1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/slab.h> 8 #include <linux/sched.h> 9 #include <linux/writeback.h> 10 #include <linux/pagemap.h> 11 #include <linux/blkdev.h> 12 #include <linux/uuid.h> 13 #include "ctree.h" 14 #include "disk-io.h" 15 #include "transaction.h" 16 #include "locking.h" 17 #include "tree-log.h" 18 #include "inode-map.h" 19 #include "volumes.h" 20 #include "dev-replace.h" 21 #include "qgroup.h" 22 23 #define BTRFS_ROOT_TRANS_TAG 0 24 25 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 26 [TRANS_STATE_RUNNING] = 0U, 27 [TRANS_STATE_BLOCKED] = __TRANS_START, 28 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH), 29 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START | 30 __TRANS_ATTACH | 31 __TRANS_JOIN), 32 [TRANS_STATE_UNBLOCKED] = (__TRANS_START | 33 __TRANS_ATTACH | 34 __TRANS_JOIN | 35 __TRANS_JOIN_NOLOCK), 36 [TRANS_STATE_COMPLETED] = (__TRANS_START | 37 __TRANS_ATTACH | 38 __TRANS_JOIN | 39 __TRANS_JOIN_NOLOCK), 40 }; 41 42 void btrfs_put_transaction(struct btrfs_transaction *transaction) 43 { 44 WARN_ON(refcount_read(&transaction->use_count) == 0); 45 if (refcount_dec_and_test(&transaction->use_count)) { 46 BUG_ON(!list_empty(&transaction->list)); 47 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root)); 48 if (transaction->delayed_refs.pending_csums) 49 btrfs_err(transaction->fs_info, 50 "pending csums is %llu", 51 transaction->delayed_refs.pending_csums); 52 while (!list_empty(&transaction->pending_chunks)) { 53 struct extent_map *em; 54 55 em = list_first_entry(&transaction->pending_chunks, 56 struct extent_map, list); 57 list_del_init(&em->list); 58 free_extent_map(em); 59 } 60 /* 61 * If any block groups are found in ->deleted_bgs then it's 62 * because the transaction was aborted and a commit did not 63 * happen (things failed before writing the new superblock 64 * and calling btrfs_finish_extent_commit()), so we can not 65 * discard the physical locations of the block groups. 66 */ 67 while (!list_empty(&transaction->deleted_bgs)) { 68 struct btrfs_block_group_cache *cache; 69 70 cache = list_first_entry(&transaction->deleted_bgs, 71 struct btrfs_block_group_cache, 72 bg_list); 73 list_del_init(&cache->bg_list); 74 btrfs_put_block_group_trimming(cache); 75 btrfs_put_block_group(cache); 76 } 77 kfree(transaction); 78 } 79 } 80 81 static void clear_btree_io_tree(struct extent_io_tree *tree) 82 { 83 spin_lock(&tree->lock); 84 /* 85 * Do a single barrier for the waitqueue_active check here, the state 86 * of the waitqueue should not change once clear_btree_io_tree is 87 * called. 88 */ 89 smp_mb(); 90 while (!RB_EMPTY_ROOT(&tree->state)) { 91 struct rb_node *node; 92 struct extent_state *state; 93 94 node = rb_first(&tree->state); 95 state = rb_entry(node, struct extent_state, rb_node); 96 rb_erase(&state->rb_node, &tree->state); 97 RB_CLEAR_NODE(&state->rb_node); 98 /* 99 * btree io trees aren't supposed to have tasks waiting for 100 * changes in the flags of extent states ever. 101 */ 102 ASSERT(!waitqueue_active(&state->wq)); 103 free_extent_state(state); 104 105 cond_resched_lock(&tree->lock); 106 } 107 spin_unlock(&tree->lock); 108 } 109 110 static noinline void switch_commit_roots(struct btrfs_transaction *trans) 111 { 112 struct btrfs_fs_info *fs_info = trans->fs_info; 113 struct btrfs_root *root, *tmp; 114 115 down_write(&fs_info->commit_root_sem); 116 list_for_each_entry_safe(root, tmp, &trans->switch_commits, 117 dirty_list) { 118 list_del_init(&root->dirty_list); 119 free_extent_buffer(root->commit_root); 120 root->commit_root = btrfs_root_node(root); 121 if (is_fstree(root->objectid)) 122 btrfs_unpin_free_ino(root); 123 clear_btree_io_tree(&root->dirty_log_pages); 124 } 125 126 /* We can free old roots now. */ 127 spin_lock(&trans->dropped_roots_lock); 128 while (!list_empty(&trans->dropped_roots)) { 129 root = list_first_entry(&trans->dropped_roots, 130 struct btrfs_root, root_list); 131 list_del_init(&root->root_list); 132 spin_unlock(&trans->dropped_roots_lock); 133 btrfs_drop_and_free_fs_root(fs_info, root); 134 spin_lock(&trans->dropped_roots_lock); 135 } 136 spin_unlock(&trans->dropped_roots_lock); 137 up_write(&fs_info->commit_root_sem); 138 } 139 140 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 141 unsigned int type) 142 { 143 if (type & TRANS_EXTWRITERS) 144 atomic_inc(&trans->num_extwriters); 145 } 146 147 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 148 unsigned int type) 149 { 150 if (type & TRANS_EXTWRITERS) 151 atomic_dec(&trans->num_extwriters); 152 } 153 154 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 155 unsigned int type) 156 { 157 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 158 } 159 160 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 161 { 162 return atomic_read(&trans->num_extwriters); 163 } 164 165 /* 166 * either allocate a new transaction or hop into the existing one 167 */ 168 static noinline int join_transaction(struct btrfs_fs_info *fs_info, 169 unsigned int type) 170 { 171 struct btrfs_transaction *cur_trans; 172 173 spin_lock(&fs_info->trans_lock); 174 loop: 175 /* The file system has been taken offline. No new transactions. */ 176 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 177 spin_unlock(&fs_info->trans_lock); 178 return -EROFS; 179 } 180 181 cur_trans = fs_info->running_transaction; 182 if (cur_trans) { 183 if (cur_trans->aborted) { 184 spin_unlock(&fs_info->trans_lock); 185 return cur_trans->aborted; 186 } 187 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 188 spin_unlock(&fs_info->trans_lock); 189 return -EBUSY; 190 } 191 refcount_inc(&cur_trans->use_count); 192 atomic_inc(&cur_trans->num_writers); 193 extwriter_counter_inc(cur_trans, type); 194 spin_unlock(&fs_info->trans_lock); 195 return 0; 196 } 197 spin_unlock(&fs_info->trans_lock); 198 199 /* 200 * If we are ATTACH, we just want to catch the current transaction, 201 * and commit it. If there is no transaction, just return ENOENT. 202 */ 203 if (type == TRANS_ATTACH) 204 return -ENOENT; 205 206 /* 207 * JOIN_NOLOCK only happens during the transaction commit, so 208 * it is impossible that ->running_transaction is NULL 209 */ 210 BUG_ON(type == TRANS_JOIN_NOLOCK); 211 212 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS); 213 if (!cur_trans) 214 return -ENOMEM; 215 216 spin_lock(&fs_info->trans_lock); 217 if (fs_info->running_transaction) { 218 /* 219 * someone started a transaction after we unlocked. Make sure 220 * to redo the checks above 221 */ 222 kfree(cur_trans); 223 goto loop; 224 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 225 spin_unlock(&fs_info->trans_lock); 226 kfree(cur_trans); 227 return -EROFS; 228 } 229 230 cur_trans->fs_info = fs_info; 231 atomic_set(&cur_trans->num_writers, 1); 232 extwriter_counter_init(cur_trans, type); 233 init_waitqueue_head(&cur_trans->writer_wait); 234 init_waitqueue_head(&cur_trans->commit_wait); 235 init_waitqueue_head(&cur_trans->pending_wait); 236 cur_trans->state = TRANS_STATE_RUNNING; 237 /* 238 * One for this trans handle, one so it will live on until we 239 * commit the transaction. 240 */ 241 refcount_set(&cur_trans->use_count, 2); 242 atomic_set(&cur_trans->pending_ordered, 0); 243 cur_trans->flags = 0; 244 cur_trans->start_time = get_seconds(); 245 246 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs)); 247 248 cur_trans->delayed_refs.href_root = RB_ROOT; 249 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT; 250 atomic_set(&cur_trans->delayed_refs.num_entries, 0); 251 252 /* 253 * although the tree mod log is per file system and not per transaction, 254 * the log must never go across transaction boundaries. 255 */ 256 smp_mb(); 257 if (!list_empty(&fs_info->tree_mod_seq_list)) 258 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n"); 259 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 260 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n"); 261 atomic64_set(&fs_info->tree_mod_seq, 0); 262 263 spin_lock_init(&cur_trans->delayed_refs.lock); 264 265 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 266 INIT_LIST_HEAD(&cur_trans->pending_chunks); 267 INIT_LIST_HEAD(&cur_trans->switch_commits); 268 INIT_LIST_HEAD(&cur_trans->dirty_bgs); 269 INIT_LIST_HEAD(&cur_trans->io_bgs); 270 INIT_LIST_HEAD(&cur_trans->dropped_roots); 271 mutex_init(&cur_trans->cache_write_mutex); 272 cur_trans->num_dirty_bgs = 0; 273 spin_lock_init(&cur_trans->dirty_bgs_lock); 274 INIT_LIST_HEAD(&cur_trans->deleted_bgs); 275 spin_lock_init(&cur_trans->dropped_roots_lock); 276 list_add_tail(&cur_trans->list, &fs_info->trans_list); 277 extent_io_tree_init(&cur_trans->dirty_pages, 278 fs_info->btree_inode); 279 fs_info->generation++; 280 cur_trans->transid = fs_info->generation; 281 fs_info->running_transaction = cur_trans; 282 cur_trans->aborted = 0; 283 spin_unlock(&fs_info->trans_lock); 284 285 return 0; 286 } 287 288 /* 289 * this does all the record keeping required to make sure that a reference 290 * counted root is properly recorded in a given transaction. This is required 291 * to make sure the