1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/slab.h> 8 #include <linux/sched.h> 9 #include <linux/writeback.h> 10 #include <linux/pagemap.h> 11 #include <linux/blkdev.h> 12 #include <linux/uuid.h> 13 #include "misc.h" 14 #include "ctree.h" 15 #include "disk-io.h" 16 #include "transaction.h" 17 #include "locking.h" 18 #include "tree-log.h" 19 #include "volumes.h" 20 #include "dev-replace.h" 21 #include "qgroup.h" 22 #include "block-group.h" 23 #include "space-info.h" 24 #include "zoned.h" 25 26 #define BTRFS_ROOT_TRANS_TAG XA_MARK_0 27 28 /* 29 * Transaction states and transitions 30 * 31 * No running transaction (fs tree blocks are not modified) 32 * | 33 * | To next stage: 34 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart(). 35 * V 36 * Transaction N [[TRANS_STATE_RUNNING]] 37 * | 38 * | New trans handles can be attached to transaction N by calling all 39 * | start_transaction() variants. 40 * | 41 * | To next stage: 42 * | Call btrfs_commit_transaction() on any trans handle attached to 43 * | transaction N 44 * V 45 * Transaction N [[TRANS_STATE_COMMIT_START]] 46 * | 47 * | Will wait for previous running transaction to completely finish if there 48 * | is one 49 * | 50 * | Then one of the following happes: 51 * | - Wait for all other trans handle holders to release. 52 * | The btrfs_commit_transaction() caller will do the commit work. 53 * | - Wait for current transaction to be committed by others. 54 * | Other btrfs_commit_transaction() caller will do the commit work. 55 * | 56 * | At this stage, only btrfs_join_transaction*() variants can attach 57 * | to this running transaction. 58 * | All other variants will wait for current one to finish and attach to 59 * | transaction N+1. 60 * | 61 * | To next stage: 62 * | Caller is chosen to commit transaction N, and all other trans handle 63 * | haven been released. 64 * V 65 * Transaction N [[TRANS_STATE_COMMIT_DOING]] 66 * | 67 * | The heavy lifting transaction work is started. 68 * | From running delayed refs (modifying extent tree) to creating pending 69 * | snapshots, running qgroups. 70 * | In short, modify supporting trees to reflect modifications of subvolume 71 * | trees. 72 * | 73 * | At this stage, all start_transaction() calls will wait for this 74 * | transaction to finish and attach to transaction N+1. 75 * | 76 * | To next stage: 77 * | Until all supporting trees are updated. 78 * V 79 * Transaction N [[TRANS_STATE_UNBLOCKED]] 80 * | Transaction N+1 81 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]] 82 * | need to write them back to disk and update | 83 * | super blocks. | 84 * | | 85 * | At this stage, new transaction is allowed to | 86 * | start. | 87 * | All new start_transaction() calls will be | 88 * | attached to transid N+1. | 89 * | | 90 * | To next stage: | 91 * | Until all tree blocks are super blocks are | 92 * | written to block devices | 93 * V | 94 * Transaction N [[TRANS_STATE_COMPLETED]] V 95 * All tree blocks and super blocks are written. Transaction N+1 96 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]] 97 * data structures will be cleaned up. | Life goes on 98 */ 99 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 100 [TRANS_STATE_RUNNING] = 0U, 101 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH), 102 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START | 103 __TRANS_ATTACH | 104 __TRANS_JOIN | 105 __TRANS_JOIN_NOSTART), 106 [TRANS_STATE_UNBLOCKED] = (__TRANS_START | 107 __TRANS_ATTACH | 108 __TRANS_JOIN | 109 __TRANS_JOIN_NOLOCK | 110 __TRANS_JOIN_NOSTART), 111 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START | 112 __TRANS_ATTACH | 113 __TRANS_JOIN | 114 __TRANS_JOIN_NOLOCK | 115 __TRANS_JOIN_NOSTART), 116 [TRANS_STATE_COMPLETED] = (__TRANS_START | 117 __TRANS_ATTACH | 118 __TRANS_JOIN | 119 __TRANS_JOIN_NOLOCK | 120 __TRANS_JOIN_NOSTART), 121 }; 122 123 void btrfs_put_transaction(struct btrfs_transaction *transaction) 124 { 125 WARN_ON(refcount_read(&transaction->use_count) == 0); 126 if (refcount_dec_and_test(&transaction->use_count)) { 127 BUG_ON(!list_empty(&transaction->list)); 128 WARN_ON(!RB_EMPTY_ROOT( 129 &transaction->delayed_refs.href_root.rb_root)); 130 WARN_ON(!RB_EMPTY_ROOT( 131 &transaction->delayed_refs.dirty_extent_root)); 132 if (transaction->delayed_refs.pending_csums) 133 btrfs_err(transaction->fs_info, 134 "pending csums is %llu", 135 transaction->delayed_refs.pending_csums); 136 /* 137 * If any block groups are found in ->deleted_bgs then it's 138 * because the transaction was aborted and a commit did not 139 * happen (things failed before writing the new superblock 140 * and calling btrfs_finish_extent_commit()), so we can not 141 * discard the physical locations of the block groups. 142 */ 143 while (!list_empty(&transaction->deleted_bgs)) { 144 struct btrfs_block_group *cache; 145 146 cache = list_first_entry(&transaction->deleted_bgs, 147 struct btrfs_block_group, 148 bg_list); 149 list_del_init(&cache->bg_list); 150 btrfs_unfreeze_block_group(cache); 151 btrfs_put_block_group(cache); 152 } 153 WARN_ON(!list_empty(&transaction->dev_update_list)); 154 kfree(transaction); 155 } 156 } 157 158 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans) 159 { 160 struct btrfs_transaction *cur_trans = trans->transaction; 161 struct btrfs_fs_info *fs_info = trans->fs_info; 162 struct btrfs_root *root, *tmp; 163 struct btrfs_caching_control *caching_ctl, *next; 164 165 /* 166 * At this point no one can be using this transaction to modify any tree 167 * and no one can start another transaction to modify any tree either. 168 */ 169 ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING); 170 171 down_write(&fs_info->commit_root_sem); 172 173 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 174 fs_info->last_reloc_trans = trans->transid; 175 176 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits, 177 dirty_list) { 178 list_del_init(&root->dirty_list); 179 free_extent_buffer(root->commit_root); 180 root->commit_root = btrfs_root_node(root); 181 extent_io_tree_release(&root->dirty_log_pages); 182 btrfs_qgroup_clean_swapped_blocks(root); 183 } 184 185 /* We can free old roots now. */ 186 spin_lock(&cur_trans->dropped_roots_lock); 187 while (!list_empty(&cur_trans->dropped_roots)) { 188 root = list_first_entry(&cur_trans->dropped_roots, 189 struct btrfs_root, root_list); 190 list_del_init(&root->root_list); 191 spin_unlock(&cur_trans->dropped_roots_lock); 192 btrfs_free_log(trans, root); 193 btrfs_drop_and_free_fs_root(fs_info, root); 194 spin_lock(&cur_trans->dropped_roots_lock); 195 } 196 spin_unlock(&cur_trans->dropped_roots_lock); 197 198 /* 199 * We have to update the last_byte_to_unpin under the commit_root_sem, 200 * at the same time we swap out the commit roots. 201 * 202 * This is because we must have a real view of the last spot the caching 203 * kthreads were while caching. Consider the following views of the 204 * extent tree for a block group 205 * 206 * commit root 207 * +----+----+----+----+----+----+----+ 208 * |\\\\| |\\\\|\\\\| |\\\\|\\\\| 209 * +----+----+----+----+----+----+----+ 210 * 0 1 2 3 4 5 6 7 211 * 212 * new commit root 213 * +----+----+----+----+----+----+----+ 214 * | | | |\\\\| | |\\\\| 215 * +----+----+----+----+----+----+----+ 216 * 0 1 2 3 4 5 6 7 217 * 218 * If the cache_ctl->progress was at 3, then we are only allowed to 219 * unpin [0,1) and [2,3], because the caching thread has already 220 * processed those extents. We are not allowed to unpin [5,6), because 221 * the caching thread will re-start it's search from 3, and thus find 222 * the hole from [4,6) to add to the free space cache. 223 */ 224 write_lock(&fs_info->block_group_cache_lock); 225 list_for_each_entry_safe(caching_ctl, next, 226 &fs_info->caching_block_groups, list) { 227 struct btrfs_block_group *cache = caching_ctl->block_group; 228 229 if (btrfs_block_group_done(cache)) { 230 cache->last_byte_to_unpin = (u64)-1; 231 list_del_init(&caching_ctl->list); 232 btrfs_put_caching_control(caching_ctl); 233 } else { 234 cache->last_byte_to_unpin = caching_ctl->progress; 235 } 236 } 237 write_unlock(&fs_info->block_group_cache_lock); 238 up_write(&fs_info->commit_root_sem); 239 } 240 241 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 242 unsigned int type) 243 { 244 if (type & TRANS_EXTWRITERS) 245 atomic_inc(&trans->num_extwriters); 246 } 247 248 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 249 unsigned int type) 250 { 251 if (type & TRANS_EXTWRITERS) 252 atomic_dec(&trans->num_extwriters); 253 } 254 255 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 256 unsigned int type) 257 { 258 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 259 } 260 261 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 262 { 263 return atomic_read(&trans->num_extwriters); 264 } 265 266 /* 267 * To be called after doing the chunk btree updates right after allocating a new 268 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a 269 * chunk after all chunk btree updates and after finishing the second phase of 270 * chunk allocation (btrfs_create_pending_block_groups()) in case some block 271 * group had its chunk item insertion delayed to the second phase. 272 */ 273 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 274 { 275 struct btrfs_fs_info *fs_info = trans->fs_info; 276 277 if (!trans->chunk_bytes_reserved) 278 return; 279 280 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv, 281 trans->chunk_bytes_reserved, NULL); 282 trans->chunk_bytes_reserved = 0; 283 } 284 285 /* 286 * either allocate a new transaction or hop into the existing one 287 */ 288 static noinline int join_transaction(struct btrfs_fs_info *fs_info, 289 unsigned int type) 290 { 291 struct btrfs_transaction *cur_trans; 292 293 spin_lock(&fs_info->trans_lock); 294 loop: 295 /* The file system has been taken offline. No new transactions. */ 296 if (BTRFS_FS_ERROR(fs_info)) { 297 spin_unlock(&fs_info->trans_lock); 298 return -EROFS; 299 } 300 301 cur_trans = fs_info->running_transaction; 302 if (cur_trans) { 303 if (TRANS_ABORTED(cur_trans)) { 304 spin_unlock(&fs_info->trans_lock); 305 return cur_trans->aborted; 306 } 307 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 308 spin_unlock(&fs_info->trans_lock); 309 return -EBUSY; 310 } 311 refcount_inc(&cur_trans->use_count); 312 atomic_inc(&cur_trans->num_writers); 313 extwriter_counter_inc(cur_trans, type); 314 spin_unlock(&fs_info->trans_lock); 315 return 0; 316 } 317 spin_unlock(&fs_info->trans_lock); 318 319 /* 320 * If we are ATTACH, we just want to catch the current transaction, 321 * and commit it. If there is no transaction, just return ENOENT. 