xref: /linux/fs/btrfs/transaction.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "inode-map.h"
31 
32 #define BTRFS_ROOT_TRANS_TAG 0
33 
34 static noinline void put_transaction(struct btrfs_transaction *transaction)
35 {
36 	WARN_ON(atomic_read(&transaction->use_count) == 0);
37 	if (atomic_dec_and_test(&transaction->use_count)) {
38 		BUG_ON(!list_empty(&transaction->list));
39 		WARN_ON(transaction->delayed_refs.root.rb_node);
40 		WARN_ON(!list_empty(&transaction->delayed_refs.seq_head));
41 		memset(transaction, 0, sizeof(*transaction));
42 		kmem_cache_free(btrfs_transaction_cachep, transaction);
43 	}
44 }
45 
46 static noinline void switch_commit_root(struct btrfs_root *root)
47 {
48 	free_extent_buffer(root->commit_root);
49 	root->commit_root = btrfs_root_node(root);
50 }
51 
52 /*
53  * either allocate a new transaction or hop into the existing one
54  */
55 static noinline int join_transaction(struct btrfs_root *root, int nofail)
56 {
57 	struct btrfs_transaction *cur_trans;
58 
59 	spin_lock(&root->fs_info->trans_lock);
60 loop:
61 	if (root->fs_info->trans_no_join) {
62 		if (!nofail) {
63 			spin_unlock(&root->fs_info->trans_lock);
64 			return -EBUSY;
65 		}
66 	}
67 
68 	cur_trans = root->fs_info->running_transaction;
69 	if (cur_trans) {
70 		atomic_inc(&cur_trans->use_count);
71 		atomic_inc(&cur_trans->num_writers);
72 		cur_trans->num_joined++;
73 		spin_unlock(&root->fs_info->trans_lock);
74 		return 0;
75 	}
76 	spin_unlock(&root->fs_info->trans_lock);
77 
78 	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
79 	if (!cur_trans)
80 		return -ENOMEM;
81 
82 	spin_lock(&root->fs_info->trans_lock);
83 	if (root->fs_info->running_transaction) {
84 		/*
85 		 * someone started a transaction after we unlocked.  Make sure
86 		 * to redo the trans_no_join checks above
87 		 */
88 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
89 		cur_trans = root->fs_info->running_transaction;
90 		goto loop;
91 	}
92 
93 	atomic_set(&cur_trans->num_writers, 1);
94 	cur_trans->num_joined = 0;
95 	init_waitqueue_head(&cur_trans->writer_wait);
96 	init_waitqueue_head(&cur_trans->commit_wait);
97 	cur_trans->in_commit = 0;
98 	cur_trans->blocked = 0;
99 	/*
100 	 * One for this trans handle, one so it will live on until we
101 	 * commit the transaction.
102 	 */
103 	atomic_set(&cur_trans->use_count, 2);
104 	cur_trans->commit_done = 0;
105 	cur_trans->start_time = get_seconds();
106 
107 	cur_trans->delayed_refs.root = RB_ROOT;
108 	cur_trans->delayed_refs.num_entries = 0;
109 	cur_trans->delayed_refs.num_heads_ready = 0;
110 	cur_trans->delayed_refs.num_heads = 0;
111 	cur_trans->delayed_refs.flushing = 0;
112 	cur_trans->delayed_refs.run_delayed_start = 0;
113 	cur_trans->delayed_refs.seq = 1;
114 	init_waitqueue_head(&cur_trans->delayed_refs.seq_wait);
115 	spin_lock_init(&cur_trans->commit_lock);
116 	spin_lock_init(&cur_trans->delayed_refs.lock);
117 	INIT_LIST_HEAD(&cur_trans->delayed_refs.seq_head);
118 
119 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
120 	list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
121 	extent_io_tree_init(&cur_trans->dirty_pages,
122 			     root->fs_info->btree_inode->i_mapping);
123 	root->fs_info->generation++;
124 	cur_trans->transid = root->fs_info->generation;
125 	root->fs_info->running_transaction = cur_trans;
126 	spin_unlock(&root->fs_info->trans_lock);
127 
128 	return 0;
129 }
130 
131 /*
132  * this does all the record keeping required to make sure that a reference
133  * counted root is properly recorded in a given transaction.  This is required
134  * to make sure the old root from before we joined the transaction is deleted
135  * when the transaction commits
136  */
137 static int record_root_in_trans(struct btrfs_trans_handle *trans,
138 			       struct btrfs_root *root)
139 {
140 	if (root->ref_cows && root->last_trans < trans->transid) {
141 		WARN_ON(root == root->fs_info->extent_root);
142 		WARN_ON(root->commit_root != root->node);
143 
144 		/*
145 		 * see below for in_trans_setup usage rules
146 		 * we have the reloc mutex held now, so there
147 		 * is only one writer in this function
148 		 */
149 		root->in_trans_setup = 1;
150 
151 		/* make sure readers find in_trans_setup before
152 		 * they find our root->last_trans update
153 		 */
154 		smp_wmb();
155 
156 		spin_lock(&root->fs_info->fs_roots_radix_lock);
157 		if (root->last_trans == trans->transid) {
158 			spin_unlock(&root->fs_info->fs_roots_radix_lock);
159 			return 0;
160 		}
161 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
162 			   (unsigned long)root->root_key.objectid,
163 			   BTRFS_ROOT_TRANS_TAG);
164 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
165 		root->last_trans = trans->transid;
166 
167 		/* this is pretty tricky.  We don't want to
168 		 * take the relocation lock in btrfs_record_root_in_trans
169 		 * unless we're really doing the first setup for this root in
170 		 * this transaction.
171 		 *
172 		 * Normally we'd use root->last_trans as a flag to decide
173 		 * if we want to take the expensive mutex.