old root from before we joined the transaction is deleted 292 * when the transaction commits 293 */ 294 static int record_root_in_trans(struct btrfs_trans_handle *trans, 295 struct btrfs_root *root, 296 int force) 297 { 298 struct btrfs_fs_info *fs_info = root->fs_info; 299 300 if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 301 root->last_trans < trans->transid) || force) { 302 WARN_ON(root == fs_info->extent_root); 303 WARN_ON(!force && root->commit_root != root->node); 304 305 /* 306 * see below for IN_TRANS_SETUP usage rules 307 * we have the reloc mutex held now, so there 308 * is only one writer in this function 309 */ 310 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 311 312 /* make sure readers find IN_TRANS_SETUP before 313 * they find our root->last_trans update 314 */ 315 smp_wmb(); 316 317 spin_lock(&fs_info->fs_roots_radix_lock); 318 if (root->last_trans == trans->transid && !force) { 319 spin_unlock(&fs_info->fs_roots_radix_lock); 320 return 0; 321 } 322 radix_tree_tag_set(&fs_info->fs_roots_radix, 323 (unsigned long)root->root_key.objectid, 324 BTRFS_ROOT_TRANS_TAG); 325 spin_unlock(&fs_info->fs_roots_radix_lock); 326 root->last_trans = trans->transid; 327 328 /* this is pretty tricky. We don't want to 329 * take the relocation lock in btrfs_record_root_in_trans 330 * unless we're really doing the first setup for this root in 331 * this transaction. 332 * 333 * Normally we'd use root->last_trans as a flag to decide 334 * if we want to take the expensive mutex. 335 * 336 * But, we have to set root->last_trans before we 337 * init the relocation root, otherwise, we trip over warnings 338 * in ctree.c. The solution used here is to flag ourselves 339 * with root IN_TRANS_SETUP. When this is 1, we're still 340 * fixing up the reloc trees and everyone must wait. 341 * 342 * When this is zero, they can trust root->last_trans and fly 343 * through btrfs_record_root_in_trans without having to take the 344 * lock. smp_wmb() makes sure that all the writes above are 345 * done before we pop in the zero below 346 */ 347 btrfs_init_reloc_root(trans, root); 348 smp_mb__before_atomic(); 349 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 350 } 351 return 0; 352 } 353 354 355 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans, 356 struct btrfs_root *root) 357 { 358 struct btrfs_fs_info *fs_info = root->fs_info; 359 struct btrfs_transaction *cur_trans = trans->transaction; 360 361 /* Add ourselves to the transaction dropped list */ 362 spin_lock(&cur_trans->dropped_roots_lock); 363 list_add_tail(&root->root_list, &cur_trans->dropped_roots); 364 spin_unlock(&cur_trans->dropped_roots_lock); 365 366 /* Make sure we don't try to update the root at commit time */ 367 spin_lock(&fs_info->fs_roots_radix_lock); 368 radix_tree_tag_clear(&fs_info->fs_roots_radix, 369 (unsigned long)root->root_key.objectid, 370 BTRFS_ROOT_TRANS_TAG); 371 spin_unlock(&fs_info->fs_roots_radix_lock); 372 } 373 374 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 375 struct btrfs_root *root) 376 { 377 struct btrfs_fs_info *fs_info = root->fs_info; 378 379 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 380 return 0; 381 382 /* 383 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 384 * and barriers 385 */ 386 smp_rmb(); 387 if (root->last_trans == trans->transid && 388 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 389 return 0; 390 391 mutex_lock(&fs_info->reloc_mutex); 392 record_root_in_trans(trans, root, 0); 393 mutex_unlock(&fs_info->reloc_mutex); 394 395 return 0; 396 } 397 398 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 399 { 400 return (trans->state >= TRANS_STATE_BLOCKED && 401 trans->state < TRANS_STATE_UNBLOCKED && 402 !trans->aborted); 403 } 404 405 /* wait for commit against the current transaction to become unblocked 406 * when this is done, it is safe to start a new transaction, but the current 407 * transaction might not be fully on disk. 408 */ 409 static void wait_current_trans(struct btrfs_fs_info *fs_info) 410 { 411 struct btrfs_transaction *cur_trans; 412 413 spin_lock(&fs_info->trans_lock); 414 cur_trans = fs_info->running_transaction; 415 if (cur_trans && is_transaction_blocked(cur_trans)) { 416 refcount_inc(&cur_trans->use_count); 417 spin_unlock(&fs_info->trans_lock); 418 419 wait_event(fs_info->transaction_wait, 420 cur_trans->state >= TRANS_STATE_UNBLOCKED || 421 cur_trans->aborted); 422 btrfs_put_transaction(cur_trans); 423 } else { 424 spin_unlock(&fs_info->trans_lock); 425 } 426 } 427 428 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type) 429 { 430 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 431 return 0; 432 433 if (type == TRANS_START) 434 return 1; 435 436 return 0; 437 } 438 439 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 440 { 441 struct btrfs_fs_info *fs_info = root->fs_info; 442 443 if (!fs_info->reloc_ctl || 444 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 445 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 446 root->reloc_root) 447 return false; 448 449 return true; 450 } 451 452 static struct btrfs_trans_handle * 453 start_transaction(struct btrfs_root *root, unsigned int num_items, 454 unsigned int type, enum btrfs_reserve_flush_enum flush, 455 bool enforce_qgroups) 456 { 457 struct btrfs_fs_info *fs_info = root->fs_info; 458 459 struct btrfs_trans_handle *h; 460 struct btrfs_transaction *cur_trans; 461 u64 num_bytes = 0; 462 u64 qgroup_reserved = 0; 463 bool reloc_reserved = false; 464 int ret; 465 466 /* Send isn't supposed to start transactions. */ 467 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB); 468 469 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 470 return ERR_PTR(-EROFS); 471 472 if (current->journal_info) { 473 WARN_ON(type & TRANS_EXTWRITERS); 474 h = current->journal_info; 475 refcount_inc(&h->use_count); 476 WARN_ON(refcount_read(&h->use_count) > 2); 477 h->orig_rsv = h->block_rsv; 478 h->block_rsv = NULL; 479 goto got_it; 480 } 481 482 /* 483 * Do the reservation before we join the transaction so we can do all 484 * the appropriate flushing if need be. 485 */ 486 if (num_items && root != fs_info->chunk_root) { 487 qgroup_reserved = num_items * fs_info->nodesize; 488 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved, 489 enforce_qgroups); 490 if (ret) 491 return ERR_PTR(ret); 492 493 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items); 494 /* 495 * Do the reservation for the relocation root creation 496 */ 497 if (need_reserve_reloc_root(root)) { 498 num_bytes += fs_info->nodesize; 499 reloc_reserved = true; 500 } 501 502 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv, 503 num_bytes, flush); 504 if (ret) 505 goto reserve_fail; 506 } 507 again: 508 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS); 509 if (!h) { 510 ret = -ENOMEM; 511 goto alloc_fail; 512 } 513 514 /* 515 * If we are JOIN_NOLOCK we're already committing a transaction and 516 * waiting on this guy, so we don't need to do the sb_start_intwrite 517 * because we're already holding a ref. We need this because we could 518 * have raced in and did an fsync() on a file which can kick a commit 519 * and then we deadlock with somebody doing a freeze. 520 * 521 * If we are ATTACH, it means we just want to catch the current 522 * transaction and commit it, so we needn't do sb_start_intwrite(). 523 */ 524 if (type & __TRANS_FREEZABLE) 525 sb_start_intwrite(fs_info->sb); 526 527 if (may_wait_transaction(fs_info, type)) 528 wait_current_trans(fs_info); 529 530 do { 531 ret = join_transaction(fs_info, type); 532 if (ret == -EBUSY) { 533 wait_current_trans(fs_info); 534 if (unlikely(type == TRANS_ATTACH)) 535 ret = -ENOENT; 536 } 537 } while (ret == -EBUSY); 538 539 if (ret < 0) 540 goto join_fail; 541 542 cur_trans = fs_info->running_transaction; 543 544 h->transid = cur_trans->transid; 545 h->transaction = cur_trans; 546 h->root = root; 547 refcount_set(&h->use_count, 1); 548 h->fs_info = root->fs_info; 549 550 h->type = type; 551 h->can_flush_pending_bgs = true; 552 INIT_LIST_HEAD(&h->new_bgs); 553 554 smp_mb(); 555 if (cur_trans->state >= TRANS_STATE_BLOCKED && 556 may_wait_transaction(fs_info, type)) { 557 current->journal_info = h; 558 btrfs_commit_transaction(h); 559 goto again; 560 } 561 562 if (num_bytes) { 563 trace_btrfs_space_reservation(fs_info, "transaction", 564 h->transid, num_bytes, 1); 565 h->block_rsv = &fs_info->trans_block_rsv; 566 h->bytes_reserved = num_bytes; 567 h->reloc_reserved = reloc_reserved; 568 } 569 570 got_it: 571 btrfs_record_root_in_trans(h, root); 572 573 if (!current->journal_info) 574 current->journal_info = h; 575 return h; 576 577 join_fail: 578 if (type & __TRANS_FREEZABLE) 579 sb_end_intwrite(fs_info->sb); 580 kmem_cache_free(btrfs_trans_handle_cachep, h); 581 alloc_fail: 582 if (num_bytes) 583 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv, 584 num_bytes); 585 reserve_fail: 586 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved); 587 return ERR_PTR(ret); 588 } 589 590 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 591 unsigned int num_items) 592 { 593 return start_transaction(root, num_items, TRANS_START, 594 BTRFS_RESERVE_FLUSH_ALL, true); 595 } 596 597 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv( 598 struct btrfs_root *root, 599 unsigned int num_items, 600 int min_factor) 601 { 602 struct btrfs_fs_info *fs_info = root->fs_info; 603 struct btrfs_trans_handle *trans; 604 u64 num_bytes; 605 int ret; 606 607 /* 608 * We have two callers: unlink and block group removal. The 609 * former should succeed even if we will temporarily exceed 610 * quota and the latter operates on the extent root so 611 * qgroup enforcement is ignored anyway. 