 trans->bytes_reserved); 900 trans->bytes_reserved = 0; 901 } 902 903 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 904 int throttle) 905 { 906 struct btrfs_fs_info *info = trans->fs_info; 907 struct btrfs_transaction *cur_trans = trans->transaction; 908 int err = 0; 909 910 if (refcount_read(&trans->use_count) > 1) { 911 refcount_dec(&trans->use_count); 912 trans->block_rsv = trans->orig_rsv; 913 return 0; 914 } 915 916 btrfs_trans_release_metadata(trans); 917 trans->block_rsv = NULL; 918 919 btrfs_create_pending_block_groups(trans); 920 921 btrfs_trans_release_chunk_metadata(trans); 922 923 if (trans->type & __TRANS_FREEZABLE) 924 sb_end_intwrite(info->sb); 925 926 WARN_ON(cur_trans != info->running_transaction); 927 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 928 atomic_dec(&cur_trans->num_writers); 929 extwriter_counter_dec(cur_trans, trans->type); 930 931 cond_wake_up(&cur_trans->writer_wait); 932 btrfs_put_transaction(cur_trans); 933 934 if (current->journal_info == trans) 935 current->journal_info = NULL; 936 937 if (throttle) 938 btrfs_run_delayed_iputs(info); 939 940 if (trans->aborted || 941 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) { 942 wake_up_process(info->transaction_kthread); 943 err = -EIO; 944 } 945 946 kmem_cache_free(btrfs_trans_handle_cachep, trans); 947 return err; 948 } 949 950 int btrfs_end_transaction(struct btrfs_trans_handle *trans) 951 { 952 return __btrfs_end_transaction(trans, 0); 953 } 954 955 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans) 956 { 957 return __btrfs_end_transaction(trans, 1); 958 } 959 960 /* 961 * when btree blocks are allocated, they have some corresponding bits set for 962 * them in one of two extent_io trees. This is used to make sure all of 963 * those extents are sent to disk but does not wait on them 964 */ 965 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info, 966 struct extent_io_tree *dirty_pages, int mark) 967 { 968 int err = 0; 969 int werr = 0; 970 struct address_space *mapping = fs_info->btree_inode->i_mapping; 971 struct extent_state *cached_state = NULL; 972 u64 start = 0; 973 u64 end; 974 975 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers); 976 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 977 mark, &cached_state)) { 978 bool wait_writeback = false; 979 980 err = convert_extent_bit(dirty_pages, start, end, 981 EXTENT_NEED_WAIT, 982 mark, &cached_state); 983 /* 984 * convert_extent_bit can return -ENOMEM, which is most of the 985 * time a temporary error. So when it happens, ignore the error 986 * and wait for writeback of this range to finish - because we 987 * failed to set the bit EXTENT_NEED_WAIT for the range, a call 988 * to __btrfs_wait_marked_extents() would not know that 989 * writeback for this range started and therefore wouldn't 990 * wait for it to finish - we don't want to commit a 991 * superblock that points to btree nodes/leafs for which 992 * writeback hasn't finished yet (and without errors). 993 * We cleanup any entries left in the io tree when committing 994 * the transaction (through extent_io_tree_release()). 995 */ 996 if (err == -ENOMEM) { 997 err = 0; 998 wait_writeback = true; 999 } 1000 if (!err) 1001 err = filemap_fdatawrite_range(mapping, start, end); 1002 if (err) 1003 werr = err; 1004 else if (wait_writeback) 1005 werr = filemap_fdatawait_range(mapping, start, end); 1006 free_extent_state(cached_state); 1007 cached_state = NULL; 1008 cond_resched(); 1009 start = end + 1; 1010 } 1011 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers); 1012 return werr; 1013 } 1014 1015 /* 1016 * when btree blocks are allocated, they have some corresponding bits set for 1017 * them in one of two extent_io trees. This is used to make sure all of 1018 * those extents are on disk for transaction or log commit. We wait 1019 * on all the pages and clear them from the dirty pages state tree 1020 */ 1021 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info, 1022 struct extent_io_tree *dirty_pages) 1023 { 1024 int err = 0; 1025 int werr = 0; 1026 struct address_space *mapping = fs_info->btree_inode->i_mapping; 1027 struct extent_state *cached_state = NULL; 1028 u64 start = 0; 1029 u64 end; 1030 1031 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 1032 EXTENT_NEED_WAIT, &cached_state)) { 1033 /* 1034 * Ignore -ENOMEM errors returned by clear_extent_bit(). 1035 * When committing the transaction, we'll remove any entries 1036 * left in the io tree. For a log commit, we don't remove them 1037 * after committing the log because the tree can be accessed 1038 * concurrently - we do it only at transaction commit time when 1039 * it's safe to do it (through extent_io_tree_release()). 1040 */ 1041 err = clear_extent_bit(dirty_pages, start, end, 1042 EXTENT_NEED_WAIT, 0, 0, &cached_state); 1043 if (err == -ENOMEM) 1044 err = 0; 1045 if (!err) 1046 err = filemap_fdatawait_range(mapping, start, end); 1047 if (err) 1048 werr = err; 1049 free_extent_state(cached_state); 1050 cached_state = NULL; 1051 cond_resched(); 1052 start = end + 1; 1053 } 1054 if (err) 1055 werr = err; 1056 return werr; 1057 } 1058 1059 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info, 1060 struct extent_io_tree *dirty_pages) 1061 { 1062 bool errors = false; 1063 int err; 1064 1065 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1066 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags)) 1067 errors = true; 1068 1069 if (errors && !err) 1070 err = -EIO; 1071 return err; 1072 } 1073 1074 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark) 1075 { 1076 struct btrfs_fs_info *fs_info = log_root->fs_info; 1077 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages; 1078 bool errors = false; 1079 int err; 1080 1081 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 1082 1083 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1084 if ((mark & EXTENT_DIRTY) && 1085 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags)) 1086 errors = true; 1087 1088 if ((mark & EXTENT_NEW) && 1089 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags)) 1090 errors = true; 1091 1092 if (errors && !err) 1093 err = -EIO; 1094 return err; 1095 } 1096 1097 /* 1098 * When btree blocks are allocated the corresponding extents are marked dirty. 