174 		 *
175 		 * But, we have to set root->last_trans before we
176 		 * init the relocation root, otherwise, we trip over warnings
177 		 * in ctree.c.  The solution used here is to flag ourselves
178 		 * with root->in_trans_setup.  When this is 1, we're still
179 		 * fixing up the reloc trees and everyone must wait.
180 		 *
181 		 * When this is zero, they can trust root->last_trans and fly
182 		 * through btrfs_record_root_in_trans without having to take the
183 		 * lock.  smp_wmb() makes sure that all the writes above are
184 		 * done before we pop in the zero below
185 		 */
186 		btrfs_init_reloc_root(trans, root);
187 		smp_wmb();
188 		root->in_trans_setup = 0;
189 	}
190 	return 0;
191 }
192 
193 
194 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
195 			       struct btrfs_root *root)
196 {
197 	if (!root->ref_cows)
198 		return 0;
199 
200 	/*
201 	 * see record_root_in_trans for comments about in_trans_setup usage
202 	 * and barriers
203 	 */
204 	smp_rmb();
205 	if (root->last_trans == trans->transid &&
206 	    !root->in_trans_setup)
207 		return 0;
208 
209 	mutex_lock(&root->fs_info->reloc_mutex);
210 	record_root_in_trans(trans, root);
211 	mutex_unlock(&root->fs_info->reloc_mutex);
212 
213 	return 0;
214 }
215 
216 /* wait for commit against the current transaction to become unblocked
217  * when this is done, it is safe to start a new transaction, but the current
218  * transaction might not be fully on disk.
219  */
220 static void wait_current_trans(struct btrfs_root *root)
221 {
222 	struct btrfs_transaction *cur_trans;
223 
224 	spin_lock(&root->fs_info->trans_lock);
225 	cur_trans = root->fs_info->running_transaction;
226 	if (cur_trans && cur_trans->blocked) {
227 		atomic_inc(&cur_trans->use_count);
228 		spin_unlock(&root->fs_info->trans_lock);
229 
230 		wait_event(root->fs_info->transaction_wait,
231 			   !cur_trans->blocked);
232 		put_transaction(cur_trans);
233 	} else {
234 		spin_unlock(&root->fs_info->trans_lock);
235 	}
236 }
237 
238 enum btrfs_trans_type {
239 	TRANS_START,
240 	TRANS_JOIN,
241 	TRANS_USERSPACE,
242 	TRANS_JOIN_NOLOCK,
243 };
244 
245 static int may_wait_transaction(struct btrfs_root *root, int type)
246 {
247 	if (root->fs_info->log_root_recovering)
248 		return 0;
249 
250 	if (type == TRANS_USERSPACE)
251 		return 1;
252 
253 	if (type == TRANS_START &&
254 	    !atomic_read(&root->fs_info->open_ioctl_trans))
255 		return 1;
256 
257 	return 0;
258 }
259 
260 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
261 						    u64 num_items, int type)
262 {
263 	struct btrfs_trans_handle *h;
264 	struct btrfs_transaction *cur_trans;
265 	u64 num_bytes = 0;
266 	int ret;
267 
268 	if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
269 		return ERR_PTR(-EROFS);
270 
271 	if (current->journal_info) {
272 		WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
273 		h = current->journal_info;
274 		h->use_count++;
275 		h->orig_rsv = h->block_rsv;
276 		h->block_rsv = NULL;
277 		goto got_it;
278 	}
279 
280 	/*
281 	 * Do the reservation before we join the transaction so we can do all
282 	 * the appropriate flushing if need be.
283 	 */
284 	if (num_items > 0 && root != root->fs_info->chunk_root) {
285 		num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
286 		ret = btrfs_block_rsv_add(root,
287 					  &root->fs_info->trans_block_rsv,
288 					  num_bytes);
289 		if (ret)
290 			return ERR_PTR(ret);
291 	}
292 again:
293 	h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
294 	if (!h)
295 		return ERR_PTR(-ENOMEM);
296 
297 	if (may_wait_transaction(root, type))
298 		wait_current_trans(root);
299 
300 	do {
301 		ret = join_transaction(root, type == TRANS_JOIN_NOLOCK);
302 		if (ret == -EBUSY)
303 			wait_current_trans(root);
304 	} while (ret == -EBUSY);
305 
306 	if (ret < 0) {
307 		kmem_cache_free(btrfs_trans_handle_cachep, h);
308 		return ERR_PTR(ret);
309 	}
310 
311 	cur_trans = root->fs_info->running_transaction;
312 
313 	h->transid = cur_trans->transid;
314 	h->transaction = cur_trans;
315 	h->blocks_used = 0;
316 	h->bytes_reserved = 0;
317 	h->delayed_ref_updates = 0;
318 	h->use_count = 1;
319 	h->block_rsv = NULL;
320 	h->orig_rsv = NULL;
321 
322 	smp_mb();
323 	if (cur_trans->blocked && may_wait_transaction(root, type)) {
324 		btrfs_commit_transaction(h, root);
325 		goto again;
326 	}
327 
328 	if (num_bytes) {
329 		trace_btrfs_space_reservation(root->fs_info, "transaction",
330 					      (u64)h, num_bytes, 1);
331 		h->block_rsv = &root->fs_info->trans_block_rsv;
332 		h->bytes_reserved = num_bytes;
333 	}
334 
335 got_it:
336 	btrfs_record_root_in_trans(h, root);