612 */ 613 trans = start_transaction(root, num_items, TRANS_START, 614 BTRFS_RESERVE_FLUSH_ALL, false); 615 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 616 return trans; 617 618 trans = btrfs_start_transaction(root, 0); 619 if (IS_ERR(trans)) 620 return trans; 621 622 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items); 623 ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv, 624 num_bytes, min_factor); 625 if (ret) { 626 btrfs_end_transaction(trans); 627 return ERR_PTR(ret); 628 } 629 630 trans->block_rsv = &fs_info->trans_block_rsv; 631 trans->bytes_reserved = num_bytes; 632 trace_btrfs_space_reservation(fs_info, "transaction", 633 trans->transid, num_bytes, 1); 634 635 return trans; 636 } 637 638 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 639 { 640 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH, 641 true); 642 } 643 644 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root) 645 { 646 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 647 BTRFS_RESERVE_NO_FLUSH, true); 648 } 649 650 /* 651 * btrfs_attach_transaction() - catch the running transaction 652 * 653 * It is used when we want to commit the current the transaction, but 654 * don't want to start a new one. 655 * 656 * Note: If this function return -ENOENT, it just means there is no 657 * running transaction. But it is possible that the inactive transaction 658 * is still in the memory, not fully on disk. If you hope there is no 659 * inactive transaction in the fs when -ENOENT is returned, you should 660 * invoke 661 * btrfs_attach_transaction_barrier() 662 */ 663 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 664 { 665 return start_transaction(root, 0, TRANS_ATTACH, 666 BTRFS_RESERVE_NO_FLUSH, true); 667 } 668 669 /* 670 * btrfs_attach_transaction_barrier() - catch the running transaction 671 * 672 * It is similar to the above function, the differentia is this one 673 * will wait for all the inactive transactions until they fully 674 * complete. 675 */ 676 struct btrfs_trans_handle * 677 btrfs_attach_transaction_barrier(struct btrfs_root *root) 678 { 679 struct btrfs_trans_handle *trans; 680 681 trans = start_transaction(root, 0, TRANS_ATTACH, 682 BTRFS_RESERVE_NO_FLUSH, true); 683 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT) 684 btrfs_wait_for_commit(root->fs_info, 0); 685 686 return trans; 687 } 688 689 /* wait for a transaction commit to be fully complete */ 690 static noinline void wait_for_commit(struct btrfs_transaction *commit) 691 { 692 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED); 693 } 694 695 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid) 696 { 697 struct btrfs_transaction *cur_trans = NULL, *t; 698 int ret = 0; 699 700 if (transid) { 701 if (transid <= fs_info->last_trans_committed) 702 goto out; 703 704 /* find specified transaction */ 705 spin_lock(&fs_info->trans_lock); 706 list_for_each_entry(t, &fs_info->trans_list, list) { 707 if (t->transid == transid) { 708 cur_trans = t; 709 refcount_inc(&cur_trans->use_count); 710 ret = 0; 711 break; 712 } 713 if (t->transid > transid) { 714 ret = 0; 715 break; 716 } 717 } 718 spin_unlock(&fs_info->trans_lock); 719 720 /* 721 * The specified transaction doesn't exist, or we 722 * raced with btrfs_commit_transaction 723 */ 724 if (!cur_trans) { 725 if (transid > fs_info->last_trans_committed) 726 ret = -EINVAL; 727 goto out; 728 } 729 } else { 730 /* find newest transaction that is committing | committed */ 731 spin_lock(&fs_info->trans_lock); 732 list_for_each_entry_reverse(t, &fs_info->trans_list, 733 list) { 734 if (t->state >= TRANS_STATE_COMMIT_START) { 735 if (t->state == TRANS_STATE_COMPLETED) 736 break; 737 cur_trans = t; 738 refcount_inc(&cur_trans->use_count); 739 break; 740 } 741 } 742 spin_unlock(&fs_info->trans_lock); 743 if (!cur_trans) 744 goto out; /* nothing committing|committed */ 745 } 746 747 wait_for_commit(cur_trans); 748 btrfs_put_transaction(cur_trans); 749 out: 750 return ret; 751 } 752 753 void btrfs_throttle(struct btrfs_fs_info *fs_info) 754 { 755 wait_current_trans(fs_info); 756 } 757 758 static int should_end_transaction(struct btrfs_trans_handle *trans) 759 { 760 struct btrfs_fs_info *fs_info = trans->fs_info; 761 762 if (btrfs_check_space_for_delayed_refs(trans, fs_info)) 763 return 1; 764 765 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5); 766 } 767 768 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans) 769 { 770 struct btrfs_transaction *cur_trans = trans->transaction; 771 int updates; 772 int err; 773 774 smp_mb(); 775 if (cur_trans->state >= TRANS_STATE_BLOCKED || 776 cur_trans->delayed_refs.flushing) 777 return 1; 778 779 updates = trans->delayed_ref_updates; 780 trans->delayed_ref_updates = 0; 781 if (updates) { 782 err = btrfs_run_delayed_refs(trans, updates * 2); 783 if (err) /* Error code will also eval true */ 784 return err; 785 } 786 787 return should_end_transaction(trans); 788 } 789 790 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans) 791 792 { 793 struct btrfs_fs_info *fs_info = trans->fs_info; 794 795 if (!trans->block_rsv) { 796 ASSERT(!trans->bytes_reserved); 797 return; 798 } 799 800 if (!trans->bytes_reserved) 801 return; 802 803 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv); 804 trace_btrfs_space_reservation(fs_info, "transaction", 805 trans->transid, trans->bytes_reserved, 0); 806 btrfs_block_rsv_release(fs_info, trans->block_rsv, 807 trans->bytes_reserved); 808 trans->bytes_reserved = 0; 809 } 810 811 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 812 int throttle) 813 { 814 struct btrfs_fs_info *info = trans->fs_info; 815 struct btrfs_transaction *cur_trans = trans->transaction; 816 u64 transid = trans->transid; 817 unsigned long cur = trans->delayed_ref_updates; 818 int lock = (trans->type != TRANS_JOIN_NOLOCK); 819 int err = 0; 820 int must_run_delayed_refs = 0; 821 822 if (refcount_read(&trans->use_count) > 1) { 823 refcount_dec(&trans->use_count); 824 trans->block_rsv = trans->orig_rsv; 825 return 0; 826 } 827 828 btrfs_trans_release_metadata(trans); 829 trans->block_rsv = NULL; 830 831 if (!list_empty(&trans->new_bgs)) 832 btrfs_create_pending_block_groups(trans); 833 834 trans->delayed_ref_updates = 0; 835 if (!trans->sync) { 836 must_run_delayed_refs = 837 btrfs_should_throttle_delayed_refs(trans, info); 838 cur = max_t(unsigned long, cur, 32); 839 840 /* 841 * don't make the caller wait if they are from a NOLOCK 842 * or ATTACH transaction, it will deadlock with commit 843 */ 844 if (must_run_delayed_refs == 1 && 845 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH))) 846 must_run_delayed_refs = 2; 847 } 848 849 btrfs_trans_release_metadata(trans); 850 trans->block_rsv = NULL; 851 852 if (!list_empty(&trans->new_bgs)) 853 btrfs_create_pending_block_groups(trans); 854 855 btrfs_trans_release_chunk_metadata(trans); 856 857 if (lock && should_end_transaction(trans) && 858 READ_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) { 859 spin_lock(&info->trans_lock); 860 if (cur_trans->state == TRANS_STATE_RUNNING) 861 cur_trans->state = TRANS_STATE_BLOCKED; 862 spin_unlock(&info->trans_lock); 863 } 864 865 if (lock && READ_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) { 866 if (throttle) 867 return btrfs_commit_transaction(trans); 868 else 869 wake_up_process(info->transaction_kthread); 870 } 871 872 if (trans->type & __TRANS_FREEZABLE) 873 sb_end_intwrite(info->sb); 874 875 WARN_ON(cur_trans != info->running_transaction); 876 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 877 atomic_dec(&cur_trans->num_writers); 878 extwriter_counter_dec(cur_trans, trans->type); 879 880 cond_wake_up(&cur_trans->writer_wait); 881 btrfs_put_transaction(cur_trans); 882 883 if (current->journal_info == trans) 884 current->journal_info = NULL; 885 886 if (throttle) 887 btrfs_run_delayed_iputs(info); 888 889 if (trans->aborted || 890 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) { 891 wake_up_process(info->transaction_kthread); 892 err = -EIO; 893 } 894 895 kmem_cache_free(btrfs_trans_handle_cachep, trans); 896 if (must_run_delayed_refs) { 897 btrfs_async_run_delayed_refs(info, cur, transid, 898 must_run_delayed_refs == 1); 899 } 900 return err; 901 } 902 903 int btrfs_end_transaction(struct btrfs_trans_handle *trans) 904 { 905 return __btrfs_end_transaction(trans, 0); 906 } 907 908 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans) 909 { 