322 */ 323 if (type == TRANS_ATTACH) 324 return -ENOENT; 325 326 /* 327 * JOIN_NOLOCK only happens during the transaction commit, so 328 * it is impossible that ->running_transaction is NULL 329 */ 330 BUG_ON(type == TRANS_JOIN_NOLOCK); 331 332 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS); 333 if (!cur_trans) 334 return -ENOMEM; 335 336 spin_lock(&fs_info->trans_lock); 337 if (fs_info->running_transaction) { 338 /* 339 * someone started a transaction after we unlocked. Make sure 340 * to redo the checks above 341 */ 342 kfree(cur_trans); 343 goto loop; 344 } else if (BTRFS_FS_ERROR(fs_info)) { 345 spin_unlock(&fs_info->trans_lock); 346 kfree(cur_trans); 347 return -EROFS; 348 } 349 350 cur_trans->fs_info = fs_info; 351 atomic_set(&cur_trans->pending_ordered, 0); 352 init_waitqueue_head(&cur_trans->pending_wait); 353 atomic_set(&cur_trans->num_writers, 1); 354 extwriter_counter_init(cur_trans, type); 355 init_waitqueue_head(&cur_trans->writer_wait); 356 init_waitqueue_head(&cur_trans->commit_wait); 357 cur_trans->state = TRANS_STATE_RUNNING; 358 /* 359 * One for this trans handle, one so it will live on until we 360 * commit the transaction. 361 */ 362 refcount_set(&cur_trans->use_count, 2); 363 cur_trans->flags = 0; 364 cur_trans->start_time = ktime_get_seconds(); 365 366 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs)); 367 368 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED; 369 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT; 370 atomic_set(&cur_trans->delayed_refs.num_entries, 0); 371 372 /* 373 * although the tree mod log is per file system and not per transaction, 374 * the log must never go across transaction boundaries. 375 */ 376 smp_mb(); 377 if (!list_empty(&fs_info->tree_mod_seq_list)) 378 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n"); 379 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 380 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n"); 381 atomic64_set(&fs_info->tree_mod_seq, 0); 382 383 spin_lock_init(&cur_trans->delayed_refs.lock); 384 385 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 386 INIT_LIST_HEAD(&cur_trans->dev_update_list); 387 INIT_LIST_HEAD(&cur_trans->switch_commits); 388 INIT_LIST_HEAD(&cur_trans->dirty_bgs); 389 INIT_LIST_HEAD(&cur_trans->io_bgs); 390 INIT_LIST_HEAD(&cur_trans->dropped_roots); 391 mutex_init(&cur_trans->cache_write_mutex); 392 spin_lock_init(&cur_trans->dirty_bgs_lock); 393 INIT_LIST_HEAD(&cur_trans->deleted_bgs); 394 spin_lock_init(&cur_trans->dropped_roots_lock); 395 INIT_LIST_HEAD(&cur_trans->releasing_ebs); 396 spin_lock_init(&cur_trans->releasing_ebs_lock); 397 list_add_tail(&cur_trans->list, &fs_info->trans_list); 398 extent_io_tree_init(fs_info, &cur_trans->dirty_pages, 399 IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode); 400 extent_io_tree_init(fs_info, &cur_trans->pinned_extents, 401 IO_TREE_FS_PINNED_EXTENTS, NULL); 402 fs_info->generation++; 403 cur_trans->transid = fs_info->generation; 404 fs_info->running_transaction = cur_trans; 405 cur_trans->aborted = 0; 406 spin_unlock(&fs_info->trans_lock); 407 408 return 0; 409 } 410 411 /* 412 * This does all the record keeping required to make sure that a shareable root 413 * is properly recorded in a given transaction. This is required to make sure 414 * the old root from before we joined the transaction is deleted when the 415 * transaction commits. 416 */ 417 static int record_root_in_trans(struct btrfs_trans_handle *trans, 418 struct btrfs_root *root, 419 int force) 420 { 421 struct btrfs_fs_info *fs_info = root->fs_info; 422 int ret = 0; 423 424 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 425 root->last_trans < trans->transid) || force) { 426 WARN_ON(!force && root->commit_root != root->node); 427 428 /* 429 * see below for IN_TRANS_SETUP usage rules 430 * we have the reloc mutex held now, so there 431 * is only one writer in this function 432 */ 433 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 434 435 /* make sure readers find IN_TRANS_SETUP before 436 * they find our root->last_trans update 437 */ 438 smp_wmb(); 439 440 spin_lock(&fs_info->fs_roots_lock); 441 if (root->last_trans == trans->transid && !force) { 442 spin_unlock(&fs_info->fs_roots_lock); 443 return 0; 444 } 445 xa_set_mark(&fs_info->fs_roots, 446 (unsigned long)root->root_key.objectid, 447 BTRFS_ROOT_TRANS_TAG); 448 spin_unlock(&fs_info->fs_roots_lock); 449 root->last_trans = trans->transid; 450 451 /* this is pretty tricky. We don't want to 452 * take the relocation lock in btrfs_record_root_in_trans 453 * unless we're really doing the first setup for this root in 454 * this transaction. 455 * 456 * Normally we'd use root->last_trans as a flag to decide 457 * if we want to take the expensive mutex. 458 * 459 * But, we have to set root->last_trans before we 460 * init the relocation root, otherwise, we trip over warnings 461 * in ctree.c. The solution used here is to flag ourselves 462 * with root IN_TRANS_SETUP. When this is 1, we're still 463 * fixing up the reloc trees and everyone must wait. 464 * 465 * When this is zero, they can trust root->last_trans and fly 466 * through btrfs_record_root_in_trans without having to take the 467 * lock. smp_wmb() makes sure that all the writes above are 468 * done before we pop in the zero below 469 */ 470 ret = btrfs_init_reloc_root(trans, root); 471 smp_mb__before_atomic(); 472 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 473 } 474 return ret; 475 } 476 477 478 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans, 479 struct btrfs_root *root) 480 { 481 struct btrfs_fs_info *fs_info = root->fs_info; 482 struct btrfs_transaction *cur_trans = trans->transaction; 483 484 /* Add ourselves to the transaction dropped list */ 485 spin_lock(&cur_trans->dropped_roots_lock); 486 list_add_tail(&root->root_list, &cur_trans->dropped_roots); 487 spin_unlock(&cur_trans->dropped_roots_lock); 488 489 /* Make sure we don't try to update the root at commit time */ 490 xa_clear_mark(&fs_info->fs_roots, 491 (unsigned long)root->root_key.objectid, 492 BTRFS_ROOT_TRANS_TAG); 493 } 494 495 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 496 struct btrfs_root *root) 497 { 498 struct btrfs_fs_info *fs_info = root->fs_info; 499 int ret; 500 501 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 502 return 0; 503 504 /* 505 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 506 * and barriers 507 */ 508 smp_rmb(); 509 if (root->last_trans == trans->transid && 510 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 511 return 0; 512 513 mutex_lock(&fs_info->reloc_mutex); 514 ret = record_root_in_trans(trans, root, 0); 515 mutex_unlock(&fs_info->reloc_mutex); 516 517 return ret; 518 } 519 520 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 521 { 522 return (trans->state >= TRANS_STATE_COMMIT_START && 523 trans->state < TRANS_STATE_UNBLOCKED && 524 !TRANS_ABORTED(trans)); 525 } 526 527 /* wait for commit against the current transaction to become unblocked 528 * when this is done, it is safe to start a new transaction, but the current 529 * transaction might not be fully on disk. 530 */ 531 static void wait_current_trans(struct btrfs_fs_info *fs_info) 532 { 533 struct btrfs_transaction *cur_trans; 534 535 spin_lock(&fs_info->trans_lock); 536 cur_trans = fs_info->running_transaction; 537 if (cur_trans && is_transaction_blocked(cur_trans)) { 538 refcount_inc(&cur_trans->use_count); 539 spin_unlock(&fs_info->trans_lock); 540 541 wait_event(fs_info->transaction_wait, 542 cur_trans->state >= TRANS_STATE_UNBLOCKED || 543 TRANS_ABORTED(cur_trans)); 544 btrfs_put_transaction(cur_trans); 545 } else { 546 spin_unlock(&fs_info->trans_lock); 547 } 548 } 549 550 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type) 551 { 552 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 553 return 0; 554 555 if (type == TRANS_START) 556 return 1; 557 558 return 0; 559 } 560 561 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 562 { 563 struct btrfs_fs_info *fs_info = root->fs_info; 564 565 if (!fs_info->reloc_ctl || 566 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) || 567 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 568 root->reloc_root) 569 return false; 570 571 return true; 572 } 573 574 static struct btrfs_trans_handle * 575 start_transaction(struct btrfs_root *root, unsigned int num_items, 576 unsigned int type, enum btrfs_reserve_flush_enum flush, 577 bool enforce_qgroups) 578 { 579 struct btrfs_fs_info *fs_info = root->fs_info; 580 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 581 struct btrfs_trans_handle *h; 582 struct btrfs_transaction *cur_trans; 583 u64 num_bytes = 0; 584 u64 qgroup_reserved = 0; 585 bool reloc_reserved = false; 586 bool do_chunk_alloc = false; 587 int ret; 588 589 if (BTRFS_FS_ERROR(fs_info)) 590 return ERR_PTR(-EROFS); 591 592 if (current->journal_info) { 593 WARN_ON(type & TRANS_EXTWRITERS); 594 h = current->journal_info; 595 refcount_inc(&h->use_count); 596 WARN_ON(refcount_read(&h->use_count) > 2); 597 h->orig_rsv = h->block_rsv; 598 h->block_rsv = NULL; 599 goto got_it; 600 } 601 602 /* 603 * Do the reservation before we join the transaction so we can do all 604 * the appropriate flushing if need be. 605 */ 606 if (num_items && root != fs_info->chunk_root) { 607 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv; 608 u64 delayed_refs_bytes = 0; 609 610 qgroup_reserved = num_items * fs_info->nodesize; 611 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved, 612 enforce_qgroups); 613 if (ret) 614 return ERR_PTR(ret); 615 616 /* 617 * We want to reserve all the bytes we may need all at once, so 618 * we only do 1 enospc flushing cycle per transaction start. We 619 * accomplish this by simply assuming we'll do 2 x num_items 620 * worth of delayed refs updates in this trans handle, and 621 * refill that amount for whatever is missing in the reserve. 