1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/slab.h> 8 #include <linux/sched.h> 9 #include <linux/sched/mm.h> 10 #include <linux/writeback.h> 11 #include <linux/pagemap.h> 12 #include <linux/blkdev.h> 13 #include <linux/uuid.h> 14 #include <linux/timekeeping.h> 15 #include "misc.h" 16 #include "ctree.h" 17 #include "disk-io.h" 18 #include "transaction.h" 19 #include "locking.h" 20 #include "tree-log.h" 21 #include "volumes.h" 22 #include "dev-replace.h" 23 #include "qgroup.h" 24 #include "block-group.h" 25 #include "space-info.h" 26 #include "fs.h" 27 #include "accessors.h" 28 #include "extent-tree.h" 29 #include "root-tree.h" 30 #include "dir-item.h" 31 #include "uuid-tree.h" 32 #include "ioctl.h" 33 #include "relocation.h" 34 #include "scrub.h" 35 36 static struct kmem_cache *btrfs_trans_handle_cachep; 37 38 /* 39 * Transaction states and transitions 40 * 41 * No running transaction (fs tree blocks are not modified) 42 * | 43 * | To next stage: 44 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart(). 45 * V 46 * Transaction N [[TRANS_STATE_RUNNING]] 47 * | 48 * | New trans handles can be attached to transaction N by calling all 49 * | start_transaction() variants. 50 * | 51 * | To next stage: 52 * | Call btrfs_commit_transaction() on any trans handle attached to 53 * | transaction N 54 * V 55 * Transaction N [[TRANS_STATE_COMMIT_PREP]] 56 * | 57 * | If there are simultaneous calls to btrfs_commit_transaction() one will win 58 * | the race and the rest will wait for the winner to commit the transaction. 59 * | 60 * | The winner will wait for previous running transaction to completely finish 61 * | if there is one. 62 * | 63 * Transaction N [[TRANS_STATE_COMMIT_START]] 64 * | 65 * | Then one of the following happens: 66 * | - Wait for all other trans handle holders to release. 67 * | The btrfs_commit_transaction() caller will do the commit work. 68 * | - Wait for current transaction to be committed by others. 69 * | Other btrfs_commit_transaction() caller will do the commit work. 70 * | 71 * | At this stage, only btrfs_join_transaction*() variants can attach 72 * | to this running transaction. 73 * | All other variants will wait for current one to finish and attach to 74 * | transaction N+1. 75 * | 76 * | To next stage: 77 * | Caller is chosen to commit transaction N, and all other trans handle 78 * | haven been released. 79 * V 80 * Transaction N [[TRANS_STATE_COMMIT_DOING]] 81 * | 82 * | The heavy lifting transaction work is started. 83 * | From running delayed refs (modifying extent tree) to creating pending 84 * | snapshots, running qgroups. 85 * | In short, modify supporting trees to reflect modifications of subvolume 86 * | trees. 87 * | 88 * | At this stage, all start_transaction() calls will wait for this 89 * | transaction to finish and attach to transaction N+1. 90 * | 91 * | To next stage: 92 * | Until all supporting trees are updated. 93 * V 94 * Transaction N [[TRANS_STATE_UNBLOCKED]] 95 * | Transaction N+1 96 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]] 97 * | need to write them back to disk and update | 98 * | super blocks. | 99 * | | 100 * | At this stage, new transaction is allowed to | 101 * | start. | 102 * | All new start_transaction() calls will be | 103 * | attached to transid N+1. | 104 * | | 105 * | To next stage: | 106 * | Until all tree blocks are super blocks are | 107 * | written to block devices | 108 * V | 109 * Transaction N [[TRANS_STATE_COMPLETED]] V 110 * All tree blocks and super blocks are written. Transaction N+1 111 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]] 112 * data structures will be cleaned up. | Life goes on 113 */ 114 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 115 [TRANS_STATE_RUNNING] = 0U, 116 [TRANS_STATE_COMMIT_PREP] = 0U, 117 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH), 118 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START | 119 __TRANS_ATTACH | 120 __TRANS_JOIN | 121 __TRANS_JOIN_NOSTART), 122 [TRANS_STATE_UNBLOCKED] = (__TRANS_START | 123 __TRANS_ATTACH | 124 __TRANS_JOIN | 125 __TRANS_JOIN_NOLOCK | 126 __TRANS_JOIN_NOSTART), 127 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START | 128 __TRANS_ATTACH | 129 __TRANS_JOIN | 130 __TRANS_JOIN_NOLOCK | 131 __TRANS_JOIN_NOSTART), 132 [TRANS_STATE_COMPLETED] = (__TRANS_START | 133 __TRANS_ATTACH | 134 __TRANS_JOIN | 135 __TRANS_JOIN_NOLOCK | 136 __TRANS_JOIN_NOSTART), 137 }; 138 139 void btrfs_put_transaction(struct btrfs_transaction *transaction) 140 { 141 WARN_ON(refcount_read(&transaction->use_count) == 0); 142 if (refcount_dec_and_test(&transaction->use_count)) { 143 BUG_ON(!list_empty(&transaction->list)); 144 WARN_ON(!RB_EMPTY_ROOT( 145 &transaction->delayed_refs.href_root.rb_root)); 146 WARN_ON(!xa_empty(&transaction->delayed_refs.dirty_extents)); 147 if (transaction->delayed_refs.pending_csums) 148 btrfs_err(transaction->fs_info, 149 "pending csums is %llu", 150 transaction->delayed_refs.pending_csums); 151 /* 152 * If any block groups are found in ->deleted_bgs then it's 153 * because the transaction was aborted and a commit did not 154 * happen (things failed before writing the new superblock 155 * and calling btrfs_finish_extent_commit()), so we can not 156 * discard the physical locations of the block groups. 157 */ 158 while (!list_empty(&transaction->deleted_bgs)) { 159 struct btrfs_block_group *cache; 160 161 cache = list_first_entry(&transaction->deleted_bgs, 162 struct btrfs_block_group, 163 bg_list); 164 list_del_init(&cache->bg_list); 165 btrfs_unfreeze_block_group(cache); 166 btrfs_put_block_group(cache); 167 } 168 WARN_ON(!list_empty(&transaction->dev_update_list)); 169 kfree(transaction); 170 } 171 } 172 173 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans) 174 { 175 struct btrfs_transaction *cur_trans = trans->transaction; 176 struct btrfs_fs_info *fs_info = trans->fs_info; 177 struct btrfs_root *root, *tmp; 178 179 /* 180 * At this point no one can be using this transaction to modify any tree 181 * and no one can start another transaction to modify any tree either. 182 */ 183 ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING); 184 185 down_write(&fs_info->commit_root_sem); 186 187 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 188 fs_info->last_reloc_trans = trans->transid; 189 190 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits, 191 dirty_list) { 192 list_del_init(&root->dirty_list); 193 free_extent_buffer(root->commit_root); 194 root->commit_root = btrfs_root_node(root); 195 extent_io_tree_release(&root->dirty_log_pages); 196 btrfs_qgroup_clean_swapped_blocks(root); 197 } 198 199 /* We can free old roots now. */ 200 spin_lock(&cur_trans->dropped_roots_lock); 201 while (!list_empty(&cur_trans->dropped_roots)) { 202 root = list_first_entry(&cur_trans->dropped_roots, 203 struct btrfs_root, root_list); 204 list_del_init(&root->root_list); 205 spin_unlock(&cur_trans->dropped_roots_lock); 206 btrfs_free_log(trans, root); 207 btrfs_drop_and_free_fs_root(fs_info, root); 208 spin_lock(&cur_trans->dropped_roots_lock); 209 } 210 spin_unlock(&cur_trans->dropped_roots_lock); 211 212 up_write(&fs_info->commit_root_sem); 213 } 214 215 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 216 unsigned int type) 217 { 218 if (type & TRANS_EXTWRITERS) 219 atomic_inc(&trans->num_extwriters); 220 } 221 222 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 223 unsigned int type) 224 { 225 if (type & TRANS_EXTWRITERS) 226 atomic_dec(&trans->num_extwriters); 227 } 228 229 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 230 unsigned int type) 231 { 232 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 233 } 234 235 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 236 { 237 return atomic_read(&trans->num_extwriters); 238 } 239 240 /* 241 * To be called after doing the chunk btree updates right after allocating a new 242 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a 243 * chunk after all chunk btree updates and after finishing the second phase of 244 * chunk allocation (btrfs_create_pending_block_groups()) in case some block 245 * group had its chunk item insertion delayed to the second phase. 246 */ 247 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 248 { 249 struct btrfs_fs_info *fs_info = trans->fs_info; 250 251 if (!trans->chunk_bytes_reserved) 252 return; 253 254 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv, 255 trans->chunk_bytes_reserved, NULL); 256 trans->chunk_bytes_reserved = 0; 257 } 258 259 /* 260 * either allocate a new transaction or hop into the existing one 261 */ 262 static noinline int join_transaction(struct btrfs_fs_info *fs_info, 263 unsigned int type) 264 { 265 struct btrfs_transaction *cur_trans; 266 267 spin_lock(&fs_info->trans_lock); 268 loop: 269 /* The file system has been taken offline. No new transactions. */ 270 if (BTRFS_FS_ERROR(fs_info)) { 271 spin_unlock(&fs_info->trans_lock); 272 return -EROFS; 273 } 274 275 cur_trans = fs_info->running_transaction; 276 if (cur_trans) { 277 if (TRANS_ABORTED(cur_trans)) { 278 spin_unlock(&fs_info->trans_lock); 279 return cur_trans->aborted; 280 } 281 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 282 spin_unlock(&fs_info->trans_lock); 283 return -EBUSY; 284 } 285 refcount_inc(&cur_trans->use_count); 286 atomic_inc(&cur_trans->num_writers); 287 extwriter_counter_inc(cur_trans, type); 288 spin_unlock(&fs_info->trans_lock); 289 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers); 290 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters); 291 return 0; 292 } 293 spin_unlock(&fs_info->trans_lock); 294 295 /* 296 * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the 297 * current transaction, and commit it. If there is no transaction, just 298 * return ENOENT. 299 */ 300 if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART) 301 return -ENOENT; 302 303 /* 304 * JOIN_NOLOCK only happens during the transaction commit, so 305 * it is impossible that ->running_transaction is NULL 306 */ 307 BUG_ON(type == TRANS_JOIN_NOLOCK); 308 309 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS); 310 if (!cur_trans) 311 return -ENOMEM; 312 313 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers); 314 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters); 315 316 spin_lock(&fs_info->trans_lock); 317 if (fs_info->running_transaction) { 318 /* 319 * someone started a transaction after we unlocked. Make sure 320 * to redo the checks above 321 */ 322 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters); 323 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 324 kfree(cur_trans); 325 goto loop; 326 } else if (BTRFS_FS_ERROR(fs_info)) { 327 spin_unlock(&fs_info->trans_lock); 328 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters); 329 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 330 kfree(cur_trans); 331 return -EROFS; 332 } 333 334 cur_trans->fs_info = fs_info; 335 atomic_set(&cur_trans->pending_ordered, 0); 336 init_waitqueue_head(&cur_trans->pending_wait); 337 atomic_set(&cur_trans->num_writers, 1); 338 extwriter_counter_init(cur_trans, type); 339 init_waitqueue_head(&cur_trans->writer_wait); 340 init_waitqueue_head(&cur_trans->commit_wait); 341 cur_trans->state = TRANS_STATE_RUNNING; 342 /* 343 * One for this trans handle, one so it will live on until we 344 * commit the transaction. 