1099 * This function ensures such extents are persisted on disk for transaction or 1100 * log commit. 1101 * 1102 * @trans: transaction whose dirty pages we'd like to write 1103 */ 1104 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans) 1105 { 1106 int ret; 1107 int ret2; 1108 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages; 1109 struct btrfs_fs_info *fs_info = trans->fs_info; 1110 struct blk_plug plug; 1111 1112 blk_start_plug(&plug); 1113 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY); 1114 blk_finish_plug(&plug); 1115 ret2 = btrfs_wait_extents(fs_info, dirty_pages); 1116 1117 extent_io_tree_release(&trans->transaction->dirty_pages); 1118 1119 if (ret) 1120 return ret; 1121 else if (ret2) 1122 return ret2; 1123 else 1124 return 0; 1125 } 1126 1127 /* 1128 * this is used to update the root pointer in the tree of tree roots. 1129 * 1130 * But, in the case of the extent allocation tree, updating the root 1131 * pointer may allocate blocks which may change the root of the extent 1132 * allocation tree. 1133 * 1134 * So, this loops and repeats and makes sure the cowonly root didn't 1135 * change while the root pointer was being updated in the metadata. 1136 */ 1137 static int update_cowonly_root(struct btrfs_trans_handle *trans, 1138 struct btrfs_root *root) 1139 { 1140 int ret; 1141 u64 old_root_bytenr; 1142 u64 old_root_used; 1143 struct btrfs_fs_info *fs_info = root->fs_info; 1144 struct btrfs_root *tree_root = fs_info->tree_root; 1145 1146 old_root_used = btrfs_root_used(&root->root_item); 1147 1148 while (1) { 1149 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 1150 if (old_root_bytenr == root->node->start && 1151 old_root_used == btrfs_root_used(&root->root_item)) 1152 break; 1153 1154 btrfs_set_root_node(&root->root_item, root->node); 1155 ret = btrfs_update_root(trans, tree_root, 1156 &root->root_key, 1157 &root->root_item); 1158 if (ret) 1159 return ret; 1160 1161 old_root_used = btrfs_root_used(&root->root_item); 1162 } 1163 1164 return 0; 1165 } 1166 1167 /* 1168 * update all the cowonly tree roots on disk 1169 * 1170 * The error handling in this function may not be obvious. Any of the 1171 * failures will cause the file system to go offline. We still need 1172 * to clean up the delayed refs. 1173 */ 1174 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans) 1175 { 1176 struct btrfs_fs_info *fs_info = trans->fs_info; 1177 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; 1178 struct list_head *io_bgs = &trans->transaction->io_bgs; 1179 struct list_head *next; 1180 struct extent_buffer *eb; 1181 int ret; 1182 1183 eb = btrfs_lock_root_node(fs_info->tree_root); 1184 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 1185 0, &eb); 1186 btrfs_tree_unlock(eb); 1187 free_extent_buffer(eb); 1188 1189 if (ret) 1190 return ret; 1191 1192 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1193 if (ret) 1194 return ret; 1195 1196 ret = btrfs_run_dev_stats(trans); 1197 if (ret) 1198 return ret; 1199 ret = btrfs_run_dev_replace(trans); 1200 if (ret) 1201 return ret; 1202 ret = btrfs_run_qgroups(trans); 1203 if (ret) 1204 return ret; 1205 1206 ret = btrfs_setup_space_cache(trans); 1207 if (ret) 1208 return ret; 1209 1210 /* run_qgroups might have added some more refs */ 1211 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1212 if (ret) 1213 return ret; 1214 again: 1215 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1216 struct btrfs_root *root; 1217 next = fs_info->dirty_cowonly_roots.next; 1218 list_del_init(next); 1219 root = list_entry(next, struct btrfs_root, dirty_list); 1220 clear_bit(BTRFS_ROOT_DIRTY, &root->state); 1221 1222 if (root != fs_info->extent_root) 1223 list_add_tail(&root->dirty_list, 1224 &trans->transaction->switch_commits); 1225 ret = update_cowonly_root(trans, root); 1226 if (ret) 1227 return ret; 1228 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1229 if (ret) 1230 return ret; 1231 } 1232 1233 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { 1234 ret = btrfs_write_dirty_block_groups(trans); 1235 if (ret) 1236 return ret; 1237 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1238 if (ret) 1239 return ret; 1240 } 1241 1242 if (!list_empty(&fs_info->dirty_cowonly_roots)) 1243 goto again; 1244 1245 list_add_tail(&fs_info->extent_root->dirty_list, 1246 &trans->transaction->switch_commits); 1247 1248 /* Update dev-replace pointer once everything is committed */ 1249 fs_info->dev_replace.committed_cursor_left = 1250 fs_info->dev_replace.cursor_left_last_write_of_item; 1251 1252 return 0; 1253 } 1254 1255 /* 1256 * dead roots are old snapshots that need to be deleted. This allocates 1257 * a dirty root struct and adds it into the list of dead roots that need to 1258 * be deleted 1259 */ 1260 void btrfs_add_dead_root(struct btrfs_root *root) 1261 { 1262 struct btrfs_fs_info *fs_info = root->fs_info; 1263 1264 spin_lock(&fs_info->trans_lock); 1265 if (list_empty(&root->root_list)) 1266 list_add_tail(&root->root_list, &fs_info->dead_roots); 1267 spin_unlock(&fs_info->trans_lock); 1268 } 1269 1270 /* 1271 * update all the cowonly tree roots on disk 1272 */ 1273 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans) 1274 { 1275 struct btrfs_fs_info *fs_info = trans->fs_info; 1276 struct btrfs_root *gang[8]; 1277 int i; 1278 int ret; 1279 int err = 0; 1280 1281 spin_lock(&fs_info->fs_roots_radix_lock); 1282 while (1) { 1283 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1284 (void **)gang, 0, 1285 ARRAY_SIZE(gang), 1286 BTRFS_ROOT_TRANS_TAG); 1287 if (ret == 0) 1288 break; 1289 for (i = 0; i < ret; i++) { 1290 struct btrfs_root *root = gang[i]; 1291 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1292 (unsigned long)root->root_key.objectid, 1293 BTRFS_ROOT_TRANS_TAG); 1294 spin_unlock(&fs_info->fs_roots_radix_lock); 1295 1296 btrfs_free_log(trans, root); 1297 btrfs_update_reloc_root(trans, root); 1298 1299 btrfs_save_ino_cache(root, trans); 1300 1301 /* see comments in should_cow_block() */ 1302 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1303 smp_mb__after_atomic(); 1304 1305 if (root->commit_root != root->node) { 1306 list_add_tail(&root->dirty_list, 1307 &trans->transaction->switch_commits); 1308 btrfs_set_root_node(&root->root_item, 1309 root->node); 1310 } 1311 1312 err = btrfs_update_root(trans, fs_info->tree_root, 1313 &root->root_key, 1314 &root->root_item); 1315 spin_lock(&fs_info->fs_roots_radix_lock); 1316 if (err) 1317 break; 1318 btrfs_qgroup_free_meta_all_pertrans(root); 1319 } 1320 } 1321 spin_unlock(&fs_info->fs_roots_radix_lock); 1322 return err; 1323 } 1324 1325 /* 1326 * defrag a given btree. 