910 return __btrfs_end_transaction(trans, 1); 911 } 912 913 /* 914 * when btree blocks are allocated, they have some corresponding bits set for 915 * them in one of two extent_io trees. This is used to make sure all of 916 * those extents are sent to disk but does not wait on them 917 */ 918 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info, 919 struct extent_io_tree *dirty_pages, int mark) 920 { 921 int err = 0; 922 int werr = 0; 923 struct address_space *mapping = fs_info->btree_inode->i_mapping; 924 struct extent_state *cached_state = NULL; 925 u64 start = 0; 926 u64 end; 927 928 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers); 929 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 930 mark, &cached_state)) { 931 bool wait_writeback = false; 932 933 err = convert_extent_bit(dirty_pages, start, end, 934 EXTENT_NEED_WAIT, 935 mark, &cached_state); 936 /* 937 * convert_extent_bit can return -ENOMEM, which is most of the 938 * time a temporary error. So when it happens, ignore the error 939 * and wait for writeback of this range to finish - because we 940 * failed to set the bit EXTENT_NEED_WAIT for the range, a call 941 * to __btrfs_wait_marked_extents() would not know that 942 * writeback for this range started and therefore wouldn't 943 * wait for it to finish - we don't want to commit a 944 * superblock that points to btree nodes/leafs for which 945 * writeback hasn't finished yet (and without errors). 946 * We cleanup any entries left in the io tree when committing 947 * the transaction (through clear_btree_io_tree()). 948 */ 949 if (err == -ENOMEM) { 950 err = 0; 951 wait_writeback = true; 952 } 953 if (!err) 954 err = filemap_fdatawrite_range(mapping, start, end); 955 if (err) 956 werr = err; 957 else if (wait_writeback) 958 werr = filemap_fdatawait_range(mapping, start, end); 959 free_extent_state(cached_state); 960 cached_state = NULL; 961 cond_resched(); 962 start = end + 1; 963 } 964 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers); 965 return werr; 966 } 967 968 /* 969 * when btree blocks are allocated, they have some corresponding bits set for 970 * them in one of two extent_io trees. This is used to make sure all of 971 * those extents are on disk for transaction or log commit. We wait 972 * on all the pages and clear them from the dirty pages state tree 973 */ 974 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info, 975 struct extent_io_tree *dirty_pages) 976 { 977 int err = 0; 978 int werr = 0; 979 struct address_space *mapping = fs_info->btree_inode->i_mapping; 980 struct extent_state *cached_state = NULL; 981 u64 start = 0; 982 u64 end; 983 984 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 985 EXTENT_NEED_WAIT, &cached_state)) { 986 /* 987 * Ignore -ENOMEM errors returned by clear_extent_bit(). 988 * When committing the transaction, we'll remove any entries 989 * left in the io tree. For a log commit, we don't remove them 990 * after committing the log because the tree can be accessed 991 * concurrently - we do it only at transaction commit time when 992 * it's safe to do it (through clear_btree_io_tree()). 993 */ 994 err = clear_extent_bit(dirty_pages, start, end, 995 EXTENT_NEED_WAIT, 0, 0, &cached_state); 996 if (err == -ENOMEM) 997 err = 0; 998 if (!err) 999 err = filemap_fdatawait_range(mapping, start, end); 1000 if (err) 1001 werr = err; 1002 free_extent_state(cached_state); 1003 cached_state = NULL; 1004 cond_resched(); 1005 start = end + 1; 1006 } 1007 if (err) 1008 werr = err; 1009 return werr; 1010 } 1011 1012 int btrfs_wait_extents(struct btrfs_fs_info *fs_info, 1013 struct extent_io_tree *dirty_pages) 1014 { 1015 bool errors = false; 1016 int err; 1017 1018 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1019 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags)) 1020 errors = true; 1021 1022 if (errors && !err) 1023 err = -EIO; 1024 return err; 1025 } 1026 1027 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark) 1028 { 1029 struct btrfs_fs_info *fs_info = log_root->fs_info; 1030 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages; 1031 bool errors = false; 1032 int err; 1033 1034 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 1035 1036 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1037 if ((mark & EXTENT_DIRTY) && 1038 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags)) 1039 errors = true; 1040 1041 if ((mark & EXTENT_NEW) && 1042 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags)) 1043 errors = true; 1044 1045 if (errors && !err) 1046 err = -EIO; 1047 return err; 1048 } 1049 1050 /* 1051 * When btree blocks are allocated the corresponding extents are marked dirty. 1052 * This function ensures such extents are persisted on disk for transaction or 1053 * log commit. 1054 * 1055 * @trans: transaction whose dirty pages we'd like to write 1056 */ 1057 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans) 1058 { 1059 int ret; 1060 int ret2; 1061 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages; 1062 struct btrfs_fs_info *fs_info = trans->fs_info; 1063 struct blk_plug plug; 1064 1065 blk_start_plug(&plug); 1066 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY); 1067 blk_finish_plug(&plug); 1068 ret2 = btrfs_wait_extents(fs_info, dirty_pages); 1069 1070 clear_btree_io_tree(&trans->transaction->dirty_pages); 1071 1072 if (ret) 1073 return ret; 1074 else if (ret2) 1075 return ret2; 1076 else 1077 return 0; 1078 } 1079 1080 /* 1081 * this is used to update the root pointer in the tree of tree roots. 1082 * 1083 * But, in the case of the extent allocation tree, updating the root 1084 * pointer may allocate blocks which may change the root of the extent 1085 * allocation tree. 1086 * 1087 * So, this loops and repeats and makes sure the cowonly root didn't 1088 * change while the root pointer was being updated in the metadata. 1089 */ 1090 static int update_cowonly_root(struct btrfs_trans_handle *trans, 1091 struct btrfs_root *root) 1092 { 1093 int ret; 1094 u64 old_root_bytenr; 1095 u64 old_root_used; 1096 struct btrfs_fs_info *fs_info = root->fs_info; 1097 struct btrfs_root *tree_root = fs_info->tree_root; 1098 1099 old_root_used = btrfs_root_used(&root->root_item); 1100 1101 while (1) { 1102 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 1103 if (old_root_bytenr == root->node->start && 1104 old_root_used == btrfs_root_used(&root->root_item)) 1105 break; 1106 1107 btrfs_set_root_node(&root->root_item, root->node); 1108 ret = btrfs_update_root(trans, tree_root, 1109 &root->root_key, 1110 &root->root_item); 1111 if (ret) 1112 return ret; 1113 1114 old_root_used = btrfs_root_used(&root->root_item); 1115 } 1116 1117 return 0; 1118 } 1119 1120 /* 1121 * update all the cowonly tree roots on disk 1122 * 1123 * The error handling in this function may not be obvious. Any of the 1124 * failures will cause the file system to go offline. We still need 1125 * to clean up the delayed refs. 1126 */ 1127 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans) 1128 { 1129 struct btrfs_fs_info *fs_info = trans->fs_info; 1130 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; 1131 struct list_head *io_bgs = &trans->transaction->io_bgs; 1132 struct list_head *next; 1133 struct extent_buffer *eb; 1134 int ret; 1135 1136 eb = btrfs_lock_root_node(fs_info->tree_root); 1137 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 1138 0, &eb); 1139 btrfs_tree_unlock(eb); 1140 free_extent_buffer(eb); 1141 1142 if (ret) 1143 return ret; 1144 1145 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1146 if (ret) 1147 return ret; 1148 1149 ret = btrfs_run_dev_stats(trans, fs_info); 1150 if (ret) 1151 return ret; 1152 ret = btrfs_run_dev_replace(trans, fs_info); 1153 if (ret) 1154 return ret; 1155 ret = btrfs_run_qgroups(trans, fs_info); 1156 if (ret) 1157 return ret; 1158 1159 ret = btrfs_setup_space_cache(trans, fs_info); 1160 if (ret) 1161 return ret; 1162 1163 /* run_qgroups might have added some more refs */ 1164 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1165 if (ret) 1166 return ret; 1167 again: 1168 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1169 struct btrfs_root *root; 1170 next = fs_info->dirty_cowonly_roots.next; 1171 list_del_init(next); 1172 root = list_entry(next, struct btrfs_root, dirty_list); 1173 clear_bit(BTRFS_ROOT_DIRTY, &root->state); 1174 1175 if (root != fs_info->extent_root) 1176 list_add_tail(&root->dirty_list, 1177 &trans->transaction->switch_commits); 1178 ret = update_cowonly_root(trans, root); 1179 if (ret) 1180 return ret; 1181 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1182 if (ret) 1183 return ret; 1184 } 1185 1186 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { 1187 ret = btrfs_write_dirty_block_groups(trans, fs_info); 1188 if (ret) 1189 return ret; 1190 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1191 if (ret) 1192 return ret; 1193 } 1194 1195 if (!list_empty(&fs_info->dirty_cowonly_roots)) 1196 goto again; 1197 1198 list_add_tail(&fs_info->extent_root->dirty_list, 1199 &trans->transaction->switch_commits); 