xref: /linux/fs/btrfs/transaction.c (revision 8f7e001e0325de63a42f23342ac3b8139150c5cf)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
13 #include <linux/timekeeping.h>
14 #include "misc.h"
15 #include "ctree.h"
16 #include "disk-io.h"
17 #include "transaction.h"
18 #include "locking.h"
19 #include "tree-log.h"
20 #include "volumes.h"
21 #include "dev-replace.h"
22 #include "qgroup.h"
23 #include "block-group.h"
24 #include "space-info.h"
25 #include "zoned.h"
26 
27 #define BTRFS_ROOT_TRANS_TAG 0
28 
29 /*
30  * Transaction states and transitions
31  *
32  * No running transaction (fs tree blocks are not modified)
33  * |
34  * | To next stage:
35  * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
36  * V
37  * Transaction N [[TRANS_STATE_RUNNING]]
38  * |
39  * | New trans handles can be attached to transaction N by calling all
40  * | start_transaction() variants.
41  * |
42  * | To next stage:
43  * |  Call btrfs_commit_transaction() on any trans handle attached to
44  * |  transaction N
45  * V
46  * Transaction N [[TRANS_STATE_COMMIT_START]]
47  * |
48  * | Will wait for previous running transaction to completely finish if there
49  * | is one
50  * |
51  * | Then one of the following happes:
52  * | - Wait for all other trans handle holders to release.
53  * |   The btrfs_commit_transaction() caller will do the commit work.
54  * | - Wait for current transaction to be committed by others.
55  * |   Other btrfs_commit_transaction() caller will do the commit work.
56  * |
57  * | At this stage, only btrfs_join_transaction*() variants can attach
58  * | to this running transaction.
59  * | All other variants will wait for current one to finish and attach to
60  * | transaction N+1.
61  * |
62  * | To next stage:
63  * |  Caller is chosen to commit transaction N, and all other trans handle
64  * |  haven been released.
65  * V
66  * Transaction N [[TRANS_STATE_COMMIT_DOING]]
67  * |
68  * | The heavy lifting transaction work is started.
69  * | From running delayed refs (modifying extent tree) to creating pending
70  * | snapshots, running qgroups.
71  * | In short, modify supporting trees to reflect modifications of subvolume
72  * | trees.
73  * |
74  * | At this stage, all start_transaction() calls will wait for this
75  * | transaction to finish and attach to transaction N+1.
76  * |
77  * | To next stage:
78  * |  Until all supporting trees are updated.
79  * V
80  * Transaction N [[TRANS_STATE_UNBLOCKED]]
81  * |						    Transaction N+1
82  * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
83  * | need to write them back to disk and update	    |
84  * | super blocks.				    |
85  * |						    |
86  * | At this stage, new transaction is allowed to   |
87  * | start.					    |
88  * | All new start_transaction() calls will be	    |
89  * | attached to transid N+1.			    |
90  * |						    |
91  * | To next stage:				    |
92  * |  Until all tree blocks are super blocks are    |
93  * |  written to block devices			    |
94  * V						    |
95  * Transaction N [[TRANS_STATE_COMPLETED]]	    V
96  *   All tree blocks and super blocks are written.  Transaction N+1
97  *   This transaction is finished and all its	    [[TRANS_STATE_COMMIT_START]]
98  *   data structures will be cleaned up.	    | Life goes on
99  */
100 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
101 	[TRANS_STATE_RUNNING]		= 0U,
102 	[TRANS_STATE_COMMIT_START]	= (__TRANS_START | __TRANS_ATTACH),
103 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_START |
104 					   __TRANS_ATTACH |
105 					   __TRANS_JOIN |
106 					   __TRANS_JOIN_NOSTART),
107 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_START |
108 					   __TRANS_ATTACH |
109 					   __TRANS_JOIN |
110 					   __TRANS_JOIN_NOLOCK |
111 					   __TRANS_JOIN_NOSTART),
112 	[TRANS_STATE_SUPER_COMMITTED]	= (__TRANS_START |
113 					   __TRANS_ATTACH |
114 					   __TRANS_JOIN |
115 					   __TRANS_JOIN_NOLOCK |
116 					   __TRANS_JOIN_NOSTART),
117 	[TRANS_STATE_COMPLETED]		= (__TRANS_START |
118 					   __TRANS_ATTACH |
119 					   __TRANS_JOIN |
120 					   __TRANS_JOIN_NOLOCK |
121 					   __TRANS_JOIN_NOSTART),
122 };
123 
124 void btrfs_put_transaction(struct btrfs_transaction *transaction)
125 {
126 	WARN_ON(refcount_read(&transaction->use_count) == 0);
127 	if (refcount_dec_and_test(&transaction->use_count)) {
128 		BUG_ON(!list_empty(&transaction->list));
129 		WARN_ON(!RB_EMPTY_ROOT(
130 				&transaction->delayed_refs.href_root.rb_root));
131 		WARN_ON(!RB_EMPTY_ROOT(
132 				&transaction->delayed_refs.dirty_extent_root));
133 		if (transaction->delayed_refs.pending_csums)
134 			btrfs_err(transaction->fs_info,
135 				  "pending csums is %llu",
136 				  transaction->delayed_refs.pending_csums);
137 		/*
138 		 * If any block groups are found in ->deleted_bgs then it's
139 		 * because the transaction was aborted and a commit did not
140 		 * happen (things failed before writing the new superblock
141 		 * and calling btrfs_finish_extent_commit()), so we can not
142 		 * discard the physical locations of the block groups.
143 		 */
144 		while (!list_empty(&transaction->deleted_bgs)) {
145 			struct btrfs_block_group *cache;
146 
147 			cache = list_first_entry(&transaction->deleted_bgs,
148 						 struct btrfs_block_group,
149 						 bg_list);
150 			list_del_init(&cache->bg_list);
151 			btrfs_unfreeze_block_group(cache);
152 			btrfs_put_block_group(cache);
153 		}
154 		WARN_ON(!list_empty(&transaction->dev_update_list));
155 		kfree(transaction);
156 	}
157 }
158 
159 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
160 {
161 	struct btrfs_transaction *cur_trans = trans->transaction;
162 	struct btrfs_fs_info *fs_info = trans->fs_info;
163 	struct btrfs_root *root, *tmp;
164 	struct btrfs_caching_control *caching_ctl, *next;
165 
166 	/*
167 	 * At this point no one can be using this transaction to modify any tree
168 	 * and no one can start another transaction to modify any tree either.
169 	 */
170 	ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
171 
172 	down_write(&fs_info->commit_root_sem);
173 
174 	if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
175 		fs_info->last_reloc_trans = trans->transid;
176 
177 	list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
178 				 dirty_list) {
179 		list_del_init(&root->dirty_list);
180 		free_extent_buffer(root->commit_root);
181 		root->commit_root = btrfs_root_node(root);
182 		extent_io_tree_release(&root->dirty_log_pages);
183 		btrfs_qgroup_clean_swapped_blocks(root);
184 	}
185 
186 	/* We can free old roots now. */
187 	spin_lock(&cur_trans->dropped_roots_lock);
188 	while (!list_empty(&cur_trans->dropped_roots)) {
189 		root = list_first_entry(&cur_trans->dropped_roots,
190 					struct btrfs_root, root_list);
191 		list_del_init(&root->root_list);
192 		spin_unlock(&cur_trans->dropped_roots_lock);
193 		btrfs_free_log(trans, root);
194 		btrfs_drop_and_free_fs_root(fs_info, root);
195 		spin_lock(&cur_trans->dropped_roots_lock);
196 	}
197 	spin_unlock(&cur_trans->dropped_roots_lock);
198 
199 	/*
200 	 * We have to update the last_byte_to_unpin under the commit_root_sem,
201 	 * at the same time we swap out the commit roots.
202 	 *
203 	 * This is because we must have a real view of the last spot the caching
204 	 * kthreads were while caching.  Consider the following views of the
205 	 * extent tree for a block group
206 	 *
207 	 * commit root
208 	 * +----+----+----+----+----+----+----+
209 	 * |\\\\|    |\\\\|\\\\|    |\\\\|\\\\|
210 	 * +----+----+----+----+----+----+----+
211 	 * 0    1    2    3    4    5    6    7
212 	 *
213 	 * new commit root
214 	 * +----+----+----+----+----+----+----+
215 	 * |    |    |    |\\\\|    |    |\\\\|
216 	 * +----+----+----+----+----+----+----+
217 	 * 0    1    2    3    4    5    6    7
218 	 *
219 	 * If the cache_ctl->progress was at 3, then we are only allowed to
220 	 * unpin [0,1) and [2,3], because the caching thread has already
221 	 * processed those extents.  We are not allowed to unpin [5,6), because
222 	 * the caching thread will re-start it's search from 3, and thus find
223 	 * the hole from [4,6) to add to the free space cache.
224 	 */
225 	write_lock(&fs_info->block_group_cache_lock);
226 	list_for_each_entry_safe(caching_ctl, next,
227 				 &fs_info->caching_block_groups, list) {
228 		struct btrfs_block_group *cache = caching_ctl->block_group;
229 
230 		if (btrfs_block_group_done(cache)) {
231 			cache->last_byte_to_unpin = (u64)-1;
232 			list_del_init(&caching_ctl->list);
233 			btrfs_put_caching_control(caching_ctl);
234 		} else {
235 			cache->last_byte_to_unpin = caching_ctl->progress;
236 		}
237 	}
238 	write_unlock(&fs_info->block_group_cache_lock);
239 	up_write(&fs_info->commit_root_sem);
240 }
241 
242 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
243 					 unsigned int type)
244 {
245 	if (type & TRANS_EXTWRITERS)
246 		atomic_inc(&trans->num_extwriters);
247 }
248 
249 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
250 					 unsigned int type)
251 {
252 	if (type & TRANS_EXTWRITERS)
253 		atomic_dec(&trans->num_extwriters);
254 }
255 
256 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
257 					  unsigned int type)
258 {
259 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
260 }
261 
262 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
263 {
264 	return atomic_read(&trans->num_extwriters);
265 }
266 
267 /*
268  * To be called after doing the chunk btree updates right after allocating a new
269  * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
270  * chunk after all chunk btree updates and after finishing the second phase of
271  * chunk allocation (btrfs_create_pending_block_groups()) in case some block
272  * group had its chunk item insertion delayed to the second phase.