1327 * Every leaf in the btree is read and defragged. 1328 */ 1329 int btrfs_defrag_root(struct btrfs_root *root) 1330 { 1331 struct btrfs_fs_info *info = root->fs_info; 1332 struct btrfs_trans_handle *trans; 1333 int ret; 1334 1335 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) 1336 return 0; 1337 1338 while (1) { 1339 trans = btrfs_start_transaction(root, 0); 1340 if (IS_ERR(trans)) 1341 return PTR_ERR(trans); 1342 1343 ret = btrfs_defrag_leaves(trans, root); 1344 1345 btrfs_end_transaction(trans); 1346 btrfs_btree_balance_dirty(info); 1347 cond_resched(); 1348 1349 if (btrfs_fs_closing(info) || ret != -EAGAIN) 1350 break; 1351 1352 if (btrfs_defrag_cancelled(info)) { 1353 btrfs_debug(info, "defrag_root cancelled"); 1354 ret = -EAGAIN; 1355 break; 1356 } 1357 } 1358 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); 1359 return ret; 1360 } 1361 1362 /* 1363 * Do all special snapshot related qgroup dirty hack. 1364 * 1365 * Will do all needed qgroup inherit and dirty hack like switch commit 1366 * roots inside one transaction and write all btree into disk, to make 1367 * qgroup works. 1368 */ 1369 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans, 1370 struct btrfs_root *src, 1371 struct btrfs_root *parent, 1372 struct btrfs_qgroup_inherit *inherit, 1373 u64 dst_objectid) 1374 { 1375 struct btrfs_fs_info *fs_info = src->fs_info; 1376 int ret; 1377 1378 /* 1379 * Save some performance in the case that qgroups are not 1380 * enabled. If this check races with the ioctl, rescan will 1381 * kick in anyway. 1382 */ 1383 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) 1384 return 0; 1385 1386 /* 1387 * Ensure dirty @src will be committed. Or, after coming 1388 * commit_fs_roots() and switch_commit_roots(), any dirty but not 1389 * recorded root will never be updated again, causing an outdated root 1390 * item. 1391 */ 1392 record_root_in_trans(trans, src, 1); 1393 1394 /* 1395 * We are going to commit transaction, see btrfs_commit_transaction() 1396 * comment for reason locking tree_log_mutex 1397 */ 1398 mutex_lock(&fs_info->tree_log_mutex); 1399 1400 ret = commit_fs_roots(trans); 1401 if (ret) 1402 goto out; 1403 ret = btrfs_qgroup_account_extents(trans); 1404 if (ret < 0) 1405 goto out; 1406 1407 /* Now qgroup are all updated, we can inherit it to new qgroups */ 1408 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid, 1409 inherit); 1410 if (ret < 0) 1411 goto out; 1412 1413 /* 1414 * Now we do a simplified commit transaction, which will: 1415 * 1) commit all subvolume and extent tree 1416 * To ensure all subvolume and extent tree have a valid 1417 * commit_root to accounting later insert_dir_item() 1418 * 2) write all btree blocks onto disk 1419 * This is to make sure later btree modification will be cowed 1420 * Or commit_root can be populated and cause wrong qgroup numbers 1421 * In this simplified commit, we don't really care about other trees 1422 * like chunk and root tree, as they won't affect qgroup. 1423 * And we don't write super to avoid half committed status. 1424 */ 1425 ret = commit_cowonly_roots(trans); 1426 if (ret) 1427 goto out; 1428 switch_commit_roots(trans); 1429 ret = btrfs_write_and_wait_transaction(trans); 1430 if (ret) 1431 btrfs_handle_fs_error(fs_info, ret, 1432 "Error while writing out transaction for qgroup"); 1433 1434 out: 1435 mutex_unlock(&fs_info->tree_log_mutex); 1436 1437 /* 1438 * Force parent root to be updated, as we recorded it before so its 1439 * last_trans == cur_transid. 1440 * Or it won't be committed again onto disk after later 1441 * insert_dir_item() 1442 */ 1443 if (!ret) 1444 record_root_in_trans(trans, parent, 1); 1445 return ret; 1446 } 1447 1448 /* 1449 * new snapshots need to be created at a very specific time in the 1450 * transaction commit. This does the actual creation. 1451 * 1452 * Note: 1453 * If the error which may affect the commitment of the current transaction 1454 * happens, we should return the error number. If the error which just affect 1455 * the creation of the pending snapshots, just return 0. 1456 */ 1457 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1458 struct btrfs_pending_snapshot *pending) 1459 { 1460 1461 struct btrfs_fs_info *fs_info = trans->fs_info; 1462 struct btrfs_key key; 1463 struct btrfs_root_item *new_root_item; 1464 struct btrfs_root *tree_root = fs_info->tree_root; 1465 struct btrfs_root *root = pending->root; 1466 struct btrfs_root *parent_root; 1467 struct btrfs_block_rsv *rsv; 1468 struct inode *parent_inode; 1469 struct btrfs_path *path; 1470 struct btrfs_dir_item *dir_item; 1471 struct dentry *dentry; 1472 struct extent_buffer *tmp; 1473 struct extent_buffer *old; 1474 struct timespec64 cur_time; 1475 int ret = 0; 1476 u64 to_reserve = 0; 1477 u64 index = 0; 1478 u64 objectid; 1479 u64 root_flags; 1480 uuid_le new_uuid; 1481 1482 ASSERT(pending->path); 1483 path = pending->path; 1484 1485 ASSERT(pending->root_item); 1486 new_root_item = pending->root_item; 1487 1488 pending->error = btrfs_find_free_objectid(tree_root, &objectid); 1489 if (pending->error) 1490 goto no_free_objectid; 1491 1492 /* 1493 * Make qgroup to skip current new snapshot's qgroupid, as it is 1494 * accounted by later btrfs_qgroup_inherit(). 