345 */ 346 refcount_set(&cur_trans->use_count, 2); 347 cur_trans->flags = 0; 348 cur_trans->start_time = ktime_get_seconds(); 349 350 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs)); 351 352 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED; 353 xa_init(&cur_trans->delayed_refs.dirty_extents); 354 atomic_set(&cur_trans->delayed_refs.num_entries, 0); 355 356 /* 357 * although the tree mod log is per file system and not per transaction, 358 * the log must never go across transaction boundaries. 359 */ 360 smp_mb(); 361 if (!list_empty(&fs_info->tree_mod_seq_list)) 362 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n"); 363 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 364 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n"); 365 atomic64_set(&fs_info->tree_mod_seq, 0); 366 367 spin_lock_init(&cur_trans->delayed_refs.lock); 368 369 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 370 INIT_LIST_HEAD(&cur_trans->dev_update_list); 371 INIT_LIST_HEAD(&cur_trans->switch_commits); 372 INIT_LIST_HEAD(&cur_trans->dirty_bgs); 373 INIT_LIST_HEAD(&cur_trans->io_bgs); 374 INIT_LIST_HEAD(&cur_trans->dropped_roots); 375 mutex_init(&cur_trans->cache_write_mutex); 376 spin_lock_init(&cur_trans->dirty_bgs_lock); 377 INIT_LIST_HEAD(&cur_trans->deleted_bgs); 378 spin_lock_init(&cur_trans->dropped_roots_lock); 379 list_add_tail(&cur_trans->list, &fs_info->trans_list); 380 extent_io_tree_init(fs_info, &cur_trans->dirty_pages, 381 IO_TREE_TRANS_DIRTY_PAGES); 382 extent_io_tree_init(fs_info, &cur_trans->pinned_extents, 383 IO_TREE_FS_PINNED_EXTENTS); 384 btrfs_set_fs_generation(fs_info, fs_info->generation + 1); 385 cur_trans->transid = fs_info->generation; 386 fs_info->running_transaction = cur_trans; 387 cur_trans->aborted = 0; 388 spin_unlock(&fs_info->trans_lock); 389 390 return 0; 391 } 392 393 /* 394 * This does all the record keeping required to make sure that a shareable root 395 * is properly recorded in a given transaction. This is required to make sure 396 * the old root from before we joined the transaction is deleted when the 397 * transaction commits. 398 */ 399 static int record_root_in_trans(struct btrfs_trans_handle *trans, 400 struct btrfs_root *root, 401 int force) 402 { 403 struct btrfs_fs_info *fs_info = root->fs_info; 404 int ret = 0; 405 406 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 407 btrfs_get_root_last_trans(root) < trans->transid) || force) { 408 WARN_ON(!force && root->commit_root != root->node); 409 410 /* 411 * see below for IN_TRANS_SETUP usage rules 412 * we have the reloc mutex held now, so there 413 * is only one writer in this function 414 */ 415 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 416 417 /* make sure readers find IN_TRANS_SETUP before 418 * they find our root->last_trans update 419 */ 420 smp_wmb(); 421 422 spin_lock(&fs_info->fs_roots_radix_lock); 423 if (btrfs_get_root_last_trans(root) == trans->transid && !force) { 424 spin_unlock(&fs_info->fs_roots_radix_lock); 425 return 0; 426 } 427 radix_tree_tag_set(&fs_info->fs_roots_radix, 428 (unsigned long)btrfs_root_id(root), 429 BTRFS_ROOT_TRANS_TAG); 430 spin_unlock(&fs_info->fs_roots_radix_lock); 431 btrfs_set_root_last_trans(root, trans->transid); 432 433 /* this is pretty tricky. We don't want to 434 * take the relocation lock in btrfs_record_root_in_trans 435 * unless we're really doing the first setup for this root in 436 * this transaction. 437 * 438 * Normally we'd use root->last_trans as a flag to decide 439 * if we want to take the expensive mutex. 440 * 441 * But, we have to set root->last_trans before we 442 * init the relocation root, otherwise, we trip over warnings 443 * in ctree.c. The solution used here is to flag ourselves 444 * with root IN_TRANS_SETUP. When this is 1, we're still 445 * fixing up the reloc trees and everyone must wait. 446 * 447 * When this is zero, they can trust root->last_trans and fly 448 * through btrfs_record_root_in_trans without having to take the 449 * lock. smp_wmb() makes sure that all the writes above are 450 * done before we pop in the zero below 451 */ 452 ret = btrfs_init_reloc_root(trans, root); 453 smp_mb__before_atomic(); 454 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 455 } 456 return ret; 457 } 458 459 460 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans, 461 struct btrfs_root *root) 462 { 463 struct btrfs_fs_info *fs_info = root->fs_info; 464 struct btrfs_transaction *cur_trans = trans->transaction; 465 466 /* Add ourselves to the transaction dropped list */ 467 spin_lock(&cur_trans->dropped_roots_lock); 468 list_add_tail(&root->root_list, &cur_trans->dropped_roots); 469 spin_unlock(&cur_trans->dropped_roots_lock); 470 471 /* Make sure we don't try to update the root at commit time */ 472 spin_lock(&fs_info->fs_roots_radix_lock); 473 radix_tree_tag_clear(&fs_info->fs_roots_radix, 474 (unsigned long)btrfs_root_id(root), 475 BTRFS_ROOT_TRANS_TAG); 476 spin_unlock(&fs_info->fs_roots_radix_lock); 477 } 478 479 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 480 struct btrfs_root *root) 481 { 482 struct btrfs_fs_info *fs_info = root->fs_info; 483 int ret; 484 485 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 486 return 0; 487 488 /* 489 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 490 * and barriers 491 */ 492 smp_rmb(); 493 if (btrfs_get_root_last_trans(root) == trans->transid && 494 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 495 return 0; 496 497 mutex_lock(&fs_info->reloc_mutex); 498 ret = record_root_in_trans(trans, root, 0); 499 mutex_unlock(&fs_info->reloc_mutex); 500 501 return ret; 502 } 503 504 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 505 { 506 return (trans->state >= TRANS_STATE_COMMIT_START && 507 trans->state < TRANS_STATE_UNBLOCKED && 508 !TRANS_ABORTED(trans)); 509 } 510 511 /* wait for commit against the current transaction to become unblocked 512 * when this is done, it is safe to start a new transaction, but the current 513 * transaction might not be fully on disk. 514 */ 515 static void wait_current_trans(struct btrfs_fs_info *fs_info) 516 { 517 struct btrfs_transaction *cur_trans; 518 519 spin_lock(&fs_info->trans_lock); 520 cur_trans = fs_info->running_transaction; 521 if (cur_trans && is_transaction_blocked(cur_trans)) { 522 refcount_inc(&cur_trans->use_count); 523 spin_unlock(&fs_info->trans_lock); 524 525 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 526 wait_event(fs_info->transaction_wait, 527 cur_trans->state >= TRANS_STATE_UNBLOCKED || 528 TRANS_ABORTED(cur_trans)); 529 btrfs_put_transaction(cur_trans); 530 } else { 531 spin_unlock(&fs_info->trans_lock); 532 } 533 } 534 535 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type) 536 { 537 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 538 return 0; 539 540 if (type == TRANS_START) 541 return 1; 542 543 return 0; 544 } 545 546 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 547 { 548 struct btrfs_fs_info *fs_info = root->fs_info; 549 550 if (!fs_info->reloc_ctl || 551 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) || 552 btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID || 553 root->reloc_root) 554 return false; 555 556 return true; 557 } 558 559 static int btrfs_reserve_trans_metadata(struct btrfs_fs_info *fs_info, 560 enum btrfs_reserve_flush_enum flush, 561 u64 num_bytes, 562 u64 *delayed_refs_bytes) 563 { 564 struct btrfs_space_info *si = fs_info->trans_block_rsv.space_info; 565 u64 bytes = num_bytes + *delayed_refs_bytes; 566 int ret; 567 568 /* 569 * We want to reserve all the bytes we may need all at once, so we only 570 * do 1 enospc flushing cycle per transaction start. 571 */ 572 ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush); 573 574 /* 575 * If we are an emergency flush, which can steal from the global block 576 * reserve, then attempt to not reserve space for the delayed refs, as 577 * we will consume space for them from the global block reserve. 578 */ 579 if (ret && flush == BTRFS_RESERVE_FLUSH_ALL_STEAL) { 580 bytes -= *delayed_refs_bytes; 581 *delayed_refs_bytes = 0; 582 ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush); 583 } 584 585 return ret; 586 } 587 588 static struct btrfs_trans_handle * 589 start_transaction(struct btrfs_root *root, unsigned int num_items, 590 unsigned int type, enum btrfs_reserve_flush_enum flush, 591 bool enforce_qgroups) 592 { 593 struct btrfs_fs_info *fs_info = root->fs_info; 594 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 595 struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv; 596 struct btrfs_trans_handle *h; 597 struct btrfs_transaction *cur_trans; 598 u64 num_bytes = 0; 599 u64 qgroup_reserved = 0; 600 u64 delayed_refs_bytes = 0; 601 bool reloc_reserved = false; 602 bool do_chunk_alloc = false; 603 int ret; 604 605 if (BTRFS_FS_ERROR(fs_info)) 606 return ERR_PTR(-EROFS); 607 608 if (current->journal_info) { 609 WARN_ON(type & TRANS_EXTWRITERS); 610 h = current->journal_info; 611 refcount_inc(&h->use_count); 612 WARN_ON(refcount_read(&h->use_count) > 2); 613 h->orig_rsv = h->block_rsv; 614 h->block_rsv = NULL; 615 goto got_it; 616 } 617 618 /* 619 * Do the reservation before we join the transaction so we can do all 620 * the appropriate flushing if need be. 621 */ 622 if (num_items && root != fs_info->chunk_root) { 623 qgroup_reserved = num_items * fs_info->nodesize; 624 /* 625 * Use prealloc for now, as there might be a currently running 626 * transaction that could free this reserved space prematurely 627 * by committing. 628 */ 629 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserved, 630 enforce_qgroups, false); 631 if (ret) 632 return ERR_PTR(ret); 633 634 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items); 635 /* 636 * If we plan to insert/update/delete "num_items" from a btree, 637 * we will also generate delayed refs for extent buffers in the 638 * respective btree paths, so reserve space for the delayed refs 639 * that will be generated by the caller as it modifies btrees. 640 * Try to reserve them to avoid excessive use of the global 641 * block reserve. 