273  */
274 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
275 {
276 	struct btrfs_fs_info *fs_info = trans->fs_info;
277 
278 	if (!trans->chunk_bytes_reserved)
279 		return;
280 
281 	btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
282 				trans->chunk_bytes_reserved, NULL);
283 	trans->chunk_bytes_reserved = 0;
284 }
285 
286 /*
287  * either allocate a new transaction or hop into the existing one
288  */
289 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
290 				     unsigned int type)
291 {
292 	struct btrfs_transaction *cur_trans;
293 
294 	spin_lock(&fs_info->trans_lock);
295 loop:
296 	/* The file system has been taken offline. No new transactions. */
297 	if (BTRFS_FS_ERROR(fs_info)) {
298 		spin_unlock(&fs_info->trans_lock);
299 		return -EROFS;
300 	}
301 
302 	cur_trans = fs_info->running_transaction;
303 	if (cur_trans) {
304 		if (TRANS_ABORTED(cur_trans)) {
305 			spin_unlock(&fs_info->trans_lock);
306 			return cur_trans->aborted;
307 		}
308 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
309 			spin_unlock(&fs_info->trans_lock);
310 			return -EBUSY;
311 		}
312 		refcount_inc(&cur_trans->use_count);
313 		atomic_inc(&cur_trans->num_writers);
314 		extwriter_counter_inc(cur_trans, type);
315 		spin_unlock(&fs_info->trans_lock);
316 		return 0;
317 	}
318 	spin_unlock(&fs_info->trans_lock);
319 
320 	/*
321 	 * If we are ATTACH, we just want to catch the current transaction,
322 	 * and commit it. If there is no transaction, just return ENOENT.
323 	 */
324 	if (type == TRANS_ATTACH)
325 		return -ENOENT;
326 
327 	/*
328 	 * JOIN_NOLOCK only happens during the transaction commit, so
329 	 * it is impossible that ->running_transaction is NULL
330 	 */
331 	BUG_ON(type == TRANS_JOIN_NOLOCK);
332 
333 	cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
334 	if (!cur_trans)
335 		return -ENOMEM;
336 
337 	spin_lock(&fs_info->trans_lock);
338 	if (fs_info->running_transaction) {
339 		/*
340 		 * someone started a transaction after we unlocked.  Make sure
341 		 * to redo the checks above
342 		 */
343 		kfree(cur_trans);
344 		goto loop;
345 	} else if (BTRFS_FS_ERROR(fs_info)) {
346 		spin_unlock(&fs_info->trans_lock);
347 		kfree(cur_trans);
348 		return -EROFS;
349 	}
350 
351 	cur_trans->fs_info = fs_info;
352 	atomic_set(&cur_trans->pending_ordered, 0);
353 	init_waitqueue_head(&cur_trans->pending_wait);
354 	atomic_set(&cur_trans->num_writers, 1);
355 	extwriter_counter_init(cur_trans, type);
356 	init_waitqueue_head(&cur_trans->writer_wait);
357 	init_waitqueue_head(&cur_trans->commit_wait);
358 	cur_trans->state = TRANS_STATE_RUNNING;
359 	/*
360 	 * One for this trans handle, one so it will live on until we
361 	 * commit the transaction.
362 	 */
363 	refcount_set(&cur_trans->use_count, 2);
364 	cur_trans->flags = 0;
365 	cur_trans->start_time = ktime_get_seconds();
366 
367 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
368 
369 	cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
370 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
371 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
372 
373 	/*
374 	 * although the tree mod log is per file system and not per transaction,
375 	 * the log must never go across transaction boundaries.
376 	 */
377 	smp_mb();
378 	if (!list_empty(&fs_info->tree_mod_seq_list))
379 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
380 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
381 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
382 	atomic64_set(&fs_info->tree_mod_seq, 0);
383 
384 	spin_lock_init(&cur_trans->delayed_refs.lock);
385 
386 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
387 	INIT_LIST_HEAD(&cur_trans->dev_update_list);
388 	INIT_LIST_HEAD(&cur_trans->switch_commits);
389 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
390 	INIT_LIST_HEAD(&cur_trans->io_bgs);
391 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
392 	mutex_init(&cur_trans->cache_write_mutex);
393 	spin_lock_init(&cur_trans->dirty_bgs_lock);
394 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
395 	spin_lock_init(&cur_trans->dropped_roots_lock);
396 	INIT_LIST_HEAD(&cur_trans->releasing_ebs);
397 	spin_lock_init(&cur_trans->releasing_ebs_lock);
398 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
399 	extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
400 			IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
401 	extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
402 			IO_TREE_FS_PINNED_EXTENTS, NULL);
403 	fs_info->generation++;
404 	cur_trans->transid = fs_info->generation;
405 	fs_info->running_transaction = cur_trans;
406 	cur_trans->aborted = 0;
407 	spin_unlock(&fs_info->trans_lock);
408 
409 	return 0;
410 }
411 
412 /*
413  * This does all the record keeping required to make sure that a shareable root
414  * is properly recorded in a given transaction.  This is required to make sure
415  * the old root from before we joined the transaction is deleted when the
416  * transaction commits.
417  */
418 static int record_root_in_trans(struct btrfs_trans_handle *trans,
419 			       struct btrfs_root *root,
420 			       int force)
421 {
422 	struct btrfs_fs_info *fs_info = root->fs_info;
423 	int ret = 0;
424 
425 	if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
426 	    root->last_trans < trans->transid) || force) {
427 		WARN_ON(!force && root->commit_root != root->node);
428 
429 		/*
430 		 * see below for IN_TRANS_SETUP usage rules
431 		 * we have the reloc mutex held now, so there
432 		 * is only one writer in this function
433 		 */
434 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
435 
436 		/* make sure readers find IN_TRANS_SETUP before
437 		 * they find our root->last_trans update
438 		 */
439 		smp_wmb();
440 
441 		spin_lock(&fs_info->fs_roots_radix_lock);
442 		if (root->last_trans == trans->transid && !force) {
443 			spin_unlock(&fs_info->fs_roots_radix_lock);
444 			return 0;
445 		}
446 		radix_tree_tag_set(&fs_info->fs_roots_radix,
447 				   (unsigned long)root->root_key.objectid,
448 				   BTRFS_ROOT_TRANS_TAG);
449 		spin_unlock(&fs_info->fs_roots_radix_lock);
450 		root->last_trans = trans->transid;
451 
452 		/* this is pretty tricky.  We don't want to
453 		 * take the relocation lock in btrfs_record_root_in_trans
454 		 * unless we're really doing the first setup for this root in
455 		 * this transaction.
456 		 *
457 		 * Normally we'd use root->last_trans as a flag to decide
458 		 * if we want to take the expensive mutex.
459 		 *
460 		 * But, we have to set root->last_trans before we
461 		 * init the relocation root, otherwise, we trip over warnings
462 		 * in ctree.c.  The solution used here is to flag ourselves
463 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
464 		 * fixing up the reloc trees and everyone must wait.
465 		 *
466 		 * When this is zero, they can trust root->last_trans and fly
467 		 * through btrfs_record_root_in_trans without having to take the
468 		 * lock.  smp_wmb() makes sure that all the writes above are
469 		 * done before we pop in the zero below
470 		 */
471 		ret = btrfs_init_reloc_root(trans, root);
472 		smp_mb__before_atomic();
473 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
474 	}
475 	return ret;
476 }
477 
478 
479 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
480 			    struct btrfs_root *root)
481 {
482 	struct btrfs_fs_info *fs_info = root->fs_info;
483 	struct btrfs_transaction *cur_trans = trans->transaction;
484 
485 	/* Add ourselves to the transaction dropped list */
486 	spin_lock(&cur_trans->dropped_roots_lock);
487 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
488 	spin_unlock(&cur_trans->dropped_roots_lock);
489 
490 	/* Make sure we don't try to update the root at commit time */
491 	spin_lock(&fs_info->fs_roots_radix_lock);
492 	radix_tree_tag_clear(&fs_info->fs_roots_radix,
493 			     (unsigned long)root->root_key.objectid,
494 			     BTRFS_ROOT_TRANS_TAG);
495 	spin_unlock(&fs_info->fs_roots_radix_lock);
496 }
497 
498 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
499 			       struct btrfs_root *root)
500 {
501 	struct btrfs_fs_info *fs_info = root->fs_info;
502 	int ret;
503 
504 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
505 		return 0;
506 
507 	/*
508 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
509 	 * and barriers
510 	 */
511 	smp_rmb();
512 	if (root->last_trans == trans->transid &&
513 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
514 		return 0;
515 
516 	mutex_lock(&fs_info->reloc_mutex);
517 	ret = record_root_in_trans(trans, root, 0);
518 	mutex_unlock(&fs_info->reloc_mutex);
519 
520 	return ret;
521 }
522 
523 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
524 {
525 	return (trans->state >= TRANS_STATE_COMMIT_START &&
526 		trans->state < TRANS_STATE_UNBLOCKED &&
527 		!TRANS_ABORTED(trans));
528 }
529 
530 /* wait for commit against the current transaction to become unblocked
531  * when this is done, it is safe to start a new transaction, but the current
532  * transaction might not be fully on disk.
533  */
534 static void wait_current_trans(struct btrfs_fs_info *fs_info)
535 {
536 	struct btrfs_transaction *cur_trans;
537 
538 	spin_lock(&fs_info->trans_lock);
539 	cur_trans = fs_info->running_transaction;
540 	if (cur_trans && is_transaction_blocked(cur_trans)) {
541 		refcount_inc(&cur_trans->use_count);
542 		spin_unlock(&fs_info->trans_lock);
543 
544 		wait_event(fs_info->transaction_wait,
545 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
546 			   TRANS_ABORTED(cur_trans));
547 		btrfs_put_transaction(cur_trans);
548 	} else {
549 		spin_unlock(&fs_info->trans_lock);
550 	}
551 }
552 
553 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
554 {
555 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
556 		return 0;
557 
558 	if (type == TRANS_START)
559 		return 1;
560 
561 	return 0;
562 }
563 
564 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
565 {
566 	struct btrfs_fs_info *fs_info = root->fs_info;
567 
568 	if (!fs_info->reloc_ctl ||
569 	    !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
570 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
571 	    root->reloc_root)
572 		return false;
573 
574 	return true;
575 }
576 
577 static struct btrfs_trans_handle *
578 start_transaction(struct btrfs_root *root, unsigned int num_items,
579 		  unsigned int type, enum btrfs_reserve_flush_enum flush,
580 		  bool enforce_qgroups)
581 {
582 	struct btrfs_fs_info *fs_info = root->fs_info;
583 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
584 	struct btrfs_trans_handle *h;
585 	struct btrfs_transaction *cur_trans;
586 	u64 num_bytes = 0;
587 	u64 qgroup_reserved = 0;
588 	bool reloc_reserved = false;
589 	bool do_chunk_alloc = false;
590 	int ret;
591 
592 	if (BTRFS_FS_ERROR(fs_info))
593 		return ERR_PTR(-EROFS);
594 
595 	if (current->journal_info) {
596 		WARN_ON(type & TRANS_EXTWRITERS);
597 		h = current->journal_info;
598 		refcount_inc(&h->use_count);
599 		WARN_ON(refcount_read(&h->use_count) > 2);
600 		h->orig_rsv = h->block_rsv;
601 		h->block_rsv = NULL;
602 		goto got_it;
603 	}
604 
605 	/*
606 	 * Do the reservation before we join the transaction so we can do all
607 	 * the appropriate flushing if need be.