1200 btrfs_after_dev_replace_commit(fs_info); 1201 1202 return 0; 1203 } 1204 1205 /* 1206 * dead roots are old snapshots that need to be deleted. This allocates 1207 * a dirty root struct and adds it into the list of dead roots that need to 1208 * be deleted 1209 */ 1210 void btrfs_add_dead_root(struct btrfs_root *root) 1211 { 1212 struct btrfs_fs_info *fs_info = root->fs_info; 1213 1214 spin_lock(&fs_info->trans_lock); 1215 if (list_empty(&root->root_list)) 1216 list_add_tail(&root->root_list, &fs_info->dead_roots); 1217 spin_unlock(&fs_info->trans_lock); 1218 } 1219 1220 /* 1221 * update all the cowonly tree roots on disk 1222 */ 1223 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans) 1224 { 1225 struct btrfs_fs_info *fs_info = trans->fs_info; 1226 struct btrfs_root *gang[8]; 1227 int i; 1228 int ret; 1229 int err = 0; 1230 1231 spin_lock(&fs_info->fs_roots_radix_lock); 1232 while (1) { 1233 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1234 (void **)gang, 0, 1235 ARRAY_SIZE(gang), 1236 BTRFS_ROOT_TRANS_TAG); 1237 if (ret == 0) 1238 break; 1239 for (i = 0; i < ret; i++) { 1240 struct btrfs_root *root = gang[i]; 1241 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1242 (unsigned long)root->root_key.objectid, 1243 BTRFS_ROOT_TRANS_TAG); 1244 spin_unlock(&fs_info->fs_roots_radix_lock); 1245 1246 btrfs_free_log(trans, root); 1247 btrfs_update_reloc_root(trans, root); 1248 1249 btrfs_save_ino_cache(root, trans); 1250 1251 /* see comments in should_cow_block() */ 1252 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1253 smp_mb__after_atomic(); 1254 1255 if (root->commit_root != root->node) { 1256 list_add_tail(&root->dirty_list, 1257 &trans->transaction->switch_commits); 1258 btrfs_set_root_node(&root->root_item, 1259 root->node); 1260 } 1261 1262 err = btrfs_update_root(trans, fs_info->tree_root, 1263 &root->root_key, 1264 &root->root_item); 1265 spin_lock(&fs_info->fs_roots_radix_lock); 1266 if (err) 1267 break; 1268 btrfs_qgroup_free_meta_all_pertrans(root); 1269 } 1270 } 1271 spin_unlock(&fs_info->fs_roots_radix_lock); 1272 return err; 1273 } 1274 1275 /* 1276 * defrag a given btree. 1277 * Every leaf in the btree is read and defragged. 1278 */ 1279 int btrfs_defrag_root(struct btrfs_root *root) 1280 { 1281 struct btrfs_fs_info *info = root->fs_info; 1282 struct btrfs_trans_handle *trans; 1283 int ret; 1284 1285 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) 1286 return 0; 1287 1288 while (1) { 1289 trans = btrfs_start_transaction(root, 0); 1290 if (IS_ERR(trans)) 1291 return PTR_ERR(trans); 1292 1293 ret = btrfs_defrag_leaves(trans, root); 1294 1295 btrfs_end_transaction(trans); 1296 btrfs_btree_balance_dirty(info); 1297 cond_resched(); 1298 1299 if (btrfs_fs_closing(info) || ret != -EAGAIN) 1300 break; 1301 1302 if (btrfs_defrag_cancelled(info)) { 1303 btrfs_debug(info, "defrag_root cancelled"); 1304 ret = -EAGAIN; 1305 break; 1306 } 1307 } 1308 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); 1309 return ret; 1310 } 1311 1312 /* 1313 * Do all special snapshot related qgroup dirty hack. 1314 * 1315 * Will do all needed qgroup inherit and dirty hack like switch commit 1316 * roots inside one transaction and write all btree into disk, to make 1317 * qgroup works. 1318 */ 1319 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans, 1320 struct btrfs_root *src, 1321 struct btrfs_root *parent, 1322 struct btrfs_qgroup_inherit *inherit, 1323 u64 dst_objectid) 1324 { 1325 struct btrfs_fs_info *fs_info = src->fs_info; 1326 int ret; 1327 1328 /* 1329 * Save some performance in the case that qgroups are not 1330 * enabled. If this check races with the ioctl, rescan will 1331 * kick in anyway. 1332 */ 1333 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) 1334 return 0; 1335 1336 /* 1337 * Ensure dirty @src will be commited. Or, after comming 1338 * commit_fs_roots() and switch_commit_roots(), any dirty but not 1339 * recorded root will never be updated again, causing an outdated root 1340 * item. 1341 */ 1342 record_root_in_trans(trans, src, 1); 1343 1344 /* 1345 * We are going to commit transaction, see btrfs_commit_transaction() 1346 * comment for reason locking tree_log_mutex 1347 */ 1348 mutex_lock(&fs_info->tree_log_mutex); 1349 1350 ret = commit_fs_roots(trans); 1351 if (ret) 1352 goto out; 1353 ret = btrfs_qgroup_account_extents(trans); 1354 if (ret < 0) 1355 goto out; 1356 1357 /* Now qgroup are all updated, we can inherit it to new qgroups */ 1358 ret = btrfs_qgroup_inherit(trans, fs_info, 1359 src->root_key.objectid, dst_objectid, 1360 inherit); 1361 if (ret < 0) 1362 goto out; 1363 1364 /* 1365 * Now we do a simplified commit transaction, which will: 1366 * 1) commit all subvolume and extent tree 1367 * To ensure all subvolume and extent tree have a valid 1368 * commit_root to accounting later insert_dir_item() 1369 * 2) write all btree blocks onto disk 1370 * This is to make sure later btree modification will be cowed 1371 * Or commit_root can be populated and cause wrong qgroup numbers 1372 * In this simplified commit, we don't really care about other trees 1373 * like chunk and root tree, as they won't affect qgroup. 1374 * And we don't write super to avoid half committed status. 1375 */ 1376 ret = commit_cowonly_roots(trans); 1377 if (ret) 1378 goto out; 1379 switch_commit_roots(trans->transaction); 1380 ret = btrfs_write_and_wait_transaction(trans); 1381 if (ret) 1382 btrfs_handle_fs_error(fs_info, ret, 1383 "Error while writing out transaction for qgroup"); 1384 1385 out: 1386 mutex_unlock(&fs_info->tree_log_mutex); 1387 1388 /* 1389 * Force parent root to be updated, as we recorded it before so its 1390 * last_trans == cur_transid. 1391 * Or it won't be committed again onto disk after later 1392 * insert_dir_item() 1393 */ 1394 if (!ret) 1395 record_root_in_trans(trans, parent, 1); 1396 return ret; 1397 } 1398 1399 /* 1400 * new snapshots need to be created at a very specific time in the 1401 * transaction commit. This does the actual creation. 1402 * 1403 * Note: 1404 * If the error which may affect the commitment of the current transaction 1405 * happens, we should return the error number. If the error which just affect 1406 * the creation of the pending snapshots, just return 0. 1407 */ 1408 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1409 struct btrfs_pending_snapshot *pending) 1410 { 1411 1412 struct btrfs_fs_info *fs_info = trans->fs_info; 1413 struct btrfs_key key; 1414 struct btrfs_root_item *new_root_item; 1415 struct btrfs_root *tree_root = fs_info->tree_root; 1416 struct btrfs_root *root = pending->root; 1417 struct btrfs_root *parent_root; 1418 struct btrfs_block_rsv *rsv; 1419 struct inode *parent_inode; 1420 struct btrfs_path *path; 1421 struct btrfs_dir_item *dir_item; 1422 struct dentry *dentry; 1423 struct extent_buffer *tmp; 1424 struct extent_buffer *old; 1425 struct timespec64 cur_time; 1426 int ret = 0; 1427 u64 to_reserve = 0; 1428 u64 index = 0; 1429 u64 objectid; 1430 u64 root_flags; 1431 uuid_le new_uuid; 1432 1433 ASSERT(pending->path); 1434 path = pending->path; 1435 1436 ASSERT(pending->root_item); 1437 new_root_item = pending->root_item; 1438 1439 pending->error = btrfs_find_free_objectid(tree_root, &objectid); 1440 if (pending->error) 1441 goto no_free_objectid; 1442 1443 /* 1444 * Make qgroup to skip current new snapshot's qgroupid, as it is 1445 * accounted by later btrfs_qgroup_inherit(). 1446 */ 1447 btrfs_set_skip_qgroup(trans, objectid); 1448 1449 btrfs_reloc_pre_snapshot(pending, &to_reserve); 1450 1451 if (to_reserve > 0) { 1452 pending->error = btrfs_block_rsv_add(root, 1453 &pending->block_rsv, 1454 to_reserve, 1455 BTRFS_RESERVE_NO_FLUSH); 1456 if (pending->error) 1457 goto clear_skip_qgroup; 1458 } 1459 1460 key.objectid = objectid; 1461 key.offset = (u64)-1; 1462 key.type = BTRFS_ROOT_ITEM_KEY; 1463 1464 rsv = trans->block_rsv; 1465 trans->block_rsv = &pending->block_rsv; 1466 trans->bytes_reserved = trans->block_rsv->reserved; 1467 trace_btrfs_space_reservation(fs_info, "transaction", 1468 trans->transid, 1469 trans->bytes_reserved, 1); 1470 dentry = pending->dentry; 1471 parent_inode = pending->dir; 1472 parent_root = BTRFS_I(parent_inode)->root; 1473 record_root_in_trans(trans, parent_root, 0); 1474 1475 cur_time = current_time(parent_inode); 1476 1477 /* 1478 * insert the directory item 1479 */ 1480 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index); 1481 BUG_ON(ret); /* -ENOMEM */ 1482 1483 /* check if there is a file/dir which has the same name. */ 1484 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1485 btrfs_ino(BTRFS_I(parent_inode)), 1486 dentry->d_name.name, 1487 dentry->d_name.len, 0); 1488 if (dir_item != NULL && !IS_ERR(dir_item)) { 1489 pending->error = -EEXIST; 1490 goto dir_item_existed; 1491 } else if (IS_ERR(dir_item)) { 1492 ret = PTR_ERR(dir_item); 1493 btrfs_abort_transaction(trans, ret); 1494 goto fail; 1495 } 1496 btrfs_release_path(path); 1497 1498 /* 1499 * pull in the delayed directory update 1500 * and the delayed inode item 1501 * otherwise we corrupt the FS during 1502 * snapshot 1503 */ 1504 ret = btrfs_run_delayed_items(trans); 1505 if (ret) { /* Transaction aborted */ 1506 btrfs_abort_transaction(trans, ret); 1507 goto fail; 1508 } 1509 1510 record_root_in_trans(trans, root, 0); 1511 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1512 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1513 btrfs_check_and_init_root_item(new_root_item); 1514 1515 root_flags = btrfs_root_flags(new_root_item); 1516 if (pending->readonly) 1517 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1518 else 1519 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1520 btrfs_set_root_flags(new_root_item, root_flags); 1521 1522 btrfs_set_root_generation_v2(new_root_item, 1523 trans->transid); 1524 uuid_le_gen(&new_uuid); 1525 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 1526 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1527 BTRFS_UUID_SIZE); 1528 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1529 memset(new_root_item->received_uuid, 0, 1530 sizeof(new_root_item->received_uuid)); 1531 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1532 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1533 btrfs_set_root_stransid(new_root_item, 0); 1534 btrfs_set_root_rtransid(new_root_item, 0); 1535 } 1536 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1537 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1538 btrfs_set_root_otransid(new_root_item, trans->transid); 1539 1540 old = btrfs_lock_root_node(root); 1541 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old); 1542 if (ret) { 1543 btrfs_tree_unlock(old); 1544 free_extent_buffer(old); 1545 btrfs_abort_transaction(trans, ret); 1546 goto fail; 1547 } 1548 1549 btrfs_set_lock_blocking(old); 1550 1551 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1552 /* clean up in any case */ 1553 btrfs_tree_unlock(old); 1554 free_extent_buffer(old); 1555 if (ret) { 1556 btrfs_abort_transaction(trans, ret); 1557 goto fail; 1558 } 1559 /* see comments in should_cow_block() */ 1560 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1561 smp_wmb(); 1562 1563 btrfs_set_root_node(new_root_item, tmp); 1564 /* record when the snapshot was created in key.offset */ 1565 key.offset = trans->transid; 1566 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1567 btrfs_tree_unlock(tmp); 1568 free_extent_buffer(tmp); 1569 if (ret) { 1570 btrfs_abort_transaction(trans, ret); 1571 goto fail; 1572 } 1573 1574 /* 1575 * insert root back/forward references 1576 */ 1577 ret = btrfs_add_root_ref(trans, fs_info, objectid, 1578 parent_root->root_key.objectid, 1579 btrfs_ino(BTRFS_I(parent_inode)), index, 1580 dentry->d_name.name, dentry->d_name.len); 1581 if (ret) { 1582 btrfs_abort_transaction(trans, ret); 1583 goto fail; 1584 } 1585 1586 key.offset = (u64)-1; 1587 pending->snap = btrfs_read_fs_root_no_name(fs_info, &key); 1588 if (IS_ERR(pending->snap)) { 1589 ret = PTR_ERR(pending->snap); 1590 btrfs_abort_transaction(trans, ret); 1591 goto fail; 1592 } 1593 1594 ret = btrfs_reloc_post_snapshot(trans, pending); 1595 if (ret) { 1596 btrfs_abort_transaction(trans, ret); 1597 goto fail; 1598 } 1599 1600 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1601 if (ret) { 1602 btrfs_abort_transaction(trans, ret); 1603 goto fail; 1604 } 1605 1606 /* 1607 * Do special qgroup accounting for snapshot, as we do some qgroup 1608 * snapshot hack to do fast snapshot. 1609 * To co-operate with that hack, we do hack again. 1610 * Or snapshot will be greatly slowed down by a subtree qgroup rescan 1611 */ 1612 ret = qgroup_account_snapshot(trans, root, parent_root, 1613 pending->inherit, objectid); 1614 if (ret < 0) 1615 goto fail; 1616 1617 ret = btrfs_insert_dir_item(trans, parent_root, 1618 dentry->d_name.name, dentry->d_name.len, 1619 BTRFS_I(parent_inode), &key, 1620 BTRFS_FT_DIR, index); 1621 /* We have check then name at the beginning, so it is impossible. */ 1622 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1623 if (ret) { 1624 btrfs_abort_transaction(trans, ret); 1625 goto fail; 1626 } 1627 1628 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size + 1629 dentry->d_name.len * 2); 1630 parent_inode->i_mtime = parent_inode->i_ctime = 1631 current_time(parent_inode); 1632 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode); 1633 if (ret) { 1634 btrfs_abort_transaction(trans, ret); 1635 goto fail; 1636 } 1637 ret = btrfs_uuid_tree_add(trans, new_uuid.b, BTRFS_UUID_KEY_SUBVOL, 1638 objectid); 1639 if (ret) { 1640 btrfs_abort_transaction(trans, ret); 1641 goto fail; 1642 } 1643 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1644 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid, 1645 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1646 objectid); 1647 if (ret && ret != -EEXIST) { 1648 btrfs_abort_transaction(trans, ret); 1649 goto fail; 1650 } 1651 } 1652 1653 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1654 if (ret) { 1655 btrfs_abort_transaction(trans, ret); 1656 goto fail; 1657 } 1658 1659 fail: 1660 pending->error = ret; 1661 dir_item_existed: 1662 trans->block_rsv = rsv; 1663 trans->bytes_reserved = 0; 1664 clear_skip_qgroup: 1665 btrfs_clear_skip_qgroup(trans); 1666 no_free_objectid: 1667 kfree(new_root_item); 1668 pending->root_item = NULL; 1669 btrfs_free_path(path); 1670 pending->path = NULL; 1671 1672 return ret; 1673 } 1674 1675 /* 1676 * create all the snapshots we've scheduled for creation 1677 */ 1678 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans) 1679 { 1680 struct btrfs_pending_snapshot *pending, *next; 1681 struct list_head *head = &trans->transaction->pending_snapshots; 1682 int ret = 0; 1683 1684 list_for_each_entry_safe(pending, next, head, list) { 1685 list_del(&pending->list); 1686 ret = create_pending_snapshot(trans, pending); 1687 if (ret) 1688 break; 1689 } 1690 return ret; 1691 } 1692 1693 static void update_super_roots(struct btrfs_fs_info *fs_info) 1694 { 1695 struct btrfs_root_item *root_item; 1696 struct btrfs_super_block *super; 1697 1698 super = fs_info->super_copy; 1699 1700 root_item = &fs_info->chunk_root->root_item; 1701 super->chunk_root = root_item->bytenr; 1702 super->chunk_root_generation = root_item->generation; 1703 super->chunk_root_level = root_item->level; 1704 1705 root_item = &fs_info->tree_root->root_item; 1706 super->root = root_item->bytenr; 1707 super->generation = root_item->generation; 1708 super->root_level = root_item->level; 1709 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 1710 super->cache_generation = root_item->generation; 1711 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags)) 1712 super->uuid_tree_generation = root_item->generation; 1713 } 1714 1715 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1716 { 1717 struct btrfs_transaction *trans; 1718 int ret = 0; 1719 1720 spin_lock(&info->trans_lock); 1721 trans = info->running_transaction; 1722 if (trans) 1723 ret = (trans->state >= TRANS_STATE_COMMIT_START); 1724 spin_unlock(&info->trans_lock); 1725 return ret; 1726 } 1727 1728 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1729 { 1730 struct btrfs_transaction *trans; 1731 int ret = 0; 1732 1733 spin_lock(&info->trans_lock); 1734 trans = info->running_transaction; 1735 if (trans) 1736 ret = is_transaction_blocked(trans); 1737 spin_unlock(&info->trans_lock); 1738 return ret; 1739 } 1740 1741 /* 1742 * wait for the current transaction commit to start and block subsequent 1743 * transaction joins 1744 */ 1745 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info, 1746 struct btrfs_transaction *trans) 1747 { 1748 wait_event(fs_info->transaction_blocked_wait, 1749 trans->state >= TRANS_STATE_COMMIT_START || trans->aborted); 1750 } 1751 1752 /* 1753 * wait for the current transaction to start and then become unblocked. 1754 * caller holds ref. 1755 */ 1756 static void wait_current_trans_commit_start_and_unblock( 1757 struct btrfs_fs_info *fs_info, 1758 struct btrfs_transaction *trans) 1759 { 1760 wait_event(fs_info->transaction_wait, 1761 trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted); 1762 } 1763 1764 /* 1765 * commit transactions asynchronously. once btrfs_commit_transaction_async 1766 * returns, any subsequent transaction will not be allowed to join. 1767 */ 1768 struct btrfs_async_commit { 1769 struct btrfs_trans_handle *newtrans; 1770 struct work_struct work; 1771 }; 1772 1773 static void do_async_commit(struct work_struct *work) 1774 { 1775 struct btrfs_async_commit *ac = 1776 container_of(work, struct btrfs_async_commit, work); 1777 1778 /* 1779 * We've got freeze protection passed with the transaction. 