622 */ 623 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items); 624 if (flush == BTRFS_RESERVE_FLUSH_ALL && 625 delayed_refs_rsv->full == 0) { 626 delayed_refs_bytes = num_bytes; 627 num_bytes <<= 1; 628 } 629 630 /* 631 * Do the reservation for the relocation root creation 632 */ 633 if (need_reserve_reloc_root(root)) { 634 num_bytes += fs_info->nodesize; 635 reloc_reserved = true; 636 } 637 638 ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes, flush); 639 if (ret) 640 goto reserve_fail; 641 if (delayed_refs_bytes) { 642 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv, 643 delayed_refs_bytes); 644 num_bytes -= delayed_refs_bytes; 645 } 646 647 if (rsv->space_info->force_alloc) 648 do_chunk_alloc = true; 649 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL && 650 !delayed_refs_rsv->full) { 651 /* 652 * Some people call with btrfs_start_transaction(root, 0) 653 * because they can be throttled, but have some other mechanism 654 * for reserving space. We still want these guys to refill the 655 * delayed block_rsv so just add 1 items worth of reservation 656 * here. 657 */ 658 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush); 659 if (ret) 660 goto reserve_fail; 661 } 662 again: 663 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS); 664 if (!h) { 665 ret = -ENOMEM; 666 goto alloc_fail; 667 } 668 669 /* 670 * If we are JOIN_NOLOCK we're already committing a transaction and 671 * waiting on this guy, so we don't need to do the sb_start_intwrite 672 * because we're already holding a ref. We need this because we could 673 * have raced in and did an fsync() on a file which can kick a commit 674 * and then we deadlock with somebody doing a freeze. 675 * 676 * If we are ATTACH, it means we just want to catch the current 677 * transaction and commit it, so we needn't do sb_start_intwrite(). 678 */ 679 if (type & __TRANS_FREEZABLE) 680 sb_start_intwrite(fs_info->sb); 681 682 if (may_wait_transaction(fs_info, type)) 683 wait_current_trans(fs_info); 684 685 do { 686 ret = join_transaction(fs_info, type); 687 if (ret == -EBUSY) { 688 wait_current_trans(fs_info); 689 if (unlikely(type == TRANS_ATTACH || 690 type == TRANS_JOIN_NOSTART)) 691 ret = -ENOENT; 692 } 693 } while (ret == -EBUSY); 694 695 if (ret < 0) 696 goto join_fail; 697 698 cur_trans = fs_info->running_transaction; 699 700 h->transid = cur_trans->transid; 701 h->transaction = cur_trans; 702 refcount_set(&h->use_count, 1); 703 h->fs_info = root->fs_info; 704 705 h->type = type; 706 INIT_LIST_HEAD(&h->new_bgs); 707 708 smp_mb(); 709 if (cur_trans->state >= TRANS_STATE_COMMIT_START && 710 may_wait_transaction(fs_info, type)) { 711 current->journal_info = h; 712 btrfs_commit_transaction(h); 713 goto again; 714 } 715 716 if (num_bytes) { 717 trace_btrfs_space_reservation(fs_info, "transaction", 718 h->transid, num_bytes, 1); 719 h->block_rsv = &fs_info->trans_block_rsv; 720 h->bytes_reserved = num_bytes; 721 h->reloc_reserved = reloc_reserved; 722 } 723 724 got_it: 725 if (!current->journal_info) 726 current->journal_info = h; 727 728 /* 729 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to 730 * ALLOC_FORCE the first run through, and then we won't allocate for 731 * anybody else who races in later. We don't care about the return 732 * value here. 733 */ 734 if (do_chunk_alloc && num_bytes) { 735 u64 flags = h->block_rsv->space_info->flags; 736 737 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags), 738 CHUNK_ALLOC_NO_FORCE); 739 } 740 741 /* 742 * btrfs_record_root_in_trans() needs to alloc new extents, and may 743 * call btrfs_join_transaction() while we're also starting a 744 * transaction. 745 * 746 * Thus it need to be called after current->journal_info initialized, 747 * or we can deadlock. 748 */ 749 ret = btrfs_record_root_in_trans(h, root); 750 if (ret) { 751 /* 752 * The transaction handle is fully initialized and linked with 753 * other structures so it needs to be ended in case of errors, 754 * not just freed. 755 */ 756 btrfs_end_transaction(h); 757 return ERR_PTR(ret); 758 } 759 760 return h; 761 762 join_fail: 763 if (type & __TRANS_FREEZABLE) 764 sb_end_intwrite(fs_info->sb); 765 kmem_cache_free(btrfs_trans_handle_cachep, h); 766 alloc_fail: 767 if (num_bytes) 768 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv, 769 num_bytes, NULL); 770 reserve_fail: 771 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved); 772 return ERR_PTR(ret); 773 } 774 775 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 776 unsigned int num_items) 777 { 778 return start_transaction(root, num_items, TRANS_START, 779 BTRFS_RESERVE_FLUSH_ALL, true); 780 } 781 782 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv( 783 struct btrfs_root *root, 784 unsigned int num_items) 785 { 786 return start_transaction(root, num_items, TRANS_START, 787 BTRFS_RESERVE_FLUSH_ALL_STEAL, false); 788 } 789 790 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 791 { 792 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH, 793 true); 794 } 795 796 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root) 797 { 798 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 799 BTRFS_RESERVE_NO_FLUSH, true); 800 } 801 802 /* 803 * Similar to regular join but it never starts a transaction when none is 804 * running or after waiting for the current one to finish. 805 */ 806 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root) 807 { 808 return start_transaction(root, 0, TRANS_JOIN_NOSTART, 809 BTRFS_RESERVE_NO_FLUSH, true); 810 } 811 812 /* 813 * btrfs_attach_transaction() - catch the running transaction 814 * 815 * It is used when we want to commit the current the transaction, but 816 * don't want to start a new one. 817 * 818 * Note: If this function return -ENOENT, it just means there is no 819 * running transaction. But it is possible that the inactive transaction 820 * is still in the memory, not fully on disk. If you hope there is no 821 * inactive transaction in the fs when -ENOENT is returned, you should 822 * invoke 823 * btrfs_attach_transaction_barrier() 824 */ 825 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 826 { 827 return start_transaction(root, 0, TRANS_ATTACH, 828 BTRFS_RESERVE_NO_FLUSH, true); 829 } 830 831 /* 832 * btrfs_attach_transaction_barrier() - catch the running transaction 833 * 834 * It is similar to the above function, the difference is this one 835 * will wait for all the inactive transactions until they fully 836 * complete. 837 */ 838 struct btrfs_trans_handle * 839 btrfs_attach_transaction_barrier(struct btrfs_root *root) 840 { 841 struct btrfs_trans_handle *trans; 842 843 trans = start_transaction(root, 0, TRANS_ATTACH, 844 BTRFS_RESERVE_NO_FLUSH, true); 845 if (trans == ERR_PTR(-ENOENT)) 846 btrfs_wait_for_commit(root->fs_info, 0); 847 848 return trans; 849 } 850 851 /* Wait for a transaction commit to reach at least the given state. */ 852 static noinline void wait_for_commit(struct btrfs_transaction *commit, 853 const enum btrfs_trans_state min_state) 854 { 855 struct btrfs_fs_info *fs_info = commit->fs_info; 856 u64 transid = commit->transid; 857 bool put = false; 858 859 while (1) { 860 wait_event(commit->commit_wait, commit->state >= min_state); 861 if (put) 862 btrfs_put_transaction(commit); 863 864 if (min_state < TRANS_STATE_COMPLETED) 865 break; 866 867 /* 868 * A transaction isn't really completed until all of the 869 * previous transactions are completed, but with fsync we can 870 * end up with SUPER_COMMITTED transactions before a COMPLETED 871 * transaction. Wait for those. 872 */ 873 874 spin_lock(&fs_info->trans_lock); 875 commit = list_first_entry_or_null(&fs_info->trans_list, 876 struct btrfs_transaction, 877 list); 878 if (!commit || commit->transid > transid) { 879 spin_unlock(&fs_info->trans_lock); 880 break; 881 } 882 refcount_inc(&commit->use_count); 883 put = true; 884 spin_unlock(&fs_info->trans_lock); 885 } 886 } 887 888 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid) 889 { 890 struct btrfs_transaction *cur_trans = NULL, *t; 891 int ret = 0; 892 893 if (transid) { 894 if (transid <= fs_info->last_trans_committed) 895 goto out; 896 897 /* find specified transaction */ 898 spin_lock(&fs_info->trans_lock); 899 list_for_each_entry(t, &fs_info->trans_list, list) { 900 if (t->transid == transid) { 901 cur_trans = t; 902 refcount_inc(&cur_trans->use_count); 903 ret = 0; 904 break; 905 } 906 if (t->transid > transid) { 907 ret = 0; 908 break; 909 } 910 } 911 spin_unlock(&fs_info->trans_lock); 912 913 /* 914 * The specified transaction doesn't exist, or we 915 * raced with btrfs_commit_transaction 916 */ 917 if (!cur_trans) { 918 if (transid > fs_info->last_trans_committed) 919 ret = -EINVAL; 920 goto out; 921 } 922 } else { 923 /* find newest transaction that is committing | committed */ 924 spin_lock(&fs_info->trans_lock); 925 list_for_each_entry_reverse(t, &fs_info->trans_list, 926 list) { 927 if (t->state >= TRANS_STATE_COMMIT_START) { 928 if (t->state == TRANS_STATE_COMPLETED) 929 break; 930 cur_trans = t; 931 refcount_inc(&cur_trans->use_count); 932 break; 933 } 934 } 935 spin_unlock(&fs_info->trans_lock); 936 if (!cur_trans) 937 goto out; /* nothing committing|committed */ 938 } 939 940 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED); 941 btrfs_put_transaction(cur_trans); 942 out: 943 return ret; 944 } 945 946 void btrfs_throttle(struct btrfs_fs_info *fs_info) 947 { 948 wait_current_trans(fs_info); 949 } 950 951 static bool should_end_transaction(struct btrfs_trans_handle *trans) 952 { 953 struct btrfs_fs_info *fs_info = trans->fs_info; 954 955 if (btrfs_check_space_for_delayed_refs(fs_info)) 