642 */ 643 delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info, num_items); 644 645 /* 646 * Do the reservation for the relocation root creation 647 */ 648 if (need_reserve_reloc_root(root)) { 649 num_bytes += fs_info->nodesize; 650 reloc_reserved = true; 651 } 652 653 ret = btrfs_reserve_trans_metadata(fs_info, flush, num_bytes, 654 &delayed_refs_bytes); 655 if (ret) 656 goto reserve_fail; 657 658 btrfs_block_rsv_add_bytes(trans_rsv, num_bytes, true); 659 660 if (trans_rsv->space_info->force_alloc) 661 do_chunk_alloc = true; 662 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL && 663 !btrfs_block_rsv_full(delayed_refs_rsv)) { 664 /* 665 * Some people call with btrfs_start_transaction(root, 0) 666 * because they can be throttled, but have some other mechanism 667 * for reserving space. We still want these guys to refill the 668 * delayed block_rsv so just add 1 items worth of reservation 669 * here. 670 */ 671 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush); 672 if (ret) 673 goto reserve_fail; 674 } 675 again: 676 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS); 677 if (!h) { 678 ret = -ENOMEM; 679 goto alloc_fail; 680 } 681 682 /* 683 * If we are JOIN_NOLOCK we're already committing a transaction and 684 * waiting on this guy, so we don't need to do the sb_start_intwrite 685 * because we're already holding a ref. We need this because we could 686 * have raced in and did an fsync() on a file which can kick a commit 687 * and then we deadlock with somebody doing a freeze. 688 * 689 * If we are ATTACH, it means we just want to catch the current 690 * transaction and commit it, so we needn't do sb_start_intwrite(). 691 */ 692 if (type & __TRANS_FREEZABLE) 693 sb_start_intwrite(fs_info->sb); 694 695 if (may_wait_transaction(fs_info, type)) 696 wait_current_trans(fs_info); 697 698 do { 699 ret = join_transaction(fs_info, type); 700 if (ret == -EBUSY) { 701 wait_current_trans(fs_info); 702 if (unlikely(type == TRANS_ATTACH || 703 type == TRANS_JOIN_NOSTART)) 704 ret = -ENOENT; 705 } 706 } while (ret == -EBUSY); 707 708 if (ret < 0) 709 goto join_fail; 710 711 cur_trans = fs_info->running_transaction; 712 713 h->transid = cur_trans->transid; 714 h->transaction = cur_trans; 715 refcount_set(&h->use_count, 1); 716 h->fs_info = root->fs_info; 717 718 h->type = type; 719 INIT_LIST_HEAD(&h->new_bgs); 720 btrfs_init_metadata_block_rsv(fs_info, &h->delayed_rsv, BTRFS_BLOCK_RSV_DELOPS); 721 722 smp_mb(); 723 if (cur_trans->state >= TRANS_STATE_COMMIT_START && 724 may_wait_transaction(fs_info, type)) { 725 current->journal_info = h; 726 btrfs_commit_transaction(h); 727 goto again; 728 } 729 730 if (num_bytes) { 731 trace_btrfs_space_reservation(fs_info, "transaction", 732 h->transid, num_bytes, 1); 733 h->block_rsv = trans_rsv; 734 h->bytes_reserved = num_bytes; 735 if (delayed_refs_bytes > 0) { 736 trace_btrfs_space_reservation(fs_info, 737 "local_delayed_refs_rsv", 738 h->transid, 739 delayed_refs_bytes, 1); 740 h->delayed_refs_bytes_reserved = delayed_refs_bytes; 741 btrfs_block_rsv_add_bytes(&h->delayed_rsv, delayed_refs_bytes, true); 742 delayed_refs_bytes = 0; 743 } 744 h->reloc_reserved = reloc_reserved; 745 } 746 747 got_it: 748 if (!current->journal_info) 749 current->journal_info = h; 750 751 /* 752 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to 753 * ALLOC_FORCE the first run through, and then we won't allocate for 754 * anybody else who races in later. We don't care about the return 755 * value here. 756 */ 757 if (do_chunk_alloc && num_bytes) { 758 u64 flags = h->block_rsv->space_info->flags; 759 760 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags), 761 CHUNK_ALLOC_NO_FORCE); 762 } 763 764 /* 765 * btrfs_record_root_in_trans() needs to alloc new extents, and may 766 * call btrfs_join_transaction() while we're also starting a 767 * transaction. 768 * 769 * Thus it need to be called after current->journal_info initialized, 770 * or we can deadlock. 771 */ 772 ret = btrfs_record_root_in_trans(h, root); 773 if (ret) { 774 /* 775 * The transaction handle is fully initialized and linked with 776 * other structures so it needs to be ended in case of errors, 777 * not just freed. 778 */ 779 btrfs_end_transaction(h); 780 goto reserve_fail; 781 } 782 /* 783 * Now that we have found a transaction to be a part of, convert the 784 * qgroup reservation from prealloc to pertrans. A different transaction 785 * can't race in and free our pertrans out from under us. 786 */ 787 if (qgroup_reserved) 788 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 789 790 return h; 791 792 join_fail: 793 if (type & __TRANS_FREEZABLE) 794 sb_end_intwrite(fs_info->sb); 795 kmem_cache_free(btrfs_trans_handle_cachep, h); 796 alloc_fail: 797 if (num_bytes) 798 btrfs_block_rsv_release(fs_info, trans_rsv, num_bytes, NULL); 799 if (delayed_refs_bytes) 800 btrfs_space_info_free_bytes_may_use(fs_info, trans_rsv->space_info, 801 delayed_refs_bytes); 802 reserve_fail: 803 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 804 return ERR_PTR(ret); 805 } 806 807 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 808 unsigned int num_items) 809 { 810 return start_transaction(root, num_items, TRANS_START, 811 BTRFS_RESERVE_FLUSH_ALL, true); 812 } 813 814 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv( 815 struct btrfs_root *root, 816 unsigned int num_items) 817 { 818 return start_transaction(root, num_items, TRANS_START, 819 BTRFS_RESERVE_FLUSH_ALL_STEAL, false); 820 } 821 822 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 823 { 824 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH, 825 true); 826 } 827 828 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root) 829 { 830 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 831 BTRFS_RESERVE_NO_FLUSH, true); 832 } 833 834 /* 835 * Similar to regular join but it never starts a transaction when none is 836 * running or when there's a running one at a state >= TRANS_STATE_UNBLOCKED. 837 * This is similar to btrfs_attach_transaction() but it allows the join to 838 * happen if the transaction commit already started but it's not yet in the 839 * "doing" phase (the state is < TRANS_STATE_COMMIT_DOING). 840 */ 841 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root) 842 { 843 return start_transaction(root, 0, TRANS_JOIN_NOSTART, 844 BTRFS_RESERVE_NO_FLUSH, true); 845 } 846 847 /* 848 * Catch the running transaction. 849 * 850 * It is used when we want to commit the current the transaction, but 851 * don't want to start a new one. 852 * 853 * Note: If this function return -ENOENT, it just means there is no 854 * running transaction. But it is possible that the inactive transaction 855 * is still in the memory, not fully on disk. If you hope there is no 856 * inactive transaction in the fs when -ENOENT is returned, you should 857 * invoke 858 * btrfs_attach_transaction_barrier() 859 */ 860 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 861 { 862 return start_transaction(root, 0, TRANS_ATTACH, 863 BTRFS_RESERVE_NO_FLUSH, true); 864 } 865 866 /* 867 * Catch the running transaction. 868 * 869 * It is similar to the above function, the difference is this one 870 * will wait for all the inactive transactions until they fully 871 * complete. 872 */ 873 struct btrfs_trans_handle * 874 btrfs_attach_transaction_barrier(struct btrfs_root *root) 875 { 876 struct btrfs_trans_handle *trans; 877 878 trans = start_transaction(root, 0, TRANS_ATTACH, 879 BTRFS_RESERVE_NO_FLUSH, true); 880 if (trans == ERR_PTR(-ENOENT)) { 881 int ret; 882 883 ret = btrfs_wait_for_commit(root->fs_info, 0); 884 if (ret) 885 return ERR_PTR(ret); 886 } 887 888 return trans; 889 } 890 891 /* Wait for a transaction commit to reach at least the given state. */ 892 static noinline void wait_for_commit(struct btrfs_transaction *commit, 893 const enum btrfs_trans_state min_state) 894 { 895 struct btrfs_fs_info *fs_info = commit->fs_info; 896 u64 transid = commit->transid; 897 bool put = false; 898 899 /* 900 * At the moment this function is called with min_state either being 901 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED. 902 */ 903 if (min_state == TRANS_STATE_COMPLETED) 904 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED); 905 else 906 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 907 908 while (1) { 909 wait_event(commit->commit_wait, commit->state >= min_state); 910 if (put) 911 btrfs_put_transaction(commit); 912 913 if (min_state < TRANS_STATE_COMPLETED) 914 break; 915 916 /* 917 * A transaction isn't really completed until all of the 918 * previous transactions are completed, but with fsync we can 919 * end up with SUPER_COMMITTED transactions before a COMPLETED 920 * transaction. Wait for those. 921 */ 922 923 spin_lock(&fs_info->trans_lock); 924 commit = list_first_entry_or_null(&fs_info->trans_list, 925 struct btrfs_transaction, 926 list); 927 if (!commit || commit->transid > transid) { 928 spin_unlock(&fs_info->trans_lock); 929 break; 930 } 931 refcount_inc(&commit->use_count); 932 put = true; 933 spin_unlock(&fs_info->trans_lock); 934 } 935 } 936 937 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid) 938 { 939 struct btrfs_transaction *cur_trans = NULL, *t; 940 int ret = 0; 941 942 if (transid) { 943 if (transid <= btrfs_get_last_trans_committed(fs_info)) 944 goto out; 945 946 /* find specified transaction */ 947 spin_lock(&fs_info->trans_lock); 948 list_for_each_entry(t, &fs_info->trans_list, list) { 949 if (t->transid == transid) { 950 cur_trans = t; 951 refcount_inc(&cur_trans->use_count); 952 ret = 0; 953 break; 954 } 955 if (t->transid > transid) { 956 ret = 0; 957 break; 958 } 959 } 960 spin_unlock(&fs_info->trans_lock); 961 962 /* 963 * The specified transaction doesn't exist, or we 964 * raced with btrfs_commit_transaction 965 */ 966 if (!cur_trans) { 967 if (transid > btrfs_get_last_trans_committed(fs_info)) 968 ret = -EINVAL; 969 goto out; 970 } 971 } else { 972 /* find newest transaction that is committing | committed */ 973 spin_lock(&fs_info->trans_lock); 974 list_for_each_entry_reverse(t, &fs_info->trans_list, 975 list) { 976 if (t->state >= TRANS_STATE_COMMIT_START) { 977 if (t->state == TRANS_STATE_COMPLETED) 978 break; 979 cur_trans = t; 980 refcount_inc(&cur_trans->use_count); 981 break; 982 } 983 } 984 spin_unlock(&fs_info->trans_lock); 985 if (!cur_trans) 986 goto out; /* nothing committing|committed */ 987 } 988 989 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED); 990 ret = cur_trans->aborted; 991 btrfs_put_transaction(cur_trans); 992 out: 993 return ret; 994 } 995 996 void btrfs_throttle(struct btrfs_fs_info *fs_info) 997 { 998 wait_current_trans(fs_info); 999 } 1000 1001 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans) 1002 { 1003 struct btrfs_transaction *cur_trans = trans->transaction; 1004 1005 if (cur_trans->state >= TRANS_STATE_COMMIT_START || 1006 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags)) 1007 return true; 1008 1009 if (btrfs_check_space_for_delayed_refs(trans->fs_info)) 1010 return true; 1011 1012 return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50); 1013 } 1014 1015 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans) 1016 1017 { 1018 struct btrfs_fs_info *fs_info = trans->fs_info; 1019 1020 if (!trans->block_rsv) { 1021 ASSERT(!trans->bytes_reserved); 1022 ASSERT(!trans->delayed_refs_bytes_reserved); 1023 return; 1024 } 1025 1026 if (!trans->bytes_reserved) { 1027 ASSERT(!trans->delayed_refs_bytes_reserved); 