xref: /linux/fs/btrfs/transaction.c (revision bc44d7c4b2b179c4b74fba208b9908e2ecbc1b4d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
13 #include "misc.h"
14 #include "ctree.h"
15 #include "disk-io.h"
16 #include "transaction.h"
17 #include "locking.h"
18 #include "tree-log.h"
19 #include "inode-map.h"
20 #include "volumes.h"
21 #include "dev-replace.h"
22 #include "qgroup.h"
23 #include "block-group.h"
24 
25 #define BTRFS_ROOT_TRANS_TAG 0
26 
27 /*
28  * Transaction states and transitions
29  *
30  * No running transaction (fs tree blocks are not modified)
31  * |
32  * | To next stage:
33  * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
34  * V
35  * Transaction N [[TRANS_STATE_RUNNING]]
36  * |
37  * | New trans handles can be attached to transaction N by calling all
38  * | start_transaction() variants.
39  * |
40  * | To next stage:
41  * |  Call btrfs_commit_transaction() on any trans handle attached to
42  * |  transaction N
43  * V
44  * Transaction N [[TRANS_STATE_COMMIT_START]]
45  * |
46  * | Will wait for previous running transaction to completely finish if there
47  * | is one
48  * |
49  * | Then one of the following happes:
50  * | - Wait for all other trans handle holders to release.
51  * |   The btrfs_commit_transaction() caller will do the commit work.
52  * | - Wait for current transaction to be committed by others.
53  * |   Other btrfs_commit_transaction() caller will do the commit work.
54  * |
55  * | At this stage, only btrfs_join_transaction*() variants can attach
56  * | to this running transaction.
57  * | All other variants will wait for current one to finish and attach to
58  * | transaction N+1.
59  * |
60  * | To next stage:
61  * |  Caller is chosen to commit transaction N, and all other trans handle
62  * |  haven been released.
63  * V
64  * Transaction N [[TRANS_STATE_COMMIT_DOING]]
65  * |
66  * | The heavy lifting transaction work is started.
67  * | From running delayed refs (modifying extent tree) to creating pending
68  * | snapshots, running qgroups.
69  * | In short, modify supporting trees to reflect modifications of subvolume
70  * | trees.
71  * |
72  * | At this stage, all start_transaction() calls will wait for this
73  * | transaction to finish and attach to transaction N+1.
74  * |
75  * | To next stage:
76  * |  Until all supporting trees are updated.
77  * V
78  * Transaction N [[TRANS_STATE_UNBLOCKED]]
79  * |						    Transaction N+1
80  * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
81  * | need to write them back to disk and update	    |
82  * | super blocks.				    |
83  * |						    |
84  * | At this stage, new transaction is allowed to   |
85  * | start.					    |
86  * | All new start_transaction() calls will be	    |
87  * | attached to transid N+1.			    |
88  * |						    |
89  * | To next stage:				    |
90  * |  Until all tree blocks are super blocks are    |
91  * |  written to block devices			    |
92  * V						    |
93  * Transaction N [[TRANS_STATE_COMPLETED]]	    V
94  *   All tree blocks and super blocks are written.  Transaction N+1
95  *   This transaction is finished and all its	    [[TRANS_STATE_COMMIT_START]]
96  *   data structures will be cleaned up.	    | Life goes on
97  */
98 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
99 	[TRANS_STATE_RUNNING]		= 0U,
100 	[TRANS_STATE_COMMIT_START]	= (__TRANS_START | __TRANS_ATTACH),
101 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_START |
102 					   __TRANS_ATTACH |
103 					   __TRANS_JOIN |
104 					   __TRANS_JOIN_NOSTART),
105 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_START |
106 					   __TRANS_ATTACH |
107 					   __TRANS_JOIN |
108 					   __TRANS_JOIN_NOLOCK |
109 					   __TRANS_JOIN_NOSTART),
110 	[TRANS_STATE_COMPLETED]		= (__TRANS_START |
111 					   __TRANS_ATTACH |
112 					   __TRANS_JOIN |
113 					   __TRANS_JOIN_NOLOCK |
114 					   __TRANS_JOIN_NOSTART),
115 };
116 
117 void btrfs_put_transaction(struct btrfs_transaction *transaction)
118 {
119 	WARN_ON(refcount_read(&transaction->use_count) == 0);
120 	if (refcount_dec_and_test(&transaction->use_count)) {
121 		BUG_ON(!list_empty(&transaction->list));
122 		WARN_ON(!RB_EMPTY_ROOT(
123 				&transaction->delayed_refs.href_root.rb_root));
124 		WARN_ON(!RB_EMPTY_ROOT(
125 				&transaction->delayed_refs.dirty_extent_root));
126 		if (transaction->delayed_refs.pending_csums)
127 			btrfs_err(transaction->fs_info,
128 				  "pending csums is %llu",
129 				  transaction->delayed_refs.pending_csums);
130 		/*
131 		 * If any block groups are found in ->deleted_bgs then it's
132 		 * because the transaction was aborted and a commit did not
133 		 * happen (things failed before writing the new superblock
134 		 * and calling btrfs_finish_extent_commit()), so we can not
135 		 * discard the physical locations of the block groups.
136 		 */
137 		while (!list_empty(&transaction->deleted_bgs)) {
138 			struct btrfs_block_group *cache;
139 
140 			cache = list_first_entry(&transaction->deleted_bgs,
141 						 struct btrfs_block_group,
142 						 bg_list);
143 			list_del_init(&cache->bg_list);
144 			btrfs_put_block_group_trimming(cache);
145 			btrfs_put_block_group(cache);
146 		}
147 		WARN_ON(!list_empty(&transaction->dev_update_list));
148 		kfree(transaction);
149 	}
150 }
151 
152 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
153 {
154 	struct btrfs_transaction *cur_trans = trans->transaction;
155 	struct btrfs_fs_info *fs_info = trans->fs_info;
156 	struct btrfs_root *root, *tmp;
157 
158 	down_write(&fs_info->commit_root_sem);
159 	list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
160 				 dirty_list) {
161 		list_del_init(&root->dirty_list);
162 		free_extent_buffer(root->commit_root);
163 		root->commit_root = btrfs_root_node(root);
164 		if (is_fstree(root->root_key.objectid))
165 			btrfs_unpin_free_ino(root);
166 		extent_io_tree_release(&root->dirty_log_pages);
167 		btrfs_qgroup_clean_swapped_blocks(root);
168 	}
169 
170 	/* We can free old roots now. */
171 	spin_lock(&cur_trans->dropped_roots_lock);
172 	while (!list_empty(&cur_trans->dropped_roots)) {
173 		root = list_first_entry(&cur_trans->dropped_roots,
174 					struct btrfs_root, root_list);
175 		list_del_init(&root->root_list);
176 		spin_unlock(&cur_trans->dropped_roots_lock);
177 		btrfs_free_log(trans, root);
178 		btrfs_drop_and_free_fs_root(fs_info, root);
179 		spin_lock(&cur_trans->dropped_roots_lock);
180 	}
181 	spin_unlock(&cur_trans->dropped_roots_lock);
182 	up_write(&fs_info->commit_root_sem);
183 }
184 
185 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
186 					 unsigned int type)
187 {
188 	if (type & TRANS_EXTWRITERS)
189 		atomic_inc(&trans->num_extwriters);
190 }
191 
192 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
193 					 unsigned int type)
194 {
195 	if (type & TRANS_EXTWRITERS)
196 		atomic_dec(&trans->num_extwriters);
197 }
198 
199 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
200 					  unsigned int type)
201 {
202 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
203 }
204 
205 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
206 {
207 	return atomic_read(&trans->num_extwriters);
208 }
209 
210 /*
211  * To be called after all the new block groups attached to the transaction
212  * handle have been created (btrfs_create_pending_block_groups()).
213  */
214 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
215 {
216 	struct btrfs_fs_info *fs_info = trans->fs_info;
217 
218 	if (!trans->chunk_bytes_reserved)
219 		return;
220 
221 	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
222 
223 	btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
224 				trans->chunk_bytes_reserved);
225 	trans->chunk_bytes_reserved = 0;
226 }
227 
228 /*
229  * either allocate a new transaction or hop into the existing one
230  */
231 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
232 				     unsigned int type)
233 {
234 	struct btrfs_transaction *cur_trans;
235 
236 	spin_lock(&fs_info->trans_lock);
237 loop:
238 	/* The file system has been taken offline. No new transactions. */
239 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
240 		spin_unlock(&fs_info->trans_lock);
241 		return -EROFS;
242 	}
243 
244 	cur_trans = fs_info->running_transaction;
245 	if (cur_trans) {
246 		if (cur_trans->aborted) {
247 			spin_unlock(&fs_info->trans_lock);
248 			return cur_trans->aborted;
249 		}
250 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
251 			spin_unlock(&fs_info->trans_lock);
252 			return -EBUSY;
253 		}
254 		refcount_inc(&cur_trans->use_count);
255 		atomic_inc(&cur_trans->num_writers);
256 		extwriter_counter_inc(cur_trans, type);
257 		spin_unlock(&fs_info->trans_lock);
258 		return 0;
259 	}
260 	spin_unlock(&fs_info->trans_lock);
261 
262 	/*
263 	 * If we are ATTACH, we just want to catch the current transaction,
264 	 * and commit it. If there is no transaction, just return ENOENT.
265 	 */
266 	if (type == TRANS_ATTACH)
267 		return -ENOENT;
268 
269 	/*
270 	 * JOIN_NOLOCK only happens during the transaction commit, so
271 	 * it is impossible that ->running_transaction is NULL
272 	 */
273 	BUG_ON(type == TRANS_JOIN_NOLOCK);
274 
275 	cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
276 	if (!cur_trans)
277 		return -ENOMEM;
278 
279 	spin_lock(&fs_info->trans_lock);
280 	if (fs_info->running_transaction) {
281 		/*
282 		 * someone started a transaction after we unlocked.  Make sure
283 		 * to redo the checks above
284 		 */
285 		kfree(cur_trans);
286 		goto loop;
287 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
288 		spin_unlock(&fs_info->trans_lock);
289 		kfree(cur_trans);
290 		return -EROFS;
291 	}
292 
293 	cur_trans->fs_info = fs_info;
294 	atomic_set(&cur_trans->num_writers, 1);
295 	extwriter_counter_init(cur_trans, type);
296 	init_waitqueue_head(&cur_trans->writer_wait);
297 	init_waitqueue_head(&cur_trans->commit_wait);
298 	cur_trans->state = TRANS_STATE_RUNNING;
299 	/*
300 	 * One for this trans handle, one so it will live on until we
301 	 * commit the transaction.