1780 * Tell lockdep about it. 1781 */ 1782 if (ac->newtrans->type & __TRANS_FREEZABLE) 1783 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS); 1784 1785 current->journal_info = ac->newtrans; 1786 1787 btrfs_commit_transaction(ac->newtrans); 1788 kfree(ac); 1789 } 1790 1791 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, 1792 int wait_for_unblock) 1793 { 1794 struct btrfs_fs_info *fs_info = trans->fs_info; 1795 struct btrfs_async_commit *ac; 1796 struct btrfs_transaction *cur_trans; 1797 1798 ac = kmalloc(sizeof(*ac), GFP_NOFS); 1799 if (!ac) 1800 return -ENOMEM; 1801 1802 INIT_WORK(&ac->work, do_async_commit); 1803 ac->newtrans = btrfs_join_transaction(trans->root); 1804 if (IS_ERR(ac->newtrans)) { 1805 int err = PTR_ERR(ac->newtrans); 1806 kfree(ac); 1807 return err; 1808 } 1809 1810 /* take transaction reference */ 1811 cur_trans = trans->transaction; 1812 refcount_inc(&cur_trans->use_count); 1813 1814 btrfs_end_transaction(trans); 1815 1816 /* 1817 * Tell lockdep we've released the freeze rwsem, since the 1818 * async commit thread will be the one to unlock it. 1819 */ 1820 if (ac->newtrans->type & __TRANS_FREEZABLE) 1821 __sb_writers_release(fs_info->sb, SB_FREEZE_FS); 1822 1823 schedule_work(&ac->work); 1824 1825 /* wait for transaction to start and unblock */ 1826 if (wait_for_unblock) 1827 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans); 1828 else 1829 wait_current_trans_commit_start(fs_info, cur_trans); 1830 1831 if (current->journal_info == trans) 1832 current->journal_info = NULL; 1833 1834 btrfs_put_transaction(cur_trans); 1835 return 0; 1836 } 1837 1838 1839 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err) 1840 { 1841 struct btrfs_fs_info *fs_info = trans->fs_info; 1842 struct btrfs_transaction *cur_trans = trans->transaction; 1843 DEFINE_WAIT(wait); 1844 1845 WARN_ON(refcount_read(&trans->use_count) > 1); 1846 1847 btrfs_abort_transaction(trans, err); 1848 1849 spin_lock(&fs_info->trans_lock); 1850 1851 /* 1852 * If the transaction is removed from the list, it means this 1853 * transaction has been committed successfully, so it is impossible 1854 * to call the cleanup function. 1855 */ 1856 BUG_ON(list_empty(&cur_trans->list)); 1857 1858 list_del_init(&cur_trans->list); 1859 if (cur_trans == fs_info->running_transaction) { 1860 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1861 spin_unlock(&fs_info->trans_lock); 1862 wait_event(cur_trans->writer_wait, 1863 atomic_read(&cur_trans->num_writers) == 1); 1864 1865 spin_lock(&fs_info->trans_lock); 1866 } 1867 spin_unlock(&fs_info->trans_lock); 1868 1869 btrfs_cleanup_one_transaction(trans->transaction, fs_info); 1870 1871 spin_lock(&fs_info->trans_lock); 1872 if (cur_trans == fs_info->running_transaction) 1873 fs_info->running_transaction = NULL; 1874 spin_unlock(&fs_info->trans_lock); 1875 1876 if (trans->type & __TRANS_FREEZABLE) 1877 sb_end_intwrite(fs_info->sb); 1878 btrfs_put_transaction(cur_trans); 1879 btrfs_put_transaction(cur_trans); 1880 1881 trace_btrfs_transaction_commit(trans->root); 1882 1883 if (current->journal_info == trans) 1884 current->journal_info = NULL; 1885 btrfs_scrub_cancel(fs_info); 1886 1887 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1888 } 1889 1890 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info) 1891 { 1892 /* 1893 * We use writeback_inodes_sb here because if we used 1894 * btrfs_start_delalloc_roots we would deadlock with fs freeze. 1895 * Currently are holding the fs freeze lock, if we do an async flush 1896 * we'll do btrfs_join_transaction() and deadlock because we need to 1897 * wait for the fs freeze lock. Using the direct flushing we benefit 1898 * from already being in a transaction and our join_transaction doesn't 1899 * have to re-take the fs freeze lock. 1900 */ 1901 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 1902 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC); 1903 return 0; 1904 } 1905 1906 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info) 1907 { 1908 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 1909 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 1910 } 1911 1912 static inline void 1913 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans) 1914 { 1915 wait_event(cur_trans->pending_wait, 1916 atomic_read(&cur_trans->pending_ordered) == 0); 1917 } 1918 1919 int btrfs_commit_transaction(struct btrfs_trans_handle *trans) 1920 { 1921 struct btrfs_fs_info *fs_info = trans->fs_info; 1922 struct btrfs_transaction *cur_trans = trans->transaction; 1923 struct btrfs_transaction *prev_trans = NULL; 1924 int ret; 1925 1926 /* Stop the commit early if ->aborted is set */ 1927 if (unlikely(READ_ONCE(cur_trans->aborted))) { 1928 ret = cur_trans->aborted; 1929 btrfs_end_transaction(trans); 1930 return ret; 1931 } 1932 1933 /* make a pass through all the delayed refs we have so far 1934 * any runnings procs may add more while we are here 1935 */ 1936 ret = btrfs_run_delayed_refs(trans, 0); 1937 if (ret) { 1938 btrfs_end_transaction(trans); 1939 return ret; 1940 } 1941 1942 btrfs_trans_release_metadata(trans); 1943 trans->block_rsv = NULL; 1944 1945 cur_trans = trans->transaction; 1946 1947 /* 1948 * set the flushing flag so procs in this transaction have to 1949 * start sending their work down. 1950 */ 1951 cur_trans->delayed_refs.flushing = 1; 1952 smp_wmb(); 1953 1954 if (!list_empty(&trans->new_bgs)) 1955 btrfs_create_pending_block_groups(trans); 1956 1957 ret = btrfs_run_delayed_refs(trans, 0); 1958 if (ret) { 1959 btrfs_end_transaction(trans); 1960 return ret; 1961 } 1962 1963 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) { 1964 int run_it = 0; 1965 1966 /* this mutex is also taken before trying to set 1967 * block groups readonly. We need to make sure 1968 * that nobody has set a block group readonly 1969 * after a extents from that block group have been 1970 * allocated for cache files. btrfs_set_block_group_ro 1971 * will wait for the transaction to commit if it 1972 * finds BTRFS_TRANS_DIRTY_BG_RUN set. 1973 * 1974 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure 1975 * only one process starts all the block group IO. It wouldn't 1976 * hurt to have more than one go through, but there's no 1977 * real advantage to it either. 1978 */ 1979 mutex_lock(&fs_info->ro_block_group_mutex); 1980 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN, 1981 &cur_trans->flags)) 1982 run_it = 1; 1983 mutex_unlock(&fs_info->ro_block_group_mutex); 1984 1985 if (run_it) { 1986 ret = btrfs_start_dirty_block_groups(trans); 1987 if (ret) { 1988 btrfs_end_transaction(trans); 1989 return ret; 1990 } 1991 } 1992 } 1993 1994 spin_lock(&fs_info->trans_lock); 1995 if (cur_trans->state >= TRANS_STATE_COMMIT_START) { 1996 spin_unlock(&fs_info->trans_lock); 1997 refcount_inc(&cur_trans->use_count); 1998 ret = btrfs_end_transaction(trans); 1999 2000 wait_for_commit(cur_trans); 2001 2002 if (unlikely(cur_trans->aborted)) 2003 ret = cur_trans->aborted; 2004 2005 btrfs_put_transaction(cur_trans); 2006 2007 return ret; 2008 } 2009 2010 cur_trans->state = TRANS_STATE_COMMIT_START; 2011 wake_up(&fs_info->transaction_blocked_wait); 2012 2013 if (cur_trans->list.prev != &fs_info->trans_list) { 2014 prev_trans = list_entry(cur_trans->list.prev, 2015 struct btrfs_transaction, list); 2016 if (prev_trans->state != TRANS_STATE_COMPLETED) { 2017 refcount_inc(&prev_trans->use_count); 2018 spin_unlock(&fs_info->trans_lock); 2019 2020 wait_for_commit(prev_trans); 2021 ret = prev_trans->aborted; 2022 2023 btrfs_put_transaction(prev_trans); 2024 if (ret) 2025 goto cleanup_transaction; 2026 } else { 2027 spin_unlock(&fs_info->trans_lock); 2028 } 2029 } else { 2030 spin_unlock(&fs_info->trans_lock); 2031 } 2032 2033 extwriter_counter_dec(cur_trans, trans->type); 2034 2035 ret = btrfs_start_delalloc_flush(fs_info); 2036 if (ret) 2037 goto cleanup_transaction; 2038 2039 ret = btrfs_run_delayed_items(trans); 2040 if (ret) 2041 goto cleanup_transaction; 2042 2043 wait_event(cur_trans->writer_wait, 2044 extwriter_counter_read(cur_trans) == 0); 2045 2046 /* some pending stuffs might be added after the previous flush. */ 2047 ret = btrfs_run_delayed_items(trans); 2048 if (ret) 2049 goto cleanup_transaction; 2050 2051 btrfs_wait_delalloc_flush(fs_info); 2052 2053 btrfs_wait_pending_ordered(cur_trans); 2054 2055 btrfs_scrub_pause(fs_info); 2056 /* 2057 * Ok now we need to make sure to block out any other joins while we 2058 * commit the transaction. We could have started a join before setting 2059 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 2060 */ 2061 spin_lock(&fs_info->trans_lock); 2062 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2063 spin_unlock(&fs_info->trans_lock); 2064 wait_event(cur_trans->writer_wait, 2065 atomic_read(&cur_trans->num_writers) == 1); 2066 2067 /* ->aborted might be set after the previous check, so check it */ 2068 if (unlikely(READ_ONCE(cur_trans->aborted))) { 2069 ret = cur_trans->aborted; 2070 goto scrub_continue; 2071 } 2072 /* 2073 * the reloc mutex makes sure that we stop 2074 * the balancing code from coming in and moving 2075 * extents around in the middle of the commit 2076 */ 2077 mutex_lock(&fs_info->reloc_mutex); 2078 2079 /* 2080 * We needn't worry about the delayed items because we will 2081 * deal with them in create_pending_snapshot(), which is the 2082 * core function of the snapshot creation. 