956 return true; 957 958 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5); 959 } 960 961 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans) 962 { 963 struct btrfs_transaction *cur_trans = trans->transaction; 964 965 if (cur_trans->state >= TRANS_STATE_COMMIT_START || 966 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags)) 967 return true; 968 969 return should_end_transaction(trans); 970 } 971 972 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans) 973 974 { 975 struct btrfs_fs_info *fs_info = trans->fs_info; 976 977 if (!trans->block_rsv) { 978 ASSERT(!trans->bytes_reserved); 979 return; 980 } 981 982 if (!trans->bytes_reserved) 983 return; 984 985 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv); 986 trace_btrfs_space_reservation(fs_info, "transaction", 987 trans->transid, trans->bytes_reserved, 0); 988 btrfs_block_rsv_release(fs_info, trans->block_rsv, 989 trans->bytes_reserved, NULL); 990 trans->bytes_reserved = 0; 991 } 992 993 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 994 int throttle) 995 { 996 struct btrfs_fs_info *info = trans->fs_info; 997 struct btrfs_transaction *cur_trans = trans->transaction; 998 int err = 0; 999 1000 if (refcount_read(&trans->use_count) > 1) { 1001 refcount_dec(&trans->use_count); 1002 trans->block_rsv = trans->orig_rsv; 1003 return 0; 1004 } 1005 1006 btrfs_trans_release_metadata(trans); 1007 trans->block_rsv = NULL; 1008 1009 btrfs_create_pending_block_groups(trans); 1010 1011 btrfs_trans_release_chunk_metadata(trans); 1012 1013 if (trans->type & __TRANS_FREEZABLE) 1014 sb_end_intwrite(info->sb); 1015 1016 WARN_ON(cur_trans != info->running_transaction); 1017 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 1018 atomic_dec(&cur_trans->num_writers); 1019 extwriter_counter_dec(cur_trans, trans->type); 1020 1021 cond_wake_up(&cur_trans->writer_wait); 1022 btrfs_put_transaction(cur_trans); 1023 1024 if (current->journal_info == trans) 1025 current->journal_info = NULL; 1026 1027 if (throttle) 1028 btrfs_run_delayed_iputs(info); 1029 1030 if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) { 1031 wake_up_process(info->transaction_kthread); 1032 if (TRANS_ABORTED(trans)) 1033 err = trans->aborted; 1034 else 1035 err = -EROFS; 1036 } 1037 1038 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1039 return err; 1040 } 1041 1042 int btrfs_end_transaction(struct btrfs_trans_handle *trans) 1043 { 1044 return __btrfs_end_transaction(trans, 0); 1045 } 1046 1047 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans) 1048 { 1049 return __btrfs_end_transaction(trans, 1); 1050 } 1051 1052 /* 1053 * when btree blocks are allocated, they have some corresponding bits set for 1054 * them in one of two extent_io trees. This is used to make sure all of 1055 * those extents are sent to disk but does not wait on them 1056 */ 1057 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info, 1058 struct extent_io_tree *dirty_pages, int mark) 1059 { 1060 int err = 0; 1061 int werr = 0; 1062 struct address_space *mapping = fs_info->btree_inode->i_mapping; 1063 struct extent_state *cached_state = NULL; 1064 u64 start = 0; 1065 u64 end; 1066 1067 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers); 1068 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 1069 mark, &cached_state)) { 1070 bool wait_writeback = false; 1071 1072 err = convert_extent_bit(dirty_pages, start, end, 1073 EXTENT_NEED_WAIT, 1074 mark, &cached_state); 1075 /* 1076 * convert_extent_bit can return -ENOMEM, which is most of the 1077 * time a temporary error. So when it happens, ignore the error 1078 * and wait for writeback of this range to finish - because we 1079 * failed to set the bit EXTENT_NEED_WAIT for the range, a call 1080 * to __btrfs_wait_marked_extents() would not know that 1081 * writeback for this range started and therefore wouldn't 1082 * wait for it to finish - we don't want to commit a 1083 * superblock that points to btree nodes/leafs for which 1084 * writeback hasn't finished yet (and without errors). 1085 * We cleanup any entries left in the io tree when committing 1086 * the transaction (through extent_io_tree_release()). 1087 */ 1088 if (err == -ENOMEM) { 1089 err = 0; 1090 wait_writeback = true; 1091 } 1092 if (!err) 1093 err = filemap_fdatawrite_range(mapping, start, end); 1094 if (err) 1095 werr = err; 1096 else if (wait_writeback) 1097 werr = filemap_fdatawait_range(mapping, start, end); 1098 free_extent_state(cached_state); 1099 cached_state = NULL; 1100 cond_resched(); 1101 start = end + 1; 1102 } 1103 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers); 1104 return werr; 1105 } 1106 1107 /* 1108 * when btree blocks are allocated, they have some corresponding bits set for 1109 * them in one of two extent_io trees. This is used to make sure all of 1110 * those extents are on disk for transaction or log commit. We wait 1111 * on all the pages and clear them from the dirty pages state tree 1112 */ 1113 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info, 1114 struct extent_io_tree *dirty_pages) 1115 { 1116 int err = 0; 1117 int werr = 0; 1118 struct address_space *mapping = fs_info->btree_inode->i_mapping; 1119 struct extent_state *cached_state = NULL; 1120 u64 start = 0; 1121 u64 end; 1122 1123 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 1124 EXTENT_NEED_WAIT, &cached_state)) { 1125 /* 1126 * Ignore -ENOMEM errors returned by clear_extent_bit(). 1127 * When committing the transaction, we'll remove any entries 1128 * left in the io tree. For a log commit, we don't remove them 1129 * after committing the log because the tree can be accessed 1130 * concurrently - we do it only at transaction commit time when 1131 * it's safe to do it (through extent_io_tree_release()). 1132 */ 1133 err = clear_extent_bit(dirty_pages, start, end, 1134 EXTENT_NEED_WAIT, 0, 0, &cached_state); 1135 if (err == -ENOMEM) 1136 err = 0; 1137 if (!err) 1138 err = filemap_fdatawait_range(mapping, start, end); 1139 if (err) 1140 werr = err; 1141 free_extent_state(cached_state); 1142 cached_state = NULL; 1143 cond_resched(); 1144 start = end + 1; 1145 } 1146 if (err) 1147 werr = err; 1148 return werr; 1149 } 1150 1151 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info, 1152 struct extent_io_tree *dirty_pages) 1153 { 1154 bool errors = false; 1155 int err; 1156 1157 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1158 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags)) 1159 errors = true; 1160 1161 if (errors && !err) 1162 err = -EIO; 1163 return err; 1164 } 1165 1166 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark) 1167 { 1168 struct btrfs_fs_info *fs_info = log_root->fs_info; 1169 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages; 1170 bool errors = false; 1171 int err; 1172 1173 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 1174 1175 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1176 if ((mark & EXTENT_DIRTY) && 1177 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags)) 1178 errors = true; 1179 1180 if ((mark & EXTENT_NEW) && 1181 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags)) 1182 errors = true; 1183 1184 if (errors && !err) 1185 err = -EIO; 1186 return err; 1187 } 1188 1189 /* 1190 * When btree blocks are allocated the corresponding extents are marked dirty. 1191 * This function ensures such extents are persisted on disk for transaction or 1192 * log commit. 1193 * 1194 * @trans: transaction whose dirty pages we'd like to write 1195 */ 1196 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans) 1197 { 1198 int ret; 1199 int ret2; 1200 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages; 1201 struct btrfs_fs_info *fs_info = trans->fs_info; 1202 struct blk_plug plug; 1203 1204 blk_start_plug(&plug); 1205 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY); 1206 blk_finish_plug(&plug); 1207 ret2 = btrfs_wait_extents(fs_info, dirty_pages); 1208 1209 extent_io_tree_release(&trans->transaction->dirty_pages); 1210 1211 if (ret) 1212 return ret; 1213 else if (ret2) 1214 return ret2; 1215 else 1216 return 0; 1217 } 1218 1219 /* 1220 * this is used to update the root pointer in the tree of tree roots. 1221 * 1222 * But, in the case of the extent allocation tree, updating the root 1223 * pointer may allocate blocks which may change the root of the extent 1224 * allocation tree. 1225 * 1226 * So, this loops and repeats and makes sure the cowonly root didn't 1227 * change while the root pointer was being updated in the metadata. 1228 */ 1229 static int update_cowonly_root(struct btrfs_trans_handle *trans, 1230 struct btrfs_root *root) 1231 { 1232 int ret; 1233 u64 old_root_bytenr; 1234 u64 old_root_used; 1235 struct btrfs_fs_info *fs_info = root->fs_info; 1236 struct btrfs_root *tree_root = fs_info->tree_root; 1237 1238 old_root_used = btrfs_root_used(&root->root_item); 1239 1240 while (1) { 1241 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 1242 if (old_root_bytenr == root->node->start && 1243 old_root_used == btrfs_root_used(&root->root_item)) 1244 break; 1245 1246 btrfs_set_root_node(&root->root_item, root->node); 1247 ret = btrfs_update_root(trans, tree_root, 1248 &root->root_key, 1249 &root->root_item); 1250 if (ret) 1251 return ret; 1252 1253 old_root_used = btrfs_root_used(&root->root_item); 1254 } 1255 1256 return 0; 1257 } 1258 1259 /* 1260 * update all the cowonly tree roots on disk 1261 * 1262 * The error handling in this function may not be obvious. Any of the 1263 * failures will cause the file system to go offline. We still need 1264 * to clean up the delayed refs. 1265 */ 1266 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans) 1267 { 1268 struct btrfs_fs_info *fs_info = trans->fs_info; 1269 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; 1270 struct list_head *io_bgs = &trans->transaction->io_bgs; 1271 struct list_head *next; 1272 struct extent_buffer *eb; 1273 int ret; 1274 1275 /* 1276 * At this point no one can be using this transaction to modify any tree 1277 * and no one can start another transaction to modify any tree either. 