302 	 */
303 	refcount_set(&cur_trans->use_count, 2);
304 	cur_trans->flags = 0;
305 	cur_trans->start_time = ktime_get_seconds();
306 
307 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
308 
309 	cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
310 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
311 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
312 
313 	/*
314 	 * although the tree mod log is per file system and not per transaction,
315 	 * the log must never go across transaction boundaries.
316 	 */
317 	smp_mb();
318 	if (!list_empty(&fs_info->tree_mod_seq_list))
319 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
320 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
321 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
322 	atomic64_set(&fs_info->tree_mod_seq, 0);
323 
324 	spin_lock_init(&cur_trans->delayed_refs.lock);
325 
326 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
327 	INIT_LIST_HEAD(&cur_trans->dev_update_list);
328 	INIT_LIST_HEAD(&cur_trans->switch_commits);
329 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
330 	INIT_LIST_HEAD(&cur_trans->io_bgs);
331 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
332 	mutex_init(&cur_trans->cache_write_mutex);
333 	spin_lock_init(&cur_trans->dirty_bgs_lock);
334 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
335 	spin_lock_init(&cur_trans->dropped_roots_lock);
336 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
337 	extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
338 			IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
339 	fs_info->generation++;
340 	cur_trans->transid = fs_info->generation;
341 	fs_info->running_transaction = cur_trans;
342 	cur_trans->aborted = 0;
343 	spin_unlock(&fs_info->trans_lock);
344 
345 	return 0;
346 }
347 
348 /*
349  * this does all the record keeping required to make sure that a reference
350  * counted root is properly recorded in a given transaction.  This is required
351  * to make sure the old root from before we joined the transaction is deleted
352  * when the transaction commits
353  */
354 static int record_root_in_trans(struct btrfs_trans_handle *trans,
355 			       struct btrfs_root *root,
356 			       int force)
357 {
358 	struct btrfs_fs_info *fs_info = root->fs_info;
359 
360 	if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
361 	    root->last_trans < trans->transid) || force) {
362 		WARN_ON(root == fs_info->extent_root);
363 		WARN_ON(!force && root->commit_root != root->node);
364 
365 		/*
366 		 * see below for IN_TRANS_SETUP usage rules
367 		 * we have the reloc mutex held now, so there
368 		 * is only one writer in this function
369 		 */
370 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
371 
372 		/* make sure readers find IN_TRANS_SETUP before
373 		 * they find our root->last_trans update
374 		 */
375 		smp_wmb();
376 
377 		spin_lock(&fs_info->fs_roots_radix_lock);
378 		if (root->last_trans == trans->transid && !force) {
379 			spin_unlock(&fs_info->fs_roots_radix_lock);
380 			return 0;
381 		}
382 		radix_tree_tag_set(&fs_info->fs_roots_radix,
383 				   (unsigned long)root->root_key.objectid,
384 				   BTRFS_ROOT_TRANS_TAG);
385 		spin_unlock(&fs_info->fs_roots_radix_lock);
386 		root->last_trans = trans->transid;
387 
388 		/* this is pretty tricky.  We don't want to
389 		 * take the relocation lock in btrfs_record_root_in_trans
390 		 * unless we're really doing the first setup for this root in
391 		 * this transaction.
392 		 *
393 		 * Normally we'd use root->last_trans as a flag to decide
394 		 * if we want to take the expensive mutex.
395 		 *
396 		 * But, we have to set root->last_trans before we
397 		 * init the relocation root, otherwise, we trip over warnings
398 		 * in ctree.c.  The solution used here is to flag ourselves
399 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
400 		 * fixing up the reloc trees and everyone must wait.
401 		 *
402 		 * When this is zero, they can trust root->last_trans and fly
403 		 * through btrfs_record_root_in_trans without having to take the
404 		 * lock.  smp_wmb() makes sure that all the writes above are
405 		 * done before we pop in the zero below
406 		 */
407 		btrfs_init_reloc_root(trans, root);
408 		smp_mb__before_atomic();
409 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
410 	}
411 	return 0;
412 }
413 
414 
415 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
416 			    struct btrfs_root *root)
417 {
418 	struct btrfs_fs_info *fs_info = root->fs_info;
419 	struct btrfs_transaction *cur_trans = trans->transaction;
420 
421 	/* Add ourselves to the transaction dropped list */
422 	spin_lock(&cur_trans->dropped_roots_lock);
423 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
424 	spin_unlock(&cur_trans->dropped_roots_lock);
425 
426 	/* Make sure we don't try to update the root at commit time */
427 	spin_lock(&fs_info->fs_roots_radix_lock);
428 	radix_tree_tag_clear(&fs_info->fs_roots_radix,
429 			     (unsigned long)root->root_key.objectid,
430 			     BTRFS_ROOT_TRANS_TAG);
431 	spin_unlock(&fs_info->fs_roots_radix_lock);
432 }
433 
434 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
435 			       struct btrfs_root *root)
436 {
437 	struct btrfs_fs_info *fs_info = root->fs_info;
438 
439 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
440 		return 0;
441 
442 	/*
443 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
444 	 * and barriers
445 	 */
446 	smp_rmb();
447 	if (root->last_trans == trans->transid &&
448 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
449 		return 0;
450 
451 	mutex_lock(&fs_info->reloc_mutex);
452 	record_root_in_trans(trans, root, 0);
453 	mutex_unlock(&fs_info->reloc_mutex);
454 
455 	return 0;
456 }
457 
458 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
459 {
460 	return (trans->state >= TRANS_STATE_COMMIT_START &&
461 		trans->state < TRANS_STATE_UNBLOCKED &&
462 		!trans->aborted);
463 }
464 
465 /* wait for commit against the current transaction to become unblocked
466  * when this is done, it is safe to start a new transaction, but the current
467  * transaction might not be fully on disk.
468  */
469 static void wait_current_trans(struct btrfs_fs_info *fs_info)
470 {
471 	struct btrfs_transaction *cur_trans;
472 
473 	spin_lock(&fs_info->trans_lock);
474 	cur_trans = fs_info->running_transaction;
475 	if (cur_trans && is_transaction_blocked(cur_trans)) {
476 		refcount_inc(&cur_trans->use_count);
477 		spin_unlock(&fs_info->trans_lock);
478 
479 		wait_event(fs_info->transaction_wait,
480 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
481 			   cur_trans->aborted);
482 		btrfs_put_transaction(cur_trans);
483 	} else {
484 		spin_unlock(&fs_info->trans_lock);
485 	}
486 }
487 
488 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
489 {
490 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
491 		return 0;
492 
493 	if (type == TRANS_START)
494 		return 1;
495 
496 	return 0;
497 }
498 
499 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
500 {
501 	struct btrfs_fs_info *fs_info = root->fs_info;
502 
503 	if (!fs_info->reloc_ctl ||
504 	    !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
505 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
506 	    root->reloc_root)
507 		return false;
508 
509 	return true;
510 }
511 
512 static struct btrfs_trans_handle *
513 start_transaction(struct btrfs_root *root, unsigned int num_items,
514 		  unsigned int type, enum btrfs_reserve_flush_enum flush,
515 		  bool enforce_qgroups)
516 {
517 	struct btrfs_fs_info *fs_info = root->fs_info;
518 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
519 	struct btrfs_trans_handle *h;
520 	struct btrfs_transaction *cur_trans;
521 	u64 num_bytes = 0;
522 	u64 qgroup_reserved = 0;
523 	bool reloc_reserved = false;
524 	int ret;
525 
526 	/* Send isn't supposed to start transactions. */
527 	ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
528 
529 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
530 		return ERR_PTR(-EROFS);
531 
532 	if (current->journal_info) {
533 		WARN_ON(type & TRANS_EXTWRITERS);
534 		h = current->journal_info;
535 		refcount_inc(&h->use_count);
536 		WARN_ON(refcount_read(&h->use_count) > 2);
537 		h->orig_rsv = h->block_rsv;
538 		h->block_rsv = NULL;
539 		goto got_it;
540 	}
541 
542 	/*
543 	 * Do the reservation before we join the transaction so we can do all
544 	 * the appropriate flushing if need be.
545 	 */
546 	if (num_items && root != fs_info->chunk_root) {
547 		struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
548 		u64 delayed_refs_bytes = 0;
549 
550 		qgroup_reserved = num_items * fs_info->nodesize;
551 		ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
552 				enforce_qgroups);
553 		if (ret)
554 			return ERR_PTR(ret);
555 
556 		/*
557 		 * We want to reserve all the bytes we may need all at once, so
558 		 * we only do 1 enospc flushing cycle per transaction start.  We
559 		 * accomplish this by simply assuming we'll do 2 x num_items
560 		 * worth of delayed refs updates in this trans handle, and
561 		 * refill that amount for whatever is missing in the reserve.
562 		 */
563 		num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
564 		if (delayed_refs_rsv->full == 0) {
565 			delayed_refs_bytes = num_bytes;
566 			num_bytes <<= 1;
567 		}
568 
569 		/*
570 		 * Do the reservation for the relocation root creation
571 		 */
572 		if (need_reserve_reloc_root(root)) {
573 			num_bytes += fs_info->nodesize;
574 			reloc_reserved = true;
575 		}
576 
577 		ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
578 		if (ret)
579 			goto reserve_fail;
580 		if (delayed_refs_bytes) {
581 			btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
582 							  delayed_refs_bytes);
583 			num_bytes -= delayed_refs_bytes;
584 		}
585 	} else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
586 		   !delayed_refs_rsv->full) {
587 		/*
588 		 * Some people call with btrfs_start_transaction(root, 0)
589 		 * because they can be throttled, but have some other mechanism
590 		 * for reserving space.  We still want these guys to refill the
591 		 * delayed block_rsv so just add 1 items worth of reservation
592 		 * here.
593 		 */
594 		ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
595 		if (ret)
596 			goto reserve_fail;
597 	}
598 again:
599 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
600 	if (!h) {
601 		ret = -ENOMEM;
602 		goto alloc_fail;
603 	}
604 
605 	/*
606 	 * If we are JOIN_NOLOCK we're already committing a transaction and
607 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
608 	 * because we're already holding a ref.  We need this because we could
609 	 * have raced in and did an fsync() on a file which can kick a commit
610 	 * and then we deadlock with somebody doing a freeze.