1495 */ 1496 btrfs_set_skip_qgroup(trans, objectid); 1497 1498 btrfs_reloc_pre_snapshot(pending, &to_reserve); 1499 1500 if (to_reserve > 0) { 1501 pending->error = btrfs_block_rsv_add(root, 1502 &pending->block_rsv, 1503 to_reserve, 1504 BTRFS_RESERVE_NO_FLUSH); 1505 if (pending->error) 1506 goto clear_skip_qgroup; 1507 } 1508 1509 key.objectid = objectid; 1510 key.offset = (u64)-1; 1511 key.type = BTRFS_ROOT_ITEM_KEY; 1512 1513 rsv = trans->block_rsv; 1514 trans->block_rsv = &pending->block_rsv; 1515 trans->bytes_reserved = trans->block_rsv->reserved; 1516 trace_btrfs_space_reservation(fs_info, "transaction", 1517 trans->transid, 1518 trans->bytes_reserved, 1); 1519 dentry = pending->dentry; 1520 parent_inode = pending->dir; 1521 parent_root = BTRFS_I(parent_inode)->root; 1522 record_root_in_trans(trans, parent_root, 0); 1523 1524 cur_time = current_time(parent_inode); 1525 1526 /* 1527 * insert the directory item 1528 */ 1529 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index); 1530 BUG_ON(ret); /* -ENOMEM */ 1531 1532 /* check if there is a file/dir which has the same name. */ 1533 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1534 btrfs_ino(BTRFS_I(parent_inode)), 1535 dentry->d_name.name, 1536 dentry->d_name.len, 0); 1537 if (dir_item != NULL && !IS_ERR(dir_item)) { 1538 pending->error = -EEXIST; 1539 goto dir_item_existed; 1540 } else if (IS_ERR(dir_item)) { 1541 ret = PTR_ERR(dir_item); 1542 btrfs_abort_transaction(trans, ret); 1543 goto fail; 1544 } 1545 btrfs_release_path(path); 1546 1547 /* 1548 * pull in the delayed directory update 1549 * and the delayed inode item 1550 * otherwise we corrupt the FS during 1551 * snapshot 1552 */ 1553 ret = btrfs_run_delayed_items(trans); 1554 if (ret) { /* Transaction aborted */ 1555 btrfs_abort_transaction(trans, ret); 1556 goto fail; 1557 } 1558 1559 record_root_in_trans(trans, root, 0); 1560 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1561 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1562 btrfs_check_and_init_root_item(new_root_item); 1563 1564 root_flags = btrfs_root_flags(new_root_item); 1565 if (pending->readonly) 1566 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1567 else 1568 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1569 btrfs_set_root_flags(new_root_item, root_flags); 1570 1571 btrfs_set_root_generation_v2(new_root_item, 1572 trans->transid); 1573 uuid_le_gen(&new_uuid); 1574 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 1575 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1576 BTRFS_UUID_SIZE); 1577 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1578 memset(new_root_item->received_uuid, 0, 1579 sizeof(new_root_item->received_uuid)); 1580 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1581 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1582 btrfs_set_root_stransid(new_root_item, 0); 1583 btrfs_set_root_rtransid(new_root_item, 0); 1584 } 1585 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1586 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1587 btrfs_set_root_otransid(new_root_item, trans->transid); 1588 1589 old = btrfs_lock_root_node(root); 1590 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old); 1591 if (ret) { 1592 btrfs_tree_unlock(old); 1593 free_extent_buffer(old); 1594 btrfs_abort_transaction(trans, ret); 1595 goto fail; 1596 } 1597 1598 btrfs_set_lock_blocking_write(old); 1599 1600 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1601 /* clean up in any case */ 1602 btrfs_tree_unlock(old); 1603 free_extent_buffer(old); 1604 if (ret) { 1605 btrfs_abort_transaction(trans, ret); 1606 goto fail; 1607 } 1608 /* see comments in should_cow_block() */ 1609 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1610 smp_wmb(); 1611 1612 btrfs_set_root_node(new_root_item, tmp); 1613 /* record when the snapshot was created in key.offset */ 1614 key.offset = trans->transid; 1615 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1616 btrfs_tree_unlock(tmp); 1617 free_extent_buffer(tmp); 1618 if (ret) { 1619 btrfs_abort_transaction(trans, ret); 1620 goto fail; 1621 } 1622 1623 /* 1624 * insert root back/forward references 1625 */ 1626 ret = btrfs_add_root_ref(trans, objectid, 1627 parent_root->root_key.objectid, 1628 btrfs_ino(BTRFS_I(parent_inode)), index, 1629 dentry->d_name.name, dentry->d_name.len); 1630 if (ret) { 1631 btrfs_abort_transaction(trans, ret); 1632 goto fail; 1633 } 1634 1635 key.offset = (u64)-1; 1636 pending->snap = btrfs_get_fs_root(fs_info, &key, true); 1637 if (IS_ERR(pending->snap)) { 1638 ret = PTR_ERR(pending->snap); 1639 btrfs_abort_transaction(trans, ret); 1640 goto fail; 1641 } 1642 1643 ret = btrfs_reloc_post_snapshot(trans, pending); 1644 if (ret) { 1645 btrfs_abort_transaction(trans, ret); 1646 goto fail; 1647 } 1648 1649 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1650 if (ret) { 1651 btrfs_abort_transaction(trans, ret); 1652 goto fail; 1653 } 1654 1655 /* 1656 * Do special qgroup accounting for snapshot, as we do some qgroup 1657 * snapshot hack to do fast snapshot. 1658 * To co-operate with that hack, we do hack again. 1659 * Or snapshot will be greatly slowed down by a subtree qgroup rescan 1660 */ 1661 ret = qgroup_account_snapshot(trans, root, parent_root, 1662 pending->inherit, objectid); 1663 if (ret < 0) 1664 goto fail; 1665 1666 ret = btrfs_insert_dir_item(trans, dentry->d_name.name, 1667 dentry->d_name.len, BTRFS_I(parent_inode), 1668 &key, BTRFS_FT_DIR, index); 1669 /* We have check then name at the beginning, so it is impossible. */ 1670 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1671 if (ret) { 1672 btrfs_abort_transaction(trans, ret); 1673 goto fail; 1674 } 1675 1676 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size + 1677 dentry->d_name.len * 2); 1678 parent_inode->i_mtime = parent_inode->i_ctime = 1679 current_time(parent_inode); 1680 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode); 1681 if (ret) { 1682 btrfs_abort_transaction(trans, ret); 1683 goto fail; 1684 } 1685 ret = btrfs_uuid_tree_add(trans, new_uuid.b, BTRFS_UUID_KEY_SUBVOL, 1686 objectid); 1687 if (ret) { 1688 btrfs_abort_transaction(trans, ret); 1689 goto fail; 1690 } 1691 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1692 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid, 