608 	 */
609 	if (num_items && root != fs_info->chunk_root) {
610 		struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
611 		u64 delayed_refs_bytes = 0;
612 
613 		qgroup_reserved = num_items * fs_info->nodesize;
614 		ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
615 				enforce_qgroups);
616 		if (ret)
617 			return ERR_PTR(ret);
618 
619 		/*
620 		 * We want to reserve all the bytes we may need all at once, so
621 		 * we only do 1 enospc flushing cycle per transaction start.  We
622 		 * accomplish this by simply assuming we'll do 2 x num_items
623 		 * worth of delayed refs updates in this trans handle, and
624 		 * refill that amount for whatever is missing in the reserve.
625 		 */
626 		num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
627 		if (flush == BTRFS_RESERVE_FLUSH_ALL &&
628 		    delayed_refs_rsv->full == 0) {
629 			delayed_refs_bytes = num_bytes;
630 			num_bytes <<= 1;
631 		}
632 
633 		/*
634 		 * Do the reservation for the relocation root creation
635 		 */
636 		if (need_reserve_reloc_root(root)) {
637 			num_bytes += fs_info->nodesize;
638 			reloc_reserved = true;
639 		}
640 
641 		ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes, flush);
642 		if (ret)
643 			goto reserve_fail;
644 		if (delayed_refs_bytes) {
645 			btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
646 							  delayed_refs_bytes);
647 			num_bytes -= delayed_refs_bytes;
648 		}
649 
650 		if (rsv->space_info->force_alloc)
651 			do_chunk_alloc = true;
652 	} else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
653 		   !delayed_refs_rsv->full) {
654 		/*
655 		 * Some people call with btrfs_start_transaction(root, 0)
656 		 * because they can be throttled, but have some other mechanism
657 		 * for reserving space.  We still want these guys to refill the
658 		 * delayed block_rsv so just add 1 items worth of reservation
659 		 * here.
660 		 */
661 		ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
662 		if (ret)
663 			goto reserve_fail;
664 	}
665 again:
666 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
667 	if (!h) {
668 		ret = -ENOMEM;
669 		goto alloc_fail;
670 	}
671 
672 	/*
673 	 * If we are JOIN_NOLOCK we're already committing a transaction and
674 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
675 	 * because we're already holding a ref.  We need this because we could
676 	 * have raced in and did an fsync() on a file which can kick a commit
677 	 * and then we deadlock with somebody doing a freeze.
678 	 *
679 	 * If we are ATTACH, it means we just want to catch the current
680 	 * transaction and commit it, so we needn't do sb_start_intwrite().
681 	 */
682 	if (type & __TRANS_FREEZABLE)
683 		sb_start_intwrite(fs_info->sb);
684 
685 	if (may_wait_transaction(fs_info, type))
686 		wait_current_trans(fs_info);
687 
688 	do {
689 		ret = join_transaction(fs_info, type);
690 		if (ret == -EBUSY) {
691 			wait_current_trans(fs_info);
692 			if (unlikely(type == TRANS_ATTACH ||
693 				     type == TRANS_JOIN_NOSTART))
694 				ret = -ENOENT;
695 		}
696 	} while (ret == -EBUSY);
697 
698 	if (ret < 0)
699 		goto join_fail;
700 
701 	cur_trans = fs_info->running_transaction;
702 
703 	h->transid = cur_trans->transid;
704 	h->transaction = cur_trans;
705 	refcount_set(&h->use_count, 1);
706 	h->fs_info = root->fs_info;
707 
708 	h->type = type;
709 	INIT_LIST_HEAD(&h->new_bgs);
710 
711 	smp_mb();
712 	if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
713 	    may_wait_transaction(fs_info, type)) {
714 		current->journal_info = h;
715 		btrfs_commit_transaction(h);
716 		goto again;
717 	}
718 
719 	if (num_bytes) {
720 		trace_btrfs_space_reservation(fs_info, "transaction",
721 					      h->transid, num_bytes, 1);
722 		h->block_rsv = &fs_info->trans_block_rsv;
723 		h->bytes_reserved = num_bytes;
724 		h->reloc_reserved = reloc_reserved;
725 	}
726 
727 got_it:
728 	if (!current->journal_info)
729 		current->journal_info = h;
730 
731 	/*
732 	 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
733 	 * ALLOC_FORCE the first run through, and then we won't allocate for
734 	 * anybody else who races in later.  We don't care about the return
735 	 * value here.
736 	 */
737 	if (do_chunk_alloc && num_bytes) {
738 		u64 flags = h->block_rsv->space_info->flags;
739 
740 		btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
741 				  CHUNK_ALLOC_NO_FORCE);
742 	}
743 
744 	/*
745 	 * btrfs_record_root_in_trans() needs to alloc new extents, and may
746 	 * call btrfs_join_transaction() while we're also starting a
747 	 * transaction.
748 	 *
749 	 * Thus it need to be called after current->journal_info initialized,
750 	 * or we can deadlock.
751 	 */
752 	ret = btrfs_record_root_in_trans(h, root);
753 	if (ret) {
754 		/*
755 		 * The transaction handle is fully initialized and linked with
756 		 * other structures so it needs to be ended in case of errors,
757 		 * not just freed.
758 		 */
759 		btrfs_end_transaction(h);
760 		return ERR_PTR(ret);
761 	}
762 
763 	return h;
764 
765 join_fail:
766 	if (type & __TRANS_FREEZABLE)
767 		sb_end_intwrite(fs_info->sb);
768 	kmem_cache_free(btrfs_trans_handle_cachep, h);
769 alloc_fail:
770 	if (num_bytes)
771 		btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
772 					num_bytes, NULL);
773 reserve_fail:
774 	btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
775 	return ERR_PTR(ret);
776 }
777 
778 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
779 						   unsigned int num_items)
780 {
781 	return start_transaction(root, num_items, TRANS_START,
782 				 BTRFS_RESERVE_FLUSH_ALL, true);
783 }
784 
785 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
786 					struct btrfs_root *root,
787 					unsigned int num_items)
788 {
789 	return start_transaction(root, num_items, TRANS_START,
790 				 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
791 }
792 
793 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
794 {
795 	return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
796 				 true);
797 }
798 
799 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
800 {
801 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
802 				 BTRFS_RESERVE_NO_FLUSH, true);
803 }
804 
805 /*
806  * Similar to regular join but it never starts a transaction when none is
807  * running or after waiting for the current one to finish.
808  */
809 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
810 {
811 	return start_transaction(root, 0, TRANS_JOIN_NOSTART,
812 				 BTRFS_RESERVE_NO_FLUSH, true);
813 }
814 
815 /*
816  * btrfs_attach_transaction() - catch the running transaction
817  *
818  * It is used when we want to commit the current the transaction, but
819  * don't want to start a new one.
820  *
821  * Note: If this function return -ENOENT, it just means there is no
822  * running transaction. But it is possible that the inactive transaction
823  * is still in the memory, not fully on disk. If you hope there is no
824  * inactive transaction in the fs when -ENOENT is returned, you should
825  * invoke
826  *     btrfs_attach_transaction_barrier()
827  */
828 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
829 {
830 	return start_transaction(root, 0, TRANS_ATTACH,
831 				 BTRFS_RESERVE_NO_FLUSH, true);
832 }
833 
834 /*
835  * btrfs_attach_transaction_barrier() - catch the running transaction
836  *
837  * It is similar to the above function, the difference is this one
838  * will wait for all the inactive transactions until they fully
839  * complete.
840  */
841 struct btrfs_trans_handle *
842 btrfs_attach_transaction_barrier(struct btrfs_root *root)
843 {
844 	struct btrfs_trans_handle *trans;
845 
846 	trans = start_transaction(root, 0, TRANS_ATTACH,
847 				  BTRFS_RESERVE_NO_FLUSH, true);
848 	if (trans == ERR_PTR(-ENOENT))
849 		btrfs_wait_for_commit(root->fs_info, 0);
850 
851 	return trans;
852 }
853 
854 /* Wait for a transaction commit to reach at least the given state. */
855 static noinline void wait_for_commit(struct btrfs_transaction *commit,
856 				     const enum btrfs_trans_state min_state)
857 {
858 	struct btrfs_fs_info *fs_info = commit->fs_info;
859 	u64 transid = commit->transid;
860 	bool put = false;
861 
862 	while (1) {
863 		wait_event(commit->commit_wait, commit->state >= min_state);
864 		if (put)
865 			btrfs_put_transaction(commit);
866 
867 		if (min_state < TRANS_STATE_COMPLETED)
868 			break;
869 
870 		/*
871 		 * A transaction isn't really completed until all of the
872 		 * previous transactions are completed, but with fsync we can
873 		 * end up with SUPER_COMMITTED transactions before a COMPLETED
874 		 * transaction. Wait for those.