1028 return; 1029 } 1030 1031 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv); 1032 trace_btrfs_space_reservation(fs_info, "transaction", 1033 trans->transid, trans->bytes_reserved, 0); 1034 btrfs_block_rsv_release(fs_info, trans->block_rsv, 1035 trans->bytes_reserved, NULL); 1036 trans->bytes_reserved = 0; 1037 1038 if (!trans->delayed_refs_bytes_reserved) 1039 return; 1040 1041 trace_btrfs_space_reservation(fs_info, "local_delayed_refs_rsv", 1042 trans->transid, 1043 trans->delayed_refs_bytes_reserved, 0); 1044 btrfs_block_rsv_release(fs_info, &trans->delayed_rsv, 1045 trans->delayed_refs_bytes_reserved, NULL); 1046 trans->delayed_refs_bytes_reserved = 0; 1047 } 1048 1049 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 1050 int throttle) 1051 { 1052 struct btrfs_fs_info *info = trans->fs_info; 1053 struct btrfs_transaction *cur_trans = trans->transaction; 1054 int ret = 0; 1055 1056 if (refcount_read(&trans->use_count) > 1) { 1057 refcount_dec(&trans->use_count); 1058 trans->block_rsv = trans->orig_rsv; 1059 return 0; 1060 } 1061 1062 btrfs_trans_release_metadata(trans); 1063 trans->block_rsv = NULL; 1064 1065 btrfs_create_pending_block_groups(trans); 1066 1067 btrfs_trans_release_chunk_metadata(trans); 1068 1069 if (trans->type & __TRANS_FREEZABLE) 1070 sb_end_intwrite(info->sb); 1071 1072 WARN_ON(cur_trans != info->running_transaction); 1073 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 1074 atomic_dec(&cur_trans->num_writers); 1075 extwriter_counter_dec(cur_trans, trans->type); 1076 1077 cond_wake_up(&cur_trans->writer_wait); 1078 1079 btrfs_lockdep_release(info, btrfs_trans_num_extwriters); 1080 btrfs_lockdep_release(info, btrfs_trans_num_writers); 1081 1082 btrfs_put_transaction(cur_trans); 1083 1084 if (current->journal_info == trans) 1085 current->journal_info = NULL; 1086 1087 if (throttle) 1088 btrfs_run_delayed_iputs(info); 1089 1090 if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) { 1091 wake_up_process(info->transaction_kthread); 1092 if (TRANS_ABORTED(trans)) 1093 ret = trans->aborted; 1094 else 1095 ret = -EROFS; 1096 } 1097 1098 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1099 return ret; 1100 } 1101 1102 int btrfs_end_transaction(struct btrfs_trans_handle *trans) 1103 { 1104 return __btrfs_end_transaction(trans, 0); 1105 } 1106 1107 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans) 1108 { 1109 return __btrfs_end_transaction(trans, 1); 1110 } 1111 1112 /* 1113 * when btree blocks are allocated, they have some corresponding bits set for 1114 * them in one of two extent_io trees. This is used to make sure all of 1115 * those extents are sent to disk but does not wait on them 1116 */ 1117 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info, 1118 struct extent_io_tree *dirty_pages, int mark) 1119 { 1120 int ret = 0; 1121 struct address_space *mapping = fs_info->btree_inode->i_mapping; 1122 struct extent_state *cached_state = NULL; 1123 u64 start = 0; 1124 u64 end; 1125 1126 while (find_first_extent_bit(dirty_pages, start, &start, &end, 1127 mark, &cached_state)) { 1128 bool wait_writeback = false; 1129 1130 ret = convert_extent_bit(dirty_pages, start, end, 1131 EXTENT_NEED_WAIT, 1132 mark, &cached_state); 1133 /* 1134 * convert_extent_bit can return -ENOMEM, which is most of the 1135 * time a temporary error. So when it happens, ignore the error 1136 * and wait for writeback of this range to finish - because we 1137 * failed to set the bit EXTENT_NEED_WAIT for the range, a call 1138 * to __btrfs_wait_marked_extents() would not know that 1139 * writeback for this range started and therefore wouldn't 1140 * wait for it to finish - we don't want to commit a 1141 * superblock that points to btree nodes/leafs for which 1142 * writeback hasn't finished yet (and without errors). 1143 * We cleanup any entries left in the io tree when committing 1144 * the transaction (through extent_io_tree_release()). 1145 */ 1146 if (ret == -ENOMEM) { 1147 ret = 0; 1148 wait_writeback = true; 1149 } 1150 if (!ret) 1151 ret = filemap_fdatawrite_range(mapping, start, end); 1152 if (!ret && wait_writeback) 1153 ret = filemap_fdatawait_range(mapping, start, end); 1154 free_extent_state(cached_state); 1155 if (ret) 1156 break; 1157 cached_state = NULL; 1158 cond_resched(); 1159 start = end + 1; 1160 } 1161 return ret; 1162 } 1163 1164 /* 1165 * when btree blocks are allocated, they have some corresponding bits set for 1166 * them in one of two extent_io trees. This is used to make sure all of 1167 * those extents are on disk for transaction or log commit. We wait 1168 * on all the pages and clear them from the dirty pages state tree 1169 */ 1170 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info, 1171 struct extent_io_tree *dirty_pages) 1172 { 1173 struct address_space *mapping = fs_info->btree_inode->i_mapping; 1174 struct extent_state *cached_state = NULL; 1175 u64 start = 0; 1176 u64 end; 1177 int ret = 0; 1178 1179 while (find_first_extent_bit(dirty_pages, start, &start, &end, 1180 EXTENT_NEED_WAIT, &cached_state)) { 1181 /* 1182 * Ignore -ENOMEM errors returned by clear_extent_bit(). 1183 * When committing the transaction, we'll remove any entries 1184 * left in the io tree. For a log commit, we don't remove them 1185 * after committing the log because the tree can be accessed 1186 * concurrently - we do it only at transaction commit time when 1187 * it's safe to do it (through extent_io_tree_release()). 1188 */ 1189 ret = clear_extent_bit(dirty_pages, start, end, 1190 EXTENT_NEED_WAIT, &cached_state); 1191 if (ret == -ENOMEM) 1192 ret = 0; 1193 if (!ret) 1194 ret = filemap_fdatawait_range(mapping, start, end); 1195 free_extent_state(cached_state); 1196 if (ret) 1197 break; 1198 cached_state = NULL; 1199 cond_resched(); 1200 start = end + 1; 1201 } 1202 return ret; 1203 } 1204 1205 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info, 1206 struct extent_io_tree *dirty_pages) 1207 { 1208 bool errors = false; 1209 int err; 1210 1211 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1212 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags)) 1213 errors = true; 1214 1215 if (errors && !err) 1216 err = -EIO; 1217 return err; 1218 } 1219 1220 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark) 1221 { 1222 struct btrfs_fs_info *fs_info = log_root->fs_info; 1223 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages; 1224 bool errors = false; 1225 int err; 1226 1227 ASSERT(btrfs_root_id(log_root) == BTRFS_TREE_LOG_OBJECTID); 1228 1229 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1230 if ((mark & EXTENT_DIRTY) && 1231 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags)) 1232 errors = true; 1233 1234 if ((mark & EXTENT_NEW) && 1235 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags)) 1236 errors = true; 1237 1238 if (errors && !err) 1239 err = -EIO; 1240 return err; 1241 } 1242 1243 /* 1244 * When btree blocks are allocated the corresponding extents are marked dirty. 1245 * This function ensures such extents are persisted on disk for transaction or 1246 * log commit. 1247 * 1248 * @trans: transaction whose dirty pages we'd like to write 1249 */ 1250 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans) 1251 { 1252 int ret; 1253 int ret2; 1254 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages; 1255 struct btrfs_fs_info *fs_info = trans->fs_info; 1256 struct blk_plug plug; 1257 1258 blk_start_plug(&plug); 1259 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY); 1260 blk_finish_plug(&plug); 1261 ret2 = btrfs_wait_extents(fs_info, dirty_pages); 1262 1263 extent_io_tree_release(&trans->transaction->dirty_pages); 1264 1265 if (ret) 1266 return ret; 1267 else if (ret2) 1268 return ret2; 1269 else 1270 return 0; 1271 } 1272 1273 /* 1274 * this is used to update the root pointer in the tree of tree roots. 1275 * 1276 * But, in the case of the extent allocation tree, updating the root 1277 * pointer may allocate blocks which may change the root of the extent 1278 * allocation tree. 1279 * 1280 * So, this loops and repeats and makes sure the cowonly root didn't 1281 * change while the root pointer was being updated in the metadata. 1282 */ 1283 static int update_cowonly_root(struct btrfs_trans_handle *trans, 1284 struct btrfs_root *root) 1285 { 1286 int ret; 1287 u64 old_root_bytenr; 1288 u64 old_root_used; 1289 struct btrfs_fs_info *fs_info = root->fs_info; 1290 struct btrfs_root *tree_root = fs_info->tree_root; 1291 1292 old_root_used = btrfs_root_used(&root->root_item); 1293 1294 while (1) { 1295 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 1296 if (old_root_bytenr == root->node->start && 1297 old_root_used == btrfs_root_used(&root->root_item)) 1298 break; 1299 1300 btrfs_set_root_node(&root->root_item, root->node); 1301 ret = btrfs_update_root(trans, tree_root, 1302 &root->root_key, 1303 &root->root_item); 1304 if (ret) 1305 return ret; 1306 1307 old_root_used = btrfs_root_used(&root->root_item); 1308 } 1309 1310 return 0; 1311 } 1312 1313 /* 1314 * update all the cowonly tree roots on disk 1315 * 1316 * The error handling in this function may not be obvious. Any of the 1317 * failures will cause the file system to go offline. We still need 1318 * to clean up the delayed refs. 1319 */ 1320 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans) 1321 { 1322 struct btrfs_fs_info *fs_info = trans->fs_info; 1323 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; 1324 struct list_head *io_bgs = &trans->transaction->io_bgs; 1325 struct list_head *next; 1326 struct extent_buffer *eb; 1327 int ret; 1328 1329 /* 1330 * At this point no one can be using this transaction to modify any tree 1331 * and no one can start another transaction to modify any tree either. 1332 */ 1333 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING); 1334 1335 eb = btrfs_lock_root_node(fs_info->tree_root); 1336 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 1337 0, &eb, BTRFS_NESTING_COW); 1338 btrfs_tree_unlock(eb); 1339 free_extent_buffer(eb); 1340 1341 if (ret) 1342 return ret; 1343 1344 ret = btrfs_run_dev_stats(trans); 1345 if (ret) 1346 return ret; 1347 ret = btrfs_run_dev_replace(trans); 1348 if (ret) 1349 return ret; 1350 ret = btrfs_run_qgroups(trans); 1351 if (ret) 1352 return ret; 1353 1354 ret = btrfs_setup_space_cache(trans); 1355 if (ret) 1356 return ret; 1357 1358 again: 1359 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1360 struct btrfs_root *root; 1361 next = fs_info->dirty_cowonly_roots.next; 1362 list_del_init(next); 1363 root = list_entry(next, struct btrfs_root, dirty_list); 1364 clear_bit(BTRFS_ROOT_DIRTY, &root->state); 1365 1366 list_add_tail(&root->dirty_list, 1367 &trans->transaction->switch_commits); 1368 ret = update_cowonly_root(trans, root); 1369 if (ret) 1370 return ret; 1371 } 1372 1373 /* Now flush any delayed refs generated by updating all of the roots */ 1374 ret = btrfs_run_delayed_refs(trans, U64_MAX); 1375 if (ret) 1376 return ret; 1377 1378 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { 1379 ret = btrfs_write_dirty_block_groups(trans); 1380 if (ret) 1381 return ret; 1382 1383 /* 1384 * We're writing the dirty block groups, which could generate 1385 * delayed refs, which could generate more dirty block groups, 1386 * so we want to keep this flushing in this loop to make sure 1387 * everything gets run. 1388 */ 1389 ret = btrfs_run_delayed_refs(trans, U64_MAX); 1390 if (ret) 1391 return ret; 1392 } 1393 1394 if (!list_empty(&fs_info->dirty_cowonly_roots)) 1395 goto again; 1396 1397 /* Update dev-replace pointer once everything is committed */ 1398 fs_info->dev_replace.committed_cursor_left = 1399 fs_info->dev_replace.cursor_left_last_write_of_item; 1400 1401 return 0; 1402 } 1403 1404 /* 1405 * If we had a pending drop we need to see if there are any others left in our 1406 * dead roots list, and if not clear our bit and wake any waiters. 