1278 */ 1279 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING); 1280 1281 eb = btrfs_lock_root_node(fs_info->tree_root); 1282 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 1283 0, &eb, BTRFS_NESTING_COW); 1284 btrfs_tree_unlock(eb); 1285 free_extent_buffer(eb); 1286 1287 if (ret) 1288 return ret; 1289 1290 ret = btrfs_run_dev_stats(trans); 1291 if (ret) 1292 return ret; 1293 ret = btrfs_run_dev_replace(trans); 1294 if (ret) 1295 return ret; 1296 ret = btrfs_run_qgroups(trans); 1297 if (ret) 1298 return ret; 1299 1300 ret = btrfs_setup_space_cache(trans); 1301 if (ret) 1302 return ret; 1303 1304 again: 1305 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1306 struct btrfs_root *root; 1307 next = fs_info->dirty_cowonly_roots.next; 1308 list_del_init(next); 1309 root = list_entry(next, struct btrfs_root, dirty_list); 1310 clear_bit(BTRFS_ROOT_DIRTY, &root->state); 1311 1312 list_add_tail(&root->dirty_list, 1313 &trans->transaction->switch_commits); 1314 ret = update_cowonly_root(trans, root); 1315 if (ret) 1316 return ret; 1317 } 1318 1319 /* Now flush any delayed refs generated by updating all of the roots */ 1320 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1321 if (ret) 1322 return ret; 1323 1324 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { 1325 ret = btrfs_write_dirty_block_groups(trans); 1326 if (ret) 1327 return ret; 1328 1329 /* 1330 * We're writing the dirty block groups, which could generate 1331 * delayed refs, which could generate more dirty block groups, 1332 * so we want to keep this flushing in this loop to make sure 1333 * everything gets run. 1334 */ 1335 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1336 if (ret) 1337 return ret; 1338 } 1339 1340 if (!list_empty(&fs_info->dirty_cowonly_roots)) 1341 goto again; 1342 1343 /* Update dev-replace pointer once everything is committed */ 1344 fs_info->dev_replace.committed_cursor_left = 1345 fs_info->dev_replace.cursor_left_last_write_of_item; 1346 1347 return 0; 1348 } 1349 1350 /* 1351 * If we had a pending drop we need to see if there are any others left in our 1352 * dead roots list, and if not clear our bit and wake any waiters. 1353 */ 1354 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info) 1355 { 1356 /* 1357 * We put the drop in progress roots at the front of the list, so if the 1358 * first entry doesn't have UNFINISHED_DROP set we can wake everybody 1359 * up. 1360 */ 1361 spin_lock(&fs_info->trans_lock); 1362 if (!list_empty(&fs_info->dead_roots)) { 1363 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots, 1364 struct btrfs_root, 1365 root_list); 1366 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) { 1367 spin_unlock(&fs_info->trans_lock); 1368 return; 1369 } 1370 } 1371 spin_unlock(&fs_info->trans_lock); 1372 1373 btrfs_wake_unfinished_drop(fs_info); 1374 } 1375 1376 /* 1377 * dead roots are old snapshots that need to be deleted. This allocates 1378 * a dirty root struct and adds it into the list of dead roots that need to 1379 * be deleted 1380 */ 1381 void btrfs_add_dead_root(struct btrfs_root *root) 1382 { 1383 struct btrfs_fs_info *fs_info = root->fs_info; 1384 1385 spin_lock(&fs_info->trans_lock); 1386 if (list_empty(&root->root_list)) { 1387 btrfs_grab_root(root); 1388 1389 /* We want to process the partially complete drops first. */ 1390 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) 1391 list_add(&root->root_list, &fs_info->dead_roots); 1392 else 1393 list_add_tail(&root->root_list, &fs_info->dead_roots); 1394 } 1395 spin_unlock(&fs_info->trans_lock); 1396 } 1397 1398 /* 1399 * Update each subvolume root and its relocation root, if it exists, in the tree 1400 * of tree roots. Also free log roots if they exist. 1401 */ 1402 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans) 1403 { 1404 struct btrfs_fs_info *fs_info = trans->fs_info; 1405 struct btrfs_root *root; 1406 unsigned long index; 1407 1408 /* 1409 * At this point no one can be using this transaction to modify any tree 1410 * and no one can start another transaction to modify any tree either. 1411 */ 1412 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING); 1413 1414 spin_lock(&fs_info->fs_roots_lock); 1415 xa_for_each_marked(&fs_info->fs_roots, index, root, BTRFS_ROOT_TRANS_TAG) { 1416 int ret; 1417 1418 /* 1419 * At this point we can neither have tasks logging inodes 1420 * from a root nor trying to commit a log tree. 1421 */ 1422 ASSERT(atomic_read(&root->log_writers) == 0); 1423 ASSERT(atomic_read(&root->log_commit[0]) == 0); 1424 ASSERT(atomic_read(&root->log_commit[1]) == 0); 1425 1426 xa_clear_mark(&fs_info->fs_roots, 1427 (unsigned long)root->root_key.objectid, 1428 BTRFS_ROOT_TRANS_TAG); 1429 spin_unlock(&fs_info->fs_roots_lock); 1430 1431 btrfs_free_log(trans, root); 1432 ret = btrfs_update_reloc_root(trans, root); 1433 if (ret) 1434 return ret; 1435 1436 /* See comments in should_cow_block() */ 1437 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1438 smp_mb__after_atomic(); 1439 1440 if (root->commit_root != root->node) { 1441 list_add_tail(&root->dirty_list, 1442 &trans->transaction->switch_commits); 1443 btrfs_set_root_node(&root->root_item, root->node); 1444 } 1445 1446 ret = btrfs_update_root(trans, fs_info->tree_root, 1447 &root->root_key, &root->root_item); 1448 if (ret) 1449 return ret; 1450 spin_lock(&fs_info->fs_roots_lock); 1451 btrfs_qgroup_free_meta_all_pertrans(root); 1452 } 1453 spin_unlock(&fs_info->fs_roots_lock); 1454 return 0; 1455 } 1456 1457 /* 1458 * defrag a given btree. 1459 * Every leaf in the btree is read and defragged. 1460 */ 1461 int btrfs_defrag_root(struct btrfs_root *root) 1462 { 1463 struct btrfs_fs_info *info = root->fs_info; 1464 struct btrfs_trans_handle *trans; 1465 int ret; 1466 1467 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) 1468 return 0; 1469 1470 while (1) { 1471 trans = btrfs_start_transaction(root, 0); 1472 if (IS_ERR(trans)) { 1473 ret = PTR_ERR(trans); 1474 break; 1475 } 1476 1477 ret = btrfs_defrag_leaves(trans, root); 1478 1479 btrfs_end_transaction(trans); 1480 btrfs_btree_balance_dirty(info); 1481 cond_resched(); 1482 1483 if (btrfs_fs_closing(info) || ret != -EAGAIN) 1484 break; 1485 1486 if (btrfs_defrag_cancelled(info)) { 1487 btrfs_debug(info, "defrag_root cancelled"); 1488 ret = -EAGAIN; 1489 break; 1490 } 1491 } 1492 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); 1493 return ret; 1494 } 1495 1496 /* 1497 * Do all special snapshot related qgroup dirty hack. 1498 * 1499 * Will do all needed qgroup inherit and dirty hack like switch commit 1500 * roots inside one transaction and write all btree into disk, to make 1501 * qgroup works. 1502 */ 1503 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans, 1504 struct btrfs_root *src, 1505 struct btrfs_root *parent, 1506 struct btrfs_qgroup_inherit *inherit, 1507 u64 dst_objectid) 1508 { 1509 struct btrfs_fs_info *fs_info = src->fs_info; 1510 int ret; 1511 1512 /* 1513 * Save some performance in the case that qgroups are not 1514 * enabled. If this check races with the ioctl, rescan will 1515 * kick in anyway. 1516 */ 1517 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) 1518 return 0; 1519 1520 /* 1521 * Ensure dirty @src will be committed. Or, after coming 1522 * commit_fs_roots() and switch_commit_roots(), any dirty but not 1523 * recorded root will never be updated again, causing an outdated root 1524 * item. 1525 */ 1526 ret = record_root_in_trans(trans, src, 1); 1527 if (ret) 1528 return ret; 1529 1530 /* 1531 * btrfs_qgroup_inherit relies on a consistent view of the usage for the 1532 * src root, so we must run the delayed refs here. 1533 * 1534 * However this isn't particularly fool proof, because there's no 1535 * synchronization keeping us from changing the tree after this point 1536 * before we do the qgroup_inherit, or even from making changes while 1537 * we're doing the qgroup_inherit. But that's a problem for the future, 1538 * for now flush the delayed refs to narrow the race window where the 1539 * qgroup counters could end up wrong. 1540 */ 1541 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1542 if (ret) { 1543 btrfs_abort_transaction(trans, ret); 1544 return ret; 1545 } 1546 1547 ret = commit_fs_roots(trans); 1548 if (ret) 1549 goto out; 1550 ret = btrfs_qgroup_account_extents(trans); 1551 if (ret < 0) 1552 goto out; 1553 1554 /* Now qgroup are all updated, we can inherit it to new qgroups */ 1555 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid, 1556 inherit); 1557 if (ret < 0) 1558 goto out; 1559 1560 /* 1561 * Now we do a simplified commit transaction, which will: 1562 * 1) commit all subvolume and extent tree 1563 * To ensure all subvolume and extent tree have a valid 1564 * commit_root to accounting later insert_dir_item() 1565 * 2) write all btree blocks onto disk 1566 * This is to make sure later btree modification will be cowed 1567 * Or commit_root can be populated and cause wrong qgroup numbers 1568 * In this simplified commit, we don't really care about other trees 1569 * like chunk and root tree, as they won't affect qgroup. 1570 * And we don't write super to avoid half committed status. 1571 */ 1572 ret = commit_cowonly_roots(trans); 1573 if (ret) 1574 goto out; 1575 switch_commit_roots(trans); 1576 ret = btrfs_write_and_wait_transaction(trans); 1577 if (ret) 1578 btrfs_handle_fs_error(fs_info, ret, 1579 "Error while writing out transaction for qgroup"); 1580 1581 out: 1582 /* 1583 * Force parent root to be updated, as we recorded it before so its 1584 * last_trans == cur_transid. 1585 * Or it won't be committed again onto disk after later 1586 * insert_dir_item() 1587 */ 1588 if (!ret) 1589 ret = record_root_in_trans(trans, parent, 1); 1590 return ret; 1591 } 1592 1593 /* 1594 * new snapshots need to be created at a very specific time in the 1595 * transaction commit. This does the actual creation. 1596 * 1597 * Note: 1598 * If the error which may affect the commitment of the current transaction 1599 * happens, we should return the error number. If the error which just affect 1600 * the creation of the pending snapshots, just return 0. 