875 		 */
876 
877 		spin_lock(&fs_info->trans_lock);
878 		commit = list_first_entry_or_null(&fs_info->trans_list,
879 						  struct btrfs_transaction,
880 						  list);
881 		if (!commit || commit->transid > transid) {
882 			spin_unlock(&fs_info->trans_lock);
883 			break;
884 		}
885 		refcount_inc(&commit->use_count);
886 		put = true;
887 		spin_unlock(&fs_info->trans_lock);
888 	}
889 }
890 
891 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
892 {
893 	struct btrfs_transaction *cur_trans = NULL, *t;
894 	int ret = 0;
895 
896 	if (transid) {
897 		if (transid <= fs_info->last_trans_committed)
898 			goto out;
899 
900 		/* find specified transaction */
901 		spin_lock(&fs_info->trans_lock);
902 		list_for_each_entry(t, &fs_info->trans_list, list) {
903 			if (t->transid == transid) {
904 				cur_trans = t;
905 				refcount_inc(&cur_trans->use_count);
906 				ret = 0;
907 				break;
908 			}
909 			if (t->transid > transid) {
910 				ret = 0;
911 				break;
912 			}
913 		}
914 		spin_unlock(&fs_info->trans_lock);
915 
916 		/*
917 		 * The specified transaction doesn't exist, or we
918 		 * raced with btrfs_commit_transaction
919 		 */
920 		if (!cur_trans) {
921 			if (transid > fs_info->last_trans_committed)
922 				ret = -EINVAL;
923 			goto out;
924 		}
925 	} else {
926 		/* find newest transaction that is committing | committed */
927 		spin_lock(&fs_info->trans_lock);
928 		list_for_each_entry_reverse(t, &fs_info->trans_list,
929 					    list) {
930 			if (t->state >= TRANS_STATE_COMMIT_START) {
931 				if (t->state == TRANS_STATE_COMPLETED)
932 					break;
933 				cur_trans = t;
934 				refcount_inc(&cur_trans->use_count);
935 				break;
936 			}
937 		}
938 		spin_unlock(&fs_info->trans_lock);
939 		if (!cur_trans)
940 			goto out;  /* nothing committing|committed */
941 	}
942 
943 	wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
944 	btrfs_put_transaction(cur_trans);
945 out:
946 	return ret;
947 }
948 
949 void btrfs_throttle(struct btrfs_fs_info *fs_info)
950 {
951 	wait_current_trans(fs_info);
952 }
953 
954 static bool should_end_transaction(struct btrfs_trans_handle *trans)
955 {
956 	struct btrfs_fs_info *fs_info = trans->fs_info;
957 
958 	if (btrfs_check_space_for_delayed_refs(fs_info))
959 		return true;
960 
961 	return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
962 }
963 
964 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
965 {
966 	struct btrfs_transaction *cur_trans = trans->transaction;
967 
968 	if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
969 	    test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
970 		return true;
971 
972 	return should_end_transaction(trans);
973 }
974 
975 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
976 
977 {
978 	struct btrfs_fs_info *fs_info = trans->fs_info;
979 
980 	if (!trans->block_rsv) {
981 		ASSERT(!trans->bytes_reserved);
982 		return;
983 	}
984 
985 	if (!trans->bytes_reserved)
986 		return;
987 
988 	ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
989 	trace_btrfs_space_reservation(fs_info, "transaction",
990 				      trans->transid, trans->bytes_reserved, 0);
991 	btrfs_block_rsv_release(fs_info, trans->block_rsv,
992 				trans->bytes_reserved, NULL);
993 	trans->bytes_reserved = 0;
994 }
995 
996 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
997 				   int throttle)
998 {
999 	struct btrfs_fs_info *info = trans->fs_info;
1000 	struct btrfs_transaction *cur_trans = trans->transaction;
1001 	int err = 0;
1002 
1003 	if (refcount_read(&trans->use_count) > 1) {
1004 		refcount_dec(&trans->use_count);
1005 		trans->block_rsv = trans->orig_rsv;
1006 		return 0;
1007 	}
1008 
1009 	btrfs_trans_release_metadata(trans);
1010 	trans->block_rsv = NULL;
1011 
1012 	btrfs_create_pending_block_groups(trans);
1013 
1014 	btrfs_trans_release_chunk_metadata(trans);
1015 
1016 	if (trans->type & __TRANS_FREEZABLE)
1017 		sb_end_intwrite(info->sb);
1018 
1019 	WARN_ON(cur_trans != info->running_transaction);
1020 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1021 	atomic_dec(&cur_trans->num_writers);
1022 	extwriter_counter_dec(cur_trans, trans->type);
1023 
1024 	cond_wake_up(&cur_trans->writer_wait);
1025 	btrfs_put_transaction(cur_trans);
1026 
1027 	if (current->journal_info == trans)
1028 		current->journal_info = NULL;
1029 
1030 	if (throttle)
1031 		btrfs_run_delayed_iputs(info);
1032 
1033 	if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1034 		wake_up_process(info->transaction_kthread);
1035 		if (TRANS_ABORTED(trans))
1036 			err = trans->aborted;
1037 		else
1038 			err = -EROFS;
1039 	}
1040 
1041 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1042 	return err;
1043 }
1044 
1045 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1046 {
1047 	return __btrfs_end_transaction(trans, 0);
1048 }
1049 
1050 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1051 {
1052 	return __btrfs_end_transaction(trans, 1);
1053 }
1054 
1055 /*
1056  * when btree blocks are allocated, they have some corresponding bits set for
1057  * them in one of two extent_io trees.  This is used to make sure all of
1058  * those extents are sent to disk but does not wait on them
1059  */
1060 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1061 			       struct extent_io_tree *dirty_pages, int mark)
1062 {
1063 	int err = 0;
1064 	int werr = 0;
1065 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1066 	struct extent_state *cached_state = NULL;
1067 	u64 start = 0;
1068 	u64 end;
1069 
1070 	atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1071 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1072 				      mark, &cached_state)) {
1073 		bool wait_writeback = false;
1074 
1075 		err = convert_extent_bit(dirty_pages, start, end,
1076 					 EXTENT_NEED_WAIT,
1077 					 mark, &cached_state);
1078 		/*
1079 		 * convert_extent_bit can return -ENOMEM, which is most of the
1080 		 * time a temporary error. So when it happens, ignore the error
1081 		 * and wait for writeback of this range to finish - because we
1082 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1083 		 * to __btrfs_wait_marked_extents() would not know that
1084 		 * writeback for this range started and therefore wouldn't
1085 		 * wait for it to finish - we don't want to commit a
1086 		 * superblock that points to btree nodes/leafs for which
1087 		 * writeback hasn't finished yet (and without errors).
1088 		 * We cleanup any entries left in the io tree when committing
1089 		 * the transaction (through extent_io_tree_release()).
1090 		 */
1091 		if (err == -ENOMEM) {
1092 			err = 0;
1093 			wait_writeback = true;
1094 		}
1095 		if (!err)
1096 			err = filemap_fdatawrite_range(mapping, start, end);
1097 		if (err)
1098 			werr = err;
1099 		else if (wait_writeback)
1100 			werr = filemap_fdatawait_range(mapping, start, end);
1101 		free_extent_state(cached_state);
1102 		cached_state = NULL;
1103 		cond_resched();
1104 		start = end + 1;
1105 	}
1106 	atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1107 	return werr;
1108 }
1109 
1110 /*
1111  * when btree blocks are allocated, they have some corresponding bits set for
1112  * them in one of two extent_io trees.  This is used to make sure all of
1113  * those extents are on disk for transaction or log commit.  We wait
1114  * on all the pages and clear them from the dirty pages state tree
1115  */
1116 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1117 				       struct extent_io_tree *dirty_pages)
1118 {
1119 	int err = 0;
1120 	int werr = 0;
1121 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1122 	struct extent_state *cached_state = NULL;
1123 	u64 start = 0;
1124 	u64 end;
1125 
1126 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1127 				      EXTENT_NEED_WAIT, &cached_state)) {
1128 		/*
1129 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
1130 		 * When committing the transaction, we'll remove any entries
1131 		 * left in the io tree. For a log commit, we don't remove them
1132 		 * after committing the log because the tree can be accessed
1133 		 * concurrently - we do it only at transaction commit time when
1134 		 * it's safe to do it (through extent_io_tree_release()).
1135 		 */
1136 		err = clear_extent_bit(dirty_pages, start, end,
1137 				       EXTENT_NEED_WAIT, 0, 0, &cached_state);
1138 		if (err == -ENOMEM)
1139 			err = 0;
1140 		if (!err)
1141 			err = filemap_fdatawait_range(mapping, start, end);
1142 		if (err)
1143 			werr = err;
1144 		free_extent_state(cached_state);
1145 		cached_state = NULL;
1146 		cond_resched();
1147 		start = end + 1;
1148 	}
1149 	if (err)
1150 		werr = err;
1151 	return werr;
1152 }
1153 
1154 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1155 		       struct extent_io_tree *dirty_pages)
1156 {
1157 	bool errors = false;
1158 	int err;
1159 
1160 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1161 	if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1162 		errors = true;
1163 
1164 	if (errors && !err)
1165 		err = -EIO;
1166 	return err;
1167 }
1168 
1169 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1170 {
1171 	struct btrfs_fs_info *fs_info = log_root->fs_info;
1172 	struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1173 	bool errors = false;
1174 	int err;
1175 
1176 	ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1177 
1178 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1179 	if ((mark & EXTENT_DIRTY) &&
1180 	    test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1181 		errors = true;
1182 
1183 	if ((mark & EXTENT_NEW) &&
1184 	    test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1185 		errors = true;
1186 
1187 	if (errors && !err)
1188 		err = -EIO;
1189 	return err;
1190 }
1191 
1192 /*
1193  * When btree blocks are allocated the corresponding extents are marked dirty.
1194  * This function ensures such extents are persisted on disk for transaction or
1195  * log commit.
1196  *
1197  * @trans: transaction whose dirty pages we'd like to write
1198  */
1199 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1200 {
1201 	int ret;
1202 	int ret2;
1203 	struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1204 	struct btrfs_fs_info *fs_info = trans->fs_info;
1205 	struct blk_plug plug;
1206 
1207 	blk_start_plug(&plug);
1208 	ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1209 	blk_finish_plug(&plug);
1210 	ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1211 
1212 	extent_io_tree_release(&trans->transaction->dirty_pages);
1213 
1214 	if (ret)
1215 		return ret;
1216 	else if (ret2)
1217 		return ret2;
1218 	else
1219 		return 0;
1220 }
1221 
1222 /*
1223  * this is used to update the root pointer in the tree of tree roots.
1224  *
1225  * But, in the case of the extent allocation tree, updating the root
1226  * pointer may allocate blocks which may change the root of the extent
1227  * allocation tree.
1228  *
1229  * So, this loops and repeats and makes sure the cowonly root didn't
1230  * change while the root pointer was being updated in the metadata.
1231  */
1232 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1233 			       struct btrfs_root *root)
1234 {
1235 	int ret;
1236 	u64 old_root_bytenr;
1237 	u64 old_root_used;
1238 	struct btrfs_fs_info *fs_info = root->fs_info;
1239 	struct btrfs_root *tree_root = fs_info->tree_root;
1240 
1241 	old_root_used = btrfs_root_used(&root->root_item);
1242 
1243 	while (1) {
1244 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1245 		if (old_root_bytenr == root->node->start &&
1246 		    old_root_used == btrfs_root_used(&root->root_item))
1247 			break;
1248 
1249 		btrfs_set_root_node(&root->root_item, root->node);
1250 		ret = btrfs_update_root(trans, tree_root,
1251 					&root->root_key,
1252 					&root->root_item);
1253 		if (ret)
1254 			return ret;
1255 
1256 		old_root_used = btrfs_root_used(&root->root_item);
1257 	}
1258 
1259 	return 0;
1260 }
1261 
1262 /*
1263  * update all the cowonly tree roots on disk
1264  *
1265  * The error handling in this function may not be obvious. Any of the
1266  * failures will cause the file system to go offline. We still need
1267  * to clean up the delayed refs.
1268  */
1269 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1270 {
1271 	struct btrfs_fs_info *fs_info = trans->fs_info;
1272 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1273 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1274 	struct list_head *next;
1275 	struct extent_buffer *eb;
1276 	int ret;
1277 
1278 	/*
1279 	 * At this point no one can be using this transaction to modify any tree
1280 	 * and no one can start another transaction to modify any tree either.
1281 	 */
1282 	ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1283 
1284 	eb = btrfs_lock_root_node(fs_info->tree_root);
1285 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1286 			      0, &eb, BTRFS_NESTING_COW);
1287 	btrfs_tree_unlock(eb);
1288 	free_extent_buffer(eb);
1289 
1290 	if (ret)
1291 		return ret;
1292 
1293 	ret = btrfs_run_dev_stats(trans);
1294 	if (ret)
1295 		return ret;
1296 	ret = btrfs_run_dev_replace(trans);
1297 	if (ret)
1298 		return ret;
1299 	ret = btrfs_run_qgroups(trans);
1300 	if (ret)
1301 		return ret;
1302 
1303 	ret = btrfs_setup_space_cache(trans);
1304 	if (ret)
1305 		return ret;
1306 
1307 again:
1308 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1309 		struct btrfs_root *root;
1310 		next = fs_info->dirty_cowonly_roots.next;
1311 		list_del_init(next);
1312 		root = list_entry(next, struct btrfs_root, dirty_list);
1313 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1314 
1315 		list_add_tail(&root->dirty_list,
1316 			      &trans->transaction->switch_commits);
1317 		ret = update_cowonly_root(trans, root);
1318 		if (ret)
1319 			return ret;
1320 	}
1321 
1322 	/* Now flush any delayed refs generated by updating all of the roots */
1323 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1324 	if (ret)
1325 		return ret;
1326 
1327 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1328 		ret = btrfs_write_dirty_block_groups(trans);
1329 		if (ret)
1330 			return ret;
1331 
1332 		/*
1333 		 * We're writing the dirty block groups, which could generate
1334 		 * delayed refs, which could generate more dirty block groups,
1335 		 * so we want to keep this flushing in this loop to make sure
1336 		 * everything gets run.