1407 */ 1408 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info) 1409 { 1410 /* 1411 * We put the drop in progress roots at the front of the list, so if the 1412 * first entry doesn't have UNFINISHED_DROP set we can wake everybody 1413 * up. 1414 */ 1415 spin_lock(&fs_info->trans_lock); 1416 if (!list_empty(&fs_info->dead_roots)) { 1417 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots, 1418 struct btrfs_root, 1419 root_list); 1420 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) { 1421 spin_unlock(&fs_info->trans_lock); 1422 return; 1423 } 1424 } 1425 spin_unlock(&fs_info->trans_lock); 1426 1427 btrfs_wake_unfinished_drop(fs_info); 1428 } 1429 1430 /* 1431 * dead roots are old snapshots that need to be deleted. This allocates 1432 * a dirty root struct and adds it into the list of dead roots that need to 1433 * be deleted 1434 */ 1435 void btrfs_add_dead_root(struct btrfs_root *root) 1436 { 1437 struct btrfs_fs_info *fs_info = root->fs_info; 1438 1439 spin_lock(&fs_info->trans_lock); 1440 if (list_empty(&root->root_list)) { 1441 btrfs_grab_root(root); 1442 1443 /* We want to process the partially complete drops first. */ 1444 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) 1445 list_add(&root->root_list, &fs_info->dead_roots); 1446 else 1447 list_add_tail(&root->root_list, &fs_info->dead_roots); 1448 } 1449 spin_unlock(&fs_info->trans_lock); 1450 } 1451 1452 /* 1453 * Update each subvolume root and its relocation root, if it exists, in the tree 1454 * of tree roots. Also free log roots if they exist. 1455 */ 1456 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans) 1457 { 1458 struct btrfs_fs_info *fs_info = trans->fs_info; 1459 struct btrfs_root *gang[8]; 1460 int i; 1461 int ret; 1462 1463 /* 1464 * At this point no one can be using this transaction to modify any tree 1465 * and no one can start another transaction to modify any tree either. 1466 */ 1467 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING); 1468 1469 spin_lock(&fs_info->fs_roots_radix_lock); 1470 while (1) { 1471 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1472 (void **)gang, 0, 1473 ARRAY_SIZE(gang), 1474 BTRFS_ROOT_TRANS_TAG); 1475 if (ret == 0) 1476 break; 1477 for (i = 0; i < ret; i++) { 1478 struct btrfs_root *root = gang[i]; 1479 int ret2; 1480 1481 /* 1482 * At this point we can neither have tasks logging inodes 1483 * from a root nor trying to commit a log tree. 1484 */ 1485 ASSERT(atomic_read(&root->log_writers) == 0); 1486 ASSERT(atomic_read(&root->log_commit[0]) == 0); 1487 ASSERT(atomic_read(&root->log_commit[1]) == 0); 1488 1489 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1490 (unsigned long)btrfs_root_id(root), 1491 BTRFS_ROOT_TRANS_TAG); 1492 btrfs_qgroup_free_meta_all_pertrans(root); 1493 spin_unlock(&fs_info->fs_roots_radix_lock); 1494 1495 btrfs_free_log(trans, root); 1496 ret2 = btrfs_update_reloc_root(trans, root); 1497 if (ret2) 1498 return ret2; 1499 1500 /* see comments in should_cow_block() */ 1501 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1502 smp_mb__after_atomic(); 1503 1504 if (root->commit_root != root->node) { 1505 list_add_tail(&root->dirty_list, 1506 &trans->transaction->switch_commits); 1507 btrfs_set_root_node(&root->root_item, 1508 root->node); 1509 } 1510 1511 ret2 = btrfs_update_root(trans, fs_info->tree_root, 1512 &root->root_key, 1513 &root->root_item); 1514 if (ret2) 1515 return ret2; 1516 spin_lock(&fs_info->fs_roots_radix_lock); 1517 } 1518 } 1519 spin_unlock(&fs_info->fs_roots_radix_lock); 1520 return 0; 1521 } 1522 1523 /* 1524 * Do all special snapshot related qgroup dirty hack. 1525 * 1526 * Will do all needed qgroup inherit and dirty hack like switch commit 1527 * roots inside one transaction and write all btree into disk, to make 1528 * qgroup works. 1529 */ 1530 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans, 1531 struct btrfs_root *src, 1532 struct btrfs_root *parent, 1533 struct btrfs_qgroup_inherit *inherit, 1534 u64 dst_objectid) 1535 { 1536 struct btrfs_fs_info *fs_info = src->fs_info; 1537 int ret; 1538 1539 /* 1540 * Save some performance in the case that qgroups are not enabled. If 1541 * this check races with the ioctl, rescan will kick in anyway. 1542 */ 1543 if (!btrfs_qgroup_full_accounting(fs_info)) 1544 return 0; 1545 1546 /* 1547 * Ensure dirty @src will be committed. Or, after coming 1548 * commit_fs_roots() and switch_commit_roots(), any dirty but not 1549 * recorded root will never be updated again, causing an outdated root 1550 * item. 1551 */ 1552 ret = record_root_in_trans(trans, src, 1); 1553 if (ret) 1554 return ret; 1555 1556 /* 1557 * btrfs_qgroup_inherit relies on a consistent view of the usage for the 1558 * src root, so we must run the delayed refs here. 1559 * 1560 * However this isn't particularly fool proof, because there's no 1561 * synchronization keeping us from changing the tree after this point 1562 * before we do the qgroup_inherit, or even from making changes while 1563 * we're doing the qgroup_inherit. But that's a problem for the future, 1564 * for now flush the delayed refs to narrow the race window where the 1565 * qgroup counters could end up wrong. 1566 */ 1567 ret = btrfs_run_delayed_refs(trans, U64_MAX); 1568 if (ret) { 1569 btrfs_abort_transaction(trans, ret); 1570 return ret; 1571 } 1572 1573 ret = commit_fs_roots(trans); 1574 if (ret) 1575 goto out; 1576 ret = btrfs_qgroup_account_extents(trans); 1577 if (ret < 0) 1578 goto out; 1579 1580 /* Now qgroup are all updated, we can inherit it to new qgroups */ 1581 ret = btrfs_qgroup_inherit(trans, btrfs_root_id(src), dst_objectid, 1582 btrfs_root_id(parent), inherit); 1583 if (ret < 0) 1584 goto out; 1585 1586 /* 1587 * Now we do a simplified commit transaction, which will: 1588 * 1) commit all subvolume and extent tree 1589 * To ensure all subvolume and extent tree have a valid 1590 * commit_root to accounting later insert_dir_item() 1591 * 2) write all btree blocks onto disk 1592 * This is to make sure later btree modification will be cowed 1593 * Or commit_root can be populated and cause wrong qgroup numbers 1594 * In this simplified commit, we don't really care about other trees 1595 * like chunk and root tree, as they won't affect qgroup. 1596 * And we don't write super to avoid half committed status. 1597 */ 1598 ret = commit_cowonly_roots(trans); 1599 if (ret) 1600 goto out; 1601 switch_commit_roots(trans); 1602 ret = btrfs_write_and_wait_transaction(trans); 1603 if (ret) 1604 btrfs_handle_fs_error(fs_info, ret, 1605 "Error while writing out transaction for qgroup"); 1606 1607 out: 1608 /* 1609 * Force parent root to be updated, as we recorded it before so its 1610 * last_trans == cur_transid. 1611 * Or it won't be committed again onto disk after later 1612 * insert_dir_item() 1613 */ 1614 if (!ret) 1615 ret = record_root_in_trans(trans, parent, 1); 1616 return ret; 1617 } 1618 1619 /* 1620 * new snapshots need to be created at a very specific time in the 1621 * transaction commit. This does the actual creation. 1622 * 1623 * Note: 1624 * If the error which may affect the commitment of the current transaction 1625 * happens, we should return the error number. If the error which just affect 1626 * the creation of the pending snapshots, just return 0. 1627 */ 1628 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1629 struct btrfs_pending_snapshot *pending) 1630 { 1631 1632 struct btrfs_fs_info *fs_info = trans->fs_info; 1633 struct btrfs_key key; 1634 struct btrfs_root_item *new_root_item; 1635 struct btrfs_root *tree_root = fs_info->tree_root; 1636 struct btrfs_root *root = pending->root; 1637 struct btrfs_root *parent_root; 1638 struct btrfs_block_rsv *rsv; 1639 struct inode *parent_inode = &pending->dir->vfs_inode; 1640 struct btrfs_path *path; 1641 struct btrfs_dir_item *dir_item; 1642 struct extent_buffer *tmp; 1643 struct extent_buffer *old; 1644 struct timespec64 cur_time; 1645 int ret = 0; 1646 u64 to_reserve = 0; 1647 u64 index = 0; 1648 u64 objectid; 1649 u64 root_flags; 1650 unsigned int nofs_flags; 1651 struct fscrypt_name fname; 1652 1653 ASSERT(pending->path); 1654 path = pending->path; 1655 1656 ASSERT(pending->root_item); 1657 new_root_item = pending->root_item; 1658 1659 /* 1660 * We're inside a transaction and must make sure that any potential 1661 * allocations with GFP_KERNEL in fscrypt won't recurse back to 1662 * filesystem. 1663 */ 1664 nofs_flags = memalloc_nofs_save(); 1665 pending->error = fscrypt_setup_filename(parent_inode, 1666 &pending->dentry->d_name, 0, 1667 &fname); 1668 memalloc_nofs_restore(nofs_flags); 1669 if (pending->error) 1670 goto free_pending; 1671 1672 pending->error = btrfs_get_free_objectid(tree_root, &objectid); 1673 if (pending->error) 1674 goto free_fname; 1675 1676 /* 1677 * Make qgroup to skip current new snapshot's qgroupid, as it is 1678 * accounted by later btrfs_qgroup_inherit(). 