337 
338 	if (!current->journal_info && type != TRANS_USERSPACE)
339 		current->journal_info = h;
340 	return h;
341 }
342 
343 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
344 						   int num_items)
345 {
346 	return start_transaction(root, num_items, TRANS_START);
347 }
348 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
349 {
350 	return start_transaction(root, 0, TRANS_JOIN);
351 }
352 
353 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
354 {
355 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
356 }
357 
358 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
359 {
360 	return start_transaction(root, 0, TRANS_USERSPACE);
361 }
362 
363 /* wait for a transaction commit to be fully complete */
364 static noinline void wait_for_commit(struct btrfs_root *root,
365 				    struct btrfs_transaction *commit)
366 {
367 	wait_event(commit->commit_wait, commit->commit_done);
368 }
369 
370 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
371 {
372 	struct btrfs_transaction *cur_trans = NULL, *t;
373 	int ret;
374 
375 	ret = 0;
376 	if (transid) {
377 		if (transid <= root->fs_info->last_trans_committed)
378 			goto out;
379 
380 		/* find specified transaction */
381 		spin_lock(&root->fs_info->trans_lock);
382 		list_for_each_entry(t, &root->fs_info->trans_list, list) {
383 			if (t->transid == transid) {
384 				cur_trans = t;
385 				atomic_inc(&cur_trans->use_count);
386 				break;
387 			}
388 			if (t->transid > transid)
389 				break;
390 		}
391 		spin_unlock(&root->fs_info->trans_lock);
392 		ret = -EINVAL;
393 		if (!cur_trans)
394 			goto out;  /* bad transid */
395 	} else {
396 		/* find newest transaction that is committing | committed */
397 		spin_lock(&root->fs_info->trans_lock);
398 		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
399 					    list) {
400 			if (t->in_commit) {
401 				if (t->commit_done)
402 					break;
403 				cur_trans = t;
404 				atomic_inc(&cur_trans->use_count);
405 				break;
406 			}
407 		}
408 		spin_unlock(&root->fs_info->trans_lock);
409 		if (!cur_trans)
410 			goto out;  /* nothing committing|committed */
411 	}
412 
413 	wait_for_commit(root, cur_trans);
414 
415 	put_transaction(cur_trans);
416 	ret = 0;
417 out:
418 	return ret;
419 }
420 
421 void btrfs_throttle(struct btrfs_root *root)
422 {
423 	if (!atomic_read(&root->fs_info->open_ioctl_trans))
424 		wait_current_trans(root);
425 }
426 
427 static int should_end_transaction(struct btrfs_trans_handle *trans,
428 				  struct btrfs_root *root)
429 {
430 	int ret;
431 
432 	ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
433 	return ret ? 1 : 0;
434 }
435 
436 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
437 				 struct btrfs_root *root)
438 {
439 	struct btrfs_transaction *cur_trans = trans->transaction;
440 	struct btrfs_block_rsv *rsv = trans->block_rsv;
441 	int updates;
442 
443 	smp_mb();
444 	if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
445 		return 1;
446 
447 	/*
448 	 * We need to do this in case we're deleting csums so the global block
449 	 * rsv get's used instead of the csum block rsv.
450 	 */
451 	trans->block_rsv = NULL;
452 
453 	updates = trans->delayed_ref_updates;
454 	trans->delayed_ref_updates = 0;
455 	if (updates)
456 		btrfs_run_delayed_refs(trans, root, updates);
457 
458 	trans->block_rsv = rsv;
459 
460 	return should_end_transaction(trans, root);
461 }
462 
463 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
464 			  struct btrfs_root *root, int throttle, int lock)
465 {
466 	struct btrfs_transaction *cur_trans = trans->transaction;
467 	struct btrfs_fs_info *info = root->fs_info;
468 	int count = 0;
469 
470 	if (--trans->use_count) {
471 		trans->block_rsv = trans->orig_rsv;
472 		return 0;
473 	}
474 
475 	btrfs_trans_release_metadata(trans, root);
476 	trans->block_rsv = NULL;
477 	while (count < 2) {
478 		unsigned long cur = trans->delayed_ref_updates;
479 		trans->delayed_ref_updates = 0;
480 		if (cur &&
481 		    trans->transaction->delayed_refs.num_heads_ready > 64) {
482 			trans->delayed_ref_updates = 0;
483 			btrfs_run_delayed_refs(trans, root, cur);
484 		} else {
485 			break;
486 		}
487 		count++;
488 	}
489 
490 	if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
491 	    should_end_transaction(trans, root)) {
492 		trans->transaction->blocked = 1;
493 		smp_wmb();
494 	}
495 
496 	if (lock && cur_trans->blocked && !cur_trans->in_commit) {
497 		if (throttle) {
498 			/*
499 			 * We may race with somebody else here so end up having
500 			 * to call end_transaction on ourselves again, so inc
501 			 * our use_count.