1337 		 */
1338 		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1339 		if (ret)
1340 			return ret;
1341 	}
1342 
1343 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1344 		goto again;
1345 
1346 	/* Update dev-replace pointer once everything is committed */
1347 	fs_info->dev_replace.committed_cursor_left =
1348 		fs_info->dev_replace.cursor_left_last_write_of_item;
1349 
1350 	return 0;
1351 }
1352 
1353 /*
1354  * If we had a pending drop we need to see if there are any others left in our
1355  * dead roots list, and if not clear our bit and wake any waiters.
1356  */
1357 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1358 {
1359 	/*
1360 	 * We put the drop in progress roots at the front of the list, so if the
1361 	 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1362 	 * up.
1363 	 */
1364 	spin_lock(&fs_info->trans_lock);
1365 	if (!list_empty(&fs_info->dead_roots)) {
1366 		struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1367 							   struct btrfs_root,
1368 							   root_list);
1369 		if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1370 			spin_unlock(&fs_info->trans_lock);
1371 			return;
1372 		}
1373 	}
1374 	spin_unlock(&fs_info->trans_lock);
1375 
1376 	btrfs_wake_unfinished_drop(fs_info);
1377 }
1378 
1379 /*
1380  * dead roots are old snapshots that need to be deleted.  This allocates
1381  * a dirty root struct and adds it into the list of dead roots that need to
1382  * be deleted
1383  */
1384 void btrfs_add_dead_root(struct btrfs_root *root)
1385 {
1386 	struct btrfs_fs_info *fs_info = root->fs_info;
1387 
1388 	spin_lock(&fs_info->trans_lock);
1389 	if (list_empty(&root->root_list)) {
1390 		btrfs_grab_root(root);
1391 
1392 		/* We want to process the partially complete drops first. */
1393 		if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1394 			list_add(&root->root_list, &fs_info->dead_roots);
1395 		else
1396 			list_add_tail(&root->root_list, &fs_info->dead_roots);
1397 	}
1398 	spin_unlock(&fs_info->trans_lock);
1399 }
1400 
1401 /*
1402  * Update each subvolume root and its relocation root, if it exists, in the tree
1403  * of tree roots. Also free log roots if they exist.
1404  */
1405 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1406 {
1407 	struct btrfs_fs_info *fs_info = trans->fs_info;
1408 	struct btrfs_root *gang[8];
1409 	int i;
1410 	int ret;
1411 
1412 	/*
1413 	 * At this point no one can be using this transaction to modify any tree
1414 	 * and no one can start another transaction to modify any tree either.
1415 	 */
1416 	ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1417 
1418 	spin_lock(&fs_info->fs_roots_radix_lock);
1419 	while (1) {
1420 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1421 						 (void **)gang, 0,
1422 						 ARRAY_SIZE(gang),
1423 						 BTRFS_ROOT_TRANS_TAG);
1424 		if (ret == 0)
1425 			break;
1426 		for (i = 0; i < ret; i++) {
1427 			struct btrfs_root *root = gang[i];
1428 			int ret2;
1429 
1430 			/*
1431 			 * At this point we can neither have tasks logging inodes
1432 			 * from a root nor trying to commit a log tree.
1433 			 */
1434 			ASSERT(atomic_read(&root->log_writers) == 0);
1435 			ASSERT(atomic_read(&root->log_commit[0]) == 0);
1436 			ASSERT(atomic_read(&root->log_commit[1]) == 0);
1437 
1438 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1439 					(unsigned long)root->root_key.objectid,
1440 					BTRFS_ROOT_TRANS_TAG);
1441 			spin_unlock(&fs_info->fs_roots_radix_lock);
1442 
1443 			btrfs_free_log(trans, root);
1444 			ret2 = btrfs_update_reloc_root(trans, root);
1445 			if (ret2)
1446 				return ret2;
1447 
1448 			/* see comments in should_cow_block() */
1449 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1450 			smp_mb__after_atomic();
1451 
1452 			if (root->commit_root != root->node) {
1453 				list_add_tail(&root->dirty_list,
1454 					&trans->transaction->switch_commits);
1455 				btrfs_set_root_node(&root->root_item,
1456 						    root->node);
1457 			}
1458 
1459 			ret2 = btrfs_update_root(trans, fs_info->tree_root,
1460 						&root->root_key,
1461 						&root->root_item);
1462 			if (ret2)
1463 				return ret2;
1464 			spin_lock(&fs_info->fs_roots_radix_lock);
1465 			btrfs_qgroup_free_meta_all_pertrans(root);
1466 		}
1467 	}
1468 	spin_unlock(&fs_info->fs_roots_radix_lock);
1469 	return 0;
1470 }
1471 
1472 /*
1473  * defrag a given btree.
1474  * Every leaf in the btree is read and defragged.
1475  */
1476 int btrfs_defrag_root(struct btrfs_root *root)
1477 {
1478 	struct btrfs_fs_info *info = root->fs_info;
1479 	struct btrfs_trans_handle *trans;
1480 	int ret;
1481 
1482 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1483 		return 0;
1484 
1485 	while (1) {
1486 		trans = btrfs_start_transaction(root, 0);
1487 		if (IS_ERR(trans)) {
1488 			ret = PTR_ERR(trans);
1489 			break;
1490 		}
1491 
1492 		ret = btrfs_defrag_leaves(trans, root);
1493 
1494 		btrfs_end_transaction(trans);
1495 		btrfs_btree_balance_dirty(info);
1496 		cond_resched();
1497 
1498 		if (btrfs_fs_closing(info) || ret != -EAGAIN)
1499 			break;
1500 
1501 		if (btrfs_defrag_cancelled(info)) {
1502 			btrfs_debug(info, "defrag_root cancelled");
1503 			ret = -EAGAIN;
1504 			break;
1505 		}
1506 	}
1507 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1508 	return ret;
1509 }
1510 
1511 /*
1512  * Do all special snapshot related qgroup dirty hack.
1513  *
1514  * Will do all needed qgroup inherit and dirty hack like switch commit
1515  * roots inside one transaction and write all btree into disk, to make
1516  * qgroup works.
1517  */
1518 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1519 				   struct btrfs_root *src,
1520 				   struct btrfs_root *parent,
1521 				   struct btrfs_qgroup_inherit *inherit,
1522 				   u64 dst_objectid)
1523 {
1524 	struct btrfs_fs_info *fs_info = src->fs_info;
1525 	int ret;
1526 
1527 	/*
1528 	 * Save some performance in the case that qgroups are not
1529 	 * enabled. If this check races with the ioctl, rescan will
1530 	 * kick in anyway.
1531 	 */
1532 	if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1533 		return 0;
1534 
1535 	/*
1536 	 * Ensure dirty @src will be committed.  Or, after coming
1537 	 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1538 	 * recorded root will never be updated again, causing an outdated root
1539 	 * item.
1540 	 */
1541 	ret = record_root_in_trans(trans, src, 1);
1542 	if (ret)
1543 		return ret;
1544 
1545 	/*
1546 	 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1547 	 * src root, so we must run the delayed refs here.
1548 	 *
1549 	 * However this isn't particularly fool proof, because there's no
1550 	 * synchronization keeping us from changing the tree after this point
1551 	 * before we do the qgroup_inherit, or even from making changes while
1552 	 * we're doing the qgroup_inherit.  But that's a problem for the future,
1553 	 * for now flush the delayed refs to narrow the race window where the
1554 	 * qgroup counters could end up wrong.
1555 	 */
1556 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1557 	if (ret) {
1558 		btrfs_abort_transaction(trans, ret);
1559 		return ret;
1560 	}
1561 
1562 	ret = commit_fs_roots(trans);
1563 	if (ret)
1564 		goto out;
1565 	ret = btrfs_qgroup_account_extents(trans);
1566 	if (ret < 0)
1567 		goto out;
1568 
1569 	/* Now qgroup are all updated, we can inherit it to new qgroups */
1570 	ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1571 				   inherit);
1572 	if (ret < 0)
1573 		goto out;
1574 
1575 	/*
1576 	 * Now we do a simplified commit transaction, which will:
1577 	 * 1) commit all subvolume and extent tree
1578 	 *    To ensure all subvolume and extent tree have a valid
1579 	 *    commit_root to accounting later insert_dir_item()
1580 	 * 2) write all btree blocks onto disk
1581 	 *    This is to make sure later btree modification will be cowed
1582 	 *    Or commit_root can be populated and cause wrong qgroup numbers
1583 	 * In this simplified commit, we don't really care about other trees
1584 	 * like chunk and root tree, as they won't affect qgroup.
1585 	 * And we don't write super to avoid half committed status.
1586 	 */
1587 	ret = commit_cowonly_roots(trans);
1588 	if (ret)
1589 		goto out;
1590 	switch_commit_roots(trans);
1591 	ret = btrfs_write_and_wait_transaction(trans);
1592 	if (ret)
1593 		btrfs_handle_fs_error(fs_info, ret,
1594 			"Error while writing out transaction for qgroup");
1595 
1596 out:
1597 	/*
1598 	 * Force parent root to be updated, as we recorded it before so its
1599 	 * last_trans == cur_transid.
1600 	 * Or it won't be committed again onto disk after later
1601 	 * insert_dir_item()
1602 	 */
1603 	if (!ret)
1604 		ret = record_root_in_trans(trans, parent, 1);
1605 	return ret;
1606 }
1607 
1608 /*
1609  * new snapshots need to be created at a very specific time in the
1610  * transaction commit.  This does the actual creation.
1611  *
1612  * Note:
1613  * If the error which may affect the commitment of the current transaction
1614  * happens, we should return the error number. If the error which just affect
1615  * the creation of the pending snapshots, just return 0.
1616  */
1617 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1618 				   struct btrfs_pending_snapshot *pending)
1619 {
1620 
1621 	struct btrfs_fs_info *fs_info = trans->fs_info;
1622 	struct btrfs_key key;
1623 	struct btrfs_root_item *new_root_item;
1624 	struct btrfs_root *tree_root = fs_info->tree_root;
1625 	struct btrfs_root *root = pending->root;
1626 	struct btrfs_root *parent_root;
1627 	struct btrfs_block_rsv *rsv;
1628 	struct inode *parent_inode;
1629 	struct btrfs_path *path;
1630 	struct btrfs_dir_item *dir_item;
1631 	struct dentry *dentry;
1632 	struct extent_buffer *tmp;
1633 	struct extent_buffer *old;
1634 	struct timespec64 cur_time;
1635 	int ret = 0;
1636 	u64 to_reserve = 0;
1637 	u64 index = 0;
1638 	u64 objectid;
1639 	u64 root_flags;
1640 
1641 	ASSERT(pending->path);
1642 	path = pending->path;
1643 
1644 	ASSERT(pending->root_item);
1645 	new_root_item = pending->root_item;
1646 
1647 	pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1648 	if (pending->error)
1649 		goto no_free_objectid;
1650 
1651 	/*
1652 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1653 	 * accounted by later btrfs_qgroup_inherit().