1679 */ 1680 btrfs_set_skip_qgroup(trans, objectid); 1681 1682 btrfs_reloc_pre_snapshot(pending, &to_reserve); 1683 1684 if (to_reserve > 0) { 1685 pending->error = btrfs_block_rsv_add(fs_info, 1686 &pending->block_rsv, 1687 to_reserve, 1688 BTRFS_RESERVE_NO_FLUSH); 1689 if (pending->error) 1690 goto clear_skip_qgroup; 1691 } 1692 1693 key.objectid = objectid; 1694 key.offset = (u64)-1; 1695 key.type = BTRFS_ROOT_ITEM_KEY; 1696 1697 rsv = trans->block_rsv; 1698 trans->block_rsv = &pending->block_rsv; 1699 trans->bytes_reserved = trans->block_rsv->reserved; 1700 trace_btrfs_space_reservation(fs_info, "transaction", 1701 trans->transid, 1702 trans->bytes_reserved, 1); 1703 parent_root = BTRFS_I(parent_inode)->root; 1704 ret = record_root_in_trans(trans, parent_root, 0); 1705 if (ret) 1706 goto fail; 1707 cur_time = current_time(parent_inode); 1708 1709 /* 1710 * insert the directory item 1711 */ 1712 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index); 1713 if (ret) { 1714 btrfs_abort_transaction(trans, ret); 1715 goto fail; 1716 } 1717 1718 /* check if there is a file/dir which has the same name. */ 1719 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1720 btrfs_ino(BTRFS_I(parent_inode)), 1721 &fname.disk_name, 0); 1722 if (dir_item != NULL && !IS_ERR(dir_item)) { 1723 pending->error = -EEXIST; 1724 goto dir_item_existed; 1725 } else if (IS_ERR(dir_item)) { 1726 ret = PTR_ERR(dir_item); 1727 btrfs_abort_transaction(trans, ret); 1728 goto fail; 1729 } 1730 btrfs_release_path(path); 1731 1732 ret = btrfs_create_qgroup(trans, objectid); 1733 if (ret && ret != -EEXIST) { 1734 btrfs_abort_transaction(trans, ret); 1735 goto fail; 1736 } 1737 1738 /* 1739 * pull in the delayed directory update 1740 * and the delayed inode item 1741 * otherwise we corrupt the FS during 1742 * snapshot 1743 */ 1744 ret = btrfs_run_delayed_items(trans); 1745 if (ret) { /* Transaction aborted */ 1746 btrfs_abort_transaction(trans, ret); 1747 goto fail; 1748 } 1749 1750 ret = record_root_in_trans(trans, root, 0); 1751 if (ret) { 1752 btrfs_abort_transaction(trans, ret); 1753 goto fail; 1754 } 1755 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1756 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1757 btrfs_check_and_init_root_item(new_root_item); 1758 1759 root_flags = btrfs_root_flags(new_root_item); 1760 if (pending->readonly) 1761 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1762 else 1763 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1764 btrfs_set_root_flags(new_root_item, root_flags); 1765 1766 btrfs_set_root_generation_v2(new_root_item, 1767 trans->transid); 1768 generate_random_guid(new_root_item->uuid); 1769 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1770 BTRFS_UUID_SIZE); 1771 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1772 memset(new_root_item->received_uuid, 0, 1773 sizeof(new_root_item->received_uuid)); 1774 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1775 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1776 btrfs_set_root_stransid(new_root_item, 0); 1777 btrfs_set_root_rtransid(new_root_item, 0); 1778 } 1779 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1780 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1781 btrfs_set_root_otransid(new_root_item, trans->transid); 1782 1783 old = btrfs_lock_root_node(root); 1784 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old, 1785 BTRFS_NESTING_COW); 1786 if (ret) { 1787 btrfs_tree_unlock(old); 1788 free_extent_buffer(old); 1789 btrfs_abort_transaction(trans, ret); 1790 goto fail; 1791 } 1792 1793 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1794 /* clean up in any case */ 1795 btrfs_tree_unlock(old); 1796 free_extent_buffer(old); 1797 if (ret) { 1798 btrfs_abort_transaction(trans, ret); 1799 goto fail; 1800 } 1801 /* see comments in should_cow_block() */ 1802 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1803 smp_wmb(); 1804 1805 btrfs_set_root_node(new_root_item, tmp); 1806 /* record when the snapshot was created in key.offset */ 1807 key.offset = trans->transid; 1808 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1809 btrfs_tree_unlock(tmp); 1810 free_extent_buffer(tmp); 1811 if (ret) { 1812 btrfs_abort_transaction(trans, ret); 1813 goto fail; 1814 } 1815 1816 /* 1817 * insert root back/forward references 1818 */ 1819 ret = btrfs_add_root_ref(trans, objectid, 1820 btrfs_root_id(parent_root), 1821 btrfs_ino(BTRFS_I(parent_inode)), index, 1822 &fname.disk_name); 1823 if (ret) { 1824 btrfs_abort_transaction(trans, ret); 1825 goto fail; 1826 } 1827 1828 key.offset = (u64)-1; 1829 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, &pending->anon_dev); 1830 if (IS_ERR(pending->snap)) { 1831 ret = PTR_ERR(pending->snap); 1832 pending->snap = NULL; 1833 btrfs_abort_transaction(trans, ret); 1834 goto fail; 1835 } 1836 1837 ret = btrfs_reloc_post_snapshot(trans, pending); 1838 if (ret) { 1839 btrfs_abort_transaction(trans, ret); 1840 goto fail; 1841 } 1842 1843 /* 1844 * Do special qgroup accounting for snapshot, as we do some qgroup 1845 * snapshot hack to do fast snapshot. 1846 * To co-operate with that hack, we do hack again. 1847 * Or snapshot will be greatly slowed down by a subtree qgroup rescan 1848 */ 1849 if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_FULL) 1850 ret = qgroup_account_snapshot(trans, root, parent_root, 1851 pending->inherit, objectid); 1852 else if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE) 1853 ret = btrfs_qgroup_inherit(trans, btrfs_root_id(root), objectid, 1854 btrfs_root_id(parent_root), pending->inherit); 1855 if (ret < 0) 1856 goto fail; 1857 1858 ret = btrfs_insert_dir_item(trans, &fname.disk_name, 1859 BTRFS_I(parent_inode), &key, BTRFS_FT_DIR, 1860 index); 1861 if (ret) { 1862 btrfs_abort_transaction(trans, ret); 1863 goto fail; 1864 } 1865 1866 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size + 1867 fname.disk_name.len * 2); 1868 inode_set_mtime_to_ts(parent_inode, 1869 inode_set_ctime_current(parent_inode)); 1870 ret = btrfs_update_inode_fallback(trans, BTRFS_I(parent_inode)); 1871 if (ret) { 1872 btrfs_abort_transaction(trans, ret); 1873 goto fail; 1874 } 1875 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid, 1876 BTRFS_UUID_KEY_SUBVOL, 1877 objectid); 1878 if (ret) { 1879 btrfs_abort_transaction(trans, ret); 1880 goto fail; 1881 } 1882 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1883 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid, 1884 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1885 objectid); 1886 if (ret && ret != -EEXIST) { 1887 btrfs_abort_transaction(trans, ret); 1888 goto fail; 1889 } 1890 } 1891 1892 fail: 1893 pending->error = ret; 1894 dir_item_existed: 1895 trans->block_rsv = rsv; 1896 trans->bytes_reserved = 0; 1897 clear_skip_qgroup: 1898 btrfs_clear_skip_qgroup(trans); 1899 free_fname: 1900 fscrypt_free_filename(&fname); 1901 free_pending: 1902 kfree(new_root_item); 1903 pending->root_item = NULL; 1904 btrfs_free_path(path); 1905 pending->path = NULL; 1906 1907 return ret; 1908 } 1909 1910 /* 1911 * create all the snapshots we've scheduled for creation 1912 */ 1913 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans) 1914 { 1915 struct btrfs_pending_snapshot *pending, *next; 1916 struct list_head *head = &trans->transaction->pending_snapshots; 1917 int ret = 0; 1918 1919 list_for_each_entry_safe(pending, next, head, list) { 1920 list_del(&pending->list); 1921 ret = create_pending_snapshot(trans, pending); 1922 if (ret) 1923 break; 1924 } 1925 return ret; 1926 } 1927 1928 static void update_super_roots(struct btrfs_fs_info *fs_info) 1929 { 1930 struct btrfs_root_item *root_item; 1931 struct btrfs_super_block *super; 1932 1933 super = fs_info->super_copy; 1934 1935 root_item = &fs_info->chunk_root->root_item; 1936 super->chunk_root = root_item->bytenr; 1937 super->chunk_root_generation = root_item->generation; 1938 super->chunk_root_level = root_item->level; 1939 1940 root_item = &fs_info->tree_root->root_item; 1941 super->root = root_item->bytenr; 1942 super->generation = root_item->generation; 1943 super->root_level = root_item->level; 1944 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 1945 super->cache_generation = root_item->generation; 1946 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags)) 1947 super->cache_generation = 0; 1948 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags)) 1949 super->uuid_tree_generation = root_item->generation; 1950 } 1951 1952 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1953 { 1954 struct btrfs_transaction *trans; 1955 int ret = 0; 1956 1957 spin_lock(&info->trans_lock); 1958 trans = info->running_transaction; 1959 if (trans) 1960 ret = is_transaction_blocked(trans); 1961 spin_unlock(&info->trans_lock); 1962 return ret; 1963 } 1964 1965 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans) 1966 { 1967 struct btrfs_fs_info *fs_info = trans->fs_info; 1968 struct btrfs_transaction *cur_trans; 1969 1970 /* Kick the transaction kthread. */ 1971 set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags); 1972 wake_up_process(fs_info->transaction_kthread); 1973 1974 /* take transaction reference */ 1975 cur_trans = trans->transaction; 1976 refcount_inc(&cur_trans->use_count); 1977 1978 btrfs_end_transaction(trans); 1979 1980 /* 1981 * Wait for the current transaction commit to start and block 1982 * subsequent transaction joins 1983 */ 1984 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 1985 wait_event(fs_info->transaction_blocked_wait, 1986 cur_trans->state >= TRANS_STATE_COMMIT_START || 1987 TRANS_ABORTED(cur_trans)); 1988 btrfs_put_transaction(cur_trans); 1989 } 1990 1991 /* 1992 * If there is a running transaction commit it or if it's already committing, 1993 * wait for its commit to complete. Does not start and commit a new transaction 1994 * if there isn't any running. 1995 */ 1996 int btrfs_commit_current_transaction(struct btrfs_root *root) 1997 { 1998 struct btrfs_trans_handle *trans; 1999 2000 trans = btrfs_attach_transaction_barrier(root); 2001 if (IS_ERR(trans)) { 2002 int ret = PTR_ERR(trans); 2003 2004 return (ret == -ENOENT) ? 0 : ret; 2005 } 2006 2007 return btrfs_commit_transaction(trans); 2008 } 2009 2010 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err) 2011 { 2012 struct btrfs_fs_info *fs_info = trans->fs_info; 2013 struct btrfs_transaction *cur_trans = trans->transaction; 2014 2015 WARN_ON(refcount_read(&trans->use_count) > 1); 2016 2017 btrfs_abort_transaction(trans, err); 2018 2019 spin_lock(&fs_info->trans_lock); 2020 2021 /* 2022 * If the transaction is removed from the list, it means this 2023 * transaction has been committed successfully, so it is impossible 2024 * to call the cleanup function. 2025 */ 2026 BUG_ON(list_empty(&cur_trans->list)); 2027 2028 if (cur_trans == fs_info->running_transaction) { 2029 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2030 spin_unlock(&fs_info->trans_lock); 2031 2032 /* 2033 * The thread has already released the lockdep map as reader 2034 * already in btrfs_commit_transaction(). 