1693 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1694 objectid); 1695 if (ret && ret != -EEXIST) { 1696 btrfs_abort_transaction(trans, ret); 1697 goto fail; 1698 } 1699 } 1700 1701 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1702 if (ret) { 1703 btrfs_abort_transaction(trans, ret); 1704 goto fail; 1705 } 1706 1707 fail: 1708 pending->error = ret; 1709 dir_item_existed: 1710 trans->block_rsv = rsv; 1711 trans->bytes_reserved = 0; 1712 clear_skip_qgroup: 1713 btrfs_clear_skip_qgroup(trans); 1714 no_free_objectid: 1715 kfree(new_root_item); 1716 pending->root_item = NULL; 1717 btrfs_free_path(path); 1718 pending->path = NULL; 1719 1720 return ret; 1721 } 1722 1723 /* 1724 * create all the snapshots we've scheduled for creation 1725 */ 1726 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans) 1727 { 1728 struct btrfs_pending_snapshot *pending, *next; 1729 struct list_head *head = &trans->transaction->pending_snapshots; 1730 int ret = 0; 1731 1732 list_for_each_entry_safe(pending, next, head, list) { 1733 list_del(&pending->list); 1734 ret = create_pending_snapshot(trans, pending); 1735 if (ret) 1736 break; 1737 } 1738 return ret; 1739 } 1740 1741 static void update_super_roots(struct btrfs_fs_info *fs_info) 1742 { 1743 struct btrfs_root_item *root_item; 1744 struct btrfs_super_block *super; 1745 1746 super = fs_info->super_copy; 1747 1748 root_item = &fs_info->chunk_root->root_item; 1749 super->chunk_root = root_item->bytenr; 1750 super->chunk_root_generation = root_item->generation; 1751 super->chunk_root_level = root_item->level; 1752 1753 root_item = &fs_info->tree_root->root_item; 1754 super->root = root_item->bytenr; 1755 super->generation = root_item->generation; 1756 super->root_level = root_item->level; 1757 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 1758 super->cache_generation = root_item->generation; 1759 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags)) 1760 super->uuid_tree_generation = root_item->generation; 1761 } 1762 1763 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1764 { 1765 struct btrfs_transaction *trans; 1766 int ret = 0; 1767 1768 spin_lock(&info->trans_lock); 1769 trans = info->running_transaction; 1770 if (trans) 1771 ret = (trans->state >= TRANS_STATE_COMMIT_START); 1772 spin_unlock(&info->trans_lock); 1773 return ret; 1774 } 1775 1776 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1777 { 1778 struct btrfs_transaction *trans; 1779 int ret = 0; 1780 1781 spin_lock(&info->trans_lock); 1782 trans = info->running_transaction; 1783 if (trans) 1784 ret = is_transaction_blocked(trans); 1785 spin_unlock(&info->trans_lock); 1786 return ret; 1787 } 1788 1789 /* 1790 * wait for the current transaction commit to start and block subsequent 1791 * transaction joins 1792 */ 1793 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info, 1794 struct btrfs_transaction *trans) 1795 { 1796 wait_event(fs_info->transaction_blocked_wait, 1797 trans->state >= TRANS_STATE_COMMIT_START || trans->aborted); 1798 } 1799 1800 /* 1801 * wait for the current transaction to start and then become unblocked. 1802 * caller holds ref. 1803 */ 1804 static void wait_current_trans_commit_start_and_unblock( 1805 struct btrfs_fs_info *fs_info, 1806 struct btrfs_transaction *trans) 1807 { 1808 wait_event(fs_info->transaction_wait, 1809 trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted); 1810 } 1811 1812 /* 1813 * commit transactions asynchronously. once btrfs_commit_transaction_async 1814 * returns, any subsequent transaction will not be allowed to join. 1815 */ 1816 struct btrfs_async_commit { 1817 struct btrfs_trans_handle *newtrans; 1818 struct work_struct work; 1819 }; 1820 1821 static void do_async_commit(struct work_struct *work) 1822 { 1823 struct btrfs_async_commit *ac = 1824 container_of(work, struct btrfs_async_commit, work); 1825 1826 /* 1827 * We've got freeze protection passed with the transaction. 1828 * Tell lockdep about it. 1829 */ 1830 if (ac->newtrans->type & __TRANS_FREEZABLE) 1831 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS); 1832 1833 current->journal_info = ac->newtrans; 1834 1835 btrfs_commit_transaction(ac->newtrans); 1836 kfree(ac); 1837 } 1838 1839 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, 1840 int wait_for_unblock) 1841 { 1842 struct btrfs_fs_info *fs_info = trans->fs_info; 1843 struct btrfs_async_commit *ac; 1844 struct btrfs_transaction *cur_trans; 1845 1846 ac = kmalloc(sizeof(*ac), GFP_NOFS); 1847 if (!ac) 1848 return -ENOMEM; 1849 1850 INIT_WORK(&ac->work, do_async_commit); 1851 ac->newtrans = btrfs_join_transaction(trans->root); 1852 if (IS_ERR(ac->newtrans)) { 1853 int err = PTR_ERR(ac->newtrans); 1854 kfree(ac); 1855 return err; 1856 } 1857 1858 /* take transaction reference */ 1859 cur_trans = trans->transaction; 1860 refcount_inc(&cur_trans->use_count); 1861 1862 btrfs_end_transaction(trans); 1863 1864 /* 1865 * Tell lockdep we've released the freeze rwsem, since the 1866 * async commit thread will be the one to unlock it. 1867 */ 1868 if (ac->newtrans->type & __TRANS_FREEZABLE) 1869 __sb_writers_release(fs_info->sb, SB_FREEZE_FS); 1870 1871 schedule_work(&ac->work); 1872 1873 /* wait for transaction to start and unblock */ 1874 if (wait_for_unblock) 1875 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans); 1876 else 1877 wait_current_trans_commit_start(fs_info, cur_trans); 1878 1879 if (current->journal_info == trans) 1880 current->journal_info = NULL; 1881 1882 btrfs_put_transaction(cur_trans); 1883 return 0; 1884 } 1885 1886 1887 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err) 1888 { 1889 struct btrfs_fs_info *fs_info = trans->fs_info; 1890 struct btrfs_transaction *cur_trans = trans->transaction; 1891 1892 WARN_ON(refcount_read(&trans->use_count) > 1); 1893 1894 btrfs_abort_transaction(trans, err); 1895 1896 spin_lock(&fs_info->trans_lock); 1897 1898 /* 1899 * If the transaction is removed from the list, it means this 1900 * transaction has been committed successfully, so it is impossible 1901 * to call the cleanup function. 