502 			 */
503 			trans->use_count++;
504 			return btrfs_commit_transaction(trans, root);
505 		} else {
506 			wake_up_process(info->transaction_kthread);
507 		}
508 	}
509 
510 	WARN_ON(cur_trans != info->running_transaction);
511 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
512 	atomic_dec(&cur_trans->num_writers);
513 
514 	smp_mb();
515 	if (waitqueue_active(&cur_trans->writer_wait))
516 		wake_up(&cur_trans->writer_wait);
517 	put_transaction(cur_trans);
518 
519 	if (current->journal_info == trans)
520 		current->journal_info = NULL;
521 	memset(trans, 0, sizeof(*trans));
522 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
523 
524 	if (throttle)
525 		btrfs_run_delayed_iputs(root);
526 
527 	return 0;
528 }
529 
530 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
531 			  struct btrfs_root *root)
532 {
533 	int ret;
534 
535 	ret = __btrfs_end_transaction(trans, root, 0, 1);
536 	if (ret)
537 		return ret;
538 	return 0;
539 }
540 
541 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
542 				   struct btrfs_root *root)
543 {
544 	int ret;
545 
546 	ret = __btrfs_end_transaction(trans, root, 1, 1);
547 	if (ret)
548 		return ret;
549 	return 0;
550 }
551 
552 int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
553 				 struct btrfs_root *root)
554 {
555 	int ret;
556 
557 	ret = __btrfs_end_transaction(trans, root, 0, 0);
558 	if (ret)
559 		return ret;
560 	return 0;
561 }
562 
563 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
564 				struct btrfs_root *root)
565 {
566 	return __btrfs_end_transaction(trans, root, 1, 1);
567 }
568 
569 /*
570  * when btree blocks are allocated, they have some corresponding bits set for
571  * them in one of two extent_io trees.  This is used to make sure all of
572  * those extents are sent to disk but does not wait on them
573  */
574 int btrfs_write_marked_extents(struct btrfs_root *root,
575 			       struct extent_io_tree *dirty_pages, int mark)
576 {
577 	int err = 0;
578 	int werr = 0;
579 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
580 	u64 start = 0;
581 	u64 end;
582 
583 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
584 				      mark)) {
585 		convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, mark,
586 				   GFP_NOFS);
587 		err = filemap_fdatawrite_range(mapping, start, end);
588 		if (err)
589 			werr = err;
590 		cond_resched();
591 		start = end + 1;
592 	}
593 	if (err)
594 		werr = err;
595 	return werr;
596 }
597 
598 /*
599  * when btree blocks are allocated, they have some corresponding bits set for
600  * them in one of two extent_io trees.  This is used to make sure all of
601  * those extents are on disk for transaction or log commit.  We wait
602  * on all the pages and clear them from the dirty pages state tree
603  */
604 int btrfs_wait_marked_extents(struct btrfs_root *root,
605 			      struct extent_io_tree *dirty_pages, int mark)
606 {
607 	int err = 0;
608 	int werr = 0;
609 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
610 	u64 start = 0;
611 	u64 end;
612 
613 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
614 				      EXTENT_NEED_WAIT)) {
615 		clear_extent_bits(dirty_pages, start, end, EXTENT_NEED_WAIT, GFP_NOFS);
616 		err = filemap_fdatawait_range(mapping, start, end);
617 		if (err)
618 			werr = err;
619 		cond_resched();
620 		start = end + 1;
621 	}
622 	if (err)
623 		werr = err;
624 	return werr;
625 }
626 
627 /*
628  * when btree blocks are allocated, they have some corresponding bits set for
629  * them in one of two extent_io trees.  This is used to make sure all of
630  * those extents are on disk for transaction or log commit
631  */
632 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
633 				struct extent_io_tree *dirty_pages, int mark)
634 {
635 	int ret;
636 	int ret2;
637 
638 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
639 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
640 
641 	if (ret)
642 		return ret;
643 	if (ret2)
644 		return ret2;
645 	return 0;
646 }
647 
648 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
649 				     struct btrfs_root *root)
650 {
651 	if (!trans || !trans->transaction) {
652 		struct inode *btree_inode;
653 		btree_inode = root->fs_info->btree_inode;
654 		return filemap_write_and_wait(btree_inode->i_mapping);
655 	}
656 	return btrfs_write_and_wait_marked_extents(root,
657 					   &trans->transaction->dirty_pages,
658 					   EXTENT_DIRTY);
659 }
660 
661 /*
662  * this is used to update the root pointer in the tree of tree roots.
663  *
664  * But, in the case of the extent allocation tree, updating the root
665  * pointer may allocate blocks which may change the root of the extent
666  * allocation tree.
667  *
668  * So, this loops and repeats and makes sure the cowonly root didn't
669  * change while the root pointer was being updated in the metadata.
670  */
671 static int update_cowonly_root(struct btrfs_trans_handle *trans,
672 			       struct btrfs_root *root)
673 {
674 	int ret;
675 	u64 old_root_bytenr;
676 	u64 old_root_used;
677 	struct btrfs_root *tree_root = root->fs_info->tree_root;
678 
679 	old_root_used = btrfs_root_used(&root->root_item);
680 	btrfs_write_dirty_block_groups(trans, root);
681 
682 	while (1) {
683 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
684 		if (old_root_bytenr == root->node->start &&
685 		    old_root_used == btrfs_root_used(&root->root_item))
686 			break;
687 
688 		btrfs_set_root_node(&root->root_item, root->node);
689 		ret = btrfs_update_root(trans, tree_root,