2035 */ 2036 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers); 2037 wait_event(cur_trans->writer_wait, 2038 atomic_read(&cur_trans->num_writers) == 1); 2039 2040 spin_lock(&fs_info->trans_lock); 2041 } 2042 2043 /* 2044 * Now that we know no one else is still using the transaction we can 2045 * remove the transaction from the list of transactions. This avoids 2046 * the transaction kthread from cleaning up the transaction while some 2047 * other task is still using it, which could result in a use-after-free 2048 * on things like log trees, as it forces the transaction kthread to 2049 * wait for this transaction to be cleaned up by us. 2050 */ 2051 list_del_init(&cur_trans->list); 2052 2053 spin_unlock(&fs_info->trans_lock); 2054 2055 btrfs_cleanup_one_transaction(trans->transaction, fs_info); 2056 2057 spin_lock(&fs_info->trans_lock); 2058 if (cur_trans == fs_info->running_transaction) 2059 fs_info->running_transaction = NULL; 2060 spin_unlock(&fs_info->trans_lock); 2061 2062 if (trans->type & __TRANS_FREEZABLE) 2063 sb_end_intwrite(fs_info->sb); 2064 btrfs_put_transaction(cur_trans); 2065 btrfs_put_transaction(cur_trans); 2066 2067 trace_btrfs_transaction_commit(fs_info); 2068 2069 if (current->journal_info == trans) 2070 current->journal_info = NULL; 2071 2072 /* 2073 * If relocation is running, we can't cancel scrub because that will 2074 * result in a deadlock. Before relocating a block group, relocation 2075 * pauses scrub, then starts and commits a transaction before unpausing 2076 * scrub. If the transaction commit is being done by the relocation 2077 * task or triggered by another task and the relocation task is waiting 2078 * for the commit, and we end up here due to an error in the commit 2079 * path, then calling btrfs_scrub_cancel() will deadlock, as we are 2080 * asking for scrub to stop while having it asked to be paused higher 2081 * above in relocation code. 2082 */ 2083 if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 2084 btrfs_scrub_cancel(fs_info); 2085 2086 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2087 } 2088 2089 /* 2090 * Release reserved delayed ref space of all pending block groups of the 2091 * transaction and remove them from the list 2092 */ 2093 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans) 2094 { 2095 struct btrfs_fs_info *fs_info = trans->fs_info; 2096 struct btrfs_block_group *block_group, *tmp; 2097 2098 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 2099 btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info); 2100 list_del_init(&block_group->bg_list); 2101 } 2102 } 2103 2104 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info) 2105 { 2106 /* 2107 * We use try_to_writeback_inodes_sb() here because if we used 2108 * btrfs_start_delalloc_roots we would deadlock with fs freeze. 2109 * Currently are holding the fs freeze lock, if we do an async flush 2110 * we'll do btrfs_join_transaction() and deadlock because we need to 2111 * wait for the fs freeze lock. Using the direct flushing we benefit 2112 * from already being in a transaction and our join_transaction doesn't 2113 * have to re-take the fs freeze lock. 2114 * 2115 * Note that try_to_writeback_inodes_sb() will only trigger writeback 2116 * if it can read lock sb->s_umount. It will always be able to lock it, 2117 * except when the filesystem is being unmounted or being frozen, but in 2118 * those cases sync_filesystem() is called, which results in calling 2119 * writeback_inodes_sb() while holding a write lock on sb->s_umount. 2120 * Note that we don't call writeback_inodes_sb() directly, because it 2121 * will emit a warning if sb->s_umount is not locked. 2122 */ 2123 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 2124 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC); 2125 return 0; 2126 } 2127 2128 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info) 2129 { 2130 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 2131 btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL); 2132 } 2133 2134 /* 2135 * Add a pending snapshot associated with the given transaction handle to the 2136 * respective handle. This must be called after the transaction commit started 2137 * and while holding fs_info->trans_lock. 2138 * This serves to guarantee a caller of btrfs_commit_transaction() that it can 2139 * safely free the pending snapshot pointer in case btrfs_commit_transaction() 2140 * returns an error. 2141 */ 2142 static void add_pending_snapshot(struct btrfs_trans_handle *trans) 2143 { 2144 struct btrfs_transaction *cur_trans = trans->transaction; 2145 2146 if (!trans->pending_snapshot) 2147 return; 2148 2149 lockdep_assert_held(&trans->fs_info->trans_lock); 2150 ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_PREP); 2151 2152 list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots); 2153 } 2154 2155 static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval) 2156 { 2157 fs_info->commit_stats.commit_count++; 2158 fs_info->commit_stats.last_commit_dur = interval; 2159 fs_info->commit_stats.max_commit_dur = 2160 max_t(u64, fs_info->commit_stats.max_commit_dur, interval); 2161 fs_info->commit_stats.total_commit_dur += interval; 2162 } 2163 2164 int btrfs_commit_transaction(struct btrfs_trans_handle *trans) 2165 { 2166 struct btrfs_fs_info *fs_info = trans->fs_info; 2167 struct btrfs_transaction *cur_trans = trans->transaction; 2168 struct btrfs_transaction *prev_trans = NULL; 2169 int ret; 2170 ktime_t start_time; 2171 ktime_t interval; 2172 2173 ASSERT(refcount_read(&trans->use_count) == 1); 2174 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2175 2176 clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags); 2177 2178 /* Stop the commit early if ->aborted is set */ 2179 if (TRANS_ABORTED(cur_trans)) { 2180 ret = cur_trans->aborted; 2181 goto lockdep_trans_commit_start_release; 2182 } 2183 2184 btrfs_trans_release_metadata(trans); 2185 trans->block_rsv = NULL; 2186 2187 /* 2188 * We only want one transaction commit doing the flushing so we do not 2189 * waste a bunch of time on lock contention on the extent root node. 2190 */ 2191 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING, 2192 &cur_trans->delayed_refs.flags)) { 2193 /* 2194 * Make a pass through all the delayed refs we have so far. 2195 * Any running threads may add more while we are here. 2196 */ 2197 ret = btrfs_run_delayed_refs(trans, 0); 2198 if (ret) 2199 goto lockdep_trans_commit_start_release; 2200 } 2201 2202 btrfs_create_pending_block_groups(trans); 2203 2204 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) { 2205 int run_it = 0; 2206 2207 /* this mutex is also taken before trying to set 2208 * block groups readonly. We need to make sure 2209 * that nobody has set a block group readonly 2210 * after a extents from that block group have been 2211 * allocated for cache files. btrfs_set_block_group_ro 2212 * will wait for the transaction to commit if it 2213 * finds BTRFS_TRANS_DIRTY_BG_RUN set. 2214 * 2215 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure 2216 * only one process starts all the block group IO. It wouldn't 2217 * hurt to have more than one go through, but there's no 2218 * real advantage to it either. 2219 */ 2220 mutex_lock(&fs_info->ro_block_group_mutex); 2221 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN, 2222 &cur_trans->flags)) 2223 run_it = 1; 2224 mutex_unlock(&fs_info->ro_block_group_mutex); 2225 2226 if (run_it) { 2227 ret = btrfs_start_dirty_block_groups(trans); 2228 if (ret) 2229 goto lockdep_trans_commit_start_release; 2230 } 2231 } 2232 2233 spin_lock(&fs_info->trans_lock); 2234 if (cur_trans->state >= TRANS_STATE_COMMIT_PREP) { 2235 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED; 2236 2237 add_pending_snapshot(trans); 2238 2239 spin_unlock(&fs_info->trans_lock); 2240 refcount_inc(&cur_trans->use_count); 2241 2242 if (trans->in_fsync) 2243 want_state = TRANS_STATE_SUPER_COMMITTED; 2244 2245 btrfs_trans_state_lockdep_release(fs_info, 2246 BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2247 ret = btrfs_end_transaction(trans); 2248 wait_for_commit(cur_trans, want_state); 2249 2250 if (TRANS_ABORTED(cur_trans)) 2251 ret = cur_trans->aborted; 2252 2253 btrfs_put_transaction(cur_trans); 2254 2255 return ret; 2256 } 2257 2258 cur_trans->state = TRANS_STATE_COMMIT_PREP; 2259 wake_up(&fs_info->transaction_blocked_wait); 2260 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2261 2262 if (cur_trans->list.prev != &fs_info->trans_list) { 2263 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED; 2264 2265 if (trans->in_fsync) 2266 want_state = TRANS_STATE_SUPER_COMMITTED; 2267 2268 prev_trans = list_entry(cur_trans->list.prev, 2269 struct btrfs_transaction, list); 2270 if (prev_trans->state < want_state) { 2271 refcount_inc(&prev_trans->use_count); 2272 spin_unlock(&fs_info->trans_lock); 2273 2274 wait_for_commit(prev_trans, want_state); 2275 2276 ret = READ_ONCE(prev_trans->aborted); 2277 2278 btrfs_put_transaction(prev_trans); 2279 if (ret) 2280 goto lockdep_release; 2281 spin_lock(&fs_info->trans_lock); 2282 } 2283 } else { 2284 /* 2285 * The previous transaction was aborted and was already removed 2286 * from the list of transactions at fs_info->trans_list. So we 2287 * abort to prevent writing a new superblock that reflects a 2288 * corrupt state (pointing to trees with unwritten nodes/leafs). 2289 */ 2290 if (BTRFS_FS_ERROR(fs_info)) { 2291 spin_unlock(&fs_info->trans_lock); 2292 ret = -EROFS; 2293 goto lockdep_release; 2294 } 2295 } 2296 2297 cur_trans->state = TRANS_STATE_COMMIT_START; 2298 wake_up(&fs_info->transaction_blocked_wait); 2299 spin_unlock(&fs_info->trans_lock); 2300 2301 /* 2302 * Get the time spent on the work done by the commit thread and not 2303 * the time spent waiting on a previous commit 2304 */ 2305 start_time = ktime_get_ns(); 2306 2307 extwriter_counter_dec(cur_trans, trans->type); 2308 2309 ret = btrfs_start_delalloc_flush(fs_info); 2310 if (ret) 2311 goto lockdep_release; 2312 2313 ret = btrfs_run_delayed_items(trans); 2314 if (ret) 2315 goto lockdep_release; 2316 2317 /* 2318 * The thread has started/joined the transaction thus it holds the 2319 * lockdep map as a reader. It has to release it before acquiring the 2320 * lockdep map as a writer. 2321 */ 2322 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters); 2323 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters); 2324 wait_event(cur_trans->writer_wait, 2325 extwriter_counter_read(cur_trans) == 0); 2326 2327 /* some pending stuffs might be added after the previous flush. */ 2328 ret = btrfs_run_delayed_items(trans); 2329 if (ret) { 2330 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 2331 goto cleanup_transaction; 2332 } 2333 2334 btrfs_wait_delalloc_flush(fs_info); 2335 2336 /* 2337 * Wait for all ordered extents started by a fast fsync that joined this 2338 * transaction. Otherwise if this transaction commits before the ordered 2339 * extents complete we lose logged data after a power failure. 2340 */ 2341 btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered); 2342 wait_event(cur_trans->pending_wait, 2343 atomic_read(&cur_trans->pending_ordered) == 0); 2344 2345 btrfs_scrub_pause(fs_info); 2346 /* 2347 * Ok now we need to make sure to block out any other joins while we 2348 * commit the transaction. We could have started a join before setting 2349 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 2350 */ 2351 spin_lock(&fs_info->trans_lock); 2352 add_pending_snapshot(trans); 2353 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2354 spin_unlock(&fs_info->trans_lock); 2355 2356 /* 2357 * The thread has started/joined the transaction thus it holds the 2358 * lockdep map as a reader. It has to release it before acquiring the 2359 * lockdep map as a writer. 