1654 	 */
1655 	btrfs_set_skip_qgroup(trans, objectid);
1656 
1657 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1658 
1659 	if (to_reserve > 0) {
1660 		pending->error = btrfs_block_rsv_add(fs_info,
1661 						     &pending->block_rsv,
1662 						     to_reserve,
1663 						     BTRFS_RESERVE_NO_FLUSH);
1664 		if (pending->error)
1665 			goto clear_skip_qgroup;
1666 	}
1667 
1668 	key.objectid = objectid;
1669 	key.offset = (u64)-1;
1670 	key.type = BTRFS_ROOT_ITEM_KEY;
1671 
1672 	rsv = trans->block_rsv;
1673 	trans->block_rsv = &pending->block_rsv;
1674 	trans->bytes_reserved = trans->block_rsv->reserved;
1675 	trace_btrfs_space_reservation(fs_info, "transaction",
1676 				      trans->transid,
1677 				      trans->bytes_reserved, 1);
1678 	dentry = pending->dentry;
1679 	parent_inode = pending->dir;
1680 	parent_root = BTRFS_I(parent_inode)->root;
1681 	ret = record_root_in_trans(trans, parent_root, 0);
1682 	if (ret)
1683 		goto fail;
1684 	cur_time = current_time(parent_inode);
1685 
1686 	/*
1687 	 * insert the directory item
1688 	 */
1689 	ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1690 	BUG_ON(ret); /* -ENOMEM */
1691 
1692 	/* check if there is a file/dir which has the same name. */
1693 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1694 					 btrfs_ino(BTRFS_I(parent_inode)),
1695 					 dentry->d_name.name,
1696 					 dentry->d_name.len, 0);
1697 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1698 		pending->error = -EEXIST;
1699 		goto dir_item_existed;
1700 	} else if (IS_ERR(dir_item)) {
1701 		ret = PTR_ERR(dir_item);
1702 		btrfs_abort_transaction(trans, ret);
1703 		goto fail;
1704 	}
1705 	btrfs_release_path(path);
1706 
1707 	/*
1708 	 * pull in the delayed directory update
1709 	 * and the delayed inode item
1710 	 * otherwise we corrupt the FS during
1711 	 * snapshot
1712 	 */
1713 	ret = btrfs_run_delayed_items(trans);
1714 	if (ret) {	/* Transaction aborted */
1715 		btrfs_abort_transaction(trans, ret);
1716 		goto fail;
1717 	}
1718 
1719 	ret = record_root_in_trans(trans, root, 0);
1720 	if (ret) {
1721 		btrfs_abort_transaction(trans, ret);
1722 		goto fail;
1723 	}
1724 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1725 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1726 	btrfs_check_and_init_root_item(new_root_item);
1727 
1728 	root_flags = btrfs_root_flags(new_root_item);
1729 	if (pending->readonly)
1730 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1731 	else
1732 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1733 	btrfs_set_root_flags(new_root_item, root_flags);
1734 
1735 	btrfs_set_root_generation_v2(new_root_item,
1736 			trans->transid);
1737 	generate_random_guid(new_root_item->uuid);
1738 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1739 			BTRFS_UUID_SIZE);
1740 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1741 		memset(new_root_item->received_uuid, 0,
1742 		       sizeof(new_root_item->received_uuid));
1743 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1744 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1745 		btrfs_set_root_stransid(new_root_item, 0);
1746 		btrfs_set_root_rtransid(new_root_item, 0);
1747 	}
1748 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1749 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1750 	btrfs_set_root_otransid(new_root_item, trans->transid);
1751 
1752 	old = btrfs_lock_root_node(root);
1753 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1754 			      BTRFS_NESTING_COW);
1755 	if (ret) {
1756 		btrfs_tree_unlock(old);
1757 		free_extent_buffer(old);
1758 		btrfs_abort_transaction(trans, ret);
1759 		goto fail;
1760 	}
1761 
1762 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1763 	/* clean up in any case */
1764 	btrfs_tree_unlock(old);
1765 	free_extent_buffer(old);
1766 	if (ret) {
1767 		btrfs_abort_transaction(trans, ret);
1768 		goto fail;
1769 	}
1770 	/* see comments in should_cow_block() */
1771 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1772 	smp_wmb();
1773 
1774 	btrfs_set_root_node(new_root_item, tmp);
1775 	/* record when the snapshot was created in key.offset */
1776 	key.offset = trans->transid;
1777 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1778 	btrfs_tree_unlock(tmp);
1779 	free_extent_buffer(tmp);
1780 	if (ret) {
1781 		btrfs_abort_transaction(trans, ret);
1782 		goto fail;
1783 	}
1784 
1785 	/*
1786 	 * insert root back/forward references
1787 	 */
1788 	ret = btrfs_add_root_ref(trans, objectid,
1789 				 parent_root->root_key.objectid,
1790 				 btrfs_ino(BTRFS_I(parent_inode)), index,
1791 				 dentry->d_name.name, dentry->d_name.len);
1792 	if (ret) {
1793 		btrfs_abort_transaction(trans, ret);
1794 		goto fail;
1795 	}
1796 
1797 	key.offset = (u64)-1;
1798 	pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1799 	if (IS_ERR(pending->snap)) {
1800 		ret = PTR_ERR(pending->snap);
1801 		pending->snap = NULL;
1802 		btrfs_abort_transaction(trans, ret);
1803 		goto fail;
1804 	}
1805 
1806 	ret = btrfs_reloc_post_snapshot(trans, pending);
1807 	if (ret) {
1808 		btrfs_abort_transaction(trans, ret);
1809 		goto fail;
1810 	}
1811 
1812 	/*
1813 	 * Do special qgroup accounting for snapshot, as we do some qgroup
1814 	 * snapshot hack to do fast snapshot.
1815 	 * To co-operate with that hack, we do hack again.
1816 	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1817 	 */
1818 	ret = qgroup_account_snapshot(trans, root, parent_root,
1819 				      pending->inherit, objectid);
1820 	if (ret < 0)
1821 		goto fail;
1822 
1823 	ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1824 				    dentry->d_name.len, BTRFS_I(parent_inode),
1825 				    &key, BTRFS_FT_DIR, index);
1826 	/* We have check then name at the beginning, so it is impossible. */
1827 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1828 	if (ret) {
1829 		btrfs_abort_transaction(trans, ret);
1830 		goto fail;
1831 	}
1832 
1833 	btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1834 					 dentry->d_name.len * 2);
1835 	parent_inode->i_mtime = current_time(parent_inode);
1836 	parent_inode->i_ctime = parent_inode->i_mtime;
1837 	ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
1838 	if (ret) {
1839 		btrfs_abort_transaction(trans, ret);
1840 		goto fail;
1841 	}
1842 	ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1843 				  BTRFS_UUID_KEY_SUBVOL,
1844 				  objectid);
1845 	if (ret) {
1846 		btrfs_abort_transaction(trans, ret);
1847 		goto fail;
1848 	}
1849 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1850 		ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1851 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1852 					  objectid);
1853 		if (ret && ret != -EEXIST) {
1854 			btrfs_abort_transaction(trans, ret);
1855 			goto fail;
1856 		}
1857 	}
1858 
1859 fail:
1860 	pending->error = ret;
1861 dir_item_existed:
1862 	trans->block_rsv = rsv;
1863 	trans->bytes_reserved = 0;
1864 clear_skip_qgroup:
1865 	btrfs_clear_skip_qgroup(trans);
1866 no_free_objectid:
1867 	kfree(new_root_item);
1868 	pending->root_item = NULL;
1869 	btrfs_free_path(path);
1870 	pending->path = NULL;
1871 
1872 	return ret;
1873 }
1874 
1875 /*
1876  * create all the snapshots we've scheduled for creation
1877  */
1878 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1879 {
1880 	struct btrfs_pending_snapshot *pending, *next;
1881 	struct list_head *head = &trans->transaction->pending_snapshots;
1882 	int ret = 0;
1883 
1884 	list_for_each_entry_safe(pending, next, head, list) {
1885 		list_del(&pending->list);
1886 		ret = create_pending_snapshot(trans, pending);
1887 		if (ret)
1888 			break;
1889 	}
1890 	return ret;
1891 }
1892 
1893 static void update_super_roots(struct btrfs_fs_info *fs_info)
1894 {
1895 	struct btrfs_root_item *root_item;
1896 	struct btrfs_super_block *super;
1897 
1898 	super = fs_info->super_copy;
1899 
1900 	root_item = &fs_info->chunk_root->root_item;
1901 	super->chunk_root = root_item->bytenr;
1902 	super->chunk_root_generation = root_item->generation;
1903 	super->chunk_root_level = root_item->level;
1904 
1905 	root_item = &fs_info->tree_root->root_item;
1906 	super->root = root_item->bytenr;
1907 	super->generation = root_item->generation;
1908 	super->root_level = root_item->level;
1909 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
1910 		super->cache_generation = root_item->generation;
1911 	else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1912 		super->cache_generation = 0;
1913 	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1914 		super->uuid_tree_generation = root_item->generation;
1915 
1916 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
1917 		root_item = &fs_info->block_group_root->root_item;
1918 
1919 		super->block_group_root = root_item->bytenr;
1920 		super->block_group_root_generation = root_item->generation;
1921 		super->block_group_root_level = root_item->level;
1922 	}
1923 }
1924 
1925 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1926 {
1927 	struct btrfs_transaction *trans;
1928 	int ret = 0;
1929 
1930 	spin_lock(&info->trans_lock);
1931 	trans = info->running_transaction;
1932 	if (trans)
1933 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1934 	spin_unlock(&info->trans_lock);
1935 	return ret;
1936 }
1937 
1938 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1939 {
1940 	struct btrfs_transaction *trans;
1941 	int ret = 0;
1942 
1943 	spin_lock(&info->trans_lock);
1944 	trans = info->running_transaction;
1945 	if (trans)
1946 		ret = is_transaction_blocked(trans);
1947 	spin_unlock(&info->trans_lock);
1948 	return ret;
1949 }
1950 
1951 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1952 {
1953 	struct btrfs_fs_info *fs_info = trans->fs_info;
1954 	struct btrfs_transaction *cur_trans;
1955 
1956 	/* Kick the transaction kthread. */
1957 	set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1958 	wake_up_process(fs_info->transaction_kthread);
1959 
1960 	/* take transaction reference */
1961 	cur_trans = trans->transaction;
1962 	refcount_inc(&cur_trans->use_count);
1963 
1964 	btrfs_end_transaction(trans);
1965 
1966 	/*
1967 	 * Wait for the current transaction commit to start and block
1968 	 * subsequent transaction joins
1969 	 */
1970 	wait_event(fs_info->transaction_blocked_wait,
1971 		   cur_trans->state >= TRANS_STATE_COMMIT_START ||
1972 		   TRANS_ABORTED(cur_trans));
1973 	btrfs_put_transaction(cur_trans);
1974 }
1975 
1976 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1977 {
1978 	struct btrfs_fs_info *fs_info = trans->fs_info;
1979 	struct btrfs_transaction *cur_trans = trans->transaction;
1980 
1981 	WARN_ON(refcount_read(&trans->use_count) > 1);
1982 
1983 	btrfs_abort_transaction(trans, err);
1984 
1985 	spin_lock(&fs_info->trans_lock);
1986 
1987 	/*
1988 	 * If the transaction is removed from the list, it means this
1989 	 * transaction has been committed successfully, so it is impossible
1990 	 * to call the cleanup function.