611 	 *
612 	 * If we are ATTACH, it means we just want to catch the current
613 	 * transaction and commit it, so we needn't do sb_start_intwrite().
614 	 */
615 	if (type & __TRANS_FREEZABLE)
616 		sb_start_intwrite(fs_info->sb);
617 
618 	if (may_wait_transaction(fs_info, type))
619 		wait_current_trans(fs_info);
620 
621 	do {
622 		ret = join_transaction(fs_info, type);
623 		if (ret == -EBUSY) {
624 			wait_current_trans(fs_info);
625 			if (unlikely(type == TRANS_ATTACH ||
626 				     type == TRANS_JOIN_NOSTART))
627 				ret = -ENOENT;
628 		}
629 	} while (ret == -EBUSY);
630 
631 	if (ret < 0)
632 		goto join_fail;
633 
634 	cur_trans = fs_info->running_transaction;
635 
636 	h->transid = cur_trans->transid;
637 	h->transaction = cur_trans;
638 	h->root = root;
639 	refcount_set(&h->use_count, 1);
640 	h->fs_info = root->fs_info;
641 
642 	h->type = type;
643 	h->can_flush_pending_bgs = true;
644 	INIT_LIST_HEAD(&h->new_bgs);
645 
646 	smp_mb();
647 	if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
648 	    may_wait_transaction(fs_info, type)) {
649 		current->journal_info = h;
650 		btrfs_commit_transaction(h);
651 		goto again;
652 	}
653 
654 	if (num_bytes) {
655 		trace_btrfs_space_reservation(fs_info, "transaction",
656 					      h->transid, num_bytes, 1);
657 		h->block_rsv = &fs_info->trans_block_rsv;
658 		h->bytes_reserved = num_bytes;
659 		h->reloc_reserved = reloc_reserved;
660 	}
661 
662 got_it:
663 	btrfs_record_root_in_trans(h, root);
664 
665 	if (!current->journal_info)
666 		current->journal_info = h;
667 	return h;
668 
669 join_fail:
670 	if (type & __TRANS_FREEZABLE)
671 		sb_end_intwrite(fs_info->sb);
672 	kmem_cache_free(btrfs_trans_handle_cachep, h);
673 alloc_fail:
674 	if (num_bytes)
675 		btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
676 					num_bytes);
677 reserve_fail:
678 	btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
679 	return ERR_PTR(ret);
680 }
681 
682 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
683 						   unsigned int num_items)
684 {
685 	return start_transaction(root, num_items, TRANS_START,
686 				 BTRFS_RESERVE_FLUSH_ALL, true);
687 }
688 
689 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
690 					struct btrfs_root *root,
691 					unsigned int num_items,
692 					int min_factor)
693 {
694 	struct btrfs_fs_info *fs_info = root->fs_info;
695 	struct btrfs_trans_handle *trans;
696 	u64 num_bytes;
697 	int ret;
698 
699 	/*
700 	 * We have two callers: unlink and block group removal.  The
701 	 * former should succeed even if we will temporarily exceed
702 	 * quota and the latter operates on the extent root so
703 	 * qgroup enforcement is ignored anyway.
704 	 */
705 	trans = start_transaction(root, num_items, TRANS_START,
706 				  BTRFS_RESERVE_FLUSH_ALL, false);
707 	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
708 		return trans;
709 
710 	trans = btrfs_start_transaction(root, 0);
711 	if (IS_ERR(trans))
712 		return trans;
713 
714 	num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
715 	ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv,
716 				       num_bytes, min_factor);
717 	if (ret) {
718 		btrfs_end_transaction(trans);
719 		return ERR_PTR(ret);
720 	}
721 
722 	trans->block_rsv = &fs_info->trans_block_rsv;
723 	trans->bytes_reserved = num_bytes;
724 	trace_btrfs_space_reservation(fs_info, "transaction",
725 				      trans->transid, num_bytes, 1);
726 
727 	return trans;
728 }
729 
730 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
731 {
732 	return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
733 				 true);
734 }
735 
736 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
737 {
738 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
739 				 BTRFS_RESERVE_NO_FLUSH, true);
740 }
741 
742 /*
743  * Similar to regular join but it never starts a transaction when none is
744  * running or after waiting for the current one to finish.
745  */
746 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
747 {
748 	return start_transaction(root, 0, TRANS_JOIN_NOSTART,
749 				 BTRFS_RESERVE_NO_FLUSH, true);
750 }
751 
752 /*
753  * btrfs_attach_transaction() - catch the running transaction
754  *
755  * It is used when we want to commit the current the transaction, but
756  * don't want to start a new one.
757  *
758  * Note: If this function return -ENOENT, it just means there is no
759  * running transaction. But it is possible that the inactive transaction
760  * is still in the memory, not fully on disk. If you hope there is no
761  * inactive transaction in the fs when -ENOENT is returned, you should
762  * invoke
763  *     btrfs_attach_transaction_barrier()
764  */
765 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
766 {
767 	return start_transaction(root, 0, TRANS_ATTACH,
768 				 BTRFS_RESERVE_NO_FLUSH, true);
769 }
770 
771 /*
772  * btrfs_attach_transaction_barrier() - catch the running transaction
773  *
774  * It is similar to the above function, the difference is this one
775  * will wait for all the inactive transactions until they fully
776  * complete.
777  */
778 struct btrfs_trans_handle *
779 btrfs_attach_transaction_barrier(struct btrfs_root *root)
780 {
781 	struct btrfs_trans_handle *trans;
782 
783 	trans = start_transaction(root, 0, TRANS_ATTACH,
784 				  BTRFS_RESERVE_NO_FLUSH, true);
785 	if (trans == ERR_PTR(-ENOENT))
786 		btrfs_wait_for_commit(root->fs_info, 0);
787 
788 	return trans;
789 }
790 
791 /* wait for a transaction commit to be fully complete */
792 static noinline void wait_for_commit(struct btrfs_transaction *commit)
793 {
794 	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
795 }
796 
797 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
798 {
799 	struct btrfs_transaction *cur_trans = NULL, *t;
800 	int ret = 0;
801 
802 	if (transid) {
803 		if (transid <= fs_info->last_trans_committed)
804 			goto out;
805 
806 		/* find specified transaction */
807 		spin_lock(&fs_info->trans_lock);
808 		list_for_each_entry(t, &fs_info->trans_list, list) {
809 			if (t->transid == transid) {
810 				cur_trans = t;
811 				refcount_inc(&cur_trans->use_count);
812 				ret = 0;
813 				break;
814 			}
815 			if (t->transid > transid) {
816 				ret = 0;
817 				break;
818 			}
819 		}
820 		spin_unlock(&fs_info->trans_lock);
821 
822 		/*
823 		 * The specified transaction doesn't exist, or we
824 		 * raced with btrfs_commit_transaction
825 		 */
826 		if (!cur_trans) {
827 			if (transid > fs_info->last_trans_committed)
828 				ret = -EINVAL;
829 			goto out;
830 		}
831 	} else {
832 		/* find newest transaction that is committing | committed */
833 		spin_lock(&fs_info->trans_lock);
834 		list_for_each_entry_reverse(t, &fs_info->trans_list,
835 					    list) {
836 			if (t->state >= TRANS_STATE_COMMIT_START) {
837 				if (t->state == TRANS_STATE_COMPLETED)
838 					break;
839 				cur_trans = t;
840 				refcount_inc(&cur_trans->use_count);
841 				break;
842 			}
843 		}
844 		spin_unlock(&fs_info->trans_lock);
845 		if (!cur_trans)
846 			goto out;  /* nothing committing|committed */
847 	}
848 
849 	wait_for_commit(cur_trans);
850 	btrfs_put_transaction(cur_trans);
851 out:
852 	return ret;
853 }
854 
855 void btrfs_throttle(struct btrfs_fs_info *fs_info)
856 {
857 	wait_current_trans(fs_info);
858 }
859 
860 static int should_end_transaction(struct btrfs_trans_handle *trans)
861 {
862 	struct btrfs_fs_info *fs_info = trans->fs_info;
863 
864 	if (btrfs_check_space_for_delayed_refs(fs_info))
865 		return 1;
866 
867 	return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
868 }
869 
870 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
871 {
872 	struct btrfs_transaction *cur_trans = trans->transaction;
873 
874 	smp_mb();
875 	if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
876 	    cur_trans->delayed_refs.flushing)
877 		return 1;
878 
879 	return should_end_transaction(trans);
880 }
881 
882 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
883 
884 {
885 	struct btrfs_fs_info *fs_info = trans->fs_info;
886 
887 	if (!trans->block_rsv) {
888 		ASSERT(!trans->bytes_reserved);
889 		return;
890 	}
891 
892 	if (!trans->bytes_reserved)
893 		return;
894 
895 	ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
896 	trace_btrfs_space_reservation(fs_info, "transaction",
897 				      trans->transid, trans->bytes_reserved, 0);
898 	btrfs_block_rsv_release(fs_info, trans->block_rsv,
899 				trans->bytes_reserved);
900 	trans->bytes_reserved = 0;
901 }
902 
903 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
904 				   int throttle)
905 {
906 	struct btrfs_fs_info *info = trans->fs_info;
907 	struct btrfs_transaction *cur_trans = trans->transaction;
908 	int err = 0;
909 
910 	if (refcount_read(&trans->use_count) > 1) {
911 		refcount_dec(&trans->use_count);
912 		trans->block_rsv = trans->orig_rsv;
913 		return 0;
914 	}
915 
916 	btrfs_trans_release_metadata(trans);
917 	trans->block_rsv = NULL;
918 
919 	btrfs_create_pending_block_groups(trans);
920 
921 	btrfs_trans_release_chunk_metadata(trans);
922 
923 	if (trans->type & __TRANS_FREEZABLE)
924 		sb_end_intwrite(info->sb);
925 
926 	WARN_ON(cur_trans != info->running_transaction);
927 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
928 	atomic_dec(&cur_trans->num_writers);
929 	extwriter_counter_dec(cur_trans, trans->type);
930 
931 	cond_wake_up(&cur_trans->writer_wait);
932 	btrfs_put_transaction(cur_trans);
933 
934 	if (current->journal_info == trans)
935 		current->journal_info = NULL;
936 
937 	if (throttle)
938 		btrfs_run_delayed_iputs(info);
939 
940 	if (trans->aborted ||
941 	    test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
942 		wake_up_process(info->transaction_kthread);
943 		err = -EIO;
944 	}
945 
946 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
947 	return err;
948 }
949 
950 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
951 {
952 	return __btrfs_end_transaction(trans, 0);
953 }
954 
955 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
956 {
957 	return __btrfs_end_transaction(trans, 1);
958 }
959 
960 /*
961  * when btree blocks are allocated, they have some corresponding bits set for
962  * them in one of two extent_io trees.  This is used to make sure all of
963  * those extents are sent to disk but does not wait on them
964  */
965 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
966 			       struct extent_io_tree *dirty_pages, int mark)
967 {
968 	int err = 0;
969 	int werr = 0;
970 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
971 	struct extent_state *cached_state = NULL;
972 	u64 start = 0;
973 	u64 end;
974 
975 	atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
976 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
977 				      mark, &cached_state)) {
978 		bool wait_writeback = false;
979 
980 		err = convert_extent_bit(dirty_pages, start, end,
981 					 EXTENT_NEED_WAIT,
982 					 mark, &cached_state);
983 		/*
984 		 * convert_extent_bit can return -ENOMEM, which is most of the
985 		 * time a temporary error. So when it happens, ignore the error
986 		 * and wait for writeback of this range to finish - because we
987 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
988 		 * to __btrfs_wait_marked_extents() would not know that
989 		 * writeback for this range started and therefore wouldn't
990 		 * wait for it to finish - we don't want to commit a
991 		 * superblock that points to btree nodes/leafs for which
992 		 * writeback hasn't finished yet (and without errors).