690 					&root->root_key,
691 					&root->root_item);
692 		BUG_ON(ret);
693 
694 		old_root_used = btrfs_root_used(&root->root_item);
695 		ret = btrfs_write_dirty_block_groups(trans, root);
696 		BUG_ON(ret);
697 	}
698 
699 	if (root != root->fs_info->extent_root)
700 		switch_commit_root(root);
701 
702 	return 0;
703 }
704 
705 /*
706  * update all the cowonly tree roots on disk
707  */
708 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
709 					 struct btrfs_root *root)
710 {
711 	struct btrfs_fs_info *fs_info = root->fs_info;
712 	struct list_head *next;
713 	struct extent_buffer *eb;
714 	int ret;
715 
716 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
717 	BUG_ON(ret);
718 
719 	eb = btrfs_lock_root_node(fs_info->tree_root);
720 	btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
721 	btrfs_tree_unlock(eb);
722 	free_extent_buffer(eb);
723 
724 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
725 	BUG_ON(ret);
726 
727 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
728 		next = fs_info->dirty_cowonly_roots.next;
729 		list_del_init(next);
730 		root = list_entry(next, struct btrfs_root, dirty_list);
731 
732 		update_cowonly_root(trans, root);
733 	}
734 
735 	down_write(&fs_info->extent_commit_sem);
736 	switch_commit_root(fs_info->extent_root);
737 	up_write(&fs_info->extent_commit_sem);
738 
739 	return 0;
740 }
741 
742 /*
743  * dead roots are old snapshots that need to be deleted.  This allocates
744  * a dirty root struct and adds it into the list of dead roots that need to
745  * be deleted
746  */
747 int btrfs_add_dead_root(struct btrfs_root *root)
748 {
749 	spin_lock(&root->fs_info->trans_lock);
750 	list_add(&root->root_list, &root->fs_info->dead_roots);
751 	spin_unlock(&root->fs_info->trans_lock);
752 	return 0;
753 }
754 
755 /*
756  * update all the cowonly tree roots on disk
757  */
758 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
759 				    struct btrfs_root *root)
760 {
761 	struct btrfs_root *gang[8];
762 	struct btrfs_fs_info *fs_info = root->fs_info;
763 	int i;
764 	int ret;
765 	int err = 0;
766 
767 	spin_lock(&fs_info->fs_roots_radix_lock);
768 	while (1) {
769 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
770 						 (void **)gang, 0,
771 						 ARRAY_SIZE(gang),
772 						 BTRFS_ROOT_TRANS_TAG);
773 		if (ret == 0)
774 			break;
775 		for (i = 0; i < ret; i++) {
776 			root = gang[i];
777 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
778 					(unsigned long)root->root_key.objectid,
779 					BTRFS_ROOT_TRANS_TAG);
780 			spin_unlock(&fs_info->fs_roots_radix_lock);
781 
782 			btrfs_free_log(trans, root);
783 			btrfs_update_reloc_root(trans, root);
784 			btrfs_orphan_commit_root(trans, root);
785 
786 			btrfs_save_ino_cache(root, trans);
787 
788 			/* see comments in should_cow_block() */
789 			root->force_cow = 0;
790 			smp_wmb();
791 
792 			if (root->commit_root != root->node) {
793 				mutex_lock(&root->fs_commit_mutex);
794 				switch_commit_root(root);
795 				btrfs_unpin_free_ino(root);
796 				mutex_unlock(&root->fs_commit_mutex);
797 
798 				btrfs_set_root_node(&root->root_item,
799 						    root->node);
800 			}
801 
802 			err = btrfs_update_root(trans, fs_info->tree_root,
803 						&root->root_key,
804 						&root->root_item);
805 			spin_lock(&fs_info->fs_roots_radix_lock);
806 			if (err)
807 				break;
808 		}
809 	}
810 	spin_unlock(&fs_info->fs_roots_radix_lock);
811 	return err;
812 }
813 
814 /*
815  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
816  * otherwise every leaf in the btree is read and defragged.
817  */
818 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
819 {
820 	struct btrfs_fs_info *info = root->fs_info;
821 	struct btrfs_trans_handle *trans;
822 	int ret;
823 	unsigned long nr;
824 
825 	if (xchg(&root->defrag_running, 1))
826 		return 0;
827 
828 	while (1) {
829 		trans = btrfs_start_transaction(root, 0);
830 		if (IS_ERR(trans))
831 			return PTR_ERR(trans);
832 
833 		ret = btrfs_defrag_leaves(trans, root, cacheonly);
834 
835 		nr = trans->blocks_used;
836 		btrfs_end_transaction(trans, root);
837 		btrfs_btree_balance_dirty(info->tree_root, nr);
838 		cond_resched();
839 
840 		if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
841 			break;
842 	}
843 	root->defrag_running = 0;
844 	return ret;
845 }
846 
847 /*
848  * new snapshots need to be created at a very specific time in the
849  * transaction commit.  This does the actual creation
850  */
851 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
852 				   struct btrfs_fs_info *fs_info,
853 				   struct btrfs_pending_snapshot *pending)
854 {
855 	struct btrfs_key key;
856 	struct btrfs_root_item *new_root_item;
857 	struct btrfs_root *tree_root = fs_info->tree_root;
858 	struct btrfs_root *root = pending->root;
859 	struct btrfs_root *parent_root;
860 	struct btrfs_block_rsv *rsv;
861 	struct inode *parent_inode;
862 	struct dentry *parent;
863 	struct dentry *dentry;
864 	struct extent_buffer *tmp;
865 	struct extent_buffer *old;
866 	int ret;
867 	u64 to_reserve = 0;
868 	u64 index = 0;
869 	u64 objectid;
870 	u64 root_flags;
871 
872 	rsv = trans->block_rsv;
873 
874 	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
875 	if (!new_root_item) {
876 		pending->error = -ENOMEM;
877 		goto fail;
878 	}
879 
880 	ret = btrfs_find_free_objectid(tree_root, &objectid);
881 	if (ret) {
882 		pending->error = ret;
883 		goto fail;
884 	}
885 
886 	btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
887 
888 	if (to_reserve > 0) {