1601 */ 1602 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1603 struct btrfs_pending_snapshot *pending) 1604 { 1605 1606 struct btrfs_fs_info *fs_info = trans->fs_info; 1607 struct btrfs_key key; 1608 struct btrfs_root_item *new_root_item; 1609 struct btrfs_root *tree_root = fs_info->tree_root; 1610 struct btrfs_root *root = pending->root; 1611 struct btrfs_root *parent_root; 1612 struct btrfs_block_rsv *rsv; 1613 struct inode *parent_inode; 1614 struct btrfs_path *path; 1615 struct btrfs_dir_item *dir_item; 1616 struct dentry *dentry; 1617 struct extent_buffer *tmp; 1618 struct extent_buffer *old; 1619 struct timespec64 cur_time; 1620 int ret = 0; 1621 u64 to_reserve = 0; 1622 u64 index = 0; 1623 u64 objectid; 1624 u64 root_flags; 1625 1626 ASSERT(pending->path); 1627 path = pending->path; 1628 1629 ASSERT(pending->root_item); 1630 new_root_item = pending->root_item; 1631 1632 pending->error = btrfs_get_free_objectid(tree_root, &objectid); 1633 if (pending->error) 1634 goto no_free_objectid; 1635 1636 /* 1637 * Make qgroup to skip current new snapshot's qgroupid, as it is 1638 * accounted by later btrfs_qgroup_inherit(). 1639 */ 1640 btrfs_set_skip_qgroup(trans, objectid); 1641 1642 btrfs_reloc_pre_snapshot(pending, &to_reserve); 1643 1644 if (to_reserve > 0) { 1645 pending->error = btrfs_block_rsv_add(fs_info, 1646 &pending->block_rsv, 1647 to_reserve, 1648 BTRFS_RESERVE_NO_FLUSH); 1649 if (pending->error) 1650 goto clear_skip_qgroup; 1651 } 1652 1653 key.objectid = objectid; 1654 key.offset = (u64)-1; 1655 key.type = BTRFS_ROOT_ITEM_KEY; 1656 1657 rsv = trans->block_rsv; 1658 trans->block_rsv = &pending->block_rsv; 1659 trans->bytes_reserved = trans->block_rsv->reserved; 1660 trace_btrfs_space_reservation(fs_info, "transaction", 1661 trans->transid, 1662 trans->bytes_reserved, 1); 1663 dentry = pending->dentry; 1664 parent_inode = pending->dir; 1665 parent_root = BTRFS_I(parent_inode)->root; 1666 ret = record_root_in_trans(trans, parent_root, 0); 1667 if (ret) 1668 goto fail; 1669 cur_time = current_time(parent_inode); 1670 1671 /* 1672 * insert the directory item 1673 */ 1674 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index); 1675 BUG_ON(ret); /* -ENOMEM */ 1676 1677 /* check if there is a file/dir which has the same name. */ 1678 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1679 btrfs_ino(BTRFS_I(parent_inode)), 1680 dentry->d_name.name, 1681 dentry->d_name.len, 0); 1682 if (dir_item != NULL && !IS_ERR(dir_item)) { 1683 pending->error = -EEXIST; 1684 goto dir_item_existed; 1685 } else if (IS_ERR(dir_item)) { 1686 ret = PTR_ERR(dir_item); 1687 btrfs_abort_transaction(trans, ret); 1688 goto fail; 1689 } 1690 btrfs_release_path(path); 1691 1692 /* 1693 * pull in the delayed directory update 1694 * and the delayed inode item 1695 * otherwise we corrupt the FS during 1696 * snapshot 1697 */ 1698 ret = btrfs_run_delayed_items(trans); 1699 if (ret) { /* Transaction aborted */ 1700 btrfs_abort_transaction(trans, ret); 1701 goto fail; 1702 } 1703 1704 ret = record_root_in_trans(trans, root, 0); 1705 if (ret) { 1706 btrfs_abort_transaction(trans, ret); 1707 goto fail; 1708 } 1709 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1710 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1711 btrfs_check_and_init_root_item(new_root_item); 1712 1713 root_flags = btrfs_root_flags(new_root_item); 1714 if (pending->readonly) 1715 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1716 else 1717 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1718 btrfs_set_root_flags(new_root_item, root_flags); 1719 1720 btrfs_set_root_generation_v2(new_root_item, 1721 trans->transid); 1722 generate_random_guid(new_root_item->uuid); 1723 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1724 BTRFS_UUID_SIZE); 1725 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1726 memset(new_root_item->received_uuid, 0, 1727 sizeof(new_root_item->received_uuid)); 1728 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1729 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1730 btrfs_set_root_stransid(new_root_item, 0); 1731 btrfs_set_root_rtransid(new_root_item, 0); 1732 } 1733 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1734 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1735 btrfs_set_root_otransid(new_root_item, trans->transid); 1736 1737 old = btrfs_lock_root_node(root); 1738 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old, 1739 BTRFS_NESTING_COW); 1740 if (ret) { 1741 btrfs_tree_unlock(old); 1742 free_extent_buffer(old); 1743 btrfs_abort_transaction(trans, ret); 1744 goto fail; 1745 } 1746 1747 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1748 /* clean up in any case */ 1749 btrfs_tree_unlock(old); 1750 free_extent_buffer(old); 1751 if (ret) { 1752 btrfs_abort_transaction(trans, ret); 1753 goto fail; 1754 } 1755 /* see comments in should_cow_block() */ 1756 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1757 smp_wmb(); 1758 1759 btrfs_set_root_node(new_root_item, tmp); 1760 /* record when the snapshot was created in key.offset */ 1761 key.offset = trans->transid; 1762 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1763 btrfs_tree_unlock(tmp); 1764 free_extent_buffer(tmp); 1765 if (ret) { 1766 btrfs_abort_transaction(trans, ret); 1767 goto fail; 1768 } 1769 1770 /* 1771 * insert root back/forward references 1772 */ 1773 ret = btrfs_add_root_ref(trans, objectid, 1774 parent_root->root_key.objectid, 1775 btrfs_ino(BTRFS_I(parent_inode)), index, 1776 dentry->d_name.name, dentry->d_name.len); 1777 if (ret) { 1778 btrfs_abort_transaction(trans, ret); 1779 goto fail; 1780 } 1781 1782 key.offset = (u64)-1; 1783 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev); 1784 if (IS_ERR(pending->snap)) { 1785 ret = PTR_ERR(pending->snap); 1786 pending->snap = NULL; 1787 btrfs_abort_transaction(trans, ret); 1788 goto fail; 1789 } 1790 1791 ret = btrfs_reloc_post_snapshot(trans, pending); 1792 if (ret) { 1793 btrfs_abort_transaction(trans, ret); 1794 goto fail; 1795 } 1796 1797 /* 1798 * Do special qgroup accounting for snapshot, as we do some qgroup 1799 * snapshot hack to do fast snapshot. 1800 * To co-operate with that hack, we do hack again. 1801 * Or snapshot will be greatly slowed down by a subtree qgroup rescan 1802 */ 1803 ret = qgroup_account_snapshot(trans, root, parent_root, 1804 pending->inherit, objectid); 1805 if (ret < 0) 1806 goto fail; 1807 1808 ret = btrfs_insert_dir_item(trans, dentry->d_name.name, 1809 dentry->d_name.len, BTRFS_I(parent_inode), 1810 &key, BTRFS_FT_DIR, index); 1811 /* We have check then name at the beginning, so it is impossible. */ 1812 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1813 if (ret) { 1814 btrfs_abort_transaction(trans, ret); 1815 goto fail; 1816 } 1817 1818 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size + 1819 dentry->d_name.len * 2); 1820 parent_inode->i_mtime = parent_inode->i_ctime = 1821 current_time(parent_inode); 1822 ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode)); 1823 if (ret) { 1824 btrfs_abort_transaction(trans, ret); 1825 goto fail; 1826 } 1827 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid, 1828 BTRFS_UUID_KEY_SUBVOL, 1829 objectid); 1830 if (ret) { 1831 btrfs_abort_transaction(trans, ret); 1832 goto fail; 1833 } 1834 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1835 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid, 1836 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1837 objectid); 1838 if (ret && ret != -EEXIST) { 1839 btrfs_abort_transaction(trans, ret); 1840 goto fail; 1841 } 1842 } 1843 1844 fail: 1845 pending->error = ret; 1846 dir_item_existed: 1847 trans->block_rsv = rsv; 1848 trans->bytes_reserved = 0; 1849 clear_skip_qgroup: 1850 btrfs_clear_skip_qgroup(trans); 1851 no_free_objectid: 1852 kfree(new_root_item); 1853 pending->root_item = NULL; 1854 btrfs_free_path(path); 1855 pending->path = NULL; 1856 1857 return ret; 1858 } 1859 1860 /* 1861 * create all the snapshots we've scheduled for creation 1862 */ 1863 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans) 1864 { 1865 struct btrfs_pending_snapshot *pending, *next; 1866 struct list_head *head = &trans->transaction->pending_snapshots; 1867 int ret = 0; 1868 1869 list_for_each_entry_safe(pending, next, head, list) { 1870 list_del(&pending->list); 1871 ret = create_pending_snapshot(trans, pending); 1872 if (ret) 1873 break; 1874 } 1875 return ret; 1876 } 1877 1878 static void update_super_roots(struct btrfs_fs_info *fs_info) 1879 { 1880 struct btrfs_root_item *root_item; 1881 struct btrfs_super_block *super; 1882 1883 super = fs_info->super_copy; 1884 1885 root_item = &fs_info->chunk_root->root_item; 1886 super->chunk_root = root_item->bytenr; 1887 super->chunk_root_generation = root_item->generation; 1888 super->chunk_root_level = root_item->level; 1889 1890 root_item = &fs_info->tree_root->root_item; 1891 super->root = root_item->bytenr; 1892 super->generation = root_item->generation; 1893 super->root_level = root_item->level; 1894 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 1895 super->cache_generation = root_item->generation; 1896 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags)) 1897 super->cache_generation = 0; 1898 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags)) 1899 super->uuid_tree_generation = root_item->generation; 1900 1901 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 1902 root_item = &fs_info->block_group_root->root_item; 1903 1904 super->block_group_root = root_item->bytenr; 1905 super->block_group_root_generation = root_item->generation; 1906 super->block_group_root_level = root_item->level; 1907 } 1908 } 1909 1910 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1911 { 1912 struct btrfs_transaction *trans; 1913 int ret = 0; 1914 1915 spin_lock(&info->trans_lock); 1916 trans = info->running_transaction; 1917 if (trans) 1918 ret = (trans->state >= TRANS_STATE_COMMIT_START); 1919 spin_unlock(&info->trans_lock); 