993 		 * We cleanup any entries left in the io tree when committing
994 		 * the transaction (through extent_io_tree_release()).
995 		 */
996 		if (err == -ENOMEM) {
997 			err = 0;
998 			wait_writeback = true;
999 		}
1000 		if (!err)
1001 			err = filemap_fdatawrite_range(mapping, start, end);
1002 		if (err)
1003 			werr = err;
1004 		else if (wait_writeback)
1005 			werr = filemap_fdatawait_range(mapping, start, end);
1006 		free_extent_state(cached_state);
1007 		cached_state = NULL;
1008 		cond_resched();
1009 		start = end + 1;
1010 	}
1011 	atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1012 	return werr;
1013 }
1014 
1015 /*
1016  * when btree blocks are allocated, they have some corresponding bits set for
1017  * them in one of two extent_io trees.  This is used to make sure all of
1018  * those extents are on disk for transaction or log commit.  We wait
1019  * on all the pages and clear them from the dirty pages state tree
1020  */
1021 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1022 				       struct extent_io_tree *dirty_pages)
1023 {
1024 	int err = 0;
1025 	int werr = 0;
1026 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1027 	struct extent_state *cached_state = NULL;
1028 	u64 start = 0;
1029 	u64 end;
1030 
1031 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1032 				      EXTENT_NEED_WAIT, &cached_state)) {
1033 		/*
1034 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
1035 		 * When committing the transaction, we'll remove any entries
1036 		 * left in the io tree. For a log commit, we don't remove them
1037 		 * after committing the log because the tree can be accessed
1038 		 * concurrently - we do it only at transaction commit time when
1039 		 * it's safe to do it (through extent_io_tree_release()).
1040 		 */
1041 		err = clear_extent_bit(dirty_pages, start, end,
1042 				       EXTENT_NEED_WAIT, 0, 0, &cached_state);
1043 		if (err == -ENOMEM)
1044 			err = 0;
1045 		if (!err)
1046 			err = filemap_fdatawait_range(mapping, start, end);
1047 		if (err)
1048 			werr = err;
1049 		free_extent_state(cached_state);
1050 		cached_state = NULL;
1051 		cond_resched();
1052 		start = end + 1;
1053 	}
1054 	if (err)
1055 		werr = err;
1056 	return werr;
1057 }
1058 
1059 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1060 		       struct extent_io_tree *dirty_pages)
1061 {
1062 	bool errors = false;
1063 	int err;
1064 
1065 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1066 	if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1067 		errors = true;
1068 
1069 	if (errors && !err)
1070 		err = -EIO;
1071 	return err;
1072 }
1073 
1074 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1075 {
1076 	struct btrfs_fs_info *fs_info = log_root->fs_info;
1077 	struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1078 	bool errors = false;
1079 	int err;
1080 
1081 	ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1082 
1083 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1084 	if ((mark & EXTENT_DIRTY) &&
1085 	    test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1086 		errors = true;
1087 
1088 	if ((mark & EXTENT_NEW) &&
1089 	    test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1090 		errors = true;
1091 
1092 	if (errors && !err)
1093 		err = -EIO;
1094 	return err;
1095 }
1096 
1097 /*
1098  * When btree blocks are allocated the corresponding extents are marked dirty.
1099  * This function ensures such extents are persisted on disk for transaction or
1100  * log commit.
1101  *
1102  * @trans: transaction whose dirty pages we'd like to write
1103  */
1104 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1105 {
1106 	int ret;
1107 	int ret2;
1108 	struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1109 	struct btrfs_fs_info *fs_info = trans->fs_info;
1110 	struct blk_plug plug;
1111 
1112 	blk_start_plug(&plug);
1113 	ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1114 	blk_finish_plug(&plug);
1115 	ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1116 
1117 	extent_io_tree_release(&trans->transaction->dirty_pages);
1118 
1119 	if (ret)
1120 		return ret;
1121 	else if (ret2)
1122 		return ret2;
1123 	else
1124 		return 0;
1125 }
1126 
1127 /*
1128  * this is used to update the root pointer in the tree of tree roots.
1129  *
1130  * But, in the case of the extent allocation tree, updating the root
1131  * pointer may allocate blocks which may change the root of the extent
1132  * allocation tree.
1133  *
1134  * So, this loops and repeats and makes sure the cowonly root didn't
1135  * change while the root pointer was being updated in the metadata.
1136  */
1137 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1138 			       struct btrfs_root *root)
1139 {
1140 	int ret;
1141 	u64 old_root_bytenr;
1142 	u64 old_root_used;
1143 	struct btrfs_fs_info *fs_info = root->fs_info;
1144 	struct btrfs_root *tree_root = fs_info->tree_root;
1145 
1146 	old_root_used = btrfs_root_used(&root->root_item);
1147 
1148 	while (1) {
1149 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1150 		if (old_root_bytenr == root->node->start &&
1151 		    old_root_used == btrfs_root_used(&root->root_item))
1152 			break;
1153 
1154 		btrfs_set_root_node(&root->root_item, root->node);
1155 		ret = btrfs_update_root(trans, tree_root,
1156 					&root->root_key,
1157 					&root->root_item);
1158 		if (ret)
1159 			return ret;
1160 
1161 		old_root_used = btrfs_root_used(&root->root_item);
1162 	}
1163 
1164 	return 0;
1165 }
1166 
1167 /*
1168  * update all the cowonly tree roots on disk
1169  *
1170  * The error handling in this function may not be obvious. Any of the
1171  * failures will cause the file system to go offline. We still need
1172  * to clean up the delayed refs.
1173  */
1174 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1175 {
1176 	struct btrfs_fs_info *fs_info = trans->fs_info;
1177 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1178 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1179 	struct list_head *next;
1180 	struct extent_buffer *eb;
1181 	int ret;
1182 
1183 	eb = btrfs_lock_root_node(fs_info->tree_root);
1184 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1185 			      0, &eb);
1186 	btrfs_tree_unlock(eb);
1187 	free_extent_buffer(eb);
1188 
1189 	if (ret)
1190 		return ret;
1191 
1192 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1193 	if (ret)
1194 		return ret;
1195 
1196 	ret = btrfs_run_dev_stats(trans);
1197 	if (ret)
1198 		return ret;
1199 	ret = btrfs_run_dev_replace(trans);
1200 	if (ret)
1201 		return ret;
1202 	ret = btrfs_run_qgroups(trans);
1203 	if (ret)
1204 		return ret;
1205 
1206 	ret = btrfs_setup_space_cache(trans);
1207 	if (ret)
1208 		return ret;
1209 
1210 	/* run_qgroups might have added some more refs */
1211 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1212 	if (ret)
1213 		return ret;
1214 again:
1215 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1216 		struct btrfs_root *root;
1217 		next = fs_info->dirty_cowonly_roots.next;
1218 		list_del_init(next);
1219 		root = list_entry(next, struct btrfs_root, dirty_list);
1220 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1221 
1222 		if (root != fs_info->extent_root)
1223 			list_add_tail(&root->dirty_list,
1224 				      &trans->transaction->switch_commits);
1225 		ret = update_cowonly_root(trans, root);
1226 		if (ret)
1227 			return ret;
1228 		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1229 		if (ret)
1230 			return ret;
1231 	}
1232 
1233 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1234 		ret = btrfs_write_dirty_block_groups(trans);
1235 		if (ret)
1236 			return ret;
1237 		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1238 		if (ret)
1239 			return ret;
1240 	}
1241 
1242 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1243 		goto again;
1244 
1245 	list_add_tail(&fs_info->extent_root->dirty_list,
1246 		      &trans->transaction->switch_commits);
1247 
1248 	/* Update dev-replace pointer once everything is committed */
1249 	fs_info->dev_replace.committed_cursor_left =
1250 		fs_info->dev_replace.cursor_left_last_write_of_item;
1251 
1252 	return 0;
1253 }
1254 
1255 /*
1256  * dead roots are old snapshots that need to be deleted.  This allocates
1257  * a dirty root struct and adds it into the list of dead roots that need to
1258  * be deleted
1259  */
1260 void btrfs_add_dead_root(struct btrfs_root *root)
1261 {
1262 	struct btrfs_fs_info *fs_info = root->fs_info;
1263 
1264 	spin_lock(&fs_info->trans_lock);
1265 	if (list_empty(&root->root_list))
1266 		list_add_tail(&root->root_list, &fs_info->dead_roots);
1267 	spin_unlock(&fs_info->trans_lock);
1268 }
1269 
1270 /*
1271  * update all the cowonly tree roots on disk
1272  */
1273 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1274 {
1275 	struct btrfs_fs_info *fs_info = trans->fs_info;
1276 	struct btrfs_root *gang[8];
1277 	int i;
1278 	int ret;
1279 	int err = 0;
1280 
1281 	spin_lock(&fs_info->fs_roots_radix_lock);
1282 	while (1) {
1283 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1284 						 (void **)gang, 0,
1285 						 ARRAY_SIZE(gang),
1286 						 BTRFS_ROOT_TRANS_TAG);
1287 		if (ret == 0)
1288 			break;
1289 		for (i = 0; i < ret; i++) {
1290 			struct btrfs_root *root = gang[i];
1291 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1292 					(unsigned long)root->root_key.objectid,
1293 					BTRFS_ROOT_TRANS_TAG);
1294 			spin_unlock(&fs_info->fs_roots_radix_lock);
1295 
1296 			btrfs_free_log(trans, root);
1297 			btrfs_update_reloc_root(trans, root);
1298 
1299 			btrfs_save_ino_cache(root, trans);
1300 
1301 			/* see comments in should_cow_block() */
1302 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1303 			smp_mb__after_atomic();
1304 
1305 			if (root->commit_root != root->node) {
1306 				list_add_tail(&root->dirty_list,
1307 					&trans->transaction->switch_commits);
1308 				btrfs_set_root_node(&root->root_item,
1309 						    root->node);
1310 			}
1311 
1312 			err = btrfs_update_root(trans, fs_info->tree_root,
1313 						&root->root_key,
1314 						&root->root_item);
1315 			spin_lock(&fs_info->fs_roots_radix_lock);
1316 			if (err)
1317 				break;
1318 			btrfs_qgroup_free_meta_all_pertrans(root);
1319 		}
1320 	}
1321 	spin_unlock(&fs_info->fs_roots_radix_lock);
1322 	return err;
1323 }
1324 
1325 /*
1326  * defrag a given btree.