889 		ret = btrfs_block_rsv_add_noflush(root, &pending->block_rsv,
890 						  to_reserve);
891 		if (ret) {
892 			pending->error = ret;
893 			goto fail;
894 		}
895 	}
896 
897 	key.objectid = objectid;
898 	key.offset = (u64)-1;
899 	key.type = BTRFS_ROOT_ITEM_KEY;
900 
901 	trans->block_rsv = &pending->block_rsv;
902 
903 	dentry = pending->dentry;
904 	parent = dget_parent(dentry);
905 	parent_inode = parent->d_inode;
906 	parent_root = BTRFS_I(parent_inode)->root;
907 	record_root_in_trans(trans, parent_root);
908 
909 	/*
910 	 * insert the directory item
911 	 */
912 	ret = btrfs_set_inode_index(parent_inode, &index);
913 	BUG_ON(ret);
914 	ret = btrfs_insert_dir_item(trans, parent_root,
915 				dentry->d_name.name, dentry->d_name.len,
916 				parent_inode, &key,
917 				BTRFS_FT_DIR, index);
918 	BUG_ON(ret);
919 
920 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
921 					 dentry->d_name.len * 2);
922 	ret = btrfs_update_inode(trans, parent_root, parent_inode);
923 	BUG_ON(ret);
924 
925 	/*
926 	 * pull in the delayed directory update
927 	 * and the delayed inode item
928 	 * otherwise we corrupt the FS during
929 	 * snapshot
930 	 */
931 	ret = btrfs_run_delayed_items(trans, root);
932 	BUG_ON(ret);
933 
934 	record_root_in_trans(trans, root);
935 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
936 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
937 	btrfs_check_and_init_root_item(new_root_item);
938 
939 	root_flags = btrfs_root_flags(new_root_item);
940 	if (pending->readonly)
941 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
942 	else
943 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
944 	btrfs_set_root_flags(new_root_item, root_flags);
945 
946 	old = btrfs_lock_root_node(root);
947 	btrfs_cow_block(trans, root, old, NULL, 0, &old);
948 	btrfs_set_lock_blocking(old);
949 
950 	btrfs_copy_root(trans, root, old, &tmp, objectid);
951 	btrfs_tree_unlock(old);
952 	free_extent_buffer(old);
953 
954 	/* see comments in should_cow_block() */
955 	root->force_cow = 1;
956 	smp_wmb();
957 
958 	btrfs_set_root_node(new_root_item, tmp);
959 	/* record when the snapshot was created in key.offset */
960 	key.offset = trans->transid;
961 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
962 	btrfs_tree_unlock(tmp);
963 	free_extent_buffer(tmp);
964 	BUG_ON(ret);
965 
966 	/*
967 	 * insert root back/forward references
968 	 */
969 	ret = btrfs_add_root_ref(trans, tree_root, objectid,
970 				 parent_root->root_key.objectid,
971 				 btrfs_ino(parent_inode), index,
972 				 dentry->d_name.name, dentry->d_name.len);
973 	BUG_ON(ret);
974 	dput(parent);
975 
976 	key.offset = (u64)-1;
977 	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
978 	BUG_ON(IS_ERR(pending->snap));
979 
980 	btrfs_reloc_post_snapshot(trans, pending);
981 fail:
982 	kfree(new_root_item);
983 	trans->block_rsv = rsv;
984 	btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
985 	return 0;
986 }
987 
988 /*
989  * create all the snapshots we've scheduled for creation
990  */
991 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
992 					     struct btrfs_fs_info *fs_info)
993 {
994 	struct btrfs_pending_snapshot *pending;
995 	struct list_head *head = &trans->transaction->pending_snapshots;
996 	int ret;
997 
998 	list_for_each_entry(pending, head, list) {
999 		ret = create_pending_snapshot(trans, fs_info, pending);
1000 		BUG_ON(ret);
1001 	}
1002 	return 0;
1003 }
1004 
1005 static void update_super_roots(struct btrfs_root *root)
1006 {
1007 	struct btrfs_root_item *root_item;
1008 	struct btrfs_super_block *super;
1009 
1010 	super = root->fs_info->super_copy;
1011 
1012 	root_item = &root->fs_info->chunk_root->root_item;
1013 	super->chunk_root = root_item->bytenr;
1014 	super->chunk_root_generation = root_item->generation;
1015 	super->chunk_root_level = root_item->level;
1016 
1017 	root_item = &root->fs_info->tree_root->root_item;
1018 	super->root = root_item->bytenr;
1019 	super->generation = root_item->generation;
1020 	super->root_level = root_item->level;
1021 	if (btrfs_test_opt(root, SPACE_CACHE))
1022 		super->cache_generation = root_item->generation;
1023 }
1024 
1025 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1026 {
1027 	int ret = 0;
1028 	spin_lock(&info->trans_lock);
1029 	if (info->running_transaction)
1030 		ret = info->running_transaction->in_commit;
1031 	spin_unlock(&info->trans_lock);
1032 	return ret;
1033 }
1034 
1035 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1036 {
1037 	int ret = 0;
1038 	spin_lock(&info->trans_lock);
1039 	if (info->running_transaction)
1040 		ret = info->running_transaction->blocked;
1041 	spin_unlock(&info->trans_lock);
1042 	return ret;
1043 }
1044 
1045 /*
1046  * wait for the current transaction commit to start and block subsequent
1047  * transaction joins
1048  */
1049 static void wait_current_trans_commit_start(struct btrfs_root *root,
1050 					    struct btrfs_transaction *trans)
1051 {
1052 	wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1053 }
1054 
1055 /*
1056  * wait for the current transaction to start and then become unblocked.
1057  * caller holds ref.
1058  */
1059 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1060 					 struct btrfs_transaction *trans)
1061 {
1062 	wait_event(root->fs_info->transaction_wait,
1063 		   trans->commit_done || (trans->in_commit && !trans->blocked));
1064 }
1065 
1066 /*
1067  * commit transactions asynchronously. once btrfs_commit_transaction_async
1068  * returns, any subsequent transaction will not be allowed to join.