1920 return ret; 1921 } 1922 1923 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1924 { 1925 struct btrfs_transaction *trans; 1926 int ret = 0; 1927 1928 spin_lock(&info->trans_lock); 1929 trans = info->running_transaction; 1930 if (trans) 1931 ret = is_transaction_blocked(trans); 1932 spin_unlock(&info->trans_lock); 1933 return ret; 1934 } 1935 1936 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans) 1937 { 1938 struct btrfs_fs_info *fs_info = trans->fs_info; 1939 struct btrfs_transaction *cur_trans; 1940 1941 /* Kick the transaction kthread. */ 1942 set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags); 1943 wake_up_process(fs_info->transaction_kthread); 1944 1945 /* take transaction reference */ 1946 cur_trans = trans->transaction; 1947 refcount_inc(&cur_trans->use_count); 1948 1949 btrfs_end_transaction(trans); 1950 1951 /* 1952 * Wait for the current transaction commit to start and block 1953 * subsequent transaction joins 1954 */ 1955 wait_event(fs_info->transaction_blocked_wait, 1956 cur_trans->state >= TRANS_STATE_COMMIT_START || 1957 TRANS_ABORTED(cur_trans)); 1958 btrfs_put_transaction(cur_trans); 1959 } 1960 1961 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err) 1962 { 1963 struct btrfs_fs_info *fs_info = trans->fs_info; 1964 struct btrfs_transaction *cur_trans = trans->transaction; 1965 1966 WARN_ON(refcount_read(&trans->use_count) > 1); 1967 1968 btrfs_abort_transaction(trans, err); 1969 1970 spin_lock(&fs_info->trans_lock); 1971 1972 /* 1973 * If the transaction is removed from the list, it means this 1974 * transaction has been committed successfully, so it is impossible 1975 * to call the cleanup function. 1976 */ 1977 BUG_ON(list_empty(&cur_trans->list)); 1978 1979 if (cur_trans == fs_info->running_transaction) { 1980 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1981 spin_unlock(&fs_info->trans_lock); 1982 wait_event(cur_trans->writer_wait, 1983 atomic_read(&cur_trans->num_writers) == 1); 1984 1985 spin_lock(&fs_info->trans_lock); 1986 } 1987 1988 /* 1989 * Now that we know no one else is still using the transaction we can 1990 * remove the transaction from the list of transactions. This avoids 1991 * the transaction kthread from cleaning up the transaction while some 1992 * other task is still using it, which could result in a use-after-free 1993 * on things like log trees, as it forces the transaction kthread to 1994 * wait for this transaction to be cleaned up by us. 1995 */ 1996 list_del_init(&cur_trans->list); 1997 1998 spin_unlock(&fs_info->trans_lock); 1999 2000 btrfs_cleanup_one_transaction(trans->transaction, fs_info); 2001 2002 spin_lock(&fs_info->trans_lock); 2003 if (cur_trans == fs_info->running_transaction) 2004 fs_info->running_transaction = NULL; 2005 spin_unlock(&fs_info->trans_lock); 2006 2007 if (trans->type & __TRANS_FREEZABLE) 2008 sb_end_intwrite(fs_info->sb); 2009 btrfs_put_transaction(cur_trans); 2010 btrfs_put_transaction(cur_trans); 2011 2012 trace_btrfs_transaction_commit(fs_info); 2013 2014 if (current->journal_info == trans) 2015 current->journal_info = NULL; 2016 btrfs_scrub_cancel(fs_info); 2017 2018 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2019 } 2020 2021 /* 2022 * Release reserved delayed ref space of all pending block groups of the 2023 * transaction and remove them from the list 2024 */ 2025 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans) 2026 { 2027 struct btrfs_fs_info *fs_info = trans->fs_info; 2028 struct btrfs_block_group *block_group, *tmp; 2029 2030 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 2031 btrfs_delayed_refs_rsv_release(fs_info, 1); 2032 list_del_init(&block_group->bg_list); 2033 } 2034 } 2035 2036 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info) 2037 { 2038 /* 2039 * We use try_to_writeback_inodes_sb() here because if we used 2040 * btrfs_start_delalloc_roots we would deadlock with fs freeze. 2041 * Currently are holding the fs freeze lock, if we do an async flush 2042 * we'll do btrfs_join_transaction() and deadlock because we need to 2043 * wait for the fs freeze lock. Using the direct flushing we benefit 2044 * from already being in a transaction and our join_transaction doesn't 2045 * have to re-take the fs freeze lock. 2046 * 2047 * Note that try_to_writeback_inodes_sb() will only trigger writeback 2048 * if it can read lock sb->s_umount. It will always be able to lock it, 2049 * except when the filesystem is being unmounted or being frozen, but in 2050 * those cases sync_filesystem() is called, which results in calling 2051 * writeback_inodes_sb() while holding a write lock on sb->s_umount. 2052 * Note that we don't call writeback_inodes_sb() directly, because it 2053 * will emit a warning if sb->s_umount is not locked. 2054 */ 2055 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 2056 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC); 2057 return 0; 2058 } 2059 2060 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info) 2061 { 2062 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 2063 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 2064 } 2065 2066 /* 2067 * Add a pending snapshot associated with the given transaction handle to the 2068 * respective handle. This must be called after the transaction commit started 2069 * and while holding fs_info->trans_lock. 2070 * This serves to guarantee a caller of btrfs_commit_transaction() that it can 2071 * safely free the pending snapshot pointer in case btrfs_commit_transaction() 2072 * returns an error. 2073 */ 2074 static void add_pending_snapshot(struct btrfs_trans_handle *trans) 2075 { 2076 struct btrfs_transaction *cur_trans = trans->transaction; 2077 2078 if (!trans->pending_snapshot) 2079 return; 2080 2081 lockdep_assert_held(&trans->fs_info->trans_lock); 2082 ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_START); 2083 2084 list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots); 2085 } 2086 2087 int btrfs_commit_transaction(struct btrfs_trans_handle *trans) 2088 { 2089 struct btrfs_fs_info *fs_info = trans->fs_info; 2090 struct btrfs_transaction *cur_trans = trans->transaction; 2091 struct btrfs_transaction *prev_trans = NULL; 2092 int ret; 2093 2094 ASSERT(refcount_read(&trans->use_count) == 1); 2095 2096 /* Stop the commit early if ->aborted is set */ 2097 if (TRANS_ABORTED(cur_trans)) { 2098 ret = cur_trans->aborted; 2099 btrfs_end_transaction(trans); 2100 return ret; 2101 } 2102 2103 btrfs_trans_release_metadata(trans); 2104 trans->block_rsv = NULL; 2105 2106 /* 2107 * We only want one transaction commit doing the flushing so we do not 2108 * waste a bunch of time on lock contention on the extent root node. 2109 */ 2110 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING, 2111 &cur_trans->delayed_refs.flags)) { 2112 /* 2113 * Make a pass through all the delayed refs we have so far. 2114 * Any running threads may add more while we are here. 2115 */ 2116 ret = btrfs_run_delayed_refs(trans, 0); 2117 if (ret) { 2118 btrfs_end_transaction(trans); 2119 return ret; 2120 } 2121 } 2122 2123 btrfs_create_pending_block_groups(trans); 2124 2125 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) { 2126 int run_it = 0; 2127 2128 /* this mutex is also taken before trying to set 2129 * block groups readonly. We need to make sure 2130 * that nobody has set a block group readonly 2131 * after a extents from that block group have been 2132 * allocated for cache files. btrfs_set_block_group_ro 2133 * will wait for the transaction to commit if it 2134 * finds BTRFS_TRANS_DIRTY_BG_RUN set. 2135 * 2136 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure 2137 * only one process starts all the block group IO. It wouldn't 2138 * hurt to have more than one go through, but there's no 2139 * real advantage to it either. 2140 */ 2141 mutex_lock(&fs_info->ro_block_group_mutex); 2142 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN, 2143 &cur_trans->flags)) 2144 run_it = 1; 2145 mutex_unlock(&fs_info->ro_block_group_mutex); 2146 2147 if (run_it) { 2148 ret = btrfs_start_dirty_block_groups(trans); 2149 if (ret) { 2150 btrfs_end_transaction(trans); 2151 return ret; 2152 } 2153 } 2154 } 2155 2156 spin_lock(&fs_info->trans_lock); 2157 if (cur_trans->state >= TRANS_STATE_COMMIT_START) { 2158 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED; 2159 2160 add_pending_snapshot(trans); 2161 2162 spin_unlock(&fs_info->trans_lock); 2163 refcount_inc(&cur_trans->use_count); 2164 2165 if (trans->in_fsync) 2166 want_state = TRANS_STATE_SUPER_COMMITTED; 2167 ret = btrfs_end_transaction(trans); 2168 wait_for_commit(cur_trans, want_state); 2169 2170 if (TRANS_ABORTED(cur_trans)) 2171 ret = cur_trans->aborted; 2172 2173 btrfs_put_transaction(cur_trans); 2174 2175 return ret; 2176 } 2177 2178 cur_trans->state = TRANS_STATE_COMMIT_START; 2179 wake_up(&fs_info->transaction_blocked_wait); 2180 2181 if (cur_trans->list.prev != &fs_info->trans_list) { 2182 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED; 2183 2184 if (trans->in_fsync) 2185 want_state = TRANS_STATE_SUPER_COMMITTED; 2186 2187 prev_trans = list_entry(cur_trans->list.prev, 2188 struct btrfs_transaction, list); 2189 if (prev_trans->state < want_state) { 2190 refcount_inc(&prev_trans->use_count); 2191 spin_unlock(&fs_info->trans_lock); 2192 2193 wait_for_commit(prev_trans, want_state); 2194 2195 ret = READ_ONCE(prev_trans->aborted); 2196 2197 btrfs_put_transaction(prev_trans); 2198 if (ret) 2199 goto cleanup_transaction; 2200 } else { 2201 spin_unlock(&fs_info->trans_lock); 2202 } 2203 } else { 2204 spin_unlock(&fs_info->trans_lock); 2205 /* 2206 * The previous transaction was aborted and was already removed 2207 * from the list of transactions at fs_info->trans_list. So we 2208 * abort to prevent writing a new superblock that reflects a 2209 * corrupt state (pointing to trees with unwritten nodes/leafs). 