1327  * Every leaf in the btree is read and defragged.
1328  */
1329 int btrfs_defrag_root(struct btrfs_root *root)
1330 {
1331 	struct btrfs_fs_info *info = root->fs_info;
1332 	struct btrfs_trans_handle *trans;
1333 	int ret;
1334 
1335 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1336 		return 0;
1337 
1338 	while (1) {
1339 		trans = btrfs_start_transaction(root, 0);
1340 		if (IS_ERR(trans))
1341 			return PTR_ERR(trans);
1342 
1343 		ret = btrfs_defrag_leaves(trans, root);
1344 
1345 		btrfs_end_transaction(trans);
1346 		btrfs_btree_balance_dirty(info);
1347 		cond_resched();
1348 
1349 		if (btrfs_fs_closing(info) || ret != -EAGAIN)
1350 			break;
1351 
1352 		if (btrfs_defrag_cancelled(info)) {
1353 			btrfs_debug(info, "defrag_root cancelled");
1354 			ret = -EAGAIN;
1355 			break;
1356 		}
1357 	}
1358 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1359 	return ret;
1360 }
1361 
1362 /*
1363  * Do all special snapshot related qgroup dirty hack.
1364  *
1365  * Will do all needed qgroup inherit and dirty hack like switch commit
1366  * roots inside one transaction and write all btree into disk, to make
1367  * qgroup works.
1368  */
1369 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1370 				   struct btrfs_root *src,
1371 				   struct btrfs_root *parent,
1372 				   struct btrfs_qgroup_inherit *inherit,
1373 				   u64 dst_objectid)
1374 {
1375 	struct btrfs_fs_info *fs_info = src->fs_info;
1376 	int ret;
1377 
1378 	/*
1379 	 * Save some performance in the case that qgroups are not
1380 	 * enabled. If this check races with the ioctl, rescan will
1381 	 * kick in anyway.
1382 	 */
1383 	if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1384 		return 0;
1385 
1386 	/*
1387 	 * Ensure dirty @src will be committed.  Or, after coming
1388 	 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1389 	 * recorded root will never be updated again, causing an outdated root
1390 	 * item.
1391 	 */
1392 	record_root_in_trans(trans, src, 1);
1393 
1394 	/*
1395 	 * We are going to commit transaction, see btrfs_commit_transaction()
1396 	 * comment for reason locking tree_log_mutex
1397 	 */
1398 	mutex_lock(&fs_info->tree_log_mutex);
1399 
1400 	ret = commit_fs_roots(trans);
1401 	if (ret)
1402 		goto out;
1403 	ret = btrfs_qgroup_account_extents(trans);
1404 	if (ret < 0)
1405 		goto out;
1406 
1407 	/* Now qgroup are all updated, we can inherit it to new qgroups */
1408 	ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1409 				   inherit);
1410 	if (ret < 0)
1411 		goto out;
1412 
1413 	/*
1414 	 * Now we do a simplified commit transaction, which will:
1415 	 * 1) commit all subvolume and extent tree
1416 	 *    To ensure all subvolume and extent tree have a valid
1417 	 *    commit_root to accounting later insert_dir_item()
1418 	 * 2) write all btree blocks onto disk
1419 	 *    This is to make sure later btree modification will be cowed
1420 	 *    Or commit_root can be populated and cause wrong qgroup numbers
1421 	 * In this simplified commit, we don't really care about other trees
1422 	 * like chunk and root tree, as they won't affect qgroup.
1423 	 * And we don't write super to avoid half committed status.
1424 	 */
1425 	ret = commit_cowonly_roots(trans);
1426 	if (ret)
1427 		goto out;
1428 	switch_commit_roots(trans);
1429 	ret = btrfs_write_and_wait_transaction(trans);
1430 	if (ret)
1431 		btrfs_handle_fs_error(fs_info, ret,
1432 			"Error while writing out transaction for qgroup");
1433 
1434 out:
1435 	mutex_unlock(&fs_info->tree_log_mutex);
1436 
1437 	/*
1438 	 * Force parent root to be updated, as we recorded it before so its
1439 	 * last_trans == cur_transid.
1440 	 * Or it won't be committed again onto disk after later
1441 	 * insert_dir_item()
1442 	 */
1443 	if (!ret)
1444 		record_root_in_trans(trans, parent, 1);
1445 	return ret;
1446 }
1447 
1448 /*
1449  * new snapshots need to be created at a very specific time in the
1450  * transaction commit.  This does the actual creation.
1451  *
1452  * Note:
1453  * If the error which may affect the commitment of the current transaction
1454  * happens, we should return the error number. If the error which just affect
1455  * the creation of the pending snapshots, just return 0.
1456  */
1457 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1458 				   struct btrfs_pending_snapshot *pending)
1459 {
1460 
1461 	struct btrfs_fs_info *fs_info = trans->fs_info;
1462 	struct btrfs_key key;
1463 	struct btrfs_root_item *new_root_item;
1464 	struct btrfs_root *tree_root = fs_info->tree_root;
1465 	struct btrfs_root *root = pending->root;
1466 	struct btrfs_root *parent_root;
1467 	struct btrfs_block_rsv *rsv;
1468 	struct inode *parent_inode;
1469 	struct btrfs_path *path;
1470 	struct btrfs_dir_item *dir_item;
1471 	struct dentry *dentry;
1472 	struct extent_buffer *tmp;
1473 	struct extent_buffer *old;
1474 	struct timespec64 cur_time;
1475 	int ret = 0;
1476 	u64 to_reserve = 0;
1477 	u64 index = 0;
1478 	u64 objectid;
1479 	u64 root_flags;
1480 	uuid_le new_uuid;
1481 
1482 	ASSERT(pending->path);
1483 	path = pending->path;
1484 
1485 	ASSERT(pending->root_item);
1486 	new_root_item = pending->root_item;
1487 
1488 	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1489 	if (pending->error)
1490 		goto no_free_objectid;
1491 
1492 	/*
1493 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1494 	 * accounted by later btrfs_qgroup_inherit().
1495 	 */
1496 	btrfs_set_skip_qgroup(trans, objectid);
1497 
1498 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1499 
1500 	if (to_reserve > 0) {
1501 		pending->error = btrfs_block_rsv_add(root,
1502 						     &pending->block_rsv,
1503 						     to_reserve,
1504 						     BTRFS_RESERVE_NO_FLUSH);
1505 		if (pending->error)
1506 			goto clear_skip_qgroup;
1507 	}
1508 
1509 	key.objectid = objectid;
1510 	key.offset = (u64)-1;
1511 	key.type = BTRFS_ROOT_ITEM_KEY;
1512 
1513 	rsv = trans->block_rsv;
1514 	trans->block_rsv = &pending->block_rsv;
1515 	trans->bytes_reserved = trans->block_rsv->reserved;
1516 	trace_btrfs_space_reservation(fs_info, "transaction",
1517 				      trans->transid,
1518 				      trans->bytes_reserved, 1);
1519 	dentry = pending->dentry;
1520 	parent_inode = pending->dir;
1521 	parent_root = BTRFS_I(parent_inode)->root;
1522 	record_root_in_trans(trans, parent_root, 0);
1523 
1524 	cur_time = current_time(parent_inode);
1525 
1526 	/*
1527 	 * insert the directory item
1528 	 */
1529 	ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1530 	BUG_ON(ret); /* -ENOMEM */
1531 
1532 	/* check if there is a file/dir which has the same name. */
1533 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1534 					 btrfs_ino(BTRFS_I(parent_inode)),
1535 					 dentry->d_name.name,
1536 					 dentry->d_name.len, 0);
1537 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1538 		pending->error = -EEXIST;
1539 		goto dir_item_existed;
1540 	} else if (IS_ERR(dir_item)) {
1541 		ret = PTR_ERR(dir_item);
1542 		btrfs_abort_transaction(trans, ret);
1543 		goto fail;
1544 	}
1545 	btrfs_release_path(path);
1546 
1547 	/*
1548 	 * pull in the delayed directory update
1549 	 * and the delayed inode item
1550 	 * otherwise we corrupt the FS during
1551 	 * snapshot
1552 	 */
1553 	ret = btrfs_run_delayed_items(trans);
1554 	if (ret) {	/* Transaction aborted */
1555 		btrfs_abort_transaction(trans, ret);
1556 		goto fail;
1557 	}
1558 
1559 	record_root_in_trans(trans, root, 0);
1560 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1561 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1562 	btrfs_check_and_init_root_item(new_root_item);
1563 
1564 	root_flags = btrfs_root_flags(new_root_item);
1565 	if (pending->readonly)
1566 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1567 	else
1568 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1569 	btrfs_set_root_flags(new_root_item, root_flags);
1570 
1571 	btrfs_set_root_generation_v2(new_root_item,
1572 			trans->transid);
1573 	uuid_le_gen(&new_uuid);
1574 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1575 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1576 			BTRFS_UUID_SIZE);
1577 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1578 		memset(new_root_item->received_uuid, 0,
1579 		       sizeof(new_root_item->received_uuid));
1580 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1581 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1582 		btrfs_set_root_stransid(new_root_item, 0);
1583 		btrfs_set_root_rtransid(new_root_item, 0);
1584 	}
1585 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1586 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1587 	btrfs_set_root_otransid(new_root_item, trans->transid);
1588 
1589 	old = btrfs_lock_root_node(root);
1590 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1591 	if (ret) {
1592 		btrfs_tree_unlock(old);
1593 		free_extent_buffer(old);
1594 		btrfs_abort_transaction(trans, ret);
1595 		goto fail;
1596 	}
1597 
1598 	btrfs_set_lock_blocking_write(old);
1599 
1600 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1601 	/* clean up in any case */
1602 	btrfs_tree_unlock(old);
1603 	free_extent_buffer(old);
1604 	if (ret) {
1605 		btrfs_abort_transaction(trans, ret);
1606 		goto fail;
1607 	}
1608 	/* see comments in should_cow_block() */
1609 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1610 	smp_wmb();
1611 
1612 	btrfs_set_root_node(new_root_item, tmp);
1613 	/* record when the snapshot was created in key.offset */
1614 	key.offset = trans->transid;
1615 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1616 	btrfs_tree_unlock(tmp);
1617 	free_extent_buffer(tmp);
1618 	if (ret) {
1619 		btrfs_abort_transaction(trans, ret);
1620 		goto fail;
1621 	}
1622 
1623 	/*
1624 	 * insert root back/forward references
1625 	 */
1626 	ret = btrfs_add_root_ref(trans, objectid,
1627 				 parent_root->root_key.objectid,
1628 				 btrfs_ino(BTRFS_I(parent_inode)), index,
1629 				 dentry->d_name.name, dentry->d_name.len);
1630 	if (ret) {
1631 		btrfs_abort_transaction(trans, ret);
1632 		goto fail;
1633 	}
1634 
1635 	key.offset = (u64)-1;
1636 	pending->snap = btrfs_get_fs_root(fs_info, &key, true);
1637 	if (IS_ERR(pending->snap)) {
1638 		ret = PTR_ERR(pending->snap);
1639 		btrfs_abort_transaction(trans, ret);
1640 		goto fail;
1641 	}
1642 
1643 	ret = btrfs_reloc_post_snapshot(trans, pending);
1644 	if (ret) {
1645 		btrfs_abort_transaction(trans, ret);
1646 		goto fail;
1647 	}
1648 
1649 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1650 	if (ret) {
1651 		btrfs_abort_transaction(trans, ret);
1652 		goto fail;
1653 	}
1654 
1655 	/*
1656 	 * Do special qgroup accounting for snapshot, as we do some qgroup
1657 	 * snapshot hack to do fast snapshot.