1069  */
1070 struct btrfs_async_commit {
1071 	struct btrfs_trans_handle *newtrans;
1072 	struct btrfs_root *root;
1073 	struct delayed_work work;
1074 };
1075 
1076 static void do_async_commit(struct work_struct *work)
1077 {
1078 	struct btrfs_async_commit *ac =
1079 		container_of(work, struct btrfs_async_commit, work.work);
1080 
1081 	btrfs_commit_transaction(ac->newtrans, ac->root);
1082 	kfree(ac);
1083 }
1084 
1085 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1086 				   struct btrfs_root *root,
1087 				   int wait_for_unblock)
1088 {
1089 	struct btrfs_async_commit *ac;
1090 	struct btrfs_transaction *cur_trans;
1091 
1092 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1093 	if (!ac)
1094 		return -ENOMEM;
1095 
1096 	INIT_DELAYED_WORK(&ac->work, do_async_commit);
1097 	ac->root = root;
1098 	ac->newtrans = btrfs_join_transaction(root);
1099 	if (IS_ERR(ac->newtrans)) {
1100 		int err = PTR_ERR(ac->newtrans);
1101 		kfree(ac);
1102 		return err;
1103 	}
1104 
1105 	/* take transaction reference */
1106 	cur_trans = trans->transaction;
1107 	atomic_inc(&cur_trans->use_count);
1108 
1109 	btrfs_end_transaction(trans, root);
1110 	schedule_delayed_work(&ac->work, 0);
1111 
1112 	/* wait for transaction to start and unblock */
1113 	if (wait_for_unblock)
1114 		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1115 	else
1116 		wait_current_trans_commit_start(root, cur_trans);
1117 
1118 	if (current->journal_info == trans)
1119 		current->journal_info = NULL;
1120 
1121 	put_transaction(cur_trans);
1122 	return 0;
1123 }
1124 
1125 /*
1126  * btrfs_transaction state sequence:
1127  *    in_commit = 0, blocked = 0  (initial)
1128  *    in_commit = 1, blocked = 1
1129  *    blocked = 0
1130  *    commit_done = 1
1131  */
1132 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1133 			     struct btrfs_root *root)
1134 {
1135 	unsigned long joined = 0;
1136 	struct btrfs_transaction *cur_trans;
1137 	struct btrfs_transaction *prev_trans = NULL;
1138 	DEFINE_WAIT(wait);
1139 	int ret;
1140 	int should_grow = 0;
1141 	unsigned long now = get_seconds();
1142 	int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1143 
1144 	btrfs_run_ordered_operations(root, 0);
1145 
1146 	btrfs_trans_release_metadata(trans, root);
1147 	trans->block_rsv = NULL;
1148 
1149 	/* make a pass through all the delayed refs we have so far
1150 	 * any runnings procs may add more while we are here
1151 	 */
1152 	ret = btrfs_run_delayed_refs(trans, root, 0);
1153 	BUG_ON(ret);
1154 
1155 	cur_trans = trans->transaction;
1156 	/*
1157 	 * set the flushing flag so procs in this transaction have to
1158 	 * start sending their work down.
1159 	 */
1160 	cur_trans->delayed_refs.flushing = 1;
1161 
1162 	ret = btrfs_run_delayed_refs(trans, root, 0);
1163 	BUG_ON(ret);
1164 
1165 	spin_lock(&cur_trans->commit_lock);
1166 	if (cur_trans->in_commit) {
1167 		spin_unlock(&cur_trans->commit_lock);
1168 		atomic_inc(&cur_trans->use_count);
1169 		btrfs_end_transaction(trans, root);
1170 
1171 		wait_for_commit(root, cur_trans);
1172 
1173 		put_transaction(cur_trans);
1174 
1175 		return 0;
1176 	}
1177 
1178 	trans->transaction->in_commit = 1;
1179 	trans->transaction->blocked = 1;
1180 	spin_unlock(&cur_trans->commit_lock);
1181 	wake_up(&root->fs_info->transaction_blocked_wait);
1182 
1183 	spin_lock(&root->fs_info->trans_lock);
1184 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
1185 		prev_trans = list_entry(cur_trans->list.prev,
1186 					struct btrfs_transaction, list);
1187 		if (!prev_trans->commit_done) {
1188 			atomic_inc(&prev_trans->use_count);
1189 			spin_unlock(&root->fs_info->trans_lock);
1190 
1191 			wait_for_commit(root, prev_trans);
1192 
1193 			put_transaction(prev_trans);
1194 		} else {
1195 			spin_unlock(&root->fs_info->trans_lock);
1196 		}
1197 	} else {
1198 		spin_unlock(&root->fs_info->trans_lock);
1199 	}
1200 
1201 	if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
1202 		should_grow = 1;
1203 
1204 	do {
1205 		int snap_pending = 0;
1206 
1207 		joined = cur_trans->num_joined;
1208 		if (!list_empty(&trans->transaction->pending_snapshots))
1209 			snap_pending = 1;
1210 
1211 		WARN_ON(cur_trans != trans->transaction);
1212 
1213 		if (flush_on_commit || snap_pending) {
1214 			btrfs_start_delalloc_inodes(root, 1);
1215 			ret = btrfs_wait_ordered_extents(root, 0, 1);
1216 			BUG_ON(ret);
1217 		}
1218 
1219 		ret = btrfs_run_delayed_items(trans, root);
1220 		BUG_ON(ret);
1221 
1222 		/*
1223 		 * rename don't use btrfs_join_transaction, so, once we
1224 		 * set the transaction to blocked above, we aren't going
1225 		 * to get any new ordered operations.  We can safely run
1226 		 * it here and no for sure that nothing new will be added
1227 		 * to the list
1228 		 */
1229 		btrfs_run_ordered_operations(root, 1);
1230 
1231 		prepare_to_wait(&cur_trans->writer_wait, &wait,
1232 				TASK_UNINTERRUPTIBLE);
1233 
1234 		if (atomic_read(&cur_trans->num_writers) > 1)
1235 			schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1236 		else if (should_grow)
1237 			schedule_timeout(1);
1238 
1239 		finish_wait(&cur_trans->writer_wait, &wait);
1240 	} while (atomic_read(&cur_trans->num_writers) > 1 ||
1241 		 (should_grow && cur_trans->num_joined != joined));
1242 
1243 	/*
1244 	 * Ok now we need to make sure to block out any other joins while we
1245 	 * commit the transaction.  We could have started a join before setting
1246 	 * no_join so make sure to wait for num_writers to == 1 again.