1902 */ 1903 BUG_ON(list_empty(&cur_trans->list)); 1904 1905 list_del_init(&cur_trans->list); 1906 if (cur_trans == fs_info->running_transaction) { 1907 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1908 spin_unlock(&fs_info->trans_lock); 1909 wait_event(cur_trans->writer_wait, 1910 atomic_read(&cur_trans->num_writers) == 1); 1911 1912 spin_lock(&fs_info->trans_lock); 1913 } 1914 spin_unlock(&fs_info->trans_lock); 1915 1916 btrfs_cleanup_one_transaction(trans->transaction, fs_info); 1917 1918 spin_lock(&fs_info->trans_lock); 1919 if (cur_trans == fs_info->running_transaction) 1920 fs_info->running_transaction = NULL; 1921 spin_unlock(&fs_info->trans_lock); 1922 1923 if (trans->type & __TRANS_FREEZABLE) 1924 sb_end_intwrite(fs_info->sb); 1925 btrfs_put_transaction(cur_trans); 1926 btrfs_put_transaction(cur_trans); 1927 1928 trace_btrfs_transaction_commit(trans->root); 1929 1930 if (current->journal_info == trans) 1931 current->journal_info = NULL; 1932 btrfs_scrub_cancel(fs_info); 1933 1934 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1935 } 1936 1937 /* 1938 * Release reserved delayed ref space of all pending block groups of the 1939 * transaction and remove them from the list 1940 */ 1941 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans) 1942 { 1943 struct btrfs_fs_info *fs_info = trans->fs_info; 1944 struct btrfs_block_group *block_group, *tmp; 1945 1946 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 1947 btrfs_delayed_refs_rsv_release(fs_info, 1); 1948 list_del_init(&block_group->bg_list); 1949 } 1950 } 1951 1952 static inline int btrfs_start_delalloc_flush(struct btrfs_trans_handle *trans) 1953 { 1954 struct btrfs_fs_info *fs_info = trans->fs_info; 1955 1956 /* 1957 * We use writeback_inodes_sb here because if we used 1958 * btrfs_start_delalloc_roots we would deadlock with fs freeze. 1959 * Currently are holding the fs freeze lock, if we do an async flush 1960 * we'll do btrfs_join_transaction() and deadlock because we need to 1961 * wait for the fs freeze lock. Using the direct flushing we benefit 1962 * from already being in a transaction and our join_transaction doesn't 1963 * have to re-take the fs freeze lock. 1964 */ 1965 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) { 1966 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC); 1967 } else { 1968 struct btrfs_pending_snapshot *pending; 1969 struct list_head *head = &trans->transaction->pending_snapshots; 1970 1971 /* 1972 * Flush dellaloc for any root that is going to be snapshotted. 1973 * This is done to avoid a corrupted version of files, in the 1974 * snapshots, that had both buffered and direct IO writes (even 1975 * if they were done sequentially) due to an unordered update of 1976 * the inode's size on disk. 1977 */ 1978 list_for_each_entry(pending, head, list) { 1979 int ret; 1980 1981 ret = btrfs_start_delalloc_snapshot(pending->root); 1982 if (ret) 1983 return ret; 1984 } 1985 } 1986 return 0; 1987 } 1988 1989 static inline void btrfs_wait_delalloc_flush(struct btrfs_trans_handle *trans) 1990 { 1991 struct btrfs_fs_info *fs_info = trans->fs_info; 1992 1993 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) { 1994 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 1995 } else { 1996 struct btrfs_pending_snapshot *pending; 1997 struct list_head *head = &trans->transaction->pending_snapshots; 1998 1999 /* 2000 * Wait for any dellaloc that we started previously for the roots 2001 * that are going to be snapshotted. This is to avoid a corrupted 2002 * version of files in the snapshots that had both buffered and 2003 * direct IO writes (even if they were done sequentially). 2004 */ 2005 list_for_each_entry(pending, head, list) 2006 btrfs_wait_ordered_extents(pending->root, 2007 U64_MAX, 0, U64_MAX); 2008 } 2009 } 2010 2011 int btrfs_commit_transaction(struct btrfs_trans_handle *trans) 2012 { 2013 struct btrfs_fs_info *fs_info = trans->fs_info; 2014 struct btrfs_transaction *cur_trans = trans->transaction; 2015 struct btrfs_transaction *prev_trans = NULL; 2016 int ret; 2017 2018 ASSERT(refcount_read(&trans->use_count) == 1); 2019 2020 /* 2021 * Some places just start a transaction to commit it. We need to make 2022 * sure that if this commit fails that the abort code actually marks the 2023 * transaction as failed, so set trans->dirty to make the abort code do 2024 * the right thing. 2025 */ 2026 trans->dirty = true; 2027 2028 /* Stop the commit early if ->aborted is set */ 2029 if (unlikely(READ_ONCE(cur_trans->aborted))) { 2030 ret = cur_trans->aborted; 2031 btrfs_end_transaction(trans); 2032 return ret; 2033 } 2034 2035 btrfs_trans_release_metadata(trans); 2036 trans->block_rsv = NULL; 2037 2038 /* make a pass through all the delayed refs we have so far 2039 * any runnings procs may add more while we are here 2040 */ 2041 ret = btrfs_run_delayed_refs(trans, 0); 2042 if (ret) { 2043 btrfs_end_transaction(trans); 2044 return ret; 2045 } 2046 2047 cur_trans = trans->transaction; 2048 2049 /* 2050 * set the flushing flag so procs in this transaction have to 2051 * start sending their work down. 2052 */ 2053 cur_trans->delayed_refs.flushing = 1; 2054 smp_wmb(); 2055 2056 btrfs_create_pending_block_groups(trans); 2057 2058 ret = btrfs_run_delayed_refs(trans, 0); 2059 if (ret) { 2060 btrfs_end_transaction(trans); 2061 return ret; 2062 } 2063 2064 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) { 2065 int run_it = 0; 2066 2067 /* this mutex is also taken before trying to set 2068 * block groups readonly. We need to make sure 2069 * that nobody has set a block group readonly 2070 * after a extents from that block group have been 2071 * allocated for cache files. btrfs_set_block_group_ro 2072 * will wait for the transaction to commit if it 2073 * finds BTRFS_TRANS_DIRTY_BG_RUN set. 2074 * 2075 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure 2076 * only one process starts all the block group IO. It wouldn't 2077 * hurt to have more than one go through, but there's no 2078 * real advantage to it either. 