1658 	 * To co-operate with that hack, we do hack again.
1659 	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1660 	 */
1661 	ret = qgroup_account_snapshot(trans, root, parent_root,
1662 				      pending->inherit, objectid);
1663 	if (ret < 0)
1664 		goto fail;
1665 
1666 	ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1667 				    dentry->d_name.len, BTRFS_I(parent_inode),
1668 				    &key, BTRFS_FT_DIR, index);
1669 	/* We have check then name at the beginning, so it is impossible. */
1670 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1671 	if (ret) {
1672 		btrfs_abort_transaction(trans, ret);
1673 		goto fail;
1674 	}
1675 
1676 	btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1677 					 dentry->d_name.len * 2);
1678 	parent_inode->i_mtime = parent_inode->i_ctime =
1679 		current_time(parent_inode);
1680 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1681 	if (ret) {
1682 		btrfs_abort_transaction(trans, ret);
1683 		goto fail;
1684 	}
1685 	ret = btrfs_uuid_tree_add(trans, new_uuid.b, BTRFS_UUID_KEY_SUBVOL,
1686 				  objectid);
1687 	if (ret) {
1688 		btrfs_abort_transaction(trans, ret);
1689 		goto fail;
1690 	}
1691 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1692 		ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1693 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1694 					  objectid);
1695 		if (ret && ret != -EEXIST) {
1696 			btrfs_abort_transaction(trans, ret);
1697 			goto fail;
1698 		}
1699 	}
1700 
1701 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1702 	if (ret) {
1703 		btrfs_abort_transaction(trans, ret);
1704 		goto fail;
1705 	}
1706 
1707 fail:
1708 	pending->error = ret;
1709 dir_item_existed:
1710 	trans->block_rsv = rsv;
1711 	trans->bytes_reserved = 0;
1712 clear_skip_qgroup:
1713 	btrfs_clear_skip_qgroup(trans);
1714 no_free_objectid:
1715 	kfree(new_root_item);
1716 	pending->root_item = NULL;
1717 	btrfs_free_path(path);
1718 	pending->path = NULL;
1719 
1720 	return ret;
1721 }
1722 
1723 /*
1724  * create all the snapshots we've scheduled for creation
1725  */
1726 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1727 {
1728 	struct btrfs_pending_snapshot *pending, *next;
1729 	struct list_head *head = &trans->transaction->pending_snapshots;
1730 	int ret = 0;
1731 
1732 	list_for_each_entry_safe(pending, next, head, list) {
1733 		list_del(&pending->list);
1734 		ret = create_pending_snapshot(trans, pending);
1735 		if (ret)
1736 			break;
1737 	}
1738 	return ret;
1739 }
1740 
1741 static void update_super_roots(struct btrfs_fs_info *fs_info)
1742 {
1743 	struct btrfs_root_item *root_item;
1744 	struct btrfs_super_block *super;
1745 
1746 	super = fs_info->super_copy;
1747 
1748 	root_item = &fs_info->chunk_root->root_item;
1749 	super->chunk_root = root_item->bytenr;
1750 	super->chunk_root_generation = root_item->generation;
1751 	super->chunk_root_level = root_item->level;
1752 
1753 	root_item = &fs_info->tree_root->root_item;
1754 	super->root = root_item->bytenr;
1755 	super->generation = root_item->generation;
1756 	super->root_level = root_item->level;
1757 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
1758 		super->cache_generation = root_item->generation;
1759 	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1760 		super->uuid_tree_generation = root_item->generation;
1761 }
1762 
1763 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1764 {
1765 	struct btrfs_transaction *trans;
1766 	int ret = 0;
1767 
1768 	spin_lock(&info->trans_lock);
1769 	trans = info->running_transaction;
1770 	if (trans)
1771 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1772 	spin_unlock(&info->trans_lock);
1773 	return ret;
1774 }
1775 
1776 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1777 {
1778 	struct btrfs_transaction *trans;
1779 	int ret = 0;
1780 
1781 	spin_lock(&info->trans_lock);
1782 	trans = info->running_transaction;
1783 	if (trans)
1784 		ret = is_transaction_blocked(trans);
1785 	spin_unlock(&info->trans_lock);
1786 	return ret;
1787 }
1788 
1789 /*
1790  * wait for the current transaction commit to start and block subsequent
1791  * transaction joins
1792  */
1793 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1794 					    struct btrfs_transaction *trans)
1795 {
1796 	wait_event(fs_info->transaction_blocked_wait,
1797 		   trans->state >= TRANS_STATE_COMMIT_START || trans->aborted);
1798 }
1799 
1800 /*
1801  * wait for the current transaction to start and then become unblocked.
1802  * caller holds ref.
1803  */
1804 static void wait_current_trans_commit_start_and_unblock(
1805 					struct btrfs_fs_info *fs_info,
1806 					struct btrfs_transaction *trans)
1807 {
1808 	wait_event(fs_info->transaction_wait,
1809 		   trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted);
1810 }
1811 
1812 /*
1813  * commit transactions asynchronously. once btrfs_commit_transaction_async
1814  * returns, any subsequent transaction will not be allowed to join.
1815  */
1816 struct btrfs_async_commit {
1817 	struct btrfs_trans_handle *newtrans;
1818 	struct work_struct work;
1819 };
1820 
1821 static void do_async_commit(struct work_struct *work)
1822 {
1823 	struct btrfs_async_commit *ac =
1824 		container_of(work, struct btrfs_async_commit, work);
1825 
1826 	/*
1827 	 * We've got freeze protection passed with the transaction.
1828 	 * Tell lockdep about it.
1829 	 */
1830 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1831 		__sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1832 
1833 	current->journal_info = ac->newtrans;
1834 
1835 	btrfs_commit_transaction(ac->newtrans);
1836 	kfree(ac);
1837 }
1838 
1839 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1840 				   int wait_for_unblock)
1841 {
1842 	struct btrfs_fs_info *fs_info = trans->fs_info;
1843 	struct btrfs_async_commit *ac;
1844 	struct btrfs_transaction *cur_trans;
1845 
1846 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1847 	if (!ac)
1848 		return -ENOMEM;
1849 
1850 	INIT_WORK(&ac->work, do_async_commit);
1851 	ac->newtrans = btrfs_join_transaction(trans->root);
1852 	if (IS_ERR(ac->newtrans)) {
1853 		int err = PTR_ERR(ac->newtrans);
1854 		kfree(ac);
1855 		return err;
1856 	}
1857 
1858 	/* take transaction reference */
1859 	cur_trans = trans->transaction;
1860 	refcount_inc(&cur_trans->use_count);
1861 
1862 	btrfs_end_transaction(trans);
1863 
1864 	/*
1865 	 * Tell lockdep we've released the freeze rwsem, since the
1866 	 * async commit thread will be the one to unlock it.
1867 	 */
1868 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1869 		__sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1870 
1871 	schedule_work(&ac->work);
1872 
1873 	/* wait for transaction to start and unblock */
1874 	if (wait_for_unblock)
1875 		wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1876 	else
1877 		wait_current_trans_commit_start(fs_info, cur_trans);
1878 
1879 	if (current->journal_info == trans)
1880 		current->journal_info = NULL;
1881 
1882 	btrfs_put_transaction(cur_trans);
1883 	return 0;
1884 }
1885 
1886 
1887 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1888 {
1889 	struct btrfs_fs_info *fs_info = trans->fs_info;
1890 	struct btrfs_transaction *cur_trans = trans->transaction;
1891 
1892 	WARN_ON(refcount_read(&trans->use_count) > 1);
1893 
1894 	btrfs_abort_transaction(trans, err);
1895 
1896 	spin_lock(&fs_info->trans_lock);
1897 
1898 	/*
1899 	 * If the transaction is removed from the list, it means this
1900 	 * transaction has been committed successfully, so it is impossible
1901 	 * to call the cleanup function.