1247 	 */
1248 	spin_lock(&root->fs_info->trans_lock);
1249 	root->fs_info->trans_no_join = 1;
1250 	spin_unlock(&root->fs_info->trans_lock);
1251 	wait_event(cur_trans->writer_wait,
1252 		   atomic_read(&cur_trans->num_writers) == 1);
1253 
1254 	/*
1255 	 * the reloc mutex makes sure that we stop
1256 	 * the balancing code from coming in and moving
1257 	 * extents around in the middle of the commit
1258 	 */
1259 	mutex_lock(&root->fs_info->reloc_mutex);
1260 
1261 	ret = btrfs_run_delayed_items(trans, root);
1262 	BUG_ON(ret);
1263 
1264 	ret = create_pending_snapshots(trans, root->fs_info);
1265 	BUG_ON(ret);
1266 
1267 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1268 	BUG_ON(ret);
1269 
1270 	/*
1271 	 * make sure none of the code above managed to slip in a
1272 	 * delayed item
1273 	 */
1274 	btrfs_assert_delayed_root_empty(root);
1275 
1276 	WARN_ON(cur_trans != trans->transaction);
1277 
1278 	btrfs_scrub_pause(root);
1279 	/* btrfs_commit_tree_roots is responsible for getting the
1280 	 * various roots consistent with each other.  Every pointer
1281 	 * in the tree of tree roots has to point to the most up to date
1282 	 * root for every subvolume and other tree.  So, we have to keep
1283 	 * the tree logging code from jumping in and changing any
1284 	 * of the trees.
1285 	 *
1286 	 * At this point in the commit, there can't be any tree-log
1287 	 * writers, but a little lower down we drop the trans mutex
1288 	 * and let new people in.  By holding the tree_log_mutex
1289 	 * from now until after the super is written, we avoid races
1290 	 * with the tree-log code.
1291 	 */
1292 	mutex_lock(&root->fs_info->tree_log_mutex);
1293 
1294 	ret = commit_fs_roots(trans, root);
1295 	BUG_ON(ret);
1296 
1297 	/* commit_fs_roots gets rid of all the tree log roots, it is now
1298 	 * safe to free the root of tree log roots
1299 	 */
1300 	btrfs_free_log_root_tree(trans, root->fs_info);
1301 
1302 	ret = commit_cowonly_roots(trans, root);
1303 	BUG_ON(ret);
1304 
1305 	btrfs_prepare_extent_commit(trans, root);
1306 
1307 	cur_trans = root->fs_info->running_transaction;
1308 
1309 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1310 			    root->fs_info->tree_root->node);
1311 	switch_commit_root(root->fs_info->tree_root);
1312 
1313 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1314 			    root->fs_info->chunk_root->node);
1315 	switch_commit_root(root->fs_info->chunk_root);
1316 
1317 	update_super_roots(root);
1318 
1319 	if (!root->fs_info->log_root_recovering) {
1320 		btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1321 		btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1322 	}
1323 
1324 	memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1325 	       sizeof(*root->fs_info->super_copy));
1326 
1327 	trans->transaction->blocked = 0;
1328 	spin_lock(&root->fs_info->trans_lock);
1329 	root->fs_info->running_transaction = NULL;
1330 	root->fs_info->trans_no_join = 0;
1331 	spin_unlock(&root->fs_info->trans_lock);
1332 	mutex_unlock(&root->fs_info->reloc_mutex);
1333 
1334 	wake_up(&root->fs_info->transaction_wait);
1335 
1336 	ret = btrfs_write_and_wait_transaction(trans, root);
1337 	BUG_ON(ret);
1338 	write_ctree_super(trans, root, 0);
1339 
1340 	/*
1341 	 * the super is written, we can safely allow the tree-loggers
1342 	 * to go about their business
1343 	 */
1344 	mutex_unlock(&root->fs_info->tree_log_mutex);
1345 
1346 	btrfs_finish_extent_commit(trans, root);
1347 
1348 	cur_trans->commit_done = 1;
1349 
1350 	root->fs_info->last_trans_committed = cur_trans->transid;
1351 
1352 	wake_up(&cur_trans->commit_wait);
1353 
1354 	spin_lock(&root->fs_info->trans_lock);
1355 	list_del_init(&cur_trans->list);
1356 	spin_unlock(&root->fs_info->trans_lock);
1357 
1358 	put_transaction(cur_trans);
1359 	put_transaction(cur_trans);
1360 
1361 	trace_btrfs_transaction_commit(root);
1362 
1363 	btrfs_scrub_continue(root);
1364 
1365 	if (current->journal_info == trans)
1366 		current->journal_info = NULL;
1367 
1368 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1369 
1370 	if (current != root->fs_info->transaction_kthread)
1371 		btrfs_run_delayed_iputs(root);
1372 
1373 	return ret;
1374 }
1375 
1376 /*
1377  * interface function to delete all the snapshots we have scheduled for deletion
1378  */
1379 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1380 {
1381 	LIST_HEAD(list);
1382 	struct btrfs_fs_info *fs_info = root->fs_info;
1383 
1384 	spin_lock(&fs_info->trans_lock);
1385 	list_splice_init(&fs_info->dead_roots, &list);
1386 	spin_unlock(&fs_info->trans_lock);
1387 
1388 	while (!list_empty(&list)) {
1389 		root = list_entry(list.next, struct btrfs_root, root_list);
1390 		list_del(&root->root_list);
1391 
1392 		btrfs_kill_all_delayed_nodes(root);
1393 
1394 		if (btrfs_header_backref_rev(root->node) <
1395 		    BTRFS_MIXED_BACKREF_REV)
1396 			btrfs_drop_snapshot(root, NULL, 0, 0);
1397 		else
1398 			btrfs_drop_snapshot(root, NULL, 1, 0);
1399 	}
1400 	return 0;
1401 }
1402