2079 */ 2080 mutex_lock(&fs_info->ro_block_group_mutex); 2081 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN, 2082 &cur_trans->flags)) 2083 run_it = 1; 2084 mutex_unlock(&fs_info->ro_block_group_mutex); 2085 2086 if (run_it) { 2087 ret = btrfs_start_dirty_block_groups(trans); 2088 if (ret) { 2089 btrfs_end_transaction(trans); 2090 return ret; 2091 } 2092 } 2093 } 2094 2095 spin_lock(&fs_info->trans_lock); 2096 if (cur_trans->state >= TRANS_STATE_COMMIT_START) { 2097 spin_unlock(&fs_info->trans_lock); 2098 refcount_inc(&cur_trans->use_count); 2099 ret = btrfs_end_transaction(trans); 2100 2101 wait_for_commit(cur_trans); 2102 2103 if (unlikely(cur_trans->aborted)) 2104 ret = cur_trans->aborted; 2105 2106 btrfs_put_transaction(cur_trans); 2107 2108 return ret; 2109 } 2110 2111 cur_trans->state = TRANS_STATE_COMMIT_START; 2112 wake_up(&fs_info->transaction_blocked_wait); 2113 2114 if (cur_trans->list.prev != &fs_info->trans_list) { 2115 prev_trans = list_entry(cur_trans->list.prev, 2116 struct btrfs_transaction, list); 2117 if (prev_trans->state != TRANS_STATE_COMPLETED) { 2118 refcount_inc(&prev_trans->use_count); 2119 spin_unlock(&fs_info->trans_lock); 2120 2121 wait_for_commit(prev_trans); 2122 ret = prev_trans->aborted; 2123 2124 btrfs_put_transaction(prev_trans); 2125 if (ret) 2126 goto cleanup_transaction; 2127 } else { 2128 spin_unlock(&fs_info->trans_lock); 2129 } 2130 } else { 2131 spin_unlock(&fs_info->trans_lock); 2132 /* 2133 * The previous transaction was aborted and was already removed 2134 * from the list of transactions at fs_info->trans_list. So we 2135 * abort to prevent writing a new superblock that reflects a 2136 * corrupt state (pointing to trees with unwritten nodes/leafs). 2137 */ 2138 if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) { 2139 ret = -EROFS; 2140 goto cleanup_transaction; 2141 } 2142 } 2143 2144 extwriter_counter_dec(cur_trans, trans->type); 2145 2146 ret = btrfs_start_delalloc_flush(trans); 2147 if (ret) 2148 goto cleanup_transaction; 2149 2150 ret = btrfs_run_delayed_items(trans); 2151 if (ret) 2152 goto cleanup_transaction; 2153 2154 wait_event(cur_trans->writer_wait, 2155 extwriter_counter_read(cur_trans) == 0); 2156 2157 /* some pending stuffs might be added after the previous flush. */ 2158 ret = btrfs_run_delayed_items(trans); 2159 if (ret) 2160 goto cleanup_transaction; 2161 2162 btrfs_wait_delalloc_flush(trans); 2163 2164 btrfs_scrub_pause(fs_info); 2165 /* 2166 * Ok now we need to make sure to block out any other joins while we 2167 * commit the transaction. We could have started a join before setting 2168 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 2169 */ 2170 spin_lock(&fs_info->trans_lock); 2171 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2172 spin_unlock(&fs_info->trans_lock); 2173 wait_event(cur_trans->writer_wait, 2174 atomic_read(&cur_trans->num_writers) == 1); 2175 2176 /* ->aborted might be set after the previous check, so check it */ 2177 if (unlikely(READ_ONCE(cur_trans->aborted))) { 2178 ret = cur_trans->aborted; 2179 goto scrub_continue; 2180 } 2181 /* 2182 * the reloc mutex makes sure that we stop 2183 * the balancing code from coming in and moving 2184 * extents around in the middle of the commit 2185 */ 2186 mutex_lock(&fs_info->reloc_mutex); 2187 2188 /* 2189 * We needn't worry about the delayed items because we will 2190 * deal with them in create_pending_snapshot(), which is the 2191 * core function of the snapshot creation. 2192 */ 2193 ret = create_pending_snapshots(trans); 2194 if (ret) { 2195 mutex_unlock(&fs_info->reloc_mutex); 2196 goto scrub_continue; 2197 } 2198 2199 /* 2200 * We insert the dir indexes of the snapshots and update the inode 2201 * of the snapshots' parents after the snapshot creation, so there 2202 * are some delayed items which are not dealt with. Now deal with 2203 * them. 2204 * 2205 * We needn't worry that this operation will corrupt the snapshots, 2206 * because all the tree which are snapshoted will be forced to COW 2207 * the nodes and leaves. 2208 */ 2209 ret = btrfs_run_delayed_items(trans); 2210 if (ret) { 2211 mutex_unlock(&fs_info->reloc_mutex); 2212 goto scrub_continue; 2213 } 2214 2215 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 2216 if (ret) { 2217 mutex_unlock(&fs_info->reloc_mutex); 2218 goto scrub_continue; 2219 } 2220 2221 /* 2222 * make sure none of the code above managed to slip in a 2223 * delayed item 2224 */ 2225 btrfs_assert_delayed_root_empty(fs_info); 2226 2227 WARN_ON(cur_trans != trans->transaction); 2228 2229 /* btrfs_commit_tree_roots is responsible for getting the 2230 * various roots consistent with each other. Every pointer 2231 * in the tree of tree roots has to point to the most up to date 2232 * root for every subvolume and other tree. So, we have to keep 2233 * the tree logging code from jumping in and changing any 2234 * of the trees. 2235 * 2236 * At this point in the commit, there can't be any tree-log 2237 * writers, but a little lower down we drop the trans mutex 2238 * and let new people in. By holding the tree_log_mutex 2239 * from now until after the super is written, we avoid races 2240 * with the tree-log code. 2241 */ 2242 mutex_lock(&fs_info->tree_log_mutex); 2243 2244 ret = commit_fs_roots(trans); 2245 if (ret) { 2246 mutex_unlock(&fs_info->tree_log_mutex); 2247 mutex_unlock(&fs_info->reloc_mutex); 2248 goto scrub_continue; 2249 } 2250 2251 /* 2252 * Since the transaction is done, we can apply the pending changes 2253 * before the next transaction. 2254 */ 2255 btrfs_apply_pending_changes(fs_info); 2256 2257 /* commit_fs_roots gets rid of all the tree log roots, it is now 2258 * safe to free the root of tree log roots 2259 */ 2260 btrfs_free_log_root_tree(trans, fs_info); 2261 2262 /* 2263 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates 2264 * new delayed refs. Must handle them or qgroup can be wrong. 2265 */ 2266 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 2267 if (ret) { 2268 mutex_unlock(&fs_info->tree_log_mutex); 2269 mutex_unlock(&fs_info->reloc_mutex); 2270 goto scrub_continue; 2271 } 2272 2273 /* 2274 * Since fs roots are all committed, we can get a quite accurate 2275 * new_roots. So let's do quota accounting. 