1902 	 */
1903 	BUG_ON(list_empty(&cur_trans->list));
1904 
1905 	list_del_init(&cur_trans->list);
1906 	if (cur_trans == fs_info->running_transaction) {
1907 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1908 		spin_unlock(&fs_info->trans_lock);
1909 		wait_event(cur_trans->writer_wait,
1910 			   atomic_read(&cur_trans->num_writers) == 1);
1911 
1912 		spin_lock(&fs_info->trans_lock);
1913 	}
1914 	spin_unlock(&fs_info->trans_lock);
1915 
1916 	btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1917 
1918 	spin_lock(&fs_info->trans_lock);
1919 	if (cur_trans == fs_info->running_transaction)
1920 		fs_info->running_transaction = NULL;
1921 	spin_unlock(&fs_info->trans_lock);
1922 
1923 	if (trans->type & __TRANS_FREEZABLE)
1924 		sb_end_intwrite(fs_info->sb);
1925 	btrfs_put_transaction(cur_trans);
1926 	btrfs_put_transaction(cur_trans);
1927 
1928 	trace_btrfs_transaction_commit(trans->root);
1929 
1930 	if (current->journal_info == trans)
1931 		current->journal_info = NULL;
1932 	btrfs_scrub_cancel(fs_info);
1933 
1934 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1935 }
1936 
1937 /*
1938  * Release reserved delayed ref space of all pending block groups of the
1939  * transaction and remove them from the list
1940  */
1941 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
1942 {
1943        struct btrfs_fs_info *fs_info = trans->fs_info;
1944        struct btrfs_block_group *block_group, *tmp;
1945 
1946        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
1947                btrfs_delayed_refs_rsv_release(fs_info, 1);
1948                list_del_init(&block_group->bg_list);
1949        }
1950 }
1951 
1952 static inline int btrfs_start_delalloc_flush(struct btrfs_trans_handle *trans)
1953 {
1954 	struct btrfs_fs_info *fs_info = trans->fs_info;
1955 
1956 	/*
1957 	 * We use writeback_inodes_sb here because if we used
1958 	 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1959 	 * Currently are holding the fs freeze lock, if we do an async flush
1960 	 * we'll do btrfs_join_transaction() and deadlock because we need to
1961 	 * wait for the fs freeze lock.  Using the direct flushing we benefit
1962 	 * from already being in a transaction and our join_transaction doesn't
1963 	 * have to re-take the fs freeze lock.
1964 	 */
1965 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
1966 		writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
1967 	} else {
1968 		struct btrfs_pending_snapshot *pending;
1969 		struct list_head *head = &trans->transaction->pending_snapshots;
1970 
1971 		/*
1972 		 * Flush dellaloc for any root that is going to be snapshotted.
1973 		 * This is done to avoid a corrupted version of files, in the
1974 		 * snapshots, that had both buffered and direct IO writes (even
1975 		 * if they were done sequentially) due to an unordered update of
1976 		 * the inode's size on disk.
1977 		 */
1978 		list_for_each_entry(pending, head, list) {
1979 			int ret;
1980 
1981 			ret = btrfs_start_delalloc_snapshot(pending->root);
1982 			if (ret)
1983 				return ret;
1984 		}
1985 	}
1986 	return 0;
1987 }
1988 
1989 static inline void btrfs_wait_delalloc_flush(struct btrfs_trans_handle *trans)
1990 {
1991 	struct btrfs_fs_info *fs_info = trans->fs_info;
1992 
1993 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
1994 		btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1995 	} else {
1996 		struct btrfs_pending_snapshot *pending;
1997 		struct list_head *head = &trans->transaction->pending_snapshots;
1998 
1999 		/*
2000 		 * Wait for any dellaloc that we started previously for the roots
2001 		 * that are going to be snapshotted. This is to avoid a corrupted
2002 		 * version of files in the snapshots that had both buffered and
2003 		 * direct IO writes (even if they were done sequentially).
2004 		 */
2005 		list_for_each_entry(pending, head, list)
2006 			btrfs_wait_ordered_extents(pending->root,
2007 						   U64_MAX, 0, U64_MAX);
2008 	}
2009 }
2010 
2011 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2012 {
2013 	struct btrfs_fs_info *fs_info = trans->fs_info;
2014 	struct btrfs_transaction *cur_trans = trans->transaction;
2015 	struct btrfs_transaction *prev_trans = NULL;
2016 	int ret;
2017 
2018 	ASSERT(refcount_read(&trans->use_count) == 1);
2019 
2020 	/*
2021 	 * Some places just start a transaction to commit it.  We need to make
2022 	 * sure that if this commit fails that the abort code actually marks the
2023 	 * transaction as failed, so set trans->dirty to make the abort code do
2024 	 * the right thing.
2025 	 */
2026 	trans->dirty = true;
2027 
2028 	/* Stop the commit early if ->aborted is set */
2029 	if (unlikely(READ_ONCE(cur_trans->aborted))) {
2030 		ret = cur_trans->aborted;
2031 		btrfs_end_transaction(trans);
2032 		return ret;
2033 	}
2034 
2035 	btrfs_trans_release_metadata(trans);
2036 	trans->block_rsv = NULL;
2037 
2038 	/* make a pass through all the delayed refs we have so far
2039 	 * any runnings procs may add more while we are here
2040 	 */
2041 	ret = btrfs_run_delayed_refs(trans, 0);
2042 	if (ret) {
2043 		btrfs_end_transaction(trans);
2044 		return ret;
2045 	}
2046 
2047 	cur_trans = trans->transaction;
2048 
2049 	/*
2050 	 * set the flushing flag so procs in this transaction have to
2051 	 * start sending their work down.
2052 	 */
2053 	cur_trans->delayed_refs.flushing = 1;
2054 	smp_wmb();
2055 
2056 	btrfs_create_pending_block_groups(trans);
2057 
2058 	ret = btrfs_run_delayed_refs(trans, 0);
2059 	if (ret) {
2060 		btrfs_end_transaction(trans);
2061 		return ret;
2062 	}
2063 
2064 	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2065 		int run_it = 0;
2066 
2067 		/* this mutex is also taken before trying to set
2068 		 * block groups readonly.  We need to make sure
2069 		 * that nobody has set a block group readonly
2070 		 * after a extents from that block group have been
2071 		 * allocated for cache files.  btrfs_set_block_group_ro
2072 		 * will wait for the transaction to commit if it
2073 		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2074 		 *
2075 		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2076 		 * only one process starts all the block group IO.  It wouldn't
2077 		 * hurt to have more than one go through, but there's no
2078 		 * real advantage to it either.
2079 		 */
2080 		mutex_lock(&fs_info->ro_block_group_mutex);
2081 		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2082 				      &cur_trans->flags))
2083 			run_it = 1;
2084 		mutex_unlock(&fs_info->ro_block_group_mutex);
2085 
2086 		if (run_it) {
2087 			ret = btrfs_start_dirty_block_groups(trans);
2088 			if (ret) {
2089 				btrfs_end_transaction(trans);
2090 				return ret;
2091 			}
2092 		}
2093 	}
2094 
2095 	spin_lock(&fs_info->trans_lock);
2096 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2097 		spin_unlock(&fs_info->trans_lock);
2098 		refcount_inc(&cur_trans->use_count);
2099 		ret = btrfs_end_transaction(trans);
2100 
2101 		wait_for_commit(cur_trans);
2102 
2103 		if (unlikely(cur_trans->aborted))
2104 			ret = cur_trans->aborted;
2105 
2106 		btrfs_put_transaction(cur_trans);
2107 
2108 		return ret;
2109 	}
2110 
2111 	cur_trans->state = TRANS_STATE_COMMIT_START;
2112 	wake_up(&fs_info->transaction_blocked_wait);
2113 
2114 	if (cur_trans->list.prev != &fs_info->trans_list) {
2115 		prev_trans = list_entry(cur_trans->list.prev,
2116 					struct btrfs_transaction, list);
2117 		if (prev_trans->state != TRANS_STATE_COMPLETED) {
2118 			refcount_inc(&prev_trans->use_count);
2119 			spin_unlock(&fs_info->trans_lock);
2120 
2121 			wait_for_commit(prev_trans);
2122 			ret = prev_trans->aborted;
2123 
2124 			btrfs_put_transaction(prev_trans);
2125 			if (ret)
2126 				goto cleanup_transaction;
2127 		} else {
2128 			spin_unlock(&fs_info->trans_lock);
2129 		}
2130 	} else {
2131 		spin_unlock(&fs_info->trans_lock);
2132 		/*
2133 		 * The previous transaction was aborted and was already removed
2134 		 * from the list of transactions at fs_info->trans_list. So we
2135 		 * abort to prevent writing a new superblock that reflects a
2136 		 * corrupt state (pointing to trees with unwritten nodes/leafs).
2137 		 */
2138 		if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
2139 			ret = -EROFS;
2140 			goto cleanup_transaction;
2141 		}
2142 	}
2143 
2144 	extwriter_counter_dec(cur_trans, trans->type);
2145 
2146 	ret = btrfs_start_delalloc_flush(trans);
2147 	if (ret)
2148 		goto cleanup_transaction;
2149 
2150 	ret = btrfs_run_delayed_items(trans);
2151 	if (ret)
2152 		goto cleanup_transaction;
2153 
2154 	wait_event(cur_trans->writer_wait,
2155 		   extwriter_counter_read(cur_trans) == 0);
2156 
2157 	/* some pending stuffs might be added after the previous flush. */
2158 	ret = btrfs_run_delayed_items(trans);
2159 	if (ret)
2160 		goto cleanup_transaction;
2161 
2162 	btrfs_wait_delalloc_flush(trans);
2163 
2164 	btrfs_scrub_pause(fs_info);
2165 	/*
2166 	 * Ok now we need to make sure to block out any other joins while we
2167 	 * commit the transaction.  We could have started a join before setting
2168 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2169 	 */
2170 	spin_lock(&fs_info->trans_lock);
2171 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2172 	spin_unlock(&fs_info->trans_lock);
2173 	wait_event(cur_trans->writer_wait,
2174 		   atomic_read(&cur_trans->num_writers) == 1);
2175 
2176 	/* ->aborted might be set after the previous check, so check it */
2177 	if (unlikely(READ_ONCE(cur_trans->aborted))) {
2178 		ret = cur_trans->aborted;
2179 		goto scrub_continue;
2180 	}
2181 	/*
2182 	 * the reloc mutex makes sure that we stop
2183 	 * the balancing code from coming in and moving
2184 	 * extents around in the middle of the commit
2185 	 */
2186 	mutex_lock(&fs_info->reloc_mutex);
2187 
2188 	/*
2189 	 * We needn't worry about the delayed items because we will
2190 	 * deal with them in create_pending_snapshot(), which is the
2191 	 * core function of the snapshot creation.