2083 */ 2084 ret = create_pending_snapshots(trans); 2085 if (ret) { 2086 mutex_unlock(&fs_info->reloc_mutex); 2087 goto scrub_continue; 2088 } 2089 2090 /* 2091 * We insert the dir indexes of the snapshots and update the inode 2092 * of the snapshots' parents after the snapshot creation, so there 2093 * are some delayed items which are not dealt with. Now deal with 2094 * them. 2095 * 2096 * We needn't worry that this operation will corrupt the snapshots, 2097 * because all the tree which are snapshoted will be forced to COW 2098 * the nodes and leaves. 2099 */ 2100 ret = btrfs_run_delayed_items(trans); 2101 if (ret) { 2102 mutex_unlock(&fs_info->reloc_mutex); 2103 goto scrub_continue; 2104 } 2105 2106 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 2107 if (ret) { 2108 mutex_unlock(&fs_info->reloc_mutex); 2109 goto scrub_continue; 2110 } 2111 2112 /* 2113 * make sure none of the code above managed to slip in a 2114 * delayed item 2115 */ 2116 btrfs_assert_delayed_root_empty(fs_info); 2117 2118 WARN_ON(cur_trans != trans->transaction); 2119 2120 /* btrfs_commit_tree_roots is responsible for getting the 2121 * various roots consistent with each other. Every pointer 2122 * in the tree of tree roots has to point to the most up to date 2123 * root for every subvolume and other tree. So, we have to keep 2124 * the tree logging code from jumping in and changing any 2125 * of the trees. 2126 * 2127 * At this point in the commit, there can't be any tree-log 2128 * writers, but a little lower down we drop the trans mutex 2129 * and let new people in. By holding the tree_log_mutex 2130 * from now until after the super is written, we avoid races 2131 * with the tree-log code. 2132 */ 2133 mutex_lock(&fs_info->tree_log_mutex); 2134 2135 ret = commit_fs_roots(trans); 2136 if (ret) { 2137 mutex_unlock(&fs_info->tree_log_mutex); 2138 mutex_unlock(&fs_info->reloc_mutex); 2139 goto scrub_continue; 2140 } 2141 2142 /* 2143 * Since the transaction is done, we can apply the pending changes 2144 * before the next transaction. 2145 */ 2146 btrfs_apply_pending_changes(fs_info); 2147 2148 /* commit_fs_roots gets rid of all the tree log roots, it is now 2149 * safe to free the root of tree log roots 2150 */ 2151 btrfs_free_log_root_tree(trans, fs_info); 2152 2153 /* 2154 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates 2155 * new delayed refs. Must handle them or qgroup can be wrong. 2156 */ 2157 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 2158 if (ret) { 2159 mutex_unlock(&fs_info->tree_log_mutex); 2160 mutex_unlock(&fs_info->reloc_mutex); 2161 goto scrub_continue; 2162 } 2163 2164 /* 2165 * Since fs roots are all committed, we can get a quite accurate 2166 * new_roots. So let's do quota accounting. 2167 */ 2168 ret = btrfs_qgroup_account_extents(trans); 2169 if (ret < 0) { 2170 mutex_unlock(&fs_info->tree_log_mutex); 2171 mutex_unlock(&fs_info->reloc_mutex); 2172 goto scrub_continue; 2173 } 2174 2175 ret = commit_cowonly_roots(trans); 2176 if (ret) { 2177 mutex_unlock(&fs_info->tree_log_mutex); 2178 mutex_unlock(&fs_info->reloc_mutex); 2179 goto scrub_continue; 2180 } 2181 2182 /* 2183 * The tasks which save the space cache and inode cache may also 2184 * update ->aborted, check it. 2185 */ 2186 if (unlikely(READ_ONCE(cur_trans->aborted))) { 2187 ret = cur_trans->aborted; 2188 mutex_unlock(&fs_info->tree_log_mutex); 2189 mutex_unlock(&fs_info->reloc_mutex); 2190 goto scrub_continue; 2191 } 2192 2193 btrfs_prepare_extent_commit(fs_info); 2194 2195 cur_trans = fs_info->running_transaction; 2196 2197 btrfs_set_root_node(&fs_info->tree_root->root_item, 2198 fs_info->tree_root->node); 2199 list_add_tail(&fs_info->tree_root->dirty_list, 2200 &cur_trans->switch_commits); 2201 2202 btrfs_set_root_node(&fs_info->chunk_root->root_item, 2203 fs_info->chunk_root->node); 2204 list_add_tail(&fs_info->chunk_root->dirty_list, 2205 &cur_trans->switch_commits); 2206 2207 switch_commit_roots(cur_trans); 2208 2209 ASSERT(list_empty(&cur_trans->dirty_bgs)); 2210 ASSERT(list_empty(&cur_trans->io_bgs)); 2211 update_super_roots(fs_info); 2212 2213 btrfs_set_super_log_root(fs_info->super_copy, 0); 2214 btrfs_set_super_log_root_level(fs_info->super_copy, 0); 2215 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2216 sizeof(*fs_info->super_copy)); 2217 2218 btrfs_update_commit_device_size(fs_info); 2219 btrfs_update_commit_device_bytes_used(cur_trans); 2220 2221 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 2222 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 2223 2224 btrfs_trans_release_chunk_metadata(trans); 2225 2226 spin_lock(&fs_info->trans_lock); 2227 cur_trans->state = TRANS_STATE_UNBLOCKED; 2228 fs_info->running_transaction = NULL; 2229 spin_unlock(&fs_info->trans_lock); 2230 mutex_unlock(&fs_info->reloc_mutex); 2231 2232 wake_up(&fs_info->transaction_wait); 2233 2234 ret = btrfs_write_and_wait_transaction(trans); 2235 if (ret) { 2236 btrfs_handle_fs_error(fs_info, ret, 2237 "Error while writing out transaction"); 2238 mutex_unlock(&fs_info->tree_log_mutex); 2239 goto scrub_continue; 2240 } 2241 2242 ret = write_all_supers(fs_info, 0); 2243 /* 2244 * the super is written, we can safely allow the tree-loggers 2245 * to go about their business 2246 */ 2247 mutex_unlock(&fs_info->tree_log_mutex); 2248 if (ret) 2249 goto scrub_continue; 2250 2251 btrfs_finish_extent_commit(trans); 2252 2253 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags)) 2254 btrfs_clear_space_info_full(fs_info); 2255 2256 fs_info->last_trans_committed = cur_trans->transid; 2257 /* 2258 * We needn't acquire the lock here because there is no other task 2259 * which can change it. 2260 */ 2261 cur_trans->state = TRANS_STATE_COMPLETED; 2262 wake_up(&cur_trans->commit_wait); 2263 clear_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags); 2264 2265 spin_lock(&fs_info->trans_lock); 2266 list_del_init(&cur_trans->list); 2267 spin_unlock(&fs_info->trans_lock); 2268 2269 btrfs_put_transaction(cur_trans); 2270 btrfs_put_transaction(cur_trans); 2271 2272 if (trans->type & __TRANS_FREEZABLE) 2273 sb_end_intwrite(fs_info->sb); 2274 2275 trace_btrfs_transaction_commit(trans->root); 2276 2277 btrfs_scrub_continue(fs_info); 2278 2279 if (current->journal_info == trans) 2280 current->journal_info = NULL; 2281 2282 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2283 2284 /* 2285 * If fs has been frozen, we can not handle delayed iputs, otherwise 2286 * it'll result in deadlock about SB_FREEZE_FS. 2287 */ 2288 if (current != fs_info->transaction_kthread && 2289 current != fs_info->cleaner_kthread && 2290 !test_bit(BTRFS_FS_FROZEN, &fs_info->flags)) 2291 btrfs_run_delayed_iputs(fs_info); 2292 2293 return ret; 2294 2295 scrub_continue: 2296 btrfs_scrub_continue(fs_info); 2297 cleanup_transaction: 2298 btrfs_trans_release_metadata(trans); 2299 btrfs_trans_release_chunk_metadata(trans); 2300 trans->block_rsv = NULL; 2301 btrfs_warn(fs_info, "Skipping commit of aborted transaction."); 2302 if (current->journal_info == trans) 2303 current->journal_info = NULL; 2304 cleanup_transaction(trans, ret); 2305 2306 return ret; 2307 } 2308 2309 /* 2310 * return < 0 if error 2311 * 0 if there are no more dead_roots at the time of call 2312 * 1 there are more to be processed, call me again 2313 * 2314 * The return value indicates there are certainly more snapshots to delete, but 2315 * if there comes a new one during processing, it may return 0. We don't mind, 2316 * because btrfs_commit_super will poke cleaner thread and it will process it a 2317 * few seconds later. 2318 */ 2319 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root) 2320 { 2321 int ret; 2322 struct btrfs_fs_info *fs_info = root->fs_info; 2323 2324 spin_lock(&fs_info->trans_lock); 2325 if (list_empty(&fs_info->dead_roots)) { 2326 spin_unlock(&fs_info->trans_lock); 2327 return 0; 2328 } 2329 root = list_first_entry(&fs_info->dead_roots, 2330 struct btrfs_root, root_list); 2331 list_del_init(&root->root_list); 2332 spin_unlock(&fs_info->trans_lock); 2333 2334 btrfs_debug(fs_info, "cleaner removing %llu", root->objectid); 2335 2336 btrfs_kill_all_delayed_nodes(root); 2337 2338 if (btrfs_header_backref_rev(root->node) < 2339 BTRFS_MIXED_BACKREF_REV) 2340 ret = btrfs_drop_snapshot(root, NULL, 0, 0); 2341 else 2342 ret = btrfs_drop_snapshot(root, NULL, 1, 0); 2343 2344 return (ret < 0) ? 0 : 1; 2345 } 2346 2347 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info) 2348 { 2349 unsigned long prev; 2350 unsigned long bit; 2351 2352 prev = xchg(&fs_info->pending_changes, 0); 2353 if (!prev) 2354 return; 2355 2356 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE; 2357 if (prev & bit) 2358 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2359 prev &= ~bit; 2360 2361 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE; 2362 if (prev & bit) 2363 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2364 prev &= ~bit; 2365 2366 bit = 1 << BTRFS_PENDING_COMMIT; 2367 if (prev & bit) 2368 btrfs_debug(fs_info, "pending commit done"); 2369 prev &= ~bit; 2370 2371 if (prev) 2372 btrfs_warn(fs_info, 2373 "unknown pending changes left 0x%lx, ignoring", prev); 2374 } 2375