2276 */ 2277 ret = btrfs_qgroup_account_extents(trans); 2278 if (ret < 0) { 2279 mutex_unlock(&fs_info->tree_log_mutex); 2280 mutex_unlock(&fs_info->reloc_mutex); 2281 goto scrub_continue; 2282 } 2283 2284 ret = commit_cowonly_roots(trans); 2285 if (ret) { 2286 mutex_unlock(&fs_info->tree_log_mutex); 2287 mutex_unlock(&fs_info->reloc_mutex); 2288 goto scrub_continue; 2289 } 2290 2291 /* 2292 * The tasks which save the space cache and inode cache may also 2293 * update ->aborted, check it. 2294 */ 2295 if (unlikely(READ_ONCE(cur_trans->aborted))) { 2296 ret = cur_trans->aborted; 2297 mutex_unlock(&fs_info->tree_log_mutex); 2298 mutex_unlock(&fs_info->reloc_mutex); 2299 goto scrub_continue; 2300 } 2301 2302 btrfs_prepare_extent_commit(fs_info); 2303 2304 cur_trans = fs_info->running_transaction; 2305 2306 btrfs_set_root_node(&fs_info->tree_root->root_item, 2307 fs_info->tree_root->node); 2308 list_add_tail(&fs_info->tree_root->dirty_list, 2309 &cur_trans->switch_commits); 2310 2311 btrfs_set_root_node(&fs_info->chunk_root->root_item, 2312 fs_info->chunk_root->node); 2313 list_add_tail(&fs_info->chunk_root->dirty_list, 2314 &cur_trans->switch_commits); 2315 2316 switch_commit_roots(trans); 2317 2318 ASSERT(list_empty(&cur_trans->dirty_bgs)); 2319 ASSERT(list_empty(&cur_trans->io_bgs)); 2320 update_super_roots(fs_info); 2321 2322 btrfs_set_super_log_root(fs_info->super_copy, 0); 2323 btrfs_set_super_log_root_level(fs_info->super_copy, 0); 2324 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2325 sizeof(*fs_info->super_copy)); 2326 2327 btrfs_commit_device_sizes(cur_trans); 2328 2329 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 2330 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 2331 2332 btrfs_trans_release_chunk_metadata(trans); 2333 2334 spin_lock(&fs_info->trans_lock); 2335 cur_trans->state = TRANS_STATE_UNBLOCKED; 2336 fs_info->running_transaction = NULL; 2337 spin_unlock(&fs_info->trans_lock); 2338 mutex_unlock(&fs_info->reloc_mutex); 2339 2340 wake_up(&fs_info->transaction_wait); 2341 2342 ret = btrfs_write_and_wait_transaction(trans); 2343 if (ret) { 2344 btrfs_handle_fs_error(fs_info, ret, 2345 "Error while writing out transaction"); 2346 mutex_unlock(&fs_info->tree_log_mutex); 2347 goto scrub_continue; 2348 } 2349 2350 ret = write_all_supers(fs_info, 0); 2351 /* 2352 * the super is written, we can safely allow the tree-loggers 2353 * to go about their business 2354 */ 2355 mutex_unlock(&fs_info->tree_log_mutex); 2356 if (ret) 2357 goto scrub_continue; 2358 2359 btrfs_finish_extent_commit(trans); 2360 2361 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags)) 2362 btrfs_clear_space_info_full(fs_info); 2363 2364 fs_info->last_trans_committed = cur_trans->transid; 2365 /* 2366 * We needn't acquire the lock here because there is no other task 2367 * which can change it. 2368 */ 2369 cur_trans->state = TRANS_STATE_COMPLETED; 2370 wake_up(&cur_trans->commit_wait); 2371 clear_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags); 2372 2373 spin_lock(&fs_info->trans_lock); 2374 list_del_init(&cur_trans->list); 2375 spin_unlock(&fs_info->trans_lock); 2376 2377 btrfs_put_transaction(cur_trans); 2378 btrfs_put_transaction(cur_trans); 2379 2380 if (trans->type & __TRANS_FREEZABLE) 2381 sb_end_intwrite(fs_info->sb); 2382 2383 trace_btrfs_transaction_commit(trans->root); 2384 2385 btrfs_scrub_continue(fs_info); 2386 2387 if (current->journal_info == trans) 2388 current->journal_info = NULL; 2389 2390 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2391 2392 return ret; 2393 2394 scrub_continue: 2395 btrfs_scrub_continue(fs_info); 2396 cleanup_transaction: 2397 btrfs_trans_release_metadata(trans); 2398 btrfs_cleanup_pending_block_groups(trans); 2399 btrfs_trans_release_chunk_metadata(trans); 2400 trans->block_rsv = NULL; 2401 btrfs_warn(fs_info, "Skipping commit of aborted transaction."); 2402 if (current->journal_info == trans) 2403 current->journal_info = NULL; 2404 cleanup_transaction(trans, ret); 2405 2406 return ret; 2407 } 2408 2409 /* 2410 * return < 0 if error 2411 * 0 if there are no more dead_roots at the time of call 2412 * 1 there are more to be processed, call me again 2413 * 2414 * The return value indicates there are certainly more snapshots to delete, but 2415 * if there comes a new one during processing, it may return 0. We don't mind, 2416 * because btrfs_commit_super will poke cleaner thread and it will process it a 2417 * few seconds later. 2418 */ 2419 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root) 2420 { 2421 int ret; 2422 struct btrfs_fs_info *fs_info = root->fs_info; 2423 2424 spin_lock(&fs_info->trans_lock); 2425 if (list_empty(&fs_info->dead_roots)) { 2426 spin_unlock(&fs_info->trans_lock); 2427 return 0; 2428 } 2429 root = list_first_entry(&fs_info->dead_roots, 2430 struct btrfs_root, root_list); 2431 list_del_init(&root->root_list); 2432 spin_unlock(&fs_info->trans_lock); 2433 2434 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid); 2435 2436 btrfs_kill_all_delayed_nodes(root); 2437 2438 if (btrfs_header_backref_rev(root->node) < 2439 BTRFS_MIXED_BACKREF_REV) 2440 ret = btrfs_drop_snapshot(root, NULL, 0, 0); 2441 else 2442 ret = btrfs_drop_snapshot(root, NULL, 1, 0); 2443 2444 return (ret < 0) ? 0 : 1; 2445 } 2446 2447 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info) 2448 { 2449 unsigned long prev; 2450 unsigned long bit; 2451 2452 prev = xchg(&fs_info->pending_changes, 0); 2453 if (!prev) 2454 return; 2455 2456 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE; 2457 if (prev & bit) 2458 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2459 prev &= ~bit; 2460 2461 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE; 2462 if (prev & bit) 2463 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2464 prev &= ~bit; 2465 2466 bit = 1 << BTRFS_PENDING_COMMIT; 2467 if (prev & bit) 2468 btrfs_debug(fs_info, "pending commit done"); 2469 prev &= ~bit; 2470 2471 if (prev) 2472 btrfs_warn(fs_info, 2473 "unknown pending changes left 0x%lx, ignoring", prev); 2474 } 2475