2360 */ 2361 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 2362 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers); 2363 wait_event(cur_trans->writer_wait, 2364 atomic_read(&cur_trans->num_writers) == 1); 2365 2366 /* 2367 * Make lockdep happy by acquiring the state locks after 2368 * btrfs_trans_num_writers is released. If we acquired the state locks 2369 * before releasing the btrfs_trans_num_writers lock then lockdep would 2370 * complain because we did not follow the reverse order unlocking rule. 2371 */ 2372 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED); 2373 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2374 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2375 2376 /* 2377 * We've started the commit, clear the flag in case we were triggered to 2378 * do an async commit but somebody else started before the transaction 2379 * kthread could do the work. 2380 */ 2381 clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags); 2382 2383 if (TRANS_ABORTED(cur_trans)) { 2384 ret = cur_trans->aborted; 2385 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2386 goto scrub_continue; 2387 } 2388 /* 2389 * the reloc mutex makes sure that we stop 2390 * the balancing code from coming in and moving 2391 * extents around in the middle of the commit 2392 */ 2393 mutex_lock(&fs_info->reloc_mutex); 2394 2395 /* 2396 * We needn't worry about the delayed items because we will 2397 * deal with them in create_pending_snapshot(), which is the 2398 * core function of the snapshot creation. 2399 */ 2400 ret = create_pending_snapshots(trans); 2401 if (ret) 2402 goto unlock_reloc; 2403 2404 /* 2405 * We insert the dir indexes of the snapshots and update the inode 2406 * of the snapshots' parents after the snapshot creation, so there 2407 * are some delayed items which are not dealt with. Now deal with 2408 * them. 2409 * 2410 * We needn't worry that this operation will corrupt the snapshots, 2411 * because all the tree which are snapshoted will be forced to COW 2412 * the nodes and leaves. 2413 */ 2414 ret = btrfs_run_delayed_items(trans); 2415 if (ret) 2416 goto unlock_reloc; 2417 2418 ret = btrfs_run_delayed_refs(trans, U64_MAX); 2419 if (ret) 2420 goto unlock_reloc; 2421 2422 /* 2423 * make sure none of the code above managed to slip in a 2424 * delayed item 2425 */ 2426 btrfs_assert_delayed_root_empty(fs_info); 2427 2428 WARN_ON(cur_trans != trans->transaction); 2429 2430 ret = commit_fs_roots(trans); 2431 if (ret) 2432 goto unlock_reloc; 2433 2434 /* commit_fs_roots gets rid of all the tree log roots, it is now 2435 * safe to free the root of tree log roots 2436 */ 2437 btrfs_free_log_root_tree(trans, fs_info); 2438 2439 /* 2440 * Since fs roots are all committed, we can get a quite accurate 2441 * new_roots. So let's do quota accounting. 2442 */ 2443 ret = btrfs_qgroup_account_extents(trans); 2444 if (ret < 0) 2445 goto unlock_reloc; 2446 2447 ret = commit_cowonly_roots(trans); 2448 if (ret) 2449 goto unlock_reloc; 2450 2451 /* 2452 * The tasks which save the space cache and inode cache may also 2453 * update ->aborted, check it. 2454 */ 2455 if (TRANS_ABORTED(cur_trans)) { 2456 ret = cur_trans->aborted; 2457 goto unlock_reloc; 2458 } 2459 2460 cur_trans = fs_info->running_transaction; 2461 2462 btrfs_set_root_node(&fs_info->tree_root->root_item, 2463 fs_info->tree_root->node); 2464 list_add_tail(&fs_info->tree_root->dirty_list, 2465 &cur_trans->switch_commits); 2466 2467 btrfs_set_root_node(&fs_info->chunk_root->root_item, 2468 fs_info->chunk_root->node); 2469 list_add_tail(&fs_info->chunk_root->dirty_list, 2470 &cur_trans->switch_commits); 2471 2472 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2473 btrfs_set_root_node(&fs_info->block_group_root->root_item, 2474 fs_info->block_group_root->node); 2475 list_add_tail(&fs_info->block_group_root->dirty_list, 2476 &cur_trans->switch_commits); 2477 } 2478 2479 switch_commit_roots(trans); 2480 2481 ASSERT(list_empty(&cur_trans->dirty_bgs)); 2482 ASSERT(list_empty(&cur_trans->io_bgs)); 2483 update_super_roots(fs_info); 2484 2485 btrfs_set_super_log_root(fs_info->super_copy, 0); 2486 btrfs_set_super_log_root_level(fs_info->super_copy, 0); 2487 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2488 sizeof(*fs_info->super_copy)); 2489 2490 btrfs_commit_device_sizes(cur_trans); 2491 2492 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 2493 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 2494 2495 btrfs_trans_release_chunk_metadata(trans); 2496 2497 /* 2498 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and 2499 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to 2500 * make sure that before we commit our superblock, no other task can 2501 * start a new transaction and commit a log tree before we commit our 2502 * superblock. Anyone trying to commit a log tree locks this mutex before 2503 * writing its superblock. 2504 */ 2505 mutex_lock(&fs_info->tree_log_mutex); 2506 2507 spin_lock(&fs_info->trans_lock); 2508 cur_trans->state = TRANS_STATE_UNBLOCKED; 2509 fs_info->running_transaction = NULL; 2510 spin_unlock(&fs_info->trans_lock); 2511 mutex_unlock(&fs_info->reloc_mutex); 2512 2513 wake_up(&fs_info->transaction_wait); 2514 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2515 2516 /* If we have features changed, wake up the cleaner to update sysfs. */ 2517 if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) && 2518 fs_info->cleaner_kthread) 2519 wake_up_process(fs_info->cleaner_kthread); 2520 2521 ret = btrfs_write_and_wait_transaction(trans); 2522 if (ret) { 2523 btrfs_handle_fs_error(fs_info, ret, 2524 "Error while writing out transaction"); 2525 mutex_unlock(&fs_info->tree_log_mutex); 2526 goto scrub_continue; 2527 } 2528 2529 ret = write_all_supers(fs_info, 0); 2530 /* 2531 * the super is written, we can safely allow the tree-loggers 2532 * to go about their business 2533 */ 2534 mutex_unlock(&fs_info->tree_log_mutex); 2535 if (ret) 2536 goto scrub_continue; 2537 2538 /* 2539 * We needn't acquire the lock here because there is no other task 2540 * which can change it. 2541 */ 2542 cur_trans->state = TRANS_STATE_SUPER_COMMITTED; 2543 wake_up(&cur_trans->commit_wait); 2544 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2545 2546 btrfs_finish_extent_commit(trans); 2547 2548 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags)) 2549 btrfs_clear_space_info_full(fs_info); 2550 2551 btrfs_set_last_trans_committed(fs_info, cur_trans->transid); 2552 /* 2553 * We needn't acquire the lock here because there is no other task 2554 * which can change it. 2555 */ 2556 cur_trans->state = TRANS_STATE_COMPLETED; 2557 wake_up(&cur_trans->commit_wait); 2558 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED); 2559 2560 spin_lock(&fs_info->trans_lock); 2561 list_del_init(&cur_trans->list); 2562 spin_unlock(&fs_info->trans_lock); 2563 2564 btrfs_put_transaction(cur_trans); 2565 btrfs_put_transaction(cur_trans); 2566 2567 if (trans->type & __TRANS_FREEZABLE) 2568 sb_end_intwrite(fs_info->sb); 2569 2570 trace_btrfs_transaction_commit(fs_info); 2571 2572 interval = ktime_get_ns() - start_time; 2573 2574 btrfs_scrub_continue(fs_info); 2575 2576 if (current->journal_info == trans) 2577 current->journal_info = NULL; 2578 2579 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2580 2581 update_commit_stats(fs_info, interval); 2582 2583 return ret; 2584 2585 unlock_reloc: 2586 mutex_unlock(&fs_info->reloc_mutex); 2587 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2588 scrub_continue: 2589 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2590 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED); 2591 btrfs_scrub_continue(fs_info); 2592 cleanup_transaction: 2593 btrfs_trans_release_metadata(trans); 2594 btrfs_cleanup_pending_block_groups(trans); 2595 btrfs_trans_release_chunk_metadata(trans); 2596 trans->block_rsv = NULL; 2597 btrfs_warn(fs_info, "Skipping commit of aborted transaction."); 2598 if (current->journal_info == trans) 2599 current->journal_info = NULL; 2600 cleanup_transaction(trans, ret); 2601 2602 return ret; 2603 2604 lockdep_release: 2605 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters); 2606 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 2607 goto cleanup_transaction; 2608 2609 lockdep_trans_commit_start_release: 2610 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2611 btrfs_end_transaction(trans); 2612 return ret; 2613 } 2614 2615 /* 2616 * return < 0 if error 2617 * 0 if there are no more dead_roots at the time of call 2618 * 1 there are more to be processed, call me again 2619 * 2620 * The return value indicates there are certainly more snapshots to delete, but 2621 * if there comes a new one during processing, it may return 0. We don't mind, 2622 * because btrfs_commit_super will poke cleaner thread and it will process it a 2623 * few seconds later. 2624 */ 2625 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info) 2626 { 2627 struct btrfs_root *root; 2628 int ret; 2629 2630 spin_lock(&fs_info->trans_lock); 2631 if (list_empty(&fs_info->dead_roots)) { 2632 spin_unlock(&fs_info->trans_lock); 2633 return 0; 2634 } 2635 root = list_first_entry(&fs_info->dead_roots, 2636 struct btrfs_root, root_list); 2637 list_del_init(&root->root_list); 2638 spin_unlock(&fs_info->trans_lock); 2639 2640 btrfs_debug(fs_info, "cleaner removing %llu", btrfs_root_id(root)); 2641 2642 btrfs_kill_all_delayed_nodes(root); 2643 2644 if (btrfs_header_backref_rev(root->node) < 2645 BTRFS_MIXED_BACKREF_REV) 2646 ret = btrfs_drop_snapshot(root, 0, 0); 2647 else 2648 ret = btrfs_drop_snapshot(root, 1, 0); 2649 2650 btrfs_put_root(root); 2651 return (ret < 0) ? 0 : 1; 2652 } 2653 2654 /* 2655 * We only mark the transaction aborted and then set the file system read-only. 2656 * This will prevent new transactions from starting or trying to join this 2657 * one. 2658 * 2659 * This means that error recovery at the call site is limited to freeing 2660 * any local memory allocations and passing the error code up without 2661 * further cleanup. The transaction should complete as it normally would 2662 * in the call path but will return -EIO. 2663 * 2664 * We'll complete the cleanup in btrfs_end_transaction and 2665 * btrfs_commit_transaction. 2666 */ 2667 void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 2668 const char *function, 2669 unsigned int line, int error, bool first_hit) 2670 { 2671 struct btrfs_fs_info *fs_info = trans->fs_info; 2672 2673 WRITE_ONCE(trans->aborted, error); 2674 WRITE_ONCE(trans->transaction->aborted, error); 2675 if (first_hit && error == -ENOSPC) 2676 btrfs_dump_space_info_for_trans_abort(fs_info); 2677 /* Wake up anybody who may be waiting on this transaction */ 2678 wake_up(&fs_info->transaction_wait); 2679 wake_up(&fs_info->transaction_blocked_wait); 2680 __btrfs_handle_fs_error(fs_info, function, line, error, NULL); 2681 } 2682 2683 int __init btrfs_transaction_init(void) 2684 { 2685 btrfs_trans_handle_cachep = KMEM_CACHE(btrfs_trans_handle, SLAB_TEMPORARY); 2686 if (!btrfs_trans_handle_cachep) 2687 return -ENOMEM; 2688 return 0; 2689 } 2690 2691 void __cold btrfs_transaction_exit(void) 2692 { 2693 kmem_cache_destroy(btrfs_trans_handle_cachep); 2694 } 2695