1991 	 */
1992 	BUG_ON(list_empty(&cur_trans->list));
1993 
1994 	if (cur_trans == fs_info->running_transaction) {
1995 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1996 		spin_unlock(&fs_info->trans_lock);
1997 		wait_event(cur_trans->writer_wait,
1998 			   atomic_read(&cur_trans->num_writers) == 1);
1999 
2000 		spin_lock(&fs_info->trans_lock);
2001 	}
2002 
2003 	/*
2004 	 * Now that we know no one else is still using the transaction we can
2005 	 * remove the transaction from the list of transactions. This avoids
2006 	 * the transaction kthread from cleaning up the transaction while some
2007 	 * other task is still using it, which could result in a use-after-free
2008 	 * on things like log trees, as it forces the transaction kthread to
2009 	 * wait for this transaction to be cleaned up by us.
2010 	 */
2011 	list_del_init(&cur_trans->list);
2012 
2013 	spin_unlock(&fs_info->trans_lock);
2014 
2015 	btrfs_cleanup_one_transaction(trans->transaction, fs_info);
2016 
2017 	spin_lock(&fs_info->trans_lock);
2018 	if (cur_trans == fs_info->running_transaction)
2019 		fs_info->running_transaction = NULL;
2020 	spin_unlock(&fs_info->trans_lock);
2021 
2022 	if (trans->type & __TRANS_FREEZABLE)
2023 		sb_end_intwrite(fs_info->sb);
2024 	btrfs_put_transaction(cur_trans);
2025 	btrfs_put_transaction(cur_trans);
2026 
2027 	trace_btrfs_transaction_commit(fs_info);
2028 
2029 	if (current->journal_info == trans)
2030 		current->journal_info = NULL;
2031 	btrfs_scrub_cancel(fs_info);
2032 
2033 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2034 }
2035 
2036 /*
2037  * Release reserved delayed ref space of all pending block groups of the
2038  * transaction and remove them from the list
2039  */
2040 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2041 {
2042        struct btrfs_fs_info *fs_info = trans->fs_info;
2043        struct btrfs_block_group *block_group, *tmp;
2044 
2045        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2046                btrfs_delayed_refs_rsv_release(fs_info, 1);
2047                list_del_init(&block_group->bg_list);
2048        }
2049 }
2050 
2051 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2052 {
2053 	/*
2054 	 * We use try_to_writeback_inodes_sb() here because if we used
2055 	 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2056 	 * Currently are holding the fs freeze lock, if we do an async flush
2057 	 * we'll do btrfs_join_transaction() and deadlock because we need to
2058 	 * wait for the fs freeze lock.  Using the direct flushing we benefit
2059 	 * from already being in a transaction and our join_transaction doesn't
2060 	 * have to re-take the fs freeze lock.
2061 	 *
2062 	 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2063 	 * if it can read lock sb->s_umount. It will always be able to lock it,
2064 	 * except when the filesystem is being unmounted or being frozen, but in
2065 	 * those cases sync_filesystem() is called, which results in calling
2066 	 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2067 	 * Note that we don't call writeback_inodes_sb() directly, because it
2068 	 * will emit a warning if sb->s_umount is not locked.
2069 	 */
2070 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2071 		try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2072 	return 0;
2073 }
2074 
2075 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2076 {
2077 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2078 		btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2079 }
2080 
2081 /*
2082  * Add a pending snapshot associated with the given transaction handle to the
2083  * respective handle. This must be called after the transaction commit started
2084  * and while holding fs_info->trans_lock.
2085  * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2086  * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2087  * returns an error.
2088  */
2089 static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2090 {
2091 	struct btrfs_transaction *cur_trans = trans->transaction;
2092 
2093 	if (!trans->pending_snapshot)
2094 		return;
2095 
2096 	lockdep_assert_held(&trans->fs_info->trans_lock);
2097 	ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_START);
2098 
2099 	list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2100 }
2101 
2102 static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2103 {
2104 	fs_info->commit_stats.commit_count++;
2105 	fs_info->commit_stats.last_commit_dur = interval;
2106 	fs_info->commit_stats.max_commit_dur =
2107 			max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2108 	fs_info->commit_stats.total_commit_dur += interval;
2109 }
2110 
2111 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2112 {
2113 	struct btrfs_fs_info *fs_info = trans->fs_info;
2114 	struct btrfs_transaction *cur_trans = trans->transaction;
2115 	struct btrfs_transaction *prev_trans = NULL;
2116 	int ret;
2117 	ktime_t start_time;
2118 	ktime_t interval;
2119 
2120 	ASSERT(refcount_read(&trans->use_count) == 1);
2121 
2122 	/* Stop the commit early if ->aborted is set */
2123 	if (TRANS_ABORTED(cur_trans)) {
2124 		ret = cur_trans->aborted;
2125 		btrfs_end_transaction(trans);
2126 		return ret;
2127 	}
2128 
2129 	btrfs_trans_release_metadata(trans);
2130 	trans->block_rsv = NULL;
2131 
2132 	/*
2133 	 * We only want one transaction commit doing the flushing so we do not
2134 	 * waste a bunch of time on lock contention on the extent root node.
2135 	 */
2136 	if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2137 			      &cur_trans->delayed_refs.flags)) {
2138 		/*
2139 		 * Make a pass through all the delayed refs we have so far.
2140 		 * Any running threads may add more while we are here.
2141 		 */
2142 		ret = btrfs_run_delayed_refs(trans, 0);
2143 		if (ret) {
2144 			btrfs_end_transaction(trans);
2145 			return ret;
2146 		}
2147 	}
2148 
2149 	btrfs_create_pending_block_groups(trans);
2150 
2151 	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2152 		int run_it = 0;
2153 
2154 		/* this mutex is also taken before trying to set
2155 		 * block groups readonly.  We need to make sure
2156 		 * that nobody has set a block group readonly
2157 		 * after a extents from that block group have been
2158 		 * allocated for cache files.  btrfs_set_block_group_ro
2159 		 * will wait for the transaction to commit if it
2160 		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2161 		 *
2162 		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2163 		 * only one process starts all the block group IO.  It wouldn't
2164 		 * hurt to have more than one go through, but there's no
2165 		 * real advantage to it either.
2166 		 */
2167 		mutex_lock(&fs_info->ro_block_group_mutex);
2168 		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2169 				      &cur_trans->flags))
2170 			run_it = 1;
2171 		mutex_unlock(&fs_info->ro_block_group_mutex);
2172 
2173 		if (run_it) {
2174 			ret = btrfs_start_dirty_block_groups(trans);
2175 			if (ret) {
2176 				btrfs_end_transaction(trans);
2177 				return ret;
2178 			}
2179 		}
2180 	}
2181 
2182 	spin_lock(&fs_info->trans_lock);
2183 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2184 		enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2185 
2186 		add_pending_snapshot(trans);
2187 
2188 		spin_unlock(&fs_info->trans_lock);
2189 		refcount_inc(&cur_trans->use_count);
2190 
2191 		if (trans->in_fsync)
2192 			want_state = TRANS_STATE_SUPER_COMMITTED;
2193 		ret = btrfs_end_transaction(trans);
2194 		wait_for_commit(cur_trans, want_state);
2195 
2196 		if (TRANS_ABORTED(cur_trans))
2197 			ret = cur_trans->aborted;
2198 
2199 		btrfs_put_transaction(cur_trans);
2200 
2201 		return ret;
2202 	}
2203 
2204 	cur_trans->state = TRANS_STATE_COMMIT_START;
2205 	wake_up(&fs_info->transaction_blocked_wait);
2206 
2207 	if (cur_trans->list.prev != &fs_info->trans_list) {
2208 		enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2209 
2210 		if (trans->in_fsync)
2211 			want_state = TRANS_STATE_SUPER_COMMITTED;
2212 
2213 		prev_trans = list_entry(cur_trans->list.prev,
2214 					struct btrfs_transaction, list);
2215 		if (prev_trans->state < want_state) {
2216 			refcount_inc(&prev_trans->use_count);
2217 			spin_unlock(&fs_info->trans_lock);
2218 
2219 			wait_for_commit(prev_trans, want_state);
2220 
2221 			ret = READ_ONCE(prev_trans->aborted);
2222 
2223 			btrfs_put_transaction(prev_trans);
2224 			if (ret)
2225 				goto cleanup_transaction;
2226 		} else {
2227 			spin_unlock(&fs_info->trans_lock);
2228 		}
2229 	} else {
2230 		spin_unlock(&fs_info->trans_lock);
2231 		/*
2232 		 * The previous transaction was aborted and was already removed
2233 		 * from the list of transactions at fs_info->trans_list. So we
2234 		 * abort to prevent writing a new superblock that reflects a
2235 		 * corrupt state (pointing to trees with unwritten nodes/leafs).
2236 		 */
2237 		if (BTRFS_FS_ERROR(fs_info)) {
2238 			ret = -EROFS;
2239 			goto cleanup_transaction;
2240 		}
2241 	}
2242 
2243 	/*
2244 	 * Get the time spent on the work done by the commit thread and not
2245 	 * the time spent waiting on a previous commit
2246 	 */
2247 	start_time = ktime_get_ns();
2248 
2249 	extwriter_counter_dec(cur_trans, trans->type);
2250 
2251 	ret = btrfs_start_delalloc_flush(fs_info);
2252 	if (ret)
2253 		goto cleanup_transaction;
2254 
2255 	ret = btrfs_run_delayed_items(trans);
2256 	if (ret)
2257 		goto cleanup_transaction;
2258 
2259 	wait_event(cur_trans->writer_wait,
2260 		   extwriter_counter_read(cur_trans) == 0);
2261 
2262 	/* some pending stuffs might be added after the previous flush. */
2263 	ret = btrfs_run_delayed_items(trans);
2264 	if (ret)
2265 		goto cleanup_transaction;
2266 
2267 	btrfs_wait_delalloc_flush(fs_info);
2268 
2269 	/*
2270 	 * Wait for all ordered extents started by a fast fsync that joined this
2271 	 * transaction. Otherwise if this transaction commits before the ordered
2272 	 * extents complete we lose logged data after a power failure.