2192 	 */
2193 	ret = create_pending_snapshots(trans);
2194 	if (ret) {
2195 		mutex_unlock(&fs_info->reloc_mutex);
2196 		goto scrub_continue;
2197 	}
2198 
2199 	/*
2200 	 * We insert the dir indexes of the snapshots and update the inode
2201 	 * of the snapshots' parents after the snapshot creation, so there
2202 	 * are some delayed items which are not dealt with. Now deal with
2203 	 * them.
2204 	 *
2205 	 * We needn't worry that this operation will corrupt the snapshots,
2206 	 * because all the tree which are snapshoted will be forced to COW
2207 	 * the nodes and leaves.
2208 	 */
2209 	ret = btrfs_run_delayed_items(trans);
2210 	if (ret) {
2211 		mutex_unlock(&fs_info->reloc_mutex);
2212 		goto scrub_continue;
2213 	}
2214 
2215 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2216 	if (ret) {
2217 		mutex_unlock(&fs_info->reloc_mutex);
2218 		goto scrub_continue;
2219 	}
2220 
2221 	/*
2222 	 * make sure none of the code above managed to slip in a
2223 	 * delayed item
2224 	 */
2225 	btrfs_assert_delayed_root_empty(fs_info);
2226 
2227 	WARN_ON(cur_trans != trans->transaction);
2228 
2229 	/* btrfs_commit_tree_roots is responsible for getting the
2230 	 * various roots consistent with each other.  Every pointer
2231 	 * in the tree of tree roots has to point to the most up to date
2232 	 * root for every subvolume and other tree.  So, we have to keep
2233 	 * the tree logging code from jumping in and changing any
2234 	 * of the trees.
2235 	 *
2236 	 * At this point in the commit, there can't be any tree-log
2237 	 * writers, but a little lower down we drop the trans mutex
2238 	 * and let new people in.  By holding the tree_log_mutex
2239 	 * from now until after the super is written, we avoid races
2240 	 * with the tree-log code.
2241 	 */
2242 	mutex_lock(&fs_info->tree_log_mutex);
2243 
2244 	ret = commit_fs_roots(trans);
2245 	if (ret) {
2246 		mutex_unlock(&fs_info->tree_log_mutex);
2247 		mutex_unlock(&fs_info->reloc_mutex);
2248 		goto scrub_continue;
2249 	}
2250 
2251 	/*
2252 	 * Since the transaction is done, we can apply the pending changes
2253 	 * before the next transaction.
2254 	 */
2255 	btrfs_apply_pending_changes(fs_info);
2256 
2257 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2258 	 * safe to free the root of tree log roots
2259 	 */
2260 	btrfs_free_log_root_tree(trans, fs_info);
2261 
2262 	/*
2263 	 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2264 	 * new delayed refs. Must handle them or qgroup can be wrong.
2265 	 */
2266 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2267 	if (ret) {
2268 		mutex_unlock(&fs_info->tree_log_mutex);
2269 		mutex_unlock(&fs_info->reloc_mutex);
2270 		goto scrub_continue;
2271 	}
2272 
2273 	/*
2274 	 * Since fs roots are all committed, we can get a quite accurate
2275 	 * new_roots. So let's do quota accounting.
2276 	 */
2277 	ret = btrfs_qgroup_account_extents(trans);
2278 	if (ret < 0) {
2279 		mutex_unlock(&fs_info->tree_log_mutex);
2280 		mutex_unlock(&fs_info->reloc_mutex);
2281 		goto scrub_continue;
2282 	}
2283 
2284 	ret = commit_cowonly_roots(trans);
2285 	if (ret) {
2286 		mutex_unlock(&fs_info->tree_log_mutex);
2287 		mutex_unlock(&fs_info->reloc_mutex);
2288 		goto scrub_continue;
2289 	}
2290 
2291 	/*
2292 	 * The tasks which save the space cache and inode cache may also
2293 	 * update ->aborted, check it.
2294 	 */
2295 	if (unlikely(READ_ONCE(cur_trans->aborted))) {
2296 		ret = cur_trans->aborted;
2297 		mutex_unlock(&fs_info->tree_log_mutex);
2298 		mutex_unlock(&fs_info->reloc_mutex);
2299 		goto scrub_continue;
2300 	}
2301 
2302 	btrfs_prepare_extent_commit(fs_info);
2303 
2304 	cur_trans = fs_info->running_transaction;
2305 
2306 	btrfs_set_root_node(&fs_info->tree_root->root_item,
2307 			    fs_info->tree_root->node);
2308 	list_add_tail(&fs_info->tree_root->dirty_list,
2309 		      &cur_trans->switch_commits);
2310 
2311 	btrfs_set_root_node(&fs_info->chunk_root->root_item,
2312 			    fs_info->chunk_root->node);
2313 	list_add_tail(&fs_info->chunk_root->dirty_list,
2314 		      &cur_trans->switch_commits);
2315 
2316 	switch_commit_roots(trans);
2317 
2318 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2319 	ASSERT(list_empty(&cur_trans->io_bgs));
2320 	update_super_roots(fs_info);
2321 
2322 	btrfs_set_super_log_root(fs_info->super_copy, 0);
2323 	btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2324 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2325 	       sizeof(*fs_info->super_copy));
2326 
2327 	btrfs_commit_device_sizes(cur_trans);
2328 
2329 	clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2330 	clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2331 
2332 	btrfs_trans_release_chunk_metadata(trans);
2333 
2334 	spin_lock(&fs_info->trans_lock);
2335 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2336 	fs_info->running_transaction = NULL;
2337 	spin_unlock(&fs_info->trans_lock);
2338 	mutex_unlock(&fs_info->reloc_mutex);
2339 
2340 	wake_up(&fs_info->transaction_wait);
2341 
2342 	ret = btrfs_write_and_wait_transaction(trans);
2343 	if (ret) {
2344 		btrfs_handle_fs_error(fs_info, ret,
2345 				      "Error while writing out transaction");
2346 		mutex_unlock(&fs_info->tree_log_mutex);
2347 		goto scrub_continue;
2348 	}
2349 
2350 	ret = write_all_supers(fs_info, 0);
2351 	/*
2352 	 * the super is written, we can safely allow the tree-loggers
2353 	 * to go about their business
2354 	 */
2355 	mutex_unlock(&fs_info->tree_log_mutex);
2356 	if (ret)
2357 		goto scrub_continue;
2358 
2359 	btrfs_finish_extent_commit(trans);
2360 
2361 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2362 		btrfs_clear_space_info_full(fs_info);
2363 
2364 	fs_info->last_trans_committed = cur_trans->transid;
2365 	/*
2366 	 * We needn't acquire the lock here because there is no other task
2367 	 * which can change it.
2368 	 */
2369 	cur_trans->state = TRANS_STATE_COMPLETED;
2370 	wake_up(&cur_trans->commit_wait);
2371 	clear_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags);
2372 
2373 	spin_lock(&fs_info->trans_lock);
2374 	list_del_init(&cur_trans->list);
2375 	spin_unlock(&fs_info->trans_lock);
2376 
2377 	btrfs_put_transaction(cur_trans);
2378 	btrfs_put_transaction(cur_trans);
2379 
2380 	if (trans->type & __TRANS_FREEZABLE)
2381 		sb_end_intwrite(fs_info->sb);
2382 
2383 	trace_btrfs_transaction_commit(trans->root);
2384 
2385 	btrfs_scrub_continue(fs_info);
2386 
2387 	if (current->journal_info == trans)
2388 		current->journal_info = NULL;
2389 
2390 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2391 
2392 	return ret;
2393 
2394 scrub_continue:
2395 	btrfs_scrub_continue(fs_info);
2396 cleanup_transaction:
2397 	btrfs_trans_release_metadata(trans);
2398 	btrfs_cleanup_pending_block_groups(trans);
2399 	btrfs_trans_release_chunk_metadata(trans);
2400 	trans->block_rsv = NULL;
2401 	btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2402 	if (current->journal_info == trans)
2403 		current->journal_info = NULL;
2404 	cleanup_transaction(trans, ret);
2405 
2406 	return ret;
2407 }
2408 
2409 /*
2410  * return < 0 if error
2411  * 0 if there are no more dead_roots at the time of call
2412  * 1 there are more to be processed, call me again
2413  *
2414  * The return value indicates there are certainly more snapshots to delete, but
2415  * if there comes a new one during processing, it may return 0. We don't mind,
2416  * because btrfs_commit_super will poke cleaner thread and it will process it a
2417  * few seconds later.
2418  */
2419 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2420 {
2421 	int ret;
2422 	struct btrfs_fs_info *fs_info = root->fs_info;
2423 
2424 	spin_lock(&fs_info->trans_lock);
2425 	if (list_empty(&fs_info->dead_roots)) {
2426 		spin_unlock(&fs_info->trans_lock);
2427 		return 0;
2428 	}
2429 	root = list_first_entry(&fs_info->dead_roots,
2430 			struct btrfs_root, root_list);
2431 	list_del_init(&root->root_list);
2432 	spin_unlock(&fs_info->trans_lock);
2433 
2434 	btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2435 
2436 	btrfs_kill_all_delayed_nodes(root);
2437 
2438 	if (btrfs_header_backref_rev(root->node) <
2439 			BTRFS_MIXED_BACKREF_REV)
2440 		ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2441 	else
2442 		ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2443 
2444 	return (ret < 0) ? 0 : 1;
2445 }
2446 
2447 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2448 {
2449 	unsigned long prev;
2450 	unsigned long bit;
2451 
2452 	prev = xchg(&fs_info->pending_changes, 0);
2453 	if (!prev)
2454 		return;
2455 
2456 	bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2457 	if (prev & bit)
2458 		btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2459 	prev &= ~bit;
2460 
2461 	bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2462 	if (prev & bit)
2463 		btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2464 	prev &= ~bit;
2465 
2466 	bit = 1 << BTRFS_PENDING_COMMIT;
2467 	if (prev & bit)
2468 		btrfs_debug(fs_info, "pending commit done");
2469 	prev &= ~bit;
2470 
2471 	if (prev)
2472 		btrfs_warn(fs_info,
2473 			"unknown pending changes left 0x%lx, ignoring", prev);
2474 }
2475