2210 */ 2211 if (BTRFS_FS_ERROR(fs_info)) { 2212 ret = -EROFS; 2213 goto cleanup_transaction; 2214 } 2215 } 2216 2217 extwriter_counter_dec(cur_trans, trans->type); 2218 2219 ret = btrfs_start_delalloc_flush(fs_info); 2220 if (ret) 2221 goto cleanup_transaction; 2222 2223 ret = btrfs_run_delayed_items(trans); 2224 if (ret) 2225 goto cleanup_transaction; 2226 2227 wait_event(cur_trans->writer_wait, 2228 extwriter_counter_read(cur_trans) == 0); 2229 2230 /* some pending stuffs might be added after the previous flush. */ 2231 ret = btrfs_run_delayed_items(trans); 2232 if (ret) 2233 goto cleanup_transaction; 2234 2235 btrfs_wait_delalloc_flush(fs_info); 2236 2237 /* 2238 * Wait for all ordered extents started by a fast fsync that joined this 2239 * transaction. Otherwise if this transaction commits before the ordered 2240 * extents complete we lose logged data after a power failure. 2241 */ 2242 wait_event(cur_trans->pending_wait, 2243 atomic_read(&cur_trans->pending_ordered) == 0); 2244 2245 btrfs_scrub_pause(fs_info); 2246 /* 2247 * Ok now we need to make sure to block out any other joins while we 2248 * commit the transaction. We could have started a join before setting 2249 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 2250 */ 2251 spin_lock(&fs_info->trans_lock); 2252 add_pending_snapshot(trans); 2253 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2254 spin_unlock(&fs_info->trans_lock); 2255 wait_event(cur_trans->writer_wait, 2256 atomic_read(&cur_trans->num_writers) == 1); 2257 2258 /* 2259 * We've started the commit, clear the flag in case we were triggered to 2260 * do an async commit but somebody else started before the transaction 2261 * kthread could do the work. 2262 */ 2263 clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags); 2264 2265 if (TRANS_ABORTED(cur_trans)) { 2266 ret = cur_trans->aborted; 2267 goto scrub_continue; 2268 } 2269 /* 2270 * the reloc mutex makes sure that we stop 2271 * the balancing code from coming in and moving 2272 * extents around in the middle of the commit 2273 */ 2274 mutex_lock(&fs_info->reloc_mutex); 2275 2276 /* 2277 * We needn't worry about the delayed items because we will 2278 * deal with them in create_pending_snapshot(), which is the 2279 * core function of the snapshot creation. 2280 */ 2281 ret = create_pending_snapshots(trans); 2282 if (ret) 2283 goto unlock_reloc; 2284 2285 /* 2286 * We insert the dir indexes of the snapshots and update the inode 2287 * of the snapshots' parents after the snapshot creation, so there 2288 * are some delayed items which are not dealt with. Now deal with 2289 * them. 2290 * 2291 * We needn't worry that this operation will corrupt the snapshots, 2292 * because all the tree which are snapshoted will be forced to COW 2293 * the nodes and leaves. 2294 */ 2295 ret = btrfs_run_delayed_items(trans); 2296 if (ret) 2297 goto unlock_reloc; 2298 2299 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 2300 if (ret) 2301 goto unlock_reloc; 2302 2303 /* 2304 * make sure none of the code above managed to slip in a 2305 * delayed item 2306 */ 2307 btrfs_assert_delayed_root_empty(fs_info); 2308 2309 WARN_ON(cur_trans != trans->transaction); 2310 2311 ret = commit_fs_roots(trans); 2312 if (ret) 2313 goto unlock_reloc; 2314 2315 /* 2316 * Since the transaction is done, we can apply the pending changes 2317 * before the next transaction. 2318 */ 2319 btrfs_apply_pending_changes(fs_info); 2320 2321 /* commit_fs_roots gets rid of all the tree log roots, it is now 2322 * safe to free the root of tree log roots 2323 */ 2324 btrfs_free_log_root_tree(trans, fs_info); 2325 2326 /* 2327 * Since fs roots are all committed, we can get a quite accurate 2328 * new_roots. So let's do quota accounting. 2329 */ 2330 ret = btrfs_qgroup_account_extents(trans); 2331 if (ret < 0) 2332 goto unlock_reloc; 2333 2334 ret = commit_cowonly_roots(trans); 2335 if (ret) 2336 goto unlock_reloc; 2337 2338 /* 2339 * The tasks which save the space cache and inode cache may also 2340 * update ->aborted, check it. 2341 */ 2342 if (TRANS_ABORTED(cur_trans)) { 2343 ret = cur_trans->aborted; 2344 goto unlock_reloc; 2345 } 2346 2347 cur_trans = fs_info->running_transaction; 2348 2349 btrfs_set_root_node(&fs_info->tree_root->root_item, 2350 fs_info->tree_root->node); 2351 list_add_tail(&fs_info->tree_root->dirty_list, 2352 &cur_trans->switch_commits); 2353 2354 btrfs_set_root_node(&fs_info->chunk_root->root_item, 2355 fs_info->chunk_root->node); 2356 list_add_tail(&fs_info->chunk_root->dirty_list, 2357 &cur_trans->switch_commits); 2358 2359 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2360 btrfs_set_root_node(&fs_info->block_group_root->root_item, 2361 fs_info->block_group_root->node); 2362 list_add_tail(&fs_info->block_group_root->dirty_list, 2363 &cur_trans->switch_commits); 2364 } 2365 2366 switch_commit_roots(trans); 2367 2368 ASSERT(list_empty(&cur_trans->dirty_bgs)); 2369 ASSERT(list_empty(&cur_trans->io_bgs)); 2370 update_super_roots(fs_info); 2371 2372 btrfs_set_super_log_root(fs_info->super_copy, 0); 2373 btrfs_set_super_log_root_level(fs_info->super_copy, 0); 2374 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2375 sizeof(*fs_info->super_copy)); 2376 2377 btrfs_commit_device_sizes(cur_trans); 2378 2379 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 2380 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 2381 2382 btrfs_trans_release_chunk_metadata(trans); 2383 2384 /* 2385 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and 2386 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to 2387 * make sure that before we commit our superblock, no other task can 2388 * start a new transaction and commit a log tree before we commit our 2389 * superblock. Anyone trying to commit a log tree locks this mutex before 2390 * writing its superblock. 2391 */ 2392 mutex_lock(&fs_info->tree_log_mutex); 2393 2394 spin_lock(&fs_info->trans_lock); 2395 cur_trans->state = TRANS_STATE_UNBLOCKED; 2396 fs_info->running_transaction = NULL; 2397 spin_unlock(&fs_info->trans_lock); 2398 mutex_unlock(&fs_info->reloc_mutex); 2399 2400 wake_up(&fs_info->transaction_wait); 2401 2402 ret = btrfs_write_and_wait_transaction(trans); 2403 if (ret) { 2404 btrfs_handle_fs_error(fs_info, ret, 2405 "Error while writing out transaction"); 2406 mutex_unlock(&fs_info->tree_log_mutex); 2407 goto scrub_continue; 2408 } 2409 2410 /* 2411 * At this point, we should have written all the tree blocks allocated 2412 * in this transaction. So it's now safe to free the redirtyied extent 2413 * buffers. 2414 */ 2415 btrfs_free_redirty_list(cur_trans); 2416 2417 ret = write_all_supers(fs_info, 0); 2418 /* 2419 * the super is written, we can safely allow the tree-loggers 2420 * to go about their business 2421 */ 2422 mutex_unlock(&fs_info->tree_log_mutex); 2423 if (ret) 2424 goto scrub_continue; 2425 2426 /* 2427 * We needn't acquire the lock here because there is no other task 2428 * which can change it. 2429 */ 2430 cur_trans->state = TRANS_STATE_SUPER_COMMITTED; 2431 wake_up(&cur_trans->commit_wait); 2432 2433 btrfs_finish_extent_commit(trans); 2434 2435 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags)) 2436 btrfs_clear_space_info_full(fs_info); 2437 2438 fs_info->last_trans_committed = cur_trans->transid; 2439 /* 2440 * We needn't acquire the lock here because there is no other task 2441 * which can change it. 2442 */ 2443 cur_trans->state = TRANS_STATE_COMPLETED; 2444 wake_up(&cur_trans->commit_wait); 2445 2446 spin_lock(&fs_info->trans_lock); 2447 list_del_init(&cur_trans->list); 2448 spin_unlock(&fs_info->trans_lock); 2449 2450 btrfs_put_transaction(cur_trans); 2451 btrfs_put_transaction(cur_trans); 2452 2453 if (trans->type & __TRANS_FREEZABLE) 2454 sb_end_intwrite(fs_info->sb); 2455 2456 trace_btrfs_transaction_commit(fs_info); 2457 2458 btrfs_scrub_continue(fs_info); 2459 2460 if (current->journal_info == trans) 2461 current->journal_info = NULL; 2462 2463 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2464 2465 return ret; 2466 2467 unlock_reloc: 2468 mutex_unlock(&fs_info->reloc_mutex); 2469 scrub_continue: 2470 btrfs_scrub_continue(fs_info); 2471 cleanup_transaction: 2472 btrfs_trans_release_metadata(trans); 2473 btrfs_cleanup_pending_block_groups(trans); 2474 btrfs_trans_release_chunk_metadata(trans); 2475 trans->block_rsv = NULL; 2476 btrfs_warn(fs_info, "Skipping commit of aborted transaction."); 2477 if (current->journal_info == trans) 2478 current->journal_info = NULL; 2479 cleanup_transaction(trans, ret); 2480 2481 return ret; 2482 } 2483 2484 /* 2485 * return < 0 if error 2486 * 0 if there are no more dead_roots at the time of call 2487 * 1 there are more to be processed, call me again 2488 * 2489 * The return value indicates there are certainly more snapshots to delete, but 2490 * if there comes a new one during processing, it may return 0. We don't mind, 2491 * because btrfs_commit_super will poke cleaner thread and it will process it a 2492 * few seconds later. 2493 */ 2494 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info) 2495 { 2496 struct btrfs_root *root; 2497 int ret; 2498 2499 spin_lock(&fs_info->trans_lock); 2500 if (list_empty(&fs_info->dead_roots)) { 2501 spin_unlock(&fs_info->trans_lock); 2502 return 0; 2503 } 2504 root = list_first_entry(&fs_info->dead_roots, 2505 struct btrfs_root, root_list); 2506 list_del_init(&root->root_list); 2507 spin_unlock(&fs_info->trans_lock); 2508 2509 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid); 2510 2511 btrfs_kill_all_delayed_nodes(root); 2512 2513 if (btrfs_header_backref_rev(root->node) < 2514 BTRFS_MIXED_BACKREF_REV) 2515 ret = btrfs_drop_snapshot(root, 0, 0); 2516 else 2517 ret = btrfs_drop_snapshot(root, 1, 0); 2518 2519 btrfs_put_root(root); 2520 return (ret < 0) ? 0 : 1; 2521 } 2522 2523 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info) 2524 { 2525 unsigned long prev; 2526 unsigned long bit; 2527 2528 prev = xchg(&fs_info->pending_changes, 0); 2529 if (!prev) 2530 return; 2531 2532 bit = 1 << BTRFS_PENDING_COMMIT; 2533 if (prev & bit) 2534 btrfs_debug(fs_info, "pending commit done"); 2535 prev &= ~bit; 2536 2537 if (prev) 2538 btrfs_warn(fs_info, 2539 "unknown pending changes left 0x%lx, ignoring", prev); 2540 } 2541