2273 	 */
2274 	wait_event(cur_trans->pending_wait,
2275 		   atomic_read(&cur_trans->pending_ordered) == 0);
2276 
2277 	btrfs_scrub_pause(fs_info);
2278 	/*
2279 	 * Ok now we need to make sure to block out any other joins while we
2280 	 * commit the transaction.  We could have started a join before setting
2281 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2282 	 */
2283 	spin_lock(&fs_info->trans_lock);
2284 	add_pending_snapshot(trans);
2285 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2286 	spin_unlock(&fs_info->trans_lock);
2287 	wait_event(cur_trans->writer_wait,
2288 		   atomic_read(&cur_trans->num_writers) == 1);
2289 
2290 	/*
2291 	 * We've started the commit, clear the flag in case we were triggered to
2292 	 * do an async commit but somebody else started before the transaction
2293 	 * kthread could do the work.
2294 	 */
2295 	clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2296 
2297 	if (TRANS_ABORTED(cur_trans)) {
2298 		ret = cur_trans->aborted;
2299 		goto scrub_continue;
2300 	}
2301 	/*
2302 	 * the reloc mutex makes sure that we stop
2303 	 * the balancing code from coming in and moving
2304 	 * extents around in the middle of the commit
2305 	 */
2306 	mutex_lock(&fs_info->reloc_mutex);
2307 
2308 	/*
2309 	 * We needn't worry about the delayed items because we will
2310 	 * deal with them in create_pending_snapshot(), which is the
2311 	 * core function of the snapshot creation.
2312 	 */
2313 	ret = create_pending_snapshots(trans);
2314 	if (ret)
2315 		goto unlock_reloc;
2316 
2317 	/*
2318 	 * We insert the dir indexes of the snapshots and update the inode
2319 	 * of the snapshots' parents after the snapshot creation, so there
2320 	 * are some delayed items which are not dealt with. Now deal with
2321 	 * them.
2322 	 *
2323 	 * We needn't worry that this operation will corrupt the snapshots,
2324 	 * because all the tree which are snapshoted will be forced to COW
2325 	 * the nodes and leaves.
2326 	 */
2327 	ret = btrfs_run_delayed_items(trans);
2328 	if (ret)
2329 		goto unlock_reloc;
2330 
2331 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2332 	if (ret)
2333 		goto unlock_reloc;
2334 
2335 	/*
2336 	 * make sure none of the code above managed to slip in a
2337 	 * delayed item
2338 	 */
2339 	btrfs_assert_delayed_root_empty(fs_info);
2340 
2341 	WARN_ON(cur_trans != trans->transaction);
2342 
2343 	ret = commit_fs_roots(trans);
2344 	if (ret)
2345 		goto unlock_reloc;
2346 
2347 	/*
2348 	 * Since the transaction is done, we can apply the pending changes
2349 	 * before the next transaction.
2350 	 */
2351 	btrfs_apply_pending_changes(fs_info);
2352 
2353 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2354 	 * safe to free the root of tree log roots
2355 	 */
2356 	btrfs_free_log_root_tree(trans, fs_info);
2357 
2358 	/*
2359 	 * Since fs roots are all committed, we can get a quite accurate
2360 	 * new_roots. So let's do quota accounting.
2361 	 */
2362 	ret = btrfs_qgroup_account_extents(trans);
2363 	if (ret < 0)
2364 		goto unlock_reloc;
2365 
2366 	ret = commit_cowonly_roots(trans);
2367 	if (ret)
2368 		goto unlock_reloc;
2369 
2370 	/*
2371 	 * The tasks which save the space cache and inode cache may also
2372 	 * update ->aborted, check it.
2373 	 */
2374 	if (TRANS_ABORTED(cur_trans)) {
2375 		ret = cur_trans->aborted;
2376 		goto unlock_reloc;
2377 	}
2378 
2379 	cur_trans = fs_info->running_transaction;
2380 
2381 	btrfs_set_root_node(&fs_info->tree_root->root_item,
2382 			    fs_info->tree_root->node);
2383 	list_add_tail(&fs_info->tree_root->dirty_list,
2384 		      &cur_trans->switch_commits);
2385 
2386 	btrfs_set_root_node(&fs_info->chunk_root->root_item,
2387 			    fs_info->chunk_root->node);
2388 	list_add_tail(&fs_info->chunk_root->dirty_list,
2389 		      &cur_trans->switch_commits);
2390 
2391 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2392 		btrfs_set_root_node(&fs_info->block_group_root->root_item,
2393 				    fs_info->block_group_root->node);
2394 		list_add_tail(&fs_info->block_group_root->dirty_list,
2395 			      &cur_trans->switch_commits);
2396 	}
2397 
2398 	switch_commit_roots(trans);
2399 
2400 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2401 	ASSERT(list_empty(&cur_trans->io_bgs));
2402 	update_super_roots(fs_info);
2403 
2404 	btrfs_set_super_log_root(fs_info->super_copy, 0);
2405 	btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2406 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2407 	       sizeof(*fs_info->super_copy));
2408 
2409 	btrfs_commit_device_sizes(cur_trans);
2410 
2411 	clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2412 	clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2413 
2414 	btrfs_trans_release_chunk_metadata(trans);
2415 
2416 	/*
2417 	 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2418 	 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2419 	 * make sure that before we commit our superblock, no other task can
2420 	 * start a new transaction and commit a log tree before we commit our
2421 	 * superblock. Anyone trying to commit a log tree locks this mutex before
2422 	 * writing its superblock.
2423 	 */
2424 	mutex_lock(&fs_info->tree_log_mutex);
2425 
2426 	spin_lock(&fs_info->trans_lock);
2427 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2428 	fs_info->running_transaction = NULL;
2429 	spin_unlock(&fs_info->trans_lock);
2430 	mutex_unlock(&fs_info->reloc_mutex);
2431 
2432 	wake_up(&fs_info->transaction_wait);
2433 
2434 	ret = btrfs_write_and_wait_transaction(trans);
2435 	if (ret) {
2436 		btrfs_handle_fs_error(fs_info, ret,
2437 				      "Error while writing out transaction");
2438 		mutex_unlock(&fs_info->tree_log_mutex);
2439 		goto scrub_continue;
2440 	}
2441 
2442 	/*
2443 	 * At this point, we should have written all the tree blocks allocated
2444 	 * in this transaction. So it's now safe to free the redirtyied extent
2445 	 * buffers.
2446 	 */
2447 	btrfs_free_redirty_list(cur_trans);
2448 
2449 	ret = write_all_supers(fs_info, 0);
2450 	/*
2451 	 * the super is written, we can safely allow the tree-loggers
2452 	 * to go about their business
2453 	 */
2454 	mutex_unlock(&fs_info->tree_log_mutex);
2455 	if (ret)
2456 		goto scrub_continue;
2457 
2458 	/*
2459 	 * We needn't acquire the lock here because there is no other task
2460 	 * which can change it.
2461 	 */
2462 	cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2463 	wake_up(&cur_trans->commit_wait);
2464 
2465 	btrfs_finish_extent_commit(trans);
2466 
2467 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2468 		btrfs_clear_space_info_full(fs_info);
2469 
2470 	fs_info->last_trans_committed = cur_trans->transid;
2471 	/*
2472 	 * We needn't acquire the lock here because there is no other task
2473 	 * which can change it.
2474 	 */
2475 	cur_trans->state = TRANS_STATE_COMPLETED;
2476 	wake_up(&cur_trans->commit_wait);
2477 
2478 	spin_lock(&fs_info->trans_lock);
2479 	list_del_init(&cur_trans->list);
2480 	spin_unlock(&fs_info->trans_lock);
2481 
2482 	btrfs_put_transaction(cur_trans);
2483 	btrfs_put_transaction(cur_trans);
2484 
2485 	if (trans->type & __TRANS_FREEZABLE)
2486 		sb_end_intwrite(fs_info->sb);
2487 
2488 	trace_btrfs_transaction_commit(fs_info);
2489 
2490 	interval = ktime_get_ns() - start_time;
2491 
2492 	btrfs_scrub_continue(fs_info);
2493 
2494 	if (current->journal_info == trans)
2495 		current->journal_info = NULL;
2496 
2497 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2498 
2499 	update_commit_stats(fs_info, interval);
2500 
2501 	return ret;
2502 
2503 unlock_reloc:
2504 	mutex_unlock(&fs_info->reloc_mutex);
2505 scrub_continue:
2506 	btrfs_scrub_continue(fs_info);
2507 cleanup_transaction:
2508 	btrfs_trans_release_metadata(trans);
2509 	btrfs_cleanup_pending_block_groups(trans);
2510 	btrfs_trans_release_chunk_metadata(trans);
2511 	trans->block_rsv = NULL;
2512 	btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2513 	if (current->journal_info == trans)
2514 		current->journal_info = NULL;
2515 	cleanup_transaction(trans, ret);
2516 
2517 	return ret;
2518 }
2519 
2520 /*
2521  * return < 0 if error
2522  * 0 if there are no more dead_roots at the time of call
2523  * 1 there are more to be processed, call me again
2524  *
2525  * The return value indicates there are certainly more snapshots to delete, but
2526  * if there comes a new one during processing, it may return 0. We don't mind,
2527  * because btrfs_commit_super will poke cleaner thread and it will process it a
2528  * few seconds later.
2529  */
2530 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2531 {
2532 	struct btrfs_root *root;
2533 	int ret;
2534 
2535 	spin_lock(&fs_info->trans_lock);
2536 	if (list_empty(&fs_info->dead_roots)) {
2537 		spin_unlock(&fs_info->trans_lock);
2538 		return 0;
2539 	}
2540 	root = list_first_entry(&fs_info->dead_roots,
2541 			struct btrfs_root, root_list);
2542 	list_del_init(&root->root_list);
2543 	spin_unlock(&fs_info->trans_lock);
2544 
2545 	btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2546 
2547 	btrfs_kill_all_delayed_nodes(root);
2548 
2549 	if (btrfs_header_backref_rev(root->node) <
2550 			BTRFS_MIXED_BACKREF_REV)
2551 		ret = btrfs_drop_snapshot(root, 0, 0);
2552 	else
2553 		ret = btrfs_drop_snapshot(root, 1, 0);
2554 
2555 	btrfs_put_root(root);
2556 	return (ret < 0) ? 0 : 1;
2557 }
2558 
2559 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2560 {
2561 	unsigned long prev;
2562 	unsigned long bit;
2563 
2564 	prev = xchg(&fs_info->pending_changes, 0);
2565 	if (!prev)
2566 		return;
2567 
2568 	bit = 1 << BTRFS_PENDING_COMMIT;
2569 	if (prev & bit)
2570 		btrfs_debug(fs_info, "pending commit done");
2571 	prev &= ~bit;
2572 
2573 	if (prev)
2574 		btrfs_warn(fs_info,
2575 			"unknown pending changes left 0x%lx, ignoring", prev);
2576 }
2577